WO2021147023A1 - 生物活体光声检测系统、生物信息检测装置、电子设备及生物活体检测方法 - Google Patents

生物活体光声检测系统、生物信息检测装置、电子设备及生物活体检测方法 Download PDF

Info

Publication number
WO2021147023A1
WO2021147023A1 PCT/CN2020/073888 CN2020073888W WO2021147023A1 WO 2021147023 A1 WO2021147023 A1 WO 2021147023A1 CN 2020073888 W CN2020073888 W CN 2020073888W WO 2021147023 A1 WO2021147023 A1 WO 2021147023A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detection system
module
biological
photoacoustic detection
Prior art date
Application number
PCT/CN2020/073888
Other languages
English (en)
French (fr)
Inventor
庞于
沈健
王红超
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN202080001603.7A priority Critical patent/CN111837135B/zh
Priority to PCT/CN2020/073888 priority patent/WO2021147023A1/zh
Publication of WO2021147023A1 publication Critical patent/WO2021147023A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection
    • G06V40/45Detection of the body part being alive

Definitions

  • This application relates to the field of biological information recognition technology, and in particular to a biological living body photoacoustic detection system, biological information detection device, electronic equipment, and biological living body detection method.
  • biometric verification technology As consumers have more and more functional requirements for electronic products such as mobile phones, computers and smart homes, more and more electronic products are using biometric verification technology.
  • biometric verification technologies include fingerprint recognition and face recognition.
  • the use of these biometric information greatly ensures the information security of mobile electronic products and office products, and at the same time facilitates people's daily life.
  • these biometric verification technologies also face many security challenges. Because fingerprints and facial information are characteristic information of the human body, they can be easily obtained by others and forged in real life, thereby gaining access to electronic products. Permissions. Therefore, the existing biometric verification technology still has loopholes, and these loopholes lead to the risk of leakage and loss of personal information and property.
  • embodiments of the present application provide a living biological body photoacoustic detection system, a living biological body photoacoustic detection device, electronic equipment, and a living biological body detection method.
  • an embodiment of the present application provides a photoacoustic detection system for living organisms, including a light source module and an ultrasonic processing module.
  • the light source module is used to emit detection light to the biological body;
  • the ultrasonic processing module is used to receive the ultrasonic waves emitted by the biological body and convert the received ultrasonic waves into electrical signals.
  • the projections of the light source module and the ultrasonic processing module on the first surface are arranged along the first direction, the first direction is the tangential direction of the first surface of the living biological photoacoustic detection system, and the first surface is the emission detection of the living biological photoacoustic detection system A surface that receives light and receives ultrasonic waves.
  • the resonance frequency range of the ultrasonic processing module includes the frequency of ultrasonic waves emitted by at least one tissue of the biological body.
  • the living biological photoacoustic detection system further includes a verification and identification module connected to the ultrasonic processing module, and the verification and identification module is used to receive the electrical signal output by the ultrasonic processing module and verify the electrical signal Whether it is a living organism tissue.
  • the light source module includes at least one light emitting source and a light processing module arranged on the light emitting side of the light emitting source, and the light processing module is used to process the light emitted by the light emitting source to form probe light.
  • the light processing module includes a first module for processing light emitted by at least one light-emitting source to form plane parallel light.
  • the light source module includes a light-emitting source
  • the first module includes a beam expander and a first convex lens
  • the beam expander is used to diverge light emitted by a light-emitting source
  • the first convex lens is arranged at The beam expander is away from the light source, and the first convex lens is used to process the divergent light to form plane parallel light.
  • the light source module includes a plurality of light-emitting sources
  • the first module includes a second convex lens and a first convex lens
  • the second convex lens is used to converge the light emitted by the multiple light-emitting sources
  • the first convex lens is provided On the side of the second convex lens away from the light-emitting source, the first convex lens is used to process the condensed light to form plane parallel light.
  • the light processing module further includes a collimating cylinder arranged on a side of the first module away from the light-emitting source, and the collimating cylinder is used to conduct the formed surface-parallel light to the light-emitting surface of the light source module.
  • the light processing module further includes a third convex lens, the third convex lens is arranged on the side of the first module away from the light source, and the third convex lens is used to process the plane parallel light formed by the first module. Converge to form convergent light.
  • the at least one light-emitting source is multiple light-emitting sources, and the multiple light-emitting sources include at least a first light-emitting source and a second light-emitting source.
  • the wavelength or frequency of the first light-emitting source and the second light-emitting source are different.
  • the living biological photoacoustic detection system further includes an ultrasonic impedance matching layer, and the attenuation rate of ultrasonic waves in the ultrasonic impedance matching layer is less than the attenuation rate of ultrasonic waves in the air.
  • the ultrasonic impedance matching layer is arranged on the side where the ultrasonic processing module receives ultrasonic waves, and the ultrasonic impedance matching layer at least covers the ultrasonic processing module.
  • the ultrasonic impedance matching layer includes at least one of the following materials: a polymer material, an inorganic oxide material, and a composite material.
  • the ultrasonic impedance matching layer covers the ultrasonic processing module and at least partially covers the light source module.
  • the living biological photoacoustic detection system is applied to an electronic device, the electronic device includes a display screen, and the living biological photoacoustic detection system is arranged under the display screen.
  • an embodiment of the present invention provides a biological information detection device, which includes the photoacoustic detection system for a living organism as provided in the first aspect, and includes a biometric identification system.
  • the biometric identification system includes at least one of a fingerprint identification system and a face identification system, and the biological living body photoacoustic detection system is arranged adjacent to at least one of the fingerprint identification system and the face identification system.
  • the light source module of the photoacoustic detection system for living organisms is multiplexed with the light source module of the biometric identification system.
  • the biological information detection device is applied to an electronic device, the electronic device includes a display screen, and the photoacoustic detection system for living organisms and the biometric identification system are arranged below the display screen.
  • an embodiment of the present invention provides an electronic device, including the living organism photoacoustic detection system as provided in the first aspect, and the electronic device further includes a display screen; wherein the living organism photoacoustic detection system is arranged below the display screen .
  • the electronic device further includes a biometric identification system
  • the biometric identification system includes at least one of a fingerprint identification system and a face identification system, and is arranged below the display screen.
  • an embodiment of the present invention provides a biological living body detection method, which uses the biological living body photoacoustic detection system provided in the first aspect to perform living body detection on a living thing, including a verification phase and an identification phase.
  • the light source module emits detection light to the biological body
  • the ultrasonic processing module receives the ultrasonic waves emitted by the biological body and converts the ultrasonic waves into electrical signals
  • the biological living body photoacoustic detection system also includes a verification recognition module, which is received by the verification recognition module. Electrical signals, and verify whether the electrical signals belong to living organisms.
  • the ultrasonic waves received by the ultrasonic processing module can be protected from the influence of the light source module or the detection light emitted by the light source module Can be protected from the influence of the ultrasonic processing module.
  • FIG. 1 is a schematic diagram of a photoacoustic detection system for living organisms provided in an embodiment of this application;
  • FIG. 2 is a schematic diagram of a photoacoustic detection system for living organisms provided in another embodiment of the application;
  • FIG. 3 is a schematic diagram of a photoacoustic detection system for living organisms provided in another embodiment of the application;
  • FIG. 4 is a schematic diagram of a light source module provided in an embodiment of the application.
  • Fig. 5 is a cross-sectional view of a photoacoustic detection system for living organisms provided in another embodiment of the application along the AA' direction;
  • FIG. 6 is a schematic diagram of a light source module provided in another embodiment of the application.
  • FIG. 7 is a schematic diagram of a photoacoustic detection system for living organisms provided in still another embodiment of the application.
  • Fig. 8 is a schematic diagram of a photoacoustic detection system for living organisms provided in still another embodiment of the application.
  • FIG. 9 is a schematic diagram of a light source module provided in another embodiment of the application.
  • FIG. 10 is a schematic diagram of a light source module provided in another embodiment of the application.
  • FIG. 11 is a schematic diagram of a biological photoacoustic detection device provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of a biological photoacoustic detection device provided by another embodiment of the application.
  • FIG. 13 is a flowchart of a method for detecting living organisms according to an embodiment of the present invention.
  • first, second, etc. may be used to describe devices in the embodiments of the present invention, these devices should not be limited to these terms. These terms are only used to distinguish devices from each other.
  • the first device may also be referred to as the second device, and similarly, the second device may also be referred to as the first device.
  • the embodiments of the present application provide a photoacoustic detection system for living organisms and a biological information detection device using the photoacoustic detection system described above.
  • Fig. 1 is a schematic diagram of a photoacoustic detection system for a living organism provided in an embodiment of the application.
  • the photoacoustic detection system 01 for a living organism provided by an embodiment of the present application includes: The light source module 10, and the ultrasonic processing module 20 for receiving the ultrasonic waves emitted by the biological body and converting the received ultrasonic waves into electrical signals.
  • the projections of the light source module 10 and the ultrasonic processing module 20 on the first surface are arranged along the first direction X.
  • the first surface is the surface on which the photoacoustic detection system 01 emits detection light and receives ultrasonic waves.
  • the first direction X is The tangent direction of the first surface of the living organism photoacoustic detection system.
  • the surface of the biological photoacoustic detection system 01 provided by the embodiment of the present application that emits probe light and receives ultrasonic waves may be a flat surface or a curved surface.
  • the light source module 10 and the ultrasonic processing module 20 are arranged side by side on the surface of the living organism photoacoustic detection system 01 emitting detection light and receiving ultrasonic waves. And there is no overlap.
  • the light source module 10 and the ultrasonic processing module 20 are arranged side by side on the surface of the living organism photoacoustic detection system 01 emitting detection light and receiving ultrasonic waves. And there is no overlap.
  • the surface of the light source module 10 emitting probe light and the surface of the ultrasonic processing module 20 receiving ultrasonic waves are arranged side by side in the transverse direction, and the projections in the longitudinal direction do not overlap.
  • the light source module 10 and the ultrasonic processing module 20 may be flush in the longitudinal direction as shown in FIG. 1, or may be located at different heights in the longitudinal direction, as long as the projections of the two in the longitudinal direction are not overlapped. Can.
  • the ultrasonic waves received by the ultrasonic processing module 20 can be protected from the influence of the light source module 10 or the probe light emitted by the light source module 10 can be protected from the ultrasonic processing module 20.
  • the living biological photoacoustic detection system 01 provided by the embodiment of the present application further includes a verification and identification module 30 connected to the ultrasonic processing module 20.
  • the verification and identification module 30 is used for receiving the electrical signal output by the ultrasonic processing module 20, and verifying whether the electrical signal belongs to the living organism tissue through the established process, and obtaining whether the detected organism is a living organism.
  • the verification and identification module 30 can also be used to store the preset detection signal and the received electrical signal transmitted by the ultrasonic processing module 20, for example, compare the preset detection signal with the received electrical signal transmitted by the ultrasonic processing module 20 to determine Whether the two match, it can be verified whether the organism is alive.
  • the verification and identification module 30 may mainly include devices such as a signal amplifier, an ADC converter, a microprocessor, a memory, and a software algorithm module.
  • the amplifier provides a certain gain, which is used to amplify the received weak ultrasonic signal to facilitate subsequent device processing.
  • the memory is mainly used to store the feature database established in advance to facilitate later in vivo verification.
  • ADC converters are used to convert analog signals into digital signals
  • microprocessors are used for data processing and calculations
  • software algorithms are mainly used for the realization of living body verification procedures and quick and accurate judgments.
  • ultrasonic signals are generated, and these signals are received by the ultrasonic transducer 308 and converted into electrical signals.
  • These ultrasonic transducers include piezoelectric micro ultrasonic sensors based on the piezoelectric effect and capacitive micro ultrasonic sensors based on capacitance changes.
  • a single ultrasonic transducer with a larger area is selected as the signal receiving end instead of an ultrasonic array.
  • the resonance frequency range of the ultrasonic processing module 20 includes the frequency of ultrasonic waves emitted by at least one tissue of the biological body.
  • the resonance frequency of the ultrasonic processing module 20 matches or is close to the ultrasonic signal emitted by the biological tissue, it can receive the signal more effectively.
  • the resonance frequency range of the ultrasonic processing module 20 can be determined; when different biological tissues are detected at the same time, the resonance frequency range of the ultrasonic processing module 20 should include those different biological tissues.
  • the resonance frequency range of the ultrasonic processing module 20 may be 2MHZ-20MHZ.
  • the light source module 10 includes at least one light emitting source 110 and a light processing module 120, wherein the light processing module 120 is arranged on the light emitting side of the light emitting source 110, and the light processing module 120 is used to The emitted light is processed to form probe light.
  • the detection light emitted by the light source module 10 is plane parallel light
  • the detection light emitted by the living organism photoacoustic detection system 01 to the organism is plane parallel light
  • Planar parallel light can detect biological tissues with a deeper detection depth and detection range, usually at a depth of centimeters, which means that the detection of deep biological tissue information, such as bones and organs, can be achieved.
  • Different wavelengths of probe light can detect and detect different target tissues.
  • the respiration of living organisms will cause periodic changes in the oxygen concentration in blood red blood cells, while the absorption coefficients of oxygen-rich and hypoxic red blood cells are relatively different in the wavelength range of 600-800nm. Therefore, the detection light of this wavelength range can be selected for their choice; and the detection light of 532nm wavelength is often selected for the detection of blood vessels in living organisms.
  • the detection light of different frequencies will affect the penetration depth of the light in a certain range, that is, the selection of the detection light of higher frequency is the selection of the biological tissue with the deeper detection position. Therefore, in order to be adapted to detect different biological tissues, the surface parallel light emitted by the biological living body photoacoustic detection system 01 to the biological body is the detection light with a certain frequency and pulse width.
  • the light processing module 120 includes a first module, and the first module can process the light emitted by the light source 110 so that the detection light is plane parallel light.
  • the light source module 10 includes a light-emitting source 110.
  • the light-emitting source 110 may be a point light source such as VSCEL.
  • the light processing module 120 may include a first module 120a.
  • the light emitted by a light-emitting source is processed to form plane parallel light.
  • the first module 120 a may include a beam expander 121 and a first convex lens 122, and the first convex lens 122 is disposed on a side of the beam expander 121 facing away from the light-emitting source 110.
  • the beam expander 121 is used to diverge the light emitted by one of the light-emitting sources, and the first convex lens 122 is used to process the divergent light to form plane parallel light.
  • adding a beam expander 121 to the light processing module 120 can increase the effective radius of the light and significantly reduce the unit energy density of the light, while the light intensity is reduced from The Gaussian distribution becomes a flat top distribution.
  • the addition of the first convex lens 122 can secondarily homogenize the light and at the same time make the emitted detection light parallelized. After two treatments by the light processing module 120, the diameter of the point light source is expanded and the energy distribution is uniform, and the energy is much lower than the energy of the initial spot, which is easier to adjust to the laser energy of a suitable organism.
  • FIG. 5 is a cross-sectional view of a photoacoustic detection system for living organisms provided in another embodiment of the application along the AA' direction.
  • the light source module 10 may include Multiple light sources 110.
  • the light source module 10 includes light emitting sources 110 arranged in an array.
  • the light source module 10 may include 2 ⁇ 2 light emitting sources 110.
  • the light-emitting source 110 may be a scattering light source such as a micro-LED.
  • FIG. 6 is a schematic diagram of a light source module provided in another embodiment of the application.
  • the light processing module 120 may include a first module 120b, and the first module 120b is used to The light emitted by the multiple light-emitting sources 110 is processed to form plane parallel light.
  • the first module 12b may include a second convex lens 124 and a first convex lens 122, wherein the first convex lens 122 is disposed on a side of the second convex lens 124 away from the light-emitting source 110.
  • FIG. 6 is a schematic diagram of a light source module provided in another embodiment of the application.
  • the second convex lens 124 is first used to converge the light emitted by the at least two light-emitting sources 110, and the condensed light will be emitted to the first convex lens 122 again, and the first convex lens 122 is used to emit the condensed light to it.
  • the light on the side of the light incident surface is processed to form surface parallel light.
  • the functions of the second convex lens 124 and the first convex lens 122 are mainly to uniformize the light distribution of the at least two light-emitting sources 110 in the light source module 10.
  • the light processing module 120 may further include a collimating cylinder disposed on the side of the first module 120a away from the light-emitting source 110, and the collimating cylinder is used to The surface formed by a module 120a/120b is parallel to the light to be transmitted to the light-emitting surface of the light source module 10.
  • the collimating cylinder 123 is disposed on the side of the first convex lens 122 away from the light-emitting source 110, and is used to transmit the parallel light formed by the first convex lens 122 to the light-emitting surface of the light source module 10.
  • the detection light can be relatively parallel to travel over a long distance, which meets the requirements of the detection distance. Since the length of the collimating cylinder can be adjusted, the detection light can be transmitted to a position close to the biological body in a simpler way.
  • the light processing module 120 may also include a second convex lens 124 and a first convex lens 122 to converge the light emitted by the light-emitting source 110 and then form a plane parallel light.
  • the light processing module 120 may also include a beam expander 121 and a first convex lens 122. The light emitted by the light-emitting source 110 is first diverged through the beam expander 121 and then passes through the first convex lens. 122 forms surface parallel light.
  • FIG. 7 is a schematic diagram of a photoacoustic detection system for living organisms provided in still another embodiment of this application
  • FIG. 8 is a schematic diagram of a photoacoustic detection system for living organisms provided in still another embodiment of this application.
  • the light source module includes a light emitting source 110 and a light processing module 120.
  • the light processing module 120 is arranged on the light emitting side of the light emitting source 110, and the light processing module 120 is used to treat the light emitted by the light source 110. Perform processing to form probe light. It is understandable that the light processing module 120 can converge the light emitted by the light source 110 so that the detection light is converged light.
  • the detection light emitted by the light source module 10 is convergent light, and the detection light generated by the living organism photoacoustic detection system 01 to the organism is convergent light.
  • the convergent light has different detection characteristics from the plane parallel light. Specifically, the convergent light has a shallower detection depth of the biological body, and is mainly used to detect the tissue information from the surface of the biological body to the subcutaneous tissue several millimeters in depth. Although the effective irradiation area of convergent light is usually several hundred microns and has a small detection area, its resolution for detection of living tissue is extremely high, and it can even detect cells and DNA strands. Therefore, when the detection light of the light source module 10 is convergent light, the surface and shallow information of the living body tissue can be detected, and the detection with higher resolution requirements can be met.
  • the light source module 10 includes a light-emitting source 110.
  • the light-emitting source 110 may be a point light source such as VSCEL.
  • FIG. 9 is a schematic diagram of a light source module provided in another embodiment of the application
  • FIG. 10 is a schematic diagram of a light source module provided in another embodiment of the present invention.
  • the light processing module 120 further includes a third convex lens 125, the third convex lens 125 is arranged on the side of the first module 120a/120b away from the light source 110, the third convex lens 125 is used to The surface parallel light formed by the 120a/120b processing is converged to form convergent light.
  • the light processing module 120 includes a third convex lens 125, and the third convex lens 125 cooperates with the first module 120a , Used to process the light emitted by a light-emitting source 110 to form convergent light.
  • the first module 120a may first form surface parallel light from the light emitting source 110 and then converge it through the third convex lens 125, wherein the light emitted by the light emitting source 110 is used to process the surface parallel light.
  • the first module 120a may be the same as the first module 120a provided in the foregoing embodiment.
  • the first module 120a may include a beam expander 121 and a first convex lens 122.
  • the first convex lens 122 is arranged on the side of the beam expander 121 facing away from the light source 110
  • the third convex lens 125 is arranged on the first convex lens 122 facing away from the light source. 110 side.
  • the beam expander 121 is used to diverge the light emitted by a light-emitting source, the first convex lens 122 is used to process the divergent light to form plane parallel light, and the third convex lens 125 is used to converge the plane parallel light to form convergent light.
  • the position of the third convex lens 125 can be adjusted according to the detection depth, so that the emitted light is concentrated near the biological tissue to be detected, and the light emitted to the biological tissue to be detected is the concentrated light.
  • the light source module 10 may include at least two light sources 110.
  • the light source module 10 includes light sources 110 arranged in an array.
  • the light-emitting source 110 may be a scattering light source such as a micro-LED.
  • the light processing module 120 may include a third convex lens 125, a third convex lens 125 and the first module 120b cooperates to process the light emitted by the multiple light-emitting sources 110 to form a concentrated light.
  • the first module 120b may first form surface parallel light from the light emitting source 110 and then converge it through the third convex lens 125, wherein the light emitted by the light emitting source 110 is used to process the surface parallel light.
  • the first module 120b may be the same as the first module 120b provided in the above embodiment.
  • the first module 120b may include a first convex lens 122 and a second convex lens 124, wherein the first convex lens 122 is disposed on the side of the second convex lens 124 away from the light source 110, and the third convex lens 125 is disposed on the side away from the first convex lens 122.
  • One side of the light source 110 As shown in FIG.
  • the second convex lens 124 is first used to converge the light emitted by the multiple light-emitting sources 110, and the condensed light will be emitted to the first convex lens 122 again, and the first convex lens 122 is used to converge and emit the light to its entrance.
  • the light on the side of the light surface is processed to form surface parallel light, and the surface parallel light is emitted to the third convex lens 125 again, and the third convex lens 125 is used to converge the surface parallel light into convergent light.
  • the position of the third convex lens 125 can be adjusted according to the detection depth, so that the emitted light is concentrated near the biological tissue to be detected, and the light emitted to the biological tissue to be detected is the concentrated light.
  • the light processing module 120 may also include a second convex lens 124, a first convex lens 122, and a third convex lens 125 to converge the light emitted by the light-emitting source 110 and then form The convergent light is formed after the surface is parallel to the light.
  • the light processing module 120 may also include a beam expander 121, a first convex lens 122, and a third convex lens. The light emitted by the light source 110 is first diverged through the beam expander 121. The plane parallel light is formed by the first convex lens 122 and then converged light is formed.
  • the at least one light-emitting source 110 included in the light source module 20 is a plurality of light-emitting sources 110, and the multiple light-emitting sources 110
  • the light source 110 at least includes a first light-emitting source 111 and a second light-emitting source 112.
  • the wavelength of the first light-emitting source 111 is different from the wavelength of the second light-emitting source 112, or the frequency of the first light-emitting source 111 and the frequency of the second light-emitting source 112 are different.
  • the light-emitting source 110 in the embodiment of the present application should have a suitable pulse width, a lower frequency, and an energy threshold.
  • the pulse width can be 2ns-600ns.
  • a wider pulse width of 100-500ns can be selected.
  • the frequency range of the light emitted by the luminous source 110 can be 5HZ-35MHZ. Considering that the frequency of the detected light is too high, it is easy to be in a short time A large amount of energy is generated inside, which easily exceeds the damage threshold of the biological tissue. Therefore, the frequency of the light emitted by the light-emitting source 110 can be selected in the low frequency range of 5HZ-500KHZ.
  • the energy of the detection light should be less than or equal to 20 mJ/cm 2 , that is to say, the energy of the light emitted by the light-emitting source 110 reaching the biological tissue should be less than or equal to 20 mJ/cm 2 .
  • the living biological photoacoustic detection system 01 further includes an ultrasonic impedance matching layer 40 arranged on the ultrasonic processing module 20 receiving ultrasonic waves, and The ultrasonic impedance matching layer 40 covers at least the ultrasonic processing module 20.
  • the attenuation rate of ultrasonic waves in the ultrasonic impedance matching layer 40 is less than the attenuation rate of ultrasonic waves in the air, so it can reduce the energy loss of ultrasonic signals before they reach the ultrasonic processing module 20 after entering the biological photoacoustic detection system 01, and improve the reception of the ultrasonic processing module 20 The strength of the effective signal received.
  • the ultrasonic impedance matching layer 40 may cover the ultrasonic processing module 20 and at least partially cover the light source module 10 beside it. Specifically, as shown in FIGS. 2 and 8, the ultrasonic impedance matching layer 40 can completely cover the ultrasonic processing module 20 and the light source module 10, so that the ultrasonic impedance matching layer 40 can more effectively receive ultrasonic signals from a larger area . At the same time, since the ultrasonic impedance matching layer 40 covers the light source module 10, the acoustic impedance matching layer 40 should be made of a high-transparency material, such as a flexible PDMS or the like.
  • the ultrasonic impedance matching layer 40 may be made of a polymer material, specifically, for example, an adhesive layer. Specifically, the ultrasonic impedance matching layer 40 may be a single layer or multiple layers. In order to reduce the attenuation rate of ultrasonic waves, the wavelength of each layer of the ultrasonic impedance matching layer may be 1/4 of the wavelength of the ultrasonic waves emitted by each biological tissue. Optionally, the thickness of each layer of the ultrasonic impedance matching layer 40 ranges from 5 ⁇ m to 5 mm.
  • the ultrasonic impedance matching layer 40 may also cover the ultrasonic processing module 20 but not the light source module 10 beside it.
  • the ultrasonic impedance matching layer 40 may be at least one of a polymer material, an inorganic oxide material, and a composite material, and the material selected for the ultrasonic impedance matching layer 40 satisfies that the attenuation rate of ultrasonic waves is less than the attenuation rate of ultrasonic waves in the air. rate.
  • the photoacoustic detection system for living organisms provided by the above embodiments of the present invention can be applied to electronic devices, for example, mobile electronic devices such as tablet computers and mobile phones.
  • the electronic equipment includes a display screen, and the photoacoustic detection system for living organisms is arranged under the display screen.
  • a biological information detection device which includes the photoacoustic detection system for a living organism as provided in any of the foregoing embodiments.
  • FIG. 11 is a schematic diagram of a biological photoacoustic detection device provided by an embodiment of the application
  • FIG. 12 is a schematic diagram of a biological photoacoustic detection device provided by another embodiment of the application.
  • the biological photoacoustic detection device provided by the embodiment of the present application includes a biological feature recognition system 02 in addition to the biological photoacoustic detection system 01. That is to say, the biological information detection device provided by the embodiment of the present application can also be combined with other identity verification modules while realizing the detection of living organisms, so as to realize more secure authorization verification.
  • the biological information monitoring device may be specifically applied to electronic equipment such as mobile phones and computers, which includes a biological information monitoring function.
  • the electronic equipment includes a display screen, and a biological living body photoacoustic detection system and a biometric identification system are arranged below the display screen.
  • the biometric identification system 02 includes at least one of a fingerprint identification system 02b and a face identification system 02a.
  • the living organism photoacoustic detection system 01 is arranged adjacent to at least one of the fingerprint recognition system 02b and the face recognition system 02a.
  • the biological live body photoacoustic detection system 01 can also be placed near the camera of a mobile phone, computer, etc., and the face recognition system 02a can simultaneously complete the function of live body detection.
  • the light source module 10 and the ultrasonic processing module 20 are independent of each other, the light source module 10 and the ultrasonic processing module 20 can be flexibly distributed according to the requirements of the application scenario.
  • the light source module 10 and the ultrasonic processing module 20 are located on the same side of at least one of the fingerprint recognition system 02b and the face recognition system 02a.
  • the light source module 10 and the ultrasonic processing module 20 are both located on the face.
  • the light source module 10 and the ultrasonic processing module 20 are respectively located on different sides of at least one of the fingerprint recognition system 02b and the face recognition system 02a. For example, as shown in FIG.
  • the light source module 10 is located on the right side of the fingerprint recognition system 02b.
  • the ultrasonic processing module 20 is located on the left side of the fingerprint identification system 02a.
  • it can also be placed on the side of the mobile phone to reduce the influence of the display screen of the mobile phone, computer and other devices.
  • the light source module of the living biological photoacoustic detection system 01 can be multiplexed with the light source module of the biological feature recognition system 02. That is to say, when the living organism photoacoustic detection system 01 and the biometric identification system 02 of the present application are simultaneously applied to electronic devices, such as mobile phones, computers, etc., the living organism acoustic and light detection system 01 can reuse the light source of the biometric identification system 02 Module, the light source module can select a VCSEL laser source, a semiconductor diode laser source, LED or micro-LED as the light source 110 at this time.
  • the light source module 10 may include only one luminous source 110 to perform high-resolution detection of certain biological tissues; the light source module 10 may also include at least two luminous sources 110 to realize the detection of multiple biological tissues .
  • the ultrasonic waves received by the ultrasonic processing module 20 can be protected from the light source module. 10, or the detection light emitted by the light source module 10 can be protected from the ultrasonic processing module 20.
  • an electronic device which includes the photoacoustic detection system for living organisms as provided in any of the above embodiments.
  • the electronic device also includes a display screen, and the photoacoustic detection system for living organisms is arranged under the display screen.
  • the electronic device also includes a biometric identification system; the biometric identification system includes at least one of a fingerprint identification system and a face identification system, and is also arranged below the display screen.
  • An embodiment of the present application also provides a biological living body detection method, which can use the biological living body photoacoustic detection system provided in any one of the above embodiments to perform living body detection on organisms.
  • the detection method specifically includes a verification phase and an identification phase.
  • FIG. 13 is a flowchart of a method for detecting living organisms according to an embodiment of the present invention.
  • the light source module emits probe light to the biological body
  • the ultrasonic processing module receives the ultrasonic waves emitted by the biological body and converts the ultrasonic waves into electrical signals.
  • the detection light can select a light source with matching wavelength and frequency according to the different biological tissues to be detected to emit the detection light, and the light source module can process the detection light to form the required plane parallel light or convergent light and illuminate the target of the biological body organize.
  • the target tissue of the biological body will have a photoacoustic effect with the incident light, and then emit the corresponding frequency and intensity of the ultrasonic wave, where the corresponding frequency and intensity of the ultrasonic wave carries the characteristic information of the biological tissue.
  • the ultrasonic waves emitted by the target tissue of the biological body are effectively transmitted by the ultrasonic impedance matching layer and then converged to the ultrasonic processing module, and are absorbed by the piezoelectric material and converted into electrical signals.
  • the verification and identification module of the living biological photoacoustic detection system receives the electrical signal and verifies whether the electrical signal belongs to the living biological tissue.
  • the verification processing module receives the signal processing module to receive the electrical signal, performs calculations, and compares it with information in a database established in advance for different biological tissues. If the information can match, the verification can pass, otherwise the verification fails.
  • the database can be established in advance before the terminal product is generated, or it can be established according to the difference of personal signals after the terminal product is sold.
  • the information can be characteristic information of a living body tissue or cross-validation of multiple types of information. When multiple information is cross-validated, it is necessary to repeatedly perform the emission of different light sources to detect multiple information.
  • the ultrasonic waves received by the ultrasonic processing module 20 can be protected from the influence of the light source module 10 , Or the detection light emitted by the light source module 10 can be protected from the influence of the ultrasonic processing module 20, so the detection accuracy is higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种生物活体光声检测系统、生物信息检测装置、电子设备及生物活体检测方法。生物活体光声检测系统包括光源模块(10)及超声处理模块(20);光源模块(10)用于向生物体发射探测光;超声处理模块(20)用于接收生物体发出的超声波,并将接收到的超声波转化为电信号。光源模块(10)与超声处理模块(20)在第一表面上的投影沿第一方向排布,第一方向为生物活体光声检测系统的第一表面的切线方向,第一表面为生物活体光声检测系统发射探测光并接收超声波的表面。该系统由于光源模块(10)与超声处理模块(20)相互独立且并列排放,超声处理模块(20)接收到的超声波可以免受光源模块(10)的影响,或者光源模块(10)发射的探测光可以免受超声处理模块(20)的影响。

Description

生物活体光声检测系统、生物信息检测装置、电子设备及生物活体检测方法 技术领域
本申请涉及生物信息识别技术领域,尤其涉及一种生物活体光声检测系统、生物信息检测装置、电子设备及生物活体检测方法。
背景技术
随着消费者对手机、电脑及智能家居等电子产品功能需求的日益丰富,越来越多的电子产品中都使用到生物识别验证技术。比较流行且相对成熟的生物识别验证技术包括指纹识别和人脸识别等,利用这些生物体特征信息极大地保证了移动电子产品及办公产品的信息安全,同时方便了人们的日常生活。而伴随着信息技术的发展,这些生物识别验证技术也面临很多的安全挑战,指纹和人脸信息由于是人体外表特征信息,在实际生活中很容易被别人获取而伪造,从而得到进入电子产品的权限。因此现有的生物识别验证技术仍然存在漏洞,这些漏洞导致个人信息和财产存在泄漏及损失的风险。
发明内容
为了解决上述技术问题,本申请实施例提供一种生物活体光声检测系统、生物活体光声检测装置、电子设备及生物活体检测方法。
第一方面,本申请实施例提供一种生物活体光声检测系统,包括光源模块及超声处理模块。其中,光源模块用于向生物体发射探测光;超声处理模块用于接收生物体发出的超声波,并将接收到的超声波转化为电信号。光源模块与超声处理模块在第一表面上的投影沿第一方向排布,第一方向为生物活体光声检测系统的第一表面的切线方向,第一表面为生物活体光声检测系统发射探测光并接收 超声波的表面。
在第一方面的一种实现方式中,超声处理模块的共振频率范围包含生物体至少一个组织发出的超声波的频率。
在第一方面的一种实现方式中,生物活体光声检测系统还包括与所述超声处理模块连接的验证识别模块,验证识别模块用于接收超声处理模块输出的电信号,并验证该电信号是否属于生物活体组织。
在第一方面的一种实现方式中,光源模块包括至少一个发光源及设置在发光源出光侧的光处理模块,光处理模块用于对发光源发出的光进行处理形成探测光。
在第一方面的一种实现方式中,光处理模块包括用于将至少一个发光源发出的光进行处理形成面平行光的第一模块。
在第一方面的一种实现方式中,光源模块包括一个发光源,第一模块包括扩束镜和第一凸透镜;扩束镜用于将一个发光源发出的光进行发散;第一凸透镜设置在扩束镜背离发光源的一侧,第一凸透镜用于将发散后的光进行处理形成面平行光。
在第一方面的一种实现方式中,光源模块包括多个发光源,第一模块包括第二凸透镜和第一凸透镜;第二凸透镜用于将多个发光源发出光进行汇聚;第一凸透镜设置在第二凸透镜背离发光源的一侧,第一凸透镜用于将汇聚后的光进行处理形成面平行光。
在第一方面的一种实现方式中,光处理模块还包括设置在第一模块远离发光源一侧的准直筒,准直筒用于将形成的面平行光传导至光源模块的出光面。
在第一方面的一种实现方式中,光处理模块还包括第三凸透镜,第三凸透镜设置在第一模块背离发光源的一侧,第三凸透镜用于将第一模块处理形成的面平行光进行汇聚形成汇聚光。
在第一方面的一种实现方式中,至少一个发光源为多个发光源,多个发光源至少包括第一发光源及第二发光源。其中,第一发光源与第二发光源的波长或频率不同。
在第一方面的一种实现方式中,生物活体光声检测系统还包括超声阻抗匹配层,超声阻抗匹配层中超声波的衰减速率小于空气中超声波的衰减速率。超声阻抗匹配层设置在超声处理模块接收超声波的一侧,且超声阻抗匹配层至少覆盖超声处理模块。
在第一方面的一种实现方式中,超声阻抗匹配层包括以下材料中的至少一种:高分子材料、无机氧化物材料、复合材料。
在第一方面的一种实现方式中,超声阻抗匹配层覆盖超声处理模块,并至少部分覆盖光源模块。
在第一方面的一种实现方式中,生物活体光声检测系统应用于电子设备,电子设备包括显示屏,生物活体光声检测系统设置在显示屏的下方。
第二方面,本发明实施例提供一种生物信息检测装置,包括如第一方面提供的生物活体光声检测系统,并包括生物特征识别系统。生物特征识别系统包括指纹识别系统及脸部识别系统中的至少一者,生物活体光声检测系统与指纹识别系统及脸部识别系统中的至少一者相邻设置。
在第二方面的一种实现方式中,生物活体光声检测系统的光源模块与生物特征识别系统的光源模块复用。
在第二方面的一种实现方式中,生物信息检测装置应用于电子设备,电子设备包括显示屏,生物活体光声检测系统及生物特征识别系统设置在显示屏的下方。
第三方面,本发明实施例提供一种电子设备,包括如第一方面提供的生物活体光声检测系统,该电子设备还包括显示屏;其中,生物活体光声检测系统设置在显示屏的下方。
在第三方面的一种实现方式中,电子设备还包括生物特征识别系统,生物特征识别系统包括指纹识别系统及脸部识别系统中的至少一者,且设置在显示屏的下方。
第四方面,本发明实施例提供一种生物活体检测方法,该方法利用第一方面提供的生物活体光声检测系统对生物进行活体检测, 包括验证阶段和识别阶段。在验证阶段,光源模块向生物体发射探测光,超声处理模块接收生物体发出的超声波并将超声波转化为电信号;在识别阶段,生物活体光声检测系统还包括验证识别模块,验证识别模块接收电信号,并验证电信号是否属于生物活体组织。
在本申请实施例提供的生物活体光声检测系统中,由于光源模块与超声处理模块相互独立且并列排放,超声处理模块接收到的超声波可以免受光源模块的影响,或者光源模块发射的探测光可以免受超声处理模块的影响。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请一个实施例中提供的一种生物活体光声检测系统示意图;
图2为本申请另一个实施例中提供的一种生物活体光声检测系统示意图;
图3为本申请又一个实施例中提供的一种生物活体光声检测系统示意图;
图4为本申请一个实施例中提供的光源模块的示意图;
图5为本申请又一个实施例中提供的一种生物活体光声检测系统沿AA’方向的剖面图;
图6为本申请另一个实施例中提供的光源模块的示意图;
图7为本申请再一个实施例中提供的一种生物活体光声检测系统示意图;
图8为本申请还一个实施例中提供的一种生物活体光声检测系统示意图;
图9为本申请又一个实施例中提供的光源模块的示意图;
图10为本申请再一个实施例中提供的光源模块的示意图;
图11为本申请一个实施例提供的生物体光声检测装置示意图;
图12为本申请另一个实施例提供的生物体光声检测装置示意图;
图13为本发明实施例提供的一种生物活体检测方法流程图。
具体实施方式
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本发明实施例中可能采用术语第一、第二等来描述装置,但这些装置不应限于这些术语。这些术语仅用来将装置彼此区分开。例如,在不脱离本发明实施例范围的情况下,第一装置也可以被称为第二装置,类似地,第二装置也可以被称为第一装置。
本申请实施例提供一种生物活体光声检测系统以及采用上述光声检测系统的一种生物信息检测装置。
图1为本申请一个实施例中提供的一种生物活体光声检测系统 示意图,如图1所示,本申请实施例提供的生物活体光声检测系统01包括:用于向生物体发射探测光的光源模块10,以及用于接收生物体发出的超声波并将接收到的超声波转化为电信号的超声处理模块20。其中,光源模块10与超声处理模块20在第一表面上的投影沿第一方向X排布,第一表面为生物活体光声检测系统01发射探测光并接收超声波的表面,第一方向X为生物活体光声检测系统的第一表面的切线方向。
具体地,本申请实施例提供的生物活体光声检测系统01发射探测光并接收超声波的表面可以为平面,也可以为曲面。当生物活体光声检测系统01发射探测光并接收超声波的表面可以为平面时,光源模块10与超声处理模块20在生物活体光声检测系统01发射探测光并接收超声波的表面的投影并列排布且无交叠。当生物活体光声检测系统01发射探测光并接收超声波的表面可以为曲面时,光源模块10与超声处理模块20在生物活体光声检测系统01发射探测光并接收超声波的表面的投影并列排布且无交叠。
更具体地,如图1所示,光源模块10发射探测光的表面与超声处理模块20接收超声波的表面沿横向方向并列设置,且沿纵向方向的投影无交叠。
需要说明的是,光源模块10与超声处理模块20可以如图1所示在纵向方向上平齐,也可以在纵向方向上位于不同高度,只要保证两者在纵向方向上的投影无交叠即可。
由于光源模块10与超声处理模块20相互独立且并列排放,超声处理模块20接收到的超声波可以免受光源模块10的影响,或者光源模块10发射的探测光可以免受超声处理模块20的影响。
请继续参考图1,本申请实施例提供的生物活体光声检测系统01还包括与超声处理模块20连接的验证识别模块30。验证识别模块30用于接收所述超声处理模块20输出的电信号,并通过建立的流程验证该电信号是否属于生物活体组织,得出所检测的生物体是否为生物活体。同时,验证识别模块30还可以用于存储预设的检测 信号及接收的超声处理模块20发射的电信号,例如将预设的检测信号与接收的超声处理模块20发射的电信号进行比较,判断两者是否匹配,可以得到验证的生物体是否为活体。
具体地,验证识别模块30可以主要包括信号放大器、ADC转换器、微处理器、存储器和软件算法模块等器件。其中,放大器提供一定增益,用于对接收的微弱超声信号进行放大,方便后续器件的处理。存储器主要用于存储先期建立起的特征数据库,方便后面做活体验证。ADC转换器用于把模拟信号转变为数字信号、微处理器用于对数据的处理和计算,软件算法主要用于活体验证流程的实现以及快速准确地完成判断。
当光源照射活体不同组织后会产生超声信号,这些信号被超声换能器308接收转变为电信号。这些超声换能器包括基于压电效应的压电式微型超声传感器和基于电容变化的电容式微型超声传感器。同时为了增加超声信号的接收性能,降低器件成本选择较大面积的单个超声换能器而非超声阵列作为信号接收端。
在本申请的一个实施例中,超声处理模块20的共振频率范围包含生物体至少一个组织发出的超声波的频率。当超声处理模块20的共振频率与生物组织发出的超声波信号匹配或者接近时,其能更加有效地接收信号。
由于不同的生物组织或者相同的生物组织在不同的状态下会产生不同频率或振幅的超声波,以此可以来判断生物组织是否属于活体。另外,当确定需要检测特定的生物组织时,超声处理模块20的共振频率范围可以确定;当同时检测不同的生物组织时,超声处理模块20的共振频率范围应包含该些不同的生物组织会产生的超声波的频率。可选地,可以超声处理模块20的共振频率范围可以为2MHZ-20MHZ。
图2为本申请另一个实施例中提供的一种生物活体光声检测系统示意图,图3为本申请又一个实施例中提供的一种生物活体光声检测系统示意图。如图2及图3所示,光源模块10包括至少一个发 光源110及光处理模块120,其中,光处理模块120设置在发光源110的出光侧,并且光处理模块120用于对发光源110发出的光进行处理形成探测光。
在本申请的一个实施例中,请继续参考图2及图3,光源模块10发射的探测光为面平行光,则生物活体光声检测系统01向生物体发射的探测光为面平行光。
面平行光可以探测更深的检测深度和检测范围的生物体活体组织,通常在厘米级深度,也就意味着可以实现对深度活体组织信息的检测,例如骨骼和器官等。不同波长的探测光可以对不同的目标组织进行检测检测,例如活体生物呼吸会导致血液红细胞中氧浓度的周期性变化,而富氧和缺氧的红细胞在波长600-800nm范围内吸收系数差距较大,因此对它们的选择可以选择这个波长范围的探测光;而对于活体生物体中血管检测往往选择532nm波长的探测光。同时,不同的频率的探测光会在一定范围影响光的穿透深度,即选择更高频率的探测光也就是选择了探测位置更深的生物体组织。因此,为适应于检测不同的生物体组织,生物活体光声检测系统01向生物体发射的面平行光为具有一定频率和脉冲宽度的探测光。
如图2及图3所示,光处理模块120包括第一模块,第一模块可以将发光源110发出的光进行处理,使探测光为面平行光。
请参考图2,光源模块10包括一个发光源110,此时发光源110可以采用VSCEL等点光源。
请参考图4,图4为本申请一个实施例中提供的光源模块的示意图。如图4所示,在光源模块10包括一个发光源110时,为了将光源模块10发出的探测光形成为面平行光,光处理模块120可以包括第一模块120a,第一模块120a用于将一个发光源发出的光进行处理形成面平行光。具体地,第一模块120a可以包括扩束镜121及第一凸透镜122,第一凸透镜122设置在扩束镜121背离发光源110的一侧。扩束镜121用于将一个所述发光源发出的光进行发散,第一凸透镜122用于将发散后的光进行处理形成面平行光。
由于点光源发射光往往具有有效半径小,能量平均密度高等特点,在光处理模块120中首先加入扩束镜121可以增加光的有效半径,并显著降低降低光的单位能量密度,同时光强度从高斯分布变为平顶分布。紧接着,加入第一凸透镜122可以对光进行二次均匀化,同时使得发射出的探测光平行化。经过光处理模块120的两次处理后点光源直径被扩束且能量分布均匀,能量也远远低于初始光斑的能量,更容易调节至合适生物体的激光能量。
请参考图3及图5,图5为本申请又一个实施例中提供的一种生物活体光声检测系统沿AA’方向的剖面图,如图3及图5所示,光源模块10可以包括多个发光源110。可选地,如图5所示,光源模块10包含阵列排布地发光源110,如图5所示,光源模块10可以包括2x2的发光源110。此时,发光源110可以采用micro-LED等散射光源。
请参考图6,图6为本申请另一个实施例中提供的光源模块的示意图。如图6所示,在光源模块10包括多个发光源110时,为保证光源模块10发出的探测光为面平行光,光处理模块120可以包括第一模块120b,第一模块120b用于将多个发光源110发出的光进行处理形成面平行光。具体地,第一模块12b可以包括第二凸透镜124及第一凸透镜122,其中,第一凸透镜122设置在第二凸透镜124背离发光源110的一侧。如图6所示,第二凸透镜124首先用于将至少两个发光源110发出光进行汇聚,汇聚后的光会再次发射至第一凸透镜122,第一凸透镜122用于将汇聚后发射至其入光面一侧的光进行处理形成面平行光。第二凸透镜124及第一凸透镜122的作用主要是让光源模块10中至少两个发光源110发出的光分布均匀化。
需要说明的是,上述的实施例中,如图4及图6所示,光处理模块120还可以包括设置在第一模块120a中远离发光源110一侧的准直筒,准直筒用于将第一模块120a/120b形成的面平行光传导至光源模块10的出光面。具体地,请继续参考图4及图6,准直筒123 设置在第一凸透镜122背离发光源110一侧,用于将第一凸透镜122处理形成的面平行光传导至光源模块10的出光面,且保证其所传导的光为平行光。另外,由于在光处理模块120的后端加上了准直筒123,可以使得探测光能够较为平行的远距离传播,满足检测距离的需求。由于准直筒的长度可以调节,因此可以使用较为简便的方式将探测光传导至靠近生物体的位置。
需要进一步说明的是,当光源模块10仅包括一个发光源110时,光处理模块120也可以包括第二凸透镜124及第一凸透镜122,将发光源110发出的光先汇聚然后形成面平行光。当光源模块10包括至少两个发光源110时,光处理模块120也可以包括扩束镜121及第一凸透镜122,将发光源110发出的光先通过扩束镜121进行发散再通过第一凸透镜122形成面平行光。
图7为本申请再一个实施例中提供的一种生物活体光声检测系统示意图,图8为本申请还一个实施例中提供的一种生物活体光声检测系统示意图。如图7及图8所示,光源模块包括发光源110及光处理模块120,其中,光处理模块120设置在发光源110的出光侧,并且光处理模块120用于对发光源110发出的光进行处理形成探测光。可以理解的,光处理模块120可以将发光源110发出的光进行汇聚,使探测光为汇聚光。
在本申请的一个实施例中,请继续参考图7及图8,光源模块10发射的探测光为汇聚光,则生物活体光声检测系统01向生物体发生的探测光为汇聚光。
汇聚光具有与面平行光不同的检测特点,具体地,汇聚光对生物体的探测深度较浅,主要用于检测生物体表面至皮下组织几个毫米深度的组织信息。虽然汇聚光的有效照射面积通常为几百微米,具有较小的检测面积,但其对活体组织检测的分辨率极高,甚至可以实现对细胞和DNA链的检测。因此,光源模块10的探测光为汇聚光时,可以检测活体组织的表层及浅层信息,并可以满足分辨率要求较高的检测。
请参考图7,光源模块10包括一个发光源110,此时发光源110可以采用VSCEL等点光源。
图9为本申请又一个实施例中提供的光源模块的示意图,图10为本发明再一个实施例中提供的光源模块的示意图。如图9和图10所示,光处理模块120还包括第三凸透镜125,第三凸透镜125设置在第一模块120a/120b背离发光源110的一侧,第三凸透镜125用于将第一模块120a/120b处理形成的面平行光进行汇聚形成汇聚光。
如图9所示,在光源模块10包括一个发光源110时,为了保证光源模块10发出的探测光为汇聚光,光处理模块120包括第三凸透镜125,第三凸透镜125与第一模块120a配合,用于将一个发光源110发出的光进行处理形成汇聚光。
进一步地,第一模块120a可以先将发光源110发出的光形成面平行光后再经第三凸透镜125将其进行汇聚,其中,用于将发光源110发出的光进行处理形成面平行光的第一模块120a可以与上述实施例提供的第一模块120a相同。具体地,第一模块120a可以包括扩束镜121、第一凸透镜122,第一凸透镜122设置在扩束镜121背离发光源110的一侧,第三凸透镜125设置在第一凸透镜122背离发光源110一侧。扩束镜121用于将一个发光源发出的光进行发散,第一凸透镜122用于将发散后的光进行处理形成面平行光,第三凸透镜125用于将面平行光进行汇聚形成汇聚光。可以根据检测深度对第三凸透镜125的位置调整,以使其出射光在所需检测的生物体组织的附近汇聚,使发射到待检测生物体组织的光为汇聚光。
请参考图8,光源模块10可以包括至少两个发光源110,可选地,光源模块10包含阵列排布地发光源110。此时,发光源110可以采用micro-LED等散射光源。
如图10所示,在光源模块10包括多个发光源110时,为保证光源模块10发出的探测光为汇聚光,光处理模块120可以包括第三凸透镜125,第三凸透镜125与第一模块120b配合将多个发光源110 发出的光进行处理形成汇聚光。
进一步地,第一模块120b可以先将发光源110发出的光形成面平行光后再经第三凸透镜125将其进行汇聚,其中,用于将发光源110发出的光进行处理形成面平行光的第一模块120b可以与上述实施例提供的第一模块120b相同。具体地,第一模块120b可以包括第一凸透镜122和第二凸透镜124,其中,第一凸透镜122设置在第二凸透镜124背离发光源110的一侧,第三凸透镜125设置在第一凸透镜122背离发光源110的一侧。如图10所示,第二凸透镜124首先用于将多个发光源110发出光进行汇聚,汇聚后的光会再次发射至第一凸透镜122,第一凸透镜122用于将汇聚后发射至其入光面一侧的光进行处理形成面平行光,面平行光再次发射至第三凸透镜125,第三凸透镜125用于将面平行光汇聚成汇聚光。可以根据检测深度对第三凸透镜125的位置调整,以使其出射光在所需检测的生物体组织的附近汇聚,使发射到待检测生物体组织的光为汇聚光。
需要说明的是,当光源模块10仅包括一个发光源110时,光处理模块120也可以包括第二凸透镜124、第一凸透镜122及第三凸透镜125,将发光源110发出的光先汇聚然后形成面平行光后再形成汇聚光。当光源模块10包括至少两个发光源110时,光处理模块120也可以包括扩束镜121、第一凸透镜122及第三凸透镜,将发光源110发出的光先通过扩束镜121进行发散再通过第一凸透镜122形成面平行光再形成汇聚光。
如图3及图8所示,为了保证光源模块10发出的探测光的波长和/或频率在一定的范围内,光源模块20包括的至少一个发光源110为多个发光源110,多个发光源110至少包括第一发光源111及第二发光源112。其中,第一发光源111的波长与第二发光源112的波长不同,或第一发光源111的频率与第二发光源112的频率不同。以实现同时对生物的不同组织的活体探测。
进一步地,生物活体光声检测系统01的检测精度越高越好、发 光源的体积应该越小越好。此外,生物或光声检测系统01发出的探测光的能量应该大于一定的数值以保证能够探测到需要探测的生物体组织,同时应避免探测光的能量过大灼伤生物体组织。因此,在本申请的实施例中的发光源110应该合适的脉冲宽度、较低的频率及能量阈值。脉冲宽度可以为2ns-600ns,优选地,可以选择较宽的脉冲宽度100-500ns,发光源110发出的光的频率范围可以为5HZ-35MHZ,考虑到探测光的频率太高很容易在短时间内产生大量的能量,从而很容易超过生物体组织的损伤阈值,因此发光源110发出的光的频率可以选择在低频范围5HZ-500KHZ。此外,探测光的能量应小于等于20mJ/cm 2,也就是说发光源110发出的光到达生物体组织的能量应小于等于20mJ/cm 2
在本申请的一个实施例中,请参考图2、图3、图7及图8,生物活体光声检测系统01还包括设置在超声处理模块20接收超声波一侧的超声阻抗匹配层40,且超声阻抗匹配层40至少覆盖超声处理模块20。超声阻抗匹配层40中超声波的衰减速率小于空气中超声波的衰减速率,因此能够减小超声信号进入生物活体光声检测系统01后在到达超声处理模块20前的能量损失,提升超声处理模块20接收到的有效信号的强度。
如图2及图8所示,超声阻抗匹配层40可以覆盖超声处理模块20并至少部分覆盖旁边的光源模块10。具体地,如图2及图8所示所示,超声阻抗匹配层40可以完全覆盖超声处理模块20及光源模块10,如此,超声阻抗匹配层40能更有效的接收来自更大面积的超声信号。同时,由于超声阻抗匹配层40覆盖光源模块10,因此,声阻抗匹配层40应选择高透明度材料,如可以为柔性PDMS等材料。其中,超声阻抗匹配层40可以由高分子材料制成,具体地比如可以为粘附层。具体地,超声阻抗匹配层40可以为单层也可以为多层,为了降低超声波的衰减速率,超声阻抗匹配层各层的波长可以为各生物体组织发出的超声波波长的1/4。可选地,超声阻抗匹配层40各层的厚度范围为5μm-5mm。
如图3及图6所示,超声阻抗匹配层40也可以覆盖超声处理模块20并不覆盖旁边的光源模块10。此时,超声阻抗匹配层40可以为高分子材料、无机氧化物材料、复合材料中的至少一种,且超声阻抗匹配层40选用的材料满足超声波在其中的衰减速率小于超声波在空气中的衰减速率。
需要说明的是,本发明上述实施例提供的生物活体光声检测系统可以应用于电子设备,例如可以为平板电脑、手机等移动电子设备。其中,电子设备包括显示屏,生物活体光声检测系统设置在显示屏的下方。
在本申请的一个实施例中,还提供一种生物信息检测装置,包括如上述任意实施例提供的生物活体光声检测系统。
图11为本申请一个实施例提供的生物体光声检测装置示意图,图12为本申请另一个实施例提供的生物体光声检测装置示意图。如图11及图12所示,本申请实施例提供的生物体光声检测装置除包括生物活体光声检测系统01外,还包括生物特征识别系统02。也就是说,本申请实施例提供的生物信息检测装置在实现生物活体检测的同时还可以与其它身份验证模块结合,实现更加安全的权限验证。
例如,本申请实施例提供的生物信息监测装置具体可以应用于手机、电脑等电子设备,其包括生物信息监测功能。电子设备包括显示屏,生物活体光声检测系统及生物特征识别系统设置在所述显示屏的下方。
具体地,如图11及图12所示,生物特征识别系02统包括指纹识别系统02b及脸部识别系统02a中的至少一者。生物活体光声检测系统01与指纹识别系统02b及脸部识别系统02a中的至少一者相邻设置。如此,采用该生物信息监测功能的手机、电脑等设备在指纹识别的基础上进行活体检测可以在一定程度防止利用指纹模型解锁的风险。此外,还可以把该生物活体光声检测系统01放置于手机、电脑等设备的摄像头附近,与脸部识别系统02a一起同时完成活体 检测的功能。
另外,由于光源模块10和超声处理模块20相互独立,可以根据应用场景的要求对光源模块10及超声处理模块20进行灵活的分布。可选地,光源模块10与超声处理模块20位于指纹识别系统02b及脸部识别系统02a中的至少一者的同侧,例如如图11所示,光源模块10及超声处理模块20均位于脸部识别系统02a的左侧。可选地,光源模块10与超声处理模块20分别位于指纹识别系统02b及脸部识别系统02a中的至少一者的不同侧,例如如图12所示,光源模块10位于指纹识别系统02b的右侧,超声处理模块20位于指纹识别系统02a的左侧。可选地,也可以放置于手机侧面以减小手机、电脑等设备的显示屏幕的影响。
在本申请的一个实施例中,生物活体光声检测系统01的光源模块可以与生物特征识别系统02的光源模块复用。也就是说,当本申请的生物活体光声检测系统01与生物特征识别系统02同时应用于电子设备,例如手机、电脑等,生物活体声光检测系统01可以复用生物特征识别系统02的光源模块,此时光源模块可以选择VCSEL激光源,半导体二极管激光源,LED或micro-LED等作为发光源110。
同时,光源模块10可以只包括一个发光源110,以对某种生物体组织进行高分辨率的检测;光源模块10也可以包括至少两个发光源110,以实现对多种生物体组织的检测。
本申请实施例提供的生物体光声检测装置中的生物活体光声检测系统中,由于光源模块10与超声处理模块20相互独立且并列排放,超声处理模块20接收到的超声波可以免受光源模块10的影响,或者光源模块10发射的探测光可以免受超声处理模块20的影响。
在本申请的一个实施例中还提供一种电子设备,其包括如上述任意一个实施例提供的生物活体光声检测系统。此外,电子设备还包括显示屏,生物活体光声检测系统设置在所述显示屏的下方。
并且该电子设备还包括生物特征识别系统;生物特征识别系统包括指纹识别系统及脸部识别系统中的至少一者,且也设置在显示 屏的下方。
在本申请的一个实施例中还提供一种生物活体检测方法,该方法可以利用上述任意一个实施例提供的生物活体光声检测系统对生物进行活体检测。检测方法具体包括验证阶段和识别阶段。
请参考图13,图13为本发明实施例提供的一种生物活体检测方法流程图。
在验证阶段,光源模块向生物体发射探测光,超声处理模块接收生物体发出的超声波并将超声波转化为电信号。
其中,探测光可以根据所要检测的不同生物体组织选择波长及频率匹配的光源来发射探测光,并且光源模块可以对探测光进行处理形成需要的面平行光或者汇聚光并照射到生物体的目标组织。生物体的目标组织会与入射光发生光声效应,进而发射相应频率和强度的超声波,其中,相应频率和强度的超声波携带着生物体组织的特征信息。生物体目标组织发射的超声波经过超声阻抗匹配层的有效传输后汇聚到超声处理模块,并被压电材料吸收转化成电信号。
在识别阶段,生物活体光声检测系统的验证识别模块接收电信号,并验证电信号是否属于生物活体组织。
其中,验证处理模块接收信号处理模块接收电信号,并进行计算,与事先针对不同生物体组织建立的数据库中的信息进行比对,如果信息能够匹配则能够通过验证,否则则验证失败。
需要说明的是,数据库可以在终端产品生成前即提前建立,也可以在终端产品售出后根据个人信号的差异进行针对性的建立。在识别阶段,需要把实时检测到的数据结果与库中结果进行对比,该信息可以是一种活体组织的特征信息也可以是多种信息交叉验证。在多种信息交叉验证时,需要反复执行不同发光源发射来进行多种信息的检测。
由于本发明实施例的生物活体检测方法所利用的生物活体光声检测系统中光源模块10与超声处理模块20相互独立且并列排放,超声处理模块20接收到的超声波可以免受光源模块10的影响,或 者光源模块10发射的探测光可以免受超声处理模块20的影响,因此检测精确性更高。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (20)

  1. 一种生物活体光声检测系统,其特征在于,包括:
    光源模块,所述光源模块用于向生物体发射探测光;
    超声处理模块,所述超声处理模块用于接收所述生物体发出的超声波,并将接收到的所述超声波转化为电信号;
    其中,所述光源模块与所述超声处理模块在第一表面上的投影沿第一方向排布,所述第一方向为所述生物活体光声检测系统的第一表面的切线方向,所述第一表面为所述生物活体光声检测系统发射所述探测光并接收所述超声波的表面。
  2. 根据权利要求1所述的生物活体光声检测系统,其特征在于,所述超声处理模块的共振频率范围包含所述生物体至少一个组织发出的超声波的频率。
  3. 根据权利要求1所述的生物体光声检测系统,其特征在于,所述生物活体光声检测系统还包括验证识别模块;
    所述验证识别模块与所述超声处理模块连接,用于接收所述超声处理模块输出的电信号,并验证所述电信号是否属于生物活体组织。
  4. 根据权利要求1所述的生物活体光声检测系统,其特征在于,所述光源模块包括至少一个发光源及光处理模块;
    所述光处理模块设置在所述发光源的出光侧,且所述光处理模块用于对所述发光源发出的光进行处理形成所述探测光。
  5. 根据权利要求4所述的生物活体光声检测系统,其特征在于,所述光处理模块包括第一模块;
    所述第一模块用于将所述至少一个发光源发出的光进行处理形成面平行光。
  6. 根据权利要求5所述的生物活体光声检测系统,其特征在于,所述光源模块包括一个所述发光源,所述第一模块包括:
    扩束镜,所述扩束镜用于将一个所述发光源发出的光进行发散;
    第一凸透镜,所述第一凸透镜设置在所述扩束镜背离所述发光 源的一侧,所述第一凸透镜用于将发散后的光进行处理形成面平行光。
  7. 根据权利要求5所述的生物活体光声检测系统,其特征在于,所述光源模块包括多个所述发光源,所述第一模块包括:
    第二凸透镜,所述第二凸透镜用于将多个所述发光源发出光进行汇聚;
    第一凸透镜,所述第一凸透镜设置在所述第二凸透镜背离所述发光源的一侧,所述第一凸透镜用于将汇聚后的光进行处理形成面平行光。
  8. 根据权利要求5所述的生物活体光声检测系统,其特征在于,所述光处理模块还包括准直筒;
    所述准直筒设置在所述第一模块远离所述发光源的一侧,所述准直筒用于将所述面平行光传导至所述光源模块的出光面。
  9. 根据权利要求5所述的生物活体光声检测系统,其特征在于,所述光处理模块还包括第三凸透镜;
    所述第三凸透镜设置在所述第一模块背离所述发光源的一侧,所述第三凸透镜用于将所述第一模块处理形成的面平行光进行汇聚形成汇聚光。
  10. 根据权利要求4所述的生物活体光声检测系统,其特征在于,所述至少一个发光源为多个发光源,所述多个发光源至少包括第一发光源及第二发光源;
    所述第一发光源与所述第二发光源的波长或频率不同。
  11. 根据权利要求1所述的生物活体光声检测系统,其特征在于,所述生物活体光声检测系统还包括超声阻抗匹配层,所述超声阻抗匹配层中所述超声波的衰减速率小于空气中所述超声波的衰减速率;
    所述超声阻抗匹配层设置在所述超声处理模块接收所述超声波的一侧,且所述超声阻抗匹配层至少覆盖所述超声处理模块。
  12. 根据权利要求11所述的生物活体光声检测系统,其特征在 于,所述超声阻抗匹配层包括以下材料中的至少一种:高分子材料、无机氧化物材料、复合材料。
  13. 根据权利要求11所述的生物活体光声检测系统,其特征在于,所述超声阻抗匹配层覆盖所述超声处理模块,并至少部分覆盖所述光源模块。
  14. 根据权利要求1所述的生物活体光声检测系统,其特征在于,所述生物活体光声检测系统应用于电子设备,所述电子设备包括显示屏,所述生物活体光声检测系统设置在所述显示屏的下方。
  15. 一种生物信息检测装置,其特征在于,包括如权利要求1-14任意一项所述的生物活体光声检测系统;
    所述生物体光声检测装置还包括生物特征识别系统,所述生物特征识别系统包括指纹识别系统及脸部识别系统中的至少一者;
    所述生物活体光声检测系统与所述指纹识别系统及所述脸部识别系统中的至少一者相邻设置。
  16. 根据权利要求15所述的生物信息检测装置,其特征在于,所述生物活体光声检测系统的所述光源模块与所述生物特征识别系统的光源模块复用。
  17. 根据权利要求15所述生物信息检测装置,其特征在于,所述生物信息检测装置应用于电子设备,所述电子设备包括显示屏,所述生物活体光声检测系统及所述生物特征识别系统设置在所述显示屏的下方。
  18. 一种电子设备,其特征在于,包括如权利要求1-14任意一项所述的生物活体光声检测系统,所述电子设备还包括显示屏;
    所述生物活体光声检测系统设置在所述显示屏的下方。
  19. 根据权利要求18所述的电子设备,其特征在于,所述电子设备还包括生物特征识别系统;
    所述生物特征识别系统包括指纹识别系统及脸部识别系统中的至少一者,且设置在所述显示屏的下方。
  20. 一种生物活体检测方法,其特征在于,利用权利要求1-14 任意一项所述的生物活体光声检测系统对生物进行活体检测,包括:
    验证阶段,所述光源模块向生物体发射探测光,所述超声处理模块接收生物体发出的超声波并将超声波转化为电信号;
    识别阶段,生物活体光声检测系统还包括验证识别模块,所述验证识别模块接收所述电信号,并验证所述电信号是否属于生物活体组织。
PCT/CN2020/073888 2020-01-22 2020-01-22 生物活体光声检测系统、生物信息检测装置、电子设备及生物活体检测方法 WO2021147023A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080001603.7A CN111837135B (zh) 2020-01-22 2020-01-22 生物活体光声检测系统、生物信息检测装置、电子设备及生物活体检测方法
PCT/CN2020/073888 WO2021147023A1 (zh) 2020-01-22 2020-01-22 生物活体光声检测系统、生物信息检测装置、电子设备及生物活体检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073888 WO2021147023A1 (zh) 2020-01-22 2020-01-22 生物活体光声检测系统、生物信息检测装置、电子设备及生物活体检测方法

Publications (1)

Publication Number Publication Date
WO2021147023A1 true WO2021147023A1 (zh) 2021-07-29

Family

ID=72918758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073888 WO2021147023A1 (zh) 2020-01-22 2020-01-22 生物活体光声检测系统、生物信息检测装置、电子设备及生物活体检测方法

Country Status (2)

Country Link
CN (1) CN111837135B (zh)
WO (1) WO2021147023A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113080919B (zh) * 2021-03-31 2023-01-24 歌尔股份有限公司 心率检测方法、装置、设备及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103393406A (zh) * 2013-07-29 2013-11-20 深圳先进技术研究院 简易手持式光声成像探头
CN105286805A (zh) * 2015-09-28 2016-02-03 周辉 一种无创循环肿瘤细胞检测诊断装置及其检测诊断方法
CN107228904A (zh) * 2017-07-21 2017-10-03 江西科技师范大学 一种光致超声的血糖无创检测装置及方法
CN109328354A (zh) * 2016-05-06 2019-02-12 高通股份有限公司 具有光声成像的生物测量系统
CN209826686U (zh) * 2019-03-29 2019-12-24 太原科技大学 一种光声成像检测装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4643153B2 (ja) * 2004-02-06 2011-03-02 株式会社東芝 非侵襲生体情報映像装置
EP2002784B1 (en) * 2007-06-11 2018-07-11 Canon Kabushiki Kaisha Intravital-information imaging apparatus
CN104545811B (zh) * 2014-12-26 2017-06-27 深圳先进技术研究院 一种血管内成像系统及方法
CN107194382A (zh) * 2017-07-07 2017-09-22 合肥芯福传感器技术有限公司 一种活体指纹识别装置
CN212489862U (zh) * 2020-01-22 2021-02-09 深圳市汇顶科技股份有限公司 生物活体光声检测系统、生物信息检测装置、电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103393406A (zh) * 2013-07-29 2013-11-20 深圳先进技术研究院 简易手持式光声成像探头
CN105286805A (zh) * 2015-09-28 2016-02-03 周辉 一种无创循环肿瘤细胞检测诊断装置及其检测诊断方法
CN109328354A (zh) * 2016-05-06 2019-02-12 高通股份有限公司 具有光声成像的生物测量系统
CN107228904A (zh) * 2017-07-21 2017-10-03 江西科技师范大学 一种光致超声的血糖无创检测装置及方法
CN209826686U (zh) * 2019-03-29 2019-12-24 太原科技大学 一种光声成像检测装置

Also Published As

Publication number Publication date
CN111837135A (zh) 2020-10-27
CN111837135B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
US11645862B2 (en) Interactive biometric touch scanner
US9183433B2 (en) Apparatus and method for biometric authentication
US11346930B2 (en) Method and apparatus of user verification by ultrasonic subdermal probe
US7421099B2 (en) Use of papilla mapping to determine a friction-ridge surface
EP2496131B1 (en) Bioinformation acquisition apparatus
US8649015B2 (en) Bioinformation acquisition apparatus
CN1950027A (zh) 用于检测血流的设备和方法
Periyasamy et al. Monte Carlo simulation of light transport in tissue for optimizing light delivery in photoacoustic imaging of the sentinel lymph node
Wang et al. A robust and secure palm vessel biometric sensing system based on photoacoustics
WO2021147023A1 (zh) 生物活体光声检测系统、生物信息检测装置、电子设备及生物活体检测方法
KR102356455B1 (ko) 지문 인증 시스템 및 지문 인증 방법
CN106473751A (zh) 基于阵列式超声传感器的手掌血管成像与识别装置及其成像方法
CN212489862U (zh) 生物活体光声检测系统、生物信息检测装置、电子设备
Zheng et al. Photoacoustic tomography of fingerprint and underlying vasculature for improved biometric identification
US6228029B1 (en) Method for the identification of persons
US20140275826A1 (en) Photoacoustic sensors for patient monitoring
WO2012114709A1 (ja) 光音響撮像装置、それに用いられるプローブユニットおよび光音響撮像装置の作動方法
Sinelnikov et al. Time reversal in ultrasound focusing transmitters and receivers
CN111144317A (zh) 一种光声血管声速识别防伪装置及其方法
KR102361752B1 (ko) 초음파 도플러 효과를 이용하여 생체를 판별하는 지정맥 인식 방법 및 장치
CN202433972U (zh) 基于彩色多普勒超声扫描的防盗系统
Sun et al. High‐security photoacoustic identity recognition by capturing hierarchical vascular structure of finger
CN110990818B (zh) 一种基于线性阵列式迷你led的光声强度防伪识别装置及其方法
Rathore Towards Cyber-Physical Defense against Unwanted Access in Smart Applications
CN116363714A (zh) 掌静脉识别系统、方法、介质与计算机设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915531

Country of ref document: EP

Kind code of ref document: A1