WO2021147096A1 - 显示器下部的传感器 - Google Patents

显示器下部的传感器 Download PDF

Info

Publication number
WO2021147096A1
WO2021147096A1 PCT/CN2020/074019 CN2020074019W WO2021147096A1 WO 2021147096 A1 WO2021147096 A1 WO 2021147096A1 CN 2020074019 W CN2020074019 W CN 2020074019W WO 2021147096 A1 WO2021147096 A1 WO 2021147096A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
light
display
layer
polarization
Prior art date
Application number
PCT/CN2020/074019
Other languages
English (en)
French (fr)
Inventor
闵丙日
Original Assignee
杭州芯格微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州芯格微电子有限公司 filed Critical 杭州芯格微电子有限公司
Priority to CN202080002035.2A priority Critical patent/CN113015891A/zh
Priority to PCT/CN2020/074019 priority patent/WO2021147096A1/zh
Priority to US17/150,435 priority patent/US20210285764A1/en
Publication of WO2021147096A1 publication Critical patent/WO2021147096A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/26Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the transmitted pulses use a frequency-modulated or phase-modulated carrier wave, e.g. for pulse compression of received signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4238Pulsed light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4242Modulated light, e.g. for synchronizing source and detector circuit

Definitions

  • the present invention relates to a sensor arranged in the lower part of the display.
  • Light sensors are not only used in mobile electronic devices such as mobile phones and tablet computers, but also in video electronic devices such as televisions and monitors.
  • the light sensor includes, for example, an illuminance sensor, a proximity sensor, and a proximity illuminance sensor.
  • the proximity sensor is a light sensor that measures the distance between the user and the electronic device
  • the illuminance sensor is a light sensor that senses the brightness of the periphery of the electronic device.
  • the proximity illuminance sensor that combines an optical proximity sensor and an illuminance sensor realizes two sensors in a single package.
  • the object of the present invention is to provide a sensor that can be applied to the lower part of the display with the design that the display occupies the entire front surface.
  • An embodiment of the present invention provides a sensor arranged on a lower part of a display including a pixel that generates light, a display retardation layer arranged on the upper part of the pixel, and a display polarizing layer.
  • the sensor at the lower part of the display may include: a light sensor, including a light irradiating part that emits modulated induction light and irradiates an object located outside the display, and detects the external reflected light of the modulated induction light reflected by the object And generate a light-receiving part of the pixel current; a sensor polarizing layer arranged on the upper part of the light sensor and having a polarizing axis inclined at a first angle; and a sensor delay layer arranged on the upper part of the sensor polarizing layer and having opposite A slow axis inclined at the first angle on the polarization axis of the sensor polarization layer.
  • the reflected light may pass through the display, the sensor polarizing layer, and the sensor retardation layer to reach the
  • the light irradiation unit may include: a light source signal generating unit that generates a basic light source driving signal that repeats the continuous on interval and the continuous off interval; and a carrier signal generating unit that generates a frequency greater than that of the basic light source driving signal.
  • the modulated induced light is generated by turning on and off at the frequency of the carrier signal during the continuous turning-on interval.
  • the senor at the lower part of the display may further include: a band-pass filter to remove the frequency component of the carrier signal from the pixel current; an amplifier to amplify the pixel current from which the frequency component of the carrier signal has been removed ; And an analog-digital converter, which converts the amplified pixel current into a digital signal.
  • the sensor polarization layer may include a first sensor polarization layer having a polarization axis inclined at the first angle and a second sensor polarization layer having a polarization axis inclined at a second angle.
  • the light-receiving part may include a first light-receiving part which is arranged at the lower part of the polarizing layer of the first sensor and detects the external reflected light and the internal reflected light of the induced light reflected inside the display, and a first light-receiving part arranged on the The second sensor is a lower part of the polarizing layer and a second light-receiving part that detects the external reflected light and the internal reflected light.
  • the sensor delay layer and the first sensor polarizing layer may allow the external reflected light to pass through, and allow the internal reflected light to pass through at the blocking transmission ratio of the internal reflection, the sensor delay layer And the second sensor polarizing layer allows the blocking transmission ratio of the external light other than the external reflected light to pass, and allows the internal reflected light to pass.
  • the brightness of the external reflected light can be calculated from the blocking transmission ratio of the external light and the blocking transmission ratio of the internal reflection.
  • the sensor polarization layer and the sensor delay layer may convert the induced light into the sensor circularly polarized light, so that the induced light passes through the polarizing layer of the display, and the sensor circularly polarized light
  • the delay layer of the display converts the linearly polarized light of the induction display with the same polarization axis as that of the polarizing layer of the display.
  • the slow axis of the sensor retardation layer may be parallel to the slow axis of the display retardation layer, and the polarization axis of the display polarizing layer is inclined at a second angle with respect to the slow axis of the display retardation layer.
  • the sensor retardation layer may include: a first sensor retardation layer, which is disposed on the upper part of the sensor polarization layer, and has a retarder that is inclined at the first angle with respect to the polarization axis of the sensor polarization layer. Axis; and a second sensor retardation layer, which is disposed on the upper part of the sensor polarizing layer corresponding to the second light receiving portion, and has a slow axis inclined at a second angle with respect to the polarizing axis of the sensor polarizing layer.
  • the light-receiving part may include: a first light-receiving part, which is arranged at a position where light after passing through the first sensor retardation layer and the sensor polarizing layer reaches, and detects the presence of the external reflected light and the induced light Internally reflected light reflected inside the display; and a second light-receiving part arranged at a position where the light after passing through the second sensor retardation layer and the sensor polarizing layer reaches, and detects the external reflected light and the internal reflected light.
  • the first sensor delay layer and the sensor polarizing layer may allow the external reflected light to pass through, and allow the internally reflected light to pass through at the blocking transmission ratio of the internal reflection, and the second sensor The retardation layer and the sensor polarizing layer pass the blocking transmission ratio of the external reflected light and the internal reflected light.
  • the slow axis of the retardation layer of the first sensor may be parallel to the slow axis of the retardation layer of the display, and the polarization axis of the display polarizing layer is relative to the slow axis of the display retardation layer.
  • Two angles of inclination, and the second angle is an angle obtained by rotating the first angle by 90 degrees.
  • the blocking transmission ratio of the external light can be measured with the light irradiating part closed.
  • the blocking transmission ratio of the internal reflection can be measured without the external reflection light.
  • the illuminance sensor according to the embodiment of the present invention can be applied to an electronic device designed such that the entire front surface is occupied by a display.
  • FIG. 1 is a diagram schematically showing the structure of the sensor at the lower part of the display and the structure of the light irradiation unit.
  • Fig. 2 is a diagram schematically showing a method of processing modulated induced light.
  • FIG. 3 is a diagram schematically showing an embodiment of a sensor as the lower part of the display when the modulated induced light is in an OFF state.
  • FIG. 4 is a diagram schematically showing an embodiment of the sensor as the lower part of the display when the modulated induced light is in an ON state.
  • FIG. 5 is a diagram schematically showing another embodiment of the sensor as the lower part of the display when the modulated induced light is in the off state.
  • FIG. 6 is a diagram schematically showing another embodiment of the sensor as the lower part of the display when the modulated induced light is in an on state.
  • FIG. 7 is a diagram for schematically explaining a case where light irradiated from the sensor at the lower part of the display is reflected inside the display as another example of the sensor at the lower part of the display.
  • FIG. 8 is a diagram schematically showing another embodiment of the sensor as the lower part of the display when the modulated induced light is in the off state.
  • FIG. 9 is a diagram schematically showing another embodiment of the sensor as the lower part of the display when the modulated induced light is in an on state.
  • Fig. 10 is a diagram for schematically explaining how light irradiated from the sensor on the lower part of the display is reflected inside the display as still another example of the sensor on the lower part of the display.
  • the hatching shown in the retardation layer indicates the direction of the slow axis
  • the hatching shown in the polarizing layer schematically indicates the direction of the polarization axis with respect to the slow axis extending in the horizontal direction.
  • the slow axis of the display retardation layer and the slow axis of the sensor retardation layer both extend in the horizontal direction, or the slow axis of the display retardation layer and the slow axis of the sensor retardation layer extend in the vertical direction. This is simply expressed to facilitate understanding. It should be understood that it is not necessary to align the slow axis of the sensor retardation layer with the slow axis of the display retardation layer.
  • FIG. 1 is a diagram schematically showing the structure of the sensor at the lower part of the display, and FIG. 1(a) shows the sensor at the lower part of the display, and FIG. 1(b) shows the light irradiation unit 210.
  • the sensor 100 at the lower part of the display includes a sensor polarizing layer 110, a sensor retardation layer 120, and a light sensor 200.
  • the light sensor 200 functions as a proximity sensor, and for this purpose, it includes a light irradiating unit 210 and a light receiving unit 220.
  • the light irradiation part 210 may include a light source that generates induced light belonging to the near-infrared or infrared band.
  • the light receiving unit 220 can detect induced light (hereinafter referred to as reflected light) reflected by an external object.
  • the light receiving unit 220 may be composed of a single photodiode, or may be composed of a plurality of photodiodes.
  • the light irradiating part 210 and the light receiving part 220 may be optically separated.
  • a collimating lens for improving the straightness of the induced light may be arranged on the upper part of the light irradiation part 210, and a condenser lens for condensing the reflected light may be arranged on the upper part of the light receiving part 220.
  • the sensor polarizing layer 110 is disposed on the upper part of the photosensor 200 and has a polarizing axis inclined at a first angle, for example +45 degrees, with respect to the slow axis of the sensor retardation layer 120.
  • the sensor delay layer 120 is disposed on the upper part of the sensor polarizing layer 110, and has, for example, a slow axis extending in the horizontal direction and a fast axis extending in the vertical direction.
  • the slow axis of the sensor retardation layer 120 and the slow axis of the display retardation layer may be substantially parallel.
  • the sensor polarizing layer 110 and the sensor retardation layer 120 can cause the induced light generated by the light irradiation unit 210 to pass through the display 10 to be emitted to the outside.
  • the sensor polarization layer 110 and the sensor delay layer 120 can allow reflected light to pass through the display and reach the light receiving unit 220.
  • the light irradiation unit 210 may include a light source signal generating unit 211, a carrier signal generating unit 212, a signal modulation unit 213, and a light source 214.
  • the light source signal generating unit 211 generates a basic light source driving signal for turning the light source 214 on or off.
  • the basic light source driving signal may be a rectangular wave signal having a frequency FL.
  • the basic light source driving signal includes a continuous on interval for turning on the light source and a continuous off interval for turning off the light source. Continuously open interval duration T 1 of the continuous off interval duration T 2 may be the same or different.
  • the carrier signal generating unit 212 generates a carrier signal for frequency-modulating the basic light source driving signal.
  • the carrier signal may be, for example, a rectangular wave signal having a frequency F C.
  • the frequency F C may be greater than the frequency F L.
  • the signal modulation unit 213 generates a modulated light source drive signal in which a basic light source drive signal is modulated by a carrier signal.
  • the signal modulation unit 213 performs modulation only in the continuous on section of the basic light source driving signal.
  • the modulated light source driving signal includes a modulated on interval in which the light source is repeatedly turned on and off at a frequency F C and a continuous off interval in which the light source is turned off.
  • the duration of the continuous on interval and the modulated duration of the on interval are T 1
  • the duration of the continuous off interval is T 2 .
  • the light source 214 irradiates, for example, modulated induced light belonging to the near infrared or infrared band by the modulated light source driving signal.
  • the light source 214 may be, for example, an LED (Light Emitting Diode).
  • the modulated induced light is pulsed light output at the frequency F C of the carrier signal only in the modulated on interval.
  • the induced light means modulated induced light
  • the reflected light indicates the light that is reflected by an external object and reaches the light receiving portion 220.
  • Fig. 2 is a diagram schematically showing a method of processing modulated induced light.
  • the light irradiating part 210 irradiates the induced light described with reference to FIG. 1 toward the bottom surface of the display.
  • the induced light incident on the bottom surface of the display travels to the outside through the upper surface of the display, is reflected by an external object, and is incident on the upper surface of the display again.
  • a light sensor belonging to the frequency range of the pulsed light F C, A is two or more sections of the pulsed light without separation section B.
  • the reflected light belong to the section A 'is a frequency F C of the pulsed light, more than two sections A' section is no light pulse B 'separated.
  • the duration of the time intervals A and A'is T 1 and the duration of the time intervals B and B'is T 2 .
  • the induced light generated by the light irradiating unit 210 is unpolarized light
  • the reflected light detected by the light receiving unit 220 is polarized light, which will be described in detail below.
  • the light receiving unit 220 generates a pixel current 221 that is substantially proportional to the brightness of the reflected light, that is, the amount of light.
  • the external light passing through the display 10 can be incident on the sensor 100 at the lower part of the display.
  • the amount of external light is relatively large compared to the amount of reflected light, and may be constant in a short time interval, for example, during the interval A′. Therefore, under the influence of external light, the pixel current 221 may include the compensation current DC offset .
  • the pixel current 221 includes a current A" corresponding to the pulsed light and external light detected during the interval A′ and a current B" corresponding to the external light detected during the interval B′.
  • the current A" is the current in the form of pulses with the minimum DC offset and the maximum I Max + DC offset repeated at the frequency F C.
  • I Max is determined by the sensitivity of the light receiving unit 220, and the maximum value of the current B" is DC offset .
  • the band pass filter 240 removes the frequency F C component from the pixel current 221.
  • the pixel current 241 output from the band pass filter 240 may have substantially the same waveform as the basic light source driving signal. That is, the pixel current 241 may be output at the maximum value I Max during the continuous on interval and not output during the continuous off interval.
  • the amplifier 250 amplifies the pixel current 241 and outputs it to an analog-digital converter (ADC).
  • ADC analog-digital converter
  • the pixel current 251 output from the amplifier 250 may be output at the maximum value I Max_amp during the continuous on interval and not output during the continuous off interval.
  • the analog-digital converter 260 converts the pixel current 251 of the analog signal into a digital signal.
  • FIG. 3 is a diagram schematically showing when the sensing light is turned off in an embodiment of the sensor at the lower part of the display.
  • the induced light when the induced light is turned off, it includes not only the continuous off interval, but also the interval between pulses in the modulated on interval.
  • the sensor 100 at the lower part of the display is arranged at the lower part of the display 10.
  • the display 10 includes a pixel layer 13 formed with a plurality of pixels P that generate light, a display polarizing layer 11 and a display retardation layer 12 laminated on top of the pixel layer 13.
  • a protective layer formed of an opaque material such as metal or synthetic resin may be disposed on the bottom surface of the display 10.
  • the sensor 100 at the lower part of the display composed of the sensor polarizing layer 110, the sensor retardation layer 120, and the photosensor 200 may be arranged in a region where a part of the protective layer is removed (hereinafter referred to as a completed structure).
  • the sensor polarizing layer 110 and the sensor retardation layer 120 may be manufactured into a film shape and laminated on the bottom surface of the display 10.
  • the sensor at the lower part of the display can be implemented in a manner that the light sensor 200 is attached to the bottom surface of the sensor polarizing layer 110 (hereinafter referred to as an assembled structure).
  • an assembled structure the description is centered on the completed structure.
  • the display polarizing layer 11 and the display retardation layer 12 can improve the visibility of the display 10.
  • the external light 14 incident through the upper surface of the display 10 is unpolarized light. If the external light 14 is incident on the upper surface of the display polarizing layer 11, only the light substantially consistent with the polarization axis of the display polarizing layer 11 can pass through the display polarizing layer 11.
  • the external light 14 after passing through the display polarizing layer 11 is the linearly polarized light 15 of the display generated by the external light. If the display linearly polarized light 15 generated by external light passes through the display retardation layer 12, it becomes the display circularly polarized light 16 (or elliptical polarization) generated by the external light rotating in the clockwise or counterclockwise direction.
  • the display circularly polarized light 16 generated by external light is reflected on the pixel layer 13 and enters the display retardation layer 12 again, it becomes linearly polarized light.
  • the polarization axis of the display retardation layer 12 is inclined by about 45 degrees with respect to the slow axis, the polarization axis of the linear polarization of the second display and the polarization axis of the second linear polarization are orthogonal to each other.
  • the linearly polarized light reflected by the pixel layer 13, that is, external light is blocked by the display polarizing layer 11 and cannot be emitted to the outside of the display.
  • the visibility of the display 10 can be improved.
  • the light incident on the sensor 100 at the lower part of the display is the display circularly polarized light 16 generated by external light.
  • the display circularly polarized light 16 generated by the external light becomes the sensor linearly polarized light 17 generated by the external light as it passes through the sensor delay layer 120.
  • the sensor linear polarization 17 generated by the external light passing through the sensor polarization layer 110 substantially without loss is referred to as the sensor linear polarization 18 generated by the external light.
  • the sensor linear polarization 18 generated by the external light that is, the external light 14 generates a compensation current DC offset of the pixel current.
  • FIG. 4 is a diagram schematically showing when the sensing light is turned on in an embodiment of the sensor at the lower part of the display.
  • the induced light is turned on, it is a modulated turn-on interval other than the interval between pulses. And output at the frequency F C of the carrier signal.
  • the light irradiation part 210 generates the induced light 20.
  • the generated induction light 20 becomes the induction sensor linearly polarized light 21 having a polarization axis inclined at a first angle as it passes through the sensor polarization layer 110. Since the polarization axis of the induction sensor linear polarization 21 is inclined by, for example, +45 degrees with respect to the slow axis of the sensor delay layer 120, the induction sensor linear polarization 21 passes through the sensor delay layer 120 and becomes an induction sensor circular polarization that rotates clockwise. twenty two.
  • the inductive sensor circularly polarized light 22 passes through the bottom surface of the display 10 and enters the inside of the display.
  • the inductive sensor circularly polarized light 22 becomes the inductive display linearly polarized light 23 as it passes through the display delay layer 12. Since the slow axis of the display retardation layer 12 and the slow axis of the sensor retardation layer 120 are substantially parallel, a ⁇ /4 phase difference is added to the first and second polarized parts of the circularly polarized light 22 of the sensor sensor. Therefore, the phase difference between each other becomes ⁇ /2. Thus, the polarization axis of the linear polarization 23 of the sensing display is rotated by about 90 degrees from the first angle and is inclined at a second angle, for example -45 degrees, with respect to the slow axis of the display retardation layer 12.
  • the linearly polarized light 23 of the sensor display passes through the display polarizing layer 11 and travels to the outside substantially without loss.
  • the display polarizing layer 11 may have a polarizing axis inclined at a second angle, for example -45 degrees, with respect to the slow axis of the display retardation layer 12. Therefore, the induction display linear polarization 23 having the polarization axis inclined at the same angle as the polarization axis of the display polarization layer 11 can pass through the display polarization layer 11.
  • the reflected light 30 incident on the display 10 is referred to as linearly polarized light of the reflective display.
  • the reflective display linear polarizer 30 may have a polarization axis inclined at a second angle, for example -45 degrees. Therefore, the reflective display linear polarization 30 having the polarization axis inclined at the same angle as the polarization axis of the display polarization layer 11 can pass through the display polarization layer 11.
  • the incident display linearly polarized light 40 includes the non-polarized external light 14 that has passed through the display polarizing layer 11 and the reflective display linearly polarized light 30.
  • the brightness of the external light 14 is much greater than that of the linear polarized light 30 of the reflective display, and is constant. Therefore, the influence caused by the external light 14 can be represented by the compensation current DC offset of the pixel current.
  • the non-polarized external light 14 since light having the same polarization axis as that of the display polarizing layer 11 passes through and light having another polarization axis is blocked, the brightness thereof is reduced. Therefore, compared with the brightness of the linearly polarized light 30 of the reflective display, the brightness of the linearly polarized light 40 of the incident display will be relatively larger.
  • the incident display linearly polarized light 40 passes through the display retardation layer 12 and becomes the incident display circularly polarized light 41 rotating in the counterclockwise direction.
  • the polarization axis of the display polarizing layer 11 is inclined at -45 with respect to the slow axis of the display retardation layer 12, a ⁇ /4 ratio is generated between the first and second polarizing portions of the linearly polarized light 40 incident on the display.
  • the incident display circularly polarized light 41 passes through the bottom surface of the display 10 and enters the sensor 100 at the lower part of the display.
  • the incident display circularly polarized light 41 passes through the sensor retardation layer 120 to become the incident sensor linearly polarized light 42.
  • is added to the first and second polarized portions of the circularly polarized light 41 incident on the display. /4 phase difference, so the mutual phase difference becomes ⁇ /2.
  • the polarization axis of the linear polarization 42 incident on the sensor is rotated by about 90 degrees from the second angle and is inclined at a first angle, for example +45 degrees, with respect to the slow axis of the sensor retardation layer 120.
  • the incident sensor linearly polarized light 42 passes through the sensor polarizing layer 110 substantially without loss and becomes the sensor incident light 43.
  • the sensor polarizing layer 110 may have a polarizing axis inclined at a first angle, for example +45 degrees, with respect to the slow axis of the sensor retardation layer 120. Therefore, the incident sensor linear polarization 42 having the polarization axis inclined at the same angle as the polarization axis of the sensor polarization layer 110 can pass through the sensor polarization layer 110.
  • the sensor incident light 43 advances to the light receiving unit 220.
  • the light receiving unit 220 generates a pixel current that is substantially proportional to the brightness of the sensor incident light 43, that is, the amount of light.
  • the sensor incident light 43 includes not only the reflected light, but also the sensor linearly polarized light 18 generated by the external light described in FIG. 3.
  • the sensor linear polarization 18 generated by the external light generates a compensation current DC offset of the pixel current.
  • FIG. 5 is a diagram schematically showing when the sensing light is turned off in another embodiment of the sensor at the lower part of the display.
  • the induced light when the induced light is turned off, it includes not only the continuous off interval, but also the interval between pulses in the modulated on interval. Since the process until the external light 14 passes through the display 10 is similar to that of FIG. 3, the process after the external light 14 is incident on the sensor 101 at the lower part of the display will be described.
  • the sensor 101 at the lower part of the display includes a first sensor polarizing layer 110 and a second sensor polarizing layer 115 forming two light paths, a sensor retardation layer 120, and a light sensor 201 that detects light passing through each light path.
  • the photosensor 201 includes a light irradiating part 210, a first light receiving part 220, and a second light receiving part 230.
  • the sensor retardation layer 120 is arranged on the upper part of the first sensor polarizing layer 110 and the second sensor polarizing layer 115, and the photosensor 201 is arranged on the lower part of the first sensor polarizing layer 110 and the second sensor polarizing layer 115.
  • the light irradiating part 210 and the first light receiving part 220 of the photosensor 201 are arranged under the first sensor polarization layer 110, and the second light receiving part 230 is arranged under the second sensor polarization layer 115.
  • the sensor retardation layer 120 may be laminated (laminated) on the upper surfaces of the first sensor polarizing layer 110 and the second sensor polarizing layer 115.
  • the laminated sensor delay layer 120-the first and second sensor polarizing layers 110 and 115 may be attached to the bottom surface of the display 10.
  • the photosensor 201 can be attached to the bottom surfaces of the first sensor polarizing layer 110 and the second sensor polarizing layer 115.
  • the light sensor 201 may be implemented by a thin film transistor. Thereby, the sensor 101 in the lower part of the display can be manufactured by laminating the film-shaped sensor retardation layer 120, the first sensor polarizing layer 110 and the second sensor polarizing layer 115, and the photosensor 201.
  • the polarization axis of the first sensor polarization layer 110 and the polarization axis of the second sensor polarization layer 115 are inclined at different angles with respect to the slow axis of the sensor delay layer 120.
  • the polarization axis of the first sensor polarizing layer 110 may be inclined at a first angle, for example +45 degrees, with respect to the slow axis of the sensor retardation layer 120, and the polarization axis of the second sensor polarizing layer 115 may be at a first angle relative to the slow axis of the sensor retardation layer 120. Two angles such as -45 tilt.
  • the light incident on the sensor 101 at the lower part of the display is the display circularly polarized light 16 generated by external light.
  • the display circularly polarized light 16 generated by the external light passing through the sensor delay layer 120 becomes the sensor linearly polarized light 17 generated by the external light.
  • the sensor linear polarization 17 generated by the external light passing through the first sensor polarization layer 110 without substantial loss is called the sensor linear polarization 18 generated by the first external light, and the external light passing through the second sensor polarization layer 115 A part of the generated sensor linear polarization 17 becomes the sensor linear polarization 19 generated by the second external light.
  • the sensor delay layer 120-the first sensor polarizing layer 110 form a first light path
  • the sensor delay layer 120-the second sensor polarizing layer 115 form a second light path.
  • the first light path and the second light path function in different ways for the display circularly polarized light 16 generated by external light.
  • the first light path passes the display circularly polarized light 16 generated by external light.
  • the second light path blocks most of the circularly polarized light 16 of the display generated by external light and only passes a part of it. Similar to the external light 14, the first light path allows the external reflected light to pass through, and the second light path blocks the external reflected light, which will be described in detail below.
  • the sensor linear polarization 18 generated by the first external light and the sensor linear polarization 19 generated by the second external light satisfy a proportional relationship of 1: K 1 (where K 1 ⁇ 1).
  • K 1 is the blocking transmission ratio of external light.
  • the sensor linear polarization 18 generated by the first external light and the sensor linear polarization 19 generated by the second external light are only different in the light path. Since both are generated by the display circular polarization 16 generated by the same external light, the two The brightness between them satisfies a linear proportional relationship or a nonlinear proportional relationship.
  • the non-linear proportional relationship may be caused by various reasons such as the structural characteristics of the display 10 and the wavelength range of the external light 14.
  • K 1 can also be applied to the reflected light 30 substantially the same. That is, the brightness of the reflected light 30 measured by the first light receiving unit 220 and the brightness of the reflected light 30 measured by the second light receiving unit 230 also satisfy the same proportional relationship 1: K 1 .
  • the first light path and the second light path may be adjacent to each other, or they may be separated. That is, the first sensor polarizing layer 110 and the second sensor polarizing layer 115 may be disposed under the single sensor delay layer 120, and the first light receiving part 220 and the second light receiving part 230 may be formed on the single light sensor 201. On the other hand, the second light receiving unit 230 may also be formed on another light sensor separate from the first light receiving unit 220.
  • a retardation layer (not shown) having a slow axis extending parallel to the slow axis of the sensor retardation layer and the second sensor polarizing layer 115 may be disposed on the upper portion of the second light receiving unit 230.
  • FIG. 6 is a diagram schematically showing when the sensing light is turned on in another embodiment of the sensor at the lower part of the display.
  • the induced light is turned on, it is a modulated turn-on interval other than the interval between pulses. Since the process until the reflected light reaches the sensor 101 at the lower part of the display is similar to FIG. 4, the process after the reflected light enters the sensor 101 at the lower part of the display will be described. Here, the description is made assuming that there is no internal reflection.
  • the incident display circularly polarized light 41, 41' passes through the sensor retardation layer 120 to become the first incident sensor linearly polarized light 42 and the second incident sensor linearly polarized light 42'.
  • the first and second polarization portions of the circularly polarized light 41, 41' incident on the display will be affected. Adding the phase difference of ⁇ /4, the mutual phase difference becomes ⁇ /2.
  • the polarization axes of the first incident sensor linear polarization 42 and the second incident sensor linear polarization 42' are rotated about 90 degrees from the second angle and are inclined at a first angle, for example +45 degrees, with respect to the slow axis of the sensor retardation layer 120.
  • the first incident sensor linearly polarized light 42 passes through the first sensor polarizing layer 110 and travels to the first light receiving portion 220 substantially without loss. On the contrary, most of the second incident sensor linearly polarized light 42' is blocked by the second sensor polarizing layer 115. Only a part advances to the second light receiving unit 230.
  • the first sensor polarization layer 110 may have a polarization axis inclined at a first angle, for example +45 degrees, with respect to the slow axis of the sensor delay layer 120. Therefore, the first incident sensor linearly polarized light 42 having the polarization axis inclined at the same angle as the polarization axis of the first sensor polarization layer 110 can pass through the first sensor polarization layer 110.
  • the second sensor polarizing layer 115 may have a polarizing axis inclined at a second angle, for example, ⁇ 45 degrees with respect to the sensor retardation layer 120. Therefore, the second incident sensor linearly polarized light 42' with the polarization axis rotated by 90 degrees with respect to the polarization axis of the second sensor polarization layer 115 is blocked by the second sensor polarization layer 115, and only a part can pass through the second sensor. Polarization layer 115.
  • the first incident sensor linearly polarized light 42 that has passed through the first sensor polarizing layer 110 substantially without loss is called the first sensor incident light 43, and a part of the incident sensor linearly polarized light 42' that has passed through the second sensor polarizing layer 115 becomes the first sensor.
  • the incident light 43 from the first sensor includes not only the reflected light 30 but also the sensor linearly polarized light 18 generated by the first external light, that is, the external light 14.
  • the second sensor incident light 43' includes the sensor linearly polarized light 19 generated by the second external light.
  • the photosensor 201 includes a first light receiving unit 220 corresponding to the first light path and a second light receiving unit 230 corresponding to the second light path.
  • the first light receiving unit 220 generates a first pixel current that is substantially proportional to the brightness of the incident light 43 from the first sensor, that is, the amount of light
  • the second light receiving unit 230 generates a current that is substantially proportional to the brightness of the second sensor incident light 43'.
  • the second pixel current is substantially proportional to the brightness of the second sensor incident light 43'.
  • FIG. 7 is a diagram for schematically explaining how light irradiated from the sensor at the lower part of the display is reflected inside the display in another embodiment of the sensor at the lower part of the display.
  • the description is provided assuming that there is no external reflected light reflected by external objects.
  • the induced light reflected inside the display (hereinafter referred to as internal reflection light) will cause serious errors in the brightness of the light measured by the first light receiving portion 220 and the second light receiving portion 230.
  • the internally reflected light and the externally reflected light are different in many respects, such as the brightness (or intensity) of the light, the time to reach the light receiving unit, and the like.
  • the induced light 20, 20' generated by the light irradiation part 210 of the sensor 101 at the lower part of the display becomes the induced sensor circularly polarized light 22, 22' as it passes through the first sensor polarizing layer 110 and the sensor retardation layer 120.
  • the circularly polarized light 22, 22' of the sensor sensor can be reflected inside the display 10 and enter the sensor 101 at the lower part of the display again.
  • Various structures formed of materials that transmit or reflect light are mixed in the display 10.
  • a part of the circularly polarized light 22, 22' of the induction sensor can be internally reflected back to the sensor 101 at the lower part of the display.
  • the first induced light 20 is light that is internally reflected to the first light receiving portion 220 and irradiated at an angle of incidence
  • the second induced light 20 ′ is light that is internally reflected to the second light receiving portion 230 and irradiated at an angle of incidence.
  • the internally reflected sensor circularly polarized light 50 passes through the sensor delay layer 120 to become the internally reflected sensor linearly polarized light 51.
  • the polarization axis of the internally reflected sensor linear polarization 51 is rotated about 90 degrees from the polarization axis of the induction sensor linear polarization 21.
  • the polarization axis of the internally reflected sensor linear polarization 51 can be substantially perpendicular to the polarization axis of the first sensor polarization layer 110, and most of the internally reflected sensor linear polarization 51 can be substantially polarized by the first sensor.
  • the internally reflected sensor linear polarization 52 that passes through without being blocked can be detected by the first light receiving unit 220.
  • the internally reflected sensor circularly polarized light 50' passes through the sensor delay layer 120 to become the internally reflected sensor linearly polarized light 51'.
  • the polarization axis of the internally reflected sensor linear polarization 51 ′ is rotated by about 90 degrees from the polarization axis of the sensor linear polarization 21.
  • the polarization axis of the sensor linear polarization 51 ′ reflected internally is substantially parallel to the polarization axis of the second sensor polarization layer 115, so that it can pass through the second sensor polarization layer 115.
  • K 2 is the blocking transmission ratio of internal reflection.
  • Barrier Barrier K 2 for correcting the lower portion of the first sensor by the sensor 101 displays the measured brightness of the incident light 43 through the transmission ratio and the ratio K 1 internal reflection of external light. If the sensor 101 at the lower part of the display works as a proximity sensor, not only the incident light 43 from the first sensor and the incident light 43' from the second sensor, but also the internally reflected induced light 52, 51' enters the first light receiving unit 220 and The second light receiving part 230. Not only the internally reflected induced light 52 incident on the first light receiving section 220 but also the internally reflected induced light 51 ′ incident on the second light receiving section 230 causes errors in the measurement values of the light receiving sections 220 and 230.
  • the brightness of the incident light 43 from the first sensor is set to A
  • the brightness of the incident light 43' from the second sensor is K 1 ⁇ A.
  • the brightness of the induced light 51' reflected internally is set to B
  • the brightness of the induced light 52 reflected internally is K 2 ⁇ B.
  • the brightness C of the light detected by the first light receiving unit 220 is based on the incident light 43 from the first sensor and the induced light 52 reflected internally.
  • the brightness D of the light detected by the second light receiving unit is based on the incident light 43' of the second sensor and the induced light 51' reflected internally.
  • the brightness A of the incident light 43 from the first sensor can be calculated in the following manner.
  • the brightness of the incident light 43 from the first sensor is used to calculate the distance to an external object or determine whether it is close.
  • FIG. 8 is a diagram schematically showing another embodiment of the sensor as the lower part of the display, when the sensing light is turned off.
  • the induced light when the induced light is turned off, it includes not only the continuous off interval, but also the interval between pulses in the modulated on interval. Since the process until the external light 14 passes through the display 10 is similar to that of FIG. 3, the process after the external light 14 is incident on the sensor 102 at the lower part of the display will be described.
  • the sensor 102 at the lower part of the display includes a first sensor retardation layer 120 and a second sensor retardation layer 125 forming two light paths, a sensor polarizing layer 110, and a light sensor 201 that detects light passing through each light path.
  • the photosensor 201 includes a light irradiating part 210, a first light receiving part 220, and a second light receiving part 230.
  • the first sensor retardation layer 120 and the second sensor retardation layer 125 are arranged on the upper part of the sensor polarizing layer 110, and the photosensor 201 is arranged on the lower part of the sensor polarizing layer 110.
  • the photosensor 201 includes a light irradiating part 210, a first light receiving part 220, and a second light receiving part 230.
  • the first light receiving section 220 is arranged at a position where light emitted from the first sensor delay layer 120 passes through the sensor polarizing layer 110
  • the second light receiving section 230 is arranged at a position where light emitted from the second sensor delay layer 125 passes through the sensor polarizing layer 110 The position reached after the arrival.
  • the sensor 102 at the lower part of the display can be manufactured by laminating the first sensor retardation layer 120 and the second sensor retardation layer 125 on the upper surface of the sensor polarizing layer 110.
  • the laminated sensor polarizing layer 110 and the first and second sensor retardation layers 120 and 125 can be attached to the bottom surface of the display 10.
  • the light sensor 201 may be attached to the bottom surface of the sensor polarizing layer 110.
  • the light sensor 201 may be implemented by a thin film transistor. Thereby, the sensor 102 in the lower part of the display can be manufactured by laminating the film-like first sensor retardation layer 120 and the second sensor retardation layer 125, the sensor polarizing layer 110, and the photosensor 201.
  • the slow axis of the first sensor delay layer 120 and the slow axis of the second sensor delay layer 125 are substantially orthogonal.
  • the polarization axis of the sensor polarization layer 110 may be inclined at a first angle, such as +45 degrees, with respect to the slow axis of the first sensor retardation layer 120, or may be inclined at a second angle, such as -45 degrees, with respect to the slow axis of the second sensor retardation layer 125. tilt.
  • the light incident on the sensor 100 at the lower part of the display is the display circularly polarized light 16 generated by external light.
  • the display circularly polarized light 16 generated by the external light passes through the first sensor retardation layer 120 to become the sensor linear polarization 17 generated by the first external light, and the second sensor retardation layer 125 becomes the sensor linear polarization 17 generated by the second external light '. Since the slow axis of the first sensor retardation layer 120 is orthogonal to the slow axis of the second sensor retardation layer 125, the polarization axis of the sensor linear polarization 17 generated by the first external light is the same as the sensor linear polarization 17 generated by the second external light. ''S polarization axis can also be orthogonal.
  • the sensor linear polarization 17 generated by the first external light passes through the sensor polarization layer 110 and travels to the first light receiving section 220.
  • most of the sensor linear polarization 17' generated by the second external light is transferred to the sensor polarization layer 110. It is blocked and only part of it advances to the second light receiving part 230.
  • the sensor linearly polarized light 17 generated by the first external light passing through the sensor polarizing layer 110 substantially without loss is called the sensor linearly polarized light 18 generated by the first external light
  • the second external light passing through the sensor polarizing layer 110 is generated by the second external light.
  • a part of the generated sensor linear polarization 17' becomes the sensor linear polarization 19' generated by the second external light.
  • the first sensor delay layer 120-the sensor polarizing layer 110 form a first light path
  • the second sensor delay layer 125-the sensor polarizing layer 110 form a second light path.
  • the first light path and the second light path function in different ways for the display circularly polarized light 16 generated by external light.
  • the first light path passes the display circularly polarized light 16 generated by external light.
  • the second light path blocks most of the circularly polarized light 16 of the display generated by external light and only passes a part of it.
  • the first light path allows the external reflected light to pass through, and the second light path blocks the external reflected light, which will be described in detail below.
  • the sensor linear polarization 18 generated by the first external light and the sensor linear polarization 19' generated by the second external light satisfy a proportional relationship of 1: K 1 (where K 1 ⁇ 1).
  • K 1 is the blocking transmission ratio of external light.
  • the sensor linear polarized light 18 generated by the first external light and the sensor linear polarized light 19' generated by the second external light are only different in the light path. Because they are both generated by the display circular polarization 16 generated by the same external light, both The brightness between them satisfies a linear proportional relationship or a nonlinear proportional relationship.
  • the non-linear proportional relationship may be caused by various reasons such as the structural characteristics of the display 10 and the wavelength range of the external light 14.
  • the ratio 1:K 1 between the sensor linear polarization 18 generated by the first external light and the sensor linear polarization 19 ′ generated by the second external light can also be applied to the reflected light 30 substantially the same.
  • FIG. 9 is a diagram schematically showing that the sensing light as another embodiment of the sensor at the lower part of the display is turned on.
  • the induced light is turned on, it is a modulated turn-on interval other than the interval between pulses. Since the process of the reflected light reaching the sensor 102 at the lower part of the display is similar to that in FIG. 4, the process after the reflected light is incident on the sensor 102 at the lower part of the display will be described. Here, the description is made assuming that there is no internal reflection.
  • the incident display circularly polarized light 41 passes through the first sensor retardation layer 120 to become the first incident sensor linearly polarized light 42, and the incident display circularly polarized light 41' passes through the second sensor retardation layer 125 to become the second incident sensor linearly polarized light 42".
  • the slow axis of the first sensor retardation layer 120 is orthogonal to the slow axis of the second sensor retardation layer 125, the polarization axis of the first incident sensor linear polarization 42 and the polarization axis of the second incident sensor linear polarization 42" can also be orthogonal .
  • the incident display circularly polarized light 41 having a phase difference of ⁇ /4 between the first polarized part and the second polarized part passes through the first sensor retardation layer 120 plus a phase difference of ⁇ /4, so that it can become
  • the polarization axis of the sensor polarization layer 110 is substantially parallel to the first incident sensor linearly polarized light 42.
  • the incident display circularly polarized light 41' passes through the second sensor retardation layer 125 to eliminate the phase difference, so that it can become the second incident sensor linearly polarized light 42" having a polarization axis substantially perpendicular to the polarization axis of the sensor polarization layer 110.
  • the first incident sensor linearly polarized light 42 passes through the sensor polarizing layer 110 and travels to the first light receiving portion 220 substantially without loss. On the contrary, most of the second incident sensor linearly polarized light 42" is blocked by the sensor polarizing layer 110 and only part of it goes to the first light receiving section 220.
  • the second light receiving part 230 advances.
  • the sensor polarizing layer 110 may have a polarization axis inclined at a first angle, for example +45 degrees, with respect to the slow axis of the first sensor retardation layer 120 or a second sensor with respect to the slow axis of the second sensor retardation layer 125. The angle is, for example, a polarizing axis inclined at -45 degrees.
  • the first incident sensor linear polarizer 42 having a polarizing axis inclined at the same angle as the polarizing axis of the sensor polarizing layer 110 can pass through the sensor polarizing layer 110. Conversely, it has a relative to the sensor. Most of the second incident sensor linear polarization 42 ′′ whose polarization axis of the polarization layer 110 is rotated by 90 degrees is blocked by the sensor polarization layer 110, and only a portion can pass through the sensor polarization layer 110.
  • the first incident sensor linearly polarized light 42 that has passed through the sensor polarizing layer 110 substantially without loss is called the first sensor incident light 43, and a part of the second incident sensor linearly polarized light 42" that has passed through the sensor polarizing layer 110 becomes the second sensor.
  • Incident light 43" The incident light 43 from the first sensor includes not only the reflected light 30 but also the sensor linearly polarized light 18 generated by the first external light, that is, the external light 14.
  • the second sensor incident light 43" includes the sensor linearly polarized light 19 generated by the second external light.
  • the photosensor 201 includes a first light receiving unit 220 corresponding to the first light path and a second light receiving unit 230 corresponding to the second light path.
  • the first light receiving section 220 generates a first pixel current that is substantially proportional to the brightness of the incident light 43 from the first sensor
  • the second light receiving section 230 generates a second pixel current that is substantially proportional to the brightness of the incident light 43" from the second sensor. Pixel current.
  • FIG. 10 is a diagram for schematically explaining how light irradiated from the sensor in the lower part of the display is reflected inside the display in another embodiment of the sensor in the lower part of the display.
  • the description is provided assuming that there is no external reflected light reflected by external objects.
  • the internally reflected sensor circularly polarized light 50 passes through the first sensor delay layer 120 to become the internally reflected sensor linearly polarized light 51.
  • the polarization axis of the internally reflected sensor linear polarization 51 is rotated about 90 degrees from the polarization axis of the induction sensor linear polarization 21. Therefore, the polarization axis of the internally reflected sensor linear polarization 51 is perpendicular to the polarization axis of the first sensor polarization layer 110, and most of the internally reflected sensor linear polarization 51 can be substantially blocked by the sensor polarization layer 110.
  • the internally reflected sensor linear polarization 52 that passes through without being blocked can be detected by the first light receiving unit 220.
  • the internally reflected sensor circularly polarized light 50' passes through the second sensor delay layer 125 to become the internally reflected sensor linearly polarized light 51".
  • the internally reflected sensor linearly polarized light 51" has a polarization axis substantially parallel to the sensor linearly polarized light 21's polarization axis.
  • the polarization axis of the sensor linearly polarized light 51 ′′ reflected internally is parallel to the polarization axis of the second sensor polarization layer 115, so that it can pass through the second sensor polarization layer 115.
  • K 2 is the blocking transmission ratio of internal reflection.
  • the sensor 102 at the lower part of the display works as a proximity sensor, not only the incident light 43 from the first sensor and the incident light 43" from the second sensor, but the internally reflected light 52, 51" will also be incident on the first light receiving unit 220 and The second light receiving part 230. Not only the internally reflected induced light 52 incident on the first light receiving section 220 but also the internally reflected induced light 51" incident on the second light receiving section 230 causes errors in the measured values of the light receiving sections 220 and 230.
  • the brightness of the incident light 43 from the first sensor is set to A
  • the brightness of the incident light 43" from the second sensor is K 1 ⁇ A.
  • the brightness of the internally reflected sensing light 51" is set to B
  • the brightness of the internally reflected induced light 52 is K 2 ⁇ B.
  • the brightness C of the light detected by the first light receiving unit 220 is based on the incident light 43 from the first sensor and the induced light 52 reflected internally.
  • the brightness D of the light detected by the second light receiving unit is based on the incident light 43' of the second sensor and the induced light 51" reflected internally.
  • the brightness A of the incident light 43 of the first sensor can be calculated using Equation 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

显示器(10)下部的传感器(100),其包括:光传感器(200),包括照射用于感应位于所述显示器(10)外部的物体的经调制的感应光的光照射部(210)以及检测所述经调制的感应光被所述物体反射回来的外部反射光并生成像素电流的受光部(220);传感器偏光层(110),配置在所述光传感器(200)的上部,且具有以第一角度倾斜的偏光轴;以及传感器延迟层(120),配置在所述传感器偏光层(110)的上部,且具有相对于所述传感器偏光层(110)的偏光轴以所述第一角度倾斜的慢轴。

Description

显示器下部的传感器 技术领域
本发明涉及配置在显示器下部的传感器。
背景技术
光传感器不仅用于移动电话、平板电脑等移动电子装置,还用于电视机、监控器这样的影像电子装置。光传感器例如包括照度传感器、接近传感器,接近照度传感器等。接近传感器是测量用户与电子装置之间的距离的光传感器,照度传感器是感应电子装置周边亮度的光传感器。结合了光学方式的接近传感器与照度传感器的接近照度传感器在单个封装体内实现两个传感器。
近年来,显示器几乎占据电子装置前表面整体这样的设计有所增加。虽然显示器的大小随着要求大画面的需求而变大,但仍需要确保前表面的至少一部分区域,以配置相机,特别是接近照度传感器。利用了超声波等的接近传感器能够应用于前表面由显示器覆盖的结构,但难以整合感应照度的功能。另一方面,照度传感器虽然也可以位于前表面以外的区域,但可能会因为用于保护电子装置的壳体而导致其无法感应到周边的光。因此,虽然设置接近照度传感器的最理想的位置是电子装置的前表面,但在显示器占据前表面整体的设计中,难以确保配置常用的接近照度传感器的位置。
发明内容
本发明的目的在于,提供一种能够应用于由显示器占据前表面整体这种设计的显示器下部的传感器。
本发明的一实施例提供一种配置在包括生成光的像素、配置在所述像素的上部的显示器延迟层以及显示器偏光层的显示器的下部的显示器下部的传感器。显示器下部的传感器可包括:光传感器,包括发出经调制的感应光并照射位于所述显示器的外部的物体的光照射部以及检测所述经调制的感应光被所述物体反射回来的外部反射光并生成像素电流的受光部;传感器偏光层,配置在所述光传感器的上部,且具有以第一角度倾斜的偏光轴;以及传感器延迟层,配置在所述传感器偏光层的上部,且具有相对于所述传感器偏光层的偏光轴以所述第一角度倾斜的慢轴。在此,所 述反射光可通过所述显示器、所述传感器偏光层以及所述传感器延迟层而到达受光部。
作为一实施例,所述光照射部可包括:光源信号生成部,生成重复连续开启区间与连续关闭区间的基本光源驱动信号;载波信号生成部,生成具有比所述基本光源驱动信号的频率大的频率的载波信号;信号调制部,利用所述载波信号,对所述基本光源驱动信号的所述连续开启区间进行频率调制而生成经调制的光源驱动信号;以及光源,经调制的光源驱动信号在所述连续开启区间的期间以所述载波信号的频率开启及关闭而生成所述经调制的感应光。
作为一实施例,显示器下部的传感器还可以包括:带通滤波器,在所述像素电流中去除所述载波信号的频率成分;放大器,对已去除所述载波信号的频率成分的像素电流进行放大;以及模拟-数字转换器,将放大的像素电流转换为数字信号。
作为一实施例,所述传感器偏光层可包括具有以所述第一角度倾斜的偏光轴的第一传感器偏光层以及具有以第二角度倾斜的偏光轴的第二传感器偏光层。在此,所述受光部可包括配置在所述第一传感器偏光层的下部且检测所述外部反射光及所述感应光在显示器内部反射的内部反射光的第一受光部以及配置在所述第二传感器偏光层的下部且检测所述外部反射光及所述内部反射光的第二受光部。
作为一实施例,可以为所述传感器延迟层及所述第一传感器偏光层使所述外部反射光通过,并且使所述内部反射光以内部反射的阻隔透过比率通过,所述传感器延迟层及所述第二传感器偏光层使所述外部反射光以外来光的阻隔透过比率通过,并且使所述内部反射光通过。
作为一实施例,所述外部反射光的亮度可通过所述外来光的阻隔透过比率及所述内部反射的阻隔透过比率计算得到。
作为一实施例,可以为所述传感器偏光层及所述传感器延迟层将所述感应光转换为感应传感器圆偏光,以使所述感应光通过所述显示器的偏光层,所述感应传感器圆偏光通过所述显示器延迟层转换为具有与所述显示器的偏光层的偏光轴相同的偏光轴的感应显示器线性偏光。
作为一实施例,可以为所述传感器延迟层的慢轴与所述显示器延迟层的慢轴平行,所述显示器偏光层的偏光轴相对于所述显示器延迟层的慢轴以第二角度倾斜。
作为一实施例,所述传感器延迟层可包括:第一传感器延迟层,配置在所述传感器偏光层的上部,且具有相对于所述传感器偏光层的偏光轴以 所述第一角度倾斜的慢轴;以及第二传感器延迟层,与第二受光部相对应地配置在所述传感器偏光层的上部,且具有相对于所述传感器偏光层的偏光轴以第二角度倾斜的慢轴。在此,受光部可包括:第一受光部,配置在通过所述第一传感器延迟层及所述传感器偏光层后的光所到达的位置,并且检测所述外部反射光及所述感应光在显示器内部反射后的内部反射光;以及第二受光部,配置在通过所述第二传感器延迟层及所述传感器偏光层后的光所到达的位置,并且检测所述外部反射光及所述内部反射光。
作为一实施例,可以为所述第一传感器延迟层及所述传感器偏光层使所述外部反射光通过,并且使所述内部反射光以内部反射的阻隔透过比率通过,所述第二传感器延迟层及所述传感器偏光层使所述外部反射光以外来光的阻隔透过比率通过,并且使所述内部反射光通过。
作为一实施例,可以为所述第一传感器延迟层的慢轴与所述显示器延迟层的慢轴平行,所述显示器偏光层的偏光轴相对于所述显示器延迟层的慢轴以所述第二角度倾斜,所述第二角度是所述第一角度旋转90度后得到的角度。
作为一实施例,所述外来光的阻隔透过比率是可以在关闭所述光照射部的状态下测得的。
作为一实施例,所述内部反射的阻隔透过比率是可以在没有所述外部反射光的状态下测得的。
根据本发明实施例的照度传感器能够应用于由显示器占据前表面整体这种设计的电子装置。
附图说明
下面,参照附图中示出的实施例对本发明进行说明。为便于理解,在所有附图中,对同一构成要素标注同一附图标记。附图中示出的结构只是为了说明本发明而示意性示出的实施例,并不限定本发明的范围。特别是,为了有助于理解发明,在附图中对于一些构成要素多少夸张地表示。由于附图是为了理解发明的手段,因此,需要理解的是附图中所表示的构成要素的宽度、厚度等在实际实现时可能会有变化。
图1是简略示出显示器下部的传感器的结构及光照射部的结构的图。
图2是简略示出处理经调制的感应光的方法的图。
图3是示意性地示出作为显示器下部的传感器的一实施例在经调制的感应光为关闭(OFF)状态时的图。
图4是示意性地示出作为显示器下部的传感器的一实施例在经调制的感应光为开启(ON)状态时的图。
图5是示意性地示出作为显示器下部的传感器的另一实施例在经调制的感应光为关闭状态时的图。
图6是示意性地示出作为显示器下部的传感器的另一实施例在经调制的感应光为开启状态时的图。
图7是用于示意性地说明作为显示器下部的传感器的另一实施例从显示器下部的传感器照射的光在显示器内部反射的情况的图。
图8是示意性地示出作为显示器下部的传感器的又一实施例在经调制的感应光为关闭状态时的图。
图9是示意性地示出作为显示器下部的传感器的又一实施例在经调制的感应光为开启状态时的图。
图10是用于示意性地说明作为显示器下部的传感器的又一实施例从显示器下部的传感器照射的光在显示器内部反射的情况的图。
具体实施方式
本发明能够加入多种多样的变形并且能够具有各种实施例,将特定实施例示于附图,并对其进行详细说明。需要理解的是,这并不是将本发明限定于特定的实施方式,而是包括属于本发明的构思及技术范围内的所有变形、等同方式以及替代方式。特别是,以下将参照附图说明的功能、特征、实施例能够单独地或与另一实施例结合而实现。因此,需要注意的是本发明的范围并不限定于附图所示的方式。
另一方面,关于在本说明书中使用的术语,“实质上”、“几乎”、“约”等表述是考虑到实际实现时允许的差值(margin)或可能发生的误差的表述。例如,对于“实质上为90度”,应当解释为将能够得到与90度时的效果相同的效果的角度也包括在内。又例如,“几乎没有”应当解释为包括到即使存在些许但也是能够忽视的程度。
另一方面,在没有特别提及的情况下,“侧面”或“水平”用于表示附图中的左右方向,而“竖直”用于表示附图中的上下方向。另外,在没有特别定义的情况下,角度、入射角等以垂直于附图中表示的水平面的虚拟直线为基准。
下面,在所有附图中,在延迟层示出的阴影线表示慢轴的方向,在偏光层示出的阴影线示意性地表示偏光轴相对于在水平方向延伸的慢轴的方向。另一方面,示出了显示器延迟层的慢轴与传感器延迟层的慢轴均在水平方向上延伸,或显示器延迟层的慢轴与传感器延迟层的慢轴在竖直方向上延伸。这只是为了有助于理解而简单表示的,需要理解的是,不需要使传感器延迟层的慢轴与显示器延迟层的慢轴对齐。
图1是简略示出显示器下部的传感器的结构的图,并且由图1的(a)示出显示器下部的传感器,由图1的(b)示出光照射部210。
显示器下部的传感器100包括传感器偏光层110、传感器延迟层120以及光传感器200。光传感器200作为接近传感器而工作,为此,包括光照射部210以及受光部220。光照射部210可包括产生属于近红外线或红外线频带的感应光的光源。受光部220能够检测被外部物体反射后的感应光(以下称为反射光)。例如,受光部220可由单个光电二极管构成,也可以由多个光电二极管构成。在由多个光电二极管构成的情况下,可划分为两个以上的区域,每个区域检测出的光的频带可以不同。为避免干涉,光照射部210与受光部220可在光学上分离。虽然未图示,但可以在光照射部210的上部配置用于提高感应光的直进性的准直透镜,且在受光部220的上部配置使反射光聚集的聚光透镜。
传感器偏光层110配置在光传感器200的上部,且具有相对于传感器延迟层120的慢轴以第一角度例如+45度倾斜的偏光轴。传感器延迟层120配置在传感器偏光层110的上部,且具有例如向水平方向延伸的慢轴以及向竖直方向延伸的快轴。传感器延迟层120的慢轴与显示器延迟层的慢轴可以在实质上是平行的。
传感器偏光层110与传感器延迟层120能够使由光照射部210生成的感应光通过显示器10而向外部射出。另外,传感器偏光层110与传感器延迟层120能够使反射光通过显示器而到达受光部220。
光照射部210可包括光源信号生成部211、载波信号生成部212、信号调制部213以及光源214。
光源信号生成部211生成用于开启或关闭光源214的基本光源驱动信号。基本光源驱动信号可以是具有频率F L的矩形波信号。基本光源驱动信号包括开启光源的连续开启区间以及关闭光源的连续关闭区间。连续开启区间的持续时间T 1与连续关闭区间的持续时间T 2可以相同,也可以不同。
载波信号生成部212生成用于对基本光源驱动信号进行频率调制的载波信号。载波信号可以是例如具有频率F C的矩形波信号。在此,频率F C可以大于频率F L
信号调制部213生成由载波信号对基本光源驱动信号进行调制的经调制的光源驱动信号。在此,信号调制部213仅在基本光源驱动信号的连续开启区间进行调制。经调制的光源驱动信号包括以频率F C反复进行光源的开启及关闭的经调制的开启区间以及关闭光源的连续关闭区间。连续开 启区间的持续时间与经调制的开启区间的持续时间为T 1,连续关闭区间的持续时间为T 2
光源214通过经调制的光源驱动信号照射例如属于近红外线或红外线频带的经调制的感应光。光源214例如可以是LED(Light Emitting Diode,发光二极管)。经调制的感应光是仅在经调制的开启区间以载波信号的频率F C输出的脉冲光。下面,若无其它定义,则感应光表示经调制的感应光,反射光表示经调制的感应光被外部物体反射而到达受光部220的光。
图2是简略示出处理经调制的感应光的方法的图。
光照射部210朝向显示器的底面照射参照图1说明的感应光。入射到显示器的底面的感应光通过显示器的上表面向外部前进,被外部物体反射而再次入射到显示器的上表面。感应光是属于区间A的频率为F C的脉冲光,两个以上的区间A被没有脉冲光的区间B分离。同样地,反射光是属于区间A'的频率为F C的脉冲光,两个以上的区间A'被没有脉冲光的区间B'分离。在此,时间区间A及A'的持续时间为T 1,时间区间B及B'的持续时间为T 2。光照射部210所生成的感应光为非偏光,受光部220所检测的反射光为偏光,下面会详细说明。
受光部220生成与反射光的亮度即光量实质上成比例的像素电流221。在实际使用时,通过了显示器10的外来光可入射到显示器下部的传感器100。外来光的光量与反射光的光量相比相对较大,在短的时间区间,例如区间A'期间可为恒定。因此,受外来光的影响,像素电流221可包括补偿电流DC offset。像素电流221包括在区间A'期间检测到的与脉冲光及外来光对应的电流A"以及在区间B'期间检测到的与外来光对应的电流B"。电流A"是最小值DC offset与最大值I Max+DC offset以频率F C重复的脉冲形态的电流。在此,I Max是由受光部220的灵敏度决定的,电流B"的最大值为DC offset
带通滤波器240从像素电流221中去除频率F C成分。从带通滤波器240输出的像素电流241可具有实质上与基本光源驱动信号相同的波形。即,像素电流241可以是在连续开启区间期间以最大值I Max输出而在连续关闭区间不输出。
放大器250将像素电流241放大并向模拟-数字转换器(ADC)输出。从放大器250输出的像素电流251可以是在连续开启区间期间以最大值I Max_amp输出而在连续关闭区间不输出。
模拟-数字转换器260将模拟信号的像素电流251转换为数字信号。
图3是示意性地示出在显示器下部的传感器的一实施例中感应光为关闭时的图。在此,感应光关闭时不仅包括连续关闭区间,还包括在经调制的开启区间中脉冲之间的区间。
显示器下部的传感器100配置在显示器10下部。显示器10包括形成有生成光的多个像素P的像素层13、层叠在像素层13上部的显示器偏光层11以及显示器延迟层12。为了保护显示器偏光层11、显示器延迟层12以及像素层13,可以在显示器10的底面配置由不透光材料例如金属或合成树脂形成的保护层。作为一实施例,由传感器偏光层110、传感器延迟层120以及光传感器200构成的显示器下部的传感器100可配置在去除了保护层的一部分的区域(以下称为完成型结构)。作为另一实施例,传感器偏光层110、传感器延迟层120可以被制造成膜状并层压在显示器10的底面。显示器下部的传感器可以以光传感器200附着在传感器偏光层110的底面的方式来实现(以下称为组装型结构)。下面,为了避免重复说明,以完成型结构为中心进行说明。
显示器偏光层11及显示器延迟层12能够提高显示器10的可视性。通过显示器10的上表面而入射的外来光14是非偏光。若外来光14入射到显示器偏光层11的上表面,则只有实质上与显示器偏光层11的偏光轴一致的光才能通过显示器偏光层11。通过显示器偏光层11后的外来光14是外来光所产生的显示器线性偏光15。若外来光所产生的显示器线性偏光15通过显示器延迟层12,则成为向顺时针方向或逆时针方向旋转的外来光所产生的显示器圆偏光16(或椭圆偏光)。若外来光所产生的显示器圆偏光16在像素层13反射而再次入射到显示器延迟层12,则成为线性偏光。在此,若显示器延迟层12的偏光轴相对于慢轴倾斜了约45度,则第二显示器线性偏光的偏光轴与第二线性偏光的偏光轴彼此正交。由此,被像素层13反射后的线性偏光即外来光被显示器偏光层11阻隔而无法向显示器外部射出。由此,能够提高显示器10的可视性。
向显示器下部的传感器100入射的光是外来光所产生的显示器圆偏光16。外来光所产生的显示器圆偏光16随着通过传感器延迟层120而成为外来光所产生的传感器线性偏光17。实质上无损失地通过了传感器偏光层110的外来光所产生的传感器线性偏光17被称为外来光所产生的传感器线性偏光18。通过外来光所产生的传感器线性偏光18即外来光14产生像素电流的补偿电流DC offset
图4是示意性地示出在显示器下部的传感器的一实施例中感应光为开启时的图。在此,感应光开启时为除了脉冲之间区间以外的经调制的开启区间。并且以载波信号的频率F C输出。
光照射部210生成感应光20。所生成的感应光20随着通过传感器偏光层110而成为具有以第一角度倾斜的偏光轴的感应传感器线性偏光21。由于感应传感器线性偏光21的偏光轴相对于传感器延迟层120的慢轴倾斜了例如+45度,因此感应传感器线性偏光21随着通过传感器延迟层120而成为向顺时针方向旋转的感应传感器圆偏光22。若沿着快轴投射的感应传感器线性偏光21的第一偏光部分与沿着慢轴投射的感应传感器线性偏光21的第二偏光部分通过传感器延迟层120,则在相互之间产生λ/4的相位差。感应传感器圆偏光22通过显示器10的底面而入射到显示器内部。
感应传感器圆偏光22随着通过显示器延迟层12而成为感应显示器线性偏光23。由于显示器延迟层12的慢轴与传感器延迟层120的慢轴在实质上是平行的,所以在感应传感器圆偏光22的第一偏光部分和第二偏光部分上会加上λ/4相位差,从而相互之间的相位差成为λ/2。由此,感应显示器线性偏光23的偏光轴从第一角度旋转约90度而相对于显示器延迟层12的慢轴以第二角度例如-45度倾斜。
感应显示器线性偏光23实质上无损失地通过显示器偏光层11而向外部前进。显示器偏光层11可具有相对于显示器延迟层12的慢轴以第二角度例如-45度倾斜的偏光轴。因此,具有以与显示器偏光层11的偏光轴相同的角度倾斜的偏光轴的感应显示器线性偏光23能够通过显示器偏光层11。
向显示器10外部射出的感应显示器线性偏光23即感应光20被物体反射而再次入射到显示器10。为了进行区分,将向显示器10入射的反射光30称为反射显示器线性偏光。反射显示器线性偏光30可具有以第二角度例如-45度倾斜的偏光轴。因此,具有以与显示器偏光层11的偏光轴相同的角度倾斜的偏光轴的反射显示器线性偏光30能够通过显示器偏光层11。
在一般的使用环境下,不仅是反射显示器线性偏光30,外来光14也会向显示器10入射。因此,入射显示器线性偏光40包括作为非偏光的外来光14中通过了显示器偏光层11的光以及反射显示器线性偏光30。外来光14的亮度比反射显示器线性偏光30的亮度大很多,且恒定。因此,由外来光14所产生的影响可通过像素电流的补偿电流DC offset来表示。作为非偏光的外来光14中,由于具有与显示器偏光层11的偏光轴相同的偏光轴的光通过而具有其他偏光轴的光被阻隔,所以其亮度会减小。因此,与反射显示器线性偏光30的亮度相比,入射显示器线性偏光40的亮度会相对较大。
入射显示器线性偏光40通过显示器延迟层12而成为向逆时针方向旋转的入射显示器圆偏光41。如上所述,由于显示器偏光层11的偏光轴相对于显示器延迟层12的慢轴以-45倾斜,因此在入射显示器线性偏光40的第一偏光部分与第二偏光部分之间产生λ/4的相位差。入射显示器圆偏光41通过显示器10的底面而向显示器下部的传感器100入射。
入射显示器圆偏光41通过传感器延迟层120而成为入射传感器线性偏光42。如上所述,由于显示器延迟层12的慢轴与传感器延迟层120的慢轴在实质上是平行延伸的,所以在入射显示器圆偏光41的第一偏光部分和第二偏光部分上会加上λ/4的相位差,从而相互之间的相位差成为λ/2。由此,入射传感器线性偏光42的偏光轴从第二角度旋转约90度而相对于传感器延迟层120的慢轴以第一角度例如+45度倾斜。
入射传感器线性偏光42实质上无损失地通过传感器偏光层110而成为传感器入射光43。传感器偏光层110可具有相对于传感器延迟层120的慢轴以第一角度例如+45度倾斜的偏光轴。因此,具有以与传感器偏光层110的偏光轴相同的角度倾斜的偏光轴的入射传感器线性偏光42能够通过传感器偏光层110。传感器入射光43向受光部220前进。受光部220生成与传感器入射光43的亮度即光量实质上成比例的像素电流。传感器入射光43不仅包括反射光,还包括在图3中说明的外来光所产生的传感器线性偏光18。通过外来光所产生的传感器线性偏光18产生像素电流的补偿电流DC offset
图5是示意性地示出在显示器下部的传感器的另一实施例中感应光为关闭时的图。在此,感应光关闭时不仅包括连续关闭区间,还包括经调制的开启区间中脉冲之间的区间。由于外来光14通过显示器10为止的过程与图3类似,所以对外来光14入射到显示器下部的传感器101之后的过程进行说明。
显示器下部的传感器101包括形成两个光路径的第一传感器偏光层110及第二传感器偏光层115、传感器延迟层120以及检测通过各光路径后的光的光传感器201。光传感器201包括光照射部210、第一受光部220以及第二受光部230。
传感器延迟层120配置在第一传感器偏光层110及第二传感器偏光层115的上部,光传感器201配置在第一传感器偏光层110及第二传感器偏光层115的下部。光传感器201的光照射部210及第一受光部220配置在第一传感器偏光层110的下部,第二受光部230配置在第二传感器偏光层115的下部。作为一实施例,可在第一传感器偏光层110及第二传感器偏光层115的上表面层叠(层压)传感器延迟层120。所层叠的传感器延迟 层120-第一、第二传感器偏光层110、115可附着在显示器10的底面。光传感器201可附着在第一传感器偏光层110及第二传感器偏光层115的底面。作为另一实施例,可通过薄膜晶体管来实现光传感器201。由此,显示器下部的传感器101能够以层叠膜状的传感器延迟层120、第一传感器偏光层110及第二传感器偏光层115、光传感器201的方式来制造。
第一传感器偏光层110的偏光轴和第二传感器偏光层115的偏光轴相对于传感器延迟层120的慢轴以不同的角度倾斜。第一传感器偏光层110的偏光轴可相对于传感器延迟层120的慢轴以第一角度例如+45度倾斜,第二传感器偏光层115的偏光轴可相对于传感器延迟层120的慢轴以第二角度例如-45倾斜。
向显示器下部的传感器101入射的光为外来光所产生的显示器圆偏光16。通过了传感器延迟层120的外来光所产生的显示器圆偏光16成为外来光所产生的传感器线性偏光17。实质上无损失地通过了第一传感器偏光层110的外来光所产生的传感器线性偏光17被称为第一外来光所产生的传感器线性偏光18,而通过了第二传感器偏光层115的外来光所产生的传感器线性偏光17的一部分成为第二外来光所产生的传感器线性偏光19。
传感器延迟层120-第一传感器偏光层110形成第一光路径,传感器延迟层120-第二传感器偏光层115形成第二光路径。第一光路径与第二光路径针对外来光所产生的显示器圆偏光16以不同的方式发挥作用。第一光路径使外来光所产生的显示器圆偏光16通过。相反,第二光路径阻隔外来光所产生的显示器圆偏光16的大部分而仅使一部分通过。与外来光14同样地,第一光路径使外部反射光通过,而第二光路径阻隔外部反射光,对此会在下面详细说明。
在第一外来光所产生的传感器线性偏光18与第二外来光所产生的传感器线性偏光19之间满足比例关系1:K 1(其中,K 1<1)。在此,K 1是外来光的阻隔透过比率。第一外来光所产生的传感器线性偏光18与第二外来光所产生的传感器线性偏光19只是光路径不同,由于都是由相同的外来光所产生的显示器圆偏光16产生的,所以两者之间的亮度满足线性比例关系或非线性比例关系。非线性比例关系可能是由显示器10的结构特征、外来光14的波长范围等多种原因引起的。第一外来光所产生的传感器线性偏光18与第二外来光所产生的传感器线性偏光19之间的比例关系1:K 1也可以实质上相同地应用于反射光30。即,在由第一受光部220测得的反射光30的亮度与由第二受光部230测得的反射光30的亮度之间也满足同样的比例关系1:K 1
第一光路径与第二光路径可以挨着,也可以分离。即,第一传感器偏光层110与第二传感器偏光层115可配置在单个传感器延迟层120的下部,第一受光部220与第二受光部230可形成在单个光传感器201上。另一方面,第二受光部230也可以形成在与第一受光部220分离的其他光传感器上。在第二受光部230的上部可配置有具有与传感器延迟层的慢轴平行延伸的慢轴的延迟层(未图示)及第二传感器偏光层115。
图6是示意性地示出在显示器下部的传感器的另一实施例中感应光为开启时的图。在此,感应光开启时是除了脉冲之间区间以外的经调制的开启区间。由于反射光到达显示器下部的传感器101为止的过程与图4类似,因此对反射光入射到显示器下部的传感器101之后的过程进行说明。在此,假设没有内部反射而进行说明。
入射显示器圆偏光41、41'通过传感器延迟层120而成为第一入射传感器线性偏光42及第二入射传感器线性偏光42'。如上所述,由于显示器延迟层12的慢轴与传感器延迟层120的慢轴在实质上是平行延伸的,所以在入射显示器圆偏光41、41'的第一偏光部分和第二偏光部分上会加上λ/4的相位差,从而相互之间的相位差成为λ/2。由此,第一入射传感器线性偏光42及第二入射传感器线性偏光42'的偏光轴从第二角度旋转约90度而相对于传感器延迟层120的慢轴以第一角度例如+45度倾斜。
第一入射传感器线性偏光42实质上无损失地通过第一传感器偏光层110而向第一受光部220前进,相反,第二入射传感器线性偏光42'的大部分被第二传感器偏光层115阻隔而只有一部分向第二受光部230前进。第一传感器偏光层110可具有相对于传感器延迟层120的慢轴以第一角度例如+45度倾斜的偏光轴。因此,具有以与第一传感器偏光层110的偏光轴相同的角度倾斜的偏光轴的第一入射传感器线性偏光42能够通过第一传感器偏光层110。相反,第二传感器偏光层115可具有相对于传感器延迟层120以第二角度例如-45度倾斜的偏光轴。因此,具有相对于第二传感器偏光层115的偏光轴旋转了90度的偏光轴的第二入射传感器线性偏光42'的大部分被第二传感器偏光层115阻隔,而只有一部分能够通过第二传感器偏光层115。
实质上无损失地通过了第一传感器偏光层110的第一入射传感器线性偏光42被称为第一传感器入射光43,通过了第二传感器偏光层115的入射传感器线性偏光42'的一部分成为第二传感器入射光43'。第一传感器入射光43不仅包括反射光30,还包括第一外来光所产生的传感器线性偏光18即外来光14。第二传感器入射光43'包括第二外来光所产生的传感器线性偏光19。
光传感器201包括与第一光路径对应的第一受光部220以及与第二光路径对应的第二受光部230。例如,第一受光部220生成与第一传感器入射光43的亮度即光量实质上成比例的第一像素电流,第二受光部230生成与第二传感器入射光43'的亮度实质上成比例的第二像素电流。
图7是用于示意性地说明在显示器下部的传感器的另一实施例中从显示器下部的传感器照射的光在显示器内部反射的情况的图。在此,假设没有被外部物体反射回来的外部反射光而进行说明。
在显示器内部反射的感应光(以下称为内部反射光)会对第一受光部220及第二受光部230所测得的光的亮度产生严重的误差。内部反射光与外部反射光在多个方面上例如光的亮度(或强度)、到达受光部的时间等上不同。在对显示器下部的传感器使用接近传感器时,需要考虑由内部反射所产生的影响。
显示器下部的传感器101的光照射部210所生成的感应光20、20'随着通过第一传感器偏光层110及传感器延迟层120而成为感应传感器圆偏光22、22'。感应传感器圆偏光22、22'可在显示器10内部反射而再次向显示器下部的传感器101入射。显示器10中混合存在由将光透过或反射的材料形成的多种结构。由此,感应传感器圆偏光22、22'的一部分能够被内部反射回来到显示器下部的传感器101。第一感应光20是以内部反射到第一受光部220而入射的角度照射的光,第二感应光20'是以内部反射到第二受光部230而入射的角度照射的光。
经内部反射的传感器圆偏光50通过传感器延迟层120成为经内部反射的传感器线性偏光51。经内部反射的传感器线性偏光51的偏光轴从感应传感器线性偏光21的偏光轴旋转约90度。由此,经内部反射的传感器线性偏光51的偏光轴可与第一传感器偏光层110的偏光轴在实质上垂直,且经内部反射的传感器线性偏光51的大部分可实质上被第一传感器偏光层110阻隔。未被阻隔而通过的经内部反射的传感器线性偏光52可被第一受光部220检测到。
相反,经内部反射的传感器圆偏光50'通过传感器延迟层120成为经内部反射的传感器线性偏光51'。经内部反射的传感器线性偏光51'的偏光轴从感应传感器线性偏光21的偏光轴旋转约90度。由此,经内部反射的传感器线性偏光51'的偏光轴在实质上平行于第二传感器偏光层115的偏光轴,从而能够通过第二传感器偏光层115。
由于未被阻隔而通过的经内部反射的传感器线性偏光51',由第一受光部220和第二受光部230分别检测到的亮度之间的比例关系满足K 2:1(其中,K 2<1)。在此,K 2是内部反射的阻隔透过比率。
外来光的阻隔透过比率K 1及内部反射的阻隔透过比率K 2用于修正由显示器下部的传感器101测得的第一传感器入射光43的亮度。若显示器下部的传感器101作为接近传感器而工作,则不仅是第一传感器入射光43和第二传感器入射光43',经内部反射的感应光52、51'也会入射到第一受光部220及第二受光部230。不仅仅由于入射到第一受光部220的经内部反射的感应光52,还由于入射到第二受光部230的经内部反射的感应光51'使受光部220、230的测量值产生误差。
若将第一传感器入射光43的亮度设为A,则第二传感器入射光43'的亮度为K 1×A。另一方面,若将经内部反射的感应光51'的亮度设为B,则经内部反射的感应光52的亮度为K 2×B。
第一受光部220所检测的光的亮度C是基于第一传感器入射光43及经内部反射的感应光52的。
【公式1】
C=A+K 2×B
另一方面,第二受光部所检测的光的亮度D是基于第二传感器入射光43'及经内部反射的感应光51'的。
【公式2】
D=K 1×A+B
根据公式1和公式2能够以如下方式算出第一传感器入射光43的亮度A。
【公式3】
Figure PCTCN2020074019-appb-000001
第一传感器入射光43的亮度用于计算到外部物体为止的距离或判断是否接近。
图8是示意性地示出作为显示器下部的传感器的又一实施例,感应光为关闭时的图。在此,感应光关闭时不仅包括连续关闭区间,还包括在经调制的开启区间中脉冲之间的区间。由于外来光14通过显示器10为止的过程与图3类似,所以对外来光14入射到显示器下部的传感器102之后的过程进行说明。
显示器下部的传感器102包括形成两个光路径的第一传感器延迟层120及第二传感器延迟层125、传感器偏光层110以及检测通过各光路径后的光的光传感器201。光传感器201包括光照射部210、第一受光部220以及第二受光部230。
第一传感器延迟层120及第二传感器延迟层125配置在传感器偏光层110的上部,光传感器201配置在传感器偏光层110的下部。光传感器201包括光照射部210、第一受光部220以及第二受光部230。第一受光部220配置在从第一传感器延迟层120射出的光通过传感器偏光层110后所到达的位置,第二受光部230配置在从第二传感器延迟层125射出的光通过传感器偏光层110后所到达的位置。作为一实施例,显示器下部的传感器102可通过在传感器偏光层110的上表面层叠第一传感器延迟层120及第二传感器延迟层125的方式来制造。所层叠的传感器偏光层110及第一、第二传感器延迟层120、125可附着在显示器10的底面。光传感器201可附着在传感器偏光层110的底面。作为另一实施例,可通过薄膜晶体管来实现光传感器201。由此,显示器下部的传感器102能够以层叠膜状的第一传感器延迟层120及第二传感器延迟层125、传感器偏光层110、光传感器201的方式来制造。
第一传感器延迟层120的慢轴与第二传感器延迟层125的慢轴在实质上是正交的。传感器偏光层110的偏光轴可相对于第一传感器延迟层120的慢轴以第一角度例如+45度倾斜,也可以相对于第二传感器延迟层125的慢轴以第二角度例如-45度倾斜。
向显示器下部的传感器100入射的光是外来光所产生的显示器圆偏光16。外来光所产生的显示器圆偏光16通过第一传感器延迟层120而成为第一外来光所产生的传感器线性偏光17,通过第二传感器延迟层125而成为第二外来光所产生的传感器线性偏光17'。由于第一传感器延迟层120的慢轴与第二传感器延迟层125的慢轴正交,所以第一外来光所产生的传感器线性偏光17的偏光轴与第二外来光所产生的传感器线性偏光17'的偏光轴也能够正交。由此,第一外来光所产生的传感器线性偏光17通过传感器偏光层110而向第一受光部220前进,相反,第二外来光所产生的传感器线性偏光17'的大部分被传感器偏光层110阻隔而只有一部分向第二受光部230前进。实质上无损失地通过了传感器偏光层110的第一外来光所产生的传感器线性偏光17被称为第一外来光所产生的传感器线性偏光18,通过了传感器偏光层110的第二外来光所产生的传感器线性偏光17'的一部分成为第二外来光所产生的传感器线性偏光19'。
第一传感器延迟层120-传感器偏光层110形成第一光路径,第二传感器延迟层125-传感器偏光层110形成第二光路径。第一光路径与第二光路径针对外来光所产生的显示器圆偏光16以不同的方式发挥作用。第一光路径使外来光所产生的显示器圆偏光16通过。相反,第二光路径阻隔外来光所产生的显示器圆偏光16的大部分而仅使一部分通过。与外来光14同样地,第一光路径使外部反射光通过,第二光路径阻隔外部反射光,对此会在下面详细说明。
在第一外来光所产生的传感器线性偏光18与第二外来光所产生的传感器线性偏光19'之间满足比例关系1:K 1(其中,K 1<1)。在此,K 1是外来光的阻隔透过比率。第一外来光所产生的传感器线性偏光18与第二外来光所产生的传感器线性偏光19'只是光路径不同,由于都是由相同的外来光所产生的显示器圆偏光16产生的,所以两者之间的亮度满足线性比例关系或非线性比例关系。非线性比例关系可能是由显示器10的结构特征、外来光14的波长范围等多种原因引起的。第一外来光所产生的传感器线性偏光18与第二外来光所产生的传感器线性偏光19'之间的比例关系1:K 1也可以实质上相同地应用于反射光30。
图9是示意性地示出作为显示器下部的传感器的又一实施例的感应光为开启时的图。在此,感应光开启时是除了脉冲之间区间以外的经调制的开启区间。由于反射光到达显示器下部的传感器102的过程与图4类似,所以对反射光入射到显示器下部的传感器102之后的过程进行说明。在此,假设没有内部反射而进行说明。
入射显示器圆偏光41通过第一传感器延迟层120而成为第一入射传感器线性偏光42,入射显示器圆偏光41'通过第二传感器延迟层125而成为第二入射传感器线性偏光42”。如上所述,由于第一传感器延迟层120的慢轴与第二传感器延迟层125的慢轴正交,所以第一入射传感器线性偏光42的偏光轴与第二入射传感器线性偏光42”的偏光轴也能够正交。详细而言,在第一偏光部分与第二偏光部分之间具有λ/4的相位差的入射显示器圆偏光41通过第一传感器延迟层120加上λ/4的相位差,从而能够成为具有与传感器偏光层110的偏光轴实质上平行的偏光轴的第一入射传感器线性偏光42。相反,入射显示器圆偏光41'通过第二传感器延迟层125消除相位差,从而能够成为具有与传感器偏光层110的偏光轴实质上垂直的偏光轴的第二入射传感器线性偏光42”。
第一入射传感器线性偏光42实质上无损失地通过传感器偏光层110而向第一受光部220前进,相反,第二入射传感器线性偏光42”的大部分被传感器偏光层110阻隔而只有一部分向第二受光部230前进。传感器偏 光层110可具有相对于第一传感器延迟层120的慢轴以第一角度例如+45度倾斜的偏光轴或者相对于第二传感器延迟层125的慢轴以第二角度例如-45度倾斜的偏光轴。因此,具有以与传感器偏光层110的偏光轴相同的角度倾斜的偏光轴的第一入射传感器线性偏光42能够通过传感器偏光层110。相反,具有相对于传感器偏光层110的偏光轴旋转了90度的偏光轴的第二入射传感器线性偏光42”的大部分被传感器偏光层110阻隔,而只有一部分能够通过传感器偏光层110。
实质上无损失地通过了传感器偏光层110的第一入射传感器线性偏光42被称为第一传感器入射光43,通过了传感器偏光层110的第二入射传感器线性偏光42”的一部分成为第二传感器入射光43”。第一传感器入射光43不仅包括反射光30,还包括第一外来光所产生的传感器线性偏光18即外来光14。第二传感器入射光43”包括第二外来光所产生的传感器线性偏光19。
光传感器201包括与第一光路径对应的第一受光部220以及与第二光路径对应的第二受光部230。例如,第一受光部220生成与第一传感器入射光43的亮度实质上成比例的第一像素电流,第二受光部230生成与第二传感器入射光43”的亮度实质上成比例的第二像素电流。
图10是用于示意性地说明在显示器下部的传感器的又一实施例中从显示器下部的传感器照射的光在显示器内部反射的情况的图。在此,假设没有被外部物体反射回来的外部反射光而进行说明。
经内部反射的传感器圆偏光50通过第一传感器延迟层120而成为经内部反射的传感器线性偏光51。经内部反射的传感器线性偏光51的偏光轴从感应传感器线性偏光21的偏光轴旋转约90度。由此,经内部反射的传感器线性偏光51的偏光轴垂直于第一传感器偏光层110的偏光轴,且经内部反射的传感器线性偏光51的大部分能够实质上被传感器偏光层110阻隔。未被阻隔而通过的经内部反射的传感器线性偏光52可被第一受光部220检测到。
相反,经内部反射的传感器圆偏光50'通过第二传感器延迟层125而成为经内部反射的传感器线性偏光51”。经内部反射的传感器线性偏光51”的偏光轴实质上平行于感应传感器线性偏光21的偏光轴。由此,经内部反射的传感器线性偏光51”的偏光轴平行于第二传感器偏光层115的偏光轴,从而能够通过第二传感器偏光层115。
由于未被阻隔而通过的经内部反射的传感器线性偏光51”,由第一受光部220和第二受光部230分别检测到的亮度之间的比例关系满足K 2:1(其中,K 2<1)。在此,K 2是内部反射的阻隔透过比率。
外来光的阻隔透过比率K 1以及内部反射的阻隔透过比率K 2用于修正由显示器下部的传感器102测得的第一传感器入射光43的亮度。若显示器下部的传感器102作为接近传感器而工作,则不仅是第一传感器入射光43和第二传感器入射光43”,经内部反射的感应光52、51”也会入射到第一受光部220及第二受光部230。不仅进由于入射到第一受光部220的经内部反射的感应光52,还由于入射到第二受光部230的经内部反射的感应光51”使受光部220、230的测量值产生误差。
若将第一传感器入射光43的亮度设为A,则第二传感器入射光43”的亮度为K 1×A。另一方面,若将经内部反射的感应光51”的亮度设为B,则经内部反射的感应光52的亮度为K 2×B。第一受光部220所检测的光的亮度C是基于第一传感器入射光43以及经内部反射的感应光52的。另一方面,第二受光部所检测的光的亮度D是基于第二传感器入射光43'以及经内部反射的感应光51"的。利用公式3能够算出第一传感器入射光43的亮度A。
上述的本发明的说明是示例性的,对于本发明所属领域的具有常规知识的技术人员而言,可以理解在不改变本发明的技术构思或者必要特征的情况下,能够容易变形成其他的具体方式。因此,应理解以上描述的实施例均是示例性的,并不是用于进行限定的。此外,参照附图说明的本发明的特征并不是限定于特定附图示出的结构,可通过单独的或者与其他的特征结合而实现。
本发明的范围是通过随附的权利要求书来呈现的,而非通过上述的说明来呈现,应当理解,从权利要求书的含义和范围以及其等同的概念得到的所有的变更或变型的方式均包含在本发明的范围内。

Claims (13)

  1. 一种显示器下部的传感器,该显示器下部的传感器配置在包括生成光的像素、配置在所述像素的上部的显示器延迟层以及显示器偏光层的显示器的下部,其中,
    所述显示器下部的传感器包括:
    光传感器,包括发出经调制的感应光并照射位于所述显示器的外部的物体的光照射部以及检测所述经调制的感应光被所述物体反射回来的外部反射光并生成像素电流的受光部;
    传感器偏光层,配置在所述光传感器的上部,且具有以第一角度倾斜的偏光轴;以及
    传感器延迟层,配置在所述传感器偏光层的上部,且具有相对于所述传感器偏光层的偏光轴以所述第一角度倾斜的慢轴,
    所述反射光通过所述显示器、所述传感器偏光层以及所述传感器延迟层而到达受光部。
  2. 根据权利要求1所述的显示器下部的传感器,其中,
    所述光照射部包括:
    光源信号生成部,生成重复连续开启区间与连续关闭区间的基本光源驱动信号;
    载波信号生成部,生成具有比所述基本光源驱动信号的频率大的频率的载波信号;
    信号调制部,利用所述载波信号,对所述基本光源驱动信号的所述连续开启区间进行频率调制而生成经调制的光源驱动信号;以及
    光源,经调制的光源驱动信号在所述连续开启区间的期间以所述载波信号的频率开启及关闭而生成所述经调制的感应光。
  3. 根据权利要求2所述的显示器下部的传感器,其中,
    所述显示器下部的传感器还包括:
    带通滤波器,在所述像素电流中去除所述载波信号的频率成分;
    放大器,对已去除所述载波信号的频率成分的所述像素电流进行放大;以及
    模拟-数字转换器,将放大的所述像素电流转换为数字信号。
  4. 根据权利要求2所述的显示器下部的传感器,其中,
    所述传感器偏光层包括:
    第一传感器偏光层,具有以所述第一角度倾斜的偏光轴;以及
    第二传感器偏光层,具有以第二角度倾斜的偏光轴,
    所述受光部包括:
    第一受光部,配置在所述第一传感器偏光层的下部,且检测所述外部反射光及所述感应光在所述显示器内部反射的内部反射光;以及
    第二受光部,配置在所述第二传感器偏光层的下部,且检测所述外部反射光及所述内部反射光。
  5. 根据权利要求4所述的显示器下部的传感器,其中,
    所述传感器延迟层及所述第一传感器偏光层使所述外部反射光通过,并且使所述内部反射光以内部反射的阻隔透过比率通过,
    所述传感器延迟层及所述第二传感器偏光层使所述外部反射光以外来光的阻隔透过比率通过,并且使所述内部反射光通过。
  6. 根据权利要求5所述的显示器下部的传感器,其中,
    所述外部反射光的亮度通过所述外来光的阻隔透过比率及所述内部反射的阻隔透过比率计算得到。
  7. 根据权利要求1所述的显示器下部的传感器,其中,
    所述传感器偏光层及所述传感器延迟层将所述感应光转换为感应传感器圆偏光,以使所述感应光通过所述显示器的偏光层,
    所述感应传感器圆偏光通过所述显示器延迟层转换为具有与所述显示器的偏光层的偏光轴相同的偏光轴的感应显示器线性偏光。
  8. 根据权利要求1所述的显示器下部的传感器,其中,
    所述传感器延迟层的慢轴与所述显示器延迟层的慢轴平行,
    所述显示器偏光层的偏光轴相对于所述显示器延迟层的慢轴以第二角度倾斜。
  9. 根据权利要求2所述的显示器下部的传感器,其中,
    所述传感器延迟层包括:
    第一传感器延迟层,配置在所述传感器偏光层的上部,且具有相对于所述传感器偏光层的偏光轴以所述第一角度倾斜的慢轴;以及
    第二传感器延迟层,与第二受光部相对应地配置在所述传感器偏光层的上部,且具有相对于所述传感器偏光层的偏光轴以第二角度倾斜的慢轴,
    所述受光部包括:
    第一受光部,配置在通过所述第一传感器延迟层及所述传感器偏光层后的光所到达的位置,并且检测所述外部反射光及所述感应光在显示器内部反射后的内部反射光;以及
    所述第二受光部,配置在通过所述第二传感器延迟层及所述传感器偏光层后的光所到达的位置,并且检测所述外部反射光及所述内部反射光。
  10. 根据权利要求9所述的显示器下部的传感器,其中,
    所述第一传感器延迟层及所述传感器偏光层使所述外部反射光通过,并且使所述内部反射光以内部反射的阻隔透过比率通过,
    所述第二传感器延迟层及所述传感器偏光层使所述外部反射光以外来光的阻隔透过比率通过,并且使所述内部反射光通过。
  11. 根据权利要求9所述的显示器下部的传感器,其中,
    所述第一传感器延迟层的慢轴与所述显示器延迟层的慢轴平行,
    所述显示器偏光层的偏光轴相对于所述显示器延迟层的慢轴以所述第二角度倾斜,
    所述第二角度是所述第一角度旋转90度后得到的角度。
  12. 根据权利要求5或10所述的显示器下部的传感器,其中,
    所述外来光的阻隔透过比率是在关闭所述光照射部的状态下测得的。
  13. 根据权利要求5或10所述的显示器下部的传感器,其中,
    所述内部反射的阻隔透过比率是在没有所述外部反射光的状态下测得的。
PCT/CN2020/074019 2020-01-15 2020-01-23 显示器下部的传感器 WO2021147096A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080002035.2A CN113015891A (zh) 2020-01-23 2020-01-23 显示器下部的传感器
PCT/CN2020/074019 WO2021147096A1 (zh) 2020-01-23 2020-01-23 显示器下部的传感器
US17/150,435 US20210285764A1 (en) 2020-01-15 2021-01-15 Under-display sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074019 WO2021147096A1 (zh) 2020-01-23 2020-01-23 显示器下部的传感器

Publications (1)

Publication Number Publication Date
WO2021147096A1 true WO2021147096A1 (zh) 2021-07-29

Family

ID=76384054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074019 WO2021147096A1 (zh) 2020-01-15 2020-01-23 显示器下部的传感器

Country Status (2)

Country Link
CN (1) CN113015891A (zh)
WO (1) WO2021147096A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107025451A (zh) * 2017-04-27 2017-08-08 上海天马微电子有限公司 一种显示面板及显示装置
CN108885697A (zh) * 2018-06-15 2018-11-23 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备
CN109196522A (zh) * 2018-08-24 2019-01-11 深圳市汇顶科技股份有限公司 背光模组、屏下指纹识别方法、装置和电子设备
KR20190018334A (ko) * 2017-08-14 2019-02-22 엘지디스플레이 주식회사 표시장치와 지문 센서 및 그 구동 방법
CN109613756A (zh) * 2019-01-29 2019-04-12 华勤通讯技术有限公司 Lcd显示屏、电子设备以及控制系统
CN109696682A (zh) * 2017-10-23 2019-04-30 华为技术有限公司 光学检测组件和终端设备
CN209707875U (zh) * 2019-01-16 2019-11-29 柳州阜民科技有限公司 电子设备和背光单元

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209765529U (zh) * 2019-05-14 2019-12-10 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107025451A (zh) * 2017-04-27 2017-08-08 上海天马微电子有限公司 一种显示面板及显示装置
KR20190018334A (ko) * 2017-08-14 2019-02-22 엘지디스플레이 주식회사 표시장치와 지문 센서 및 그 구동 방법
CN109696682A (zh) * 2017-10-23 2019-04-30 华为技术有限公司 光学检测组件和终端设备
CN108885697A (zh) * 2018-06-15 2018-11-23 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备
CN109196522A (zh) * 2018-08-24 2019-01-11 深圳市汇顶科技股份有限公司 背光模组、屏下指纹识别方法、装置和电子设备
CN209707875U (zh) * 2019-01-16 2019-11-29 柳州阜民科技有限公司 电子设备和背光单元
CN109613756A (zh) * 2019-01-29 2019-04-12 华勤通讯技术有限公司 Lcd显示屏、电子设备以及控制系统

Also Published As

Publication number Publication date
CN113015891A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
TWI647471B (zh) 可操作以辨認偽反射及補償由偽反射所造成之錯誤的光電模組
WO2020077514A1 (zh) 一种激光雷达系统
US9151829B2 (en) Packaged radiation source and detector
US9983027B2 (en) Proximity sensor module with light reflector
KR102082702B1 (ko) 레이저 영상표시장치
WO2021142639A1 (zh) 显示器下部的传感器
TWI536210B (zh) 具有光學舉升偵測之運動評估方法
US20070132742A1 (en) Method and apparatus employing optical angle detectors adjacent an optical input area
TWI425401B (zh) 雷射光學式位置偵測模組
KR20080089115A (ko) 시엠오에스어레이를 이용한 터치스크린
KR20110031272A (ko) 물체 검출을 위한 광 배리어 및 방법
US9528820B2 (en) System and method for using a linear polarizer to reduce optical crosstalk for optical proximity sensors
US20210033744A1 (en) Electromagnetic wave detection apparatus and information acquisition system
JP6669068B2 (ja) 投射型表示装置
WO2021142638A1 (zh) 显示器下部的传感器
JP5947526B2 (ja) 光検出装置
TWI464445B (zh) 薄型化光學系統、光源模組及可攜式電子裝置
WO2021147096A1 (zh) 显示器下部的传感器
KR20160101312A (ko) 거리 측정 장치
JPS62223634A (ja) 色判定装置
WO2021213005A1 (zh) 电子装置
JP2011242760A5 (ja) 液晶表示装置
JP7118865B2 (ja) 電磁波検出装置および情報取得システム
JP5845581B2 (ja) 投写型表示装置
TW201543306A (zh) 光學觸控模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915555

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20915555

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20915555

Country of ref document: EP

Kind code of ref document: A1