WO2021145741A1 - 합금 조성물, 합금 분말, 합금 리본, 인덕터 및 모터 - Google Patents
합금 조성물, 합금 분말, 합금 리본, 인덕터 및 모터 Download PDFInfo
- Publication number
- WO2021145741A1 WO2021145741A1 PCT/KR2021/000638 KR2021000638W WO2021145741A1 WO 2021145741 A1 WO2021145741 A1 WO 2021145741A1 KR 2021000638 W KR2021000638 W KR 2021000638W WO 2021145741 A1 WO2021145741 A1 WO 2021145741A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy
- composition
- soft magnetic
- motor
- inductor
- Prior art date
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 169
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 167
- 239000000203 mixture Substances 0.000 title claims abstract description 132
- 239000000843 powder Substances 0.000 title claims description 58
- 239000013078 crystal Substances 0.000 claims abstract description 33
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 16
- 229910052742 iron Inorganic materials 0.000 claims abstract description 13
- 229910052796 boron Inorganic materials 0.000 claims abstract description 12
- 239000002131 composite material Substances 0.000 claims abstract description 11
- 229910052802 copper Inorganic materials 0.000 claims abstract description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 57
- 238000002425 crystallisation Methods 0.000 claims description 48
- 230000008025 crystallization Effects 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 33
- 239000002245 particle Substances 0.000 claims description 22
- 229910000859 α-Fe Inorganic materials 0.000 claims description 16
- 238000004804 winding Methods 0.000 claims description 14
- 229910001339 C alloy Inorganic materials 0.000 claims 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 60
- 238000010438 heat treatment Methods 0.000 description 37
- 239000000696 magnetic material Substances 0.000 description 36
- 230000000052 comparative effect Effects 0.000 description 35
- 238000004519 manufacturing process Methods 0.000 description 25
- 239000010949 copper Substances 0.000 description 24
- 230000004907 flux Effects 0.000 description 24
- 239000002159 nanocrystal Substances 0.000 description 19
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 10
- 238000007709 nanocrystallization Methods 0.000 description 10
- 125000004429 atom Chemical group 0.000 description 9
- 230000000977 initiatory effect Effects 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 230000035699 permeability Effects 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000004020 conductor Substances 0.000 description 5
- 238000000113 differential scanning calorimetry Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 4
- 238000000889 atomisation Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002530 Cu-Y Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/02—Details of the magnetic circuit characterised by the magnetic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/08—Cores, Yokes, or armatures made from powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15308—Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15333—Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/04—Cores, Yokes, or armatures made from strips or ribbons
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
Definitions
- One aspect of the present invention relates to an alloy composition, and specifically, an alloy composition that can be used in various electric and electronic fields due to excellent soft magnetic properties, an alloy ribbon and alloy powder made of the alloy composition, and an inductor and a motor using the alloy composition It relates to electronic materials such as
- Soft magnetic material is a material essential for various electromagnetic materials or parts such as various transformers, choke coils, inductors, motors, generators, magnetic switches, sensors, etc., and electrical steel sheets such as silicon steel, permalloy, ferrite, etc. have been conventionally used. It is widely known and used as a soft magnetic material, and an amorphous alloy is also widely used as a soft magnetic material.
- composition of various alloys has been studied to use an amorphous alloy as a soft magnetic material, and research to utilize the excellent magnetic properties of the Fe-based amorphous alloy has been continuously conducted until recently.
- the conventional Fe-based amorphous alloy does not have a high magnetic flux density, so there is a limit in property improvement.
- many efforts have been made to produce an Fe-based amorphous alloy in the form of thin strips and ribbons, such as the single-roll method, but due to the fragility of the material itself and the automation problem of the production line, various 3 Research for the manufacture and commercialization of soft magnetic alloy powder, which is easy to form into a dimensional shape, is being actively conducted.
- the cooling rate is lower than the alloy ribbon manufacturing method such as the single-roll method, and there is a problem that crystallization occurs well in the process of cooling the alloy, so that the amorphous ratio cannot be obtained.
- a technology for manufacturing alloy powder and a solution for the amorphous alloy composition are also required.
- nanocrystalline alloys in which crystalline Fe is formed of nanometer-sized particles have been manufactured, and the demand for alloy materials with particularly excellent soft magnetic properties is increasing. , a situation in which additional problems appear even after the manufacture of the nanocrystalline alloy, such as non-uniformly formed nanocrystals contained in the nanocrystal alloy or deterioration of corrosion resistance due to nanocrystallization.
- the alloy composition according to one aspect of the present invention is an alloy composition having excellent amorphous forming performance, and the difference between the first crystallization temperature and the second crystallization temperature of the alloy composition is large, so that stable crystallization is possible during heat treatment of an alloy ribbon or alloy powder made of the alloy composition. It is an object to provide an alloy composition.
- the alloy composition of the present aspect can be obtained fine and uniform crystal grains of Fe formed during nanocrystallization, the purpose of which is to provide a soft magnetic material of uniform quality.
- another aspect of the present invention is to provide a soft magnetic core including an iron-based alloy having a high saturation magnetic flux density, in which homogeneous nanocrystalline grains are dispersed by heat treatment, and having a structure including an amorphous phase, and an inductor including the same.
- a soft magnetic core including an iron-based alloy having a high saturation magnetic flux density, in which homogeneous nanocrystalline grains are dispersed by heat treatment, and having a structure including an amorphous phase, and an inductor including the same.
- another aspect of the present invention is to provide a motor including an iron-based alloy having a high saturation magnetic flux density, including an amorphous phase, and excellent corrosion resistance, and a motor having a stator or rotor including the same there is.
- a to f are atomic percentage values, 80 ⁇ a ⁇ 87, 0 ⁇ b ⁇ 9, 3 ⁇ c ⁇ 14, 1 ⁇ d ⁇ 8, 0.2 ⁇ e ⁇ 2.5, 0 ⁇ f ⁇ 3.0, 0 ⁇ g ⁇ It is an alloy composition satisfying 4.0 and (e/f) ⁇ 4,
- composition formula satisfy 10 ⁇ (c+d+f) ⁇ 19, 0.80 ⁇ (d/e) ⁇ 1.0, and 0.5 ⁇ f ⁇ 2.5.
- the alloy composition may be an alloy composition represented by the composition formula Fe a Si b B c P d Cu e Y f,
- the difference between the first crystallization temperature (T x1 ) and the second crystallization temperature (T x2 ) of the alloy composition is 120 to 200 °C,
- the difference between the first crystallization temperature (T x1 ) and the second crystallization temperature (T x2 ) of the alloy composition is preferably 170 to 190 °C.
- an alloy ribbon comprising the crystal grains comprising the Fe and an amorphous phase in which the crystal grains are dispersed may be provided, and an alloy powder comprising the alloy composition is provided. It is also desirable to be
- the alloy powder is preferably an alloy powder including the crystal grains containing Fe and the amorphous phase in which the crystal grains are dispersed.
- Another aspect of the present invention is a wound coil
- the soft magnetic core is preferably an inductor including a soft magnetic alloy having Fe, Si, B, P, Cu and Y as a composition, and having a composite structure in which crystal grains containing Fe are dispersed in an amorphous phase,
- a soft magnetic core comprising a soft magnetic alloy having Fe, Si, B, P, Cu and Y as a composition
- the soft magnetic core may be an inductor having a complex structure in which crystal grains containing Fe are dispersed in an amorphous phase.
- the alloy powder having the composition is insulated from each other and sintered
- the soft magnetic alloy is preferably a difference between the first crystallization temperature (T x1 ) and the second crystallization temperature (T x2 ) is 120 to 200 °C,
- the soft magnetic alloy is represented by the composition formula Fe a Si b B c P d Cu e Y f C g ,
- a to f are atomic percentage values, 80 ⁇ a ⁇ 87, 0 ⁇ b ⁇ 9, 3 ⁇ c ⁇ 14, 1 ⁇ d ⁇ 8, 0.2 ⁇ e ⁇ 2.5, 0 ⁇ f ⁇ 3.0, 0 ⁇ g ⁇ It is preferable to satisfy 4.0 and (e/f) ⁇ 4.
- composition formula preferably satisfies 10 ⁇ (c+d+f) ⁇ 19, and preferably satisfies 0.80 ⁇ (d/e) ⁇ 1.0 and 0.5 ⁇ f ⁇ 2.5.
- the soft magnetic alloy is expressed by the composition formula Fe a Si b B c P d Cu e Y f,
- a to f are atomic percentage values, 80 ⁇ a ⁇ 87, 0 ⁇ b ⁇ 9, 3 ⁇ c ⁇ 14, 1 ⁇ d ⁇ 8, 0.2 ⁇ e ⁇ 2.5, 0 ⁇ f ⁇ 3.0, and (e/ f) It is preferable that the inductor satisfies ⁇ 4,
- the crystal grains containing Fe include ⁇ -Fe,
- the average particle diameter of the crystal grains containing Fe is 25 nm or less.
- Another aspect of the present invention is
- the rotor or the stator includes a motor core on which a coil is wound,
- the motor core includes a soft magnetic alloy having Fe, Si, B, P, Cu and Y as a composition, and as a motor having a composite structure in which crystal grains containing Fe are dispersed in an amorphous phase,
- the motor core is preferably provided by laminating after the soft magnetic alloy is processed into a soft magnetic alloy ribbon, and the soft magnetic alloy ribbon is preferably provided by stacking in a direction perpendicular to the winding direction of the coil,
- the difference between the first crystallization temperature (T x1 ) and the second crystallization temperature (T x2 ) is preferably 120 to 200°C.
- the soft magnetic alloy is expressed by the composition formula Fe a Si b B c P d Cu e Y f C g ,
- a to f are atomic percentage values, 80 ⁇ a ⁇ 87, 0 ⁇ b ⁇ 9, 3 ⁇ c ⁇ 14, 1 ⁇ d ⁇ 8, 0.2 ⁇ e ⁇ 2.5, 0 ⁇ f ⁇ 3.0, 0 ⁇ g ⁇
- a motor satisfying 4.0 and (e/f) ⁇ 4 may be provided,
- composition formula satisfy 10 ⁇ (c+d+f) ⁇ 19, 0.80 ⁇ (d/e) ⁇ 1.0, and 0.5 ⁇ f ⁇ 2.5.
- the soft magnetic alloy is expressed by the composition formula Fe a Si b B c P d Cu e Y f,
- a to f are atomic percentage values, 80 ⁇ a ⁇ 87, 0 ⁇ b ⁇ 9, 3 ⁇ c ⁇ 14, 1 ⁇ d ⁇ 8, 0.2 ⁇ e ⁇ 2.5, 0 ⁇ f ⁇ 3.0 and (e/f ) a motor satisfying ⁇ 4 may be provided,
- the crystal grains containing Fe include ⁇ -Fe, and the average particle diameter of the crystal grains containing Fe is 25 nm or less.
- the alloy composition according to an aspect of the present invention is a soft magnetic alloy composition having a Fe-Si-B-P-Cu-Y-based composition, and the difference between the first and second crystallization temperatures may increase due to the inclusion of Y.
- the alloy composition satisfies a specific relationship in the content of Cu atoms and Y atoms in the compositional formula, the difference between the second crystallization temperature and the first crystallization temperature can be greatly improved. And there is an advantage in that it is possible to manufacture a soft magnetic material of excellent quality.
- the alloy ribbon or alloy powder prepared from the alloy composition may have a high saturation magnetic flux density including an amorphous phase in which Fe crystal grains are dispersed when subjected to heat treatment.
- the inductor according to the third aspect of the present invention includes a soft magnetic core made of a soft magnetic alloy having an improved amorphous forming ability, and the soft magnetic alloy includes a composite structure in which iron-based nanocrystal grains obtained by heat treatment are dispersed and has a high saturation magnetic flux density.
- the soft magnetic core of the inductor has a large difference between the first crystallization temperature and the second crystallization temperature, a composite structure including homogeneous nanocrystal grains can be easily obtained.
- the motor according to the fourth aspect of the present invention includes a motor core made of an alloy having a composition that further includes yttrium, a rare earth element, in an Fe-based alloy, and when using an iron-based amorphous alloy as a motor core of a stator or rotor of a motor It is possible to solve the corrosion resistance problem that may occur, thereby prolonging the life of parts and devices.
- the motor according to this aspect has a large difference between the first crystallization temperature and the second crystallization temperature, so it is easy to manufacture a composite structure including an amorphous phase in which Fe-based nanocrystal grains are uniformly dispersed through heat treatment, and the saturation magnetic flux density is excellent.
- 1 to 3 are graphs showing XRD analysis results of alloy compositions of some Examples and Comparative Examples.
- 4 to 6 are graphs showing the XRD analysis results of the alloy ribbon prepared after molding and heat treatment of the alloy composition of some Examples and Comparative Examples.
- amorphous has the same meaning as amorphous, and refers to the property of a structure including an amorphous phase, which means a phase in which crystals are not formed in a solid, ie, does not have a regular structure.
- a first aspect of the present invention is an alloy composition, wherein the alloy composition may be a soft magnetic alloy composition of FeSiBPCuY or FeSiBPCuYC including Fe, Si, B, P, Cu and Y.
- the alloy composition may be expressed as Fe a Si b B c P d Cu e Y f C g expressed in atomic percent, where 80 ⁇ a ⁇ 87, 0 ⁇ b ⁇ 9, 3 ⁇ c ⁇ 14, 1 ⁇ d ⁇ 8, 0.2 ⁇ e ⁇ 2.5, 0 ⁇ f ⁇ 3.0 and 0 ⁇ g ⁇ 4.0, the sum of a, b, c, d, e, f, g is 100 is satisfied with
- the alloy composition may be expressed as Fe a Si b B c P d Cu e Y f expressed in atomic percent, where 80 ⁇ a ⁇ 87, 0 ⁇ b ⁇ 9, 3 ⁇ c ⁇ 14, 1 ⁇ d ⁇ 8, 0.2 ⁇ e ⁇ 2.5, and 0 ⁇ f ⁇ 3.0 are satisfied, and the sum of a, b, c, d, e, and f satisfies 100.
- the value of (c+d+f) is preferably 10 to 19, and the value of (e/f) is preferably 4 or less.
- Fe is a main element of the alloy composition and is an essential element responsible for magnetism.
- the content of Fe is preferably 80 to 87 atomic %, preferably 80.5 to 86 atomic %, and more preferably 81 to 85 atomic %.
- the saturated magnetic flux density of the alloy composition is low, so soft magnetic properties are not high, and the manufacturing cost is increased.
- the amorphous phase is not formed or the ratio of the amorphous phase may be lowered, and heat treatment When a homogeneous nanocrystalline structure is not obtained, there may be a problem in that the soft magnetic properties of the soft magnetic material obtained from the alloy composition are deteriorated.
- the soft magnetic material refers to an article obtained by cooling and heat-treating the soft magnetic alloy composition, and includes a soft magnetic material and a soft magnetic part molded into a desired shape.
- the Si element is an element responsible for amorphous formation, and contributes to the stabilization of nanocrystals during nanocrystallization of the soft magnetic alloy composition.
- the content of Si preferably exceeds 0 atomic %, preferably 9 atomic % or less, and preferably 1 to 7 atomic %. If the content of Si is lower than the corresponding range, the amorphous forming ability of the alloy composition may be lowered, which may make it difficult to form an amorphous alloy, and the soft magnetic properties of the soft magnetic material may not be good because a homogeneous nanocrystalline structure is not obtained when the nanocrystalline structure is formed. can When the content of Si is higher than the corresponding range, a problem in which the saturation magnetic flux density and the amorphous formation ability are rather deteriorated may occur.
- the soft magnetic alloy composition includes Si in the corresponding range, ⁇ T, which is the difference between the first and second crystallization temperatures in the soft magnetic alloy composition, may increase, and a soft magnetic material including homogeneous nano-crystal grains may be obtained.
- B may be mainly included in the role of improving the amorphous formation ability.
- the content of B is preferably 3 to 14 atomic %, preferably 3.5 to 13 atomic %.
- the amorphous formation ability is lowered, so that the amorphous phase is not obtained or obtained at a low ratio, so that the soft magnetic properties may not be good. If it is higher than the corresponding range, ⁇ T of the alloy composition decreases and the soft magnetic material It is difficult to obtain homogeneous nanocrystal grains, and the soft magnetic properties may not be good.
- B is a light element and may be included in a lower content in the alloy actually obtained than in the target composition because it is difficult to volatilize or alloy during the preparation of the alloy composition.
- P may improve the amorphous formation ability of the alloy composition, and when included in the alloy together with Si or B, may improve the amorphous formation ability and the stability of nanocrystalline grains.
- the content of P is preferably 1 to 8 atomic%, preferably 1.5 to 7.5 atomic%. If the content of P is lower than the corresponding range, there is a problem that the amorphous formation ability is lowered and it is difficult to sufficiently obtain an amorphous phase, and when it is higher than the corresponding range, the saturated magnetic flux density of the soft magnetic alloy or soft magnetic material is lowered, and the soft magnetic properties are deteriorated. There may be a problem.
- C is an element that may be selectively included in the soft magnetic alloy composition, and the radius of the atom is relatively small and may contribute to the improvement of the amorphous formation ability by a principle similar to that of boron.
- the carbon content is preferably 0 to 4 atomic %. However, when the content of carbon exceeds 4 atomic%, the Fe-based alloy is brittle and easily embrittled, so that deterioration of soft magnetic properties may occur.
- Cu acts as an element contributing to the nanocrystallization of the alloy.
- the content of Cu is preferably 0.2 to 2.5 atomic%, preferably 0.3 to 2.0 atomic%, and more preferably 0.4 to 1.7 atomic%.
- the content of Cu is lower than the corresponding range, there may be a problem in that the effect of improving the soft magnetic properties of the soft magnetic material by nanocrystallization is deteriorated because nanocrystallization is not performed well, and when it is higher than the corresponding range, the amorphous alloy becomes non-uniform There may be a problem in that a homogeneous nanocrystalline structure is not obtained and the soft magnetic properties of the soft magnetic material are deteriorated.
- the soft magnetic material according to the present embodiment is an Fe-based nanocrystalline alloy, and includes ⁇ -Fe ( ⁇ -iron, Alpha-iron) crystal grains having an average particle diameter of 25 nm or less.
- the ratio (d/e) of the content (d) of P and the content (e) of Cu is 0.05 or more and 1.0 or less, and preferably exceeds 0.80 and may be 1.0 or less.
- Y is a rare earth element, and as an atom with a large atomic radius, it is possible to improve the amorphous formation ability of the alloy composition, and it is possible to prevent crystallization of atoms constituting the alloy by lowering the diffusivity or mobility of iron atoms in the alloy composition.
- yttrium has excellent bonding strength with oxygen and can react with dissolved oxygen in the alloy composition, thereby lowering the oxygen concentration in the alloy composition to prevent the formation of oxides of other metals, improving the mechanical properties such as durability and abrasion resistance of the alloy for lifespan can be extended.
- the content of Y may be included within 3.0 atomic%, preferably in the range of 0.3 to 2.8 atomic%, more preferably in the range of 0.5 to 2.5 atomic%.
- the alloy composition of the present invention includes all of Cu, Y and P, and in this case, the atomic percentage of B, P and Y is preferably 10 atomic% or more and 19 atomic% or less in total.
- the atomic percentage of B, P and Y is preferably 10 atomic% or more and 19 atomic% or less in total.
- the value of (e/f), which is the relationship between the yttrium content (f) and the Cu content (e), is preferably obtained to be 4 or less, and more preferably, the value of (e/f) is 3 or less.
- the value of (e / f) is larger than the corresponding range, the amorphous forming ability of the alloy composition is lowered to obtain a crystalline alloy, or the grain size of nanocrystalline grains increases during heat treatment to obtain nanocrystalline Fe, or an irregular nanocrystalline alloy problems may arise.
- the first crystallization temperature or the second crystallization temperature may increase because the energy absorbed from the outside to form a crystal phase increases due to the decrease in the mobility of atoms by Y.
- the alloy composition of this aspect may be manufactured and molded to have various shapes.
- the alloy composition may be cooled to obtain a soft magnetic material
- the soft magnetic material may have a continuous strip or ribbon shape, and may have a powder shape close to a spherical shape.
- the continuous strip-shaped soft magnetic material can be formed using a conventional apparatus such as a single roll manufacturing apparatus or a twin roll manufacturing apparatus used for manufacturing an amorphous strip or the like.
- the powdery soft magnetic material can be produced by a water atomize method or a gas atomize method, and can be obtained by pulverizing or crushing a strip-shaped soft magnetic material, but the sphericity is poor. In order to produce an excellent powder, it is preferable to prepare a soft magnetic material in powder form using the atomization method.
- a magnetic core such as a wound core, a laminated magnetic core, or a powder core can be formed.
- components such as a transformer, an inductor, a motor, and a generator, can be provided using the magnetic core.
- the alloy composition according to the present embodiment has an amorphous phase as a main phase. Accordingly, when the cooled alloy composition is heat treated in an inert atmosphere such as an Ar gas atmosphere, crystallization may proceed twice or more.
- the temperature at which crystallization is first initiated is referred to as the first crystallization initiation temperature (T x1 ) of the alloy, and the temperature at which the second crystallization is initiated is referred to as the second crystallization initiation temperature (T x2 ).
- the second 1 is understood to mean the crystallization initiation temperature (T x1 ).
- the crystallization temperature of the aforementioned alloy may be measured, for example, using a differential scanning calorimetry (DSC) apparatus, and may be evaluated by performing thermal analysis at a temperature increase rate of 20° C./min.
- DSC differential scanning calorimetry
- the alloy composition of the present invention includes Y as a composition
- ⁇ T may be increased, and due to the increase of ⁇ T, stable nanocrystallization is possible during heat treatment or nanocrystallization of the alloy, and ⁇ -Fe of the crystal phase is uniformly It has the advantage of obtaining a high saturation magnetic flux density.
- ⁇ T of the alloy composition may be 120 to 200 °C, preferably 130 to 200 °C, more preferably 170 °C or higher, and 190 °C or lower.
- ⁇ T is smaller than the corresponding range, there may be a problem of deterioration of soft magnetic properties of the soft magnetic material after heat treatment.
- the Fe-based alloy composition according to the present aspect is nanocrystallized to form a soft magnetic material having excellent saturation magnetic flux density and coercive force, it can be used to manufacture a magnetic core having soft magnetic properties. Moreover, parts, such as a transformer, an inductor, a motor, a sensor, or a generator, can be comprised using the magnetic core.
- the core or magnetic core manufactured from the alloy composition has a composite structure in which fine grains containing Fe are dispersed in an amorphous alloy matrix, and the amorphous alloy containing matrix of the amorphous phase is preferably an amorphous alloy having the above composition, Fe It is preferable that the crystal grains containing are homogeneous ⁇ -Fe crystalline particles having a particle size of nanometers.
- a second aspect of the present invention is an alloy powder prepared from the aforementioned alloy composition.
- the alloy powder may be prepared by preparing the above-described alloy composition in an induction heating furnace and then pulverizing it by an atomization method.
- the atomization method is not limited as long as it is a technique commonly available in the art, and various techniques that can be adopted by a person skilled in the art may be utilized.
- the alloy powder cooled by the atomization method is an amorphous alloy powder containing an amorphous phase, and the amorphous alloy powder is crystallized by additional heat treatment to produce a nanocrystalline soft magnetic alloy powder containing a nanocrystalline phase therein.
- a step of heat-treating the amorphous alloy powder to make it nanocrystallized including treating the alloy at a temperature near or higher than the first crystallization initiation temperature.
- the heat treatment step is preferably performed at a temperature higher than the temperature at which ⁇ -Fe nanocrystal grains can be precipitated in an argon atmosphere, that is, higher than the first crystallization initiation temperature of the alloy.
- a crystalline phase ⁇ -Fe having a body-centered cubic crystal structure may be formed around a nucleus in which Fe atoms of the alloy composition included in the amorphous phase are dispersed in the alloy.
- bcc body-centered cubic crystal structure
- Cu or Y as a nuclear reactor serving as a coagulation nucleus of the nanocrystal grains may be utilized.
- the average grain size of the crystal grains formed by the heat treatment be 25 nm or less.
- the average particle diameter of the nanocrystal grains is larger than the corresponding range, a problem of increasing coercive force and magnetic loss may occur.
- the temperature and time may be controlled during the heat treatment, and the heat treatment time may be performed for 30 seconds to 1 hour.
- the heat treatment time may change depending on the temperature, but if it is performed for less than 30 seconds, the desired particle size of nanocrystal grains may not be reached, and if the heat treatment time exceeds 1 hour, the grain size of the nanocrystal grains becomes coarser than necessary and the coercive force and magnetic loss may increase.
- the present invention includes an inductor made from the alloy composition and alloy powder described above.
- An inductor is one of the components constituting an electric circuit, and generally refers to a coil (winding) that induces a voltage in proportion to the change in current, and has the characteristic of stabilizing the current in the electric circuit. It is better to use a soft magnetic material in order to effectively have the desired properties.
- the type and shape of the inductor in this aspect is not limited, but may include a toroidal inductor, an axial inductor, or a chip-type inductor (hereinafter, a chip inductor), etc., and preferably a toroidal inductor or a chip inductor. it's good to be
- An inductor includes a coil made of a conductor and a soft magnetic core provided inside or between the coils.
- a coil is a conductor connected to an electric circuit, which protrudes to the outside of the inductor and is connected to the electric circuit, or is in contact with an electrode electrically connectable to the outside of the inductor, through which current flows by the electric circuit.
- the coil may have a different shape and structure depending on the shape and type of the inductor.
- an electrically conductive wire such as a copper wire may be in the form of being rotated and wound on the outside of the soft magnetic core, and a laminated type in which conductive paste is printed and laminated on a magnetic sheet in a coil pattern, or spiral winding equipment ), winding the coil and filling the inside and outside of the soft magnetic core.
- the inductor core may also have a different shape and structure depending on the shape and type of the inductor.
- a ring or torus-shaped core is included, and in the case of an axial inductor, a cylindrical core is included, and a coil wound around the core may be used.
- An inductor according to a preferred embodiment of the present invention is a chip inductor, and includes a core surrounding the inside and outside of the wound coil.
- the chip inductor according to this embodiment When the chip inductor according to this embodiment is used in an electronic circuit, it has the advantage that the magnetic permeability is maintained above a certain level in the frequency range of 1 to 10 MHz, and can be utilized in the high frequency band of 1 to 10 MHz, which occupies Since it can be manufactured with a small volume and size, space efficiency and miniaturization are important, and it has the advantage that it can be used for smartphones, tablet PCs, and notebooks that use low current.
- a conductive coil provided inside the mold is included, and a core comprising an alloy powder is provided in the periphery and space between the conductive coil and the coil and the coil inside the mold. It is possible to configure an inductor including a core inside while being insulated.
- the alloy powder filled in the inductor is a soft magnetic alloy powder
- the soft magnetic alloy powder may have a single or bimodal distribution having a single particle size distribution, and a soft magnetic alloy having different average particle diameters. It is also possible to use the powders mixed with each other.
- the packing density of the space is improved, compared to the case of using powders having a single average particle diameter, so that it can have higher magnetic permeability and saturated magnetic flux density.
- a mixed powder of a first soft magnetic alloy powder having a first particle diameter and a second soft magnetic alloy powder having a second particle diameter smaller than the first particle diameter may be filled in the inductor, and the first particle diameter is the second particle diameter It is preferable to have a particle size relationship of 4 to 13 times of
- the filling density may be lowered, and the magnetic permeability may be reduced, and the magnetic flux density may be reduced, thereby reducing the inductor efficiency.
- the soft magnetic alloy powder may have insulating properties on the surface to prevent loss due to electromagnetic induction. If the surface of the soft magnetic alloy powder is not insulated, an induced current or eddy current may be generated according to a change in an external magnetic field due to electrical connection, and in this case, an investment loss may increase and problems such as a decrease in inductance and heat may occur.
- the soft magnetic alloy powder may further include an insulating coating on the surface, or may be mixed with an insulating binder or resin to have insulating properties when the powder is mixed.
- a mixture of a soft magnetic alloy powder and a polymer resin may be filled in the inductor.
- composition and components of the binder are not limited, and any binder material having a composition that is generally used in the art or can be adopted by a person skilled in the art may be included in the inductor of the present invention.
- the binder When mixing the binder and the soft magnetic alloy powder with each other, the binder is preferably 1.5 to 5.0 wt% based on the soft magnetic alloy powder.
- the soft magnetic alloy powder may agglomerate with each other, making it difficult to mix with the binder. If the blending ratio of the binder is too high, the amount of the soft magnetic alloy powder may decrease, causing the magnetic permeability and magnetic flux density to fall , the bonding strength between the powder and the binder is lowered, which may lead to process defects such as electrode exposure, shorting, and plating smearing.
- the powder content of the soft magnetic alloy powder is limited. do.
- the content of the soft magnetic alloy powder contained in the soft magnetic core portion excluding the internal coil of the entire chip inductor may be 70 to 90 vol%, preferably 75 to 85 vol%.
- the toroidal inductor includes a coil in which a soft magnetic core including alloy powder is formed in a toroidal shape (including a donut or ring shape), and a winding is wound on the surface of the toroidal core. At this time, the coil is insulated from the toroidal core and wound.
- the appearance and shape of the toroidal inductor are different from the chip-type inductor of the above-described embodiment, the operating principle and detailed configuration of the inductor may be the same.
- the same parts as the chip inductor of the above-described embodiment will be omitted and descriptions will be omitted. Differences were explained.
- the toroidal inductor When used in electronic circuits, the toroidal inductor has the advantage of maintaining the magnetic permeability above a certain level in the frequency range of several hundred kHz, can be used in the frequency range of several tens to hundreds of kHz, and is manufactured in a relatively large volume. It can be used in electronic devices that do not require miniaturization, can use a high current, and can be used for electronic devices that can easily dissipate heat.
- Toroidal inductors can be used, for example, in medical equipment, telecommunication, musical instruments, industrial control, refrigeration equipment, air conditioning equipment, power supply, ballast, electronic clutch, electromagnetic brake, aerospace, etc. It can play the main role.
- the toroidal core is a torus with a circular or quadrangular cross-section, has a rotationally symmetric structure, and does not include angled corners, so the magnetic field formed inside the core, that is, the concentration of the flux linkage ( ⁇ ) Alternatively, since there is no loss due to bias and is uniform, the core can be efficiently utilized.
- the toroidal core can be manufactured by itself, and it can become an inductor by winding a coil on the surface, so it has the advantage of being free to form or manufacture compared to a chip-type inductor.
- a chip-type inductor it is limited to press the alloy powder to prevent the destruction of the coil while maintaining insulation from the coil provided inside the core.
- the core can be adjusted to the theoretical density with only alloy powder. It is also possible to apply close pressure or heat treatment to increase magnetic permeability and magnetic flux density.
- the alloy powder included in the toroidal core is preferably a soft magnetic alloy powder, and the content or volume fraction of the alloy powder may be higher than that of the core of the chip inductor, for example, the volume occupied by the soft magnetic alloy powder in the entire core. may be 95 vol% to 99.9 vol%.
- the method of manufacturing the toroidal inductor may be divided into manufacturing a toroidal core and winding a coil.
- a soft magnetic alloy powder and a binder are mixed and put into a mold of the toroidal core type, and then pressurized at a pressure up to 20 times higher than that of a chip inductor to form a toroidal core.
- a method of heat-treating at a temperature of several hundred degrees after molding into a furnace may be used.
- the heat treatment can greatly improve soft magnetic properties such as magnetic permeability, investment loss, and magnetic flux density by alleviating the internal stress generated during the soft magnetic powder manufacturing and pressure molding process.
- the present invention discloses a motor comprising a soft magnetic material made from the alloy composition described above.
- a motor also called an electric motor, is a device that can convert electrical energy into mechanical energy (power, etc.). It is a device that utilizes the principle that a conductor through which current flows receives a physical force in a magnetic field. Thus, a rotating magnetic field can be generated, and kinetic energy such as rotational energy can be generated by the rotating magnetic field.
- a motor rotates by a rotating magnetic field and consists of a rotor (rotor) connected to a rotating shaft, and a stator (stator) that is fixed and allows the rotor to rotate without stopping or moving. It may have various structures depending on the type (direct current or alternating current) and form of the power source to be used.
- the motor of this aspect be an AC motor operated by receiving AC, and the structure and shape of the stator and the rotor are not limited.
- the motor may be provided with a soft magnetic core including a soft magnetic material in a stator or rotor, and hereinafter, the soft magnetic core provided in the stator or rotor of the motor is referred to as a motor core.
- a motor core any one of the stator or rotor comprises a soft magnetic motor core and a coil wound around the motor core, and the other one of the stator or rotor that is not provided with a motor core includes a permanent magnet having N and S poles. good to be done
- the motor is provided with a motor core on which a coil is wound, and the motor core is provided on any one of a stator and a rotor according to the structure of the motor.
- the motor has a plurality of coils and a bobbin (or bobbin unit) on which the plurality of coils are wound, and the plurality of coils may be wound on bobbins of a plurality of divided motor cores (split cores) that are individually separated, and integrally It is also possible that a plurality of coils are wound on one motor core that is manufactured and provided with a plurality of bobbin units.
- the term "plural coils” does not necessarily require that they be formed of a plurality of conductors through which current flows, respectively, and although it is connected with a single conductor, it can be generally recognized that separate winding coils are formed, such as being wound at different positions.
- a preferred embodiment of this aspect is an axial gap motor including a housing, in which a stator and a rotor are arranged in an axial direction, a rotating shaft rotatably supported in the center of the housing, radially arranged around the rotating shaft
- a stator including a plurality of divided cores and a coil wound around the core, a motor having a rotor disposed at a predetermined distance (air gap) from one surface of the stator core in the direction of the rotation axis and having a central part connected to the rotation shaft.
- a radial gap motor including a housing, in which a stator and a rotor are arranged radially or radially from a rotational axis, a rotational shaft rotatably supported in the center of the housing, about the rotational shaft
- a rotor having a plurality of magnets arranged radially on an outer circumferential surface, a plurality of motor cores and a motor core fixed to the housing and disposed at a predetermined distance (air gap) from the outer circumferential surface of the rotor in a radial or radial direction with respect to the rotor
- a motor having a stator comprising coils wound on the
- the motor core may have teeth, and an insulating bobbin provided outside the coil, and the coil is wound around the bobbin.
- the motor core is manufactured and molded in a ribbon form and then processed into a desired shape.
- the alloy is preferably a soft magnetic alloy, and is made by laminating and bonding the processed soft magnetic alloy ribbon to each other, or using a soft magnetic alloy. It can be manufactured in a powder form and then sintered, injected, or laminated in a desired form, and preferably a soft magnetic alloy is made of a soft magnetic material in the form of a thin plate such as a ribbon, and then processed, laminated, and joined to form a motor core. It is good to manufacture
- An embodiment of this aspect includes a motor having a stator or a rotor provided with a motor core manufactured by bonding an alloy composition to a ribbon shape, and the core of the motor is any one of a motor core and a divided core integrally provided. anything can be used.
- the respective ribbons are insulated from each other, and the lamination direction in which the soft magnetic material formed in the form of a ribbon is laminated. And the direction in which the coil is wound around the soft magnetic material can be defined.
- the winding direction refers to the direction in which the conductive wire moves around the soft magnetic material, and when the current changes along the winding, an induced magnetic field may be generated inside the coil in the winding direction or in the opposite direction to the winding direction.
- the lamination direction of the soft magnetic material is a direction in which the soft magnetic alloy ribbons of thin thickness are stacked, and means a direction perpendicular to the bonding surface between the soft magnetic alloy ribbons.
- the lamination direction and the winding direction of the soft magnetic alloy ribbon which is an example of the soft magnetic material, are perpendicular to each other, where the vertical direction does not mean exactly vertical, but is generally perpendicular or close to vertical. It has a broad meaning including degree.
- One embodiment of the present invention is a motor comprising the alloy composition material of the above-described aspect, and by including a stator or rotor comprising an iron-based soft magnetic alloy material including Y, the corrosion resistance of the stator or rotor can be improved, so that the motor's The operating life can be improved, and excellent soft magnetic properties can have high efficiency.
- the alloy composition was prepared at the composition ratio shown in Table 1 below, and the alloy powder was prepared as an amorphous alloy ribbon using a melt spinner device having a wheel speed of 3500 RPM, a gas pressure of 0.5 bar, and a nozzle and wheel spacing of 1.0 mm.
- the prepared amorphous alloy ribbon was heat-treated for 20 minutes at a temperature of 420° C. under an argon atmosphere.
- An alloy composition was prepared in the composition ratio as shown in Table 1 below, and an alloy ribbon was prepared in the same manner as in Examples 1 to 4, except that heat treatment of the alloy ribbon was performed at a temperature of 450° C. for 10 minutes.
- An alloy composition was prepared in the composition ratio as shown in Table 1 below, and an alloy ribbon was prepared under the same conditions using the same apparatus as in the Example, and then the alloy ribbons of Comparative Examples 1 and 2 were heat treated at a temperature of 420 ° C. for 20 minutes. , The alloy ribbons of Comparative Examples 4 and 5 were heat-treated at a temperature of 450 °C for 10 minutes.
- the alloy ribbons of Examples 3, 4 and Comparative Example 2 were analyzed in the same manner before performing the heat treatment, and the results are shown in FIG. 2, and the alloy ribbons of Examples 5 to 8 and Comparative Examples 3 to 5 were analyzed in the same manner. The results of Examples 5 to 7 are shown in FIG. 3 .
- the alloy ribbons of Examples 1 to 8 and Comparative Examples 1 to 5 were thermally analyzed using differential scanning calorimetry (DSC) equipment at a temperature increase rate of 20 °C/min, Examples 1 to 7 and Comparative Examples 1 to 2 The results are shown in FIGS. 7 to 9 .
- the saturation magnetic flux density (Bs) was measured at a magnetic field of 800 kA/m using a vibrating specimen magnetometer (VSM), and the results are summarized in Table 2 indicated.
- VSM vibrating specimen magnetometer
- Example 1 amorphous 1.34 1.64 398 516 118
- Example 2 amorphous 1.27 1.56 402 524 122
- Example 3 amorphous 1.47 1.56 392 527 135
- Example 4 amorphous 1.41 1.52 394 532 138
- Example 5 amorphous 1.31 1.5 398 510 112
- Example 6 amorphous 1.28 1.48 369 513
- Example 7 amorphous 1.24 1.58 355 534 179
- Example 8 amorphous 1.22 1.56 396 507 111
- Comparative Example 1 amorphous 1.38 1.77 395 511
- Comparative Example 2 amorphous 1.53 1.55 383 515
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Coils Or Transformers For Communication (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Powder Metallurgy (AREA)
Abstract
인덕터의 연자성 코어 또는 모터 코어는, 조성으로 Fe, Si, B, P, Cu 및 Y를 가지는 합금을 포함하고, 상기 연자성 코어 또는 상기 모터 코어는 Fe를 포함하는 결정립이 비정질상에 분산된 복합조직을 가지는 것을 특징으로 한다. 또한, 상기 합금은 조성식 FeaSibBcPdCueYfCg으로 표현되고, 상기 a 내지 g는 원자 백분율 값으로, 80≦a≦87, 0≦b≦9, 3≦c≦14, l≦d≦8, 0.2≦e≦2.5, 0≦f≦3.0, 0≦g≦4.0 및 0≦(e/f)≦4을 만족하는 것을 특징으로 한다.
Description
본 발명의 일 측면은 합금 조성물에 관한 것으로서, 구체적으로는 연자성 특성이 우수하여 다양한 전기, 전자 분야에 활용될 수 있는 합금 조성물, 합금 조성물로 이루어지는 합금 리본 및 합금 분말과 이를 활용한 인덕터 및 모터 등의 전자소재에 관한 것이다.
연자성 재료는 각종 변압기, 초크 코일, 인덕터, 모터, 발전기, 자기 스위치, 센서 등 다양한 전자기 소재나 부품 등에 필수적으로 포함되는 재료로서, 규소강과 같은 전기강판, 퍼멀로이(permalloy), 페라이트 등이 종래부터 연자성 재료로 널리 알려져 사용되고 있으며, 비정질 합금 또한 연자성 재료로 널리 사용되고 있다.
연자성 재료로 비정질 합금을 사용하기 위하여 다양한 합금의 조성이 연구되어 왔으며, Fe계 비정질 합금의 우수한 자기적 특성을 활용하기 위한 연구가 최근까지도 지속적으로 이루어지고 있다.
그러나, 종래의 Fe계 비정질 합금은 자속밀도가 높지 않아 특성개선의 한계를 가진다. 와전류에 의한 손실을 감소시키면서도 비정질 합금을 제조하기 위해 단롤법과 같이 박대, 리본 형태로 Fe계 비정질 합금을 제조하기 위한 노력이 많이 이루어져왔으나, 재료 자체의 취약성 및 생산 라인의 자동화 문제가 있어, 다양한 3차원 형태로 성형하기 용이한 연자성 합금분말을 제조 및 상용화하기 위한 연구가 활발하게 이루어지고 있다.
한편, 연자성 합금을 분말로 제조하는 경우 단롤법과 같은 합금리본 제조방식에 비해 냉각속도가 떨어져 합금이 냉각되는 과정에서 결정질화가 잘 일어나 비정질 비율이 높게 얻어지지 못하는 문제점이 있어 비정질상을 높은 비율로 포함하는 합금분말을 제조하는 기술 및 비정질 합금 조성에 대한 해결책도 함께 요구되고 있다.
최근에는 비정질 합금의 포화 자속밀도와 투자율 등 연자성 특성을 향상시키기 위하여 결정질의 Fe이 나노미터 크기의 입자로 형성된 나노결정 합금을 제조하여 연자성 특성이 특히 우수한 합금 소재에 대한 수요가 증가하고 있으나, 나노 결정 합금에 포함된 나노결정이 불균일하게 형성되거나 나노결정화에 의한 내식성 저하 등 나노 결정 합금의 제조 이후에도 추가적인 문제점들이 나타나고 있는 실정이다.
본 발명의 일 측면에 따른 합금 조성물은 비정질형성능이 우수한 합금 조성물로서, 합금 조성물의 제1 결정화온도와 제2결정화온도의 차이가 커서 합금 조성물로 이루어진 합금 리본 또는 합금 분말의 열처리시 안정적인 결정질화가 가능한 합금 조성물을 제공하는 데에 그 목적이 있다.
또, 본 측면의 합금 조성물은 나노결정질화시 형성되는 Fe의 결정립이 미세하고 균일하게 얻어질 수 있으며, 균일한 품질의 연자성 재료를 제공하는 데 그 목적이 있다.
또, 본 발명의 다른 측면은 높은 포화 자속밀도를 가지는 철계 합금을 포함하고, 열처리에 의해 균질한 나노결정립이 분산되며 비정질상을 포함하는 조직을 갖는 연자성 코어 및 이를 포함하는 인덕터를 제공하는 데에 그 목적이 있다.
또, 본 발명의 또 다른 측면은 높은 포화 자속밀도를 가지는 철계 합금을 포함하고, 비정질상을 포함하며, 내식성이 우수한 모터 코어 및 이를 포함하는 고정자 또는 회전자가 구비되는 모터를 제공하는 데에 그 목적이 있다.
본 발명의 일 측면은, 조성식 FeaSibBcPdCueYfCg으로 표현되며,
상기 a 내지 f는 원자백분율 값으로, 80≤a≤87, 0<b≤9, 3≤c≤14, 1≤d≤8, 0.2≤e≤2.5, 0<f≤3.0, 0≤g≤4.0 및 (e/f)≤4을 만족하는 합금 조성물이고,
이때, 상기 조성식이 10≤(c+d+f)≤19를 만족하며, 0.80<(d/e)≤1.0를 만족하고, 0.5≤f≤2.5를 만족하는 것이 좋다.
또, 상기 합금 조성물은 조성식 FeaSibBcPdCueYf 로 표현되는 합금 조성물일 수 있고,
상기 합금 조성물의 제1결정화온도(Tx1)과 제2결정화온도(Tx2)의 차이가 120 내지 200℃인 것이 좋으며,
상기 합금 조성물의 제1결정화온도(Tx1)과 제2결정화온도(Tx2)의 차이가 170 내지 190℃인 것이 바람직하다.
본 발명의 다른 실시 형태로는 전술한 합금 조성물로 이루어지며, 상기 Fe을 포함하는 결정립 및 상기 결정립이 분산된 비정질상을 포함하는 합금 리본이 제공될 수 있고, 전술한 합금 조성물로 이루어지는 합금 분말이 제공되는 것도 바람직하다.
이때, 합금 분말은 상기 Fe을 포함하는 결정립 및 상기 결정립이 분산된 비정질상을 포함하는 합금 분말인 것이 좋다.
본 발명의 또 다른 측면은, 권선된 코일; 및
상기 코일이 내부에 구비되는 연자성 코어;를 포함하고,
상기 연자성 코어는 Fe, Si, B, P, Cu 및 Y를 조성으로 가지는 연자성 합금을 포함하며, Fe를 포함하는 결정립이 비정질상에 분산된 복합조직을 가지는 인덕터인 것이 좋고,
또는, 조성으로 Fe, Si, B, P, Cu 및 Y를 가지는 연자성 합금을 포함하는 연자성 코어; 및
상기 연자성 코어의 표면에 권선되는 코일(coil);을 포함하고,
상기 연자성 코어는 Fe를 포함하는 결정립이 비정질상에 분산된 복합조직을 가지는 인덕터인 것이 좋다.
이떄, 상기 연자성 코어는 상기 조성을 가지는 합금분말이 서로 절연되며 소결된 것이 좋고,
상기 연자성 합금은 제1결정화온도(Tx1)와 제2결정화온도(Tx2)의 차이가 120 내지 200℃인 것이 좋으며,
상기 연자성 합금은 조성식 FeaSibBcPdCueYfCg으로 표현되며,
상기 a 내지 f는 원자백분율 값으로, 80≤a≤87, 0<b≤9, 3≤c≤14, 1≤d≤8, 0.2≤e≤2.5, 0<f≤3.0, 0≤g≤4.0 및 (e/f)≤4을 만족하는 것이 바람직하다.
또, 상기 조성식이 10≤(c+d+f)≤19를 만족하는 것이 좋고, 0.80<(d/e)≤1.0 및 0.5≤f≤2.5를 만족하는 것이 바람직하다.
또, 상기 연자성 합금은 조성식 FeaSibBcPdCueYf 로 표현되며,
상기 a 내지 f는 원자백분율 값으로, 80≤a≤87, 0<b≤9, 3≤c≤14, 1≤d≤8, 0.2≤e≤2.5, 0<f≤3.0, 및 (e/f)≤4을 만족하는 인덕터인 것이 좋고,
상기 Fe를 포함하는 결정립은 α-Fe를 포함하는 것이 좋으며,
상기 Fe를 포함하는 결정립의 평균 입경은 25 nm 이하인 것이 바람직하다.
본 발명의 또 다른 측면은,
하우징; 상기 하우징의 중앙에 지지되는 회전축; 상기 회전축에 연결된 회전자(rotor); 및 상기 하우징에 고정된 고정자(stator);를 포함하고,
상기 회전자 또는 상기 고정자는 코일이 권선되는 모터 코어를 포함하며,
상기 모터 코어는 조성으로 Fe, Si, B, P, Cu 및 Y를 가지는 연자성 합금을 포함하고, Fe를 포함하는 결정립이 비정질상에 분산된 복합조직을 가지는 모터로서,
상기 모터 코어는 상기 연자성 합금이 연자성 합금 리본으로 가공된 후, 적층되어 구비되는 것이 좋고, 상기 연자성 합금 리본이 상기 코일의 권선방향과 수직인 방향으로 적층되어 구비되는 것이 좋으며,
상기 합금은 제1결정화온도(Tx1)와 제2결정화온도(Tx2)의 차이가 120 내지 200℃인 것이 바람직하다.
또한, 상기 연자성 합금은 조성식 FeaSibBcPdCueYfCg으로 표현되며,
상기 a 내지 f는 원자백분율 값으로, 80≤a≤87, 0<b≤9, 3≤c≤14, 1≤d≤8, 0.2≤e≤2.5, 0<f≤3.0, 0≤g≤4.0 및 (e/f)≤4을 만족하는 모터가 제공될 수 있고,
이때, 상기 조성식이 10≤(c+d+f)≤19를 만족하고, 0.80<(d/e)≤1.0를 만족하며, 0.5≤f≤2.5를 만족하는 것이 좋다.
또, 상기 연자성 합금은 조성식 FeaSibBcPdCueYf 로 표현되며,
상기 a 내지 f는 원자백분율 값으로, 80≤a≤87, 0<b≤9, 3≤c≤14, 1≤d≤8, 0.2≤e≤2.5, 0<f≤3.0 및 (e/f)≤4을 만족하는 모터가 제공될 수 있으며,
상기 Fe를 포함하는 결정립은 α-Fe를 포함하는 것이 좋고, 상기 Fe를 포함하는 결정립의 평균 입경은 25 nm 이하인 것이 바람직하다.
본 발명의 일 측면에 따른 합금 조성물은 Fe-Si-B-P-Cu-Y 계 조성의 연자성 합금 조성물로서, Y을 포함함으로 인하여 제1 및 제2결정화온도의 차이가 증가할 수 있다.
또, 합금 조성물은 조성식에서 Cu원자와 Y원자의 함량이 특정 관계를 만족하여 제2결정화온도와 제1결정화온도의 차이가 크게 향상될 수 있으므로, 열처리를 통한 연자성 재료의 제조시 안정적인 공정 설계 및 우수한 품질의 연자성 소재를 제조할 수 있는 장점이 있다.
또한, 합금 조성물로부터 제조된 합금 리본 또는 합금 분말은 열처리되는 경우 Fe 결정립이 분산된 비정질상을 포함하여 높은 포화 자속밀도를 가질 수 있다.
본 발명의 제3측면에 따른 인덕터는 비정질 형성능이 향상된 조성의 연자성 합금으로 이루어지는 연자성 코어를 포함하며, 연자성 합금은 열처리되어 얻어지는 철계 나노결정립이 분산된 복합조직을 포함하여 높은 포화 자속밀도를 가질 수 있다.
또한, 인덕터의 연자성 코어는 제1 결정화 온도와 제2 결정화 온도의 차이가 큰 장점이 있어, 균질한 나노결정립을 포함하는 복합조직을 쉽게 얻을 수 있다.
본 발명의 제4측면에 따른 모터는 Fe계 합금에 희토류 원소인 이트륨을 더 포함하는 조성의 합금으로 이루어지는 모터 코어를 포함하며, 철계 비정질 합금을 모터의 고정자 또는 회전자의 모터 코어로 활용하는 경우 발생할 수 있는 내식성 문제를 해결할 수 있어 부품 및 장치의 수명을 연장시킬 수 있다.
또한, 본 측면에 따른 모터는 제1 결정화 온도와 제2 결정화 온도의 차이가 커서 열처리를 통하여 Fe계 나노결정립이 균일하게 분산된 비정질상을 포함하는 복합조직을 제조하기 용이하며, 포화 자속밀도가 우수한 장점을 가진다.
도 1 내지 도 3은 일부 실시예 및 비교예의 합금 조성물의 XRD 분석 결과를 도시한 그래프이다.
도 4 내지 도 6은 일부 실시예 및 비교예의 합금 조성물의 성형과 열처리 후 제조된 합금리본의 XRD 분석 결과를 도시한 그래프이다.
도 7 내지 도 9는 일부 실시예 및 비교예의 DSC 분석 결과를 도시한 그래프이다.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다.
도면들에 있어서, 구성 요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 전체적으로 도면 설명시 관찰자 시점에서 설명하였고, 일 구성요소가 다른 구성요소 "위에/아래에" 또는 "상에/하에" 있다고 할 때, 이는 다른 구성요소 "바로 위에/바로 아래에" 있는 경우 뿐 아니라, 그 중간에 또 다른 구성요소가 있는 경우도 포함한다.
본 명세서에서 비정질이란 비결정질과 동일한 의미하며, 고체 내 결정이 이루어지지 않은, 즉 규칙적인 구조를 가지지 않는 상을 의미하는 비정질상을 포함하는 조직의 성질을 뜻한다.
본 발명의 제1측면은 합금 조성물로, 합금 조성물은 Fe, Si, B, P, Cu 및 Y를 포함하는 FeSiBPCuY 또는 FeSiBPCuYC계의 연자성 합금 조성물일 수 있다.
더욱 구체적으로는 합금 조성물은 원자 백분율(atomic percent)로 표현하여 FeaSibBcPdCueYfCg 로 표현될 수 있으며, 여기에서 80≤a≤87, 0<b≤9, 3≤c≤14, 1≤d≤8, 0.2≤e≤2.5, 0<f≤3.0 및 0≤g≤4.0을 만족하고, a, b, c, d, e, f, g의 총합은 100을 만족한다.
또는, 합금 조성물은 원자 백분율(atomic percent)로 표현하여 FeaSibBcPdCueYf 로 표현될 수 있으며, 여기에서 80≤a≤87, 0<b≤9, 3≤c≤14, 1≤d≤8, 0.2≤e≤2.5 및 0<f≤3.0을 만족하고, a, b, c, d, e, f의 총합은 100을 만족한다.
이 때, (c+d+f)의 값은 10 내지 19인 것이 바람직하며, (e/f)의 값이 4 이하인 것이 바람직하다.
여기에서, Fe는 합금 조성물의 주(主)원소이며, 자성을 담당하는 필수 원소이다. Fe의 함량은 80 내지 87 원자%, 바람직하게는 80.5 내지 86 원자%, 더욱 바람직하게는 81 내지 85 인 것이 좋다. Fe가 해당 범위보다 낮은 경우 합금용 조성물의 포화 자속밀도가 낮아 연자성 특성이 높지 않으며, 제조 단가가 상승하게 되고, 해당 범위 보다 높은 경우, 비정질상이 형성되지 않거나 비정질상의 비율이 낮아질 수 있고, 열처리시 균질한 나노 결정 조직이 얻어지지 않아 합금 조성물로부터 얻어지는 연자성 재료의 연자성 특성이 열화되는 문제가 있을 수 있다.
이하에서 연자성 재료란, 연자성 합금 조성물을 냉각 및 열처리하여 얻어진 상태의 물건을 말하는 것으로, 연자성 소재 및 원하는 형태로 성형된 연자성 부품을 포함하는 의미이다.
연자성 합금 조성물에 있어서, Si 원소는 비정질 형성을 담당하는 원소이며, 연자성 합금 조성물의 나노 결정화 시 나노 결정의 안정화에 기여한다. Si의 함량은 0 원자%를 초과하는 것이 좋고, 9 원자% 이하인 것이 좋으며, 바람직하게는 1 내지 7 원자% 인 것이 좋다. Si의 함량이 해당 범위보다 낮은 경우 합금 조성물의 비정질 형성능이 저하되어 비정질 합금의 형성이 어려울 수 있으며, 나노 결정 조직 형성시 균질한 나노 결정 조직이 얻어지지 않아 연자성 재료의 연자성 특성이 좋지 않을 수 있다. Si의 함량이 해당 범위보다 높은 경우 포화 자속밀도와 비정질 형성능이 오히려 저하되는 문제가 발생할 수 있다.
연자성 합금 조성물이 해당 범위의 Si를 포함함으로써 연자성 합금 조성물에서 제1 및 제2 결정화온도의 차이인 △T가 증가할 수 있고, 균질한 나노 결정립을 포함하는 연자성 재료를 얻을 수 있다.
연자성 합금 조성물에 있어서, B는 비정질 형성능을 향상시키는 역할로 주로 포함될 수 있다.
B의 함량은 3 내지 14 원자%, 바람직하게는 3.5 내지 13 원자%인 것이 좋다.
B의 함량이 해당 범위보다 낮은 경우, 비정질 형성능이 낮아져 비정질상이 얻어지지 않거나 낮은 비율로 얻어져 연자성 특성이 좋지 않을 수 있으며, 해당 범위보다 높은 경우, 합금 조성물의 △T가 감소하여 연자성 재료에서 균질한 나노결정립을 얻기 어려워 연자성 특성이 좋지 않을 수 있다.
또한, B는 가벼운 원소로써 합금 조성물의 제조시 휘발되거나 합금화가 어려워 타겟 조성보다 실제 얻어진 합금에서 낮은 함량으로 포함될 수 있다.
P는 합금 조성물의 비정질 형성능을 향상시킬 수 있으며, Si 또는 B와 함께 합금에 포함되는 경우 비정질 형성능 및 나노결정립의 안정성을 향상시킬 수 있다.
P의 함량은 1 내지 8 원자%, 바람직하게는 1.5 내지 7.5 원자% 인 것이 좋다. P의 함량이 해당 범위보다 낮은 경우, 비정질 형성능이 낮아져 비정질상을 충분히 얻기 어려워지는 문제가 있으며, 해당 범위보다 높은 경우, 연자성 합금이나 연자성 재료의 포화 자속밀도가 저하되어 연자성 특성이 나빠지는 문제가 있을 수 있다.
C는 연자성 합금 조성물에 선택적으로 포함될 수 있는 원소로서, 원자의 반지름이 상대적으로 작아 붕소와 유사한 원리에 의해 비정질 형성능의 향상에 기여할 수 있다. 탄소는 0 내지 4 원자%인 것이 좋다. 단, 탄소의 함량이 4 원자%를 초과하는 경우 Fe계 합금이 취성을 가져 취화되기 쉬우므로 연자성 특성의 열화가 발생할 수 있다.
연자성 합금 조성물에 있어서, Cu는 합금의 나노결정화에 기여하는 원소로 작용한다. Cu의 함량은 0.2 내지 2.5 원자%, 바람직하게는 0.3 내지 2.0 원자%, 더욱 바람직하게는 0.4 내지 1.7 원자% 인 것이 좋다.
Cu의 함량이 해당 범위보다 낮은 경우, 나노결정화가 잘 이루어지지 않으므로 나노결정화에 의한 연자성 재료의 연자성 특성의 향상 효과가 나빠지는 문제가 있을 수 있으며, 해당 범위보다 높은 경우 비정질상 합금이 불균일해질 수 있고, 균질한 나노 결정 조직이 얻어지지 않아 연자성 재료의 연자성 특성이 나빠지는 문제가 있을 수 있다.
P 원자와 Cu 원자 사이에는 강한 인력이 있다. 따라서, 합금 조성물이 특정 비율의 P 원소와 Cu 원소를 포함하고 있으면, 나노미터 사이즈의 클러스터(cluster)가 형성되며, 이 나노 사이즈의 클러스터에 의해 Fe계 합금의 열처리시에 결정질의α-Fe 은 나노결정립의 미세 구조를 갖게 된다. 보다 구체적으로는, 본 실시형태에 따른 연자성 재료는 Fe계 나노결정질 합금으로서, 평균 입경이 25㎚ 이하인 α-Fe(α-철, Alpha-iron) 결정립을 포함하고 있다.
본 실시형태에 있어서, P의 함량(d)과 Cu의 함량(e)의 비율(d/e)은, 0.05 이상, 1.0 이하이며, 바람직하게는 0.80을 초과하고 1.0 이하일 수 있다.
(d/e) 값이 해당 범위 밖인 경우, 균질한 나노 결정 조직을 얻을 수 없으므로, 합금 조성물을 이용하여 제조한 제품에서 연자성 특성이 좋지 않을 수 있다.
Y는 희토류 원소로서, 원자반지름이 큰 원자로서 합금 조성물의 비정질 형성능을 향상시킬 수 있으며, 합금 조성물 내에서 철 원자의 확산성이나 이동성을 낮추어 합금을 이루는 원자들이 결정화되는 것을 방지할 수 있다.
또한, 이트륨이 합금 조성물에 포함되는 경우 열처리시 Fe계 합금의 나노결정화 과정에서 Fe원자의 이동을 방해하여 나노결정립의 과도한 성장을 억제할 수 있고, 나노결정립의 입경을 작게 유지할 수 있도록 하며, Fe계 나노결정질 합금의 안정성을 향상시킬 수 있다.
또, 이트륨은 산소와의 결합력이 우수하여 합금 조성물 내의 용존산소와 반응할 수 있어 합금조성물 내의 산소농도를 낮추어 다른 금속의 산화물이 형성되는 것을 방지해 합금의 내구성, 내마모성 등 기계적 특성을 향상시켜 수명을 연장시킬 수 있다.
Y의 함량은 3.0 원자% 이내로 포함될 수 있으며, 바람직하게는 0.3 내지 2.8 원자%, 더욱 바람직하게는 0.5 내지 2.5 원자% 범위로 포함되는 것이 좋다.
Y의 함량이 해당 범위보다 낮은 경우, 비정질 형성능이 낮아져 비정질상을 충분히 얻기 어려워지는 문제가 있으며, 해당 범위보다 높은 경우, 생산 비용이 증가하며, 연자성 합금 및 연자성 재료의 포화 자속밀도가 저하되어 연자성 특성이 나빠지는 문제가 있을 수 있다.
본 발명의 합금 조성물은 Cu, Y 및 P를 모두 포함하며, 이 때, B, P 및 Y의 원자백분율은 합하여 10 원자% 이상이고 19 원자% 이하로 이루어지는 것이 바람직하다. B, P 및 Y의 함량을 합한 (c+d+f)의 값이 10 원자% 보다 낮은 경우에는 합금 조성물의 비정질형성능이 저하되어 합금의 제조시 비정질상이 형성되지 않는 문제점이 있을 수 있으며, 19 원자% 보다 높은 경우에는 합금 조성물에서 Fe의 함량이 상대적으로 낮아져 합금 조성물의 열처리시 나노결정질화가 잘 이루어지지 않거나, 최종적으로 얻어지는 연자성 재료의 포화 자속밀도가 낮게 얻어져 연자성 특성이 나빠지는 문제점이 발생할 수 있다.
또한, 이트륨의 함량(f) 와 Cu의 함량 (e)의 관계인 (e/f)의 값은 4 이하로 얻어지는 것이 바람직하고, 더욱 바람직하게는 (e/f)의 값이 3 이하인 것이 좋다. (e/f)의 값이 해당범위보다 큰 경우, 합금 조성물의 비정질 형성능이 저하되어 결정질 합금이 얻어지거나, 나노 결정립의 Fe를 얻기 위한 열처리시 나노 결정립의 입경이 증가하거나 불규칙적인 나노 결정질 합금이 얻어지는 문제가 발생할 수 있다.
또한, Y에 의해 원자의 이동도가 저하됨으로 인하여 결정상이 형성되기 위하여 외부로부터 흡수하는 에너지가 증가하므로 제1결정화온도 또는 제2결정화온도가 증가할 수 있다.
본 측면의 합금 조성물은, 다양한 형상을 가지도록 제조, 성형될 수 있다. 예를 들면, 합금 조성물은 냉각되어 연자성 재료로 얻어질 수 있고, 연자성 재료는 연속 스트립(strip) 또는 리본 형상을 가질 수 있으며, 구형에 가까운 분말 형상을 가질 수 있다.
연속 스트립 형상의 연자성 재료는, 비정질 스트립 등의 제조에 사용되고 있는 단롤 제조 장치나 쌍롤 제조 장치와 같은 종래의 장치를 사용하여 형성될 수 있다. 분말 형상의 연자성 재료는 물 아토마이즈(water atomize)법이나 가스 아토마이즈(gas atomize)법에 의해 제작될 수 있으며, 스트립 형상의 연자성 재료를 분쇄 또는 파쇄함으로써 얻어질 수 있으나, 구형도가 우수한 분말을 제조하기 위하여는 아토마이즈법을 사용하여 분말형태의 연자성 재료를 제조하는 것이 바람직하다.
본 실시형태에 따른 합금 조성물 또는 연자성 재료를 성형하여, 권자심, 적층자심, 압분자심 등의 자기 코어를 형성할 수 있다. 또한, 그 자기 코어를 이용하여, 트랜스, 인덕터, 모터나 발전기 등의 부품을 제공할 수 있다.
본 실시형태에 따른 합금 조성물은 주(主)상으로서 비정질상을 가지고 있다. 따라서, 냉각된 합금 조성물을 Ar 가스 분위기와 같은 불활성 분위기 중에서 열처리하면, 2회 이상 결정화가 진행될 수 있다. 최초로 결정화가 개시되는 온도를 합금의 제 1 결정화 개시 온도(Tx1)라 하고, 2번째의 결정화가 개시되는 온도를 제 2 결정화 개시 온도(Tx2)라 한다.
또한, 제 1 결정화 개시 온도(Tx1)와 제 2 결정화 개시 온도(Tx2) 사이의 온도차를 △T=Tx2-Tx1라 하고, 단순히 '결정화 개시 온도'라는 용어를 사용하는 경우, 제 1 결정화 개시 온도(Tx1)를 의미하는 것으로 이해된다.
전술한 합금의 결정화 온도는, 예를 들면, 시차 주사 열량 분석(DSC) 장치를 이용하여 측정될 수 있으며, 20 ℃/min 수준의 승온 속도로 열분석을 행함으로써 평가 가능하다.
본 발명의 합금 조성물은 Y을 조성으로 포함함으로 인하여 △T 가 증가될 수 있으며, △T가 증가함으로 인하여 합금의 열처리 또는 나노 결정질화 시 안정적인 나노결정질화가 가능하며, 결정상의 α-Fe를 균일하게 얻을 수 있어 높은 포화 자속밀도를 얻을 수 있는 장점이 있다.
합금 조성물의 △T는 120 내지 200 ℃일 수 있고, 바람직하게는 130 내지 200 ℃ 인 것이 좋으며, 더욱 바람직하게는 170 ℃ 이상이고, 190 ℃ 이하인 것이 좋다. △T가 해당 범위보다 작은 경우에는 열처리 후의 연자성 재료의 연자기 특성 열화 문제가 있을 수 있다.
본 측면에 따른 Fe계 합금 조성물은 나노결정질화 되어 우수한 포화 자속밀도, 보자력을 가지는 연자성 재료를 형성하므로 이를 이용하여 연자성 특성을 가지는 자기 코어를 제조하는데 활용할 수 있다. 또한, 그 자기 코어를 이용하여, 트랜스, 인덕터, 모터, 센서 또는 발전기 등의 부품을 구성할 수 있다.
보다 구체적으로는, 합금 조성물로부터 제조되는 코어나 자심 등은 비정질상의 합금 매트릭스에 Fe를 포함하는 미세한 결정립들이 분산되는 복합조직을 가지며, 비정질상의 함급 매트릭스는 전술한 조성의 비정질 합금인 것이 좋고, Fe를 포함하는 결정립은 입경이 나노미터 단위인 균질한 α-Fe결정질 입자인 것이 좋다.
본 발명의 제2측면은 전술한 합금 조성물로부터 제조되는 합금 분말이다.
합금 분말은 전술한 합금 조성물을 유도가열로에서 제조한 뒤, 아토마이즈법으로 분말화하여 제조할 수 있다. 여기에서 아토마이즈 방법은 본 기술분야에서 통상적으로 활용가능한 기술이라면 제한되지 않고, 통상의 기술자가 채택할 수 있는 다양한 기술이 활용될 수 있다.
아토마이즈법에 의해 냉각된 합금분말은 비정질상을 포함하는 비정질 합금 분말이며, 해당 비정질 합금 분말은 추가적인 열처리에 의해 결정질화 되어 나노결정질상을 내부에 포함하는 나노 결정질 연자성 합금 분말로 제조된다.
구체적으로는, 비정질 합금 분말을 열처리하여 나노결정질화 하는 단계로, 합금의 제1 결정화 개시 온도 근처의 온도 또는 그 이상의 온도로 처리하는 단계를 포함한다.
열처리 단계는 아르곤 분위기 중에서 α-Fe 나노결정립을 석출할 수 있는 온도 이상 즉, 합금의 제1 결정화 개시 온도보다 높은 온도에서 이루어지는 것이 바람직하다. 또한, α-Fe 나노결정립 이외의 연자기 특성을 열화시키는 금속산화물의 형성을 방지하고, 균질한 나노결정 조직을 얻기 위해서는 제2 결정화 개시 온도보다 낮은 β범위 내에서 열처리하는 것이 바람직하다.
열처리단계에서는 비정질상으로 포함되어 있던 합금 조성물의 Fe원자가 합금에 분산된 핵(nuclear)를 중심으로 체심입방결정구조(bcc)를 가지는 결정상 α-Fe 이 형성될 수 있다. 이때, 나노결정립의 응결핵 역할을 하는 원자로 Cu 또는 Y 이 활용될 수 있다.
열처리에 의해 형성되는 결정립의 평균 입경은 25 nm 이하인 것이 좋다. 나노결정립의 평균 입경이 해당 범위보다 큰 경우, 보자력과 자기손실이 증가하는 문제가 발생할 수 있다.
위와 같은 입경의 나노결정립을 얻기 위하여 열처리시 온도 및 시간이 제어될 수 있으며, 열처리 시간은 30초 내지 1시간 동안 수행될 수 있다. 열처리 시간은 온도에 따라 변경될 수 있으나, 30초 미만으로 수행될 경우 목적하는 나노결정립의 입경에 도달하지 못할 수 있으며 열처리시간이 1시간을 초과하면 나노결정립의 입경이 필요 이상으로 조대화하여 보자력 및 자기손실이 증가할 수 있다.
본 발명은 제3측면으로 전술한 합금 조성물 및 합금 분말으로부터 제조된 인덕터를 포함한다.
인덕터(Inductor)란, 전기회로를 이루는 부품 중의 하나로서, 전류의 변화량에 비례해 전압을 유도하는 코일(권선)을 일반적으로 지칭하며, 전기회로에서 전류를 안정시키려는 특징을 가지는데, 전류를 안정시키려는 특성을 효과적으로 가지게 하기 위하여 연자성 소재를 활용하는 것이 좋다.
본 측면의 인덕터의 종류 및 형태는 제한되지 않으나, 토로이달(Toroidal) 인덕터, 액시얼(Axial)인덕터 또는 칩형 인덕터(이하, 칩인덕터) 등이 포함될 수 있고, 바람직하게는 토로이달 인덕터 또는 칩인덕터인 것이 좋다.
본 발명의 일 실시예에 따른 인덕터는 도전체로 이루어지는 코일과 상기 코일의 내부 또는 코일의 사이에 구비되는 연자성 코어를 포함한다.
코일은 전기회로와 연결되는 전도체로서, 인덕터의 외부로 돌출되어 전기회로와 연결되거나, 인덕터의 외부와 전기적으로 연결가능한 전극과 접촉되며, 전기회로에 의해 전류가 흐르는 부분이다.
코일은 인덕터의 형태, 종류에 따라 다른 형태 및 구조를 가질 수 있다. 예를 들어, 구리선과 같은 전기전도성 도선이 연자성 코어의 외부에 회전하며 감긴 형태일 수 있고, 자성체 시트에 전도성 페이스트(paste)를 코일 패턴으로 인쇄하여 적층하는 적층형이나, 권선장비로 나선형 (spiral)으로 코일을 감고 그 내·외부에 연자성 코어를 채우는 형태일 수 있다.
인덕터 코어 또한 인덕터의 형태, 종류에 따라 다른 형태 및 구조를 가질 수 있다. 예를 들어 토로이달 인덕터의 경우 링 또는 원환체(Torus) 형태의 코어가 포함되고, 액시얼 인덕터의 경우 원통형 코어가 포함되며, 이러한 코어의 외부에 코일이 권선되는 형태가 사용될 수 있다.
본 발명의 바람직한 실시예에 따른 인덕터는 칩인덕터로서, 권선된 코일의 내부 및 외부를 둘러싸는 코어가 포함된다.
본 실시예에 따른 칩인덕터는 전자회로에 사용되는 경우 1 ~ 10 MHz 수준의 주파수영역에서 투자율이 일정 수준 이상으로 유지되는 장점이 있으며, 1 ~ 10 MHz 수준의 고주파수 대역에서 활용될 수 있고, 차지하는 부피 및 크기가 작게 제조될 수 있으므로 공간효율 및 소형화가 중요하며, 낮은 전류를 이용하는 스마트폰, 태블릿PC, 노트북 등에 활용될 수 있는 장점이 있다.
구체적으로는, 칩형 인덕터 형태를 가지도록 준비된 몰드에 대하여, 몰드의 내부에 구비되는 전도성 코일을 포함하고, 전도성 코일의 주변부 및 사이 공간에 구비되며 합금 분말을 포함하는 코어가 몰드의 내부에서 코일과 절연되면서 코어를 내부에 포함하는 인덕터를 구성할 수 있다.
인덕터의 내부에 충전되는 합금 분말은 연자성 합금 분말인 것이 좋으며, 연자성 합금 분말의 입경은 단일한 분포를 가지는 단봉분포 또는 양봉 분포의 분말이 사용될 수 있으며, 서로 다른 평균입경을 가지는 연자성 합금 분말을 서로 혼합하여 사용하는 것도 가능하다.
서로 다른 평균입경을 가지는 연자성 합금 분말을 혼합하는 경우 단일한 평균 입경을 가지는 분말을 사용하는 경우보다 공간의 충진 밀도(packing density)가 향상되어 더 높은 투자율과 포화 자속밀도를 가질 수 있다.
예를 들어, 제1입경을 가지는 제1 연자성 합금분말과 제1입경보다 작은 제2입경을 가지는 제2 연자성 합금분말의 혼합분말이 인덕터에 충전될 수 있으며, 제1입경은 제2입경의 4배 내지 13배의 입경 관계를 가지는 것이 바람직하다.
해당 입경 범위를 벗어나는 경우, 충진 밀도가 저하되어 투자율이 감소하고 자속 밀도가 감소하여 인덕터 효율이 떨어질 수 있다.
또한, 연자성 합금 분말은 전자기 유도에 의한 손실을 막기 위하여 표면에서 절연특성을 가질 수 있다. 연자성 합금 분말의 표면이 절연되지 않는 경우 전기적 연결에 의해 외부 자기장의 변화에 따라 유도전류, 와류가 발생할 수 있으며, 이 경우 투자 손실이 증가하여 인덕턴스 감소, 발열 등의 문제가 발생할 수 있다.
절연특성을 위하여, 예를 들어 연자성 합금 분말은 표면에 절연 코팅을 더 포함하거나, 분말의 혼합 시 절연성 바인더 또는 수지와 혼합되어 절연특성을 가질 수 있다.
본 발명의 일 실시예의 인덕터에는 연자성 합금 분말과 고분자 수지가 혼합된 혼합물이 인덕터의 내부에 충전될 수 있다.
이 때, 바인더의 조성 및 성분은 제한되지 않으며, 해당 기술분야에서 일반적으로 사용되거나 통상의 기술자가 채택할 수 있는 조성의 바인더 물질이라면 본 발명의 인덕터에 포함될 수 있다.
바인더와 연자성 합금 분말을 서로 혼합하는 경우, 바인더는 연자성 합금 분말에 대하여 1.5 내지 5.0 중량% 인 것이 좋다.
바인더의 배합비율이 너무 적은 경우, 연자성 합금 분말이 서로 응집되어 바인더와의 혼합이 어려워질 수 있고, 바인더의 배합비율이 너무 높은 경우 연자성 합금 분말의 양이 줄어들어 투자율 및 자속밀도가 떨어지거나, 분말-바인더 간의 결합 강도가 저하되어 전극 노출, 쇼트 (short), 도금 번짐 등의 공정 불량을 유발할 수 있다.
연자성 합금 분말의 함량은 높을수록 코어의 연자성 특성이 우수하여 바람직하지만, 인덕터의 내부에 코일이 포함되는 칩인덕터 구조의 특성상, 그리고 칩인덕터를 제조하는 공정의 특성상, 분말 함량의 한계가 존재한다.
구체적으로는 전체 칩인덕터의 내부 코일을 뺀 연자성 코어 부분에 포함되는 연자성 합금분말의 함량은 70 내지 90 vol% 일 수 있고, 바람직하게는 75 내지 85 vol% 인 것이 좋다.
본 측면에 따른 또 다른 바람직한 실시예로는 토로이달 인덕터를 들 수 있다. 토로이달 인덕터는 합금 분말을 포함하는 연자성 코어가 토로이달 형태(도넛 또는 링 형태를 포함함)로 성형되고, 전술한 토로이달 코어의 표면에 권선이 감겨 구비되는 코일을 포함한다. 이 때, 코일은 토로이달 코어로부터 절연되며 권선된다.
토로이달 인덕터는 외관과 형태가 전술한 실시예의 칩형 인덕터와 상이하지만, 인덕터로서의 작동 원리 및 세부적인 구성은 동일하게 이루어질 수 있으며, 이하에서는 전술한 실시예의 칩인덕터와 동일한 부분에 대하여는 설명을 생략하고 차이가 있는 부분에 대하여 설명하였다.
토로이달 인덕터는 전자회로에 사용되는 경우 수백 kHz 수준의 주파수영역에서 투자율이 일정 수준 이상으로 유지되는 장점이 있으며, 수십 ~ 수백 kHz 수준의 주파수 대역에서 활용될 수 있고, 상대적으로 큰 부피로 제조되어 소형화가 필수적이지 않은 전자기기에 사용될 수 있고, 높은 전류의 사용이 가능하며, 열방출이 용이한 전자기기 등에 활용될 수 있는 장점이 있다.
토로이달 인덕터는 예를 들어 의료기기, 통신, 악기, 산업 제어, 냉동장비, 에어컨 장비, 전원 공급 장치, 밸러스트, 전자클러치, 전자 브레이크, 우주항공 분야 등에 사용될 수 있으며, 회로에서 발생하는 잡음을 필터링하는 역할을 주로 수행할 수 있다.
토로이달 코어는 단면이 원형이나 사각형 등으로 이루어진 원환체(Torus)로서 회전대칭적인 구조를 가지고, 각진 모서리를 포함하지 않으므로, 코어의 내부에서 형성되는 자기장, 즉, 쇄교(鎖交)자속의 집중 혹은 편중으로 인한 손실이 없고 균일하기 때문에 효율적으로 코어가 활용될 수 있다.
토로이달 코어는 자체적으로 제조가능하며, 표면에 코일을 권선함으로써 인덕터가 될 수 있어 칩형 인덕터 대비 성형이나 제조가 자유로운 장점이 있다. 예를 들어, 칩형 인덕터를 제조하는 경우 코어의 내부에 구비되는 코일과 절연을 유지하면서 코일의 파괴를 막기 위하여 합금 분말을 가압하는 것이 제한되지만, 토로이달 인덕터의 경우 합금 분말만으로 코어를 이론 밀도에 가깝게 가압하거나 투자율 및 자속 밀도를 높이기 위하여 열처리하는 것도 가능하다.
즉, 토로이달 코어에 포함되는 합금 분말은 연자성 합금 분말인 것이 좋고, 칩인덕터의 코어 대비 합금 분말의 함량 또는 부피분율이 더 높을 수 있고, 예를 들어 코어 전체에서 연자성 합금 분말이 차지하는 부피가 95 vol% 내지 99.9 vol% 일 수 있다.
토로이달 인덕터를 제조하는 방법은 칩형 인덕터의 제조방법과 달리 토로이달 코어를 제조하는 단계와 코일을 권선하는 단계로 구분될 수 있다.
토로이달 코어를 제조하는 단계로는 예를 들어, 토로이달 코어 형태의 몰드에 연자성 합금 분말과 바인더를 혼합하여 투입한 후, 칩인덕터의 경우보다 많게는 20 배 이상 높은 압력으로 가압하여 토로이달 형태로 성형한 후 수백 도의 온도에서 열처리하는 방법이 사용될 수 있다.
이때, 열처리는 연자성 분말 제조 및 가압 성형 공정 시 발생한 소재 내부의 응력을 완화하여 줌으로써 투자율, 투자손실, 및 자속밀도 등의 연자성 특성을 크게 개선할 수 있다.
본 발명은 제4측면으로 전술한 합금 조성물로부터 제조된 연자성 재료를 포함하는 모터를 개시한다.
모터(Motor)란, 전동기라고도 하며, 전기에너지를 역학적 에너지(동력 등)으로 전환할 수 있는 장치로서, 전류가 흐르는 도체가 자기장 속에서 물리적 힘을 받는 원리를 활용한 장치이며, 전기에너지를 이용하여 회전자계를 발생시키고, 회전자계에 의해 회전에너지와 같은 운동에너지를 발생시킬 수 있다.
모터는 회전자계에 의해 회전하며 회전축에 연결되는 회전자(로터, rotor) 와, 고정되어 정지 또는 이동하지 않으면서 회전자를 회전할 수 있게 하는 고정자(스테이터, stator)를 포함하여 이루어지며, 사용되는 전원의 종류(직류 또는 교류) 및 형태에 따라 다양한 구조를 가질 수 있다.
본 측면의 모터는 교류를 공급받아 작동하는 교류 모터(AC Motor)인 것이 좋으며, 고정자 및 회전자의 구조 및 형태는 제한되지 않는다.
모터는 스테이터 또는 로터에 연자성 재료를 포함하는 연자성 코어를 구비하여 이루어질 수 있는데, 이하에서는 모터의 스테이터 또는 로터에 구비되는 연자성 코어를 모터 코어라고 표현하였다. 스테이터 또는 로터 중 어느 하나는 연자성의 모터 코어와, 모터 코어에 권선되는 코일을 포함하여 이루어지며, 스테이터 또는 로터 중 모터 코어가 구비되지 않는 나머지 하나는 N극 및 S극을 가지는 영구자석을 포함하여 이루어지는 것이 좋다.
즉, 모터에는 코일이 권선되는 모터 코어가 구비되며, 모터 코어는 모터의 구조에 따라 스테이터 및 로터 중 어느 하나에 구비된다.
모터는 복수개의 코일과, 복수개의 코일이 권선되는 보빈(또는 보빈부)을 가지며, 복수개의 코일은 개별적으로 분리된 복수개의 분할된 모터코어(분할코어)의 보빈에 권선될 수 있고, 일체로 제조되며 복수개의 보빈부가 구비된 하나의 모터 코어에 복수개의 코일이 권선되는 것도 가능하다.
이때, 복수개의 코일이라 함은 반드시 각각 전류가 흐르는 복수개의 도선으로 이루어질 것을 요구하는 것은 아니며, 하나의 도선으로 연결되더라도 서로 다른 위치에서 권선되는 등 통상적으로 별개의 권선 코일을 구성한다고 인정할 수 있는 경우를 포함한다.
본 측면의 바람직한 일 실시예는 하우징을 포함하며 고정자와 회전자가 축방향으로 배열된 액시얼 갭(Axial gap) 모터이며, 하우징의 중앙에 회전 가능하게 지지되는 회전축, 회전축을 중심으로 방사상으로 배열되는 복수의 분할코어와 코어에 권선되는 코일을 포함하는 고정자, 회전축 방향으로 고정자 코어의 일 면과 일정한 간격(에어갭)을 두고 배치되며 중앙부가 회전축과 연결되는 회전자를 가지는 모터이다.
본 측면의 바람직한 다른 실시예는 하우징을 포함하며 고정자와 회전자가 회전축에서 방사방향 또는 직경방향으로 배열된 래디얼 갭(Radial gap) 모터이며, 하우징의 중앙에 회전 가능하게 지지되는 회전축, 회전축을 중심으로 외주면에서 방사상으로 배열되는 복수개의 자석을 갖는 회전자, 회전자에 대하여 방사방향 또는 직경방향으로 회전자의 외주면과 일정한 간격(에어갭)을 두고 배치되며 하우징에 고정된 복수개의 모터 코어와 모터 코어에 권선된 코일을 포함하는 고정자를 가지는 모터이다.
여기에서 모터 코어는 티스(Teeth)를 가질 수 있으며, 코일의 외부에 구비되는 절연성 보빈을 가지고, 코일은 보빈에 권선된다.
모터 코어는 합금을 리본형태로 제조, 성형한 후, 이를 원하는 형태로 가공하고, 이때 합금은 연자성 합금인 것이 좋으며, 가공된 연자성 합금 리본을 적층하고 서로 접합시켜 이루어지거나, 연자성 합금을 분말 형태로 제조한 후 원하는 형태로 소결, 사출 또는 적층제조하여 제조될 수 있으며, 바람직하게는 연자성 합금을 리본과 같은 박판 형태의 연자성 재료로 제조한 후 가공, 적층 및 접합하여 모터 코어를 제조하는 것이 좋다.
본 측면의 일 실시예는 합금 조성물을 리본형태로 성형한 후 접합하여 제조된 모터 코어가 구비된 스테이터 혹은 로터를 가지는 모터를 포함하며, 모터의 코어는 일체로 구비되는 모터 코어와 분할코어 중 어느 것이든 사용될 수 있다.
모터 코어에 포함되는 합금을 리본형태로 성형한 후 접합하여 모터 코어를 제조하는 경우, 각각의 리본들이 서로 절연되며 이루어지는 것이 좋으며, 연자성 합금이 리본형태로 성형된 연자성 재료가 적층되는 적층방향과 연자성 재료의 주변에 코일이 권선되는 방향이 정의될 수 있는데. 권선방향은 전도성 도선이 연자성 재료의 주위를 둘러싸며 진행하는 방향을 의미하고, 권선을 따라 전류가 변화하는 경우 권선방향 또는 권선방향의 반대방향으로 코일의 내부에 유도자기장이 생길 수 있다.
연자성 재료의 적층방향은 얇은 두께의 연자성 합금 리본이 쌓이는 방향으로서, 각 연자성 합금 리본 사이의 접합면과 수직인 방향을 의미한다.
연자성 재료의 일 예시인 연자성 합금 리본의 적층방향과 권선방향은 서로 수직방향인 것이 바람직하며, 여기에서 수직방향이란 정확한 수직 만을 의미하는 것이 아니라 일반적으로 직교 또는 수직에 가까운 방향으로 볼 수 있는 정도를 포함하는 넓은 의미를 갖는다.
본 발명의 일 실시예는 전술한 측면의 합금 조성물 소재를 포함하는 모터로서, Y을 포함하는 철계 연자성 합금 재료를 포함하는 스테이터 또는 로터를 포함함으로써 스테이터 또는 로터의 내식성을 향상시킬 수 있어 모터의 작동수명을 향상시킬 수 있고, 우수한 연자성 특성을 가져 높은 효율을 가질 수 있다.
이하에서는 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예
실시예 1 내지 4 - 합금 리본의 제조
아래 표 1과 같은 조성 비율로 합금 조성물을 준비하였으며, 휠스피드 3500 RPM, 가스압 0.5 bar, 노즐과 휠 간격이 1.0mm 인 멜트스피너 장치를 이용하여 합금분말을 비정질 합금리본으로 제조하였다.
이후 제조된 비정질 합금리본을 아르곤 분위기 하에서 420 ℃ 온도로 20분동안 열처리하였다.
실시예 5 내지 8 - 합금 리본의 제조
아래 표 1과 같은 조성 비율로 합금 조성물을 준비하였으며, 합금리본의 열처리를 450 ℃ 온도로 10분동안 진행한 것을 제외하고는 실시예 1 내지 4와 동일한 방법으로 합금리본을 제조하였다.
비교예
비교예 1 내지 5 - 합금 리본의 제조
아래 표 1과 같은 조성 비율로 합금 조성물을 준비하였으며, 실시예와 동일한 장치를 이용하여 동일한 조건으로 합금리본을 제조한 후, 비교예 1, 2의 합금리본은 420 ℃ 온도로 20분동안 열처리하였고, 비교예 4, 5의 합금리본은 450 ℃ 온도로 10분동안 열처리하였다.
Fe (at%) | Si(at%) | B(at%) | P(at%) | Cu(at%) | Y(at%) | C(at%) | B+P+Y(at%) | Cu/Y 값 | |
실시예 1 | 83 | 1.5 | 8 | 6 | 0.5 | 1 | 0 | 15 | 0.5 |
실시예 2 | 82 | 1.5 | 8 | 6 | 0.5 | 2 | 0 | 16 | 0.25 |
실시예 3 | 83.25 | 1 | 10 | 4 | 0.75 | 1 | 0 | 15 | 0.75 |
실시예 4 | 82.25 | 1 | 10 | 4 | 0.75 | 2 | 0 | 16 | 0.375 |
실시예 5 | 82 | 1.5 | 8 | 7 | 0.5 | 1 | 0 | 16 | 0.5 |
실시예 6 | 82.5 | 5 | 4 | 7 | 0.5 | 1 | 0 | 12 | 0.5 |
실시예 7 | 81.55 | 2.25 | 12 | 1.7 | 1.5 | 1 | 0 | 14.7 | 1.5 |
실시예 8 | 81 | 3.9 | 9 | 2.9 | 2.4 | 0.8 | 0 | 12.7 | 3.0 |
비교예 1 | 84 | 1.5 | 8 | 6 | 0.5 | 0 | 0 | 14 | - |
비교예 2 | 84.25 | 1 | 10 | 4 | 0.75 | 0 | 0 | 14 | - |
비교예 3 | 82.3 | 7.5 | 6 | 1.7 | 1.5 | 1 | 0 | 8.7 | 1.5 |
비교예 4 | 78.6 | 1.0 | 13 | 5 | 0.4 | 2 | 0 | 20.0 | 0.2 |
비교예 5 | 82.45 | 4.0 | 10 | 1.7 | 1.5 | 0.35 | 0 | 12.05 | 4.29 |
실험예
실험예 1 : 열처리 전 XRD 분석
실시예 1, 2 및 비교예 1의 합금 리본에 대하여 열처리를 수행하기 전에 XRD 분석을 수행하였으며, 합금 리본의 제조시 빠른 속도로 냉각이 일어나는 휠(Wheel)면과 상대적으로 냉각속도가 낮은 에어(Air)면 에서의 분석결과를 도 1에 도시하였다.
실시예 3, 4 및 비교예 2의 합금리본을 열처리를 수행하기 전에 동일하게 분석하여 결과를 도 2에 도시하였고, 실시예 5 내지 8 및 비교예 3 내지 5의 합금리본을 동일한 방법으로 분석하여 실시예 5 내지 7의 결과를 도 3에 도시하였다.
XRD 분석 결과, 실시예 및 비교예의 조성에 대하여 비정질 상이 관찰되었음을 알 수 있었으며, 도면에 도시되지 않았으나 비교예 3의 경우 Fe의 결정상(알파-철)이 생성되었다.
실험예 2 : 열처리 후의 XRD 분석
420 ℃ 또는 450 ℃ 온도에서 열처리를 수행한 후, 실시예 1 내지 8 및 비교예 1, 2, 4, 5의 합금리본을 XRD 분석 장치로 분석하였으며, 실시예 1 내지 7, 비교예 1 내지 2의 결과를 각각 도 4 내지 도 6에 나타냈다.
비교예 3의 경우 열처리 전에 Fe의 결정상이 형성된 것으로 관찰되어 열처리를 수행하지 않았다.
실험예 1과 비교할 때, 열처리 후 각 실시예 및 비교예에서 결정상의 알파-철이 검출된 것을 확인하였다.
실험예 3 : DSC 분석
실시예 1 내지 8 및 비교예 1 내지 5의 합금리본을 시차주사열량분석(DSC) 장비를 이용하여 20 °C/분의 승온 속도로 열분석하였으며, 실시예 1 내지 7, 비교예 1 내지 2의 결과를 도 7 내지 도 9에 도시하였다.
DSC 분석 결과, 실시예 및 비교예에서 Fe 외의 다른 성분 조성을 유지하며 Y의 함량을 증가시킴에 따라 제1결정화온도(Tx1) 과 제2결정화온도(Tx2)가 증가하였으며, 제2결정화온도의 증가율이 더 높아 (Tx2- Tx1) 로 계산되는 △T 또한 증가함을 관찰할 수 있다.
또한, 실시예 7에서 △T의 값이 179℃ 정도로 크게 나타남을 알 수 있다.
실험예 4 : VSM 분석
실시예 1 내지 8 및 비교에 1 내지 5의 합금 시료에 대하여 포화 자속밀도 (Bs)는 진동 시편 자력계(VSM)를 이용하여 800 kA/m의 자장에서 측정하였으며, 그 결과를 표 2에 정리하여 나타내었다. 전반적으로 열처리 이후 포화 자속밀도가 증가하였으며, 이는 열처리시 내부에서 Fe이 나노미터 단위의 결정립을 형성하여 더 높은 포화 자속밀도를 가지는 것으로 예상된다.
추가적으로, 전술한 실험예들의 결과를 정리하여 하기 표 3에 나타냈다.
Bs(T) | ||
As-spun | 열처리 후 | |
실시예 1 | 1.34 | 1.64 |
실시예 2 | 1.27 | 1.56 |
실시예 3 | 1.47 | 1.56 |
실시예 4 | 1.41 | 1.52 |
실시예 5 | 1.31 | 1.5 |
실시예 6 | 1.28 | 1.48 |
실시예 7 | 1.24 | 1.58 |
실시예 8 | 1.22 | 1.56 |
비교예 1 | 1.38 | 1.77 |
비교예 2 | 1.53 | 1.55 |
비교예 3 | 1.44 | 1.63 |
비교예 4 | 1.21 | 1.49 |
비교예 5 | 1.44 | 1.63 |
XRD분석 | 포화자속밀도, Bs (T) | 결정화온도 (℃) | ||||
결정상태 | as-spun | 열처리 후 | Tx1 | Tx2 | △T | |
실시예 1 | 비정질 | 1.34 | 1.64 | 398 | 516 | 118 |
실시예 2 | 비정질 | 1.27 | 1.56 | 402 | 524 | 122 |
실시예 3 | 비정질 | 1.47 | 1.56 | 392 | 527 | 135 |
실시예 4 | 비정질 | 1.41 | 1.52 | 394 | 532 | 138 |
실시예 5 | 비정질 | 1.31 | 1.5 | 398 | 510 | 112 |
실시예 6 | 비정질 | 1.28 | 1.48 | 369 | 513 | 144 |
실시예 7 | 비정질 | 1.24 | 1.58 | 355 | 534 | 179 |
실시예 8 | 비정질 | 1.22 | 1.56 | 396 | 507 | 111 |
비교예 1 | 비정질 | 1.38 | 1.77 | 395 | 511 | 116 |
비교예 2 | 비정질 | 1.53 | 1.55 | 383 | 515 | 132 |
비교예 3 | 결정질 | 1.44 | 1.63 | - | 527 | - |
비교예 4 | 비정질 | 1.21 | 1.49 | 406 | 526 | 120 |
비교예 5 | 비정질 | 1.44 | 1.63 | 410 | 512 | 102 |
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (33)
- 조성식 FeaSibBcPdCueYfCg으로 표현되며,상기 a 내지 g는 원자백분율 값으로, 80≤a≤87, 0<b≤9, 3≤c≤14, 1≤d≤8, 0.2≤e≤2.5, 0<f≤3.0, 0≤g≤4.0 및 (e/f)≤4을 만족하는 합금 조성물.
- 제1항에 있어서,상기 조성식이 10≤(c+d+f)≤19를 만족하는 합금 조성물.
- 제1항에 있어서,상기 조성식이 0.80<(d/e)≤1.0를 만족하는 합금 조성물.
- 제1항에 있어서,상기 조성식이 0.5≤f≤2.5를 만족하는 합금 조성물.
- 제1항에 있어서,상기 합금 조성물은 조성식 FeaSibBcPdCueYf 로 표현되는 합금 조성물.
- 제1항 내지 제5항 중 어느 한 항에 있어서,상기 합금 조성물의 제1결정화온도(Tx1)과 제2결정화온도(Tx2)의 차이가 120 내지 200℃인 합금 조성물.
- 제6항에 있어서,상기 합금 조성물의 제1결정화온도(Tx1)과 제2결정화온도(Tx2)의 차이가 170 내지 190℃인 합금 조성물.
- 제1항 내지 제5항 중 어느 한 항의 합금 조성물로 이루어지는 합금 리본.
- 제8항에 있어서,상기 Fe을 포함하는 결정립 및 상기 결정립이 분산된 비정질상을 포함하는 합금 리본.
- 제1항 내지 제5항 중 어느 한 항의 합금 조성물로 이루어지는 합금 분말.
- 제10항에 있어서,상기 Fe을 포함하는 결정립 및 상기 결정립이 분산된 비정질상을 포함하는 합금 분말.
- 권선된 코일(coil); 및상기 코일이 내부에 구비되는 연자성 코어;를 포함하고,상기 연자성 코어는 Fe, Si, B, P, Cu 및 Y를 조성으로 가지는 합금을 포함하며, Fe를 포함하는 결정립이 비정질상에 분산된 복합조직을 가지는 인덕터.
- 조성으로 Fe, Si, B, P, Cu 및 Y를 가지는 합금을 포함하는 연자성 코어; 및상기 연자성 코어의 표면에 권선되는 코일(coil);을 포함하고,상기 연자성 코어는 Fe를 포함하는 결정립이 비정질상에 분산된 복합조직을 가지는 인덕터.
- 제12항 또는 제13항에 있어서,상기 연자성 코어는 상기 조성을 가지는 합금분말이 서로 절연되며 소결된 소결체인 인덕터.
- 제12항 또는 제13항에 있어서,상기 합금은 제1결정화온도(Tx1)와 제2결정화온도(Tx2)의 차이가 120 내지 200℃인 인덕터.
- 제12항 또는 제13항에 있어서,상기 합금은 조성식 FeaSibBcPdCueYfCg으로 표현되며,상기 a 내지 g는 원자백분율 값으로, 80≤a≤87, 0<b≤9, 3≤c≤14, 1≤d≤8, 0.2≤e≤2.5, 0<f≤3.0, 0≤g≤4.0 및 (e/f)≤4을 만족하는 인덕터.
- 제16항에 있어서,상기 조성식이 10≤(c+d+f)≤19를 만족하는 인덕터.
- 제16항에 있어서,상기 조성식이 0.80<(d/e)≤1.0를 만족하는 인덕터.
- 제16항에 있어서,상기 조성식이 0.5≤f≤2.5를 만족하는 인덕터.
- 제 16항에 있어서,상기 합금은 조성식 FeaSibBcPdCueYf 로 표현되며,상기 a 내지 f는 원자백분율 값으로, 80≤a≤87, 0<b≤9, 3≤c≤14, 1≤d≤8, 0.2≤e≤2.5, 0<f≤3.0, 및 (e/f)≤4을 만족하는 인덕터.
- 제20항에 있어서,상기 Fe를 포함하는 결정립은 α-Fe를 포함하는 인덕터.
- 제21항에 있어서,상기 Fe를 포함하는 결정립의 평균 입경은 25 nm 이하인 인덕터.
- 하우징; 상기 하우징의 중앙에 지지되는 회전축; 상기 회전축에 연결된 회전자(rotor); 및 상기 하우징에 고정된 고정자(stator);를 포함하고,상기 회전자 또는 상기 고정자는 코일이 권선되는 모터 코어를 포함하며,상기 모터 코어는 조성으로 Fe, Si, B, P, Cu 및 Y를 가지는 합금을 포함하고, Fe를 포함하는 결정립이 비정질상에 분산된 복합조직을 가지는 모터.
- 제23항에 있어서,상기 모터 코어는 상기 합금이 연자성 합금 리본으로 가공된 후, 적층되어 구비되는 모터.
- 제24항에 있어서,상기 모터 코어는 상기 연자성 합금 리본이 상기 코일의 권선방향과 수직인 방향으로 적층되어 구비되는 모터.
- 제23항에 있어서,상기 합금은 제1결정화온도(Tx1)와 제2결정화온도(Tx2)의 차이가 120 내지 200℃인 모터.
- 제23항에 있어서,상기 합금은 조성식 FeaSibBcPdCueYfCg으로 표현되며,상기 a 내지 g는 원자백분율 값으로, 80≤a≤87, 0<b≤9, 3≤c≤14, 1≤d≤8, 0.2≤e≤2.5, 0<f≤3.0, 0≤g≤4.0 및 (e/f)≤4을 만족하는 모터.
- 제27항에 있어서,상기 조성식이 10≤(c+d+f)≤19를 만족하는 모터.
- 제27항에 있어서,상기 조성식이 0.80<(d/e)≤1.0를 만족하는 모터.
- 제27항에 있어서,상기 조성식이 0.5≤f≤2.5를 만족하는 모터.
- 제27항에 있어서,상기 합금은 조성식 FeaSibBcPdCueYf 로 표현되며,상기 a 내지 f는 원자백분율 값으로, 80≤a≤87, 0<b≤9, 3≤c≤14, 1≤d≤8, 0.2≤e≤2.5, 0<f≤3.0 및 (e/f)≤4을 만족하는 모터.
- 제31항에 있어서,상기 Fe를 포함하는 결정립은 α-Fe를 포함하는 모터.
- 제32항에 있어서,상기 Fe를 포함하는 결정립의 평균 입경은 25 nm 이하인 모터.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/758,647 US20230055049A1 (en) | 2020-01-16 | 2021-01-15 | Alloy composition, alloy powder, alloy ribbon, inductor, and motor |
EP21740775.8A EP4092875A4 (en) | 2020-01-16 | 2021-01-15 | ALLOY COMPOSITION, ALLOY POWDER, ALLOY TAPE, INDUCTOR AND MOTOR |
CN202180009364.4A CN114946105A (zh) | 2020-01-16 | 2021-01-15 | 合金组合物、合金粉末、合金带、电感器及电机 |
JP2022543013A JP7457815B2 (ja) | 2020-01-16 | 2021-01-15 | 合金組成物、合金粉末、合金リボン、インダクタ及びモータ |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0006224 | 2020-01-16 | ||
KR20200006228 | 2020-01-16 | ||
KR10-2020-0006225 | 2020-01-16 | ||
KR20200006224 | 2020-01-16 | ||
KR20200006225 | 2020-01-16 | ||
KR10-2020-0006228 | 2020-01-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021145741A1 true WO2021145741A1 (ko) | 2021-07-22 |
Family
ID=76863881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/000638 WO2021145741A1 (ko) | 2020-01-16 | 2021-01-15 | 합금 조성물, 합금 분말, 합금 리본, 인덕터 및 모터 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230055049A1 (ko) |
EP (1) | EP4092875A4 (ko) |
JP (1) | JP7457815B2 (ko) |
CN (1) | CN114946105A (ko) |
WO (1) | WO2021145741A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070175545A1 (en) * | 2006-02-02 | 2007-08-02 | Nec Tokin Corporation | Amorphous soft magnetic alloy and inductance component using the same |
JP2007270271A (ja) * | 2006-03-31 | 2007-10-18 | Hitachi Metals Ltd | 軟磁性合金、その製造方法ならびに磁性部品 |
KR20120114850A (ko) * | 2011-04-08 | 2012-10-17 | 주식회사 아모그린텍 | 비정질 금속 코어와, 이를 이용한 유도장치 및 그 제조방법 |
KR20160018013A (ko) * | 2014-08-07 | 2016-02-17 | 티엠나노테크 주식회사 | 철계 나노결정 비정질 합금분말 및 이를 이용한 철계 나노결정 압분자심코아의 제조방법. |
JP6506854B2 (ja) * | 2015-11-17 | 2019-04-24 | アルプスアルパイン株式会社 | 圧粉コアの製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103540872B (zh) | 2007-03-20 | 2016-05-25 | Nec东金株式会社 | 软磁性合金及使用该软磁性合金的磁气部件以及它们的制造方法 |
JP6444504B2 (ja) | 2015-07-03 | 2018-12-26 | 株式会社東北マグネットインスティテュート | 積層磁芯及びその製造方法 |
CN110225801B (zh) * | 2017-01-27 | 2022-01-18 | 株式会社东金 | 软磁性粉末、Fe基纳米晶合金粉末、磁性部件及压粉磁芯 |
CN107354400A (zh) | 2017-07-14 | 2017-11-17 | 广东工业大学 | 一种铁基非晶合金及其制备方法 |
-
2021
- 2021-01-15 WO PCT/KR2021/000638 patent/WO2021145741A1/ko unknown
- 2021-01-15 EP EP21740775.8A patent/EP4092875A4/en active Pending
- 2021-01-15 US US17/758,647 patent/US20230055049A1/en active Pending
- 2021-01-15 JP JP2022543013A patent/JP7457815B2/ja active Active
- 2021-01-15 CN CN202180009364.4A patent/CN114946105A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070175545A1 (en) * | 2006-02-02 | 2007-08-02 | Nec Tokin Corporation | Amorphous soft magnetic alloy and inductance component using the same |
JP2007270271A (ja) * | 2006-03-31 | 2007-10-18 | Hitachi Metals Ltd | 軟磁性合金、その製造方法ならびに磁性部品 |
KR20120114850A (ko) * | 2011-04-08 | 2012-10-17 | 주식회사 아모그린텍 | 비정질 금속 코어와, 이를 이용한 유도장치 및 그 제조방법 |
KR20160018013A (ko) * | 2014-08-07 | 2016-02-17 | 티엠나노테크 주식회사 | 철계 나노결정 비정질 합금분말 및 이를 이용한 철계 나노결정 압분자심코아의 제조방법. |
JP6506854B2 (ja) * | 2015-11-17 | 2019-04-24 | アルプスアルパイン株式会社 | 圧粉コアの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4092875A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4092875A1 (en) | 2022-11-23 |
EP4092875A4 (en) | 2024-02-28 |
CN114946105A (zh) | 2022-08-26 |
JP2023510564A (ja) | 2023-03-14 |
JP7457815B2 (ja) | 2024-03-28 |
US20230055049A1 (en) | 2023-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11145448B2 (en) | Soft magnetic alloy powder, dust core, and magnetic component | |
KR102088534B1 (ko) | 연자성 분말, 압분 자심 및 자성 소자 | |
KR100545849B1 (ko) | 철계 비정질 금속 분말의 제조방법 및 이를 이용한 연자성코어의 제조방법 | |
US10758982B2 (en) | Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor | |
WO2014116004A1 (ko) | Fe계 비정질 금속분말의 제조방법 및 이를 이용한 비정질 연자성 코어의 제조방법 | |
WO2021010714A1 (ko) | Fe계 연자성 합금 제조방법 및 이를 통해 제조된 fe계 연자성 합금 | |
JP2009174034A (ja) | アモルファス軟磁性合金、アモルファス軟磁性合金薄帯、アモルファス軟磁性合金粉末およびそれを用いた磁心並びに磁性部品 | |
US20170321308A1 (en) | Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor | |
Li et al. | Magnetic behavior of soft magnetic composites constructed by rapidly quenched flake-like FeSiAl alloy | |
EP0982977B1 (en) | Magnetic core for rf accelerating cavity and the cavity | |
KR102268103B1 (ko) | 철계 나노결정립 연자성 합금 리본 및 그 제조 방법 | |
WO2021145741A1 (ko) | 합금 조성물, 합금 분말, 합금 리본, 인덕터 및 모터 | |
JP2018073947A (ja) | 軟磁性合金、軟磁性合金粉末及び磁性部品 | |
JPH07320920A (ja) | ナノ結晶合金磁心およびナノ結晶合金磁心の熱処理方法 | |
WO2021010713A1 (ko) | Fe계 연자성 합금, 이의 제조방법 및 이를 포함하는 자성부품 | |
JPH07135106A (ja) | 磁 心 | |
CN112553545B (zh) | 一种高韧性抗突短铁基非晶软磁合金及制备方法和应用 | |
KR100256358B1 (ko) | 철규소계 소결 연자성합금의 제조방법 | |
JP2018073945A (ja) | 複合磁性粒及び磁性部品 | |
KR102690071B1 (ko) | 인덕터 | |
WO2023043288A1 (ko) | Fe계 연자성 합금 및 이의 제조방법 | |
KR20210092702A (ko) | 합금 조성물, 합금 조성물로 이루어지는 합금 리본 및 합금 분말 | |
Ferch | Light transformers for kilowattt SMPS based on nanocrystalline soft magnetic cores | |
Hu et al. | Microstructure and Magnetic Properties of Fe/ZrSiO 4 Composites Prepared by Mechanical Milling and Spark Plasma Sintering | |
Lee et al. | Effects of Surface Oxidation on the Magnetic Properties of Fe-Based Amorphous Metal Powder Made by Atomization Methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21740775 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022543013 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021740775 Country of ref document: EP Effective date: 20220816 |