WO2021145493A1 - Precursor particle for producing positive electrode active material comprising coating layer - Google Patents

Precursor particle for producing positive electrode active material comprising coating layer Download PDF

Info

Publication number
WO2021145493A1
WO2021145493A1 PCT/KR2020/000899 KR2020000899W WO2021145493A1 WO 2021145493 A1 WO2021145493 A1 WO 2021145493A1 KR 2020000899 W KR2020000899 W KR 2020000899W WO 2021145493 A1 WO2021145493 A1 WO 2021145493A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
active material
coating layer
particles
positive electrode
Prior art date
Application number
PCT/KR2020/000899
Other languages
French (fr)
Korean (ko)
Inventor
진주성
장성균
박선홍
김도형
Original Assignee
주식회사 엘 앤 에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘 앤 에프 filed Critical 주식회사 엘 앤 에프
Priority to PCT/KR2020/000899 priority Critical patent/WO2021145493A1/en
Publication of WO2021145493A1 publication Critical patent/WO2021145493A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to precursor particles for producing a cathode active material, and more particularly, a cathode active material comprising a precursor core including one or more transition metals, and a coating layer added to the outer surface of the precursor core and having a specific composition It relates to precursor particles for
  • Ni in the positive electrode active material increases, a problem due to instability occurs.
  • Li does not form a proper layered structure and remains on the surface due to Ni, and this residual lithium causes a side reaction with carbon dioxide gas and electrolyte, resulting in a swelling phenomenon in which the battery cell swells. That is, as the Ni content increases, the residual lithium also increases during the manufacturing process.
  • Li In order to improve this phenomenon, Li must be uniformly diffused into the transition metal precursor particles during firing to form a stable layered structure, but the conventional precursor structure has limitations.
  • NCM(OH) 2 or NCM(OOH) which is a particle-shaped transition metal precursor, and Li 2 CO 3 , LiOH, etc., which are lithium precursors, are mixed using a Kawata mixer, zet mill, etc. mixing equipment. Mix.
  • mixing blades such as mixers and collisions between particles.
  • An object of the present invention is to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application have developed a novel precursor particle that can be used as a main raw material for a cathode active material for a secondary battery, and these precursor particles include a precursor core and a coating layer of a specific composition.
  • cathode active material it is possible to synthesize the cathode active material by only firing itself or to coat or dope the material in the cathode active material without an additional process, and it is possible to provide a cathode active material with excellent properties as the diffusivity and reactivity are remarkably improved, and alkali In the case of forming Li among the metals on the surface of the precursor core, it was confirmed that residual lithium in the positive electrode active material can be drastically reduced, thereby essentially preventing the swelling phenomenon in the positive electrode active material having a high Ni content, and the present invention came to completion.
  • a transition metal material and an alkali metal material used to manufacture a positive electrode active material are each expressed as a 'precursor', and in the case of an alkali metal material, it is also expressed as a 'raw material' rather than a precursor.
  • transition metal precursors and alkali metal precursors contain both the meaning of each 'metal particle' and the meaning of 'a powder (powder) of a large number of particles', and in the art, both particles and powder are commonly referred to as precursors. have.
  • precursors both particles and powder are commonly referred to as precursors. have.
  • 'particle' and 'powder' are separately expressed.
  • the precursor powder according to the present invention means a collection of a plurality of precursor particles, but since the precursor particles are prepared in a large amount of powder rather than prepared one by one, alkali metals that are not included in the coating layer of the precursor particles, etc. Silver may be present in the precursor powder as a separate substance, or more precisely, between precursor particles.
  • a precursor core containing one or more transition metals A precursor core containing one or more transition metals
  • a coating layer added to the outer surface of the precursor core and comprising at least one selected from alkali metals, alkaline earth metals, post-transition metals and metalloids in Groups 13 to 15, and non-metal elements in Groups 14 to 16;
  • the positive electrode active material is synthesized by mixing and firing the transition metal precursor particles constituting the positive electrode active material and precursor particles such as lithium, or the positive electrode active material is coated or doped with a specific material.
  • the precursor particles according to the present invention are each a precursor of a specific composition Since it contains a core and a coating layer, it is possible to synthesize a cathode active material just by firing itself or to coat or dope a material without an additional process, and it is possible to provide a cathode material with excellent properties by remarkably improving diffusivity and reactivity. can
  • lithium precursor particles and transition metal precursor particles prepared for each were simply mixed, and when calcined at high temperature to make a positive electrode active material, the lithium precursor particles were melted and diffused into the transition metal precursor particles to form a positive electrode active material.
  • the precursor particles according to the present invention include a precursor core of a specific composition and a coating layer of a specific composition added to the outer surface thereof, this problem can be solved, and in particular, when a secondary battery having a high Ni content is applied, Ni It is possible to suppress the increase of residual lithium in spite of an increase in the content.
  • the precursor core may be a hydroxide-based material having the composition of Formula 1 below, and when M contains two or more transition metals, it may be synthesized by, for example, a co-precipitation method.
  • M contains one or more transition metals that are stable in the tetracoordinate or hexacoordinate.
  • M contains two or more transition metals, for example, one or more elements selected from elements belonging to Groups 5 (VB) to 11 (Group VIIIB) on the periodic table and nickel (Ni) are included. can do.
  • the content of Ni may be preferably 40 mol% or more, more preferably 50 mol% or more, and particularly preferably 60 mol% or more.
  • Group 5 Group VB
  • Group 11 Group VIIIB
  • M is Ti, Sc, V, Cr, Mn, Fe, Co, Y, Cu, Zr, Nb, Mo, Tc, Ru, Rh , Ag, Pd, etc.
  • M is Ti, Sc, V, Cr, Mn, Fe, Co, Y, Cu, Zr, Nb, Mo, Tc, It may include Ni and at least one element selected from the group consisting of Ru, Rh, Ag and Pd.
  • M may further include one or more of Co and Mn in addition to Ni, for example, may be formed of a combination of Ni and Co and Mn.
  • the site of oxygen or hydrogen may be defective as is generally known, and in the case of an anion, it may be equivalently partially substituted with an anion such as S, F, PO 4 , SO 4 .
  • the alkali metal is at least one selected from the group consisting of Li, Na, K, Rb, Cs and Fr
  • the alkaline earth metal is Be, Mg, Ca, Sr, Ba and Ra.
  • At least one selected from the group consisting of, the post-transition metals and metalloids in Groups 13 to 15 are Al, Ga, In, Sn, Tl, Pb, Bi, Po, B, Si, Ge, As, Sb, It is at least one selected from the group consisting of Te and At, and the non-metal element in Groups 14 to 16 may be at least one selected from the group consisting of C, P, S, and Se.
  • the coating layer may preferably include Li. At this time, when Ni as a transition metal is contained in a high content in the precursor core, the amount of residual lithium in the positive electrode active material manufactured through firing can be significantly reduced.
  • the coating layer contains, for example, B in addition to Li
  • the precursor particles including such a coating layer are fired, a B-doped anode based on Li and a transition metal without going through a separate additional firing process
  • An active material can be prepared.
  • the coating layer may include a material having a composition of Formula 2 below.
  • A is at least one alkali metal and/or alkaline earth metal.
  • the coating layer may include, for example, Li 2 CO 3 , LiOH, NaOH, KOH, and the like.
  • the coating layer may be configured to include two or more different elements.
  • the site of oxygen or hydrogen may be defective as is generally known as in the description of the formula (1), and when A is, for example, an alkaline earth metal, it may have a molar ratio of 1/2 compared to the alkali metal. have.
  • A/M (molar ratio), which is the ratio of the content of the transition metal (M) in the precursor core and the content of the element (A) included in the coating layer, is, for example, 0.6 to 1.5, preferably 0.8 to 1.4, more Preferably it may be in the range of 0.9 to 1.3.
  • Element (A) included in the coating layer in the precursor particles of the present invention is not included in the precursor core, which can be confirmed from the results of FIGS. 4 and 5 .
  • NMC precursor site '1'
  • site '2' and site '3' that are the outer surface of the NMC precursor corresponding to the coating layer. It can be seen that potassium is present in For reference, carbon is a separately added coating material for the ease of EDS detection.
  • the precursor particles according to the present invention may be in the form of primary particles or secondary particles, preferably secondary particles.
  • the secondary particle (granular) is formed by agglomeration of fine-sized primary particles to form a relatively large-sized shape (a primary particle is expressed as a particle meaning one particle, and a secondary particle is 1 It is expressed as granular, meaning the granular state in which tea particles are aggregated).
  • the size of the primary particles may be, for example, in the range of 0.01 ⁇ m to 10 ⁇ m, and the size of the secondary particles may be in the range of 2 ⁇ m to 100 ⁇ m under conditions larger than the primary particles, but is not particularly limited.
  • the precursor particles according to the present invention can control the firing temperature, time, etc. to variously control the particle size (particle diameter), and it is also possible to prepare a precursor powder to be described later by mixing two or more types of novel precursor particles having different particle diameters. Do. In this case, the particle size can be confirmed by measuring a general PSD (Particle Size Distribution), and it is also possible to measure the long axis and the short axis of the primary particle or secondary particle through an SEM image, etc.
  • PSD Physical Size Distribution
  • the precursor particles according to the present invention can be prepared by various methods. For example, a basic-based washing and filtration process to obtain a precipitate containing one or more, preferably two or more transition metal elements by co-precipitation, and to remove acidic components of the transition metal salt used for co-precipitation as a post-process
  • a method of adding a coating layer element-containing compound to the result of the subsequent drying process or a method of adding a coating layer element-containing compound during aggregation of the primary particles obtained by the co-precipitation process into secondary particles may be mentioned. It is not limited.
  • the present invention provides a precursor powder comprising the aforementioned precursor particles.
  • the precursor powder according to the present invention may be calcined by itself to prepare a cathode active material, or a cathode active material may be prepared by adding a compound including one or a portion of the elements forming the coating layer and then calcining.
  • the calcination may be carried out in an oxygen-containing atmosphere such as air, for example, at a temperature range of 750 to 1000 °C, specifically 760 to 950 °C, for example, 10 to 30 hours, specifically 16 to 25 hours. have.
  • an oxygen-containing atmosphere such as air, for example, at a temperature range of 750 to 1000 °C, specifically 760 to 950 °C, for example, 10 to 30 hours, specifically 16 to 25 hours. have.
  • the present invention also provides a cathode active material, characterized in that produced by firing the precursor powder, and a secondary battery comprising the cathode active material.
  • the precursor particles according to the present invention are capable of synthesizing a cathode active material only by sintering themselves or coating or doping of a material without an additional process, and a positive electrode with excellent properties due to remarkably improved diffusivity and reactivity It is possible to provide an active material, and depending on the composition, it is possible to dramatically reduce residual lithium in the positive electrode active material, so that it is possible to essentially prevent the swelling phenomenon in the positive electrode active material having a high Ni content.
  • Example 1 is an SEM photograph of precursor particles prepared in Example 1 of the present invention.
  • the precursor particles prepared above were calcined at 940° C. while flowing air for 16 hours to prepare a cathode active material of Li[Ni 0.50 Co 0.20 Mn 0.30 ]O 2 .
  • Ni:Co:Mn ratio is 5:2:3, synthesized by co-precipitation, washed through a circulating filtration device, and then dried in an oven at 120°C for 12 hours to remove moisture to prepare precursor particles did.
  • Li 2 CO 3 Li compound so that the molar ratio of Li and Metal becomes 1.03, and then bake at 940° C. while flowing air for 16 hours, and then Li[Ni 0.5 Co 0.2 Mn 0.3 A positive active material of ]O 2 was prepared.
  • a precursor core having a composition of 8:1:1 was synthesized by dissolving sulfate salts of nickel, cobalt, and manganese in a ratio of 8:1:1 to make a solution, and then performing a coprecipitation reaction.
  • LiOH as a Li compound was dissolved in water from which impurities were removed to prepare a high concentration solution of 1 M or more.
  • the synthesized precursor core was washed using a circulating filtration device, and after washing and filtration, it was mixed with a high concentration Li solution and mixed and stirred so that the molar ratio of Li and metal was 1.03.
  • the precursor particles prepared above were calcined at 800° C. while flowing air for 24 hours to prepare a cathode active material of Li[Ni 0.80 Co 0.10 Mn 0.10 ]O 2 .
  • Precursor particles are prepared by removing moisture by drying in an oven at 120° C. for 12 hours after washing through a circulation filtration device along with synthesis by co-precipitation with a composition in which the Ni:Co:Mn ratio is 8:1:1. did.
  • a precursor core having a composition of 9:0.5:0.5 was synthesized by dissolving sulfate salts of nickel, cobalt, and manganese in a ratio of 9:0.5:0.5 to make a solution, and then performing a co-precipitation reaction.
  • LiOH as a Li compound was dissolved in water from which impurities were removed to prepare a high concentration solution of 1 M or more.
  • the prepared precursor core was washed using a circulating filtration device, and after washing and filtration, it was mixed with a high concentration Li solution and mixed and stirred so that the molar ratio of Li and metal was 1.03.
  • the precursor particles prepared above were sintered at 780° C. while flowing air for 24 hours to prepare a cathode active material of Li[Ni 0.90 Co 0.05 Mn 0.05 ]O 2 .
  • Ni:Co:Mn ratio is 9:0.5:0.5, which is synthesized by co-precipitation reaction, washed through a circulating filtration device, and then dried in an oven at 120°C for 12 hours to remove moisture to prepare precursor particles did.
  • the precursor particles according to the present invention have a smooth surface, which can be understood as a result of uniformly applying a coating layer on the surface of the precursor core.
  • the precursor particles of Comparative Example have a rough surface, and in some cases, the precursor particles are destroyed in the process of mixing with the Li compound (see FIG. 2 ), and in some cases, the Li compound is the precursor particles even after mixing. It can be seen that it is not uniformly applied to the surface of the , and is only partially attached to the surface of the precursor particles (see FIG. 3 ).
  • potassium is not present in the precursor core, but is present only in the coating layer, which is the outer surface of the precursor core.
  • TTL Li 2 CO 3 measured value (%) * 2Li/Li 2 CO 3 + LiOH measured value (%) * Li/LiOH
  • the positive electrode active materials of Examples 1 to 3 according to the present invention have low residual lithium compared to the positive electrode active materials of Comparative Examples 1 to 3 . This reduction in residual lithium can prevent swelling of the battery cell in the positive electrode active material having a high Ni content.

Abstract

The present invention provides a precursor particle for producing a positive electrode active material, comprising: a precursor core comprising at least one transition metal; and a coating layer added to the outer surface of the precursor core, and comprising at least one element selected from among an alkali metal, an alkaline earth metal, a metalloid and a post-transition metal of groups 13 to 15, and a nonmetal of groups 14 to 16.

Description

코팅층을 포함하고 있는 양극 활물질 제조용 전구체 입자Precursor particles for producing a cathode active material containing a coating layer
본 발명은 양극 활물질 제조용 전구체 입자에 관한 것으로, 더욱 상세하게는, 1종 이상의 전이금속이 포함된 전구체 코어와, 상기 전구체 코어의 외면에 부가되어 있고 특정 조성을 가진 코팅층을 포함하고 있는 양극 활물질의 제조를 위한 전구체 입자에 관한 것이다.The present invention relates to precursor particles for producing a cathode active material, and more particularly, a cathode active material comprising a precursor core including one or more transition metals, and a coating layer added to the outer surface of the precursor core and having a specific composition It relates to precursor particles for
세계적으로 연비규제 협력에 따라 신재생 에너지의 요구로 인해 2차전지 시장은 지속적으로 확대될 전망이다. 1990년대 소형 모바일 기기뿐만 아니라 HEV, PHEV, EV, ESS 등 중대형 이차전지까지 지속적으로 발달함과 더불어 고용량 고전압을 만족하는 이차전지의 기술이 필요한 실정이다. 현재, 이러한 조건을 만족시키기 위해 양극 활물질로서 Ni 함유량이 높은 high nickel계 NCM로 개발이 진행 중이다.Globally, the secondary battery market is expected to continue to expand due to the demand for new and renewable energy in accordance with fuel economy regulation cooperation. In the 1990s, not only small mobile devices but also medium and large secondary batteries such as HEVs, PHEVs, EVs, and ESSs continued to develop, and there is a need for secondary battery technology that satisfies high capacity and high voltage. Currently, in order to satisfy these conditions, the development of a high nickel-based NCM with a high Ni content is in progress as a positive electrode active material.
그러나, 양극 활물질에서 Ni의 함량이 높아질수록 불안정성에 의한 문제가 발생한다. 소성 시 Ni에 의해 Li이 제대로 층상구조를 이루지 못하고 표면에 잔류하며, 이러한 잔류 리튬에 의해 탄산가스, 전해액과의 부반응이 발생하여, 전지셀이 부풀어 오르는 스웰링 현상이 발생하게 된다. 즉, Ni 함량이 증가할수록 제조 과정에서 잔류 리튬 역시 증가하게 된다.However, as the content of Ni in the positive electrode active material increases, a problem due to instability occurs. During firing, Li does not form a proper layered structure and remains on the surface due to Ni, and this residual lithium causes a side reaction with carbon dioxide gas and electrolyte, resulting in a swelling phenomenon in which the battery cell swells. That is, as the Ni content increases, the residual lithium also increases during the manufacturing process.
이러한 현상을 개선하기 위해서는 소성 시 Li이 전이금속 전구체 입자 내부로 균일하게 확산되어 안정적인 층상구조를 이루어야 하는데, 종래의 전구체 구조로는 한계가 있다.In order to improve this phenomenon, Li must be uniformly diffused into the transition metal precursor particles during firing to form a stable layered structure, but the conventional precursor structure has limitations.
일반적으로 양극 활물질로 소성하기 위해서는, 입자 형상의 전이금속 전구체인 NCM(OH)2 또는 NCM(OOH)와 리튬 전구체인 Li2CO3, LiOH 등을 Kawata mixer, zet mill 등의 혼합 장비를 이용하여 혼합한다. 그러나, 믹서 등의 믹싱 블레이드에 의한 물리적인 데미지와 입자들끼리의 충돌에 의해 입자가 깨어지거나 균열이 생기는 문제점이 있다.In general, in order to sinter into a cathode active material, NCM(OH) 2 or NCM(OOH) , which is a particle-shaped transition metal precursor, and Li 2 CO 3 , LiOH, etc., which are lithium precursors, are mixed using a Kawata mixer, zet mill, etc. mixing equipment. Mix. However, there is a problem in that particles are broken or cracked due to physical damage caused by mixing blades such as mixers and collisions between particles.
또한, 전이금속 전구체와 Li 전구체의 혼합 균일성이 낮고, Li 전구체와 전이금속 전구체가 밀착되어 있는 것이 아닌 단순 혼합된 상태이기 때문에 치밀성이 낮은 문제점이 있어, 이러한 문제점들을 보완하기 위한 새로운 기술이 필요한 실정이다.In addition, there is a problem in that the mixing uniformity of the transition metal precursor and the Li precursor is low, and the density is low because the Li precursor and the transition metal precursor are in a simple mixed state rather than in close contact. the current situation.
본 발명은 상기와 같은 종래기술의 문제점들과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.An object of the present invention is to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이차전지용 양극 활물질의 주요 원료로 사용할 수 있는 신규 전구체 입자를 개발하게 되었고, 이러한 전구체 입자는 특정 조성의 전구체 코어 및 코팅층을 포함하고 있어서 그 자체를 소성하는 것만으로도 양극 활물질을 합성하거나 또는 추가 공정 없이 양극 활물질에서 물질의 코팅 또는 도핑이 가능하며, 확산성 및 반응성이 획기적으로 개선되어 우수한 특성의 양극 활물질을 제공할 수 있고, 알칼리 금속 중 Li을 전구체 코어의 표면에 형성하는 경우에는 양극 활물질에서 잔류 리튬을 획기적으로 감소시킬 수 있어서 Ni 고함량의 양극 활물질에서 스웰링 현상 등을 본질적으로 방지할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.After repeated in-depth research and various experiments, the inventors of the present application have developed a novel precursor particle that can be used as a main raw material for a cathode active material for a secondary battery, and these precursor particles include a precursor core and a coating layer of a specific composition. It is possible to synthesize the cathode active material by only firing itself or to coat or dope the material in the cathode active material without an additional process, and it is possible to provide a cathode active material with excellent properties as the diffusivity and reactivity are remarkably improved, and alkali In the case of forming Li among the metals on the surface of the precursor core, it was confirmed that residual lithium in the positive electrode active material can be drastically reduced, thereby essentially preventing the swelling phenomenon in the positive electrode active material having a high Ni content, and the present invention came to completion.
우선, 본 발명의 명확한 이해를 돕기 위해 용어 '전구체'의 의미에 대해 설명한다.First, the meaning of the term 'precursor' will be described to help a clear understanding of the present invention.
일반적으로 당업계에서는, 양극 활물질을 제조하기 위해 사용되는 전이금속 재료와 알칼리 금속 재료 등을 각각 '전구체'라고 표현하며, 알칼리 금속 재료 등의 경우 전구체가 아닌 '원료'로 표현하기도 한다.In general, in the art, a transition metal material and an alkali metal material used to manufacture a positive electrode active material are each expressed as a 'precursor', and in the case of an alkali metal material, it is also expressed as a 'raw material' rather than a precursor.
이러한 전이금속 전구체와 알칼리 금속 전구체 등은 각각의 '금속 입자'라는 의미와 '다수의 입자들이 모인 분말(파우더)' 이라는 의미를 모두 내포하고 있으며, 당업계에서는 입자와 분말 모두 전구체라고 통용하여 부르고 있다. 이하에서는 용어의 혼동을 피하기 위해 '입자'와 '분말'을 구분하여 표현한다.These transition metal precursors and alkali metal precursors contain both the meaning of each 'metal particle' and the meaning of 'a powder (powder) of a large number of particles', and in the art, both particles and powder are commonly referred to as precursors. have. Hereinafter, in order to avoid confusion of terms, 'particle' and 'powder' are separately expressed.
이후 상술하는 바와 같이, 본 발명에 따른 전구체 분말은 다수의 전구체 입자들이 모인 것을 의미하지만, 전구체 입자를 하나씩 제조하여 모으는 것이 아닌 대량의 분말로 제조하기 때문에 전구체 입자의 코팅층에 포함되지 못한 알칼리 금속 등은 별도의 물질로 전구체 분말 내에, 보다 정확하게는 전구체 입자들 사이에 존재할 수 있다.As described later, the precursor powder according to the present invention means a collection of a plurality of precursor particles, but since the precursor particles are prepared in a large amount of powder rather than prepared one by one, alkali metals that are not included in the coating layer of the precursor particles, etc. Silver may be present in the precursor powder as a separate substance, or more precisely, between precursor particles.
본 발명에 따른 양극 활물질 제조용 전구체 입자는,Precursor particles for producing a positive active material according to the present invention,
1종 이상의 전이금속이 포함된 전구체 코어; 및A precursor core containing one or more transition metals; and
상기 전구체 코어의 외면에 부가되어 있고, 알칼리 금속, 알칼리 토금속, 13족 내지 15족 중의 전이후금속과 준금속, 및 14족 내지 16족 중의 비금속 원소 중에서 선택되는 하나 이상을 포함하고 있는 코팅층;a coating layer added to the outer surface of the precursor core and comprising at least one selected from alkali metals, alkaline earth metals, post-transition metals and metalloids in Groups 13 to 15, and non-metal elements in Groups 14 to 16;
을 포함하고 있는 것을 특징으로 한다.It is characterized in that it contains
종래에는 양극 활물질을 구성하는 전이금속 전구체 입자와 리튬 등의 전구체 입자를 혼합하여 소성함으로써 양극 활물질을 합성하거나 양극 활물질에 특정 물질을 코팅 또는 도핑하였으나, 본 발명에 따른 전구체 입자는 각각 특정 조성의 전구체 코어 및 코팅층을 포함하고 있어서 그 자체를 소성하는 것만으로도 양극 활물질을 합성하거나 또는 추가 공정 없이 물질의 코팅 또는 도핑이 가능하며, 확산성 및 반응성이 획기적으로 개선되어 우수한 특성의 양극재를 제공할 수 있다.Conventionally, the positive electrode active material is synthesized by mixing and firing the transition metal precursor particles constituting the positive electrode active material and precursor particles such as lithium, or the positive electrode active material is coated or doped with a specific material. However, the precursor particles according to the present invention are each a precursor of a specific composition Since it contains a core and a coating layer, it is possible to synthesize a cathode active material just by firing itself or to coat or dope a material without an additional process, and it is possible to provide a cathode material with excellent properties by remarkably improving diffusivity and reactivity. can
특히, 알칼리 금속 중 Li를 전구체 코어의 표면에 코팅층으로서 포함시키는 경우, 양극 활물질에서 잔류 리튬을 획기적으로 감소시킬 수 있으며, 이는 Ni 고함량의 양극 활물질에서 전지셀의 스웰링 현상 등을 본질적으로 방지할 수 있다.In particular, when Li among alkali metals is included as a coating layer on the surface of the precursor core, residual lithium in the positive electrode active material can be dramatically reduced, which essentially prevents the swelling of the battery cell in the positive electrode active material with a high Ni content. can do.
구체적으로, 종래에는 각각 준비한 리튬 전구체 입자와 전이금속 전구체 입자를 단순 혼합하고, 양극 활물질로 만들기 위해 고온에서 소성 시 리튬 전구체 입자가 녹으면서 전이금속 전구체 입자의 내부로 확산되어 양극 활물질이 형성되었다.Specifically, in the prior art, lithium precursor particles and transition metal precursor particles prepared for each were simply mixed, and when calcined at high temperature to make a positive electrode active material, the lithium precursor particles were melted and diffused into the transition metal precursor particles to form a positive electrode active material.
이러한 종래 방식은 리튬 전구체 입자와 전이금속 전구체 입자가 따로 존재하기에 리튬이 전이금속 전구체 입자의 내부로 확산되는 거리가 길고 상호 접촉할 수 있는 확률이 높지 않아 반응성이 떨어짐에 따라, 많은 양의 리튬이 전이금속 전구체의 내부로 확산되지 못하고 표면에 남게 되어 잔류 리튬이 증가하였다.In this conventional method, since the lithium precursor particles and the transition metal precursor particles exist separately, the diffusion distance of lithium into the transition metal precursor particles is long and the probability of mutual contact is not high. Residual lithium increased because it did not diffuse into the transition metal precursor and remained on the surface.
반면에, 본 발명에 따른 전구체 입자는 특정 조성의 전구체 코어와 그것의 외면에 부가되어 있는 특정 조성의 코팅층을 포함하고 있어서 이러한 문제점을 해결할 수 있고, 특히, Ni 고함량의 이차전지의 적용 시 Ni 함량의 증가에도 불구하고 잔류 리튬이 증가하는 것을 억제하는 것이 가능하다.On the other hand, since the precursor particles according to the present invention include a precursor core of a specific composition and a coating layer of a specific composition added to the outer surface thereof, this problem can be solved, and in particular, when a secondary battery having a high Ni content is applied, Ni It is possible to suppress the increase of residual lithium in spite of an increase in the content.
하나의 구체적인 예에서, 상기 전구체 코어는 하기 화학식 1의 조성을 가진 수산화물 기반의 물질일 수 있으며, M이 2종 이상의 전이금속을 포함하고 있는 경우에 예를 들어 공침법으로 합성할 수 있다.In one specific example, the precursor core may be a hydroxide-based material having the composition of Formula 1 below, and when M contains two or more transition metals, it may be synthesized by, for example, a co-precipitation method.
(1-x-y)M(OH)2*xMOOH*yM(OH1-z)2 (1)(1-xy)M(OH) 2 *xMOOH*yM(OH 1-z ) 2 (1)
상기 식에서,In the above formula,
0≤x≤1, 0≤y≤1, 0≤(1-x-y)≤1, 0<z<0.5;0≤x≤1, 0≤y≤1, 0≤(1-x-y)≤1, 0<z<0.5;
M은 4배위 또는 6배위에서 안정한 1종 이상의 전이금속을 포함하고 있다.M contains one or more transition metals that are stable in the tetracoordinate or hexacoordinate.
상기 M이 2종 이상의 전이금속을 포함하고 있는 경우, 예를 들어, 주기율표 상의 5족(VB족) 내지 11족(VIIIB족)에 속하는 원소들에서 선택된 1종 이상의 원소와 니켈(Ni)을 포함할 수 있다. 이 경우, Ni의 함량은 바람직하게는 40몰% 이상, 더욱 바람직하게는 50몰% 이상, 특히 바람직하게는 60몰% 이상일 수 있다.When M contains two or more transition metals, for example, one or more elements selected from elements belonging to Groups 5 (VB) to 11 (Group VIIIB) on the periodic table and nickel (Ni) are included. can do. In this case, the content of Ni may be preferably 40 mol% or more, more preferably 50 mol% or more, and particularly preferably 60 mol% or more.
상기에서 5족(VB족) 내지 11족(VIIIB족)에 속하는 원소들의 구체적인 예로서는 Ti, Sc, V, Cr, Mn, Fe, Co, Y, Cu, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Pd 등을 들 수 있지만 그것으로 한정되는 것은 아니며, 하나의 구체적인 예에서, M은 Ti, Sc, V, Cr, Mn, Fe, Co, Y, Cu, Zr, Nb, Mo, Tc, Ru, Rh, Ag 및 Pd로 이루어진 군에서 선택된 1종 이상의 원소와 Ni을 포함할 수 있다.Specific examples of the elements belonging to Group 5 (Group VB) to Group 11 (Group VIIIB) include Ti, Sc, V, Cr, Mn, Fe, Co, Y, Cu, Zr, Nb, Mo, Tc, Ru, Rh , Ag, Pd, etc., but are not limited thereto, and in one specific example, M is Ti, Sc, V, Cr, Mn, Fe, Co, Y, Cu, Zr, Nb, Mo, Tc, It may include Ni and at least one element selected from the group consisting of Ru, Rh, Ag and Pd.
바람직하게는, M이 Ni 이외에 Co 및 Mn 중의 하나 이상을 더 포함할 수 있으며, 예를 들어, Ni과 Co 및 Mn의 조합으로 이루어질 수 있다.Preferably, M may further include one or more of Co and Mn in addition to Ni, for example, may be formed of a combination of Ni and Co and Mn.
상기 화학식 1에서, 산소나 수소의 자리는 일반적으로 알려진 것처럼 결함이 발생할 수 있으며, 음이온의 경우에 S, F, PO4, SO4 등의 음이온으로 등가로 일부 치환이 가능하다.In Chemical Formula 1, the site of oxygen or hydrogen may be defective as is generally known, and in the case of an anion, it may be equivalently partially substituted with an anion such as S, F, PO 4 , SO 4 .
하나의 구체적인 예에서, 상기 코팅층 중에, 상기 알칼리 금속은 Li, Na, K, Rb, Cs 및 Fr로 이루어진 군에서 선택되는 하나 이상이고, 상기 알칼리 토금속은 Be, Mg, Ca, Sr, Ba 및 Ra로 이루어진 군에서 선택되는 하나 이상이며, 상기 13족 내지 15족 중의 전이후금속과 준금속은 Al, Ga, In, Sn, Tl, Pb, Bi, Po, B, Si, Ge, As, Sb, Te 및 At로 이루어진 군에서 선택되는 하나 이상이고, 상기 14족 내지 16족 중의 비금속 원소는 C, P, S 및 Se로 이루어진 군에서 선택되는 하나 이상일 수 있다.In one specific example, in the coating layer, the alkali metal is at least one selected from the group consisting of Li, Na, K, Rb, Cs and Fr, and the alkaline earth metal is Be, Mg, Ca, Sr, Ba and Ra. At least one selected from the group consisting of, the post-transition metals and metalloids in Groups 13 to 15 are Al, Ga, In, Sn, Tl, Pb, Bi, Po, B, Si, Ge, As, Sb, It is at least one selected from the group consisting of Te and At, and the non-metal element in Groups 14 to 16 may be at least one selected from the group consisting of C, P, S, and Se.
코팅층은 바람직하게는 Li을 포함할 수 있다. 이 때, 전구체 코어에 전이금속으로서 Ni이 고함량으로 함유되어 있는 경우, 소성을 통해 제조된 양극 활물질에서 잔류 리튬의 양을 현저히 줄일 수 있다.The coating layer may preferably include Li. At this time, when Ni as a transition metal is contained in a high content in the precursor core, the amount of residual lithium in the positive electrode active material manufactured through firing can be significantly reduced.
또 다른 예로서, 코팅층에 Li 이외에 예를 들어 B가 포함되어 있는 경우, 그러한 코팅층을 포함하는 전구체 입자를 소성하면, 별도의 추가적인 소성 과정을 거치지 않고도 Li와 전이금속에 기반하면서 B가 도핑된 양극 활물질을 제조할 수 있다.As another example, when the coating layer contains, for example, B in addition to Li, when the precursor particles including such a coating layer are fired, a B-doped anode based on Li and a transition metal without going through a separate additional firing process An active material can be prepared.
하나의 구체적인 예에서, 상기 코팅층은 하기 화학식 2의 조성을 가진 물질을 포함할 수 있다.In one specific example, the coating layer may include a material having a composition of Formula 2 below.
(1-v-w)A2CO3*vAOH*wA2O (2)(1-vw)A 2 CO 3 *vAOH*wA 2 O (2)
상기 식에서,In the above formula,
0≤v≤1, 0≤w≤1, 0≤(1-v-w)≤1;0≤v≤1, 0≤w≤1, 0≤(1-v-w)≤1;
A는 1종 이상의 알칼리 금속 및/또는 알칼리 토금속이다.A is at least one alkali metal and/or alkaline earth metal.
코팅층은, 예를 들어, Li2CO3, LiOH, NaOH, KOH 등을 포함할 수 있다.The coating layer may include, for example, Li 2 CO 3 , LiOH, NaOH, KOH, and the like.
하나의 구체적인 예에서, 상기 코팅층은 2가지 이상의 서로 다른 원소를 포함하는 것으로 구성될 수 있다.In one specific example, the coating layer may be configured to include two or more different elements.
상기 화학식 2에서, 산소나 수소의 자리는 화학식 1에 대한 설명에서와 마찬가지로 일반적으로 알려진 것처럼 결함이 발생할 수 있으며, A가 예를 들어 알칼리 토금속인 경우에 알칼리 금속 대비 1/2의 몰비를 가질 수 있다.In the above formula (2), the site of oxygen or hydrogen may be defective as is generally known as in the description of the formula (1), and when A is, for example, an alkaline earth metal, it may have a molar ratio of 1/2 compared to the alkali metal. have.
본 발명의 전구체 입자에서 전구체 코어 중의 전이금속(M)의 함량과 코팅층에 포함된 원소(A)의 함량 비인 A/M (몰비)는 예를 들어 0.6 내지 1.5, 바람직하게는 0.8 내지 1.4, 더욱 바람직하게는 0.9 내지 1.3의 범위일 수 있다.In the precursor particles of the present invention, A/M (molar ratio), which is the ratio of the content of the transition metal (M) in the precursor core and the content of the element (A) included in the coating layer, is, for example, 0.6 to 1.5, preferably 0.8 to 1.4, more Preferably it may be in the range of 0.9 to 1.3.
본 발명의 전구체 입자에서 코팅층에 포함된 원소(A)는 전구체 코어에는 포함되어 있지 않은 바, 이는 도 4 및 5의 결과에서도 확인할 수 있다.Element (A) included in the coating layer in the precursor particles of the present invention is not included in the precursor core, which can be confirmed from the results of FIGS. 4 and 5 .
즉, 이들 도면을 참조하면, 전구체 코어인 NMC precursor (부위 '1')에는 칼륨(K)이 존재하지 않은 반면에, 코팅층에 해당하는 NMC precursor의 외면 부위인 부위 '2' 및 부위 '3'에는 칼륨이 존재함을 알 수 있다. 참고로, Carbon 은 EDS 검출의 용이성을 위해 별도로 부가된 코팅 물질이다.That is, referring to these drawings, while potassium (K) does not exist in the NMC precursor (site '1'), which is the precursor core, site '2' and site '3' that are the outer surface of the NMC precursor corresponding to the coating layer. It can be seen that potassium is present in For reference, carbon is a separately added coating material for the ease of EDS detection.
본 발명에 따른 전구체 입자는 1차 입자의 형태일 수도 있고 2차 입자의 형태일 수도 있으며, 바람직하게는 2차 입자의 형태일 수 있다. 2차 입자(granular)는 미세한 크기의 1차 입자들(particles)이 응집되어 상대적으로 큰 크기의 형상을 이루고 있다 (1차 입자는 하나의 입자를 의미하는 particle로 표현하고, 2차 입자는 1차 입자들이 응집된 알갱이 상태를 의미하는 granular로 표현한다).The precursor particles according to the present invention may be in the form of primary particles or secondary particles, preferably secondary particles. The secondary particle (granular) is formed by agglomeration of fine-sized primary particles to form a relatively large-sized shape (a primary particle is expressed as a particle meaning one particle, and a secondary particle is 1 It is expressed as granular, meaning the granular state in which tea particles are aggregated).
1차 입자의 크기는 예를 들어 0.01 ㎛ ~ 10 ㎛ 범위일 수 있고, 2차 입자의 크기는 1차 입자보다 큰 조건에서 2 ㎛ ~ 100 ㎛ 범위일 수 있지만, 특별히 제한되는 것은 아니다.The size of the primary particles may be, for example, in the range of 0.01 μm to 10 μm, and the size of the secondary particles may be in the range of 2 μm to 100 μm under conditions larger than the primary particles, but is not particularly limited.
본 발명에 따른 전구체 입자는 소성 온도, 시간 등을 제어하여 입자 크기(입경)를 다양하게 조절할 수 있으며, 2종류 이상의 서로 다른 입경을 갖는 신규 전구체 입자들을 혼합하여 후술하는 전구체 분말을 제조하는 것도 가능하다. 이때, 입경은 일반적인 PSD(Particle Size Distribution; 입도 분포)를 측정하여 확인할 수 있으며, SEM 이미지 등을 통해 1차 입자 또는 2차 입자의 장축과 단축을 측정하여 합한 후 평균 값으로 나타내는 것도 가능하다.The precursor particles according to the present invention can control the firing temperature, time, etc. to variously control the particle size (particle diameter), and it is also possible to prepare a precursor powder to be described later by mixing two or more types of novel precursor particles having different particle diameters. Do. In this case, the particle size can be confirmed by measuring a general PSD (Particle Size Distribution), and it is also possible to measure the long axis and the short axis of the primary particle or secondary particle through an SEM image, etc.
본 발명에 따른 전구체 입자는 다양한 방법으로 제조될 수 있다. 예를 들어, 공침법에 의해 1종 이상, 바람직하게는 2종 이상의 전이금속 원소를 포함하는 침전물을 얻고, 후공정으로서 공침에 사용된 전이금속 염의 산성 성분을 제거하는 염기성 기반의 세정 및 여과 공정이나 그 이후의 건조 공정의 결과물에 코팅층 원소 함유 화합물을 첨가하는 방법, 공침 공정에 의해 얻어진 1차 입자들을 2차 입자로 응집하는 과정에서 코팅층 원소 함유 화합물을 첨가하는 방법 등을 들 수 있지만 이들 만으로 한정되는 것은 아니다.The precursor particles according to the present invention can be prepared by various methods. For example, a basic-based washing and filtration process to obtain a precipitate containing one or more, preferably two or more transition metal elements by co-precipitation, and to remove acidic components of the transition metal salt used for co-precipitation as a post-process A method of adding a coating layer element-containing compound to the result of the subsequent drying process or a method of adding a coating layer element-containing compound during aggregation of the primary particles obtained by the co-precipitation process into secondary particles may be mentioned. It is not limited.
또한, 본 발명은 전술한 전구체 입자를 포함하는 전구체 분말을 제공한다.In addition, the present invention provides a precursor powder comprising the aforementioned precursor particles.
본 발명에 따른 전구체 분말은 그 자체로 소성하여 양극 활물질을 제조할 수도 있고, 코팅층을 형성하는 원소들 중의 하나 또는 일부를 포함하는 화합물을 추가한 후 소성하여 양극 활물질을 제조할 수도 있다. The precursor powder according to the present invention may be calcined by itself to prepare a cathode active material, or a cathode active material may be prepared by adding a compound including one or a portion of the elements forming the coating layer and then calcining.
상기 소성은 대기와 같은 산소 함유 분위기에서, 예를 들어 750 ~ 1000℃, 상세하게는 760 ~ 950℃의 온도 범위에서, 예를 들어 10 ~ 30시간, 상세하게는 16 ~ 25시간 동안 수행할 수 있다.The calcination may be carried out in an oxygen-containing atmosphere such as air, for example, at a temperature range of 750 to 1000 ℃, specifically 760 to 950 ℃, for example, 10 to 30 hours, specifically 16 to 25 hours. have.
본 발명은 또한 상기 전구체 분말을 소성하여 제조되는 것을 특징으로 하는 양극 활물질과, 상기 양극 활물질을 포함하는 것을 특징으로 하는 이차전지를 제공한다.The present invention also provides a cathode active material, characterized in that produced by firing the precursor powder, and a secondary battery comprising the cathode active material.
이차전지의 구성 및 제조방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명은 생략한다.Since the configuration and manufacturing method of the secondary battery are known in the art, a detailed description thereof will be omitted herein.
이상 설명한 바와 같이, 본 발명에 따른 전구체 입자는 그 자체를 소성하는 것만으로 양극 활물질을 합성하거나 또는 추가 공정 없이 물질의 코팅 또는 도핑이 가능하며, 확산성 및 반응성이 획기적으로 개선되어 우수한 특성의 양극 활물질을 제공할 수 있고, 조성에 따라서는 양극 활물질에서 잔류 리튬을 획기적으로 감소시킬 수 있어서 Ni 고함량의 양극 활물질에서 스웰링 현상 등을 본질적으로 방지할 수 있는 효과가 있다.As described above, the precursor particles according to the present invention are capable of synthesizing a cathode active material only by sintering themselves or coating or doping of a material without an additional process, and a positive electrode with excellent properties due to remarkably improved diffusivity and reactivity It is possible to provide an active material, and depending on the composition, it is possible to dramatically reduce residual lithium in the positive electrode active material, so that it is possible to essentially prevent the swelling phenomenon in the positive electrode active material having a high Ni content.
도 1은 본 발명의 실시예 1에서 제조된 전구체 입자들의 SEM 사진이다;1 is an SEM photograph of precursor particles prepared in Example 1 of the present invention;
도 2 및 도 3은 비교예 1에서 제조된 전구체 입자들의 SEM 사진들이다;2 and 3 are SEM photographs of precursor particles prepared in Comparative Example 1;
도 4 및 도 5는 본 발명의 실험예 2에서의 EDS에 기반한 Mapping 분석 결과이다.4 and 5 are results of mapping analysis based on EDS in Experimental Example 2 of the present invention.
이하, 본 발명의 실시예에 따른 도면들을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be further described with reference to the drawings according to embodiments of the present invention, but the scope of the present invention is not limited thereto.
[실시예 1][Example 1]
니켈, 코발트, 망간의 황산염들(sulfates)을 5:2:3(몰비)의 비율로 용해하여 용액으로 만든 후 공침 반응을 진행하여 5:2:3의 조성을 가진 전구체 코어를 합성하였다. Li 화합물로서 Li2CO3를 불순물이 제거된 물에 용해하여 1M 이상의 고농도 용액을 만들었다. 합성된 전구체 코어를 순환식 여과장치를 이용하여 세정을 실시하고, 세정 및 여과 후 고농도의 Li 용액과 함께 혼합하여 Li과 Metal의 몰비가 1.03이 되도록 혼합 교반하였다.Sulfates of nickel, cobalt, and manganese were dissolved in a ratio of 5:2:3 (molar ratio) to make a solution, and then a co-precipitation reaction was performed to synthesize a precursor core having a composition of 5:2:3. Li 2 CO 3 as a Li compound was dissolved in water from which impurities were removed to prepare a high concentration solution of 1M or more. The synthesized precursor core was washed using a circulating filtration device, and after washing and filtration, it was mixed with a high concentration Li solution and mixed and stirred so that the molar ratio of Li and metal was 1.03.
그런 다음, 120℃의 건조 오븐(oven)에서 12시간의 건조를 통해 수분을 제거하여 리튬이 코팅된 전구체 입자를 제조하였다.Then, moisture was removed through drying in a drying oven at 120° C. for 12 hours to prepare lithium-coated precursor particles.
상기에서 제조된 전구체 입자를 940℃에서 공기(air)를 흘려주며 16시간 동안 소성하여, Li[Ni0.50Co0.20Mn0.30]O2의 양극 활물질을 제조하였다.The precursor particles prepared above were calcined at 940° C. while flowing air for 16 hours to prepare a cathode active material of Li[Ni 0.50 Co 0.20 Mn 0.30 ]O 2 .
[비교예 1][Comparative Example 1]
Ni:Co:Mn의 비율이 5:2:3인 조성으로 공침 반응에 의한 합성과 함께 순환식 여과장치를 통해 세정 후 120℃의 오븐에서 12시간의 건조를 통해 수분을 제거하여 전구체 입자를 제조하였다.The Ni:Co:Mn ratio is 5:2:3, synthesized by co-precipitation, washed through a circulating filtration device, and then dried in an oven at 120°C for 12 hours to remove moisture to prepare precursor particles did.
제조한 전구체 입자를 혼합기에 넣고 Li과 Metal의 몰비율이 1.03이 되도록 Li 화합물로서 Li2CO3과 혼합한 후 940℃에서 공기를 흘려주며 16시간 동안 소성하여, Li[Ni0.5Co0.2Mn0.3]O2의 양극 활물질을 제조하였다. Put the prepared precursor particles in a mixer, mix with Li 2 CO 3 as a Li compound so that the molar ratio of Li and Metal becomes 1.03, and then bake at 940° C. while flowing air for 16 hours, and then Li[Ni 0.5 Co 0.2 Mn 0.3 A positive active material of ]O 2 was prepared.
[실시예 2][Example 2]
니켈, 코발트, 망간의 황산염들을 8:1:1의 비율로 용해하여 용액으로 만든 후 공침 반응을 진행하여 8:1:1의 조성을 가지는 전구체 코어를 합성하였다. Li 화합물로서 LiOH를 불순물이 제거된 물에 용해하여 1M 이상의 고농도 용액을 만들었다. 합성된 전구체 코어를 순환식 여과장치를 이용하여 세정을 실시하고, 세정 및 여과 후 고농도의 Li 용액과 함께 혼합하여 Li과 Metal의 몰비가 1.03이 되도록 혼합 교반하였다.A precursor core having a composition of 8:1:1 was synthesized by dissolving sulfate salts of nickel, cobalt, and manganese in a ratio of 8:1:1 to make a solution, and then performing a coprecipitation reaction. LiOH as a Li compound was dissolved in water from which impurities were removed to prepare a high concentration solution of 1 M or more. The synthesized precursor core was washed using a circulating filtration device, and after washing and filtration, it was mixed with a high concentration Li solution and mixed and stirred so that the molar ratio of Li and metal was 1.03.
그런 다음, 120℃의 건조 오븐에서 12시간의 건조를 통해 수분을 제거하여 리튬이 코팅된 전구체 입자를 제조하였다.Then, moisture was removed through drying in a drying oven at 120° C. for 12 hours to prepare lithium-coated precursor particles.
상기에서 제조된 전구체 입자를 800℃에서 공기를 흘려주며 24시간 동안 소성하여, Li[Ni0.80Co0.10Mn0.10]O2의 양극 활물질을 제조하였다.The precursor particles prepared above were calcined at 800° C. while flowing air for 24 hours to prepare a cathode active material of Li[Ni 0.80 Co 0.10 Mn 0.10 ]O 2 .
[비교예 2][Comparative Example 2]
Ni:Co:Mn의 비율이 8:1:1인 조성으로 공침 반응에 의한 합성과 함께 순환식 여과장치를 통해 세정 후 120℃의 오븐에서 12시간의 건조를 통해 수분을 제거하여 전구체 입자를 제조하였다.Precursor particles are prepared by removing moisture by drying in an oven at 120° C. for 12 hours after washing through a circulation filtration device along with synthesis by co-precipitation with a composition in which the Ni:Co:Mn ratio is 8:1:1. did.
제조한 전구체 입자를 혼합기에 넣고 Li과 Metal의 몰비가 1.03이 되도록 Li 화합물로서 LiOH와 혼합한 후 800℃에서 공기를 흘려주며 24시간 동안 소성하여, Li[Ni0.8Co0.1Mn0.1]O2의 양극 활물질을 제조하였다. Put the prepared precursor particles in a mixer, mix them with LiOH as a Li compound so that the molar ratio of Li and Metal becomes 1.03, and then bake at 800 ° C. while flowing air for 24 hours, to obtain Li[Ni 0.8 Co 0.1 Mn 0.1 ]O 2 A positive electrode active material was prepared.
[실시예 3][Example 3]
니켈, 코발트, 망간의 황산염들을 9:0.5:0.5의 비율로 용해하여 용액으로 만든 후 공침 반응을 진행하여 9:0.5:0.5의 조성을 가지는 전구체 코어를 합성하였다. Li 화합물로서 LiOH를 불순물이 제거된 물에 용해하여 1M 이상의 고농도 용액을 만들었다. 제조된 전구체 코어를 순환식 여과장치를 이용하여 세정을 실시하고, 세정 및 여과 후 고농도의 Li 용액과 함께 혼합하여 Li과 Metal의 몰비가 1.03이 되도록 혼합 교반하였다.A precursor core having a composition of 9:0.5:0.5 was synthesized by dissolving sulfate salts of nickel, cobalt, and manganese in a ratio of 9:0.5:0.5 to make a solution, and then performing a co-precipitation reaction. LiOH as a Li compound was dissolved in water from which impurities were removed to prepare a high concentration solution of 1 M or more. The prepared precursor core was washed using a circulating filtration device, and after washing and filtration, it was mixed with a high concentration Li solution and mixed and stirred so that the molar ratio of Li and metal was 1.03.
그런 다음, 120℃의 건조 오븐에서 12시간의 건조를 통해 수분을 제거하여 리튬이 코팅된 전구체 입자를 제조하였다. Then, moisture was removed through drying in a drying oven at 120° C. for 12 hours to prepare lithium-coated precursor particles.
상기에서 제조된 전구체 입자를 780℃에서 공기를 흘려주며 24시간 동안 소성하여, Li[Ni0.90Co0.05Mn0.05]O2의 양극 활물질을 제조하였다.The precursor particles prepared above were sintered at 780° C. while flowing air for 24 hours to prepare a cathode active material of Li[Ni 0.90 Co 0.05 Mn 0.05 ]O 2 .
[비교예 3][Comparative Example 3]
Ni:Co:Mn의 비율이 9:0.5:0.5인 조성으로 공침 반응에 의한 합성과 함께 순환식 여과장치를 통해 세정 후 120℃의 오븐에서 12시간의 건조를 통해 수분을 제거하여 전구체 입자를 제조하였다.The Ni:Co:Mn ratio is 9:0.5:0.5, which is synthesized by co-precipitation reaction, washed through a circulating filtration device, and then dried in an oven at 120°C for 12 hours to remove moisture to prepare precursor particles did.
제조한 전구체 입자를 혼합기에 넣고 Li과 Metal의 몰비가 1.03이 되도록 Li 화합물로서 LiOH와 혼합한 후 780℃에서 공기를 흘려주며 24시간 동안 소성하여, Li[Ni0.9Co0.05Mn0.05]O2의 양극 활물질을 제조하였다. Put the prepared precursor particles in a mixer, mix with LiOH as a Li compound so that the molar ratio of Li and Metal becomes 1.03, and then sinter at 780 ° C. while flowing air for 24 hours to obtain Li[Ni 0.9 Co 0.05 Mn 0.05 ]O 2 A positive electrode active material was prepared.
[실험예 1][Experimental Example 1]
상기 실시예 1에서 제조된 전구체 입자의 소성 전의 상태와 비교예 1에서 제조된 전구체 입자의 소성 전의 상태를 비교한 SEM 사진들을 도 1 내지 도 3에 나타내었다.1 to 3 are SEM photographs comparing the state of the precursor particles prepared in Example 1 before firing and the precursor particles prepared in Comparative Example 1 before firing.
도 1에서는 바는 바와 같이, 본 발명에 따른 전구체 입자는 표면에 매끄러운 것을 알 수 있는 바, 이는 전구체 코어의 표면에 코팅층이 균일하게 도포된 결과로 이해할 수 있다.As shown in FIG. 1, it can be seen that the precursor particles according to the present invention have a smooth surface, which can be understood as a result of uniformly applying a coating layer on the surface of the precursor core.
반면에, 도 2 및 도 3에서는 바와 같이, 비교예의 전구체 입자는 표면이 거칠고, 일부에서는 Li 화합물과의 혼합 과정에서 전구체 입자가 파괴되며 (도 2 참조), 일부에서는 혼합 이후에도 Li 화합물이 전구체 입자의 표면에 균일하게 도포되지 못하고 부분적으로만 전구체 입자의 표면에 부착되어 있음을 알 수 있다 (도 3 참조).On the other hand, as shown in FIGS. 2 and 3 , the precursor particles of Comparative Example have a rough surface, and in some cases, the precursor particles are destroyed in the process of mixing with the Li compound (see FIG. 2 ), and in some cases, the Li compound is the precursor particles even after mixing. It can be seen that it is not uniformly applied to the surface of the , and is only partially attached to the surface of the precursor particles (see FIG. 3 ).
[실험예 2][Experimental Example 2]
실시예 1과 동일한 방법으로 제조하되, 리튬 화합물 대신 칼륨 화합물(KCl)을 적용하여 제조된 전구체 입자의 EDS 성분 분석 결과를 도 4 및 도 5에 나타내었다.4 and 5 show the EDS component analysis results of the precursor particles prepared in the same manner as in Example 1, but by applying a potassium compound (KCl) instead of a lithium compound.
도 4 및 도 5에서 보는 바와 같이, 칼륨은 전구체 코어에는 존재하지 않고 전구체 코어의 외면인 코팅층에만 존재함을 알 수 있다.4 and 5, it can be seen that potassium is not present in the precursor core, but is present only in the coating layer, which is the outer surface of the precursor core.
[실험예 3][Experimental Example 3]
상기 실시예 1 내지 3 및 비교예 1 내지 3에서 각각 제조된 양극 활 물질들의 잔류 리튬을 분석하기 위하여, HCl 용액을 이용한 전위차 중화적정법을 사용하였다. 제조된 양극 활물질을 이용하여 잔류 리튬을 포함하는 화합물인 Li2CO3와 LiOH를 각각 측정하였고, Li만의 총량(TTL, Total Lithium)으로 하기와 같이 계산하여 표 1에 나타내었다.In order to analyze the residual lithium in the positive electrode active materials prepared in Examples 1 to 3 and Comparative Examples 1 to 3, respectively, a potentiostatic neutralization titration method using an HCl solution was used. Using the prepared positive electrode active material, Li 2 CO 3 and LiOH, which are compounds containing residual lithium, were respectively measured, and the total amount of Li alone (TTL, Total Lithium) was calculated as follows and shown in Table 1.
[계산식][formula]
TTL(Total Lithium) = Li2CO3 측정값(%) * 2Li/Li2CO3 + LiOH 측정값(%) * Li/LiOHTotal Lithium (TTL) = Li 2 CO 3 measured value (%) * 2Li/Li 2 CO 3 + LiOH measured value (%) * Li/LiOH
→ Li2CO3 측정값(%) * 0.188 + LiOH 측정값(%) * 0.29→ Li 2 CO 3 measured value (%) * 0.188 + LiOH measured value (%) * 0.29
[표 1][Table 1]
Figure PCTKR2020000899-appb-I000001
Figure PCTKR2020000899-appb-I000001
상기 표 1에서 보는 바와 같이, 동일한 전이금속 조성의 양극 활물질들에서 본 발명에 따른 실시예 1 내지 3의 양극 활물질들은 비교예 1 내지 3의 양극 활물질들에 대해 낮은 잔류 리튬을 가짐을 알 수 있다. 이러한 잔류 리튬의 감소는 Ni 고함량의 양극 활물질에서 전지셀의 스웰링 현상을 방지할 수 있다.As shown in Table 1, in the positive electrode active materials of the same transition metal composition, it can be seen that the positive electrode active materials of Examples 1 to 3 according to the present invention have low residual lithium compared to the positive electrode active materials of Comparative Examples 1 to 3 . This reduction in residual lithium can prevent swelling of the battery cell in the positive electrode active material having a high Ni content.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Those of ordinary skill in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above contents.

Claims (13)

1종 이상의 전이금속이 포함된 전구체 코어; 및A precursor core containing one or more transition metals; and
상기 전구체 코어의 외면에 부가되어 있고, 알칼리 금속, 알칼리 토금속, 13족 내지 15족 중의 전이후금속과 준금속, 및 14족 내지 16족 중의 비금속 원소 중에서 선택되는 하나 이상을 포함하고 있는 코팅층;a coating layer added to the outer surface of the precursor core and comprising at least one selected from alkali metals, alkaline earth metals, post-transition metals and metalloids in Groups 13 to 15, and non-metal elements in Groups 14 to 16;
을 포함하고 있는 것을 특징으로 하는 양극 활물질 제조용 전구체 입자.Precursor particles for producing a cathode active material, characterized in that it contains a.
제 1 항에 있어서, 상기 전구체 코어는 하기 화학식 1의 조성을 가진 수산화물 기반의 물질인 것을 특징으로 하는 양극 활물질 제조용 전구체 입자:[2] The precursor particle of claim 1, wherein the precursor core is a hydroxide-based material having a composition of Formula 1
(1-x-y)M(OH)2*xMOOH*yM(OH1-z)2 (1)(1-xy)M(OH) 2 *xMOOH*yM(OH 1-z ) 2 (1)
상기 식에서,In the above formula,
0≤x≤1, 0≤y≤1, 0≤(1-x-y)≤1, 0<z<0.5;0≤x≤1, 0≤y≤1, 0≤(1-x-y)≤1, 0<z<0.5;
M은 4배위 또는 6배위에서 안정한 1종 이상의 전이금속을 포함하고 있다.M contains one or more transition metals that are stable in the tetracoordinate or hexacoordinate.
제 2 항에 있어서, 상기 M은 주기율표 상의 5족(VB족) 내지 11족(VIIIB족)에 속하는 원소들에서 선택된 1종 이상의 원소와 니켈(Ni)을 포함하고, Ni의 함량이 40몰% 이상인 것을 특징으로 하는 양극 활물질 제조용 전구체 입자.3. The method of claim 2, wherein M includes nickel (Ni) and at least one element selected from elements belonging to Groups 5 (VB) to 11 (Group VIIIB) on the periodic table, and the Ni content is 40 mol% Precursor particles for producing a positive electrode active material, characterized in that the above.
제 2 항에 있어서, 상기 M은 Ti, Sc, V, Cr, Mn, Fe, Co, Y, Cu, Zr, Nb, Mo, Tc, Ru, Rh, Ag 및 Pd로 이루어진 군에서 선택된 1종 이상의 원소와 Ni을 포함하는 것을 특징으로 하는 양극 활물질 제조용 전구체 입자.According to claim 2, wherein M is one or more selected from the group consisting of Ti, Sc, V, Cr, Mn, Fe, Co, Y, Cu, Zr, Nb, Mo, Tc, Ru, Rh, Ag and Pd Precursor particles for producing a cathode active material, characterized in that it contains an element and Ni.
제 3 항에 있어서, 상기 M은 Co와 Mn중 하나 이상을 더 포함하는 것을 특징으로 하는 양극 활물질 제조용 전구체 입자.The precursor particle according to claim 3, wherein M further comprises at least one of Co and Mn.
제 1 항에 있어서, 상기 코팅층에서,The method of claim 1, wherein in the coating layer,
상기 알칼리 금속은 Li, Na, K, Rb, Cs 및 Fr로 이루어진 군에서 선택되는 하나 이상이고;the alkali metal is at least one selected from the group consisting of Li, Na, K, Rb, Cs and Fr;
상기 알칼리 토금속은 Be, Mg, Ca, Sr, Ba 및 Ra로 이루어진 군에서 선택되는 하나 이상이며;the alkaline earth metal is at least one selected from the group consisting of Be, Mg, Ca, Sr, Ba and Ra;
상기 13족 내지 15족 중의 전이후금속과 준금속은 Al, Ga, In, Sn, Tl, Pb, Bi, Po, B, Si, Ge, As, Sb, Te 및 At로 이루어진 군에서 선택되는 하나 이상이고;The post-transition metals and metalloids in Groups 13 to 15 are one selected from the group consisting of Al, Ga, In, Sn, Tl, Pb, Bi, Po, B, Si, Ge, As, Sb, Te and At. more than;
상기 14족 내지 16족 중의 비금속 원소는 C, P, S 및 Se로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는 양극 활물질 제조용 전구체 입자.The non-metal element in Groups 14 to 16 is a precursor particle for producing a cathode active material, characterized in that at least one selected from the group consisting of C, P, S and Se.
제 1 항에 있어서, 상기 코팅층은 Li을 포함하고 있는 것을 특징으로 하는 양극 활물질 제조용 전구체 입자.The precursor particle according to claim 1, wherein the coating layer contains Li.
제 1 항에 있어서, 상기 코팅층은 하기 화학식 2의 조성을 가진 물질을 포함하고 있는 것을 특징으로 하는 전구체 입자:The precursor particle according to claim 1, wherein the coating layer comprises a material having a composition represented by the following formula (2):
(1-v-w)A2CO3*vAOH*wA2O (2)(1-vw)A 2 CO 3 *vAOH*wA 2 O (2)
상기 식에서,In the above formula,
0≤v≤1, 0≤w≤1, 0≤(1-v-w)≤1;0≤v≤1, 0≤w≤1, 0≤(1-v-w)≤1;
A는 1종 이상의 알칼리 금속 및/또는 알칼리 토금속이다.A is at least one alkali metal and/or alkaline earth metal.
제 1 항에 있어서, 상기 코팅층은 2가지 이상의 서로 다른 원소를 포함하는 것을 특징으로 하는 양극 활물질 제조용 전구체 입자.The precursor particle according to claim 1, wherein the coating layer includes two or more different elements.
제 1 항에 따른 양극 활물질 제조용 신규 전구체 입자를 포함하는 전구체 분말. A precursor powder comprising the novel precursor particles for producing the positive electrode active material according to claim 1 .
제 10 항에 있어서, 상기 전구체 분말은 적어도 2종류 이상의 서로 다른 입경을 갖는 신규 전구체 입자들을 포함하는 것을 특징으로 하는 전구체 분말.The precursor powder according to claim 10, wherein the precursor powder comprises novel precursor particles having at least two or more different particle diameters.
제 10 항 또는 제 11 항에 따른 전구체 분말을 소성하여 제조되는 것을 특징으로 하는 양극 활물질.12. A cathode active material, characterized in that produced by firing the precursor powder according to claim 10 or 11.
제 12 항에 따른 양극 활물질을 포함하는 이차전지.A secondary battery comprising the cathode active material according to claim 12 .
PCT/KR2020/000899 2020-01-17 2020-01-17 Precursor particle for producing positive electrode active material comprising coating layer WO2021145493A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/000899 WO2021145493A1 (en) 2020-01-17 2020-01-17 Precursor particle for producing positive electrode active material comprising coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/000899 WO2021145493A1 (en) 2020-01-17 2020-01-17 Precursor particle for producing positive electrode active material comprising coating layer

Publications (1)

Publication Number Publication Date
WO2021145493A1 true WO2021145493A1 (en) 2021-07-22

Family

ID=76863835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000899 WO2021145493A1 (en) 2020-01-17 2020-01-17 Precursor particle for producing positive electrode active material comprising coating layer

Country Status (1)

Country Link
WO (1) WO2021145493A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140073607A (en) * 2012-11-26 2014-06-17 주식회사 엘지화학 Precursor for Electrode Active Material Coated with Metal and Method of Preparing the Same
KR20150021809A (en) * 2013-08-21 2015-03-03 주식회사 엘지화학 Lithium transition metal cathode active material, preparation method thereof, and lithium secondary battery comprising the same
KR20150026863A (en) * 2013-08-28 2015-03-11 주식회사 엘지화학 Cathode active material comprising lithium transition metal phosphate particles, preparation method thereof, and lithium secondary battery comprising the same
JP2015164123A (en) * 2014-01-31 2015-09-10 住友金属鉱山株式会社 Nickel cobalt complex hydroxide particle and manufacturing method thereof, positive electrode active material for nonaqueous electrolyte secondary batteries and manufacturing method thereof, and nonaqueous electrolyte secondary battery
KR20160066227A (en) * 2014-12-02 2016-06-10 주식회사 엘지화학 Method for Preparing Cathode Active Material for Secondary Battery and Cathode Active Material Using the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140073607A (en) * 2012-11-26 2014-06-17 주식회사 엘지화학 Precursor for Electrode Active Material Coated with Metal and Method of Preparing the Same
KR20150021809A (en) * 2013-08-21 2015-03-03 주식회사 엘지화학 Lithium transition metal cathode active material, preparation method thereof, and lithium secondary battery comprising the same
KR20150026863A (en) * 2013-08-28 2015-03-11 주식회사 엘지화학 Cathode active material comprising lithium transition metal phosphate particles, preparation method thereof, and lithium secondary battery comprising the same
JP2015164123A (en) * 2014-01-31 2015-09-10 住友金属鉱山株式会社 Nickel cobalt complex hydroxide particle and manufacturing method thereof, positive electrode active material for nonaqueous electrolyte secondary batteries and manufacturing method thereof, and nonaqueous electrolyte secondary battery
KR20160066227A (en) * 2014-12-02 2016-06-10 주식회사 엘지화학 Method for Preparing Cathode Active Material for Secondary Battery and Cathode Active Material Using the Same

Similar Documents

Publication Publication Date Title
WO2016052820A1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including same
WO2015133692A1 (en) Cathode active material, lithium secondary battery having same, and method for preparing same
WO2014104759A1 (en) Cathode active material for lithium secondary batteries
WO2013002457A1 (en) Positive electrode active material, electrode including the positive electrode active material, and lithium electrochemical battery
WO2013115446A1 (en) Reactor for preparing precursor of lithium composite transition metal oxide, and method for preparing precursor
WO2015105225A1 (en) Method for preparing nickel-cobalt-manganese composite precursor
WO2017119681A1 (en) Method for preparing cobalt-coated precursor, cobalt-coated precursor prepared thereby, and cathode active material prepared using same
WO2021025370A1 (en) Cathode active material for lithium secondary battery
WO2016108385A1 (en) Precursor of cathode active material for lithium secondary batteries, method of preparing same, cathode active material for lithium secondary batteries, method of preparing same, and lithium secondary battery comprising said cathode active material
WO2014077662A1 (en) Method for producing anode active material precursor for sodium secondary battery by using coprecipitation technique and anode active material precursor for sodium secondary battery produced thereby
WO2015093725A1 (en) Non-aqueous, high capacity cathode material for lithium secondary battery, and method for preparing same
WO2021075942A1 (en) Positive electrode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2014077663A1 (en) Anode active material for sodium secondary battery and method for producing same
CN111682174B (en) Antimony-coated lithium battery positive electrode material and preparation method and application thereof
WO2015190696A1 (en) Oxide-based double-structure negative electrode active material for lithium secondary battery and lithium secondary battery comprising same
CN109728279A (en) The surface treatment method and product and battery of a kind of nickelic tertiary cathode material
WO2021145493A1 (en) Precursor particle for producing positive electrode active material comprising coating layer
WO2012020998A2 (en) Method for preparing lithium titanium oxide, lithium titanium oxide prepared by same, and lithium secondary battery comprising the lithium titanium oxide
WO2013006018A2 (en) Active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including same
WO2022065935A1 (en) Method for solid-state synthesis of ni-rich lithium composite transition metal oxide cathode active material single particle, ni-rich lithium composite transition metal oxide cathode active material single particle synthesized thereby, and cathode and lithium secondary battery, each containing same
WO2021125870A1 (en) Positive electrode active material, method for producing same, and lithium secondary battery including same
WO2013157734A1 (en) Cathode material for nonaqueous lithium secondary battery using spherical cobalt hydroxide
WO2020055210A1 (en) Cathode active material, method for preparing same, and lithium secondary battery comprising same
CN111952552B (en) Glass state coated positive electrode material and preparation method thereof
WO2021112435A1 (en) Positive electrode active material for lithium ion secondary battery, positive electrode comprising same, and lithium ion secondary battery comprising same and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914045

Country of ref document: EP

Kind code of ref document: A1