WO2022188041A1 - 指纹识别装置、电子设备和环境光检测的方法 - Google Patents

指纹识别装置、电子设备和环境光检测的方法 Download PDF

Info

Publication number
WO2022188041A1
WO2022188041A1 PCT/CN2021/079826 CN2021079826W WO2022188041A1 WO 2022188041 A1 WO2022188041 A1 WO 2022188041A1 CN 2021079826 W CN2021079826 W CN 2021079826W WO 2022188041 A1 WO2022188041 A1 WO 2022188041A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
optical
fingerprint
ambient light
light
Prior art date
Application number
PCT/CN2021/079826
Other languages
English (en)
French (fr)
Inventor
丘芳芳
何嘉明
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2021/079826 priority Critical patent/WO2022188041A1/zh
Publication of WO2022188041A1 publication Critical patent/WO2022188041A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present application relates to the technical field of optical fingerprints, and more particularly, to a fingerprint identification device, an electronic device and a method for ambient light detection.
  • the under-screen fingerprint identification device itself is a photosensitive device. Therefore, the optical path design or hardware design can be optimized for the under-screen fingerprint identification device, so as to realize the dual functions of fingerprint collection and ambient light detection, and then without increasing the hardware cost. to provide a better user experience.
  • Embodiments of the present application provide a fingerprint identification device, an electronic device, and an ambient light detection method, which can realize dual detection of fingerprint detection and ambient light detection, thereby providing better user experience without increasing hardware costs.
  • a fingerprint identification device which is arranged under a display screen of an electronic device, the display area of the display screen includes a fingerprint detection area, and the fingerprint identification device includes: an optical path layer and an optical fingerprint sensor, and the optical path layer is used for Guide the light signals in N directions from the second area of the fingerprint detection area and the light signals from the first area of the fingerprint detection area to the optical fingerprint sensor, wherein the fingerprint detection area of the The second area is arranged around the first area, and N is an integer greater than 1; the optical fingerprint sensor is arranged below the optical path layer, and the optical fingerprint sensor includes a first pixel area and a plurality of second pixels area, the plurality of second pixel areas are arranged around the first pixel area, the first pixel area is used for receiving light signals from the first area, the plurality of second pixel areas are used for receiving the optical signals in the N directions from the second area, wherein each second pixel area is used for receiving the optical signals in one of the N directions; wherein, the optical signals in the N directions
  • the first area of the fingerprint detection area in the embodiment of the present application may refer to an area set on the display screen for pressing the center of the fingerprint, such as an area provided with a light spot
  • the second area may refer to the area on the display screen used for pressing the fingerprint.
  • the area around the area where the fingerprint is pressed for example, the area around the area where the light spot is arranged, wherein the optical signals of the two areas can be received by the fingerprint identification device in the embodiment of the present application, wherein the optical signal of the first area is received by the fingerprint identification device.
  • the first pixel area receives the light signal from the second area
  • the second pixel area receives the light signal.
  • the light signal in the first area in the embodiment of the present application may be a reflected light signal after being reflected by a finger, or an ambient light signal; the light signal in the second area may be a reflected light signal after being reflected by a finger, Or it can be an ambient light signal, and the different forms of the signal are related to whether the finger is pressed.
  • the ambient light detection in the embodiment of the present application can be divided into two cases.
  • the first one is that when there is a fingerprint pressed, the optical path layer can detect the light signals in N directions from the second area and the light from the first area.
  • the signal is directed to the optical fingerprint sensor, wherein the light signals in the N directions and the light signals from the first area may include the returned light signal after being reflected by the finger and the ambient light signal passing through the screen; in the second case, no
  • the optical path layer can guide the optical signals in N directions from the second area and the optical signals from the first area to the optical fingerprint sensor.
  • the light signal in the first area may include ambient light signal transmitted through the screen.
  • the light signal amount in the embodiment of the present application may refer to the intensity value of the received light signal, that is, the light intensity, which may be calculated from the light signal received by the optical sensing pixels included in the fingerprint sensor.
  • the optical path design of the fingerprint identification device is optimized, so that the fingerprint identification device can also realize the collection of ambient light information while realizing the collection of fingerprint information, so that it can be realized without adding additional photosensitive devices.
  • the detection of ambient light can then improve the user experience without increasing the cost.
  • multiple optical signals in different directions for ambient light detection multiple values of the optical signal amount can be obtained.
  • the current ambient light signal amount can be obtained from different values, which can improve the accuracy of ambient light detection.
  • the current ambient light signal amount is used to adjust the brightness of the display screen.
  • the second visual field area corresponding to the plurality of second pixel areas is larger than the first visual field area corresponding to the first pixel area.
  • the field of view for collecting ambient light information is larger than the field of view for collecting fingerprint information, so that the occlusion of fingers can be avoided and the ambient light can be better protected. detection.
  • the fingerprint identification device after detecting the ambient light, can use the detected ambient light signal amount to perform further actions, for example, the screen brightness can be adjusted according to the ambient light signal amount, or the keyboard light can be adjusted , which is not limited in the embodiments of the present application.
  • the plurality of second pixel regions are arranged on different sides of the first pixel region, or the plurality of second pixel regions are arranged on the same side of the first pixel region , or, the plurality of second pixel regions are disposed at the corners of the first pixel region.
  • the plurality of second pixel areas are arranged as at least one ring-shaped area around the first pixel area.
  • a plurality of second pixel areas may be arranged on different sides of the first pixel area, so that the field of view area formed by the second pixel areas may be further increased, or, a plurality of second pixel areas may also be arranged on different sides of the first pixel area.
  • On the same side of the first pixel area further, multiple second pixel areas can be arranged on each side of the first pixel area, so that more ambient light signals can be obtained and the accuracy of ambient light detection can be improved.
  • a second pixel area located on the same side of the first pixel area is used to receive optical signals in the same direction among the N directions; or, a second pixel area located in the first pixel area The second pixel area on the same side is used for receiving the light signals in the N directions.
  • the optical path layer includes: at least one light blocking layer, and each light blocking layer in the at least one light blocking layer is provided with an array of small holes, so as to form the light guide in the N directions a channel, and a light guide channel for forming the light signal from the first area, the light guide channels in N directions are used to respectively guide the light signals in the N directions to the plurality of second pixels area, and the light guide channel of the optical signal of the first area is used to guide the optical signal from the first area to the first pixel area.
  • the optical path layer includes: the optical path layer further includes: a microlens array, disposed above the at least one light blocking layer, for converting the optical signals in the N directions, and The light signal from the first region is converged to the light guide channel of the at least one light blocking layer.
  • the light guide channels in the same direction among the light guide channels in the N directions may have one or more light guide channels, and the one or more light guide channels correspond to the same direction in the plurality of second pixel regions.
  • a second pixel area may be used to determine the location of the light guide channels in the same direction among the light guide channels in the N directions.
  • the at least one light blocking layer is two light blocking layers.
  • the optical path layer includes: N lenses, and each lens in the N lenses is used for condensing light signals in one of the N directions.
  • the fingerprint identification device further includes: a processing unit, configured to determine the amount of the optical signal according to the optical signals in the N directions and the optical signals from the first area. Maximum value and minimum value; according to the determined maximum value and minimum value, determine the current ambient light signal amount.
  • the accuracy of ambient light detection can be improved.
  • the processing unit is further configured to: determine that a fingerprint pressing operation is currently being performed; and adjust the brightness of the display screen according to the determined current ambient light signal amount.
  • fingerprint detection and ambient light detection can be realized at the same time, and the current environment can be obtained according to the acquired light signals in N directions of the second area and the light signals of the first area.
  • the amount of light signal, so as to realize the detection of ambient light, and further, according to the current amount of ambient light signal, the brightness of the display screen can be adjusted.
  • the processing unit is further configured to: determine that the fingerprint pressing operation is not currently performed; record the number of times of ambient light detection this time as the ith, and record the ambient light corresponding to the ith ambient light detection Signal amount; determine whether i is greater than or equal to the preset threshold m; if i is greater than or equal to the preset value m, then generate the current ambient light signal amount according to the ambient light signal amount recorded for i times, and according to the current ambient light signal amount The amount of ambient light signal adjusts the brightness of the display screen, or if i is less than a preset value m, the adjustment of the brightness of the display screen is abandoned.
  • the ambient light can also be detected when fingerprint identification is not used, that is, the current ambient light signal amount is generated according to the acquired ambient light signals in N directions and the ambient light signal from the first area .
  • the brightness of the screen can be adjusted by acquiring the values of multiple ambient light detections and adjusting the brightness of the screen according to the values of the multiple ambient light detections, so that the brightness of the screen can be more adapted to the ambient light and the accuracy of the brightness adjustment of the screen can be improved.
  • the processing unit is further configured to: determine that this is not the first time to adjust the brightness of the display screen; acquire the amount of ambient light signals recorded last time; The light signal amount and the current ambient light signal amount adjust the brightness of the display screen.
  • the brightness of the display screen can be adjusted according to the ambient light signal amount detected this time, the ambient light signal amount detected last time, and the screen brightness setting value corresponding to the previous time. Make adjustments to further improve the accuracy of screen brightness adjustment.
  • an electronic device including: a display screen; and the fingerprint identification device in the first aspect or any possible implementation manner of the first aspect, where the fingerprint identification device is disposed below the display screen to achieve Dual detection function of under-screen optical fingerprint recognition and ambient light detection.
  • a method for ambient light detection is provided, which is applied to an electronic device having a fingerprint identification device, wherein the fingerprint identification device is disposed below a display screen of the electronic device, and the display area of the display screen includes a fingerprint detection area , the fingerprint identification device is configured to receive optical signals in N directions from the second area of the fingerprint detection area, and optical signals from the first area of the fingerprint detection area.
  • the second area is arranged around the first area, and N is an integer greater than 1.
  • the method includes: acquiring N optical signal quantities corresponding to the optical signals in the N directions one-to-one, and obtaining N optical signal quantities corresponding to the optical signals from the N directions.
  • the optical signals in the first area correspond to the optical signal quantities one-to-one; according to the N optical signal quantities and the optical signal quantities, the current ambient light signal quantity is generated.
  • the fingerprint identification device in the technical solutions of the embodiments of the present application can realize the dual detection function of fingerprint detection and ambient light detection by acquiring a plurality of optical signals in different directions in the second area and the optical signals from the first area, and at the same time , by acquiring multiple values of the optical signal quantity, and using multiple different values of the optical signal quantity to obtain the current ambient light signal quantity, the accuracy of ambient light detection can be improved.
  • the method further includes: adjusting the brightness of the display screen according to the current environmental signal amount.
  • the generating the current ambient light signal quantity according to the N optical signal quantities and the optical signal quantity includes: according to the N optical signal quantities and the optical signal quantity determine the maximum value and minimum value of the light signal amount; according to the determined maximum value and minimum value, determine the current ambient light signal amount.
  • the method further includes: determining that a fingerprint pressing operation is currently being performed; and adjusting the brightness of the display screen according to the determined current ambient light signal amount.
  • the method further includes: determining that the fingerprint pressing operation is not currently performed; recording the number of times of ambient light detection this time as the i-th time, and recording the ambient light signal amount corresponding to the i-th ambient light detection Determine whether i is greater than or equal to the preset threshold m; if i is greater than or equal to the preset value m, then generate the current ambient light signal amount according to the ambient light signal amount recorded for i times, and according to the current ambient light The signal quantity adjusts the brightness of the display screen, or if i is less than the preset value m, the adjustment of the brightness of the display screen is abandoned.
  • the method further includes: determining that this is not the first time to adjust the brightness of the display screen; acquiring the amount of ambient light signals recorded last time; The brightness of the display screen is adjusted according to the amount and the current ambient light signal amount.
  • a chip in a fourth aspect, includes an input and output interface, at least one processor, at least one memory, and a bus, the at least one memory is used for storing instructions, and the at least one processor is used for calling the at least one memory. instructions to perform the third aspect or the method in any possible implementation of the third aspect.
  • a computer-readable medium for storing a computer program, the computer program comprising instructions for performing the method of the third aspect or any possible implementation of the third aspect.
  • a sixth aspect provides a computer program product comprising instructions, when a computer runs the instructions of the computer program product, the computer executes the environment in the third aspect or any possible implementation of the third aspect Methods of light detection.
  • the computer program product can run on the electronic device of the second aspect.
  • FIG. 1 is a schematic structural diagram of an electronic device to which the present application can be applied.
  • FIG. 2 is a schematic cross-sectional view of the electronic device shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a field of view of a fingerprint sensor according to an embodiment of the present application.
  • FIG. 5 to FIG. 8 are schematic diagrams of the field of view area of the fingerprint sensor for ambient light signals in four light incoming directions according to an embodiment of the present application.
  • FIG. 9 is another schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an ambient light detection method according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a method for adjusting screen brightness according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a structure of an electronic device according to an embodiment of the present application.
  • embodiments of the present application can be applied to optical fingerprint systems, including but not limited to optical fingerprint recognition systems and products based on optical fingerprint imaging.
  • the embodiments of the present application only take the optical fingerprint system as an example for description, but should not be implemented in this application.
  • the examples constitute any limitation, and the embodiments of the present application are also applicable to other systems using optical imaging technology, and the like.
  • the technical solutions of the embodiments of the present application can be applied to various electronic devices.
  • portable or mobile computing devices such as smartphones, laptops, tablets, gaming devices, and other electronic devices such as electronic databases, automobiles, and bank automated teller machines (ATMs).
  • ATMs bank automated teller machines
  • the embodiments of the present application do not limit this.
  • biometric identification technologies include but are not limited to identification technologies such as fingerprint identification, palmprint identification, iris identification, face identification, and living body identification.
  • identification technologies such as fingerprint identification, palmprint identification, iris identification, face identification, and living body identification.
  • fingerprint identification technology takes the fingerprint identification technology as an example.
  • the under-screen fingerprint recognition technology refers to installing the fingerprint recognition module under the display screen, so as to realize the fingerprint recognition operation in the display area of the display screen, and it is not necessary to set a fingerprint collection area on the front of the electronic device except the display area.
  • the fingerprint recognition module uses light returned from the top surface of the display assembly of the electronic device for fingerprint sensing and other sensing operations. This returned light carries information on objects (such as fingers) in contact with or approaching the top surface of the display assembly.
  • the fingerprint recognition module located below the display assembly collects and detects this returned light to realize off-screen fingerprint recognition.
  • the design of the fingerprint identification module can be such that desired optical imaging can be realized by properly configuring the optical element for collecting and detecting the returned light, so as to detect the fingerprint information of the finger.
  • the in-display fingerprint recognition technology refers to installing the fingerprint recognition module or part of the fingerprint recognition module inside the display screen, so as to realize the fingerprint recognition operation in the display area of the display screen, without the need for electronic
  • the fingerprint collection area is set on the front of the device except the display area.
  • FIG. 1 and FIG. 2 are schematic diagrams of electronic devices to which the embodiments of the present application may be applied.
  • 1 is an orientation schematic diagram of the electronic device 10
  • FIG. 2 is a cross-sectional schematic diagram of the electronic device 10 shown in FIG. 1 .
  • the electronic device 10 may include a display screen 120 and an optical fingerprint recognition module 130 .
  • the display screen 120 may be a self-luminous display screen, which uses display units having self-luminescence as display pixels.
  • the display screen 120 may be an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro light-emitting diode (Micro-LED) display screen.
  • the display screen 120 may also be a liquid crystal display screen (Liquid Crystal Displa, LCD) or other passive light-emitting display screen, which is not limited in this embodiment of the present application.
  • the display screen 120 may also be specifically a touch display screen, which can not only display a screen, but also detect a user's touch or pressing operation, thereby providing a human-computer interaction interface for the user.
  • the electronic device 10 may include a touch sensor, and the touch sensor may specifically be a touch panel (Touch Panel, TP), which may be disposed on the surface of the display screen 120, or may be partially integrated or The whole is integrated into the display screen 120 to form the touch display screen.
  • touch panel Touch Panel, TP
  • the optical fingerprint module 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 133 having a plurality of optical sensing units 131 (also referred to as optical sensing pixels, photosensitive pixels, pixel units, etc.).
  • the area where the sensing array 133 is located or its sensing area is the fingerprint detection area 103 of the optical fingerprint module 130 (also referred to as a fingerprint collection area, a fingerprint identification area, etc.).
  • the optical fingerprint module 130 is arranged in a partial area below the display screen 120 .
  • the fingerprint detection area 103 may be located in the display area of the display screen 120 .
  • the optical fingerprint module 130 can also be arranged in other positions, such as the side of the display screen 120 or the non-transparent area of the edge of the electronic device 10, and the optical path design is used to The optical signal from at least part of the display area of the display screen 120 is guided to the optical fingerprint module 130 , so that the fingerprint detection area 103 is actually located in the display area of the display screen 120 .
  • the electronic device 10 when the user needs to unlock the electronic device 10 or perform other fingerprint verification, the user only needs to press the finger on the fingerprint detection area 103 located on the display screen 120 to realize fingerprint input. Since fingerprint detection can be implemented in the screen, the electronic device 10 using the above structure does not need to reserve a space on the front of the electronic device 10 to set a fingerprint button (such as the Home button), so that a full-screen solution can be adopted, that is, the display area of the display screen 120 It can extend to substantially the entire front of the electronic device 10 .
  • a fingerprint button such as the Home button
  • the optical fingerprint module 130 may include a light detection part 134 and an optical component 132 .
  • the light detection part 134 includes the sensing array 133 (also referred to as an optical fingerprint sensor), a reading circuit and other auxiliary circuits electrically connected to the sensing array 133, which can be fabricated on a chip by a semiconductor process. (Die), such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array 133 is specifically a photo detector (Photo detector) array, which includes a plurality of photo detectors distributed in an array, and the photo detectors can be used as the above-mentioned optical sensing units.
  • the optical component 132 may be disposed above the sensing array 133 of the light detection part 134, and may specifically include a filter layer (Filter), a light guide layer or a light path guide structure, and other optical elements, the filter layer. It can be used to filter out ambient light penetrating the finger, and the light guide layer or the light path guiding structure is mainly used to guide the reflected light reflected from the finger surface to the sensing array 133 for optical detection.
  • a filter layer Fanter
  • the light guide layer or the light path guiding structure is mainly used to guide the reflected light reflected from the finger surface to the sensing array 133 for optical detection.
  • the optical assembly 132 and the light detection part 134 may be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 It is attached above the chip, or some components of the optical component 132 are integrated into the chip.
  • the area or light sensing range of the sensing array 133 of the optical fingerprint module 130 corresponds to the fingerprint detection area 103 of the optical fingerprint module 130 .
  • the fingerprint collection area 103 of the optical fingerprint module 130 may or may not be equal to the area or light sensing range of the area where the sensing array 133 of the optical fingerprint module 130 is located, which is not specifically limited in this embodiment of the present application .
  • the optical path is guided by light collimation, and the fingerprint detection area 103 of the optical fingerprint module 130 can be designed to be substantially the same as the area of the sensing array of the optical fingerprint module 130 .
  • the area of the fingerprint detection area 103 of the optical fingerprint module 130 can be made larger than that of the optical fingerprint module by, for example, optical path design of lens imaging, reflective folding optical path design, or other optical path designs such as light convergence or reflection. 130 of the area of the sensing array 133 .
  • optical assembly 132 may include.
  • the optical collimator may be specifically a collimator layer fabricated on a semiconductor silicon wafer, which has A plurality of collimation units or micro-holes, the collimation unit may be specifically a small hole, and the collimation unit has a specific direction, for example, the specific direction may be a vertical direction or an inclined direction with a certain angle.
  • the returning light with the specific direction can be incident into the collimating unit, the light passing through the collimating unit can pass through and be received by the sensor chip below it, while the light with other incident angles can be incident on the collimating unit. It is attenuated after multiple reflections inside the collimation unit, so each sensor chip can basically only receive the reflected light reflected from the corresponding fingerprint pattern above it, which can effectively improve the image resolution and thus improve the fingerprint recognition effect. .
  • the optical path guide structure can be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspherical lenses , which is used to condense the reflected light from the finger to the sensing array 133 of the light detection part 134 below it, so that the sensing array 133 can perform imaging based on the reflected light, thereby obtaining the fingerprint image of the finger .
  • Lens optical lens
  • the optical lens layer may also be formed with pinholes or micro-aperture diaphragms in the optical path of the lens unit, for example, one or more light shielding sheets may be formed in the optical path of the lens unit, wherein at least A light-shielding sheet may be formed with light-transmitting micro-holes in the optical axis or optical center region of the lens unit, and the light-transmitting micro-holes may be used as the above-mentioned pinholes or micro-aperture diaphragms.
  • the pinhole or micro-aperture diaphragm can cooperate with the optical lens layer and/or other optical film layers above the optical lens layer to expand the field of view of the optical fingerprint module 130 to improve the optical fingerprint module 130 fingerprint imaging effect.
  • the optical path guiding structure may include a microlens array formed by a plurality of microlenses, which may be formed by a semiconductor growth process or other processes Above the sensing array 133 of the light detection part 134 , and each microlens may correspond to one or more sensing units of the sensing array 133 , respectively.
  • other optical film layers such as a dielectric layer or a passivation layer, may also be formed between the microlens layer and the sensing unit.
  • a light-blocking layer (or called a light-shielding layer, a light-blocking layer, etc.) with micro-holes (or called openings) may be further included between the micro-lens layer and the sensing unit, wherein the micro- The hole is formed between its corresponding microlens and the sensing unit, and the light blocking layer can block the optical interference between adjacent microlenses and the sensing unit, and make the light corresponding to the sensing unit converge through the microlens into the inside of the micro-hole and transmitted to the sensing unit via the micro-hole for optical fingerprint imaging.
  • optical path guiding structure can be used alone or in combination.
  • a microlens layer may be further disposed above or below the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the microlens layer, its specific stack structure or optical path may need to be adjusted according to actual needs.
  • the optical component 132 may further include other optical elements, such as a filter layer (Filter) or other optical films, which may be disposed between the optical path guiding structure and the optical fingerprint sensor or disposed in all
  • the space between the display screen 120 and the optical path guiding structure is mainly used to isolate the influence of external interference light on the optical fingerprint detection.
  • the filter layer can be used to filter out ambient light that penetrates the finger and enters the optical fingerprint sensor through the display screen 120. Similar to the optical path guiding structure, the filter layer can be used for each
  • the optical fingerprint sensors are separately arranged to filter out interfering light, or a large-area filter layer can be used to cover the multiple optical fingerprint sensors at the same time.
  • the fingerprint identification module 140 can be used to collect fingerprint information (such as fingerprint image information) of the user.
  • the optical fingerprint module 130 can use the display unit (ie, the OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
  • the display screen 120 When the finger 140 is pressed on the fingerprint detection area 103, the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103, and the light 111 is reflected on the surface of the finger 140 to form reflected light or passes through all the The finger 140 is internally scattered to form scattered light (transmitted light).
  • the above-mentioned reflected light and scattered light are collectively referred to as return light.
  • the returned light 151 from the fingerprint ridges and the returned light 152 from the fingerprint valleys have different light intensities, and the returned light passes through the optical component 132 Then, it is received by the sensing array 133 in the optical fingerprint module 130 and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, thereby
  • the optical fingerprint recognition function is implemented in the electronic device 10 .
  • the optical fingerprint module 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection and identification.
  • the optical fingerprint module 130 can be applied not only to self-luminous display screens such as OLED display screens, but also to non-self-luminous display screens, such as liquid crystal display screens or other passive light-emitting display screens.
  • the optical fingerprint system of the electronic device 10 may further include an excitation light source for optical fingerprint detection, the excitation The light source can be specifically an infrared light source or a light source of non-visible light with a specific wavelength, which can be arranged under the backlight module of the liquid crystal display or in the edge area under the protective cover of the electronic device 10, and the optical fingerprint module. 130 can be arranged under the edge area of the liquid crystal panel or the protective cover and guided by the optical path so that the fingerprint detection light can reach the optical fingerprint module 130; or, the optical fingerprint module 130 can also be arranged in the backlight module.
  • the excitation The light source can be specifically an infrared light source or a light source of non-visible light with a specific wavelength, which can be arranged under the backlight module of the liquid crystal display or in the edge area under the protective cover of the electronic device 10, and the optical fingerprint module. 130 can be arranged under the edge area of the liquid crystal panel or the protective cover and guided by the optical path so that the fingerprint detection light can reach the optical fingerprint module 130; or,
  • the backlight module allows the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical fingerprint module 130 by making holes or other optical designs on film layers such as diffusion sheets, brightening sheets, and reflective sheets.
  • the optical fingerprint module 130 uses a built-in light source or an external light source to provide an optical signal for fingerprint detection, the detection principle is consistent with the above description.
  • the electronic device 10 may further include a transparent protective cover plate, which may be a glass cover plate or a sapphire cover plate, which is located above the display screen 120 and covers the front surface of the electronic device 10 . Therefore, in the embodiments of the present application, the so-called finger pressing on the display screen 120 actually refers to pressing the cover plate above the display screen 120 or the surface of the protective layer covering the cover plate.
  • a transparent protective cover plate which may be a glass cover plate or a sapphire cover plate
  • the embodiment of the present application proposes a fingerprint identification device and electronic equipment, so that the The fingerprint identification device can realize dual detection functions of fingerprint detection and ambient light detection, which improves user experience without increasing costs.
  • FIG. 3 shows a schematic diagram of an electronic device 30 according to an embodiment of the present application.
  • the electronic device includes a display screen 300 and a fingerprint identification device 400 disposed below the display screen 300 .
  • the display area includes a fingerprint detection area and a non-fingerprint detection area, wherein the fingerprint detection area may be an area for receiving finger pressing.
  • the fingerprint detection area in this embodiment of the present application may also include two parts, one part may be the first area in the fingerprint detection area for receiving fingerprint pressing, such as the part provided with light spots, and the other part may be used to receive fingerprints
  • the display screen 300 in this embodiment of the present application may be used to provide a touch interface for a finger.
  • the finger touches the fingerprint detection area of the display screen 300 .
  • the display screen 300 may include light-emitting display pixels capable of emitting light.
  • the light emitted by the light-emitting display pixels illuminates the finger, and the light can be reflected or scattered through the surface and interior of the finger to generate a return light signal
  • the area for detecting fingerprint data in the fingerprint identification device 400 located under the display screen 300 can be used to receive the return light signal of the first area, and at the same time, the area for detecting ambient light in the fingerprint identification device 400 can be used for
  • the light signal from the second area of the display screen 300 is received, and the light signal received by the area for ambient light detection may include the ambient light signal, or may include the returned light signal reflected by the finger.
  • the electronic device 30 in this embodiment of the present application can also perform ambient light detection, wherein the area for detecting fingerprint data in the fingerprint identification device 400 located under the display screen 300 can be In order to receive the ambient light signal from the first area, the area for detecting ambient light in the fingerprint identification device 400 can be used to receive the light signal from the second area of the display screen 400.
  • the fingerprint identification device of the embodiment can realize dual detection functions of fingerprint detection and ambient light detection.
  • the area where the light spot is set at the center of the fingerprint detection area is the first area, and the edge area of the fingerprint detection area is the second area, but it should be understood that the above is only exemplary description, the embodiments of the present application are not limited thereto.
  • the fingerprint identification device 400 in this embodiment of the present application can receive the light signal diffusely reflected from the screen. More specifically, when fingerprint identification is used, the fingerprint identification device The light signal received by the area used for fingerprint detection in 400 mainly comes from the diffuse reflection of the screen and the returned light signal after finger reflection. When fingerprint recognition is not used, the light signal received in the fingerprint recognition device 400 mainly comes from the diffuse reflection of the screen. Reflection and transmission of ambient light.
  • the diffuse reflections from the screen can cancel each other, so in this
  • the light signal received by the pixel unit in the embodiment of the application may include the signal of the diffuse reflection of the above-mentioned screen.
  • the fingerprint identification device 400 in the embodiment of the present application includes an optical path layer 410 and an optical fingerprint sensor 420 .
  • the optical path layer 410 can be used to guide the optical signals in N directions from the second area of the fingerprint detection area and the optical signals from the first area of the fingerprint detection area to the optical fingerprint sensor 420; the optical fingerprint sensor 420 is arranged at the The lower part of the optical path layer 410 is used to receive the optical signals in the N directions and the optical signals from the first region.
  • the optical fingerprint sensor 420 in the embodiment of the present application may include a first pixel area and a plurality of second pixel areas, the plurality of second pixel areas are arranged around the first pixel area, and the first pixel area uses For receiving optical signals from the first area, a plurality of second pixel areas are used for receiving optical signals in N directions from the second area, wherein each second pixel area is used for receiving the N Optical signal in one of the directions.
  • the directions of the optical signals from the first area received by the first pixel area in the embodiment of the present application may be one or more, which is not limited in the present application.
  • the number of second pixel areas in this embodiment of the present application may be N, and in this case, the N second pixel areas may correspond to the optical signals in N directions one-to-one; or, in the embodiment of the present application There may also be multiple second pixel areas, the optical signal in one direction of the N directions may correspond to two or more second pixel areas, and the optical signal in one direction may correspond to multiple second pixel areas In the case of , more different light signal values can be obtained, thereby further improving the accuracy of ambient light detection.
  • the light signals in N directions acquired by the fingerprint identification device 400 in this embodiment of the present application and the light signals from the first area may be used to generate the current ambient light signal amount.
  • FIG. 3 only the first pixel area 411 and the second pixel area 412 are exemplarily shown, wherein the first pixel area 411 corresponds to the middle part in FIG. 3 , and the second pixel area 412 corresponds to the In the edge portion, only the first pixel area 411 and the second pixel area 412 are exemplarily shown in FIG. 3 , and corresponding light signals are not shown, but the embodiment of the present application is not limited thereto.
  • FIG. 4 is a schematic diagram of a pixel area and a corresponding optical signal of a fingerprint sensor according to an embodiment of the present application.
  • the pixel area of the fingerprint sensor may include a first pixel area 401 and a second pixel area 402, wherein the first pixel area 401 may receive light signals from the first area on the display screen, specifically Ground, when a fingerprint is pressed, the first pixel area 401 can receive the returned light signal from the first area of the display screen after being reflected by the finger, or can also receive the ambient light signal from the first area; or, when When the fingerprint pressing operation is not performed, the first pixel area 401 may be used to receive an ambient light signal from the first area on the front side of the display screen.
  • the fingerprint identification device can realize the dual functions of fingerprint unlocking and ambient light detection at the same time, and the fingerprint unlocking can refer to the prior art, and the embodiment of the present application focuses on It is described that the function of ambient light detection is realized on the basis of fingerprint unlocking. Therefore, the following description will focus on the realization of ambient light detection in the fingerprint detection device.
  • the second pixel area 402 can receive ambient light signals in at least two directions from the second area on the display screen, and the area of the second pixel area 402 is larger than that of the first pixel area 401, so that the Occlusion, while realizing fingerprint identification, detects ambient light, or can also detect ambient light when fingerprint identification is not performed.
  • the first pixel area receives the light signal from the first area
  • the second pixel area receives the light signal from the second area.
  • a part of the received light signal comes from the returned light signal reflected by the finger, but this does not affect the ambient light detection in the embodiment of the present application.
  • the second visual field area corresponding to the plurality of second pixel areas in the embodiment of the present application is larger than the first visual field area corresponding to the first pixel area.
  • the first pixel area 401 and the second pixel area 402 include optical sensing pixels, wherein different areas in the second pixel area 402 that receive ambient light signals in different directions may respectively include at least one optical sensing pixel, and the second pixel area 402 includes at least one optical sensing pixel.
  • the optical sensing pixels included in the pixel area 402 are arranged around the optical sensing pixels included in the first pixel area 401 , so that the area of the second pixel area 402 is larger than that of the first pixel area 401 , wherein the optical sensing pixels included in the first pixel area 401
  • the sensing pixel can be used to receive the light signal with the arrow pointing to the light entering direction of the first pixel area 401 shown in FIG. 4 , that is, the light entering direction 403 of the fingerprint acquisition pixel; the optical sensing pixel included in the second pixel area 402 can receive the light signal pointed by the arrow
  • the light signal in the light incoming direction of the second pixel area 402 is the ambient light detection pixel light incoming direction 404 .
  • first pixel area and the second pixel area in the embodiments of the present application may also be referred to as the first visual field area and the second visual field area, or in other words, the first pixel area and the second pixel area in the embodiments of the present application
  • the pixel area may correspond to the first visual field area and the second visual field area, respectively, and the visual field area in this embodiment of the present application may be understood as an angular range in which the fingerprint sensor can receive influence.
  • each pixel area may include optical sensing pixels.
  • the number of optical sensing pixels may be set according to actual requirements.
  • FIG. 4 only exemplarily shows the correspondence between the incoming light direction of ambient light and the second pixel area
  • the ambient light signal received by the second pixel area 402 in this embodiment of the present application may include at least two For the optical signal in the direction, by obtaining the optical signal in different directions, multiple different optical signal quantities can be obtained, and the current ambient light signal quantity can be obtained according to the multiple different optical signal quantities, which can improve the accuracy of ambient light detection.
  • Fig. 5 further shows a schematic diagram of a pixel area of a fingerprint sensor including four light signals in light incoming directions according to an embodiment of the present application.
  • the pixel area of the fingerprint sensor includes a first pixel area 501 and a second pixel area 502, wherein the first pixel area 501 can also be represented as area S0, and the first pixel area 501 or the S0 area can be used for Receive the return light signal reflected by the finger when the finger is pressed in the first area (which may be the middle area of the display screen), or the ambient light signal when there is no finger press in the first area.
  • the second pixel area 502 may include 4 sub-areas S1, S2, S3 and S4, and each sub-area may receive light from different light entering directions L1, L2, L3 and L4 (corresponding to the display screen respectively).
  • the light signal of the second area which may include the ambient light signal, and may also include the returned light signal after being reflected by the finger.
  • angles ⁇ of the light incident directions L1 to L4 of the ambient light do not limit the angles ⁇ of the light incident directions L1 to L4 of the ambient light, and ⁇ may take any value from 0 to 180°.
  • the S0 area may receive the returned light signal from the first area of the display screen when a finger is pressed, or alternatively, the S0 area may also Receive the ambient light signal from the first area; S1-S4 can obtain ambient light signals in four different directions L1-L4 respectively, or optionally, when the finger also presses the second area, S1-S4 can also be The returned light signals reflected by the finger in four different directions are obtained, so that the fingerprint identification device of the embodiment of the present application can perform ambient light detection while realizing fingerprint identification.
  • the S0 area can receive the ambient light signal from the first area on the front of the display screen, and S1-S4 can respectively obtain the ambient light signals from the second area in four different directions L1-L4.
  • the fingerprint identification device of the embodiment of the present application can also realize the detection of ambient light when the fingerprint identification function is not used. Specifically, because the fingerprint identification device in the embodiment of the present application can obtain a plurality of different light signal amounts by obtaining light signals from the second area with different light entering directions and light signals from the first area, and then according to Multiple different optical signal quantities generate the current ambient light signal quantity, thereby realizing the detection of ambient light. At the same time, in the embodiment of the present application, multiple optical signals in different directions are used to obtain the current ambient light signal quantity, which can improve the Accuracy of ambient light detection.
  • a plurality of second pixel regions in the embodiments of the present application are arranged on different sides of the first pixel region, or, a plurality of second pixel regions are arranged on the same side of the first pixel region, or, The plurality of second pixel regions are disposed at corners of the first pixel regions.
  • FIG. 5 shows another schematic diagram of sub-region distribution of the second pixel region of the fingerprint sensor in the embodiment of the present application. As shown in FIG. 5 , in the embodiment of the present application, the four sub-regions S1 to S4 in the second pixel region 502 are respectively distributed on the four sides of the first pixel region, so that different directions can be received from multiple directions.
  • the ambient light signal on the one hand, avoids the possibility of the second pixel area 502 being blocked by a finger, and on the other hand, improves the accuracy of ambient light detection, but the present application is not limited to this.
  • FIG. 6 shows another schematic diagram of sub-region distribution of the second pixel region of the fingerprint sensor in the embodiment of the present application. As shown in FIG.
  • all four sub-areas S1 - S4 of the second pixel area 602 may be distributed simultaneously, wherein S1 - S4 respectively correspond to the incoming light of different optical signals Directions L1 to L4. In this way, the accuracy of the acquired ambient light signal quantity can be further improved.
  • FIG. 7 is a schematic diagram illustrating that the second pixel area is distributed at the corners of the first pixel area according to an embodiment of the present application.
  • the N second pixel sub-regions may also be four as an example, which are sequentially S1 to S4, respectively corresponding to four ambient light signals whose light input directions are L1 to L4, wherein each second pixel sub-region is
  • the optical sensing pixels included in the pixel sub-region can be set according to actual conditions, which is not limited in this application.
  • each pixel area in this embodiment of the present application includes optical sensing pixels, and the distribution of the pixel area can also be understood as the distribution of optical sensing pixels.
  • the four second pixel sub-regions can also be understood as the optical sensing pixels used for ambient light detection are distributed in the four corners of the optical sensing pixels used for fingerprint detection, that is, as shown in FIG. 7 , for ambient light detection
  • the second pixel area 702 does not completely occupy every side of the first pixel area 701, but only sets the second pixel area 702 on the four corners.
  • the multiple second pixel areas in the embodiment of the present application are arranged in only one circle in the first pixel area.
  • the multiple second pixel areas are arranged in the first pixel area.
  • At least one ring-shaped area may be arranged around the pixel area.
  • FIG. 8 shows a schematic diagram of a fingerprint sensor including multiple circles and multiple second pixel regions according to an embodiment of the present application.
  • the four second pixel sub-regions S1 to S4 are distributed on four sides of the first pixel region 801 , and the above-mentioned four sub-regions may be distributed in four circles of the first pixel region 801 in multiple circles. On the side, in this way, the accuracy of the acquired ambient light signal quantity can be further improved.
  • each pixel area in the embodiment of the present application includes optical sensing pixels, and the distribution of the pixel area can also be understood as the distribution of optical sensing pixels.
  • the multiple circles of four second pixel sub-regions can also be understood as the multiple circles of optical sensing pixels used for ambient light detection are distributed on four sides of the optical sensing pixels used for fingerprint detection.
  • the number of optical sensing pixels included in each pixel area may be set according to actual conditions, which is not limited in this embodiment of the present application.
  • a second pixel area located on the same side of the first pixel area may be used to receive ambient light signals in the same direction among the N directions;
  • the second pixel area on the same side of the pixel area may be used to receive ambient light signals in the N directions.
  • the current ambient light signal amount generated in this embodiment of the present application may be used to adjust the brightness of the display screen, or may also be used to adjust a keyboard light, etc.
  • This embodiment of the present application This is not limited.
  • the display screen 300 in this embodiment of the present application may correspond to the display screen 120 in the electronic device 10 in FIG. 1 and FIG. 2 , and is applicable to the relevant description of the display screen 120
  • the fingerprint identification device 300 may correspond to FIG. 1 and FIG. 2
  • the optical fingerprint recognition module 130 in the electronic device 10 in FIG. 2 is applicable to the related description of the optical fingerprint recognition module 130 .
  • the optical path layer 310 in the fingerprint recognition device 300 may correspond to the The detection part 134
  • the optical fingerprint sensor 320 in the fingerprint identification device 300 may correspond to the optical component 132 in the fingerprint identification module 130.
  • details are not repeated here.
  • the optical path layer 310 may have various forms.
  • the optical path layer 310 may include an optical lens, a microlens, or a collimator, etc., which will be illustrated below with reference to the accompanying drawings.
  • the optical path layer 310 in this embodiment of the present application may include at least one light blocking layer, wherein each light blocking layer in the at least one light blocking layer is provided with an array of small holes to form N directions
  • the light guide channels in the N directions are used to guide the light signals in the N directions to the plurality of second pixel regions respectively.
  • each of the light guide channels in the N directions may correspond to one or more optical sensing pixels in the optical fingerprint sensor 320 .
  • the light guide channels in the same direction among the light guide channels in the N directions correspond to the same second pixel area.
  • At least one light-blocking layer includes two light-blocking layers, that is, a light-blocking layer 1 and a light-blocking layer 2 , and the light-blocking layer 1 and the light-blocking layer 2 are respectively provided with Pinhole arrays 1 and 2.
  • FIG. 3 shows the second pixel area 412 for detecting ambient light and the first pixel area 411 for fingerprint detection, and the second pixel area 412 includes 12 optical sensing pixels at the corners, and the first pixel area 412
  • a pixel area 411 includes four optical sensing pixels in the middle.
  • the small hole array provided on the light blocking layer 1 in FIG. 3 includes 2 small holes (light passing small holes 1), and the light blocking layer 2
  • the pinhole array also includes 2 pinholes (light-passing pinhole 2) as an example, these pinhole arrays form 2 light guide channels as shown in FIG. and the optical signals in the first region are respectively guided to the optical sensing pixels below, but the embodiment of the present application is not limited to this.
  • the optical path layer 410 can also be configured to include more than two light blocking layers to form a light guide channel with N directions; or , or only one light-blocking layer can be provided.
  • the light blocking layer may have a certain thickness, so that each small hole in the small hole array in the light blocking layer is a light guide channel;
  • the principle of pinhole imaging can also be used.
  • the sensor 420 can further obtain light signal quantities in N directions, which is not limited in this embodiment of the present application.
  • the size and number of the small hole arrays of each light blocking layer in the embodiments of the present application can also be flexibly set according to practical applications. number and size, set the number and size of the small holes in the light-blocking layer.
  • the number of small holes of the plurality of light blocking layers may be set to be equal, or may be set to be unequal.
  • the sizes of the small hole arrays of the same light blocking layer may be the same or different, and the sizes of the small hole arrays of different light blocking layers may also be the same or different.
  • the number of small holes in multiple light-blocking layers can be set to be the same, and the sizes of all the small holes included in the same light-blocking layer can be set to be the same.
  • the size of all the small holes in the light-blocking layer is set to be the same; or, the size of all the small holes included in the same light-blocking layer can also be set to be the same, and the number of small holes of multiple light-blocking layers is set to be different, different light blocking layers.
  • the sizes of the holes in the layers are different. For example, in the direction from the display screen 300 to the optical fingerprint sensor 420 below, the number of the holes in each light-blocking layer increases sequentially, and the size of the holes in each light-blocking layer decreases in turn. small, but the embodiments of the present application are not limited to this.
  • the light blocking layers 1 and 2 can also be provided with a different number of small hole arrays than those shown in FIG. 3 .
  • the two small holes on the light-blocking layer 1 in FIG. 3 can be combined into one small hole, while the light-blocking layer 2 is still provided with two small holes, which can also guide the light signals in N directions, and the light signals from the first
  • the optical signals of the regions are not listed here.
  • the shapes of the small holes provided on the light blocking layer in the embodiments of the present application may be set according to practical applications, and the shapes of the small holes on the same light blocking layer may be the same or different, and the shapes of the small holes on different light blocking layers may be the same or different.
  • the shape of the apertures can also be the same or different.
  • the small holes on all light-blocking layers can be set to the same shape, for example, 3 is only a circle, or can be set to other shapes, such as a rectangle or a triangle, the embodiment of the present application This is not limited.
  • the optical path layer 410 may further include a microlens array 430 .
  • the microlens array 430 in this embodiment of the present application may be disposed above the at least one light-blocking layer, so as to converge the N light signals and the light signals from the first region to the at least one light-blocking layer The light guide channel of the layer.
  • one microlens in the microlens array in the embodiment of the present application may correspond to the light guiding channels in the same direction among the light guiding channels in N directions, or may also correspond to the light guiding channels in N directions. Light guide channels in different directions.
  • FIG. 3 only shows two microlenses in the microlens array 430 , and it is taken as an example that each microlens corresponds to a lower light guide channel. Further, each microlens may also correspond to one of the optical path layers 410 .
  • the optical sensing pixel that is, the microlens on the left may correspond to one optical sensing pixel in the second pixel area 412 , and the microlens on the right may correspond to one optical sensing pixel in the first pixel area 411 .
  • a lens may also be used to focus the optical signals.
  • the optical path layer 410 in the embodiment of the present application may also include: N lenses, each of the N lenses is used to collect light signals in one direction among the N directions.
  • FIG. 9 shows another schematic diagram of the electronic device according to the embodiment of the present application.
  • the optical path layer 410 may include a lens 440.
  • a lens corresponding to the fingerprint pressing area is taken as an example, which is used for converging the light from the first area of the finger. light signal.
  • the position corresponding to the second area may use the microlens array as shown in FIG. 3 , or the position corresponding to the non-fingerprint pressing area in the embodiment of the present application may also use a lens.
  • the different optical path layers 410 shown in FIG. 3 and FIG. 9 may be used alone, or may be used in combination with each other, and the embodiment of the present application is not limited thereto.
  • the N directions in the embodiments of the present application can be flexibly set according to practical applications. Therefore, the electronic device 30 of the embodiment of the present application, through the optical path layer 410 and the optical fingerprint sensor 420 provided, can be used to receive optical signals in N directions from the second area and optical signals from the first area, wherein, N is an integer greater than 1.
  • the light signals in the N directions and the light signals from the first area can be used to generate a current ambient light signal amount, and the current ambient light signal amount can be used for ambient light detection.
  • FIG. 10 shows a schematic flowchart of a method for ambient light detection according to an embodiment of the present application.
  • the method 1000 can be applied to an electronic device with a fingerprint identification device, the fingerprint identification device is arranged below a display screen of the electronic device, and the display area of the display screen includes a fingerprint detection area, and the fingerprint identification device is used to receive information from the electronic device.
  • N is an integer greater than 1.
  • the method may be applied to the electronic devices shown in FIG. 3 and FIG. 9 , but the embodiments of the present application are not limited thereto. The following description will be given by taking the method 1000 applied to the electronic device shown in FIG. 3 as an example.
  • the method may include steps S1012 and S1020, which will be described in detail below.
  • S1010 Acquire N optical signal quantities corresponding to the optical signals in the N directions one-to-one, and optical signal quantities corresponding to the optical signals from the first area one-to-one.
  • the fingerprint identification device of the embodiment of the present application can obtain the current ambient light signal amount according to the obtained multiple light signal amounts, so as to realize the detection of ambient light, and then realize the dual detection function of fingerprint detection and ambient light detection.
  • the ambient light detection method in the embodiment of the present application can be divided into two cases.
  • the fingerprint identification device may acquire N light signal quantities in the second area and light in the first area.
  • Signal quantity in which, due to the finger pressing, the light signal from the second area or the first area may include ambient light signal, and may also include return light signal reflected by the finger; or, when fingerprint detection is not performed, Since there is no fingerprint to press, the fingerprint identification device can acquire N ambient light signal quantities from the second area and an optical signal quantity corresponding to the ambient light signal from the first area.
  • the fingerprint identification device of the embodiment of the present application can obtain the current ambient light signal amount by acquiring a plurality of light signal amounts, thereby realizing dual detection functions of fingerprint detection and ambient light detection.
  • generating the current ambient light signal amount according to the N ambient light signal amounts and the optical signal amount may include: determining an optical signal according to the N light signal amounts and the optical signal amount The maximum value and the minimum value of the quantity; according to the determined maximum value and minimum value, the current ambient light signal quantity is determined.
  • the current ambient light signal amount obtained above can be used to adjust screen brightness.
  • the method further includes: adjusting the brightness of the display screen according to the current ambient light amount Make adjustments.
  • the screen brightness can be adjusted according to the acquired environmental signal amount.
  • the method further includes: determining that the fingerprint pressing operation is currently performed; The brightness of the display screen is adjusted according to the current ambient light signal amount.
  • the screen brightness can be adjusted by acquiring the results of multiple ambient light detections.
  • the method further includes: determining that the fingerprint pressing operation is not currently performed; recording the number of times of ambient light detection this time as the i-th time, and recording the ambient light signal amount corresponding to the i-th ambient light detection; determining whether i is greater than or equal to is equal to the preset threshold m; if i is greater than or equal to the preset value m, the current ambient light signal amount is generated according to the ambient light signal amount recorded for i times, and the display is displayed according to the current ambient light signal amount The brightness of the display screen is adjusted, or if i is less than the preset value m, the adjustment of the brightness of the display screen is abandoned.
  • the screen brightness can be adjusted by obtaining the results of multiple ambient light detections, which can further improve the accuracy of screen brightness adjustment and improve user experience.
  • the screen brightness may also be adjusted by using the results of multiple screen brightness adjustments.
  • the method further includes: determining that this is not the first time to adjust the brightness of the display screen; acquiring the previously recorded ambient light signal amount; according to the previously recorded ambient light signal amount and the current The amount of ambient light signal adjusts the brightness of the display screen.
  • the process 1100 includes:
  • ambient light when fingerprint identification is performed, ambient light may be detected at the same time, and when fingerprint identification is not performed, the ambient light detection process may be initiated according to a preset time, which is not limited in this embodiment of the present application.
  • S1102 calculate the values S1, S2...Sn detected by the optical sensing pixels of the ambient light pixel area of each light entering direction; it should be understood that the S1-Sn here are different from the contents referred to by the S1-Sn appearing above Differently, S1-Sn mentioned above are a plurality of second pixel regions corresponding to light signals in N directions, and S1-Sn here are light corresponding to N directions of the plurality of second pixel regions The light signal amount of the signal can also be called the light intensity of the ambient light signal.
  • the light intensity of the optical signal in the embodiment of the present application can be obtained by the light signal received by the optical sensing pixel in the pixel area.
  • the embodiments of the present application design and optimize the fingerprint identification device to achieve dual detection functions of fingerprint detection and ambient light detection, rather than the specific implementation of ambient light detection.
  • S1103, determine the maximum value Smax and the minimum value Smin of S1, S2...Sn;
  • S1105 determine whether the fingerprint is being used to unlock; optionally, it can be determined whether the fingerprint is currently being unlocked according to the light spot on the display screen, or it can also be determined according to whether the fingerprint detection area is pressed, etc., which is not made in this embodiment of the present application. limited.
  • step S1106 can be performed, otherwise, go to step S1108.
  • the preset number of times m may be pre-configured according to an empirical value, for example, the m may be 3 times, 5 times, etc. Not limited.
  • the screen brightness adjustment method in the embodiment of the present application can use a fingerprint identification device to detect ambient light when fingerprint detection is used or when fingerprint detection is not used, and adjust the screen brightness according to the result of ambient light detection, Therefore, the dual detection functions of fingerprint detection and ambient light detection are realized without increasing the cost, and further, the adjustment of the screen brightness is realized, and the user experience is improved.
  • FIG. 12 shows a schematic block diagram of an electronic device 1200 according to an embodiment of the present application.
  • the electronic device 1200 includes a display screen 1210 , a fingerprint identification device 1220 and a processing unit 1230 .
  • the display screen 1210 may correspond to the display screen in the electronic device in FIG. 3 and FIG. 9 , and is suitable for the relevant description of the display screen;
  • the fingerprint identification device 1220 may correspond to the fingerprint identification in the electronic device in FIG. 3 and FIG. 9
  • the device is applicable to the relevant description of the fingerprint identification device, and is not repeated here for the sake of brevity.
  • processing unit 1230 may be configured to execute the method 1100 of the embodiments of the present application, and the processing unit 1230 may be a processing unit or a processor located in the electronic device 1200 , or the processing unit 1230 may also be located in the fingerprint identification device 1220
  • the processing unit or processor is not limited to this embodiment of the present application.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Abstract

一种指纹识别装置(400)、电子设备和环境光检测的方法。该指纹识别装置(400)包括:光路层(410)和光学指纹传感器(420),所述光路层(410)用于将来自指纹检测区域的第二区域的N个方向的光信号,以及来自所述指纹检测区域的第一区域的光信号引导至所述光学指纹传感器(420);所述光学指纹传感器(420)设置在所述光路层(410)的下方,所述光学指纹传感器(420)包括第一像素区域(411)和多个第二像素区域(412),所述第一像素区域(411)用于接收来自所述第一区域的光信号,所述多个第二像素区域(412)用于接收来自所述第二区域的所述N个方向的光信号。该指纹识别装置(400)可以实现指纹检测和环境光检测的双重检测功能,从而在不增加成本的前提下,提高用户体验。

Description

指纹识别装置、电子设备和环境光检测的方法 技术领域
本申请涉及光学指纹技术领域,并且更具体地,涉及一种指纹识别装置、电子设备和环境光检测的方法。
背景技术
随着手机的普及,为了提供更好的用户体验,很多手机都使用了环境光检测技术,实现一些智能化功能,例如自动调节键盘灯、屏幕亮度等,但是其实现方式通常是通过硬件上增加感光器件实现感光,这增加了手机成本。
而屏下指纹识别装置本身是一个感光器件,因此,可以通过对屏下指纹识别装置优化光路设计或硬件设计,从而实现指纹采集和环境光检测的双重功能,继而可以在不增加硬件成本的情况下,提供更好的用户体验。
发明内容
本申请实施例提供了一种指纹识别装置、电子设备和环境光检测的方法,可以实现指纹检测和环境光检测的双重检测,从而在不增加硬件成本的情况下,提供更好的用户体验。
第一方面,提供一种指纹识别装置,设置在电子设备的显示屏下方,该显示屏的显示区域包括指纹检测区域,该指纹识别装置包括:光路层和光学指纹传感器,所述光路层用于将来自所述指纹检测区域的第二区域的的N个方向的光信号,以及来自所述指纹检测区域的第一区域的光信号引导至光学指纹传感器,其中,所述指纹检测区域的所述第二区域设置在所述第一区域的周围,N为大于1的整数;所述光学指纹传感器设置在所述光路层的下方,所述光学指纹传感器包括第一像素区域和多个第二像素区域,所述多个第二像素区域设置于所述第一像素区域的周围,所述第一像素区域用于接收来自所述第一区域的光信号,所述多个第二像素区域用于接收来自所述第二区域的所述N个方向的光信号,其中,每个第二像素区域用于接收所述N个方向中一个方向的光信号;其中,所述N个方向的光信号,以及所述来自所述第一区域的光信号用于生成当前的环境光信号量。
应理解,本申请实施例中的指纹检测区域的第一区域可以指显示屏上设 置的用于按压指纹的中心的区域,例如设置有光斑的区域,第二区域可以指显示屏上的用于按压指纹的区域的周围的区域,例如设置有光斑的周围的区域,其中,这两个区域的光信号都可以被本申请实施例中的指纹识别装置接收,其中,第一区域的光信号被第一像素区域接收,第二区域的光信号被第二像素区域接收。
应理解,本申请实施例中的第一区域的光信号可以是经过手指反射之后的反射光信号,也可以是环境光信号;第二区域的光信号可以是经过手指反射之后的反射光信号,或者也可以是环境光信号,信号的不同形式与手指是否按压相关。
具体地,本申请实施例中的环境光检测可以分为两种情况,第一种,有指纹按压时,光路层可以将来自第二区域的N个方向的光信号以及来自第一区域的光信号引导至光学指纹传感器,其中,N个方向的光信号以及来自第一区域的光信号中可以包括经过手指反射后返回的返回光信号以及透过屏幕的环境光信号;第二种情况,没有手指按压时,光路层可以将来自第二区域的N个方向的光信号以及来自第一区域的光信号引导至光学指纹传感器,其中,由于没有手指按压,因此,N个方向的光信号以及来自第一区域的光信号中可以包括透过屏幕的环境光信号。
可选地,本申请实施例中的光信号量可以指接收的光信号的强度值,即光强,其可以通过在指纹传感器中包括的光学感应像素接收到的光信号计算得到。
本申请实施例的技术方案中,通过优化指纹识别装置的光路设计,使得指纹识别装置在实现指纹信息采集的同时,也可以实现环境光信息的采集,从而不需要增加额外的感光器件就可以实现环境光的检测,继而可以在不增加成本的前提下,提高用户体验,同时,利用多个不同方向的光信号进行环境光检测,可以得到光信号量的多个值,利用光信号量的多个不同值得到当前的环境光信号量,可以提高环境光检测的精度。
在一种可能的实施方式中,所述当前的环境光信号量用于对所述显示屏的亮度进行调节。
在一种可能的实施方式中,所述多个第二像素区域对应的第二视野区域大于所述第一像素区域对应的第一视野区域。
通过将采集环境光信息的像素区域设置在采集指纹信息的像素区域的 周围,使得采集环境光信息的视野区域大于采集指纹信息的视野区域,从而可以避免手指的遮挡,更好的对环境光进行检测。
本申请实施例的技术方案中,指纹识别装置对环境光进行检测之后,可以利用检测得到的环境光信号量做进一步的动作,例如,可以根据环境光信号量调节屏幕亮度,或者调节键盘灯灯,本申请实施例对此不作限定。
在一种可能的实施方式中,所述多个第二像素区域设置于所述第一像素区域的不同侧,或者,所述多个第二像素区域设置于所述第一像素区域的同一侧,或者,所述多个第二像素区域设置于所述第一像素区域的边角。
在一种可能的实施方式中,所述多个第二像素区域在所述第一像素区域周围排列为至少一圈环形区域。
本申请的实施例中,多个第二像素区域可以布置在第一像素区域的不同的侧面,这样可以进一步增加第二像素区域形成的视野区域,或者,多个第二像素区域也可以布置在第一像素区域的同一侧,进一步地,第一像素区域的每一侧都可以布置多个第二像素区域,从而可以获取更多的环境光信号,提升环境光检测的精度。
在一种可能的实施方式中,位于所述第一像素区域的同一侧的第二像素区域用于接收所述N个方向中同一个方向的光信号;或者,位于所述第一像素区域的同一侧的第二像素区域用于接收所述N个方向的光信号。
在一种可能的实施方式中,所述光路层包括:至少一个挡光层,所述至少一个挡光层中每个挡光层设置有小孔阵列,以形成所述N个方向的导光通道,以及形成所述来自所述第一区域的光信号的导光通道,所述N个方向的导光通道用于分别将所述N个方向的光信号引导至所述多个第二像素区域,所述第一区域的光信号的导光通道用于将来自所述第一区域的光信号引导至所述第一像素区域。
在一种可能的实施方式中,所述光路层包括:所述光路层还包括:微透镜阵列,设置在所述至少一个挡光层上方,用于将所述N个方向的光信号,以及所述来自所述第一区域的光信号汇聚至所述至少一个挡光层的导光通道。
可选地,所述N个方向的导光通道中同一个方向的导光通道可以有一个或者多个导光通道,该一个或多个导光通道对应于多个第二像素区域中的同一个第二像素区域。
在一种可能的实施方式中,所述至少一个挡光层为两个挡光层。
在一种可能的实施方式中,所述光路层包括:N个透镜,所述N个透镜中的每个透镜用于汇聚所述N个方向中的一个方向的光信号。在一种可能的实施方式中,所述指纹识别装置还包括:处理单元,用于根据所述N个方向的光信号,以及所述来自所述第一区域的光信号,确定光信号量的最大值和最小值;根据确定的所述最大值和最小值,确定当前的环境光信号量。
通过获取N个不同方向的环境光信号来确定当前的环境光信号量,可以提高环境光检测的精度。
在一种可能的实施方式中,所述处理单元还用于:确定当前进行指纹按压操作;根据所述确定的当前的环境光信号量,对所述显示屏的亮度进行调节。
在本申请实施例中,在使用指纹识别时,可以同时实现指纹检测和环境光检测,根据获取的第二区域的N个方向的光信号,以及第一区域的光信号,可以得到当前的环境光信号量,从而实现对环境光的检测,更进一步地,根据当前的环境光信号量可以实现对显示屏亮度的调节。
在一种可能的实施方式中,所述处理单元还用于:确定当前未进行指纹按压操作;记录本次环境光检测的次数为第i次,并记录第i次环境光检测对应的环境光信号量;确定i是否大于或等于预设阈值m;若i大于或等于预设值m,则根据i次记录的环境光信号量生成所述当前的环境光信号量,并根据所述当前的环境光信号量对所述显示屏的亮度进行调节,或者,若i小于预设值m,则放弃对所述显示屏的亮度进行调节。
在本申请的实施例中,在未使用指纹识别时也可以对环境光进行检测,即根据获取的N个方向的环境光信号,以及来自第一区域的环境光信号生成当前的环境光信号量。这种情况下,可以通过获取多次环境光检测的值,并根据多次环境光检测的值对屏幕亮度进行调节,从而可以使得屏幕亮度更加适应环境光,提高了屏幕亮度调节的准确度。
在一种可能的实施方式中,所述处理单元还用于:确定本次并非首次对所述显示屏的亮度进行调节;获取前次记录的环境光信号量;根据所述前次记录的环境光信号量与所述当前的环境光信号量,对所述显示屏的亮度进行调节。
当确定本次并不是第一次对屏幕亮度进行调节时,可以根据本次检测的 环境光信号量以及前次检测的环境光信号量和前次对应的屏幕亮度设定值对显示屏的亮度进行调节,从而可以进一步提高屏幕亮度调节的准确性。
第二方面,提供一种电子设备,包括:显示屏;以及第一方面或者第一方面中任一种可能的实施方式中的指纹识别装置,该指纹识别装置设置于该显示屏下方,以实现屏下光学指纹识别和环境光检测的双重检测功能。
第三方面,提供一种环境光检测的方法,应用于具有指纹识别装置的电子设备,所述指纹识别装置设置在所述电子设备的显示屏下方,所述显示屏的显示区域包括指纹检测区域,所述指纹识别装置用于接收来自所述指纹检测区域的第二区域的N个方向的光信号,以及来自所述指纹检测区域的第一区域的的光信号,所述指纹检测区域的所述第二区域设置在所述第一区域的周围,N为大于1的整数,该方法包括:获取与所述N个方向的光信号一一对应的N个光信号量,以及与所述来自所述第一区域的光信号一一对应的光信号量;根据所述N个光信号量以及所述光信号量,生成当前的环境光信号量。
本申请实施例的技术方案中的指纹识别装置,通过获取第二区域的多个不同方向的光信号,以及来自第一区域的光信号,可以实现指纹检测和环境光检测的双重检测功能,同时,通过获取光信号量的多个值,利用光信号量的多个不同值得到当前的环境光信号量,可以提高环境光检测的精度。
在一种可能的实施方式中,所述方法还包括:根据所述当前的环境信号量,对所述显示屏的亮度进行调节。
在一种可能的实施方式中,所述根据所述N个光信号量以及所述光信号量,生成所述当前的环境光信号量包括:根据所述N个光信号量以及所述光信号量,确定光信号量的最大值和最小值;根据确定的所述最大值和最小值,确定当前的环境光信号量。
在一种可能的实施方式中,所述方法还包括:确定当前进行指纹按压操作;根据所述确定的当前的环境光信号量,对所述显示屏的亮度进行调节。
在一种可能的实施方式中,所述方法还包括:确定当前未进行指纹按压操作;记录本次环境光检测的次数为第i次,并记录第i次环境光检测对应的环境光信号量;确定i是否大于或等于预设阈值m;若i大于或等于预设值m,则根据i次记录的环境光信号量生成所述当前的环境光信号量,并根据所述当前的环境光信号量对所述显示屏的亮度进行调节,或者,若i小于 预设值m,则放弃对所述显示屏的亮度进行调节。
在一种可能的实施方式中,所述方法还包括:确定本次并非首次对所述显示屏的亮度进行调节;获取前次记录的环境光信号量;根据所述前次记录的环境光信号量与所述当前的环境光信号量,对所述显示屏的亮度进行调节。
第四方面,提供了一种芯片,该芯片包括输入输出接口、至少一个处理器、至少一个存储器和总线,该至少一个存储器用于存储指令,该至少一个处理器用于调用该至少一个存储器中的指令,以执行第三方面或第三方面的任一可能的实现方式中的方法。
第五方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第三方面或第三方面的任意可能的实现方式中的方法的指令。
第六方面,提供了一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指时,所述计算机执行上述第三方面或第三方面的任意可能的实现方式中的环境光检测的方法。具体地,该计算机程序产品可以运行于上述第二方面的电子设备上。
附图说明
图1是本申请可以适用的电子设备的示意性结构图。
图2是图1所示的电子设备的剖面示意图。
图3是本申请实施例的电子设备的示意图。
图4是本申请实施例的指纹传感器的一个视野区域的示意图。
图5至图8是本申请实施例的4个进光方向的环境光信号的指纹传感器的视野区域的示意图。
图9是本申请实施例的电子设备的另一个示意图。
图10是本申请实施例的环境光检测方法的示意图。
图11是本申请实施例的调节屏幕亮度的方法的示意图。
图12是本申请实施例的电子设备的结构的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例可以应用于光学指纹系统,包括但不限于光学指 纹识别系统和基于光学指纹成像的产品,本申请实施例仅以光学指纹系统为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的系统等。
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种电子设备。例如,智能手机、笔记本电脑、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备。但本申请实施例对此并不限定。
本申请实施例的技术方案可以用于生物特征识别技术。其中,生物特征识别技术包括但不限于指纹识别、掌纹识别、虹膜识别、人脸识别以及活体识别等识别技术。为了便于说明,下文以指纹识别技术为例进行说明。
本申请实施例的技术方案可以用于屏下指纹识别技术和屏内指纹识别技术。
屏下指纹识别技术是指将指纹识别模组安装在显示屏下方,从而实现在显示屏的显示区域内进行指纹识别操作,不需要在电子设备正面除显示区域外的区域设置指纹采集区域。具体地,指纹识别模组使用从电子设备的显示组件的顶面返回的光来进行指纹感应和其他感应操作。这种返回的光携带与显示组件的顶面接触或者接近的物体(例如手指)的信息,位于显示组件下方的指纹识别模组通过采集和检测这种返回的光以实现屏下指纹识别。其中,指纹识别模组的设计可以为通过恰当地配置用于采集和检测返回的光的光学元件来实现期望的光学成像,从而检测出所述手指的指纹信息。
相应的,屏内(In-display)指纹识别技术是指将指纹识别模组或者部分指纹识别模组安装在显示屏内部,从而实现在显示屏的显示区域内进行指纹识别操作,不需要在电子设备正面除显示区域外的区域设置指纹采集区域。
图1和图2示出了本申请实施例可以适用的电子设备的示意图。其中,图1为电子设备10的定向示意图,图2为图1所示的电子设备10的剖面示意图。
请参见图1和图2,电子设备10可以包括显示屏120和光学指纹识别模组130。
显示屏120可以为自发光显示屏,其采用具有自发光的显示单元作为显示像素。比如显示屏120可以为有机发光二极管(Organic Light-Emitting  Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。在其他可替代实施例中,显示屏120也可以为液晶显示屏(Liquid Crystal Displa,LCD)或者其他被动发光显示屏,本申请实施例对此不做限制。进一步地,显示屏120还可以具体为触控显示屏,其不仅可以进行画面显示,还可以检测用户的触摸或者按压操作,从而为用户提供一个人机交互界面。比如,在一种实施例中,电子设备10可以包括触摸传感器,所述触摸传感器可以具体为触控面板(Touch Panel,TP),其可以设置在所述显示屏120表面,也可以部分集成或者整体集成到所述显示屏120内部,从而形成所述触控显示屏。
光学指纹模组130包括光学指纹传感器,所述光学指纹传感器包括具有多个光学感应单元131(也可以称为光学感应像素、感光像素、像素单元等)的感应阵列133。所述感应阵列133所在区域或者其感应区域为所述光学指纹模组130的指纹检测区域103(也称为指纹采集区域、指纹识别区域等)。
其中,所述光学指纹模组130设置在所述显示屏120下方的局部区域。
请继续参见图1,所述指纹检测区域103可以位于所述显示屏120的显示区域之中。在一种可替代实施例中,所述光学指纹模组130还可以设置在其他位置,比如所述显示屏120的侧面或者所述电子设备10的边缘非透光区域,并通过光路设计来将来自所述显示屏120的至少部分显示区域的光信号导引到所述光学指纹模组130,从而使得所述指纹检测区域103实际上位于所述显示屏120的显示区域。
针对电子设备10,用户在需要对所述电子设备10进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域可以基本扩展到整个电子设备10的正面。
请继续参见图2,所述光学指纹模组130可以包括光检测部分134和光学组件132。所述光检测部分134包括所述感应阵列133(也可称为光学指纹传感器)以及与所述感应阵列133电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die)上,比如光学成像芯片或者光学指纹传感器。所述感应阵列133具体为光探测器(Photo detector)阵 列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元。所述光学组件132可以设置在所述光检测部分134的感应阵列133的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构、以及其他光学元件,所述滤光层可以用于滤除穿透手指的环境光,而所述导光层或光路引导结构主要用于从手指表面反射回来的反射光导引至所述感应阵列133进行光学检测。
在本申请的一些实施例中,所述光学组件132可以与所述光检测部分134封装在同一个光学指纹部件。比如所述光学组件132可以与所述光学检测部分134封装在同一个光学指纹芯片,也可以将所述光学组件132设置在所述光检测部分134所在的芯片外部,比如将所述光学组件132贴合在所述芯片上方,或者将所述光学组件132的部分元件集成在上述芯片之中。
在本申请的一些实施例中,所述光学指纹模组130的感应阵列133的所在区域或者光感应范围对应所述光学指纹模组130的指纹检测区域103。其中,所述光学指纹模组130的指纹采集区域103可以等于或不等于所述光学指纹模组130的感应阵列133的所在区域的面积或者光感应范围,本申请实施例对此不做具体限定。
例如,通过光线准直方式进行光路引导,所述光学指纹模组130的指纹检测区域103可以设计成与所述光学指纹模组130的感应阵列的面积基本一致。
又例如,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得所述光学指纹模组130的指纹检测区域103的面积大于所述光学指纹模组130的感应阵列133的面积。
下面对光学组件132可以包括的光路引导结构进行示例性说明。
以所述光路引导结构采用具有高深宽比的通孔阵列的光学准直器为例,所述光学准直器可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔,所述准直单元可以具体为小孔,并且所述准直单元具有特定方向,例如,该特定方向可以为垂直方向或者具有一定角度的倾斜方向。经过手指返回的光信号中,具有该特定方向的返回光可以入射到所述准直单元中,经过该准直单元的光线可以穿过并被其下方的传感器芯片接收,而其他入射角度的光线在所述准直单元内部经过多次反射被衰减掉,因此每一个传感器芯片基本只能接收到上方的与其对应的指纹纹路反 射回来的反射光,能够有效提高图像分辨率,进而提高指纹识别效果。
以所述光路引导结构采用光学镜头的光路设计为例,所述光路引导结构可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光汇聚到其下方的光检测部分134的感应阵列133,以使得所述感应阵列133可以基于所述反射光进行成像,从而得到所述手指的指纹图像。进一步地,所述光学透镜层在所述透镜单元的光路中还可以形成有针孔或者微孔光阑,比如,在所述透镜单元的光路中可以形成有一个或者多个遮光片,其中至少一个遮光片可以在所述透镜单元的光轴或者光学中心区域形成有透光微孔,所述透光微孔可以作为上述针孔或者微孔光阑。所述针孔或者微孔光阑可以配合所述光学透镜层和/或所述光学透镜层上方的其他光学膜层,扩大光学指纹模组130的视场,以提高所述光学指纹模组130的指纹成像效果。
以所述光路引导结构采用微透镜(Micro-Lens)层的光路设计为例,所述光路引导结构可以为包括由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在所述光检测部分134的感应阵列133上方,并且每一个微透镜可以分别对应于所述感应阵列133的其中一个或者多个感应单元。并且所述微透镜层和所述感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层。更具体地,所述微透镜层和所述感应单元之间还可以包括具有微孔(或称为开孔)的挡光层(或称为遮光层、阻光层等),其中所述微孔形成在其对应的微透镜和感应单元之间,所述挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得所述感应单元所对应的光线通过所述微透镜汇聚到所述微孔内部并经由所述微孔传输到所述感应单元以进行光学指纹成像。
应理解,上述针对光路引导结构的几种实现方案可以单独使用也可以结合使用。
例如,可以在所述准直器层或者所述光学透镜层的上方或下方进一步设置微透镜层。当然,在所述准直器层或者所述光学透镜层与所述微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
另一方面,所述光学组件132还可以包括其他光学元件,比如滤光层(Filter)或其他光学膜片,其可以设置在所述光路引导结构和所述光学指纹传感器之间或者设置在所述显示屏120与所述光路引导结构之间,主要用于 隔离外界干扰光对光学指纹检测的影响。其中,所述滤光层可以用于滤除穿透手指并经过所述显示屏120进入所述光学指纹传感器的环境光,与所述光路引导结构相类似,所述滤光层可以针对每个光学指纹传感器分别设置以滤除干扰光,或者也可以采用一个大面积的滤光层同时覆盖所述多个光学指纹传感器。
指纹识别模组140可以用于采集用户的指纹信息(比如指纹图像信息)。
以显示屏120采用具有自发光显示单元的显示屏为例,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。所述光学指纹模组130可以利用所述OLED显示屏120位于所述指纹检测区域103的显示单元(即OLED光源)作为光学指纹检测的激励光源。当手指140按压在所述指纹检测区域103时,显示屏120向所述指纹检测区域103上方的目标手指140发出一束光111,该光111在手指140的表面发生反射形成反射光或者经过所述手指140内部散射而形成散射光(透射光)。在相关专利申请中,为便于描述,上述反射光和散射光统称为返回光。由于指纹的脊(ridge)141与谷(valley)142对于光的反射能力不同,因此,来自指纹脊的返回光151和来自指纹谷的返回光152具有不同的光强,返回光经过光学组件132后,被光学指纹模组130中的感应阵列133所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在电子设备10实现光学指纹识别功能。
在其他替代方案中,光学指纹模组130也可以采用内置光源或者外置光源来提供用于进行指纹检测识别的光信号。在这种情况下,光学指纹模组130不仅可以适用于如OLED显示屏等自发光显示屏,还可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。
以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏下指纹检测,电子设备10的光学指纹系统还可以包括用于光学指纹检测的激励光源,所述激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在所述液晶显示屏的背光模组下方或者设置在电子设备10的保护盖板下方的边缘区域,而所述光学指纹模组130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达所述光学指纹模组130;或者,所述光学指纹模组130也可以设置在所述背 光模组下方,且所述背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达所述光学指纹模组130。当采用所述光学指纹模组130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理与上面描述内容是一致的。
在具体实现上,所述电子设备10还可以包括透明保护盖板,所述盖板可以为玻璃盖板或者蓝宝石盖板,其位于所述显示屏120的上方并覆盖所述电子设备10的正面。因此,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板或者覆盖所述盖板的保护层表面。
随着手机的普及,为了提供更好的用户体验,很多手机都使用了环境光检测技术,实现一些智能化功能,例如自动调节键盘灯、屏幕亮度等。但是其实现方式通常是通过硬件上增加感光器件实现感光,增加了手机成本,本申请实施例通过对电子设备中的指纹识别装置进行优化和改进,提出了一种指纹识别装置、电子设备,使得指纹识别装置可以实现指纹检测和环境光检测的双重检测功能,在不增加成本的前提下,提高了用户的体验。
下面将结合附图,详细描述本申请实施例的指纹识别装置。
为了实现上述指纹传感器进行指纹检测和环境光检测的双重检测的功能,下面将结合附图,详细描述本申请实施例的电子设备。具体地,图3示出了本申请实施例的电子设备30的示意图,如图3所示,该电子设备包括显示屏300和设置在显示屏300下方的指纹识别装置400,该显示屏300的显示区域包括指纹检测区域和非指纹检测区域,其中,指纹检测区域可以为用于接收手指按压的区域。
应理解,本申请实施例中的指纹检测区域也可以包括两部分,一部分可以为指纹检测区域中用于接收指纹按压的第一区域,例如设置有光斑的部分,另一部分可以为用于接收指纹按压的区域周围的第二区域,如设置有光斑的周围的部分,其中,本申请实施例中的通过这两部分的光信号都可以被本申请实施例的指纹识别装置接收,从而实现指纹检测和环境光检测的双重检测功能。
应理解,本申请实施例的显示屏300可以用于为手指提供触摸界面。在用户需要进行指纹识别时,手指触摸在显示屏300的指纹检测区域。显示屏 300可以包括能够发光的发光显示像素,在显示屏300的第一区域,该发光显示像素发出的光照射手指,光线经过手指的表面和内部可以发生反射或者散射,以产生返回光信号,位于显示屏300下方的指纹识别装置400中的用于检测指纹数据的区域可以用于接收该第一区域的返回光信号,同时,指纹识别装置400中的用于检测环境光的区域可以用于接收来自显示屏300的第二区域的光信号,该用于环境光检测的区域接收的光信号可以包括环境光信号,也可以包括经过手指后反射的返回光信号。
或者,当用户不需要进行指纹识别时,本申请实施例中的电子设备30也可以进行环境光检测,其中,位于显示屏300下方的指纹识别装置400中的用于检测指纹数据的区域可以用于接收来自第一区域的环境光信号,指纹识别装置400中的用于检测环境光的区域可以用于接收来自显示屏400的第二区域的光信号,通过以上述的两种方式,本申请实施例的指纹识别装置可以实现指纹检测和环境光检测的双重检测功能。
为了便于理解,本申请实施例在描述时,都以指纹检测区域的中心位置设置有光斑的区域为第一区域,指纹检测区域的边缘区域为第二区域,但应理解,上述只是示例性的描述,本申请实施例并不限于此。
应理解,无论是否有手指按压所述显示屏400,本申请实施例中的指纹识别装置400都可以接收来自于屏幕的漫反射的光信号,更具体地,当使用指纹识别时,指纹识别装置400中用于指纹检测的区域接收的光信号主要来自于屏幕的漫反射和手指反射后的返回光信号,当未使用指纹识别时,指纹识别装置400中接收的光信号主要来自于屏幕的漫反射和环境光的透射。本申请实施例中,在通过接收到的来自第二区域的N个方向的光信号以及来自第一区域的光信号计算当前的光信号量时,来自屏幕的漫反射可以相互抵消,所以在本申请实施例的描述中并没有进一步描述,但应理解,本申请实施例中的像素单元接收到的光信号中都可以包括上述屏幕的漫反射的信号。
具体地,如图3所示,本申请实施例的指纹识别装置400包括光路层410和光学指纹传感器420。该光路层410可以用于将来自指纹检测区域的第二区域的N个方向的光信号,以及来自指纹检测区域的第一区域的光信号引导至光学指纹传感器420;光学指纹传感器420设置在所述光路层410的下方,用于接收所述N个方向的光信号,以及所述来自所述第一区域的光信号。具体地,本申请实施例中的该光学指纹传感器420可以包括第一像素区域和多 个第二像素区域,多个第二像素区域设置于所述第一像素区域的周围,第一像素区域用于接收来自所述第一区域的光信号,多个第二像素区域用于接收来自所述第二区域的N个方向的光信号,其中,每个第二像素区域用于接收所述N个方向中一个方向的光信号。应理解,本申请实施例中的第一像素区域接收的来自于第一区域的光信号的方向可以为一个或多个,本申请对此不作限定。
应理解,本申请实施例中的多个第二像素区域可以为N个,这种情况下,N个第二像素区域可以与N个方向的光信号一一对应;或者,本申请实施例中的第二像素区域也可以为多个,N个方向中的一个方向的光信号可以对应于2个或2个以上的第二像素区域,在一个方向的光信号对应于多个第二像素区域的情况下,可以获取更多不同的光信号量值,从而进一步提高环境光检测的精度。
作为一个实施例,本申请实施例中的指纹识别装置400获取的N个方向的光信号,以及所述来自所述第一区域的光信号可以用于生成当前的环境光信号量。
在图3中仅示例性的示出了第一像素区域411和第二像素区域412,其中的第一像素区域411对应于图3中的中间部分,第二像素区域412对应于图3中的边缘部分,其中图3中仅示例性的示出第一像素区域411和第二像素区域412,没有示出对应的光信号,但本申请实施例并不限于此。例如,图4中给出了本申请实施例的一个指纹传感器的像素区域与对应的光信号的示意图。
如图4所示,该指纹传感器的像素区域可以包括第一像素区域401和第二像素区域402,其中,所述第一像素区域401可以接收来自显示屏上的第一区域的光信号,具体地,当有指纹按压时,第一像素区域401可以接收来自于显示屏的第一区域的经过手指反射后返回的返回光信号,或者也可以接收来自第一区域的环境光信号;或者,当未进行指纹按压操作时,第一像素区域401可以用于接收来自显示屏正面的第一区域的环境光信号。
应理解,本申请实施例针对现有技术做出的主要改进在于,指纹识别装置可以同时实现指纹解锁和环境光检测的双重功能,而其中的指纹解锁可以参考现有技术,本申请实施例重点描述在指纹解锁的基础上,实现环境光检测的功能,因此,以下都以指纹检测装置中的环境光检测的实现为重点进行 描述。
第二像素区域402可以接收来自显示屏上的第二区域的至少两个方向上的环境光信号,而且,第二像素区域402的面积大于第一像素区域401的面积,这样就可以避免手指的遮挡,在实现指纹识别的同时,对环境光进行检测,或者在未进行指纹识别时,也可以实现对环境光的检测。
应理解,无论有无指纹按压显示屏,第一像素区域接收的都是来自于第一区域的光信号,第二像素区域接收的都是第二区域的光信号,只是在指纹按压时,接收到的光信号中会有一部分来自于手指反射后的返回光信号,但这并不会影响本申请实施例的环境光检测。
作为一个实施例,本申请实施例中的所述多个第二像素区域对应的第二视野区域大于所述第一像素区域对应的第一视野区域。具体地,第一像素区域401和第二像素区域402包括光学感应像素,其中,第二像素区域402中接收不同方向的环境光信号的不同区域可以分别包含至少一个光学感应像素,而且,第二像素区域402包含的光学感应像素设置于第一像素区域401包含的光学感应像素的周围,使得第二像素区域402的面积大于第一像素区域401的面积,其中,第一像素区域401包括的光学感应像素可以用于接收图4中所示的箭头指向第一像素区域401的进光方向的光信号,即指纹采集像素进光方向403;第二像素区域402包括的光学感应像素可以接收箭头指向第二像素区域402的进光方向的光信号,即环境光检测像素进光方向404。
应理解,本申请实施例中的第一像素区域和第二像素区域也可以称为第一视野区域和第二视野区域,或者换句话说,本申请实施例中的第一像素区域和第二像素区域可以分别对应于第一视野区域和第二视野区域,本申请实施例中的视野区域可以理解为指纹传感器可以接收影响的角度范围。
应理解,图4中仅示例性的示出了各像素区域可以包括光学感应像素,在实际应用中,可以根据实际需求,设置光学感应像素的数量。
应理解,图4中仅示例性的示出了环境光进光方向和第二像素区域之间的对应关系,本申请实施例中的第二像素区域402接收的环境光信号可以包括至少两个方向上的光信号,通过获取不同方向上的光信号,可以获得多个不同的光信号量,根据多个不同的光信号量得到当前的环境光信号量,可以提高环境光检测的精度。
图5进一步示出了本申请实施例的包括4个进光方向上的光信号的指纹 传感器的像素区域的示意图。如图5所示,该指纹传感器的像素区域包括第一像素区域501和第二像素区域502,其中,第一像素区域501也可以表示为区域S0,第一像素区域501或S0区域可以用于接收第一区域的(可以是显示屏中间区域)有手指按压时的手指反射的返回光信号,或者第一区域的没有手指按压时的环境光信号,应理解,本申请实施例中的指纹解锁过程具体可以参考现有技术;第二像素区域502可以包括4个子区域S1、S2、S3和S4,每个子区域可以分别接收来自于不同进光方向L1、L2、L3和L4(对应于显示屏的第二区域)的光信号,其中,可以包括环境光信号,也可以包括经过手指反射后的返回光信号。
应理解,本申请实施例对环境光的进光方向L1~L4的角度θ不做限定,θ可以取0~180°的任意值。
本申请实施例中,作为一个实现方式,在使用指纹识别时,S0区域可以接收来自显示屏的第一区域的有手指按压时的手指返回的返回光信号,或者可选地,S0区域也可以接收到来自第一区域的环境光信号;S1~S4可以分别获取4个不同方向L1~L4上的环境光信号,或者可选的,当手指也按压到第二区域时,S1~S4也可以获取4个不同方向上的经过手指反射后的返回光信号,如此,本申请实施例的指纹识别装置就可以在实现指纹识别的同时,进行环境光检测。
或者,作为另一个实现方式,在未使用指纹识别时,S0区域可以接收来自显示屏正面的第一区域的环境光信号,S1~S4可以分别获取4个不同方向L1~L4上的来自第二区域的环境光信号,这样,本申请实施例的指纹识别装置也可以在未使用指纹识别功能时,实现对环境光的检测。具体地,由于本申请实施例中的指纹识别装置可以通过获取的来自第二区域的不同进光方向的光信号,以及来自第一区域的光信号,获取多个不同的光信号量,然后根据多个不同的光信号量生成当前的环境光信号量,从而实现了环境光的检测,同时,本申请实施例中利用了多个不同方向的光信号获取当前的环境光信号量,这可以提高环境光检测的精度。
可选地,本申请实施例中的多个第二像素区域设置于所述第一像素区域的不同侧,或者,多个第二像素区域设置于所述第一像素区域的同一侧,或者,所述多个第二像素区域设置于所述第一像素区域的边角。
如图5所示,本申请实施例中的第二像素区域502中的4个子区域S1~S4 分别分布在第一像素区域的四个侧边上,这样可以从多个方向上接收不同方向的环境光信号,一方面避免了第二像素区域502被手指遮挡的可能,另一方面,也提高环境光检测的精度,但本申请并不限于此。图6中示出了本申请实施例中的指纹传感器的第二像素区域的子区域分布的另一种示意图。如图6所示,在第一像素区域601的每一侧,都可以同时分布有第二像素区域602的全部4个子区域S1~S4,其中,S1~S4分别对应不同的光信号的进光方向L1~L4。通过此种方式,可以进一步提高获取的环境光信号量的精度。
图7示出了本申请实施例的第二像素区域分布于第一像素区域边角的示意图。如图7所示,该N个第二像素子区域也可以以4个为例,依次为S1~S4,分别对应四个进光方向为L1~L4的环境光信号,其中,每个第二像素子区域中包括的光学感应像素可以根据实际情况设置,本申请对此不作限定。
应理解,本申请实施例中的每个像素区域都包括光学感应像素,像素区域的分布也可以理解为光学感应像素的分布,如图7中,分布于第一像素区域701四个边角的4个第二像素子区域也可以理解为,用于环境光检测的光学感应像素分布于用于指纹检测的光学感应像素的四个边角,即,如图7所示,用于环境光检测的第二像素区域702没有完全占据第一像素区域701周围的每一个侧边,而是只在四个角上设置第二像素区域702。
在图4至图6的描述中,本申请实施例中的多个第二像素区域排列在第一像素区域都只有一圈,可选地,所述多个第二像素区域在所述第一像素区域周围可以排列为至少一圈环形区域。
例如,图8示出了本申请实施例的一个包括多圈多个第二像素区域的指纹传感器的示意图。如图8所示,4个第二像素子区域S1~S4分布于第一像素区域801的四个侧边上,并且,可以有多圈上述4个子区域分布于第一像素区域801的四个侧边上,通过此种方式,可以进一步提高获取的环境光信号量的精度。
类似的,本申请实施例中的每个像素区域都包括光学感应像素,像素区域的分布也可以理解为光学感应像素的分布,如图8中,分布于第一像素区域801四个侧边的多圈4个第二像素子区域也可以理解为,多圈用于环境光检测的光学感应像素分布于用于指纹检测的光学感应像素的四个侧边上。其中,每个像素区域中包括的光学感应像素数量可以根据实际情况设置本申请实施例对此不做限定。
可选地,本申请实施例中,位于所述第一像素区域的同一侧的第二像素区域可以用于接收所述N个方向中同一个方向的环境光信号;或者,位于所述第一像素区域的同一侧的第二像素区域可以用于接收所述N个方向的环境光信号。具体可以参见例如图5和图6中的实施例。
可选地,作为一个实施例,本申请实施例中生成的当前的环境光信号量可以用于对所述显示屏的亮度进行调节,或者,也可以用于调节键盘灯等,本申请实施例对此不作限定。
应理解,本申请实施例中的显示屏300可以对应于图1和图2中电子设备10中的显示屏120,并适用于显示屏120的相关描述,指纹识别装置300可以对应于图1和图2中电子设备10中的光学指纹识别模组130,并适用于光学指纹识别模组130的相关描述,例如,指纹识别装置300中的光路层310可以对应于指纹识别模组130中的光检测部分134,而指纹识别装置300中的光学指纹传感器320可以对应于指纹识别模组130中的光学组件132,为了简洁,在此不再一一赘述。
在本申请实施例中,该光路层310可以具有多种形式,例如,该光路层310可以包括光学透镜、微透镜或者准直器等,下面将结合附图进行举例说明。
可选地,作为一个实施例,本申请实施例的光路层310可以包括至少一个挡光层,其中,该至少一个挡光层中每个挡光层设置有小孔阵列,以形成N个方向的导光通道,N个方向的导光通道用于将N个方向的光信号分别引导至多个第二像素区域。
可选地,该N个方向的导光通道每个导光通道可以对应于光学指纹传感器320中的一个或多个光学感应像素。
作为一个实施例,该N个方向的导光通道中的同一个方向的导光通道对应于同一个第二像素区域。
具体地,如图3所示,这里以至少一个挡光层包括两个挡光层为例,即挡光层1和挡光层2,并且挡光层1与挡光层2上分别设置有小孔阵列1和2。由于图3中示出了用于检测环境光的第二像素区域412以及用于指纹检测的第一像素区域411,并且以该第二像素区域412包括边角的12个光学感应像素,以及第一像素区域411包括中间的4个光学感应像素为例,对应的,图3仅示出了挡光层1和2与第一像素区域411和第二像素区域412的光学 感应像素对应的局部区域;为了形成能够通过第一区域和第二区域的光信号,图3中以挡光层1上设置的小孔阵列包括2个小孔(通光小孔1),且挡光层2上设置的小孔阵列也包括2个小孔(通光小孔2)为例,这些小孔阵列形成如图3中所示的2个导光通道,以分别用于将第二区域的光信号,以及第一区域的光信号分别引导至下方的光学感应像素,但本申请实施例并不限于此。
应理解,本申请实施例中的挡光层的数量可以根据实际应用而灵活设置。例如,不同于图3所示的光路层410包括两个挡光层1和2,还可以设置光路层410包括多于两个的挡光层,以形成具有N个方向的导光通道;或者,也可以仅设置一个挡光层。具体地,对于仅设置一个挡光层的情况,该挡光层可以具有一定厚度,使得该挡光层中的小孔阵列中的每个小孔即为一个导光通道;或者,在设置一个挡光层时,也可以利用小孔成像的原理,通过该挡光层上设置的N个小孔,分别将N个方向的返回光信号,通过小孔成像的方式,透射到下方的光学指纹传感器420,进而可以获得N个方向的光信号量,本申请实施例对此不做限定。
本申请实施例中每个挡光层的小孔阵列的尺寸与数量也可以根据实际应用而灵活设置,例如,可以根据需要接收的返回光信号的方向,或者根据光线指纹传感器420中光学感应像素的个数和尺寸,设置挡光层的小孔的数量与尺寸。例如,可以将多个挡光层的小孔的数量设置为相等,或者也可以设置为不相等。同一个挡光层的小孔阵列的尺寸可以相同或者不同,不同挡光层的小孔阵列的尺寸也可以相同或者不同。例如,如图3所示,可以将多个挡光层的小孔的数量设置为相同,同一个挡光层包括的全部小孔的尺寸设置为相同,同时也可以将多个挡光层包括的全部的小孔的尺寸设置为相同;或者,也可以将同一个挡光层包括的全部小孔的尺寸设置为相同,而多个挡光层的小孔的数量设置为不同,不同挡光层的小孔的尺寸不同,例如,自显示屏300至下方的光学指纹传感器420的方向上,各个挡光层的小孔的数量依次增加,而每个挡光层的小孔的尺寸依次减小,但本申请实施例并不限于此。
例如,同样用于引导N个方向的光信号,以及来自第一区域的光信号,还可以在挡光层1和2上设置不同于图3所示的小孔阵列的数量。例如,可以将图3中挡光层1上的2个小孔合并为一个小孔,而挡光层2上仍然设置 2个小孔,同样可以引导N个方向的光信号,以及来自第一区域的光信号,为了简洁,在此不再一一列举。
应理解,本申请实施例中的挡光层上设置的小孔的形状可以根据实际应用进行设置,并且,同一个挡光层上的小孔的形状可以相同或者不同,不同挡光层上的小孔的形状也可以相同或者不同。例如,如图3所示,可以将全部挡光层上的小孔均设置为相同形状,如3仅以圆形为例,或者也可以设置为其他形状,例如矩形或者三角形,本申请实施例对此不做限定。
可选地,作为一个实施例,对于图3中的指纹识别装置400,为了提高成像效果,该光路层410还可以包括微透镜阵列430。本申请实施例中的微透镜阵列430可以设置在所述至少一个挡光层上方,用于将所述N个光信号,以及所述来自第一区域的光信号汇聚至所述至少一个挡光层的导光通道。
可选地,本申请实施例中的微透镜阵列中的一个微透镜可以对应N个方向的导光通道中的属于同一个方向的导光通道,或者,也可以对应N个方向的导光通道中的不同方向的导光通道。
图3中仅示出了微透镜阵列430中的两个微透镜,并且以每个微透镜对应下面的一个导光通道为例,进一步地,每个微透镜还可以对应光路层410中的一个光学感应像素,即左侧的微透镜可以对应于第二像素区域412中的一个光学感应像素,右侧的微透镜可以对应于第一像素区域411中的一个光学感应像素。
应理解,图3均以N个方向的光信号中的一个方向的信号,以及来自第一区域的光信号中的一个为例进行说明,但本申请实施例并不限于此。
可选地,作为再一个实施例,为了提高成像效果,也可以使用透镜对光信号进行汇聚。本申请实施例中的该光路层410也可以包括:N个透镜,所述N个透镜中的每个透镜用于汇聚N个方向中的一个方向的光信号。
图9示出了本申请实施例的电子设备的再一示意图,该光路层410可以包括透镜440,图9中以指纹按压区域对应的一个透镜为例,以用于汇聚来自指第一区域的光信号。其中,对应于第二区域的位置可以使用如图3所述的微透镜阵列,或者,本申请实施例中的对应于非指纹按压区域的位置也可以使用透镜。
应理解,上述图3和图9所示的不同的光路层410可以单独使用,或者也可以相互结合使用,本申请实施例并不限于此。无论使用哪一种光路层, 本申请实施例中的N个方向可以根据实际应用进行灵活设置。因此,本申请实施例的电子设备30,通过设置的光路层410和光学指纹传感器420,可以用于接收来自第二区域的N个方向的光信号,以及来自第一区域的光信号,其中,N为大于1的整数。该N个方向的光信号,以及来自第一区域的光信号可以用于生成当前的环境光信号量,该当前的环境光信号量可以用于环境光的检测。
图10示出了本申请实施例的用于环境光检测的方法的流程示意图。该方法1000可以应用于具有指纹识别装置的电子设备,该指纹识别装置设置在该电子设备的显示屏下方,该显示屏的显示区域包括指纹指纹检测区域,该指纹识别装置用于接收来自所述指纹检测区域的第二区域的N个方向的光信号,以及来自所述指纹检测区域的第一区域的光信号,N为大于1的整数。例如,该方法可以应用于上述图3和图9中所示的电子设备中,但本申请实施例并不限于此。下面以将方法1000应用于图3所示的电子设备为例进行说明。
如图10所示,该方法可以包括步骤S1012和S1020,下面对这两个步骤进行详细描述。
S1010,获取与所述N个方向的光信号一一对应的N个光信号量,以及与来自所述第一区域的光信号一一对应的光信号量。
S1020,根据所述N个光信号量以及所述光信号量,生成当前的环境光信号量。
本申请实施例的指纹识别装置,可以根据获取的多个光信号量,得到当前的环境光信号量,从而可以实现对环境光的检测,继而可以实现指纹检测和环境光检测的双重检测功能。
应理解,本申请实施例中的环境光检测方法可以分为两种情况,可选地,在进行指纹检测时,指纹识别装置可以获取第二区域的N个光信号量以及第一区域的光信号量,其中,由于有手指按压,来自第二区域或第一区域中的光信号中可能包括环境光信号,也可能包括经过手指后反射的返回光信号;或者,在没有进行指纹检测时,由于没有指纹进行按压,因此,指纹识别装置可以获取来自第二区域的N个环境光信号量以及来自第一区域的环境光信号对应的光信号量。本申请实施例的指纹识别装置通过获取多个光信号量,可以得到当前的环境光信号量,从而可以实现指纹检测和环境光检测的双重 检测功能。
可选地,根据所述N个环境光信号量以及所述光信号量,生成所述当前的环境光信号量可以包括:根据所述N个光信号量以及所述光信号量,确定光信号量的最大值和最小值;根据确定的所述最大值和最小值,确定当前的环境光信号量。
可选地,作为一个实施例,上述获取的当前的环境光信号量可以用于调节屏幕亮度,具体地,所述方法还包括:根据所述当前的环境信号量,对所述显示屏的亮度进行调节。
可选地,作为一个实施例,当确定进行指纹按压时,可以根据获取的环境信号量对屏幕亮度进行调节,具体地,所述方法还包括:确定当前进行指纹按压操作;根据所述确定的当前的环境光信号量,对所述显示屏的亮度进行调节。
可选地,作为另一个实施例,当确定未进行指纹按压时,可以通过获取多次环境光检测的结果,对屏幕亮度进行调节。具体地,所述方法还包括:确定当前未进行指纹按压操作;记录本次环境光检测的次数为第i次,并记录第i次环境光检测对应的环境光信号量;确定i是否大于或等于预设阈值m;若i大于或等于预设值m,则根据i次记录的环境光信号量生成所述当前的环境光信号量,并根据所述当前的环境光信号量对所述显示屏的亮度进行调节,或者,若i小于预设值m,则放弃对所述显示屏的亮度进行调节。
在未使用指纹识别时,通过获取多次环境光检测的结果,对屏幕亮度进行调节,可以进一步提高屏幕亮度调节的准确性,提高用户体验。
更进一步地,本申请实施例中还可以利用多次屏幕亮度调节的结果对屏幕亮度进行调节。具体地,所述方法还包括:确定本次并非首次对所述显示屏的亮度进行调节;获取前次记录的环境光信号量;根据所述前次记录的环境光信号量与所述当前的环境光信号量,对所述显示屏的亮度进行调节。
通过利用前次屏幕亮度调节的结果以及本次环境光检测的结果,对当前的屏幕亮度进行调节,可以进一步提高屏幕亮度调节的准确性。
为了对本申请实施例中的屏幕亮度调节的过程做进一步的说明,下面以图11中示出的本申请实施例的屏幕亮度调节流程示意图为例进行说明。其中对应的像素区域可以参考图5的描述。如图11所示,该流程1100包括:
S1101,进行环境光检测;
可选地,当进行指纹识别时,可以同时对环境光进行检测,当未进行指纹识别时,可以按照预设的时间发起对环境光的检测过程,本申请实施例对此不作限定。
S1102,计算各个进光方向的环境光像素区域的光学感应像素检测的值S1,S2……Sn;应理解,此处的S1~Sn与上文中出现的S1~Sn所指代的内容有所不同,上文中提到的S1~Sn为对应于N个方向的光信号的多个第二像素区域,而此处的S1~Sn为对应于该多个第二像素区域的N个方向的光信号的光信号量,也可以称作环境光信号的光强。
本申请实施例中的光信号的光强可以通过像素区域中的光学感应像素接收到的光信号来获得,具体获取光强值的方式可以参考现有技术,本申请实施例的方案与现有技术的区别在于,本申请实施例通过对指纹识别装置进行设计和优化,从而实现指纹检测和环境光检测的双重检测功能,而不是在于环境光检测的具体实现方式。
S1103,确定S1,S2……Sn的最大值Smax,以及最小值Smin;
S1104,计算第一像素区域的光学感应像素检测的值S0,并计算Smin和S0的最小值Smin0;应理解,本申请实施例中第一像素区域利用光信号进行指纹检测的过程可以参考现有技术,本申请实施例对此不作过多赘述。
S1105,判断是否在使用指纹解锁;可选地,可以根据显示屏上的光斑判断当前是否在使用指纹解锁,或者也可以根据指纹检测区域是否收到按压等进行判断,本申请实施例对此不作限定。
当判断结果为确定在使用指纹解锁时,可以进行步骤S1106,否则转到步骤S1108。
S1106,确定使用指纹解锁时,计算当前的环境光信号为Sh=Smax-S0,然后根据Sh的大小,设定屏幕亮度为L0;
S1107,进一步地,记录当前的环境光信号Sp=Sh,屏幕亮度为L0。
结束本次屏幕亮度调节过程。
另一种情况下,
S1108,确定并未使用指纹解锁,则记录当前环境光检测的次数为第i次,并记录i次检测的环境光信号量;
S1109,进一步地,判断i是否等于预设的次数m,可选地,该预设的次数m可以是根据经验值预配置的,例如该m可以为3次,5次等,本申 请对此不作限定。
S1110,若i小于预设的次数m,则继续进行下一次的环境光检测,放弃对屏幕亮度进行校准;
S1111,若i大于或等于预设的次数m,则计算m次的Sh的平均值作为环境光信号量Sh;
S1112,进一步地,判断本次是否是第一次使用屏幕亮度调节功能;
S1113,若判断结果为是第一次使用屏幕亮度调节功能,则根据前述S1106和S1107的步骤,即,根据公式计算当前的环境光信号为Sh=Smax-S0,然后根据Sh的大小,设定屏幕亮度为L0,然后记录当前的环境光信号量Sh和相应的屏幕亮度L0,并结束此次屏幕亮度调节过程。
或者,作为另一种情况:
S1114,若判断当前并未首次使用屏幕亮度调节功能,则获取上一次环境光检测的结果Sp及相应的屏幕亮度L0;
S1115,比较本次得到的当前的环境光信号量Sh以及前次的记录值Sp和L0,调节屏幕亮度到L1=L0+((Sh-Sp)/Sp)*L0。
本申请实施例中的屏幕亮度调节方法,可以利用指纹识别装置,在使用指纹检测时,或者未使用指纹检测时,对环境光进行检测,并根据环境光检测的结果,对屏幕亮度进行调节,从而在不增加成本的情况下,实现指纹检测和环境光检测的双重检测功能,更进一步地,实现对屏幕亮度的调节,提高了用户的体验。
应理解,本申请实施例的方法1100可以由电子设备中的处理单元或者处理器执行。具体地,图12示出了本申请实施例的电子设备1200的示意性框图。如图12所示,该电子设备1200包括显示屏1210、指纹识别装置1220和处理单元1230。其中,该显示屏1210可以对应于图3和图9中电子设备中的显示屏,并适用于显示屏的相关描述;指纹识别装置1220可以对应于图3和图9中电子设备中的指纹识别装置,并适用于指纹识别装置的相关描述,为了简洁,在此不再赘述。并且,该处理单元1230可以用于执行本申请实施例的方法1100,该处理单元1230可以为位于电子设备1200中的处理单元或者处理器,或者该处理单元1230也可以为位于指纹识别装置1220中的处理单元或者处理器,本申请实施例并不限于此。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各 示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前 述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (21)

  1. 一种指纹识别装置,其特征在于,设置在电子设备的显示屏下方,所述显示屏的显示区域包括指纹检测区域,所述指纹识别装置包括:
    光路层和光学指纹传感器,
    所述光路层用于将来自所述指纹检测区域的第二区域的N个方向的光信号,以及来自所述指纹检测区域的第一区域的光信号引导至所述光学指纹传感器,其中,所述指纹检测区域的所述第二区域设置在所述第一区域的周围,N为大于1的整数;
    所述光学指纹传感器设置在所述光路层的下方,所述光学指纹传感器包括第一像素区域和多个第二像素区域,所述多个第二像素区域设置于所述第一像素区域的周围,所述第一像素区域用于接收来自所述第一区域的光信号,所述多个第二像素区域用于接收来自所述第二区域的所述N个方向的光信号,其中,每个第二像素区域用于接收所述N个方向中一个方向的光信号;
    其中,所述N个方向的光信号,以及所述来自所述第一区域的光信号用于生成当前的环境光信号量。
  2. 根据权利要求1所述的指纹识别装置,其特征在于,所述当前的环境光信号量用于对所述显示屏的亮度进行调节。
  3. 根据权利要求1或2所述的指纹识别装置,其特征在于,所述多个第二像素区域对应的第二视野区域大于所述第一像素区域对应的第一视野区域。
  4. 根据权利要求1-3中任一项所述的指纹识别装置,其特征在于,所述多个第二像素区域设置于所述第一像素区域的不同侧,或者,
    所述多个第二像素区域设置于所述第一像素区域的同一侧,或者,
    所述多个第二像素区域设置于所述第一像素区域的边角。
  5. 根据权利要求1-4中任一项所述的指纹识别装置,其特征在于,所述多个第二像素区域在所述第一像素区域周围排列为至少一圈环形区域。
  6. 根据权利要求1-5中任一项所述的纹识别装置,其特征在于,位于所述第一像素区域的同一侧的第二像素区域用于接收所述N个方向中同一个方向的光信号;或者,
    位于所述第一像素区域的同一侧的第二像素区域用于接收所述N个方向的光信号。
  7. 根据权利要求1-6中任一项所述的指纹识别装置,其特征在于,所述光路层包括:
    至少一个挡光层,所述至少一个挡光层中每个挡光层设置有小孔阵列,以形成所述N个方向的导光通道,以及形成所述来自所述第一区域的光信号的导光通道,所述N个方向的导光通道用于分别将所述N个方向的光信号引导至所述多个第二像素区域,所述第一区域的光信号的导光通道用于将来自所述第一区域的光信号引导至所述第一像素区域。
  8. 根据权利要求7所述的指纹识别装置,其特征在于,所述光路层还包括:
    微透镜阵列,设置在所述至少一个挡光层上方,用于将所述N个方向的光信号,以及所述来自所述第一区域的光信号汇聚至所述至少一个挡光层的导光通道。
  9. 根据权利要求7或8所述的指纹识别装置,其特征在于,所述至少一个挡光层为两个挡光层。
  10. 根据权利要求1-6中任一项所述的指纹识别装置,其特征在于,所述光路层包括:
    N个透镜,所述N个透镜中的每个透镜用于汇聚所述N个方向中的一个方向的光信号。
  11. 根据权利要求1-10中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:
    处理单元,用于根据所述N个方向的光信号,以及所述来自所述第一区域的光信号,确定光信号量的最大值和最小值;
    根据确定的所述最大值和最小值,确定当前的环境光信号量。
  12. 根据权利要求1-11中任一项所述的指纹识别装置,其特征在于,所述处理单元还用于:
    确定当前进行指纹按压操作;
    根据所述确定的当前的环境光信号量,对所述显示屏的亮度进行调节。
  13. 根据权利要求1-11中任一项所述的指纹识别装置,其特征在于,所述处理单元还用于:
    确定当前未进行指纹按压操作;
    记录本次环境光检测的次数为第i次,并记录第i次环境光检测对应的 环境光信号量;
    确定i是否大于或等于预设阈值m;
    若i大于或等于预设值m,则根据i次记录的环境光信号量生成所述当前的环境光信号量,并根据所述当前的环境光信号量对所述显示屏的亮度进行调节,
    或者,
    若i小于预设值m,则放弃对所述显示屏的亮度进行调节。
  14. 根据权利要求13所述的指纹识别装置,其特征在于,所述处理单元还用于:
    确定本次并非首次对所述显示屏的亮度进行调节;
    获取前次记录的环境光信号量;
    根据所述前次记录的环境光信号量及其对应的显示屏亮度,与所述当前的环境光信号量,对所述显示屏的亮度进行调节。
  15. 一种电子设备,其特征在于,包括:
    显示屏;以及
    根据权利要求1-14中任一项所述的指纹识别装置,所述指纹识别装置设置于所述显示屏下方,以实现屏下光学指纹识别和环境光检测。
  16. 一种环境光检测的方法,其特征在于,应用于具有指纹识别装置的电子设备,所述指纹识别装置设置在所述电子设备的显示屏下方,所述显示屏的显示区域包括指纹检测区域,所述指纹识别装置用于接收来自所述指纹检测区域的第二区域的N个方向的光信号,以及来自所述指纹检测区域的第一区域的光信号,所述指纹检测区域的所述第二区域设置在所述第一区域的周围,N为大于1的整数,所述方法包括:
    获取与所述N个方向的光信号一一对应的N个光信号量,以及与来自所述第一区域的光信号一一对应的光信号量;
    根据所述N个光信号量以及所述光信号量,生成当前的环境光信号量。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    根据所述当前的环境信号量,对所述显示屏的亮度进行调节。
  18. 根据权利要求16或17所述的方法,其特征在于,所述根据所述N个光信号量以及所述光信号量,生成所述当前的环境光信号量包括:
    根据所述N个光信号量以及所述光信号量,确定光信号量的最大值和最 小值;
    根据确定的所述最大值和最小值,确定当前的环境光信号量。
  19. 根据权利要求16-18中任一项所述的方法,其特征在于,所述方法还包括:
    确定当前进行指纹按压操作;
    根据所述确定的当前的环境光信号量,对所述显示屏的亮度进行调节。
  20. 根据权利要求16-18中任一项所述的方法,其特征在于,所述方法还包括:
    确定当前未进行指纹按压操作;
    记录本次环境光检测的次数为第i次,并记录第i次环境光检测对应的环境光信号量;
    确定i是否大于或等于预设阈值m;
    若i大于或等于预设值m,则根据i次记录的环境光信号量生成所述当前的环境光信号量,并根据所述当前的环境光信号量对所述显示屏的亮度进行调节,
    或者,
    若i小于预设值m,则放弃对所述显示屏的亮度进行调节。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    确定本次并非首次对所述显示屏的亮度进行调节;
    获取前次记录的环境光信号量;
    根据所述前次记录的环境光信号量与所述当前的环境光信号量,对所述显示屏的亮度进行调节。
PCT/CN2021/079826 2021-03-09 2021-03-09 指纹识别装置、电子设备和环境光检测的方法 WO2022188041A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/079826 WO2022188041A1 (zh) 2021-03-09 2021-03-09 指纹识别装置、电子设备和环境光检测的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/079826 WO2022188041A1 (zh) 2021-03-09 2021-03-09 指纹识别装置、电子设备和环境光检测的方法

Publications (1)

Publication Number Publication Date
WO2022188041A1 true WO2022188041A1 (zh) 2022-09-15

Family

ID=83227249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079826 WO2022188041A1 (zh) 2021-03-09 2021-03-09 指纹识别装置、电子设备和环境光检测的方法

Country Status (1)

Country Link
WO (1) WO2022188041A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019128250A1 (zh) * 2017-12-29 2019-07-04 华为技术有限公司 一种环境光和接近检测方法、拍摄方法及终端
CN110582780A (zh) * 2019-08-01 2019-12-17 深圳市汇顶科技股份有限公司 指纹识别和防伪的方法、装置和电子设备
CN111801684A (zh) * 2020-01-22 2020-10-20 深圳市汇顶科技股份有限公司 指纹检测的装置和电子设备
CN111837128A (zh) * 2020-01-06 2020-10-27 深圳市汇顶科技股份有限公司 指纹防伪的方法、指纹识别装置和电子设备
CN112347836A (zh) * 2019-08-07 2021-02-09 华为技术有限公司 指纹识别装置及电子终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019128250A1 (zh) * 2017-12-29 2019-07-04 华为技术有限公司 一种环境光和接近检测方法、拍摄方法及终端
CN110582780A (zh) * 2019-08-01 2019-12-17 深圳市汇顶科技股份有限公司 指纹识别和防伪的方法、装置和电子设备
CN112347836A (zh) * 2019-08-07 2021-02-09 华为技术有限公司 指纹识别装置及电子终端
CN111837128A (zh) * 2020-01-06 2020-10-27 深圳市汇顶科技股份有限公司 指纹防伪的方法、指纹识别装置和电子设备
CN111801684A (zh) * 2020-01-22 2020-10-20 深圳市汇顶科技股份有限公司 指纹检测的装置和电子设备

Similar Documents

Publication Publication Date Title
CN209962265U (zh) 指纹识别装置和电子设备
US11455823B2 (en) Under-screen fingerprint identification apparatus and electronic device
KR102610583B1 (ko) 지문 검출 장치 및 전자 장치
EP3706036A1 (en) Fingerprint recognition apparatus and electronic device
CN111108511B (zh) 指纹检测装置和电子设备
KR102374723B1 (ko) 광학 지문 장치 및 전자 기기
WO2021077259A1 (zh) 识别指纹的方法、指纹识别装置和电子设备
WO2020168495A1 (zh) 用于指纹识别的方法、装置和终端设备
CN111108510B (zh) 指纹检测装置和电子设备
CN112860120A (zh) 指纹识别装置、电子设备和环境光检测的方法
CN210605739U (zh) 指纹检测装置和电子设备
WO2020168496A1 (zh) 用于指纹识别的方法、装置和终端设备
CN112528953A (zh) 指纹识别装置、电子设备和指纹识别的方法
CN211742124U (zh) 指纹识别装置、显示屏和电子设备
EP3789913B1 (en) Fingerprint detection apparatus and electronic device
CN111788577B (zh) 指纹识别装置、显示屏和电子设备
WO2021008088A1 (zh) 指纹检测装置和电子设备
WO2022188041A1 (zh) 指纹识别装置、电子设备和环境光检测的方法
CN210864750U (zh) 指纹检测装置和电子设备
WO2022134079A1 (zh) 指纹识别装置、电子设备和指纹识别的方法
KR20220013487A (ko) 지문 인식 장치 및 전자 장치
CN212749852U (zh) 光学指纹识别模组和终端设备
CN111837126A (zh) 指纹检测装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929522

Country of ref document: EP

Kind code of ref document: A1