WO2021146976A1 - 指纹检测的装置和电子设备 - Google Patents

指纹检测的装置和电子设备 Download PDF

Info

Publication number
WO2021146976A1
WO2021146976A1 PCT/CN2020/073671 CN2020073671W WO2021146976A1 WO 2021146976 A1 WO2021146976 A1 WO 2021146976A1 CN 2020073671 W CN2020073671 W CN 2020073671W WO 2021146976 A1 WO2021146976 A1 WO 2021146976A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
area
fingerprint
light
finger
Prior art date
Application number
PCT/CN2020/073671
Other languages
English (en)
French (fr)
Inventor
王炳文
池文明
王磊
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/073671 priority Critical patent/WO2021146976A1/zh
Priority to CN202080001523.1A priority patent/CN111801684A/zh
Publication of WO2021146976A1 publication Critical patent/WO2021146976A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • G06V40/1394Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger using acquisition arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1341Sensing with light passing through the finger

Definitions

  • the embodiments of the present application relate to the field of fingerprint detection, and more specifically, to fingerprint detection devices and electronic equipment.
  • the current fingerprint technology under the optical screen is basically applied to the self-luminous organic light-emitting diode (OLED) mobile phone screen.
  • OLED organic light-emitting diode
  • the self-luminous screen pixels included in this type of screen are used as the light source, and the light shines on the finger. After the finger reflection, through the mobile phone screen and special optical lens, it is received by the sensor under the screen to realize fingerprint image collection and fingerprint recognition.
  • This method has some shortcomings, for example, it is difficult to identify wet fingers, and cannot be used to prevent counterfeiting of 2D fake fingers.
  • the embodiments of the present application provide a fingerprint detection device and electronic equipment, which can improve the performance of fingerprint recognition.
  • a fingerprint detection device which is suitable for under the display screen to realize under-screen optical fingerprint detection
  • the display screen includes a fingerprint detection area
  • the fingerprint detection area includes a first area and a second area
  • the second area surrounds the first area
  • the fingerprint detection device includes: a light path guiding structure for guiding the first return light signal formed by the finger above the display screen to the optical sensor, wherein the The first return light signal is the light signal that the pixels in the first area do not emit light, and the light emitted by the pixels in the second area is transmitted into the finger, and then transmitted from the finger and passed through the display screen;
  • the optical sensor is arranged under the light path guiding structure, and is used to receive the first return light signal passing through the light path guiding structure, and the first return light signal is used to obtain a fingerprint image of the finger.
  • the pixels in the first area of the fingerprint detection area do not emit light, and the light emitted by the pixels in the second area is transmitted into the finger, and then transmitted from the finger and passes through the display screen. Detecting the transmitted light passing through the finger to obtain the fingerprint pattern of the finger, the imaging quality is higher, the recognition ability of the wet finger can be improved, and the 2D fake finger can be anti-counterfeit. Therefore, this technical solution can improve the performance of fingerprint recognition.
  • the size of the first area is not less than the field of view diameter of the fingerprint sensor.
  • the vertical projection area of the first region coincides with the vertical projection area of the fingerprint sensor's field of view, or the vertical projection area of the first region covers the fingerprint sensor's visual field.
  • the vertical projection area of the field coincides with the vertical projection area of the fingerprint sensor's field of view, or the vertical projection area of the first region covers the fingerprint sensor's visual field.
  • the size L of the first area satisfies:
  • the D is the field diameter of the optical sensor
  • the d is the distance between the pixel in the second area and the upper surface of the display screen
  • the ⁇ represents the light emitting angle of the pixel.
  • the shape of the first area is a circle or a square
  • the boundary shape of the second area is a circle or a square
  • the combined shape of the first area and the second area is a concentric circle.
  • the light emitted by the pixels in the second area is red light or yellow light.
  • the device further includes: an optical filter located above the optical fingerprint sensor, and the optical filter is used to filter other optical signals other than the first return optical signal.
  • the wavelength range of the first return optical signal is 600-660 nm
  • the optical filter is used to filter light whose wavelength is not equal to 600-660 nm.
  • the optical path guiding structure includes an optical lens, the optical lens is disposed above the optical fingerprint sensor, and is used to converge the first return optical signal passing through the display screen to The sensing array of the optical fingerprint sensor.
  • the optical path guiding structure includes a microlens array with a plurality of microlenses and a light blocking layer with a plurality of microholes, and the microlens array is used to pass through the display screen.
  • the first return light signal is respectively focused to the microholes corresponding to the light blocking layer through the plurality of microlenses, and is transmitted to the corresponding optical sensing units in the sensing array of the optical fingerprint sensor through the microholes.
  • the light intensity of the first return light signal received by the optical sensor is used to determine whether the finger is a real finger.
  • the finger if the light intensity of the first return light signal received by the optical sensor is greater than or equal to a preset value, then the finger is a real finger; If the light intensity of the first return light signal is less than the preset value, the finger is a fake finger.
  • the technical solution provided by the embodiment of the present application can not only identify a wet finger, but also determine whether the finger is a real finger according to the light intensity of the received first light signal.
  • an electronic device which includes a fingerprint detection device as in the first aspect or any possible implementation of the first aspect, the device is arranged under the display screen to implement an under-screen optical fingerprint Detection.
  • the electronic device further includes a processor, configured to determine whether the finger is a real finger according to the light intensity of the first return light signal received by the optical sensor.
  • the processor is specifically configured to: if the light intensity of the first return light signal received by the optical sensor is greater than or equal to a preset value, determine that the finger is a real finger; If the light intensity of the first return light signal received by the optical sensor is less than the preset value, it is determined that the finger is a fake finger.
  • Fig. 1 is a schematic structural diagram of an electronic device to which the present application can be applied.
  • Fig. 2 is a schematic cross-sectional view of the electronic device shown in Fig. 1.
  • Fig. 3 is another schematic structural diagram of an electronic device to which the present application can be applied.
  • Fig. 4 is a schematic cross-sectional view of the electronic device shown in Fig. 3.
  • Fig. 5 is a schematic diagram of a fingerprint imaging model based on reflected light after a finger is illuminated by a light source.
  • Figure 6 is a reflected light fingerprint image of a normal finger.
  • Fig. 7 is a fingerprint image of reflected light of a wet finger.
  • Fig. 8 is a schematic diagram of a model of fingerprint imaging based on transmitted light after a finger is illuminated by a light source.
  • Figure 9 is a transmitted light fingerprint image of a normal finger.
  • Figure 10 is a transmitted light fingerprint image of a wet finger.
  • FIG. 11 is a schematic side view of the electronic device of the embodiment of the present application when performing fingerprint detection.
  • Fig. 12 is a schematic front view of an electronic device according to an embodiment of the present application.
  • FIG. 13 is a schematic cross-sectional view of the sizes of different areas in the fingerprint detection area.
  • 14(a) to 14(d) are schematic diagrams of the shape combination of the first area and the second area in the fingerprint detection area.
  • FIG. 15 is a schematic diagram of performing fingerprint recognition on an electronic device with a 2D fake finger according to an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various electronic devices.
  • portable or mobile computing devices such as smartphones, laptops, tablet computers, and gaming devices, as well as other electronic devices such as electronic databases, automobiles, and bank automated teller machines (ATM).
  • ATM bank automated teller machines
  • the embodiment of the present application does not limit this.
  • biometric recognition technologies include, but are not limited to, fingerprint recognition, palmprint recognition, iris recognition, face recognition, and living body recognition.
  • fingerprint recognition technology for ease of description, the following uses fingerprint recognition technology as an example for description.
  • the under-screen fingerprint recognition technology refers to the installation of the fingerprint recognition module below the display screen, so as to realize the fingerprint recognition operation in the display area of the display screen, and there is no need to set a fingerprint collection area on the front of the electronic device except for the display area.
  • the fingerprint identification module uses light returned from the top surface of the display assembly of the electronic device to perform fingerprint sensing and other sensing operations. This returned light carries information about objects (such as fingers) that are in contact with or close to the top surface of the display assembly, and the fingerprint recognition module located below the display assembly collects and detects this returned light to realize fingerprint recognition under the screen.
  • the design of the fingerprint recognition module may be to realize the desired optical imaging by appropriately configuring the optical element for collecting and detecting the returned light, so as to detect the fingerprint information of the finger.
  • in-display fingerprint recognition technology refers to the installation of fingerprint recognition modules or part of fingerprint recognition modules inside the display screen, so that fingerprint recognition operations can be performed in the display area of the display screen, without the need for electronic
  • the fingerprint collection area is set in the area on the front of the device except the display area.
  • FIG. 1 and FIG. 3 are schematic diagrams of the orientation of the electronic device 10
  • FIG. 2 and FIG. 4 are schematic cross-sectional views of the electronic device 10 shown in FIG. 1 and FIG. 3, respectively.
  • the electronic device 10 may include a display screen 120 and an optical fingerprint recognition module 130.
  • the display screen 120 may be a self-luminous display, which uses a self-luminous display unit as display pixels.
  • the display screen 120 may be an Organic Light-Emitting Diode (OLED) display screen or a Micro-LED (Micro-LED) display screen.
  • the display screen 120 may also be a liquid crystal display (LCD) or other passive light-emitting display, which is not limited in the embodiment of the present application.
  • the display screen 120 may also be specifically a touch-sensitive display screen, which can not only perform screen display, but also detect a user's touch or pressing operation, so as to provide the user with a human-computer interaction interface.
  • the electronic device 10 may include a touch sensor, and the touch sensor may specifically be a touch panel (TP), which may be provided on the surface of the display screen 120, or may be partially integrated or The whole is integrated into the display screen 120 to form the touch display screen.
  • TP touch panel
  • the optical fingerprint module 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 133 having a plurality of optical sensing units 131 (also referred to as optical sensing pixels, photosensitive pixels, pixel units, etc.).
  • the area where the sensing array 133 is located or its sensing area is the fingerprint detection area 103 of the optical fingerprint module 130 (also referred to as fingerprint collection area, fingerprint recognition area, etc.).
  • the optical fingerprint module 130 is arranged in a partial area below the display screen 120.
  • the fingerprint detection area 103 may be located in the display area of the display screen 120.
  • the optical fingerprint module 130 can also be arranged in other positions, such as the side of the display screen 120 or the non-transmissive area of the edge of the electronic device 10, and the optical fingerprint module 130 can be designed to The optical signal from at least a part of the display area of the display screen 120 is guided to the optical fingerprint module 130, so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
  • the electronic device 10 when the user needs to unlock the electronic device 10 or perform other fingerprint verification, he only needs to press his finger on the fingerprint detection area 103 of the display screen 120 to realize fingerprint input. Since fingerprint detection can be implemented in the screen, the electronic device 10 adopting the above structure does not need to reserve space on the front side to set a fingerprint button (such as the Home button), so that a full-screen solution can be adopted, that is, the display area of the display screen 120 It can be basically extended to the front of the entire electronic device 10.
  • a fingerprint button such as the Home button
  • the optical fingerprint module 130 may include a light detecting part 134 and an optical component 132.
  • the light detection part 134 includes the sensor array 133 (also referred to as an optical fingerprint sensor), a reading circuit and other auxiliary circuits electrically connected to the sensor array 133, which can be fabricated on a chip by a semiconductor process (Die), such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array 133 is specifically a photodetector (photodetector) array, which includes a plurality of photodetectors distributed in an array, and the photodetectors can be used as the above-mentioned optical sensing unit.
  • the optical component 132 may be disposed above the sensing array 133 of the light detecting part 134, and it may specifically include a filter layer (Filter), a light guide layer or a light path guiding structure, and other optical elements. It can be used to filter out ambient light penetrating the finger, and the light guide layer or light path guiding structure is mainly used to guide the reflected light reflected from the surface of the finger to the sensing array 133 for optical detection.
  • a filter layer Finter
  • a light guide layer or a light path guiding structure and other optical elements. It can be used to filter out ambient light penetrating the finger, and the light guide layer or light path guiding structure is mainly used to guide the reflected light reflected from the surface of the finger to the sensing array 133 for optical detection.
  • the optical assembly 132 and the light detecting part 134 may be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 It is attached above the chip, or part of the components of the optical assembly 132 is integrated into the chip.
  • the area or light sensing range of the sensing array 133 of the optical fingerprint module 130 corresponds to the fingerprint detection area 103 of the optical fingerprint module 130.
  • the fingerprint collection area 103 of the optical fingerprint module 130 may be equal to or not equal to the area or light sensing range of the sensing array 133 of the optical fingerprint module 130, which is not specifically limited in the embodiment of the present application. .
  • the light path is guided by light collimation, and the fingerprint detection area 103 of the optical fingerprint module 130 can be designed to be substantially the same as the area of the sensing array of the optical fingerprint module 130.
  • the area of the fingerprint detection area 103 of the optical fingerprint module 130 can be made larger than that of the optical fingerprint module.
  • 130 is the area of the sensing array 133.
  • the light path guiding structure that the optical assembly 132 may include is exemplarily described below.
  • the optical collimator may specifically be a collimator (Collimator) layer fabricated on a semiconductor silicon wafer, which has A plurality of collimating units or micro-holes
  • the collimating unit may be specifically a small hole, among the reflected light reflected from the finger, the light perpendicularly incident to the collimating unit can pass through and be received by the sensor chip below it , And the light whose incident angle is too large is attenuated by multiple reflections inside the collimating unit. Therefore, each sensor chip can basically only receive the reflected light reflected by the fingerprint pattern directly above it, which can effectively improve image resolution. Rate, and then improve the fingerprint recognition effect.
  • the optical path guiding structure may be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses , which is used to converge the reflected light reflected from the finger to the sensing array 133 of the light detection part 134 below it, so that the sensing array 133 can perform imaging based on the reflected light, thereby obtaining a fingerprint image of the finger .
  • Lens optical lens
  • the optical lens layer may also have a pinhole or a micro-aperture formed in the optical path of the lens unit, for example, one or more light-shielding sheets may be formed in the optical path of the lens unit, of which at least A light-shielding sheet may be formed with light-transmitting micro-holes in the optical axis or optical center area of the lens unit, and the light-transmitting micro-holes may be used as the aforementioned pinholes or micro-apertures.
  • the pinhole or micro-aperture diaphragm can cooperate with the optical lens layer and/or other optical film layers above the optical lens layer to expand the field of view of the optical fingerprint module 130 to improve the optical fingerprint module 130 Fingerprint imaging effect.
  • the light path guiding structure may include a micro lens array formed by a plurality of micro lenses, which may be formed by a semiconductor growth process or other processes Above the sensing array 133 of the light detecting part 134, and each microlens may correspond to one of the sensing units of the sensing array 133, respectively.
  • other optical film layers may be formed between the micro lens layer and the sensing unit, such as a dielectric layer or a passivation layer.
  • a light blocking layer (or called a light blocking layer, a light blocking layer, etc.) with micro holes (or called openings) may also be included between the micro lens layer and the sensing unit, wherein the micro A hole is formed between the corresponding microlens and the sensing unit, the light blocking layer can block the optical interference between the adjacent microlens and the sensing unit, and make the light corresponding to the sensing unit converge through the microlens To the inside of the micropore and transfer to the sensing unit through the micropore for optical fingerprint imaging.
  • a micro lens layer may be further provided above or below the collimator layer or the optical lens layer.
  • a micro lens layer may be further provided above or below the collimator layer or the optical lens layer.
  • the optical component 132 may also include other optical elements, such as filters or other optical films, which may be arranged between the optical path guiding structure and the optical fingerprint sensor or arranged at all.
  • the display screen 120 and the optical path guide structure are mainly used to isolate the influence of external interference light on the optical fingerprint detection.
  • the filter layer may be used to filter out the ambient light that penetrates the finger and enters the optical fingerprint sensor through the display screen 120. Similar to the light path guiding structure, the filter layer may be specific to each The optical fingerprint sensors are separately arranged to filter out interference light, or a large-area filter layer can also be used to simultaneously cover the multiple optical fingerprint sensors.
  • the fingerprint identification module 130 may be used to collect user fingerprint information (such as fingerprint image information).
  • the optical fingerprint module 130 can use the display unit (ie, the OLED light source) of the OLED display 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the display unit ie, the OLED light source
  • the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103.
  • the light 111 is reflected on the surface of the finger 140 to form reflected light or pass through all the fingers.
  • the finger 140 scatters inside to form scattered light (transmitted light).
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Since the ridge 141 and valley 142 of the fingerprint have different light reflection capabilities, the reflected light 151 from the fingerprint ridge and the reflected light 152 from the fingerprint valley have different light intensities, and the reflected light passes through the optical component 132 Then, it is received by the sensing array 133 in the optical fingerprint module 130 and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, thereby The electronic device 10 realizes the optical fingerprint recognition function.
  • the optical fingerprint module 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection and identification.
  • the optical fingerprint module 130 can be applied not only to self-luminous displays such as OLED displays, but also to non-self-luminous displays, such as liquid crystal displays or other passive light-emitting displays.
  • the optical fingerprint system of the electronic device 10 may also include an excitation light source for optical fingerprint detection.
  • the light source may specifically be an infrared light source or a light source of invisible light of a specific wavelength, which may be arranged under the backlight module of the liquid crystal display or arranged in the edge area under the protective cover of the electronic device 10, and the optical fingerprint module 130 can be arranged under the edge area of the liquid crystal panel or the protective cover and guided by the light path so that the fingerprint detection light can reach the optical fingerprint module 130; or, the optical fingerprint module 130 can also be arranged on the backlight module Below, and the backlight module is designed to allow the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical fingerprint module 130 by perforating film layers such as diffuser, brightness enhancement film, reflective film, etc. .
  • the optical fingerprint module 130 adopts a built-in light source or an external light source
  • the electronic device 10 may further include a transparent protective cover plate, which may be a glass cover plate or a sapphire cover plate, which is located above the display screen 120 and covers the front surface of the electronic device 10 . Therefore, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually refers to pressing on the cover plate above the display screen 120 or covering the surface of the protective layer of the cover plate.
  • a transparent protective cover plate which may be a glass cover plate or a sapphire cover plate
  • the optical fingerprint module 130 may include only one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint module 130 has a small area and a fixed position. Therefore, the user needs to press his finger when performing fingerprint input. Go to the specific position of the fingerprint detection area 103, otherwise the optical fingerprint module 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint module 130 may specifically include a plurality of optical fingerprint sensors. The multiple optical fingerprint sensors may be arranged side by side under the display screen 120 in a splicing manner, and the sensing areas of the multiple optical fingerprint sensors collectively constitute the fingerprint detection area 103 of the optical fingerprint module 130.
  • the fingerprint detection area 103 of the optical fingerprint module 130 can be extended to the main area of the lower half of the display screen, that is, to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation. Further, when the number of optical fingerprint sensors is sufficient, the fingerprint detection area 103 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the optical fingerprint module 130 in the electronic device 10 may include a plurality of optical fingerprint sensors, and the plurality of optical fingerprint sensors may be arranged side by side on the display screen 120 by means such as splicing. Below, and the sensing areas of the multiple optical fingerprint sensors collectively constitute the fingerprint detection area 103 of the optical fingerprint device 130.
  • the optical component 132 may include a plurality of light path guiding structures, and each light path guiding structure corresponds to an optical fingerprint sensor (ie, the sensing array 133), and is respectively attached and arranged above the corresponding optical fingerprint sensor.
  • the plurality of optical fingerprint sensors may also share an overall optical path guiding structure, that is, the optical path guiding structure has an area large enough to cover the sensing array of the plurality of optical fingerprint sensors.
  • the optical fingerprint module 130 when the optical fingerprint module 130 includes multiple optical fingerprint sensors, it may be the optical sensor array of each optical fingerprint sensor.
  • One of the optical sensing units is configured with one or more collimating units, and is attached and arranged above the corresponding optical sensing unit.
  • the multiple optical sensing units can also share one collimating unit, that is, the one collimating unit has an aperture large enough to cover the multiple optical sensing units. Since one collimating unit can correspond to multiple optical sensing units or one optical sensing unit corresponds to multiple collimating units, the correspondence between the spatial period of the display screen 120 and the spatial period of the optical fingerprint sensor is destroyed.
  • the spatial structure of the light-emitting display array is similar to the spatial structure of the optical sensing array of the optical fingerprint sensor. It can also effectively prevent the optical fingerprint module 130 from using the light signal passing through the display 120 to perform fingerprint imaging to generate moiré fringes, which effectively improves the optical fingerprint model. Group 130 fingerprint recognition effect.
  • one optical lens can be configured for each sensor chip to perform fingerprint imaging, or one optical lens can be configured for multiple sensor chips. Realize light convergence and fingerprint imaging. Even when a sensor chip has two sensing arrays (Dual Array) or multiple sensing arrays (Multi-Array), the sensor chip can also be equipped with two or more optical lenses to cooperate with the two sensing arrays or Multiple sensing arrays perform optical imaging, thereby reducing the imaging distance and enhancing the imaging effect.
  • FIGS. 1 to 4 are only examples of the present application, and should not be construed as limiting the present application.
  • the optical fingerprint module 130 may include a plurality of fingerprint sensors distributed in a square or circular shape.
  • the fingerprint recognition technology under the screen is mainly based on the principle of reflected light imaging for fingerprint recognition.
  • the light signals emitted by the pixels in the self-luminous display screen 120 illuminate the finger, a part of the light signal is transmitted, and another part of the light signal is reflected.
  • the refractive index of finger tissue is 1.43
  • the refractive index of the optical signal at the fingerprint ridge is close to the refractive index of the display screen 120 (approximately 1.5)
  • the intensity of the transmitted light signal at the ridge is higher, and the intensity of the reflected light signal Weaker.
  • the intensity of the transmitted light signal at the fingerprint valley is weaker, and the intensity of the reflected light signal is higher. .
  • the contrast between the intensity of the reflected light signal at the fingerprint ridge and the fingerprint valley is about 1:40. Therefore, according to the intensity difference of the reflected light signal at the fingerprint ridge and the fingerprint valley, the fingerprint image of the finger can be obtained, and fingerprint identification can be further performed. As shown in Figure 6, it is a fingerprint image of a normal finger acquired through the principle of reflected light imaging. The imaging effect is better and can be used for fingerprint recognition of normal fingers.
  • the valley line is filled with water. Since the refractive index of water is about 1.33, relative to the refractive index of air, the refractive index of water is the same as that of the display screen 120. If the ratio is closer, the intensity of the light signal reflected from the fingerprint valley is severely attenuated when the finger is wet. At this time, the contrast of the intensity of the light signal reflected from the fingerprint ridge and the fingerprint valley is about 1:2. At this time, since the contrast of the intensity of the reflected light signal at the fingerprint ridge and the fingerprint valley is severely reduced, the quality of the fingerprint image of the wet finger acquired according to the principle of reflected light imaging is very poor, as shown in FIG. 7.
  • the embodiments of the present application propose a fingerprint detection device and electronic equipment, which perform fingerprint recognition through the principle of transmitted light imaging.
  • the embodiments of the present application can be applied to the detection of various types of fingers, particularly suitable for the detection of wet fingers, and can also be used for anti-counterfeiting of 2D fake fingers, and can improve fingerprint recognition performance.
  • the so-called wet fingers refer to fingers that are wet or wet fingers.
  • Fingerprint recognition is performed through the principle of transmitted light imaging. As shown in FIG. 8, the light signals emitted by pixels in the self-luminous display screen 120 are transmitted into the finger, and then transmitted from the finger through the display screen. Since the refractive index of finger tissue is similar to that of the display screen, the intensity of the light signal transmitted from the ridge of the finger tissue is higher, and the intensity of the light signal reflected back is weaker. The light in the finger tissue transmitted from the valley needs to pass through the skin and air, air and the display screen to enter the display screen, so that the intensity of the light signal transmitted from the valley of the fingerprint is weak, and the intensity of the light signal reflected back Higher. The contrast of the intensity of the light signal transmitted from the ridge of the fingerprint and the valley of the fingerprint is about 50:1.
  • the valley line of the fingerprint When the finger is dipped in water, the valley line of the fingerprint is filled with water, and the intensity of the light signal transmitted at the valley line will increase slightly, but the water in the valley line will cause a certain loss of light, and the water and the display screen will be separated from each other. There will still be reflection on the interface, so that the intensity of the optical signal transmitted from the fingerprint ridge and the intensity of the optical signal transmitted from the fingerprint valley still have a large difference, and the contrast ratio is about 20:1. It can be seen that the fingerprint recognition of wet fingers based on the principle of transmitted light imaging can obtain a contrast of 10 times the intensity of the light signal obtained by the existing principle of reflected light imaging, and it can have better imaging quality, as shown in Figure 10. Show. Therefore, the fingerprint recognition performance of wet fingers can be improved through the principle of transmitted light imaging.
  • FIG. 11 shows a partial schematic diagram of an electronic device 20 according to an embodiment of the present application
  • FIG. 11 is a side view of the electronic device 20
  • FIG. 12 shows a front view of the electronic device 20 according to an embodiment of the present application.
  • the electronic device 20 includes a display screen 200 and a fingerprint detection device 300, and the display screen 200 is located above the fingerprint detection device 300.
  • the display screen 200 in FIG. 11 may represent a part of the display screen 200, rather than the actual size and size of the display 200;
  • FIG. 12 shows a front view of the display screen 200.
  • the display screen 200 may correspond to the display screen 120 in the electronic device 10 described in FIG. 1 and FIG. 2, and is suitable for the related description of the display screen 120 described above. For the sake of brevity, it will not be repeated here.
  • the electronic device 20 of the embodiment of the present application is described by taking the display screen 200 including a number of light-emitting display pixels capable of self-luminous as an example, and the light-emitting display pixels can be used to display images.
  • the display screen 200 includes a fingerprint detection area 210 for finger pressing, that is, when the user needs to unlock the electronic device 20 or perform other fingerprint recognition, he only needs to press his finger on the
  • the fingerprint detection area 210 can realize fingerprint input.
  • the fingerprint detection area 210 may correspond to the fingerprint detection area 103 in the electronic device 10 described in FIG. 1 to FIG. 4, and is applicable to the relevant description of the fingerprint detection area 103 described above. For the sake of brevity, it will not be repeated here.
  • the display screen 200 includes a fingerprint detection area 210.
  • the fingerprint detection area 210 includes a first area 211 and a second area 212.
  • the second area 212 surrounds the first area 211. And, the first area 211 and the second area 212 do not overlap.
  • the fingerprint detection device 300 is provided under the display screen 200 of the terminal device 20 in the embodiment of the present application, and the fingerprint detection device 300 may be used to receive the light signal returned by the finger.
  • the fingerprint detection device 300 may include: an optical path guiding structure and an optical sensor, and the optical sensor is arranged under the optical path guiding structure.
  • the light path guiding structure is used to guide the first return light signal formed by the finger above the display screen to the optical sensor, where the first return light signal is that the pixel 211 in the first area does not emit light, and the The light emitted by the pixels 212 in the second area is transmitted into the finger, and then transmitted from the finger and passes through the display screen.
  • the optical path guiding structure includes an optical lens, the optical lens is disposed above the optical fingerprint sensor, and is used to converge the first return light signal passing through the display screen. To the sensing array of the optical fingerprint sensor.
  • the light path guiding structure includes a microlens array with a plurality of microlenses and a light blocking layer with a plurality of microholes, and the microlens array is used to pass through the display screen.
  • the first return light signal is respectively focused to the microholes corresponding to the light blocking layer through the plurality of microlenses, and is transmitted to the corresponding optical sensing unit in the sensing array of the optical fingerprint sensor through the microholes .
  • the optical sensor is configured to receive the first return light signal passing through the optical path guiding structure, and the first return light signal is used to obtain a fingerprint image of the finger.
  • the first return light signal is generated after light irradiates the finger, and the first return light The signal is guided to the optical sensor through the optical path guiding structure to obtain the fingerprint image of the finger.
  • the pixels in the first area of the fingerprint detection area do not emit light, and the light emitted by the pixels in the second area is transmitted into the finger, and then transmitted from the finger and passes through the display screen. Detecting the transmitted light passing through the finger to obtain the fingerprint pattern of the finger, the imaging quality is higher, the recognition ability of the wet finger can be improved, and the 2D fake finger can be anti-counterfeit. Therefore, this technical solution can improve the performance of fingerprint recognition.
  • the size of the first area 211 is not less than the field of view diameter of the fingerprint sensor. That is, the size of the first area 211 may be larger than the diameter of the field of view of the fingerprint sensor, or may be equal to the diameter of the field of view of the fingerprint sensor. It should be understood that the field of view diameter of the fingerprint sensor refers to the diameter of the corresponding area of the field of view of the fingerprint sensor on the upper surface of the display screen. For example, if the first area is a rectangle, the size of the size is the smallest value among the length or width of the rectangle.
  • the vertical projection area of the first region may coincide with the vertical projection area of the fingerprint sensor's field of view, or the vertical projection area of the first region may cover the vertical projection of the fingerprint sensor's field of view. area.
  • the light transmitted to the fingerprint sensor has a higher intensity, so as to facilitate the acquisition of the fingerprint image of the finger.
  • the size L of 211 satisfies:
  • D represents the field of view diameter of the optical sensor
  • d represents the distance of the pixel in the second region 212 from the upper surface of the display screen
  • represents the light emitting angle of the pixel
  • the light-emitting angle of the pixels in the display screen is between -60° and +60°.
  • the size L of the first area 211 may satisfy:
  • the shape of the first area 211 may be circular or square.
  • the shape of the first area 211 is a circle, the diameter of the circle satisfies the aforementioned condition; when the shape of the first area 211 is a square, the side length of the square can satisfy the aforementioned condition.
  • the shape of the first region may also be any other regular shape, for example, a regular hexagon or a regular octagon. The embodiments of this application do not make any limitation on this.
  • the boundary shape of the second area 212 may also be a circle or a square.
  • the shape of the second area is preferably a ring, and other shapes that can realize the technical solution of the present application are also possible.
  • 14(a) to 14(d) are schematic diagrams of the shape combination of the first area 211 and the second area 212 in the fingerprint detection area 210.
  • the combined shape of the first area and the second area is preferably a concentric circle. Concentric circles are more commonly used combined shapes.
  • the first area is square, the second area surrounds the first area, and the second area is circular.
  • the center of the first area coincides with the center of the second area.
  • the first area is circular
  • the second area surrounds the first area
  • the second area is square.
  • the center of the first area coincides with the center of the second area.
  • the first area is square
  • the second area surrounds the first area
  • the second area is square.
  • the center of the first area coincides with the center of the second area.
  • the shape of the fingerprint detection area 210 in the embodiment of the present application can be set according to actual applications, and can be set to any regular shape.
  • the embodiments of this application do not make any limitation on this.
  • the pixels in the second area are preferably pixels that can emit red light or yellow light.
  • the pixels in the second area may also be pixels of other displayable colors, such as green, cyan, white, and the like. The embodiments of this application do not make any limitation on this.
  • the fingerprint detection device may further include an optical filter located above the optical fingerprint sensor, and the optical filter is used to filter other optical signals other than the first return optical signal.
  • the optical filter is used to filter other optical signals other than the first return optical signal.
  • the wavelength range of the first return optical signal is preferably 600-660 nm (red light band)
  • the filter is used to filter out light with a wavelength not equal to 600-660 nm.
  • the use of light sources of other colors that can be displayed can also achieve better fingerprint imaging effects.
  • the light intensity of the first return light signal received by the optical sensor can also be used to determine whether the finger is a real finger.
  • the optical sensor can receive more Transmitted light; but in the case of 2D fake fingerprints, as shown in Figure 15, because the material of the 2D fake fingerprints is quite different from the biological tissues, the light signal cannot pass through the fake fingerprints for fingerprint imaging. Therefore, the light received by the optical sensor
  • the signal mainly relies on the self-reflection of the fake fingerprint, no matter under the action of the oblique receiving optical path or the vertical receiving optical path, the optical sensor does not receive the optical signal or only receives a very small amount of optical signal.
  • the intensity of the light signal received by the fingerprint sensor is greater than that of a 2D fake fingerprint, so that the fingerprints can be distinguished from fake ones based on this feature.
  • the finger is a real finger; if the first return light signal received by the optical sensor is If the light intensity of the optical signal is less than the preset value, the finger is a fake finger.
  • the electronic device 20 may include a processor for determining whether the finger is a real finger according to the light intensity of the first return light signal received by the optical sensor.
  • the processor may be configured to: if the light intensity of the first return light signal received by the optical sensor is greater than or equal to a preset value, determine that the finger is a real finger; if the optical sensor receives If the light intensity of the first return light signal is less than the preset value, it is determined that the finger is a fake finger.
  • the units can be implemented by electronic hardware, computer software, or a combination of both, in order to clearly illustrate the interchangeability of hardware and software.
  • the composition and steps of each example have been described generally in terms of function. Whether these functions are executed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the disclosed system and device may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium. It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种指纹检测的装置(300)和电子设备(10,20),能够提升指纹识别的性能。该指纹检测的装置(300)适用于显示屏(120,200)的下方以实现屏下光学指纹检测,所述显示屏(120,200)包括指纹检测区域(103,210),所述指纹检测区域(103,210)包括第一区域(211)和第二区域(212),所述第二区域(212)环绕所述第一区域(211),所述装置(300)包括:光路引导结构,用于将所述显示屏(120,200)上方的手指(140)形成的第一返回光信号引导至光学传感器,其中,所述第一返回光信号为所述第一区域(211)中的像素不发光,所述第二区域(212)中的像素发出的光透射进手指(140),再从所述手指(140)透射出并穿过所述显示屏(120,200)的光信号;光学传感器,设置于所述光路引导结构的下方,用于接收经过所述光路引导结构的所述第一返回光信号,所述第一返回光信号用于获取所述手指(140)的指纹图像。

Description

指纹检测的装置和电子设备 技术领域
本申请实施例涉及指纹检测领域,并且更具体地,涉及指纹检测的装置和电子设备。
背景技术
随着终端行业的高速发展,生物识别技术越来越受到人们重视,更加便捷的屏下生物特征识别技术,例如屏下光学指纹识别技术的实用化已成为大众所需。
目前的光学屏下指纹技术基本都应用在自发光的有机发光二极管(Organic Light-Emitting Diode,OLED)的手机屏幕上,利用这类屏幕包括的自发光的屏幕像素作为光源,光线照射到手指上经过手指反射,透过手机屏幕和特殊光学镜头,被屏下的传感器接收到,实现指纹图像采集和指纹识别。此方法存在一些不足,例如,难以识别湿手指,且不能对2D假手指进行防伪。
发明内容
本申请实施例提供了一种指纹检测的装置和电子设备,能够提升指纹识别的性能。
第一方面,提供了一种指纹检测的装置,适用于显示屏的下方以实现屏下光学指纹检测,所述显示屏包括指纹检测区域,所述指纹检测区域包括第一区域和第二区域,所述第二区域环绕所述第一区域,所述指纹检测的装置包括:光路引导结构,用于将所述显示屏上方的手指形成的第一返回光信号引导至光学传感器,其中,所述第一返回光信号为所述第一区域中的像素不发光,所述第二区域中的像素发出的光透射进手指,再从所述手指透射出并穿过所述显示屏的光信号;光学传感器,设置于所述光路引导结构的下方,用于接收经过所述光路引导结构的所述第一返回光信号,所述第一返回光信号用于获取所述手指的指纹图像。
在本申请实施例的技术方案中,所述指纹检测区域的第一区域中的像素不发光,第二区域中的像素发出的光透射进手指,再从所述手指透射出并穿 过显示屏,对通过所述手指的透射光进行检测以获取所述手指的指纹图案,成像质量更高,可以提升对湿手指的识别能力,并且可以对2D假手指进行防伪。因此,该技术方案能够提升指纹识别的性能。
在一种可能的实现方式中,所述第一区域的尺寸不小于所述指纹传感器的视场直径。
在一种可能实现的方式中,所述第一区域的垂直投影面积与所述指纹传感器的视场垂直投影面积的重合,或者,所述第一区域的垂直投影面积覆盖所述指纹传感器的视场垂直投影面积。
在一种可能的实现方式中,所述第一区域的尺寸L满足:
D≤L≤D+2×d×tanα
其中,所述D为所述光学传感器的视场直径,所述d为所述第二区域中的所述像素距离所述显示屏上表面的距离,所述α表示所述像素的发光角度。
在一种可能的实现方式中,所述第一区域的形状为圆形或方形,所述第二区域的边界形状为圆形或方形。
在一种可能的实现方式中,所述第一区域与所述第二区域的组合形状为同心圆形。
在一种可能的实现方式中,所述第二区域中的像素发出的光为红光或黄光。
在一种可能的实现方式中,所述装置还包括:滤光片,位于所述光学指纹传感器上方,所述滤光片用于滤除所述第一返回光信号以外的其他光信号。
在一种可能的实现方式中,所述第一返回光信号的波长范围为600~660nm,所述滤光片用于滤除波长不等于600~660nm的光。
在一种可能的实现方式中,所述光路引导结构包括光学透镜,所述光学透镜设置在所述光学指纹传感器上方,用于将穿过所述显示屏的所述第一返回光信号汇聚到所述光学指纹传感器的感应阵列。
在一种可能的实现方式中,所述光路引导结构包括具有多个微透镜的微透镜阵列和具有多个微孔的挡光层,所述微透镜阵列用于将穿过所述显示屏的所述第一返回光信号通过所述多个微透镜分别聚焦到所述挡光层对应的微孔,并通过所述微孔传输到所述光学指纹传感器的感应阵列中对应的光学感应单元。
在一种可能的实现方式中,所述光学传感器接收到的所述第一返回光信号的光强用于确定所述手指是否为真手指。
在一种可能的实现方式中,若所述光学传感器接收到的所述第一返回光信号的光强大于或者等于预设值,则所述手指为真手指;若所述光学传感器接收到的所述第一返回光信号的光强小于所述预设值,则所述手指为假手指。
本申请实施例提供的技术方案,不仅可以识别湿手指,还可以根据接收到的所述第一光信号的光强确定所述手指是否为真手指。
第二方面,提供了一种电子设备,包括如第一方面或者第一方面的任意可能的实现方式中的指纹检测的装置,所述装置设置于所述显示屏下方,以实现屏下光学指纹检测。
在一种可能的实现方式中,所述电子设备还包括:处理器,用于根据所述光学传感器接收到的所述第一返回光信号的光强确定所述手指是否为真手指。
在一种可能的实现方式中,所述处理器具体用于:若所述光学传感器接收到的所述第一返回光信号的光强大于或者等于预设值,确定所述手指为真手指;若所述光学传感器接收到的所述第一返回光信号的光强小于所述预设值,确定所述手指为假手指。
附图说明
图1是本申请可以适用的电子设备的示意性结构图。
图2是图1所示的电子设备的剖面示意图。
图3是本申请可以适用的电子设备的另一示意性结构图。
图4是图3所示的电子设备的剖面示意图。
图5是光源照射手指后根据反射光进行指纹成像的模型示意图。
图6是正常手指的反射光指纹图像。
图7是沾水手指的反射光指纹图像。
图8是光源照射手指后根据透射光进行指纹成像的模型示意图。
图9是正常手指的透射光指纹图像。
图10是沾水手指的透射光指纹图像。
图11是本申请实施例的电子设备进行指纹检测时的示意性侧视图。
图12是本申请实施例的电子设备的示意性正视图。
图13是指纹检测区域中不同区域的尺寸的剖面示意图。
图14(a)至图14(d)是指纹检测区域中第一区域与第二区域的形状组合示意图。
图15是本申请实施例的2D假手指在电子设备上进行指纹识别的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种电子设备。例如,智能手机、笔记本电脑、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备。但本申请实施例对此并不限定。
本申请实施例的技术方案可以用于生物特征识别技术。其中,生物特征识别技术包括但不限于指纹识别、掌纹识别、虹膜识别、人脸识别以及活体识别等识别技术。为了便于说明,下文以指纹识别技术为例进行说明。
本申请实施例的技术方案可以用于屏下指纹识别技术和屏内指纹识别技术。
屏下指纹识别技术是指将指纹识别模组安装在显示屏下方,从而实现在显示屏的显示区域内进行指纹识别操作,不需要在电子设备正面除显示区域外的区域设置指纹采集区域。具体地,指纹识别模组使用从电子设备的显示组件的顶面返回的光来进行指纹感应和其他感应操作。这种返回的光携带与显示组件的顶面接触或者接近的物体(例如手指)的信息,位于显示组件下方的指纹识别模组通过采集和检测这种返回的光以实现屏下指纹识别。其中,指纹识别模组的设计可以为通过恰当地配置用于采集和检测返回的光的光学元件来实现期望的光学成像,从而检测出所述手指的指纹信息。
相应的,屏内(In-display)指纹识别技术是指将指纹识别模组或者部分指纹识别模组安装在显示屏内部,从而实现在显示屏的显示区域内进行指纹识别操作,不需要在电子设备正面除显示区域外的区域设置指纹采集区域。
图1至图4示出了本申请实施例可以适用的电子设备的示意图。其中,图1和图3为电子设备10的定向示意图,图2和图4分别为图1和图3所 示的电子设备10的剖面示意图。
请参见图1至图4,电子设备10可以包括显示屏120和光学指纹识别模组130。
显示屏120可以为自发光显示屏,其采用具有自发光的显示单元作为显示像素。比如显示屏120可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。在其他可替代实施例中,显示屏120也可以为液晶显示屏(Liquid Crystal Display,LCD)或者其他被动发光显示屏,本申请实施例对此不做限制。进一步地,显示屏120还可以具体为触控显示屏,其不仅可以进行画面显示,还可以检测用户的触摸或者按压操作,从而为用户提供一个人机交互界面。比如,在一种实施例中,电子设备10可以包括触摸传感器,所述触摸传感器可以具体为触控面板(Touch Panel,TP),其可以设置在所述显示屏120表面,也可以部分集成或者整体集成到所述显示屏120内部,从而形成所述触控显示屏。
光学指纹模组130包括光学指纹传感器,所述光学指纹传感器包括具有多个光学感应单元131(也可以称为光学感应像素、感光像素、像素单元等)的感应阵列133。所述感应阵列133所在区域或者其感应区域为所述光学指纹模组130的指纹检测区域103(也称为指纹采集区域、指纹识别区域等)。
其中,所述光学指纹模组130设置在所述显示屏120下方的局部区域。
请继续参见图1,所述指纹检测区域103可以位于所述显示屏120的显示区域之中。在一种可替代实施例中,所述光学指纹模组130还可以设置在其他位置,比如所述显示屏120的侧面或者所述电子设备10的边缘非透光区域,并通过光路设计来将来自所述显示屏120的至少部分显示区域的光信号导引到所述光学指纹模组130,从而使得所述指纹检测区域103实际上位于所述显示屏120的显示区域。
针对电子设备10,用户在需要对所述电子设备10进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域可以基本扩展到整个电子设备10的正面。
请继续参见图2,所述光学指纹模组130可以包括光检测部分134和光 学组件132。所述光检测部分134包括所述感应阵列133(也可称为光学指纹传感器)以及与所述感应阵列133电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die)上,比如光学成像芯片或者光学指纹传感器。所述感应阵列133具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元。所述光学组件132可以设置在所述光检测部分134的感应阵列133的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构、以及其他光学元件,所述滤光层可以用于滤除穿透手指的环境光,而所述导光层或光路引导结构主要用于从手指表面反射回来的反射光导引至所述感应阵列133进行光学检测。
在本申请的一些实施例中,所述光学组件132可以与所述光检测部分134封装在同一个光学指纹部件。比如所述光学组件132可以与所述光学检测部分134封装在同一个光学指纹芯片,也可以将所述光学组件132设置在所述光检测部分134所在的芯片外部,比如将所述光学组件132贴合在所述芯片上方,或者将所述光学组件132的部分元件集成在上述芯片之中。
在本申请的一些实施例中,所述光学指纹模组130的感应阵列133的所在区域或者光感应范围对应所述光学指纹模组130的指纹检测区域103。其中,所述光学指纹模组130的指纹采集区域103可以等于或不等于所述光学指纹模组130的感应阵列133的所在区域的面积或者光感应范围,本申请实施例对此不做具体限定。
例如,通过光线准直方式进行光路引导,所述光学指纹模组130的指纹检测区域103可以设计成与所述光学指纹模组130的感应阵列的面积基本一致。
又例如,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得所述光学指纹模组130的指纹检测区域103的面积大于所述光学指纹模组130的感应阵列133的面积。
下面对光学组件132可以包括的光路引导结构进行示例性说明。
以所述光路引导结构采用具有高深宽比的通孔阵列的光学准直器为例,所述光学准直器可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔,所述准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到所述准直单元的光线可以穿过并被其下方 的传感器芯片接收,而入射角度过大的光线在所述准直单元内部经过多次反射被衰减掉,因此每一个传感器芯片基本只能接收到其正上方的指纹纹路反射回来的反射光,能够有效提高图像分辨率,进而提高指纹识别效果。
以所述光路引导结构采用光学镜头的光路设计为例,所述光路引导结构可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光汇聚到其下方的光检测部分134的感应阵列133,以使得所述感应阵列133可以基于所述反射光进行成像,从而得到所述手指的指纹图像。进一步地,所述光学透镜层在所述透镜单元的光路中还可以形成有针孔或者微孔光阑,比如,在所述透镜单元的光路中可以形成有一个或者多个遮光片,其中至少一个遮光片可以在所述透镜单元的光轴或者光学中心区域形成有透光微孔,所述透光微孔可以作为上述针孔或者微孔光阑。所述针孔或者微孔光阑可以配合所述光学透镜层和/或所述光学透镜层上方的其他光学膜层,扩大光学指纹模组130的视场,以提高所述光学指纹模组130的指纹成像效果。
以所述光路引导结构采用微透镜(Micro-Lens)层的光路设计为例,所述光路引导结构可以为包括由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在所述光检测部分134的感应阵列133上方,并且每一个微透镜可以分别对应于所述感应阵列133的其中一个感应单元。并且所述微透镜层和所述感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层。更具体地,所述微透镜层和所述感应单元之间还可以包括具有微孔(或称为开孔)的挡光层(或称为遮光层、阻光层等),其中所述微孔形成在其对应的微透镜和感应单元之间,所述挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得所述感应单元所对应的光线通过所述微透镜汇聚到所述微孔内部并经由所述微孔传输到所述感应单元以进行光学指纹成像。
应理解,上述针对光路引导结构的几种实现方案可以单独使用也可以结合使用。
例如,可以在所述准直器层或者所述光学透镜层的上方或下方进一步设置微透镜层。当然,在所述准直器层或者所述光学透镜层与所述微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
另一方面,所述光学组件132还可以包括其他光学元件,比如滤光层 (Filter)或其他光学膜片,其可以设置在所述光路引导结构和所述光学指纹传感器之间或者设置在所述显示屏120与所述光路引导结构之间,主要用于隔离外界干扰光对光学指纹检测的影响。其中,所述滤光层可以用于滤除穿透手指并经过所述显示屏120进入所述光学指纹传感器的环境光,与所述光路引导结构相类似,所述滤光层可以针对每个光学指纹传感器分别设置以滤除干扰光,或者也可以采用一个大面积的滤光层同时覆盖所述多个光学指纹传感器。
指纹识别模组130可以用于采集用户的指纹信息(比如指纹图像信息)。
以显示屏120采用具有自发光显示单元的显示屏为例,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。所述光学指纹模组130可以利用所述OLED显示屏120位于所述指纹检测区域103的显示单元(即OLED光源)作为光学指纹检测的激励光源。当手指140按压在所述指纹检测区域103时,显示屏120向所述指纹检测区域103上方的目标手指140发出一束光111,该光111在手指140的表面发生反射形成反射光或者经过所述手指140内部散射而形成散射光(透射光)。在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的脊(ridge)141与谷(valley)142对于光的反射能力不同,因此,来自指纹脊的反射光151和来自指纹谷的反射光152具有不同的光强,反射光经过光学组件132后,被光学指纹模组130中的感应阵列133所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在电子设备10实现光学指纹识别功能。
在其他替代方案中,光学指纹模组130也可以采用内置光源或者外置光源来提供用于进行指纹检测识别的光信号。在这种情况下,光学指纹模组130不仅可以适用于如OLED显示屏等自发光显示屏,还可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。
以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,电子设备10的光学指纹系统还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在电子设备10的保护盖板下方的边缘区域,而所述光学指纹模组130可以设置液晶面板 或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达所述光学指纹模组130;或者,所述光学指纹模组130也可以设置在所述背光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述光学指纹模组130。当采用所述光学指纹模组130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理与上面描述内容是一致的。
在具体实现上,所述电子设备10还可以包括透明保护盖板,所述盖板可以为玻璃盖板或者蓝宝石盖板,其位于所述显示屏120的上方并覆盖所述电子设备10的正面。因此,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板或者覆盖所述盖板的保护层表面。
另一方面,所述光学指纹模组130可以仅包括一个光学指纹传感器,此时光学指纹模组130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到所述指纹检测区域103的特定位置,否则光学指纹模组130可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,所述光学指纹模组130可以具体包括多个光学指纹传感器。所述多个光学指纹传感器可以通过拼接方式并排设置在所述显示屏120的下方,且所述多个光学指纹传感器的感应区域共同构成所述光学指纹模组130的指纹检测区域103。从而所述光学指纹模组130的指纹检测区域103可以扩展到所述显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。进一步地,当所述光学指纹传感器数量足够时,所述指纹检测区域103还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
请参见图3和图4,所述电子设备10中的光学指纹模组130可以包括多个光学指纹传感器,所述多个光学指纹传感器可以通过例如拼接等方式并排设置在所述显示屏120的下方,且所述多个光学指纹传感器的感应区域共同构成所述光学指纹装置130的指纹检测区域103。
进一步地,所述光学组件132可以包括多个光路引导结构,每个光路引导结构分别对应一个光学指纹传感器(即感应阵列133),并分别贴合设置在其对应的光学指纹传感器的上方。或者,所述多个光学指纹传感器也可以共 享一个整体的光路引导结构,即所述光路引导结构具有一个足够大的面积以覆盖所述多个光学指纹传感器的感应阵列。
以所述光学组件132采用具有高深宽比的通孔阵列的光学准直器为例,所述当光学指纹模组130包括多个光学指纹传感器时,可以为每个光学指纹传感器的光学感应阵列中的一个光学感应单元配置一个或多个准直单元,并贴合设置在其对应的光学感应单元的上方。当然,所述多个光学感应单元也可以共享一个准直单元,即所述一个准直单元具有足够大的孔径以覆盖多个光学感应单元。由于一个准直单元可以对应多个光学感应单元或一个光学感应单元对应多个准直单元,破坏了显示屏120的空间周期和光学指纹传感器的空间周期的对应性,因此,即使显示屏120的发光显示阵列的空间结构和光学指纹传感器的光学感应阵列的空间结构类似,也能够有效避免光学指纹模组130利用经过显示屏120的光信号进行指纹成像生成莫尔条纹,有效提高了光学指纹模组130的指纹识别效果。
以所述光学组件132采用光学镜头为例,当光学指纹模组130包括多个传感器芯片时,可以为每一个传感器芯片配置一个光学镜头进行指纹成像,或者为多个传感器芯片配置一个光学镜头来实现光线汇聚和指纹成像。甚至于,当一个传感器芯片具有两个感应阵列(Dual Array)或多个感应阵列(Multi-Array)时,也可以为这个传感器芯片配置两个或多个光学镜头配合所述两个感应阵列或多个感应阵列进行光学成像,从而减小成像距离并增强成像效果。
应当理解,附图1至4仅为本申请的示例,不应理解为对本申请的限制。
例如,本申请对指纹传感器的数量、尺寸和排布情况不做具体限定,其可以根据实际需求进行调整。例如,光学指纹模组130可以包括多个呈方形或圆形分布的多个指纹传感器。
目前,屏下指纹识别技术主要是通过反射光成像的原理进行指纹识别。如图5所示,自发光显示屏120中的像素发出的光信号照射手指后,一部分光信号被透射,另一部分光信号被反射。由于手指组织的折射率为1.43,光信号在指纹脊处的折射率与显示屏120的折射率(约为1.5)相近,则脊处透射光信号的强度较高、反射回的光信号的强度较弱。由于指纹谷处填充的是空气,空气的折射率为1,与所述显示屏120的折射率差异较大,则指纹谷处透射光信号的强度较弱、反射回的光信号的强度较高。指纹脊处和指纹 谷处反射回的光信号的强度的对比度约为1:40。因此,根据指纹脊处和指纹谷处的反射光信号的强度差异,可以得到所述手指的指纹图像,进一步进行指纹识别。如图6所示,为通过反射光成像的原理获取的正常手指的指纹图像,成像效果较好,可以用于正常手指的指纹识别。
当手指沾水时,即所述手指为湿手指时,谷线处被水填充,由于水的折射率约为1.33,相对于空气的折射率来说,水的折射率与显示屏120的折射率更为接近,则手指沾水时指纹谷处反射回的光信号的强度严重衰减,此时指纹脊处和指纹谷处反射回的光信号的强度的对比度约为1:2。此时,由于指纹脊处和指纹谷处反射光信号的强度的对比度严重降低,根据反射光成像原理获取的湿手指的指纹图像的质量很差,如图7所示。
由此可见,湿手指情况下,通过反射光成像的原理无法进行指纹识别。除此之外,通过反射光成像的原理可以对2D假指纹进行成像,成像效果与真手指类似,存在被假指纹破解的风险。
为此,本申请实施例提出了一种指纹检测的装置和电子设备,通过透射光成像的原理进行指纹识别。本申请实施例可以应用于各类手指的检测,尤其能够适用于湿手指的检测,还可以用于对2D假手指的防伪,能够提升指纹识别性能。所谓的湿手指,指的是沾水后的手指或者较为湿润的手指。
通过透射光成像的原理进行指纹识别,如图8所示,自发光显示屏120中的像素发出的光信号透射进手指后,再从所述手指透射出穿过所述显示屏。由于手指组织的折射率与显示屏的折射率相近,手指组织内的光从脊处透射出的光信号的强度较高、反射回的光信号的强度较弱。手指组织内的光从谷处透射需要经过皮肤与空气、空气与显示屏两个界面才能进入显示屏,使得从指纹的谷处透射出的光信号的强度较弱,反射回的光信号的强度较高。指纹的脊处和指纹的谷处透射出的光信号的强度的对比度约为50:1,因此,可以根据指纹的脊处和指纹的谷处透射出的光信号的强度差异,得到与通过反射光成像原理获取的相当质量的指纹图像,以进行指纹识别,如图9所示。由此可见,通过透射光成像原理可以对正常手指进行指纹识别。
当手指沾水时,指纹的谷线处被水填充,谷线处透射的光信号的强度会稍有增加,但是谷线内的水会对光有一定的损耗,并且在水与显示屏分界面上仍会有反射,使得指纹脊处透射出的光信号的强度与指纹谷处透射出的光信号的强度仍有较大的差异,对比度约为20:1。由此可见,通过透射光成像 的原理对湿手指进行指纹识别,能够获得10倍于通过现有的反射光成像原理获得的光信号强度的对比度,可以有更好地成像质量,如图10所示。因此,通过透射光成像的原理可以提升对湿手指的指纹识别性能。
图11示出了根据本申请实施例的电子设备20的局部示意图,该图11为电子设备20的侧视图;图12示出了根据本申请实施例的电子设备20的正视图。如图11和图12所示,该电子设备20包括显示屏200和指纹检测装置300,显示屏200位于指纹检测装置300的上方。
具体地,图11中的该显示屏200可以表示显示屏200的一部分,而并不是显示200的实际尺寸和大小;图12示出了显示屏200的正视图。该显示屏200可以对应于上述图1和图2中描述的电子设备10中的显示屏120,适用于上述关于显示屏120的相关描述,为了简洁,在此不再赘述。
另外,本申请实施例的电子设备20以该显示屏200包括能够自发光的若干发光显示像素为例进行描述,该发光显示像素可以用于显示图像。如图11和图12所示,该显示屏200包括指纹检测区域210,用于手指按压,即使用者在需要对该电子设备20进行解锁或者其他指纹识别的时候,只需要将手指按压在该指纹检测区域210,便可以实现指纹输入。其中,该指纹检测区域210可以对应于上述图1至图4中描述的电子设备10中的指纹检测区域103,适用于上述关于指纹检测区域103的相关描述,为了简洁,在此不再赘述。
在本申请实施例中,如图12所示,该显示屏200包括指纹检测区域210,该指纹检测区域210包括第一区域211和第二区域212,该第二区域212环绕该第一区域211,并且,该第一区域211和该第二区域212不重叠。
应理解,本申请实施例中的终端设备20的显示屏200下方设置有指纹检测的装置300,该指纹检测的装置300可以用于接收经过手指返回的光信号。具体地,该指纹检测的装置300可以包括:光路引导结构和光学传感器,该光学传感器设置在光路引导结构的下方。
光路引导结构,用于将所述显示屏上方的手指形成的第一返回光信号引导至光学传感器,其中,所述第一返回光信号为所述第一区域中211的像素不发光,所述第二区域中212的像素发出的光透射进手指,再从所述手指透射出并穿过所述显示屏的光信号。
可选的,在一个实施例中,所述光路引导结构包括光学透镜,所述光学 透镜设置在所述光学指纹传感器上方,用于将穿过所述显示屏的所述第一返回光信号汇聚到所述光学指纹传感器的感应阵列。
可选的,在一个实施例中,所述光路引导结构包括具有多个微透镜的微透镜阵列和具有多个微孔的挡光层,所述微透镜阵列用于将穿过所述显示屏的所述第一返回光信号通过所述多个微透镜分别聚焦到所述挡光层对应的微孔,并通过所述微孔传输到所述光学指纹传感器的感应阵列中对应的光学感应单元。
光学传感器,用于接收经过所述光路引导结构的所述第一返回光信号,所述第一返回光信号用于获取所述手指的指纹图像。
也就是说,在指纹检测区域210中的第一区域211中的像素不发光,并且第二区域212中的像素发光的情况下,光照射手指后产生第一返回光信号,该第一返回光信号经光路引导结构后被引导至光学传感器,以获取手指的指纹图像。
在本申请实施例的技术方案中,所述指纹检测区域的第一区域中的像素不发光,第二区域中的像素发出的光透射进手指,再从所述手指透射出并穿过显示屏,对通过所述手指的透射光进行检测以获取所述手指的指纹图案,成像质量更高,可以提升对湿手指的识别能力,并且可以对2D假手指进行防伪。因此,该技术方案能够提升指纹识别的性能。
可选地,为避免所述第二区域212中像素发射的光照射手指后产生反射光信号,所述第一区域211的尺寸不小于所述指纹传感器的视场直径。即所述第一区域211的尺寸可以大于所述指纹传感器的视场直径,也可以等于所述指纹传感器的视场直径。应理解,所述指纹传感器的视场直径指的是所述指纹传感器的视场在显示屏上表面对应区域的直径。例如,若所述第一区域为长方形,所述尺寸的大小为该长方形的长或宽中最小的值。
具体而言,所述第一区域的垂直投影面积可以与所述指纹传感器的视场垂直投影面积的重合,或者,所述第一区域的垂直投影面积可以覆盖所述指纹传感器的视场垂直投影面积。
可选地,考虑到所述第二区域212中像素发射的光照射手指后,透射到指纹传感器的光有较高的强度,以有利于获取该手指的指纹图像,可以使所述第一区域211的尺寸L满足:
D≤L≤D+2×d×tanα
其中,D表示所述光学传感器的视场直径,d表示所述第二区域212中的所述像素距离所述显示屏上表面的距离,α表示像素的发光角度。
例如,显示屏中像素的发光角度在-60°至+60°之间,如图13所示,所述第一区域211的尺寸L可以满足:
D≤L≤D+2×d×tan60°
可选的,该第一区域211的形状可以为圆形,也可以为方形。当该第一区域211的形状为圆形时,该圆形的直径满足上述条件;当该第一区域211的形状为方形时,该方形的边长可以满足上述条件。应理解,该第一区域的形状也可以为其它任意的规则的形状,例如,正六边形、正八边形。本申请实施例对此不做任何限定。
可选的,所述第二区域212(发光区域)的边界形状也可以为圆形或方形。所述第二区域的形状优选为环形,其它可实现本申请技术方案的形状也可以。如图14(a)至图14(d)所示,为指纹检测区域210中第一区域211与第二区域212的形状组合的示意图。
具体而言,如图14(a)所示,所述第一区域与所述第二区域的组合形状优选为同心圆形。同心圆形为比较常用的组合形状。
14(b)所示,所述第一区域为方形,所述第二区域环绕所述第一区域,所述第二区域为圆形。在本实施例中,所述第一区域的中心与所述第二区域的圆心重合。
14(c)所示,所述第一区域为圆形,所述第二区域环绕所述第一区域,所述第二区域为方形。在本实施例中,所述第一区域的圆心与所述第二区域的中心重合。
14(d)所示,所述第一区域为方形,所述第二区域环绕所述第一区域,所述第二区域为方形。在本实施例中,所述第一区域的中心与所述第二区域的中心重合。
本申请实施例中的指纹检测区域210的形状可以根据实际应用进行设置,并且,可以设置为任意的规则的形状。本申请实施例对此不做任何限定。
照射手指的光的波长越短,光在手指内透射深度越浅,根据透射光进行指纹成像的效果越差;照射手指的光的波长越长,光在手指内透射深度越深,根据透射光进行指纹成像的效果越好。因此,所述第二区域中的像素优选可以发出红光或黄光的像素。该第二区域中像素也可以为发出的光的颜色为其 他可显示的颜色的像素,例如,绿色、青色、白色等。本申请实施例对此不做任何限定。
可选的,所述指纹检测装置还可以包括滤光片,该滤光片位于所述光学指纹传感器上方,所述滤光片用于滤除所述第一返回光信号以外的其他光信号。例如,所述第一返回光信号的波长范围优选为600~660nm(红光波段)时,所述滤光片用于滤除波长不等于600~660nm的光。此时,除了红光光源外,利用其他可显示的颜色的光源也可以取得较好的指纹成像效果。
该光学传感器接收到的所述第一返回光信号的光强还可以用于确定所述手指是否为真手指。
具体地,如图11所示,假设触摸指纹检测区域210的手指为真手指,那么被点亮的第二区域发出的光信号经过手指的传播后返回,所述光学传感器能接收到较多的透射光;但是对于2D假指纹情形下,如图15所示,由于2D假指纹的材料与生物组织差异较大,光信号无法透过假指纹进行指纹成像,因此,所述光学传感器接收的光信号主要依靠假指纹的自身反射,无论是在斜接收光路还是垂直接收光路的作用下,所述光学传感器没有接收到光信号或者仅接收到极少量的光信号。也就是说,所述指纹传感器接收到的光信号的强度,真手指的大于2D假指纹的,从而可依据此特征进行真假指纹区分。具体而言,若所述光学传感器接收到的所述第一返回光信号的光强大于或者等于预设值,则所述手指为真手指;若所述光学传感器接收到的所述第一返回光信号的光强小于所述预设值,则所述手指为假手指。
电子设备20中可以包括处理器,用于根据所述光学传感器接收到的所述第一返回光信号的光强确定所述手指是否为真手指。具体地,该处理器可以用于:若所述光学传感器接收到的所述第一返回光信号的光强大于或者等于预设值,确定所述手指为真手指;若所述光学传感器接收到的所述第一返回光信号的光强小于所述预设值,确定所述手指为假手指。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种指纹检测的装置,其特征在于,适用于显示屏的下方以实现屏下光学指纹检测,所述显示屏包括指纹检测区域,所述指纹检测区域包括第一区域和第二区域,所述第二区域环绕所述第一区域,所述指纹检测的装置包括:
    光路引导结构,用于将所述显示屏上方的手指形成的第一返回光信号引导至光学传感器,其中,所述第一返回光信号为所述第一区域中的像素不发光,所述第二区域中的像素发出的光透射进手指,再从所述手指透射出并穿过所述显示屏的光信号;
    光学传感器,设置于所述光路引导结构的下方,用于接收经过所述光路引导结构的所述第一返回光信号,所述第一返回光信号用于获取所述手指的指纹图像。
  2. 根据权利要求1所述的装置,其特征在于,所述第一区域的尺寸不小于所述指纹传感器的视场直径。
  3. 根据权利要求1所述的装置,其特征在于,所述第一区域的垂直投影面积与所述指纹传感器的视场垂直投影面积的重合,或者,所述第一区域的垂直投影面积覆盖所述指纹传感器的视场垂直投影面积。
  4. 根据权利要求1或2所述的装置,其特征在于,所述第一区域的尺寸L满足:
    D≤L≤D+2×d×tanα
    其中,所述D为所述光学传感器的视场直径,所述d为所述第二区域中的所述像素距离所述显示屏上表面的距离,所述α表示所述像素的发光角度。
  5. 根据权利要求1至4中任一项所述的装置,其特征在于,所述第一区域的形状为圆形或方形,所述第二区域的边界形状为圆形或方形。
  6. 根据权利要求5所述的装置,其特征在于,所述第一区域与所述第二区域的组合形状为同心圆形。
  7. 根据权利要求1至6中任一项所述的装置,其特征在于,所述第二区域中的像素发出的光为红光或黄光。
  8. 根据权利要求1至6中任一项所述的装置,其特征在于,所述装置还包括:
    滤光片,位于所述光学指纹传感器上方,所述滤光片用于滤除所述第一返回光信号以外的其他光信号。
  9. 根据权利要求8所述的装置,其特征在于,所述第一返回光信号的波长范围为600~660nm,所述滤光片用于滤除波长不等于600~660nm的光。
  10. 根据权利要求1至9中任一项所述的装置,其特征在于,所述光路引导结构包括光学透镜,所述光学透镜设置在所述光学指纹传感器上方,用于将穿过所述显示屏的所述第一返回光信号汇聚到所述光学指纹传感器的感应阵列。
  11. 根据权利要求1至9中任一项所述的装置,其特征在于,所述光路引导结构包括具有多个微透镜的微透镜阵列和具有多个微孔的挡光层,所述微透镜阵列用于将穿过所述显示屏的所述第一返回光信号通过所述多个微透镜分别聚焦到所述挡光层对应的微孔,并通过所述微孔传输到所述光学指纹传感器的感应阵列中对应的光学感应单元。
  12. 根据权利要求1至11中任一项所述的装置,其特征在于,所述光学传感器接收到的所述第一返回光信号的光强用于确定所述手指是否为真手指。
  13. 根据权利要求12所述的装置,其特征在于,若所述光学传感器接收到的所述第一返回光信号的光强大于或者等于预设值,则所述手指为真手指;
    若所述光学传感器接收到的所述第一返回光信号的光强小于所述预设值,则所述手指为假手指。
  14. 一种电子设备,其特征在于,包括显示屏和根据权利要求1至12中任一项所述的指纹检测的装置,所述装置设置于所述显示屏下方,以实现屏下光学指纹检测。
  15. 根据权利要求14所述的电子设备,其特征在于,所述电子设备还包括:处理器,用于根据所述光学传感器接收到的所述第一返回光信号的光强确定所述手指是否为真手指。
  16. 根据权利要求15所述的电子设备,其特征在于,所述处理器具体用于:
    若所述光学传感器接收到的所述第一返回光信号的光强大于或者等于预设值,确定所述手指为真手指;
    若所述光学传感器接收到的所述第一返回光信号的光强小于所述预设值,确定所述手指为假手指。
PCT/CN2020/073671 2020-01-22 2020-01-22 指纹检测的装置和电子设备 WO2021146976A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/073671 WO2021146976A1 (zh) 2020-01-22 2020-01-22 指纹检测的装置和电子设备
CN202080001523.1A CN111801684A (zh) 2020-01-22 2020-01-22 指纹检测的装置和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073671 WO2021146976A1 (zh) 2020-01-22 2020-01-22 指纹检测的装置和电子设备

Publications (1)

Publication Number Publication Date
WO2021146976A1 true WO2021146976A1 (zh) 2021-07-29

Family

ID=72834300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073671 WO2021146976A1 (zh) 2020-01-22 2020-01-22 指纹检测的装置和电子设备

Country Status (2)

Country Link
CN (1) CN111801684A (zh)
WO (1) WO2021146976A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113766218A (zh) * 2021-09-14 2021-12-07 北京集创北方科技股份有限公司 光学镜头的位置检测方法、电子设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022134079A1 (zh) * 2020-12-25 2022-06-30 深圳市汇顶科技股份有限公司 指纹识别装置、电子设备和指纹识别的方法
WO2022183511A1 (zh) * 2021-03-05 2022-09-09 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
WO2022188041A1 (zh) * 2021-03-09 2022-09-15 深圳市汇顶科技股份有限公司 指纹识别装置、电子设备和环境光检测的方法
CN112860120A (zh) * 2021-03-09 2021-05-28 深圳市汇顶科技股份有限公司 指纹识别装置、电子设备和环境光检测的方法
CN113569642A (zh) * 2021-06-28 2021-10-29 深圳阜时科技有限公司 光学感测装置及电子设备
US11620852B2 (en) * 2021-09-08 2023-04-04 Omnivision Technologies, Inc. Method for detecting spoof fingerprints with an under-display fingerprint sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018217388A1 (en) * 2017-05-22 2018-11-29 Invensense, Inc. Live fingerprint detection utilizing an integrated ultrasound and infrared sensor
CN109061946A (zh) * 2018-08-31 2018-12-21 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN110214328A (zh) * 2019-04-15 2019-09-06 深圳市汇顶科技股份有限公司 指纹识别的方法、装置和电子设备
CN110443215A (zh) * 2019-08-12 2019-11-12 Oppo广东移动通信有限公司 指纹识别模组及电子设备
CN110582780A (zh) * 2019-08-01 2019-12-17 深圳市汇顶科技股份有限公司 指纹识别和防伪的方法、装置和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018217388A1 (en) * 2017-05-22 2018-11-29 Invensense, Inc. Live fingerprint detection utilizing an integrated ultrasound and infrared sensor
CN109061946A (zh) * 2018-08-31 2018-12-21 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN110214328A (zh) * 2019-04-15 2019-09-06 深圳市汇顶科技股份有限公司 指纹识别的方法、装置和电子设备
CN110582780A (zh) * 2019-08-01 2019-12-17 深圳市汇顶科技股份有限公司 指纹识别和防伪的方法、装置和电子设备
CN110443215A (zh) * 2019-08-12 2019-11-12 Oppo广东移动通信有限公司 指纹识别模组及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113766218A (zh) * 2021-09-14 2021-12-07 北京集创北方科技股份有限公司 光学镜头的位置检测方法、电子设备及存储介质
CN113766218B (zh) * 2021-09-14 2024-05-14 北京集创北方科技股份有限公司 光学镜头的位置检测方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN111801684A (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2021146976A1 (zh) 指纹检测的装置和电子设备
EP3706036B1 (en) Fingerprint recognition apparatus and electronic device
US11030434B2 (en) Lens-pinhole array designs in ultra thin under screen optical sensors for on-screen fingerprint sensing
US10318791B2 (en) Anti-spoofing sensing for rejecting fake fingerprint patterns in under-screen optical sensor module for on-screen fingerprint sensing
CN213182770U (zh) 指纹识别装置和电子设备
WO2020151158A1 (zh) 生物特征识别的装置
CN111095282B (zh) 指纹检测装置和电子设备
CN210052176U (zh) 指纹检测装置和电子设备
WO2021138776A1 (zh) 指纹防伪的方法、指纹识别装置和电子设备
WO2021077259A1 (zh) 识别指纹的方法、指纹识别装置和电子设备
WO2021203337A1 (zh) 指纹识别的方法、装置和电子设备
WO2020168495A1 (zh) 用于指纹识别的方法、装置和终端设备
CN211319244U (zh) 指纹检测的装置和电子设备
CN111108511A (zh) 指纹检测装置和电子设备
CN210295125U (zh) 指纹检测装置和电子设备
CN211319247U (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
CN111108509B (zh) 指纹检测装置和电子设备
CN111095279B (zh) 指纹检测装置和电子设备
WO2021189478A1 (zh) 指纹检测的装置和电子设备
WO2020186415A1 (zh) 指纹识别的装置、方法和电子设备
WO2020168496A1 (zh) 用于指纹识别的方法、装置和终端设备
CN210295114U (zh) 光学指纹识别装置和电子设备
WO2021035599A1 (zh) 指纹识别的装置、方法和电子设备
WO2021007964A1 (zh) 指纹检测装置和电子设备
CN112528953A (zh) 指纹识别装置、电子设备和指纹识别的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915696

Country of ref document: EP

Kind code of ref document: A1