WO2021147075A1 - 一种干扰消除方法及装置 - Google Patents

一种干扰消除方法及装置 Download PDF

Info

Publication number
WO2021147075A1
WO2021147075A1 PCT/CN2020/073979 CN2020073979W WO2021147075A1 WO 2021147075 A1 WO2021147075 A1 WO 2021147075A1 CN 2020073979 W CN2020073979 W CN 2020073979W WO 2021147075 A1 WO2021147075 A1 WO 2021147075A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
cancellation
control parameter
interference
phase
Prior art date
Application number
PCT/CN2020/073979
Other languages
English (en)
French (fr)
Inventor
张治�
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080078477.5A priority Critical patent/CN114667683B/zh
Priority to PCT/CN2020/073979 priority patent/WO2021147075A1/zh
Publication of WO2021147075A1 publication Critical patent/WO2021147075A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements

Definitions

  • the present invention relates to the field of communication technology, and in particular to an interference elimination method and device, terminal equipment, chip, computer readable storage medium, computer program product, and computer program.
  • solutions for the second-order intermodulation self-interference elimination of terminal equipment are mainly divided into three aspects: avoiding interference, reducing interference, and eliminating interference.
  • the avoidance of interference is mainly achieved through frequency division scheduling and time division scheduling;
  • the reduction of interference is mainly achieved by increasing isolation and increasing the linearity of non-linear devices to achieve the effect of reducing the power of intermodulation interference signals;
  • eliminating interference is mainly Add a cancellation circuit before the receiving end to eliminate the self-interference signal before the receiving end.
  • Intermodulation interference cancellation has the characteristics of more complex signal components, relatively low interference signal strength, and easy changes in the frequency or power of the intermodulation signal.
  • embodiments of the present invention provide an interference cancellation method and device, terminal equipment, chips, computer-readable storage media, computer program products, and computer programs.
  • an interference cancellation method including:
  • the terminal device acquires the first control parameter, and the first control parameter is generated based on the received communication signal;
  • the terminal device uses the first cancellation signal generated based on the first control parameter to perform interference cancellation on the received signal, and the amplitude of the first cancellation signal and the interference signal in the currently received communication signal meets the first The amplitude requirement and phase meet the first phase requirement.
  • an interference cancellation device including:
  • the main control component if the interference cancellation result of the received signal does not meet the first preset condition, acquires the first control parameter, which is generated based on the received communication signal; and adopts the first control parameter generated based on the first control parameter.
  • the cancellation signal performs interference cancellation on the received signal, and the amplitude of the first cancellation signal and the interference signal in the currently received communication signal meets the first amplitude requirement, and the phase meets the first phase requirement.
  • a terminal device including: a processor and a memory for storing a computer program that can run on the processor,
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the steps of the aforementioned method.
  • a chip including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the aforementioned method.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store a computer program, and the computer program causes a computer to execute the steps of the aforementioned method.
  • a computer program product including computer program instructions, which cause a computer to execute the aforementioned method.
  • a computer program which causes a computer to execute the aforementioned method.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram 1 of the flow of an interference cancellation method provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the conversion relationship between three different stages provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the processing flow of the calibration phase provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the second flow of an interference cancellation method provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the composition structure of multiple components in a terminal device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the structure of the first component provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the composition structure of a main control component provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another composition structure of multiple components inside a terminal device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the composition structure of an interference cancellation device provided by an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the composition structure of a communication device provided by an embodiment of the present invention.
  • FIG. 14 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application may be as shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a UE 120 (or referred to as a communication terminal device or a terminal device).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with UEs located in the coverage area.
  • the network equipment 110 may be a network equipment (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a network equipment (NodeB, NB) in a WCDMA system, or an evolution in an LTE system Type network equipment (Evolutional Node B, eNB or eNodeB), or a wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, In-vehicle devices, wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB network equipment
  • Evolutional Node B, eNB or eNodeB LTE system Type network equipment
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, In-vehicle devices,
  • the nonlinear interference is mainly harmonic interference, intermodulation interference and mixing interference.
  • intermodulation interference is one of the most influential interferences.
  • How to solve intermodulation interference is one of the joint networking of 5G and 4G LTE
  • the key issue The number of original signals affected by the intermodulation interference signal can be divided into second-order, third-order, and other multi-order intermodulation interference signals.
  • the solution provided in this application mainly deals with the second-order intermodulation interference signal with the highest power among them.
  • the embodiment of the present invention provides an interference elimination method, as shown in FIG. 2, including:
  • Step 21 If the interference cancellation result of the received signal does not meet the first preset condition, the terminal device acquires a first control parameter, and the first control parameter is generated based on the received communication signal;
  • Step 22 The terminal device uses the first cancellation signal generated based on the first control parameter to perform interference cancellation on the received signal, and the first cancellation signal and the amplitude of the interference signal in the currently received communication signal Meet the first amplitude requirement, and the phase meets the first phase requirement.
  • the first amplitude requirement includes the same amplitude; the first phase requirement includes the opposite phase.
  • the terminal device when the terminal device enters the communication phase, it uses the control parameters generated in the training phase to control the interference cancellation; once the interference cancellation effect cannot meet the first preset condition, then In the calibration phase, a new control parameter is obtained in the calibration phase, and the new control parameter enables the interference cancellation effect to meet the first preset condition; then the terminal device returns to the communication phase and adopts the new control parameter for interference cancellation.
  • the first preset condition is a requirement that is better than the minimum index requirement
  • the minimum index requirements are defined by protocol specifications, including: minimum index requirements for communication performance.
  • the first preset condition can be understood as: the first preset condition is a requirement that is better than the minimum index requirement ⁇ x1, x2,..., x3 ⁇ dB.
  • the minimum index requirements are defined by protocol specifications, and may include: minimum index requirements for communication performance such as radio frequency and demodulation of terminal equipment;
  • the communication performance such as radio frequency and demodulation may include ⁇ Bit Error Rate, BLER,..., EVM ⁇ and so on.
  • x1, x2, and x3 are greater than or equal to 0, and they can be the same or different between x1, x2, and x3.
  • the first amplitude requirement includes the same amplitude; the first phase requirement includes the opposite phase.
  • first amplitude requirement may also include that the amplitude is approximately the same, and the first phase requirement may be that the phase is approximately opposite.
  • approximately the same or approximately the opposite may be that the relative error of the phase or amplitude is less than or equal to 0.5 dB, which is a granularity.
  • the amplitude of the first cancellation signal before feedback is not completely consistent with the interference, and there is residual interference at the receiving end. Continue the feedback link to obtain the updated first cancellation signal until the amplitude and phase of the cancellation signal and the interference Exactly the same.
  • the method further includes: the terminal device uses a second cancellation signal generated based on a second control parameter to perform interference cancellation on the received communication signal to obtain the interference cancellation result;
  • the second control parameter is generated based on the training signal, and the amplitude of the second cancellation signal and the interference signal in the currently received communication signal meets the second amplitude requirement, and the phase meets the second phase requirement.
  • the second amplitude requirement includes the same amplitude, and the second phase requirement includes the opposite phase.
  • the second amplitude requirement may also include approximately the same amplitude; the second phase requirement may also include approximately opposite phase.
  • the details can be similar to the foregoing, and will not be repeated here.
  • the solution provided in this embodiment includes three stages of processing: a training phase, a communication phase, and a verification phase.
  • a training phase For example, referring to FIG. 3, the working sequence is divided into a training phase, a normal working phase, and a calibration phase.
  • the normal communication phase mainly uses the second control parameter or the first control parameter obtained in the training phase or the calibration phase for interference cancellation; and the training phase and the calibration phase are mainly used to obtain the second control parameter and the first control parameter.
  • the difference between the training phase and the calibration phase can include at least one of the following:
  • the state of the terminal equipment is different; in the training phase, the terminal equipment is in an idle state, that is, only receiving signals but not sending signals; in the calibration phase, the terminal equipment can be in a state of maintaining communication signals.
  • the number of iterations used is different; the number of iterations used in the training phase is greater than that used in the calibration phase.
  • the threshold value used or the convergence conditions used are different; the interference elimination effect of the threshold value required in the training phase is better than the interference elimination effect of the threshold value required in the calibration phase.
  • the final result is: the accuracy of interference cancellation performed by the second control parameter obtained by training in the training phase is higher than the accuracy of the second control parameter obtained in the calibration phase.
  • a control parameter; and the training time in the calibration phase is less than the time in the training phase.
  • processing in the training phase can be:
  • the terminal device stops sending and receiving communication signals, and obtains the second control parameter based on the training signal; wherein, the training signal is a reference signal sequence.
  • the training signal may be: a reference signal sequence generated based on a ZC sequence, or an AWGN signal, or the like.
  • the terminal device maintains the transmission and reception of communication signals, and obtains the first control parameter based on the transmission signal with interference in the currently received communication signal.
  • the transmission signal with interference may be a transmission signal with intermodulation interference.
  • the method of obtaining the second control parameter includes:
  • the adjustment coefficients of the amplitude and phase corresponding to the training signal are determined as the second control parameter; wherein, the first constraint condition includes that the convergence error reaches a first preset threshold.
  • the methods for obtaining the first control parameter include:
  • the second constraint condition includes that the convergence error reaches a second preset threshold.
  • the processing times of the first iterative processing are not lower than the processing times of the second iterative processing; and the first preset threshold value is not higher than the second preset threshold value.
  • the foregoing first iterative processing and the second iterative processing may adopt processing such as least squares, maximum likelihood criteria, etc., which will not be repeated here.
  • the number of iterations is not limited. No matter how many iterations are performed, as long as the required threshold can be reached; the other is that It is necessary to reach the corresponding number of iterations, as long as the iterative processing of the corresponding number of iterations is completed, regardless of whether the target threshold is finally reached, the processing can be regarded as the end.
  • the training phase and the calibration phase both use iterative processing and set corresponding thresholds
  • the number of iterative processing in the training phase is set to be more than the number of iterations in the calibration phase, or the training phase
  • the threshold value set is different from the threshold value set in the calibration phase. Since the training phase requires more precision, the threshold value (that is, the threshold value) may be set more strict than the threshold value in the calibration phase, or the number of iterations required in the training phase is more than the number of iterations required in the calibration phase.
  • the result obtained in the training phase is the control parameter, which has a better effect on interference cancellation than the control parameter obtained in the calibration phase.
  • the aforementioned threshold value may be a threshold set, where each threshold may be considered as a sub-threshold, different sub-thresholds correspond to different times of iterative processing, and adjacent times of sub-thresholds may be the same or different.
  • a corresponding sub-threshold can be set for each iterative process, and the sub-threshold corresponding to each iterative process is different.
  • the sub-threshold (or sub-threshold value) corresponding to the nth iterative processing may be lower than the sub-threshold (or sub-threshold value) corresponding to the n+1th iterative processing.
  • n is an integer greater than or equal to 1 and less than N.
  • the sub-thresholds corresponding to each iterative processing may also be different.
  • the sub-threshold corresponding to the m-th iterative processing in the training phase is less than the sub-threshold of the m+1-th iterative processing; m is an integer greater than or equal to 1 and less than M.
  • each iteration process can also correspond to a sub-threshold.
  • N can be 2, that is, only two iterations can be performed during the calibration phase; M can be greater than 2, that is, three or more iterations can be performed during the training phase.
  • the threshold value may also be included, but whether the threshold value is reached may not be used as the final convergence condition.
  • the algorithms used in the calibration phase and the training phase can be the same or different, for example, the iterative algorithm can be different or the same.
  • the calibration phase mainly guarantees timeliness, while the training phase mainly guarantees accuracy. That is, the calibration stage can reduce the requirements for setting the corresponding threshold value, so that the terminal device can calculate the corresponding first control parameter more quickly.
  • the training phase a better anti-interference effect is mainly required, so the threshold that can be set is higher, that is, a better anti-interference result can be obtained. Therefore, the number of iterations can be increased to reach the corresponding threshold.
  • Step 31 The terminal device maintains the transmission and reception of communication signals. If the terminal device uses the first cancellation signal generated based on the first control parameter to perform interference cancellation on the received signal, the cancellation result does not meet the second preset condition;
  • Step 32 The terminal device stops sending and receiving communication signals, and uses the adjusted training signal to obtain the adjusted second control parameter.
  • the training signals used are related to the corresponding communication environment. For example, the current air interface situation or other conditions can be combined to regenerate the training signal corresponding to each training stage for subsequent training. In this way, the second control parameter that is more in line with the current communication environment (or air interface requirements) can be obtained.
  • the specific processing of the training phase is the same as the foregoing, and will not be repeated here.
  • step 31 before performing the iterative processing using the currently received communication signal in step 31, it may further include:
  • control parameter that satisfies the interference signal power cancellation of the communication signal to reach the second threshold value among the candidate control parameters, use the control parameter as the first control parameter;
  • the terminal device maintains the transmission and reception of communication signals, and obtains the first control parameter based on the transmission signal with interference in the currently received communication signal.
  • the terminal device does not store at least one control parameter, the foregoing processing may not be executed, and the foregoing steps 31 to 32 may be directly executed.
  • the at least one candidate control parameter stored in the aforementioned terminal device may be preset, or one or more control parameters other than the second control parameter may be obtained during the training phase.
  • multiple control parameters can be obtained in the training phase, among which the best interference elimination effect is used as the second control parameter, and the remaining control parameters are stored in the terminal device as candidates, that is, as candidates in the aforementioned calibration phase At least one control parameter.
  • Step 41 Before the terminal device enters the non-communication stage, it first enters the training stage. In the training stage, the first algorithm is searched with parameters with higher accuracy but lower efficiency, and the optimal control parameters corresponding to this training are obtained, that is, the first algorithm. 2. Control parameters;
  • the first algorithm is a parameter search algorithm with lower efficiency but higher accuracy compared to the algorithm in the calibration stage. It can be: input the training signal to the training model and perform iterative processing to obtain the second control parameter .
  • the specific description is the same as the foregoing, and will not be repeated here.
  • the second control parameter calculated in this step can be used directly in the communication phase, that is, after the second control parameter is obtained, that is, a control parameter that satisfies a certain elimination effect is obtained, the terminal device enters the communication phase and uses all the parameters.
  • the second control parameter generates a cancellation signal for interference cancellation.
  • Step 42 After the terminal device enters the communication phase, if the current optimal parameter is not applicable or a sub-optimal parameter due to changes in the communication environment and sudden deterioration of communication, the terminal device automatically triggers the calibration phase.
  • Step 43 The terminal device searches the stored control parameters for whether there is a control parameter that meets the second threshold value, or it can be understood that the terminal device searches for whether there is a control parameter that meets the first elimination effect from the stored control parameters. If there is a control parameter that satisfies the first cancellation effect, the control parameter is used as the first control parameter, and the calibration phase returns to the communication phase, and the first control parameter is used for interference cancellation processing of the communication signal; if it does not exist , Go to step 44.
  • Step 44 Use the actual working signal and the current parameters to search for the second algorithm using the parameters with lower accuracy but higher efficiency to obtain the corresponding control parameters;
  • the second algorithm is a parameter search algorithm with higher efficiency but lower accuracy. Specifically, it may be: the terminal device keeps the communication signal receiving and sending, and the current receiving The communication signal is input to the calibration model for iterative processing to obtain the first control parameter.
  • the terminal device keeps the communication signal receiving and sending, and the current receiving The communication signal is input to the calibration model for iterative processing to obtain the first control parameter.
  • Step 45 Determine whether the obtained control parameter is a control parameter that satisfies the second cancellation effect, and if it is satisfied, use the control parameter as the first control parameter, re-enter the communication phase, and use the first control parameter for interference cancellation; Otherwise, return to step 41.
  • the second elimination effect in this step may be the same as or different from the aforementioned first elimination effect.
  • the current communication signal and related parameters can be brought into the calibration model for one or two iterations, and threshold judgments can be made (the thresholds of these two iterations can be the same or different, and the second time can be more stringent), If it is satisfied, the parameters are directly output to the communication stage, and if not satisfied, return to the training stage and re-enter the training process.
  • the terminal device obtains a training signal, or a transmitted signal with interference in the currently transmitted communication signal
  • the processing of generating the first cancellation signal or the second cancellation signal based on the second control parameter or based on the first control parameter includes:
  • the transmission signal with interference in the aforementioned transmitted communication signal may include second-order intermodulation interference, and/or third-order intermodulation interference, and/or more-order intermodulation interference, which can all be included in this embodiment. , I will not list them all here.
  • a part of the transmission signal with intermodulation interference is separated from the transmitting end as a reference signal, and the cancellation signal is constructed through amplitude and phase modulation processing, and finally the intermodulation interference signal in the received signal is cancelled.
  • the description of the processing of the first component may include:
  • the terminal device is based on the original signal separated from the signal transmitting end of the terminal device;
  • a first suppression link that matches the power of the original signal is selected from at least one suppression link, and the original signal passes through the first suppression link to obtain the interference-containing transmission Signal.
  • the corresponding suppression link can be determined according to whether the power of the original signal is greater than the preset threshold, for example, when the power of the original signal is greater than the preset threshold When the value is set, the first suppression link can be used correspondingly, otherwise the second suppression link is used.
  • suppression link 1 there can be three or more suppression links in the first component, then the power threshold corresponding to suppression link 1 can be set to A, suppression link 2 corresponds to power threshold B, and suppression link 3 corresponds to power suppression C.
  • the first component of the first component provided in this embodiment with two suppression links is described in conjunction with FIG. 7.
  • the terminal device uses a coupler to separate the RF signal after the power amplifier (the power amplifier output in the figure). A part of the signal is extracted, and the intermodulation interference signal (for example, it may be a second-order intermodulation interference signal) is extracted from it, as a reference signal required for subsequent construction of the cancellation signal.
  • the signal power separated from here cannot be too large, otherwise it may cause excessive loss of the transmitted signal and affect the subsequent transmission link work.
  • the separated transmission signal includes the original transmission signal, the second-order intermodulation interference signal, and other various-order interference signals.
  • the original signal the residual of the original transmission signal in the separated part of the signal.
  • the original signal needs to be filtered out by a filter, otherwise the residual original signal will not only cause the subsequent cancellation of the link Signal generation becomes difficult, and it may also be introduced into the receiving link to cause interference.
  • a filter with sufficient performance should be used, or a series filter bank method should be used to achieve sufficient suppression performance.
  • the series filter bank scheme is often more feasible.
  • the power of the transmitted signal varies. If only one link is used to suppress the separated original signal, the filter set on this link should be sufficient to suppress the original signal power when the transmitted signal power is at its maximum.
  • the power of the second-order intermodulation interference signal in the separated signal is much lower than the original signal, and the power of the separated signal itself is only a small part of the original signal, which leads to the separated second-order intermodulation power
  • the signal power is often very low.
  • the second-order intermodulation signal with lower power itself is affected by the passband loss of multiple filters, resulting in a further reduction in power, which in turn affects the subsequent interference Cancellation of the link generates the effect of canceling the signal. Therefore, two suppression links are designed in the signal separation part (two links as shown in the figure), and the line is switched through the radio frequency switch.
  • the suppression link with fewer filters is selected (for example, the link composed of radio frequency switch #1 and filter 1 in the figure), to reduce the loss attenuation of the second-order intermodulation interference signal.
  • the transmission signal strategy is high, select the suppression link with more filters (as shown in the figure) Radio frequency switch #2, filter 1, 2), improve the suppression effect.
  • the solution provided in this embodiment further includes a second component, and the description of the processing performed by the second component is performed in combination with the second component:
  • the second component includes at least one cancellation link, the at least one cancellation link is connected in parallel or in series with each other; and each of the cancellation links includes a radio frequency switch, an attenuator, and a phase shifter , Part of the at least one cancellation link further includes a filter;
  • the step of using the second control parameter or the first control parameter to perform amplitude and/or phase modulation processing on the reference signal to obtain the first cancellation signal or the second cancellation signal includes:
  • the terminal device determines, based on the second control parameter or the first control parameter, at least part of the cancellation link that needs to be opened in the at least one cancellation link, and controls the cancellation link through the second control parameter or the first control parameter. At least part of the cancellation link adjusts the amplitude of the reference signal to be the same as the amplitude of the interference signal in the received communication signal, and controls the at least part cancellation link to adjust the phase of the reference signal to be the same as that of the received communication signal.
  • the phase of the interference signal in the communication signal is opposite to obtain the first cancellation signal or the second cancellation signal.
  • the attenuation amplitudes of the attenuators included can be the same or different.
  • the filters corresponding to different links can have different types, for example, band-pass, low-pass, high-pass and other types of filters can be used in different cancellation links according to Actually need to be set.
  • the first component namely the transmitting side, selects a certain suppression link based only on power;
  • the second component namely, the receiving side, selects a certain feedback link based on power (attenuator) and phase (phase shifter).
  • the center frequency and bandwidth of the passband of the filter can be determined by the aforementioned second control parameter or the first control parameter.
  • control parameters can include at least one of the following: the opening or closing of different cancellation links; the attenuation value (or attenuation amplitude value) of the attenuator in the opened cancellation link; the opened cancellation link The phase shift value of the phase shifter in the link; if at least one filter is included in the opened cancellation link, then the passband frequency range of the at least one filter is also included.
  • the second component can be called a cancellation signal generating module, which is used to construct a cancellation signal with the same amplitude and opposite phase as the interference signal.
  • the module is composed of 2, 3 or more cancellation links, each link has a radio frequency switch to control the working status of the link, a phase shifter and attenuator to adjust the signal output, and the second and third links add one Filters are used to deal with some special situations.
  • the signal input to the entire cancellation module includes second-order intermodulation interference signals and some other-order intermodulation interference signals.
  • the first cancellation link processes the reference signal as a whole, and mainly performs amplitude and phase modulation operations on the second-order intermodulation interference signal among them.
  • the filter settings of the second and third cancellation links are selected according to the actual situation. There are other-order intermodulation interference signals other than the second-order intermodulation signal in the original signal.
  • the two links can be closed, or the second and third links can be eliminated
  • the passband is set to the center frequency of the second-order intermodulation interference signal to further improve the elimination effect.
  • the power of the second-order intermodulation interference signal is relatively small and stable, and its range can be controlled near the mid-value of the attenuator during the training phase.
  • environmental factors will cause the interference signal to have a certain degree of amplitude change.
  • the central control chip controls the attenuation amplitude of the adjustable attenuator, adjusts the amplitude of the cancellation signal to be the same as the interference signal, and then passes the phase shifter Adjust the phase of the cancellation signal to be opposite to the interference signal, and finally generate a cancellation signal that can realize the interference cancellation.
  • Figure 8 shows a way for multiple cancellation links in parallel, where which one or which of the three cancellation links is turned on can be determined by the second control parameter or the first control parameter; 9 shows two serial cancellation links. One is to directly determine the two serial cancellation links. Regarding which links are used for serial processing, the second control parameter or the first A control parameter is determined, and finally the output cancellation signal is obtained through the serial cancellation link; the lower part of Fig. 9 shows the cancellation of a cancellation link output based on the main control component or the feedback control component The signal first performs the cancellation effect judgment, if it does not meet the requirements, then the feedback control component selects the next cancellation link for processing until a cancellation signal that satisfies the cancellation effect is obtained.
  • satisfying the cancellation effect can be understood as the interference value in the received signal is lower than the corresponding threshold value (such as the aforementioned first threshold value or second threshold value).
  • this embodiment also provides a main control component, or may be called a feedback control component (as shown in FIG. 6), and its processing includes:
  • the terminal device cancels the first or second cancellation signal with the received signal at the receiving end;
  • the receiving end of the terminal device collects the power or/and phase of at least one collection point, and selects at least one feedback link corresponding to the canceled signal based on the collected signal power or/and phase to obtain the adjusted first One or second cancellation signal.
  • the iterative processing of the training phase and the calibration phase is the same as the foregoing solution, and will not be repeated here.
  • the composition structure of the main control component is used to detect the power of the signal after the superposition is eliminated, and provide a reference for feedback control.
  • the coupler is used to couple a part of the RF link after the superimposition is eliminated. Since the power detector cannot distinguish the frequency of the detection signal, the filter is used to filter out the signals other than the target interference signal frequency, leaving only the second-order mutual Adjust the frequency band where the interference signal is located. In this way, the signal power detected by the power detector is mainly the power of the interference signal after superposition and cancellation, which directly reflects the cancellation effect.
  • a fixed gain amplifier and an adjustable attenuator are added before the power detector to match the range of the power detector.
  • the power detector converts the measured signal power into a voltage, which is converted into a digital signal by the ADC chip and sent to the main control chip for control calculation.
  • At least one collection point collected by the receiving end can be the signal obtained by power collection at the transmitter, cancellation link and output end.
  • the main control chip uses the collected power as a reference, which is based on the collection.
  • the received signal power and/or phase select at least one feedback link corresponding to the canceled signal, and the adjusted first or second canceled signal has been obtained.
  • first component can be embodied as separate links, cancellation links, and feedback control in the terminal device.
  • first component can be embodied as separate links, cancellation links, and feedback control in the terminal device.
  • second component can be embodied as separate links, cancellation links, and feedback control in the terminal device.
  • feedback control in the terminal device.
  • Figure 11 whose names are different from those in Figure 6.
  • the realized functions can be the same, so I won’t repeat them.
  • the solution provided in this embodiment can divide the working sequence into a training phase, a normal working phase, and a calibration phase.
  • the training phase exists during the power-on and idle period of the terminal equipment.
  • the terminal equipment part receives the remote useful signal.
  • the receiving end only receives the intermodulation interference signal leaked by the transmitting end.
  • the pure interference signal is more conducive to finding the optimal parameters for elimination control.
  • the main control chip first opens the first cancellation link through the radio frequency switch and closes the remaining links to find the optimal parameters for this link when it works alone.
  • the training phase is completed.
  • the terminal equipment normally sends and receives signals, and the main control chip monitors the interference elimination effect through the feedback module. If it is detected that the interference cancellation effect is seriously reduced, the normal communication phase is stopped and the calibration phase is entered.
  • the main control chip quickly finds the appropriate control parameters according to the algorithm to improve the elimination effect, so that the terminal device can return to the normal communication phase as soon as possible. If the appropriate control parameters cannot be found in the calibration phase, return to the training phase to find the optimal control parameters again.
  • an example provided in this embodiment may include:
  • the intermodulation interference power needs to be eliminated to at least -80dBm.
  • the control algorithm is used to find the optimal elimination effect. This process can take a relatively long time to find the optimal control parameter c0, so that the elimination device can eliminate the intermodulation interference power to -95dBm.
  • the equipment enters the normal communication phase.
  • the cancellation device monitors the power of the interference signal in real time. If the power is higher than a certain threshold, it enters the calibration phase.
  • the elimination device enters the calibration phase.
  • the calibration phase does not stop the communication transmission and reception of the equipment, and finds the satisfaction through two steps.
  • the effect of c1 may not be optimal, and only meets the requirement of suppressing the interference signal power to the normal communication requirements. If the control parameters that meet the conditions cannot be found in the calibration phase, and the normal communication transmission and reception cannot be effectively guaranteed at this time, the elimination device returns to the training phase and searches for the control parameters again.
  • the training signal can be clean, and the model is ideal;
  • the current optimal parameter set (that is, the second control parameter, which can include the coefficients of each filter, power amplifier, etc.), enters the communication stage;
  • the threshold can be set, and the actual communication signal can be used for calibration processing; if the requirements cannot be met after calibration, then The communication of the terminal device is stopped, and the training is performed again.
  • interference cancellation can be performed in the communication phase based on the obtained control parameters after training, and on this basis, a calibration phase can be added to optimize the communication performance and ensure the approach to the optimal cancellation effect.
  • the method of canceling the signal superimposed by the canceling circuit can also be used to eliminate the intermodulation self-interference in the terminal equipment, and the architecture of two canceling links can be used to optimize the performance of the separation module and reduce the reference signal reception. To the loss. Among them, additional filters can be added in the cancellation link to deal with other residual intermodulation interference signals that may exist around the intermodulation interference module. Therefore, the solution provided by this embodiment is particularly suitable for under the 5G dual link structure, non-linear devices in the terminal equipment will generate intermodulation interference signals, causing self-interference on the receiving end, and the power of the self-interference signal is about 40dB above the noise floor.
  • the use of this solution in the terminal equipment can eliminate the influence of intermodulation interference to a certain extent.
  • the solution provided in this embodiment can adaptively adjust the cancellation signal through the calibration stage, maintain the best self-interference suppression in real time, and adapt to the complex and changeable mobile device environment.
  • the device does not need to be individually optimized for a certain device, and it works in front of the receiving end, and can coexist with the previous elimination methods set on the transmitting end, further improving the elimination effect.
  • the embodiment of the present invention provides an interference cancellation device, as shown in FIG. 12, including:
  • the main control component 1201 if the interference cancellation result of the received signal does not meet the first preset condition, acquires the first control parameter, the first control parameter is generated based on the received communication signal;
  • the first cancellation signal performs interference cancellation on the received signal, and the amplitude of the first cancellation signal and the interference signal in the currently received communication signal meets the first amplitude requirement, and the phase meets the first phase requirement.
  • the first preset condition is a requirement that is better than the minimum index requirement
  • the minimum index requirements are defined by protocol specifications, including: minimum index requirements for communication performance.
  • the main control component 1201 uses the second cancellation signal generated based on the second control parameter to perform interference cancellation on the received communication signal to obtain the interference cancellation result;
  • the second control parameter is generated based on the training signal, and the amplitude of the second cancellation signal and the interference signal in the currently received communication signal meets the second amplitude requirement, and the phase meets the second phase requirement.
  • the solution provided in this embodiment includes three stages of processing: a training phase, a communication phase, and a verification phase.
  • a training phase For example, referring to FIG. 3, the working sequence is divided into a training phase, a normal working phase, and a calibration phase.
  • the main control component stops sending and receiving communication signals, and obtains the second control parameter based on the training signal; wherein, the training signal is a reference signal sequence.
  • the main control component performs a first iterative process on the training signal; if the first constraint condition is met, the adjustment coefficient of the amplitude and phase corresponding to the training signal is determined as the second control parameter; wherein, the first control parameter A constraint condition includes that the convergence error reaches the first preset threshold.
  • the main control component maintains the transmission and reception of communication signals, and obtains the first control parameter based on the transmission signal with interference in the currently received communication signal.
  • the main control component performs a second iterative process on the transmitted signal with interference in the currently received communication signal
  • the second constraint condition includes that the convergence error reaches a second preset threshold.
  • the processing times of the first iterative processing are not lower than the processing times of the second iterative processing; and the first preset threshold value is not higher than the second preset threshold value.
  • the main control component 1201 uses the first cancellation signal generated based on the first control parameter to perform interference cancellation on the received signal, and the cancellation result does not meet the second preset condition; then it stops sending and receiving communication signals. , Using the adjusted training signal to obtain the adjusted second control parameter. And, if there is a control parameter that satisfies the interference signal power cancellation of the communication signal to reach the second threshold value among the candidate control parameters, the control parameter is used as the first control parameter; otherwise, the communication signal is kept receiving and sending. , Obtain the first control parameter based on the transmitted signal with interference in the currently received communication signal.
  • the device further includes: a first component 1202, which obtains a training signal, or a transmitted signal with interference in the currently transmitted communication signal;
  • the second component 1203 uses the second control parameter or the first control parameter to perform amplitude and/or phase modulation processing on the reference signal to obtain the first cancellation signal or the second cancellation signal.
  • the first component 1202 is based on the original signal separated from the signal transmitting end of the terminal device; and based on the power of the original signal, selects the first component that matches the power of the original signal from at least one suppression link.
  • a suppression link, the transmission signal with interference is obtained after the original signal passes through the first suppression link.
  • the solution provided in this embodiment also includes a second component, and the description of the processing performed by the second component is performed in combination with the second component:
  • the second component includes at least one cancellation link, the at least one cancellation link is connected in parallel or in series with each other; and each of the cancellation links includes a radio frequency switch, an attenuator, and a phase shifter , Part of the at least one cancellation link further includes a filter;
  • the second component determines, based on the second control parameter or the first control parameter, at least a part of the cancellation link that needs to be opened in the at least one cancellation link, and controls it through the second control parameter or the first control parameter
  • the at least part of the cancellation link adjusts the amplitude of the reference signal to be the same as the amplitude of the interference signal in the received communication signal, and controls the at least part of the cancellation link to adjust the phase of the reference signal to be the same as the amplitude of the interference signal in the received communication signal.
  • the phase of the interference signal in the received communication signal is opposite to obtain the first cancellation signal or the second cancellation signal.
  • the main control component or may be called a feedback control component (as shown in FIG. 6), performs cancellation processing on the first cancellation signal or the second cancellation signal with the received signal at the receiving end; Collect the power or/and phase of at least one collection point through the receiving end, and select at least one feedback link corresponding to the canceled signal based on the collected signal power or/and phase to obtain the adjusted first canceled signal Or the second cancellation signal.
  • a feedback control component as shown in FIG. 6
  • interference cancellation can be performed in the communication phase based on the obtained control parameters after training, and on this basis, a calibration phase can be added to optimize the communication performance and ensure the approach to the optimal cancellation effect.
  • the method of canceling the signal superimposed by the canceling circuit can also be used to eliminate the intermodulation self-interference in the terminal equipment, and the architecture of two canceling links can be used to optimize the performance of the separation module and reduce the reference signal reception. To the loss. Among them, additional filters can be added in the cancellation link to deal with other residual intermodulation interference signals that may exist around the intermodulation interference module. Therefore, the solution provided by this embodiment is particularly suitable for under the 5G dual link structure, non-linear devices in the terminal equipment will generate intermodulation interference signals, causing self-interference on the receiving end, and the power of the self-interference signal is about 40dB above the noise floor.
  • the use of this solution in the terminal equipment can eliminate the influence of intermodulation interference to a certain extent.
  • the solution provided in this embodiment can adaptively adjust the cancellation signal through the calibration stage, maintain the best self-interference suppression in real time, and adapt to the complex and changeable mobile device environment.
  • the device does not need to be individually optimized for a certain device, and it works in front of the receiving end, and can coexist with the previous elimination methods set on the transmitting end, further improving the elimination effect.
  • FIG. 13 is a schematic structural diagram of a communication device 1300 according to an embodiment of the present invention.
  • the communication device in this embodiment may be specifically the terminal device in the foregoing embodiment.
  • the communication device 1300 shown in FIG. 13 includes a processor 1310, and the processor 1310 can call and run a computer program from a memory to implement the method in the embodiment of the present invention.
  • the communication device 1300 may further include a memory 1320.
  • the processor 1310 can call and run a computer program from the memory 1320 to implement the method in the embodiment of the present invention.
  • the memory 1320 may be a separate device independent of the processor 1310, or may be integrated in the processor 1310.
  • the communication device 1300 may further include a transceiver 1330, and the processor 1310 may control the transceiver 1330 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1330 may include a transmitter and a receiver.
  • the transceiver 1330 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1300 may specifically be a terminal device according to an embodiment of the present invention, and the communication device 1300 may implement corresponding processes implemented by a network device in each method of the embodiment of the present invention. For brevity, details are not repeated here. .
  • the communication device 1300 may specifically be a terminal device according to an embodiment of the present invention, and the communication device 1300 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present invention. For brevity, details are not repeated here. .
  • Fig. 14 is a schematic structural diagram of a chip according to an embodiment of the present invention.
  • the chip 1400 shown in FIG. 14 includes a processor 1410, and the processor 1410 can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the chip 1400 may further include a memory 1420.
  • the processor 1410 can call and run a computer program from the memory 1420 to implement the method in the embodiment of the present invention.
  • the memory 1420 may be a separate device independent of the processor 1410, or may be integrated in the processor 1410.
  • the chip 1400 may further include an input interface 1430.
  • the processor 1410 can control the input interface 1430 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1400 may further include an output interface 1440.
  • the processor 1410 can control the output interface 1440 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the terminal in the embodiment of the present invention, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present invention.
  • the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present invention.
  • the chip mentioned in the embodiment of the present invention may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present invention may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiment of the present invention is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present invention also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device or the terminal device in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention, for the sake of brevity , I won’t repeat it here.
  • the embodiment of the present invention also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or the terminal device in the embodiment of the present invention, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the embodiment of the present invention also provides a computer program.
  • the computer program can be applied to the network device or the terminal device in the embodiment of the present invention.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention. , For the sake of brevity, I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

本发明公开了一种干扰消除方法及装置、终端设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序,所述方法包括:若接收信号的干扰消除结果不满足第一预设条件,则所述终端设备获取第一控制参数,所述第一控制参数基于接收的通信信号生成;所述终端设备采用基于所述第一控制参数生成的第一对消信号对所述接收信号进行干扰消除,所述第一对消信号与当前接收的通信信号中的干扰信号的幅度满足第一幅度要求、相位满足第一相位要求。

Description

一种干扰消除方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种干扰消除方法及装置、终端设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
在相关技术中,对终端设备的二阶互调自干扰消除的解决方案,主要分为规避干扰、降低干扰和消除干扰三方面。其中,规避干扰主要是通过频分调度和时分调度两种方案实现的;降低干扰主要通过增加隔离度,提高非线性器件的线性程度以达到降低互调干扰信号功率的效果;消除干扰则主要是在接收端前加上消除电路,在接收端之前将自干扰信号消除。
但是,上述规避干扰方法会增加通信网资源调度的复杂程度,并且由于避免使用受干扰频谱,可能会导致网络的峰值速率降低;降低干扰的改善器件性能降低干扰的方案是从射频器件本身出发的,本质是降低器件的非线性特征,具体的效果依赖于功放的建模准确性。而互调干扰消除存在信号成分更复杂、干扰信号强度相对较低、且互调信号的频率或功率易变化等特点。
发明内容
为解决上述技术问题,本发明实施例提供了一种干扰消除方法及装置、终端设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
第一方面,提供了一种干扰消除方法,包括:
若接收信号的干扰消除结果不满足第一预设条件,则所述终端设备获取第一控制参数,所述第一控制参数基于接收的通信信号生成;
所述终端设备采用基于所述第一控制参数生成的第一对消信号对所述接收信号进行干扰消除,所述第一对消信号与当前接收的通信信号中的干扰信号的幅度满足第一幅度要求、相位满足第一相位要求。
第二方面,提供了一种干扰消除装置,包括:
主控部件,若接收信号的干扰消除结果不满足第一预设条件,则获取第一控制参数,所述第一控制参数基于接收的通信信号生成;采用基于所述第一控制参数生成的第一对消信号对所述接收信号进行干扰消除,所述第一对消信号与当前接收的通信信号中的干扰信号的幅度满足第一幅度要求、相位满足第一相位要求。
第三方面,提供了一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如前述方法的步骤。
第四方面,提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如前述方法。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如前述方法的步骤。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如前述方法。
第七方面,提供了一种计算机程序,所述计算机程序使得计算机执行如前述的方法。
通过采用上述方案,能够在训练之后基于得到的控制参数,在通信阶段进行干扰消除,并且在其基础上,在通信阶段的干扰消除效果不满足第一预设条件的清晰,通过增加校准阶段进行校准,得到适应当前环境的第一控制参数再进行通信。如此,能够实时快速的进行调整,以优化提升通信的性能、并保证符合实际情况的消除效果。
附图说明
图1是本发明实施例提供的一种通信系统架构的示意性图;
图2为本发明实施例提供的一种干扰消除方法流程示意图一;
图3为本发明实施例提供的三个不同阶段之间的转换关系示意图;
图4为本发明实施例提供的校准阶段的处理流程示意图;
图5为本发明实施例提供的一种干扰消除方法流程示意图二;
图6为本发明实施例提供的终端设备内多个部件的组成结构示意图;
图7为本发明实施例提供的第一部件组成结构示意图;
图8-图9为本发明实施例提供的第二部件的多种组成结构示意图;
图10为本发明实施例提供的主控部件组成结构示意图;
图11为本发明实施例提供的终端设备内部多个部件另一种组成结构示意图;
图12为本发明实施例提供的干扰消除装置组成结构示意图;
图13为本发明实施例提供的一种通信设备组成结构示意图;
图14是本申请实施例提供的一种芯片的示意性框图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100可以如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与UE120(或称为通信终端设备、终端设备)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的UE进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的网络设备(Base Transceiver Station,BTS),也可以是WCDMA系统中的网络设备 (NodeB,NB),还可以是LTE系统中的演进型网络设备(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
在5G网络部署初期,由于频段较高、传播损耗较大等原因,很难做到短时间内全覆盖,同时出于抢占5G竞争先机的需要,大部分国内外运营商当前采用非独立组网方案或者非独立组网、独立组网方案并举。若5G网络按非独立组网架构部署,则要求终端设备支持双连接技术,采用双射频同时连接4G与5G网络并进行双收双发,此时射频器件非线性等因素容易导致终端设备存在自干扰问题,这里的非线性干扰主要是谐波干扰、互调干扰以及混频干扰,其中互调干扰是影响较大的干扰之一,如何解决互调干扰是5G和4G LTE联合组网的一个关键问题。互调干扰信号受产生影响的原始信号数量可以分为二阶、三阶等多阶互调干扰信号,本申请提供的方案主要针对其中功率最大的二阶互调干扰信号进行处理。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
本发明实施例提供了一种干扰消除方法,如图2所示,包括:
步骤21:若接收信号的干扰消除结果不满足第一预设条件,则所述终端设备获取第一控制参数,所述第一控制参数基于接收的通信信号生成;
步骤22:所述终端设备采用基于所述第一控制参数生成的第一对消信号对所述接收信号进行干扰消除,所述第一对消信号与当前接收的通信信号中的干扰信号的幅度满足第一幅度要求、相位满足第一相位要求。所述第一幅度要求包括幅度相同;所述第一相位要求包括相位相反。
也就是说,本实施例提供的方案中,终端设备在进入通信阶段的时候,采用训练阶段产生的控制参数进行控制对干扰进行消除;一旦对干扰消除的效果无法满足第一预设条件,那么就进入校准阶段,在校准阶段得到新的控制参数,该新的控制参数使得干扰消除的效果满足第一预设条件;然后终端设备再回到通信阶段采用新的控制参数进行干扰消除。
其中,所述第一预设条件为优于最低指标要求的要求;
其中,所述最低指标要求由协议规范定义,包括:通信性能的最低指标要求。
具体的,所述第一预设条件,可以理解为:所述第一预设条件为优于最低指标要求{x1,x2,…,x3}dB的要求。
其中,所述最低指标要求由协议规范定义,可以包括:终端设备的射频和解调等通信性能的最低指标要求;
所述射频和解调等通信性能可以包括有{误码率,BLER,…,EVM}等。
前述x1,x2,x3大于等于0,可以并且x1、x2以及x3两两之间可以相同或可以不同。
所述第一幅度要求包括幅度相同;所述第一相位要求包括相位相反。
另外,所述第一幅度要求还可以包括幅度近似相同、所述第一相位要求可以为相位近似相反。
比如,近似相同或近似相反可以为所述相位或幅度相对误差为小于等于0.5dB,这 种粒度。
又比如,反馈前的第一对消信号幅度与干扰并没有完全一致,在接收端存在残留干扰,继续反馈链路,得到更新的第一对消信号,直至该对消信号与干扰的幅度相位完全一致。
所述方法还包括:所述终端设备采用基于第二控制参数生成的第二对消信号对接收的通信信号进行干扰消除,得到所述干扰消除结果;
其中,所述第二控制参数基于训练信号生成,所述第二对消信号与当前接收的通信信号中的干扰信号的幅度满足第二幅度要求、相位满足第二相位要求。
所述第二幅度要求包括幅度相同,所述第二相位要求包括相位相反。
与前述第一幅度或相位要求类似的,所述第二幅度要求还可以包括幅度近似相同;第二相位要求还可以包括相位近似相反。具体的可以与前述类似,这里不再进行赘述。
总的来说,本实施例提供的方案中包含有训练阶段、通信阶段、校验阶段三种阶段的处理,比如,参见图3,工作时序分为训练阶段、正常工作阶段和校准阶段。
其中,正常通信阶段主要采用训练阶段或校准阶段得到的第二控制参数或第一控制参数来进行干扰消除;而训练阶段以及校准阶段则主要用于得到第二控制参数以及第一控制参数。
还需要指出的是,训练阶段与校准阶段存在的不同,可以包括以下至少之一:
终端设备的状态不同;训练阶段中,终端设备处于空闲态,也就是仅接收信号但是不发送信号的状态;校准阶段中,终端设备可以处于保持通信信号的收发状态。
采用的迭代次数不同;训练阶段采用的迭代次数大于校准阶段。
采用的门限值或者采用的收敛条件不同;训练阶段要求的门限值所具备的干扰消除效果优于校准阶段要求的门限值所具备的干扰消除效果。
另外,训练阶段与校准阶段可能还存在其他不同,但是无论任何不同,最终导致的结果均为:训练阶段进行训练得到第二控制参数所进行的干扰消除的精度,高于校准阶段训练得到的第一控制参数;以及校准阶段的训练时间要小于训练阶段的时间。
分别来说,在训练阶段的处理可以为:
所述终端设备停止收发通信信号,基于训练信号得到所述第二控制参数;其中,所述训练信号为一个参考信号序列。
其中,所述训练信号可以为:基于ZC序列生成的参考信号序列、或者是一个AWGN信号等。
以及校准阶段的处理,可以为:
所述终端设备保持通信信号的收发,基于当前接收的通信信号中的带有干扰的发射信号得到第一控制参数。
其中,所述带有干扰的发射信号,可以为带有互调干扰的发射信号。
其中,得到第二控制参数的方式,包括:
将训练信号进行第一迭代处理;
若第一约束条件被满足,将所述训练信号对应的幅度、相位的调节系数确定为所述第二控制参数;其中,所述第一约束条件包含收敛误差达到第一预设门限值。
得到第一控制参数的方式,包括:
将当前接收的通信信号中的带有干扰的发射信号进行第二迭代处理;
若第二约束条件被满足,将所述当前接收的通信信号中的带有干扰的发射信号对应的幅度、相位的调节系数确定为所述第一控制参数;
其中,所述第二约束条件包含收敛误差达到第二预设门限值。
其中,所述第一迭代处理的处理次数不低于第二迭代处理的处理次数;并且第一预 设门限值不高于第二预设门限值。
前述第一迭代处理和第二迭代处理,可以采用如最小二乘、最大似然准则等处理,这里不做赘述。
所述第一约束条件以及第二约束条件,可以理解为收敛误差满足门限,也就是前述第一预设门限以及第二预设门限;可以分别设置为如第一预设门限delta=0.1,或者,设置为第二预设门限为1,这也是训练和校准的核心不同之一。
也就是说,在迭代处理中,可以存在两个限制条件,一种为所要达到的门限值,或者称为门限值,另一种是迭代次数的限制。
换句话说,在进行迭代处理过程中,要么需要达到设置的门限值,此时不对迭代次数进行限定,无论进行多少次迭代处理,只要能达到要求的门限值为止;再一种,就是需要达到对应的迭代次数,只要完成对应的迭代次数的迭代处理,无论是否最终达到了目标门限值,均可以认为结束处理。
分别来说,前述训练阶段与校准阶段虽然都用了迭代处理,并且均设置有相应的门限值,但是,训练阶段的迭代处理次数设置的比校准阶段的迭代次数要多,或者,训练阶段设置的门限值与校准阶段设置的门限值是不一样的。训练阶段由于更加要求精度,因此,其门限值(也就是门限值)可以比校准阶段的门限值设置的更加严格,或者,训练阶段要求的迭代次数多于校准阶段要求的迭代次数。
如此,训练阶段得到的结果也就是控制参数,是比校准阶段得到的控制参数对干扰消除的效果更优的。
再进一步地,前述门限值可以为门限集合,其中每一个门限均可以认为是一个子门限,不同子门限对应不同次的迭代处理,相邻次的子门限可以相同或者不同。
举例来说,前述校准阶段的迭代处理,如果采用门限值作为限制因素,每一次迭代处理可以设置对应的子门限,并且,每一次迭代处理对应的子门限不同。比如,可以为第n次迭代处理对应的子门限(或子门限值)低于第n+1次迭代处理对应的子门限(或子门限值)。其中,n为大于等于1且小于N的整数。
相应的,训练阶段的迭代处理,如果采用门限值作为限制因素,每一次迭代处理对应的子门限也可以不同。比如,训练阶段的第m次迭代处理对应的子门限小于第m+1次迭代处理的子门限;m为大于等于1且小于M的整数。
也就是说,除了最终设置的门限值之外,每一次迭代处理还可以对应子门限。
本实施例中,N可以为2,也就是校准阶段可以仅执行两次迭代处理;M可以大于2,也就是训练阶段可以执行3次及以上的迭代处理。
还需要指出的是,在以次数为限制因素的迭代处理中,同样可以包含门限值,但是可以不以是否达到门限值作为最终的收敛条件。
校准阶段以及训练阶段使用的算法可以相同也可以不同,比如迭代算法可以不同或相同。
可以理解为,校准阶段主要保证的是时效性,而训练阶段主要保证的是准确性。也就是,校准阶段可以将相应的门限值设置的要求降低,使得终端设备能够更快速的计算得到相应的第一控制参数。而训练阶段主要要得到更优的去干扰效果,那么可以设置的门限值要求更高,也就是得到更好的去干扰结果,因此,可以增加迭代次数来达到对应的门限值。
再进一步地,结合图4,对校准阶段的处理进行说明:
步骤31:所述终端设备保持通信信号的收发,若所述终端设备采用基于所述第一控制参数生成的第一对消信号对所述接收信号进行干扰消除的消除结果不满足第二预设条件;
步骤32:则所述终端设备停止收发通信信号,采用调整后的训练信号得到调整后的第二控制参数。
通过前述处理,可以看出,经过校准阶段的迭代处理,可能并无法得到对通信信号的干扰信号功率消除达到第二门限值的控制参数,那么,参见图2,可以由校准阶段直接退回到训练阶段。
这里需要指出的是,不同次训练阶段的处理中,采用的训练信号与对应的通信环境相关。比如,可以结合当前的空口情况或者其他的情况,重新生成每一次训练阶段所对应的训练信号来进行后续训练,这样,能够得到更加符合当前通信环境(或空口要求)的第二控制参数。具体的训练阶段的处理与前述相同,这里不再赘述。
再进一步地,在执行前述步骤31的采用当前接收的通信信号进行迭代处理之前,还可以包括:
若候选控制参数中存在满足对所述通信信号的干扰信号功率消除达到第二门限值的控制参数,则将所述控制参数作为所述第一控制参数;
否则,所述终端设备保持通信信号的收发,基于当前接收的通信信号中的带有干扰的发射信号得到第一控制参数。
当然,如果终端设备未存储至少一个控制参数,那么可以不执行上述处理,直接执行前述步骤31~步骤32。
如果终端设备中存储了一个或多个候选控制参数,那么可以从中查找是否存在能够将通信信号的干扰信号功率消除至第二门限值的控制参数;若不存在,则执行前述步骤31~步骤32;若存在,则直接将查找到的控制参数作为所述第一控制参数。如此,能够进一步节省处理资源,提升校准阶段的处理效率。
前述终端设备存储的至少一个候选控制参数,可以为预先设置的,或者,可以为训练阶段训练得到除第二控制参数之外的一个或多个控制参数。举例来说,在训练阶段可以得到多个控制参数,将其中消除干扰的效果最优的作为第二控制参数,剩余的控制参数存储在终端设备中作为候选,也就是作为前述校准阶段的候选的至少一个控制参数。
结合图5,对本实施例提供的方案的处理流程进行整体说明:
步骤41:终端设备进入非通信阶段前,先进入训练阶段,在所述训练阶段采用精度较高但效率较低的参数搜索第一算法,得到本次训练对应的最优控制参数,也就是第二控制参数;
其中,第一算法相对于校准阶段的算法而言,为效率较低但是准确性较高的一种参数搜索算法,可以为:将训练信号输入至训练模型,进行迭代处理,得到第二控制参数。具体的说明与前述相同,这里不再赘述。
本步骤计算得到的第二控制参数,在通信阶段可以直接使用,也就是得到所述第二控制参数之后,也就是得到满足一定消除效果的控制参数,所述终端设备进入通信阶段,并且使用所述第二控制参数生成对消信号进行干扰消除。
步骤42:所述终端设备进入通信阶段后,如果由于通信环境的变化和突然恶化通信等原因导致当前的最优参数不在适用、或是一个次优的参数,终端设备自行触发进入校准阶段。
步骤43:所述终端设备从存储的控制参数中查找是否存在满足第二门限值的控制参数,或者,可以理解为,所述终端设备从存储的控制参数中查找是否存在满足第一消除效果的控制参数;若存在满足第一消除效果的控制参数,则将该控制参数作为第一控制参数,由校准阶段返回至通信阶段,采用第一控制参数进行通信信号的干扰消除处理;若不存在,则执行步骤44。
步骤44:采用实际工作信号和当前的参数,使用精度较低但效率较高的参数搜索第 二算法,得到对应的控制参数;
其中,第二算法相对于训练阶段的第一算法而言,为效率较高但是准确性较低的一种参数搜索算法,具体的可以为:所述终端设备保持通信信号的收发,将当前接收的通信信号输入至校准模型进行迭代处理,得到第一控制参数。具体的与前述相同,这里不再赘述。
步骤45:判断得到的所述控制参数是否为满足第二消除效果的控制参数,若满足,则将控制参数作为第一控制参数,重新进入通信阶段,采用所述第一控制参数进行干扰消除;否则,返回步骤41。
本步骤中第二消除效果与前述第一消除效果可以相同可以不同。
举例来说,可以将当前的通信信号以及相关参数带入校准模型进行1次或2次迭代处理,并做门限判断(这两次迭代的门限可以相同或不同,第二次可以更严格),如果满足则直接输出参数给通信阶段,不满足返回训练阶段、重新进入训练过程。
结合前述方案,下面结合图6,根据终端设备内包含的部件及其对应的功能进行详细说明:
所述终端设备获取训练信号,或当前发射的通信信号中的带有干扰的发射信号;
其中,所述基于第二控制参数或基于第一控制参数生成第一对消信号或第二对消信号的处理,包括:
采用所述第二控制参数或所述第一控制参数对所述参考信号进行调幅和/或调相处理得到所述第一对消信号或所述第二对消信号。
前述发射的通信信号中的带有干扰的发射信号,可以包括有二阶互调干扰,和/或三阶互调干扰,和/或更多阶的互调干扰,本实施例中均可以包含,这里不再一一列举。
也就是说,从发射端分离出一部分带有互调干扰的发射信号作为参考信号,经过调幅调相处理构建出对消信号,并最终抵消掉接收信号中的互调干扰信号。
具体的,针对其中第一部件的处理进行说明,可以包括:
所述终端设备基于从所述终端设备的信号发射端分离出的原始信号;
基于所述原始信号的功率,从至少一条抑制链路中选取与所述原始信号的功率匹配的第一抑制链路,原始信号经过所述第一抑制链路后得到所述带有干扰的发射信号。
需要指出的是,第一部件中的至少一条抑制链路与原始信号的功率之间可以存在对应关系。具体的,可以为预设原始信号的功率与抑制链路之间的对应关系列表来实现。
一种示例中,第一部件中存在两条抑制链路,可以根据原始信号的功率是否大于预设门限值来确定其对应的抑制链路,比如,当原始信号的功率大于预设门限值的时候,可以对应采用第一抑制链路,否则采用第二抑制链路。
另一种示例中,第一部件中可以存在三条及以上的抑制链路,那么可以设置抑制链路1对应的功率阈值为A,抑制链路2对应功率阈值B,抑制链路3对应功率抑制C。
一种示例中,结合图7对本实施例提供的第一部件存在两条抑制链路的第一部件进行说明,终端设备使用耦合器从功率放大器(图中的功放输出)之后的射频信号中分离出一部分信号,并从中提取出其中的互调干扰信号(比如可以为二阶互调干扰信号),作为后续构建对消信号所需的参考信号。为了不影响信号正常发送,从这里分离的信号功率不能太大,否则可能造成发射信号损耗过大影响之后的发射链路工作。其中,分离出的发射信号中包含原始发射信号、二阶互调干扰信号、和其它各阶干扰信号。
然后,将分离出的这部分信号中原始发射信号的残留称为原始信号,这里需要先通过滤波器滤除其中的原始信号,否则残存的原始信号不仅会使得后面对消链路的对消信号产生变得困难,也可能被引入接收链路造成干扰。为了消除这部分原始信号,应该使用性能足够好的滤波器,或者使用串联滤波器组的方法实现足够的抑制性能,考虑到实 际滤波器的性能限制,串联滤波器组的方案往往更可行。实际通信中,发射信号的功率存在变化,如果只使用一条链路抑制分离出的原始信号,则这条链路上设置的滤波器应该足够抑制发射信号功率最大时的原始信号功率。但是在另一方面,由于分离信号中的二阶互调干扰信号功率比原始信号低很多,而同时分离信号本身的功率也只是原始信号的一小部分,这导致分离出的二阶互调功率信号功率往往很低。在仅仅使用一条抑制链路而发射信号功率又较低的时候,功率本身较低的二阶互调信号收到多个滤波器的通带损耗影响,导致功率会进一步降低,进而影响后面对消链路生成对消信号的效果。因此,在信号分离部分设计了两条抑制链路(如图中所示两条链路),通过射频开关进行线路切换,当发射信号功率较低的时候选用滤波器较少的抑制链路(比如图中射频开关#1和滤波器1组成的链路),减少二阶互调干扰信号受到的损耗衰减,当发射信号攻略较高的时候选择滤波器较多的抑制链路(如图中射频开关#2、滤波器1、2组成的链路),提高抑制效果。
另外,如图6所示,本实施例提供的方案中,还包括第二部件,结合第二部件进行其进行的处理的说明:
所述第二部件中包含至少一条对消链路,所述至少一条对消链路相互并联或相互串联;并且,每一条所述对消链路中包含有射频开关、衰减器以及移相器,所述至少一条对消链路中的部分对消链路中还包括滤波器;
所述采用所述第二控制参数或所述第一控制参数对所述参考信号进行调幅和/或调相处理得到所述第一对消信号或所述第二对消信号,包括:
所述终端设备基于第二控制参数或第一控制参数确定所述至少一条对消链路中所需开启的至少部分对消链路,通过所述第二控制参数或第一控制参数控制所述至少部分对消链路将所述参考信号的幅度调整至与接收的通信信号中的干扰信号的幅度相同、并且控制至少部分对消链路将所述参考信号的相位调整至与所述接收的通信信号中的干扰信号的相位相反,得到所述第一对消信号或第二对消信号。
关于前述不同对消链路中包含的衰减器的衰减幅度可以相同可以不同。在部分具备滤波器的对消链路中,不同的链路对应的滤波器可以存在类型不同,比如,带通、低通、高通等类型的滤波器,可以在不同的对消链路中根据实际需要进行设置。
第一部件,即发射侧,选择某个抑制链路,只需要基于功率;第二部件,即接收侧,选择某个反馈链路,需要基于功率(衰减器)和相位(移相器)。
另外,不同的对消链路中,关于滤波器的通带的中心频点以及带宽,可以由前述第二控制参数或第一控制参数来确定。
进一步地,基于前述训练阶段或校准阶段可以得到对应的第二控制参数或第一控制参数。具体来说,控制参数中均可以包括有以下内容至少之一:不同对消链路的开启或关闭;开启的对消链路中衰减器的衰减值(或衰减幅度值);开启的对消链路中移相器的移相值;开启的对消链路中如果包含至少一个滤波器,那么还包括有所述至少一个滤波器的通带频率范围。
一种示例中,结合图8、9对第二部件进行说明;
第二部件可以称为消信号产生模块,用于构建与干扰信号幅度相同相位相反的对消信号。该模块由2、3或者更多对消链路构成,每条链路都有一个射频开关控制链路工作状态,一个移相器和衰减器调整信号输出,第2、3条链路增加一个滤波器用来处理一些特殊情况。
输入整个对消模块的信号包含二阶互调干扰信号和一些其它阶互调干扰信号,首先经过低噪放大器(LNA)放大提高参考信号功率,再将放大后的信号输出到不同链路。第一条对消链路对参考信号整体进行处理,主要针对其中的二阶互调干扰信号进行调幅调 相操作。第二、三条对消链路的滤波器设置根据实际情况进行选择。原始信号中存在二阶互调信号以外的其它阶互调干扰信号,这些信号大部分功率比二阶互调信号弱,或者频率相隔较远,往往被滤除在分离模块的滤波器通带之外。但是依然可能存在某阶互调信号频段在二阶互调信号附近,进入分离模块的滤波器通带。当这部分残存互调干扰信号功率较高时,可以设置第2、3条对消链路滤波器通带为这些信号中心频点,使用2、3路对消链路构建这些残存互调信号的对消信号,最终将其消除。当二阶互调干扰信号周围没有其它残留互调干扰信号存在,或者残留信号功率远低于二阶互调干扰信号时,可以关闭这两条链路,或者将第2、3条消除链路的通带设置为二阶互调干扰信号中心频点,进一步提高消除效果。
实际工作中,二阶互调干扰信号的功率相对较小也比较稳定,可以在训练阶段先将其范围控制在衰减器中值附近。在实际通信状态中,环境因素会导致干扰信号有一定程度的幅度变化,这时候由中控芯片控制可调衰减器的衰减幅度,调整对消信号的幅度与干扰信号相同,再通过移相器调整对消信号的相位与干扰信号相反,最后产生出可以实现干扰抵消的对消信号。
图8示出的为多条对消链路并行的一种方式,其中,开启三条对消链路中的哪一条或哪几条,可以通过第二控制参数或第一控制参数来确定;图9示出两种对消链路串行的方式,一种是直接确定采用两条串行的对消链路,关于哪几条链路进行串行处理,同样可以通过第二控制参数或第一控制参数来确定,最终通过串行的对消链路得到输出的对消信号;图9中下方示出的则为基于主控部件或反馈控制部件来对一条对消链路输出的对消信号先进行对消的效果判断,如果不满足要求,那么反馈控制部件再选出下一条对消链路进行处理,直至得到满足对消效果的对消信号为止。
本示例中,满足对消效果可以理解为接收信号中的干扰值低于对应的门限值(比如前述的第一门限值或第二门限值)。
进一步地,本实施例还提供了主控部件,或者可以称为反馈控制件(如图6中所示),其处理包括:
所述终端设备将第一或第二对消信号在接收端与接收信号进行对消处理;
所述终端设备的接收端采集至少一个采集点的功率或/和相位,基于采集到的信号功率或/和相位选择对消处理后的信号对应的至少一条反馈链路,以得到调整后的第一或第二对消信号。
其中,关于训练阶段以及校准阶段的迭代处理与前述方案相同,这里不再赘述。
一种示例中,如图10所示为主控部件的组成结构,用以检测叠加消除后信号的功率,为反馈控制提供参考。使用耦合器从叠加消除后的射频链路中耦合出一部分,由于功率检波器不能区分检测信号的频率,所以先使用滤波器将目标干扰信号频率以外的信号滤除出去,仅仅留下二阶互调干扰信号所在频段。这样功率检波器检测出的信号功率主要就是叠加消除后该干扰信号的功率了,直接反应了消除效果。考虑到消除叠加后的干扰信号功率范围可能存在较大波动,在功率检波器前加入了固定增益放大器和可调衰减器,以匹配功率检波器的量程。功率检波器将测量的信号功率转换成电压,通过ADC芯片转换成数字信号发送给主控芯片进行控制计算。
其中,接收端采集至少一个采集点可以为在发射端、对消链路与输出端,在这些采集点分别进行功率采集得到的信号,主控芯片用采集到的功率作为参考,也就是基于采集到的信号功率和/或相位选择对消处理后的信号对应的至少一条反馈链路,已得到调整后的第一或第二对消信号。
在实际应用时,前述第一部件、第二部件以及主控部件,可以体现为终端设备中的分离链路、对消链路以及反馈控制,比如参见图11所示,其名称与图6不同,但是实 现的功能可以是相同的,因此不再进行赘述。
在一种示例中,结合图6或图11来说,本实施例提供的方案可以将工作时序分为训练阶段、正常工作阶段和校准阶段。训练阶段存在于终端设备开机与空闲时段,在该阶段内,终端设备部接收远端有用信号,此时接收端仅仅接收到发射端泄露的互调干扰信号,该阶段终端设备接收到的是较为纯净的干扰信号,比较有利于寻找到消除控制的最优参数。当对消信号产生模块中有多条对消链路时,主控芯片通过射频开关先打开第一条对消链路,关闭其余链路,寻找出这个链路单独工作时的最优参数。然后打开第二条链路,寻找出两条链路同时工作时的最优参数,后面的链路依次打开直到找到所有链路同时工作时的最优参数,即完成训练阶段。正常通信阶段时终端设备正常收发信号,同时主控芯片通过反馈模块监测干扰消除效果。如果检测到干扰消除效果出现严重下降,则停止正常通信阶段进入校准阶段。校准阶段中,主控芯片根据算法快速寻找到合适的控制参数,提高消除效果,使得终端设备能够尽快恢复到正常通信阶段。如果校准阶段不能找到合适的控制参数,则回到训练阶段重新寻找最优控制参数。
基于前述说明,本实施例提供的一种示例中,可以包括:
假设环境中的底噪功率为-100dBm,二阶互调干扰功率为-60dBm,接收端如果需要正常工作,需要将互调干扰功率至少消除到-80dBm。消除装置工作在训练阶段的时候,通过控制算法寻找最优的消除效果,此过程时间花费可以相对较长,寻找到最优控制参数c0,使得消除装置可以将互调干扰功率消除到-95dBm。之后设备进入正常通信阶段,此时消除装置实时监控干扰信号的功率,如果功率高于某个设定的门限值,则进入校准阶段。例如设门限值T为-85dBm,则设备在正常通信阶段由于环境变化导致干扰功率高于-85dBm的时候,消除装置进入校准阶段,校准阶段不停止设备的通信收发,通过两个步骤寻找满足将干扰信号功率消除到小于T的控制参数c1,这个过程以追求效率为目的,c1的效果可能不是最优的,仅仅满足将干扰信号功率抑效果达到正常通信要求。如果校准阶段无法找到满足条件的控制参数,此时正常通信收发已经无法有效保证了,则消除装置回归到训练阶段,重新寻找控制参数。
综上,训练和通信之后增加校准为本申请的主要处理思路。其中,训练信号可以是干净的,模型也比较理想;采用当前的最优参数集(也就是第二控制参数,可以包括有每一个滤波器、功放等的系数等内容),进入通信阶段;在进入通信阶段进行处理时,如果因为移动进入恶劣环境,发生了变化,那么就触发进行校准;在校准阶段可以设置门限值,采用实际通信信号,进行校准处理;如果校准之后无法满足要求,则终端设备通信停止,进行再次训练。
可见,通过采用上述方案,就能够在训练之后基于得到的控制参数,在通信阶段进行干扰消除,并且在其基础上,增加校准阶段以优化提升通信的性能、保证趋近最优消除效果。
另外,本实施例提供的方案,还可以采用消除电路产生抵消信号叠加的方法消除终端设备中的互调自干扰,以及采用两条抵消链路的架构优化分离模块的性能,减小参考信号收到的损耗。其中,在对消链路还能够增加额外滤波器,应对互调干扰模块周围可能存在的其它残留互调干扰信号。因此,本实施例提供的方案尤其适用于在5G双链接结构下,终端设备中的非线性器件会产生互调干扰信号,对接收端造成自干扰,自干扰信号功率在底噪以上40dB左右,影响通信系统正常工作的情况,终端设备中使用本方案后,可以在一定程度上消除互调干扰的影响。与原有的互调干扰抑制架构相比,本实施例提供的方案能够通过校准阶段而自适应调节对消信号,实时保持最佳自干扰抑制,可适应复杂多变的移动设备环境。此外,本装置不用针对某种器件做单独优化,以及工作在接收端前,可以与之前的多种设置在发射端的消除方法并存,进一步提升消除效果。
本发明实施例提供了一种干扰消除装置,如图12所示,包括:
主控部件1201,若接收信号的干扰消除结果不满足第一预设条件,则获取第一控制参数,所述第一控制参数基于接收的通信信号生成;采用基于所述第一控制参数生成的第一对消信号对所述接收信号进行干扰消除,所述第一对消信号与当前接收的通信信号中的干扰信号的幅度满足第一幅度要求、相位满足第一相位要求。
所述第一预设条件为优于最低指标要求的要求;
其中,所述最低指标要求由协议规范定义,包括:通信性能的最低指标要求。
另外,主控部件1201,采用基于第二控制参数生成的第二对消信号对接收的通信信号进行干扰消除,得到所述干扰消除结果;
其中,所述第二控制参数基于训练信号生成,所述第二对消信号与当前接收的通信信号中的干扰信号的幅度满足第二幅度要求、相位满足第二相位要求。
总的来说,本实施例提供的方案中包含有训练阶段、通信阶段、校验阶段三种阶段的处理,比如,参见图3,工作时序分为训练阶段、正常工作阶段和校准阶段。
具体来说,所述主控部件,停止收发通信信号,基于训练信号得到所述第二控制参数;其中,所述训练信号为一个参考信号序列。
所述主控部件,将训练信号进行第一迭代处理;若第一约束条件被满足,将所述训练信号对应的幅度、相位的调节系数确定为所述第二控制参数;其中,所述第一约束条件包含收敛误差达到第一预设门限值。
所述主控部件,保持通信信号的收发,基于当前接收的通信信号中的带有干扰的发射信号得到第一控制参数。
所述主控部件,将当前接收的通信信号中的带有干扰的发射信号进行第二迭代处理;
若第二约束条件被满足,将所述当前接收的通信信号中的带有干扰的发射信号对应的幅度、相位的调节系数确定为所述第一控制参数;
其中,所述第二约束条件包含收敛误差达到第二预设门限值。
所述第一迭代处理的处理次数不低于第二迭代处理的处理次数;并且第一预设门限值不高于第二预设门限值。
这里需要指出的是,再次回到训练阶段与初始的训练阶段的处理流程可以相同,但是采用的训练信号可能不同。
再进一步地,所述主控部件1201,采用基于所述第一控制参数生成的第一对消信号对所述接收信号进行干扰消除的消除结果不满足第二预设条件;则停止收发通信信号,采用调整后的训练信号得到调整后的第二控制参数。以及,若候选控制参数中存在满足对所述通信信号的干扰信号功率消除达到第二门限值的控制参数,则将所述控制参数作为所述第一控制参数;否则,保持通信信号的收发,基于当前接收的通信信号中的带有干扰的发射信号得到第一控制参数。
结合前述方案,下面结合图6,根据终端设备内包含的部件及其对应的功能进行详细说明:
所述装置还包括:第一部件1202,获取训练信号,或当前发射的通信信号中的带有干扰的发射信号;
第二部件1203,采用所述第二控制参数或所述第一控制参数对所述参考信号进行调幅和/或调相处理得到所述第一对消信号或所述第二对消信号。
具体的,第一部件1202,基于从所述终端设备的信号发射端分离出的原始信号;基于所述原始信号的功率,从至少一条抑制链路中选取与所述原始信号的功率匹配的第一抑制链路,原始信号经过所述第一抑制链路后得到所述带有干扰的发射信号。
另外,如图6所示,本实施例提供的方案中,还包括第二部件,结合第二部件进行 其进行的处理的说明:
所述第二部件中包含至少一条对消链路,所述至少一条对消链路相互并联或相互串联;并且,每一条所述对消链路中包含有射频开关、衰减器以及移相器,所述至少一条对消链路中的部分对消链路中还包括滤波器;
所述第二部件,基于第二控制参数或第一控制参数确定所述至少一条对消链路中所需开启的至少部分对消链路,通过所述第二控制参数或第一控制参数控制所述至少部分对消链路将所述参考信号的幅度调整至与接收的通信信号中的干扰信号的幅度相同、并且控制至少部分对消链路将所述参考信号的相位调整至与所述接收的通信信号中的干扰信号的相位相反,得到所述第一对消信号或第二对消信号。
进一步地,主控部件,或者可以称为反馈控制件(如图6中所示),将所述第一对消信号或所述第二对消信号在接收端与接收信号进行对消处理;通过接收端采集至少一个采集点的功率或/和相位,基于采集到的信号功率或/和相位选择对消处理后的信号对应的至少一条反馈链路,以得到调整后的第一对消信号或第二对消信号。
可见,通过采用上述方案,就能够在训练之后基于得到的控制参数,在通信阶段进行干扰消除,并且在其基础上,增加校准阶段以优化提升通信的性能、保证趋近最优消除效果。
另外,本实施例提供的方案,还可以采用消除电路产生抵消信号叠加的方法消除终端设备中的互调自干扰,以及采用两条抵消链路的架构优化分离模块的性能,减小参考信号收到的损耗。其中,在对消链路还能够增加额外滤波器,应对互调干扰模块周围可能存在的其它残留互调干扰信号。因此,本实施例提供的方案尤其适用于在5G双链接结构下,终端设备中的非线性器件会产生互调干扰信号,对接收端造成自干扰,自干扰信号功率在底噪以上40dB左右,影响通信系统正常工作的情况,终端设备中使用本方案后,可以在一定程度上消除互调干扰的影响。与原有的互调干扰抑制架构相比,本实施例提供的方案能够通过校准阶段而自适应调节对消信号,实时保持最佳自干扰抑制,可适应复杂多变的移动设备环境。此外,本装置不用针对某种器件做单独优化,以及工作在接收端前,可以与之前的多种设置在发射端的消除方法并存,进一步提升消除效果。
图13是本发明实施例提供的一种通信设备1300示意性结构图,本实施例中的通信设备可以具体为前述实施例中的终端设备。图13所示的通信设备1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,图13所示,通信设备1300还可以包括存储器1320。其中,处理器1310可以从存储器1320中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
可选地,如图13所示,通信设备1300还可以包括收发器1330,处理器1310可以控制该收发器1330与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1330可以包括发射机和接收机。收发器1330还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1300具体可为本发明实施例的终端设备,并且该通信设备1300可以实现本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1300具体可为本发明实施例的终端设备,并且该通信设备1300可以实现本发明实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图14是本发明实施例的芯片的示意性结构图。图14所示的芯片1400包括处理器1410,处理器1410可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,如图14所示,芯片1400还可以包括存储器1420。其中,处理器1410可以从存储器1420中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器1420可以是独立于处理器1410的一个单独的器件,也可以集成在处理器1410中。
可选地,该芯片1400还可以包括输入接口1430。其中,处理器1410可以控制该输入接口1430与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1400还可以包括输出接口1440。其中,处理器1410可以控制该输出接口1440与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本发明实施例中的终,并且该芯片可以实现本发明实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本发明实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本发明实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本发明实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic  RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本发明实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本发明实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本发明实施例中的网络设备或终端设备,并且该计算机程序使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本发明实施例中的网络设备或终端设备,并且该计算机程序指令使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本发明实施例中的网络设备或终端设备,当该计算机程序在计算机上运行时,使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存 储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (37)

  1. 一种干扰消除方法,包括:
    若接收信号的干扰消除结果不满足第一预设条件,则终端设备获取第一控制参数,所述第一控制参数基于接收的通信信号生成;
    所述终端设备采用基于所述第一控制参数生成的第一对消信号对所述接收信号进行干扰消除,所述第一对消信号与当前接收的通信信号中的干扰信号的幅度满足第一幅度要求、相位满足第一相位要求。
  2. 根据权利要求1所述的方法,其中,所述第一预设条件为优于最低指标要求的要求;
    其中,所述最低指标要求由协议规范定义,包括:通信性能的最低指标要求。
  3. 根据权利要求1所述的方法,其中,所述第一幅度要求包括幅度相同;所述第一相位要求包括相位相反。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端设备采用基于第二控制参数生成的第二对消信号对接收的通信信号进行干扰消除,得到所述干扰消除结果;
    其中,所述第二控制参数基于训练信号生成,所述第二对消信号与当前接收的通信信号中的干扰信号的幅度满足第二幅度要求、相位满足第二相位要求;其中,所述训练信号为一个参考信号序列。
  5. 根据权利要求4所述的方法,其中,所述第二幅度要求包括幅度相同,所述第二相位要求包括相位相反。
  6. 根据权利要求4所述的方法,其中,所述方法还包括:
    所述终端设备停止收发通信信号,基于训练信号得到所述第二控制参数。
  7. 根据权利要求6所述的方法,其中,得到第二控制参数的方式,包括:
    将训练信号进行第一迭代处理;
    若第一约束条件被满足,将所述训练信号对应的幅度、相位的调节系数确定为所述第二控制参数;其中,所述第一约束条件包含收敛误差达到第一预设门限值。
  8. 根据权利要求1-7任一项所述的方法,其中,所述方法还包括:
    所述终端设备保持通信信号的收发,基于当前接收的通信信号中的带有干扰的发射信号得到第一控制参数。
  9. 根据权利要求8所述的方法,其中,得到第一控制参数的方式,包括:
    将当前接收的通信信号中的带有干扰的发射信号进行第二迭代处理;
    若第二约束条件被满足,将所述当前接收的通信信号中的带有干扰的发射信号对应的幅度、相位的调节系数确定为所述第一控制参数;
    其中,所述第二约束条件包含收敛误差达到第二预设门限值。
  10. 根据权利要求9所述的方法,其中,所述第一迭代处理的处理次数不低于第二迭代处理的处理次数;并且第一预设门限值不高于第二预设门限值;。
  11. 根据权利要求1所述的方法,其中,所述方法还包括:
    若所述终端设备采用基于所述第一控制参数生成的第一对消信号对所述接收信号进行干扰消除的消除结果不满足第二预设条件;
    则所述终端设备停止收发通信信号,采用调整后的训练信号得到调整后的第二控制参数。
  12. 根据权利要求8所述的方法,其中,所述方法还包括:
    若候选控制参数中存在满足对所述通信信号的干扰信号功率消除达到第二门限值的 控制参数,则将所述控制参数作为所述第一控制参数;
    否则,所述终端设备保持通信信号的收发,基于当前接收的通信信号中的带有干扰的发射信号得到第一控制参数。
  13. 根据权利要求1-12任一项所述的方法,其中,所述方法还包括:
    所述终端设备获取训练信号,或当前发射的通信信号中的带有干扰的发射信号;
    其中,所述基于第二控制参数或基于第一控制参数生成第一对消信号或第二对消信号的处理,包括:
    采用所述第二控制参数或所述第一控制参数对所述参考信号进行调幅和/或调相处理得到所述第一对消信号或所述第二对消信号。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:
    所述终端设备基于从所述终端设备的信号发射端分离出的原始信号;
    基于所述原始信号的功率,从至少一条抑制链路中选取与所述原始信号的功率匹配的第一抑制链路,原始信号经过所述第一抑制链路后得到所述带有干扰的发射信号。
  15. 根据权利要求13所述的方法,其中,采用所述第二控制参数或所述第一控制参数对所述参考信号进行调幅和/或调相处理得到所述第一对消信号或所述第二对消信号,包括:
    所述终端设备基于第二控制参数或第一控制参数确定所述至少一条对消链路中所需开启的至少部分对消链路,通过所述第二控制参数或第一控制参数控制所述至少部分对消链路将所述参考信号的幅度调整至与接收的通信信号中的干扰信号的幅度相同、并且控制至少部分对消链路将所述参考信号的相位调整至与所述接收的通信信号中的干扰信号的相位相反,得到所述第一对消信号或第二对消信号。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:
    所述终端设备将所述第一对消信号或所述第二对消信号在接收端与接收信号进行对消处理;
    所述终端设备的接收端采集至少一个采集点的功率或/和相位,基于采集到的信号功率或/和相位选择对消处理后的信号对应的至少一条反馈链路,以得到调整后的第一对消信号或第二对消信号。
  17. 一种干扰消除装置,包括:
    主控部件,若接收信号的干扰消除结果不满足第一预设条件,则获取第一控制参数,所述第一控制参数基于接收的通信信号生成;采用基于所述第一控制参数生成的第一对消信号对所述接收信号进行干扰消除,所述第一对消信号与当前接收的通信信号中的干扰信号的幅度满足第一幅度要求、相位满足第一相位要求。
  18. 根据权利要求17所述的装置,其中,所述第一预设条件为优于最低指标要求的要求;
    其中,所述最低指标要求由协议规范定义,包括:通信性能的最低指标要求。
  19. 根据权利要求17所述的装置,其中,所述第一幅度要求包括幅度相同;所述第一相位要求包括相位相反。
  20. 根据权利要求17所述的装置,其中,所述主控部件,采用基于第二控制参数生成的第二对消信号对接收的通信信号进行干扰消除,得到所述干扰消除结果;
    其中,所述第二控制参数基于训练信号生成,所述第二对消信号与当前接收的通信信号中的干扰信号的幅度满足第二幅度要求、相位满足第二相位要求;其中,所述训练信号为一个参考信号序列。
  21. 根据权利要求20所述的装置,其中,所述第二幅度要求包括幅度相同,所述第二相位要求包括相位相反。
  22. 根据权利要求21所述的装置,其中,所述主控部件,停止收发通信信号,基于训练信号得到所述第二控制参数。
  23. 根据权利要求22所述的装置,其中,所述主控部件,将训练信号进行第一迭代处理;若第一约束条件被满足,将所述训练信号对应的幅度、相位的调节系数确定为所述第二控制参数;其中,所述第一约束条件包含收敛误差达到第一预设门限值。
  24. 根据权利要求17-23任一项所述的装置,其中,所述主控部件,保持通信信号的收发,基于当前接收的通信信号中的带有干扰的发射信号得到第一控制参数。
  25. 根据权利要求24所述的装置,其中,所述主控部件,将当前接收的通信信号中的带有干扰的发射信号进行第二迭代处理;
    若第二约束条件被满足,将所述当前接收的通信信号中的带有干扰的发射信号对应的幅度、相位的调节系数确定为所述第一控制参数;
    其中,所述第二约束条件包含收敛误差达到第二预设门限值。
  26. 根据权利要求25所述的装置,其中,所述第一迭代处理的处理次数高于第二迭代处理的处理次数;并且第一预设门限值低于第二预设门限值。
  27. 根据权利要求17所述的装置,其中,所述主控部件,采用基于所述第一控制参数生成的第一对消信号对所述接收信号进行干扰消除的消除结果不满足第二预设条件;则停止收发通信信号,采用调整后的训练信号得到调整后的第二控制参数。
  28. 根据权利要求24所述的装置,其中,所述主控部件,若候选控制参数中存在满足对所述通信信号的干扰信号功率消除达到第二门限值的控制参数,则将所述控制参数作为所述第一控制参数;否则,保持通信信号的收发,基于当前接收的通信信号中的带有干扰的发射信号得到第一控制参数。
  29. 根据权利要求17-28任一项所述的装置,其中,所述装置还包括:
    第一部件,获取训练信号,或当前发射的通信信号中的带有干扰的发射信号;
    第二部件,采用所述第二控制参数或所述第一控制参数对所述参考信号进行调幅和/或调相处理得到所述第一对消信号或所述第二对消信号。
  30. 根据权利要求29所述的装置,其中,所述第一部件,基于从所述终端设备的信号发射端分离出的原始信号;基于所述原始信号的功率,从至少一条抑制链路中选取与所述原始信号的功率匹配的第一抑制链路,原始信号经过所述第一抑制链路后得到所述带有干扰的发射信号。
  31. 根据权利要求29所述的装置,其中,第二部件,基于第二控制参数或第一控制参数确定所述至少一条对消链路中所需开启的至少部分对消链路,通过所述第二控制参数或第一控制参数控制所述至少部分对消链路将所述参考信号的幅度调整至与接收的通信信号中的干扰信号的幅度相同、并且控制至少部分对消链路将所述参考信号的相位调整至与所述接收的通信信号中的干扰信号的相位相反,得到所述第一对消信号或第二对消信号。
  32. 根据权利要求31所述的装置,其中,所述主控部件,将所述第一对消信号或所述第二对消信号在接收端与接收信号进行对消处理;通过接收端采集至少一个采集点的功率或/和相位,基于采集到的信号功率或/和相位选择对消处理后的信号对应的至少一条反馈链路,以得到调整后的第一对消信号或第二对消信号。
  33. 一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-16任一项所述方法的步骤。
  34. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装 有所述芯片的设备执行如权利要求1-16中任一项所述的方法。
  35. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-16任一项所述方法的步骤。
  36. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1-16中任一项所述的方法。
  37. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-16中任一项所述的方法。
PCT/CN2020/073979 2020-01-23 2020-01-23 一种干扰消除方法及装置 WO2021147075A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080078477.5A CN114667683B (zh) 2020-01-23 2020-01-23 一种干扰消除方法及装置
PCT/CN2020/073979 WO2021147075A1 (zh) 2020-01-23 2020-01-23 一种干扰消除方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073979 WO2021147075A1 (zh) 2020-01-23 2020-01-23 一种干扰消除方法及装置

Publications (1)

Publication Number Publication Date
WO2021147075A1 true WO2021147075A1 (zh) 2021-07-29

Family

ID=76991757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073979 WO2021147075A1 (zh) 2020-01-23 2020-01-23 一种干扰消除方法及装置

Country Status (2)

Country Link
CN (1) CN114667683B (zh)
WO (1) WO2021147075A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114258049A (zh) * 2021-12-20 2022-03-29 中国电信股份有限公司 无源互调干扰抑制方法、终端、基站以及存储介质
CN114355328A (zh) * 2021-12-29 2022-04-15 加特兰微电子科技(上海)有限公司 雷达信号处理方法、无线电信号处理方法及应用装置
CN114710173A (zh) * 2022-05-27 2022-07-05 深圳市长丰影像器材有限公司 一种干扰信号过滤方法、装置、电子设备和存储介质
CN115173975A (zh) * 2022-07-06 2022-10-11 北京航空航天大学 干扰信号的检测方法、装置、设备及存储介质
CN116669153A (zh) * 2022-12-09 2023-08-29 荣耀终端有限公司 发射功率回退方法、终端设备和计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130286903A1 (en) * 2012-04-25 2013-10-31 Nec Laboratories America, Inc. Interference Cancellation for Full-Duplex Communications
WO2016019556A1 (zh) * 2014-08-07 2016-02-11 华为技术有限公司 一种干扰消除方法及设备
CN109861703A (zh) * 2017-11-30 2019-06-07 华为技术有限公司 无线设备及无线局域网信号接收方法
CN110072161A (zh) * 2018-01-24 2019-07-30 中兴通讯股份有限公司 一种信号处理方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112016030000B1 (pt) * 2014-06-26 2023-01-17 Huawei Technologies., Ltd Equipamento e método de cancelamento de interferência
CN109861702A (zh) * 2017-11-30 2019-06-07 北京小米移动软件有限公司 干扰信号消除方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130286903A1 (en) * 2012-04-25 2013-10-31 Nec Laboratories America, Inc. Interference Cancellation for Full-Duplex Communications
WO2016019556A1 (zh) * 2014-08-07 2016-02-11 华为技术有限公司 一种干扰消除方法及设备
CN109861703A (zh) * 2017-11-30 2019-06-07 华为技术有限公司 无线设备及无线局域网信号接收方法
CN110072161A (zh) * 2018-01-24 2019-07-30 中兴通讯股份有限公司 一种信号处理方法及装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114258049A (zh) * 2021-12-20 2022-03-29 中国电信股份有限公司 无源互调干扰抑制方法、终端、基站以及存储介质
CN114355328A (zh) * 2021-12-29 2022-04-15 加特兰微电子科技(上海)有限公司 雷达信号处理方法、无线电信号处理方法及应用装置
CN114355328B (zh) * 2021-12-29 2024-04-09 加特兰微电子科技(上海)有限公司 雷达信号处理方法、无线电信号处理方法及应用装置
CN114710173A (zh) * 2022-05-27 2022-07-05 深圳市长丰影像器材有限公司 一种干扰信号过滤方法、装置、电子设备和存储介质
CN115173975A (zh) * 2022-07-06 2022-10-11 北京航空航天大学 干扰信号的检测方法、装置、设备及存储介质
CN115173975B (zh) * 2022-07-06 2024-02-06 北京航空航天大学 干扰信号的检测方法、装置、设备及存储介质
CN116669153A (zh) * 2022-12-09 2023-08-29 荣耀终端有限公司 发射功率回退方法、终端设备和计算机可读存储介质
CN116669153B (zh) * 2022-12-09 2023-10-20 荣耀终端有限公司 发射功率回退方法、终端设备和计算机可读存储介质

Also Published As

Publication number Publication date
CN114667683A (zh) 2022-06-24
CN114667683B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2021147075A1 (zh) 一种干扰消除方法及装置
EP3092720B1 (en) Opportunistic active interference cancellation using rx diversity antenna
KR102081620B1 (ko) 트랜시버 및 트랜시버의 자체-간섭을 감소시키기 위한 방법
RU2664392C2 (ru) Способ и устройство подавления помех
JP6270069B2 (ja) 複数の減衰遅延を使用した干渉をキャンセルするためのシステムおよび方法
US7778611B2 (en) Radio communication apparatus and radio communication method
US20140313946A1 (en) Non-Linear Interference Cancellation For Wireless Transceivers
US20160380669A1 (en) Interference cancellation apparatus and method
WO2015031094A1 (en) Active interference cancellation in analog domain
EP3866422B1 (en) Method, device and system for interference elimination
US11764859B2 (en) Software-defined filtering in a repeater
EP3193543B1 (en) Signal gain control method and device and storage medium
US20150349840A1 (en) Method and Apparatus for Improving Performance Based on Filter Characteristics
WO2020220196A1 (zh) 控制谐波干扰的方法和装置
US20180226941A1 (en) Front-End Module Comprising an EBD Circuit, Telecommunication Device Comprising the Front-End Module and Method for OperatingThem
CN101399619B (zh) 一种直放站底噪抑制的方法、装置及数字直放站
JP7245362B2 (ja) 送信電力決定方法、装置及び通信機器
WO2014100180A1 (en) Agile active interference cancellation (aaic) for multi-radio mobile devices
Waheed et al. Digital cancellation of passive intermodulation: Method, complexity and measurements
US9960748B2 (en) RF filter suppression tuning based on transmit power
WO2024082887A1 (zh) 信号收发装置、自干扰抵消方法以及计算机可读存储介质
CN108667503B (zh) 提高设备阻塞指标的方法、装置以及设备
Shin et al. A modified LMS filter for interference cancellation system
JP2012169947A (ja) 移動通信端末向けのモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915982

Country of ref document: EP

Kind code of ref document: A1