WO2021145367A1 - Road rage detecting system - Google Patents

Road rage detecting system Download PDF

Info

Publication number
WO2021145367A1
WO2021145367A1 PCT/JP2021/001004 JP2021001004W WO2021145367A1 WO 2021145367 A1 WO2021145367 A1 WO 2021145367A1 JP 2021001004 W JP2021001004 W JP 2021001004W WO 2021145367 A1 WO2021145367 A1 WO 2021145367A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
influence
driver
driving
degree
Prior art date
Application number
PCT/JP2021/001004
Other languages
French (fr)
Japanese (ja)
Inventor
堀内 雄一
匠 大塚
Original Assignee
アズミー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020005782A external-priority patent/JP6778941B1/en
Application filed by アズミー株式会社 filed Critical アズミー株式会社
Publication of WO2021145367A1 publication Critical patent/WO2021145367A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/052Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed
    • G08G1/054Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed photographing overspeeding vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a technique for detecting a tilting operation performed by a nearby vehicle located in the vicinity of the own vehicle while traveling on the driver of the own vehicle, particularly even though the tilting operation does not actually occur. It relates to a technique for reducing the frequency of false detections or false alarms of road rage.
  • the front vehicle also referred to as “front vehicle” or “preceding vehicle”
  • the rear vehicle also referred to as “rear vehicle” or “following vehicle”
  • Ari a technology that detects abnormal driving or dangerous driving by the driver of a nearby vehicle (also referred to as “another vehicle” or “peripheral vehicle”) that is a side vehicle (also referred to as a "parallel vehicle”).
  • another vehicle also referred to as “peripheral vehicle”
  • a side vehicle also referred to as a "parallel vehicle”
  • Patent Document 1 discloses a driving support device.
  • this driving support device includes a vehicle speed sensor as a sensor for detecting the motion state variable of the own vehicle, a vehicle acceleration sensor, a camera for photographing the rear of the vehicle, and an inter-vehicle distance sensor. It has a radar (for example, a millimeter-wave radar sensor), a display and a speaker as a visual and auditory output device for the driver, and a vehicle control system that automatically controls the behavior of the own vehicle.
  • a vehicle speed sensor as a sensor for detecting the motion state variable of the own vehicle
  • a vehicle acceleration sensor for detecting the motion state variable of the own vehicle
  • a camera for photographing the rear of the vehicle
  • an inter-vehicle distance sensor for example, a radar (for example, a millimeter-wave radar sensor), a display and a speaker as a visual and auditory output device for the driver, and a vehicle control system that automatically controls the behavior of the own vehicle.
  • a radar for example, a mill
  • This driving support device determines whether or not the following vehicle is driving with respect to its own vehicle. Specifically, from the driving condition of the own vehicle (speed, acceleration, information extracted from the camera image), the traveling condition of the other vehicle (inter-vehicle distance), and the surrounding road environment (congestion degree), the vehicle from the other vehicle Detects tilting operation.
  • this driving support device quantifies the factors that induce the tilting driving of other vehicles as parameters.
  • the parameter is higher as the vehicle speed of the own vehicle is lower, based on the statistical data that the lower the vehicle speed of the own vehicle, the higher the possibility that the own vehicle will be tilted by the following vehicle. It is set to have a level (ie, to indicate that the factors that induce road rage are strong).
  • Patent Document 2 discloses a tilting driving detection system. This system makes the driver of the own vehicle who is driving the vehicle aware that the driver of the own vehicle is driving by the front camera and the rear camera, the inter-vehicle distance sensor, and the driver of the own vehicle as multiple elements mounted on the own vehicle. It has a lamp for visually informing the driver of another vehicle that the own vehicle is being driven, and a communication device for notifying the police that a road rage is occurring.
  • Patent Document 3 discloses a dangerous vehicle detection device.
  • This device has a CCD camera for imaging (front camera and rear camera), a millimeter-wave radar for inter-vehicle distance detection (front radar, rear radar, and side radar) as multiple elements mounted on the own vehicle. It has a steering angle sensor that detects the steering angle of the own vehicle, a yaw rate sensor that detects the yaw rate of the own vehicle, an acceleration sensor that detects the acceleration of the own vehicle, and a vehicle speed sensor that detects the vehicle speed of the own vehicle.
  • This dangerous vehicle detection device determines whether or not the preceding vehicle or the following vehicle is driving.
  • the traveling lane image and the vehicle image are extracted from the camera image (peripheral image), and the meandering and diagonal line deviation of other vehicles are determined from the images.
  • the driving state of the driver of another vehicle is monitored from the camera image (for example, an image of a vehicle blinker).
  • the lane and another vehicle are geometrically compared.
  • the amount of change in the imaging position of another vehicle is estimated from the steering angle and yaw rate of the own vehicle, and the amount of change is used in the camera image.
  • the amount of fluctuation in the left-right direction of other vehicles is offset or reduced.
  • Patent Document 4 discloses a driving support device. This device has a rear camera and a front camera as a plurality of elements mounted on the own vehicle.
  • This driving support device determines whether or not the following vehicle is driving. Specifically, either (1) the following vehicle overtook the own vehicle (the same following vehicle was photographed by the rear camera and then by the front camera) (course interruption), or (2) the following vehicle changed lanes. (After the following vehicle was photographed by the rear camera, it was not photographed by the front camera) (Abnormal approach parallel running, Tailgating parallel running), or (3) The following vehicle maintains the inter-vehicle distance from the own vehicle. When (abnormal approach tracking) is performed, it is determined that the following vehicle has tilted.
  • Patent Document 5 discloses a fanning operation elimination system. This system has a rear camera as a plurality of elements mounted on the own vehicle.
  • This road rage elimination system consists of short-distance road rage in which the following vehicle closes the distance between vehicles and incites the own vehicle, sudden acceleration in which the following vehicle accelerates rapidly and approaches the own vehicle, and the following vehicle is in front of it. It is possible to detect the staggering and fanning driving of the own vehicle by rocking it from side to side.
  • Patent Document 6 discloses a danger sign determination device. This device has a camera mounted on its own vehicle. The camera captures a portion of the driver's head and chest of another vehicle.
  • This danger sign determination device extracts the line of sight, face orientation, blinking, and hand movement of the driver of the own vehicle as feature quantities from the image data acquired by the camera, and based on these feature quantities, the own vehicle Determine the driver's concentration of driving, safety confirmation, risk sensitivity, and the presence or absence of signs of danger.
  • the already proposed road rage detection system is based on a monitoring unit (for example, an outside world sensor) that monitors a nearby vehicle relative to its own vehicle and the monitoring result thereof.
  • a tilting driving detection unit that detects the tilting driving by the driver of a nearby vehicle, and when the tilting driving is detected, the driver of the own vehicle is notified audibly and / or visually (or tactilely) of the tilting driving. It may be configured to include a warning section to warn.
  • vehicle includes not only automobiles, but also motorcycles and bicycles (with or without a motor), and all types of moving objects that travel on wheels. Is interpreted as a term that means.
  • the present invention has been made as an object to provide a technique for detecting driving in a state where the frequency of false detections or false alarms is reduced.
  • a tilting driving detection system that detects a tilting operation performed on the own vehicle by a driver of a nearby vehicle located in the vicinity of the own vehicle while driving.
  • a monitoring unit that is mounted on the own vehicle and can perform at least one of monitoring the surrounding vehicles including nearby vehicles relative to the own vehicle and monitoring the occupants in the vehicle.
  • a tilting operation detection unit that determines whether or not it is present and thereby detects tilting operation
  • a warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
  • an influence variable indicating the degree of the driving environment of the own vehicle Based on the monitoring result of the monitoring unit, an influence variable indicating the degree of the driving environment of the own vehicle, an influence variable indicating the degree of the road environment of the own vehicle, and an influence variable indicating the degree of the driving skill of the driver of the own vehicle.
  • An influence variable detector that detects one and Based on the detected at least one influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
  • the swaying operation detection unit is notified of the swaying operation detection unit.
  • a road rage detection system is provided that includes a road rage detection unit that activates the road rage detection program, but does not start the road rage detection program, and a selective start unit that does not activate the road rage detection program.
  • a tilting driving detection system that detects a tilting operation performed on the own vehicle by a driver of a nearby vehicle located in the vicinity of the own vehicle while traveling.
  • a tilting driving detection unit that detects the tilting driving performed by the driver of a nearby vehicle on the own vehicle
  • a warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
  • It is an influence variable detection unit that detects an influence variable indicating the degree of driving skill of the driver of the own vehicle, and the influence variable is the driving frequency of the driver of the own vehicle and the cumulative mileage of the driver of the own vehicle.
  • the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
  • the calculated degree of influence exceeds the reference value
  • both the tilting operation detection unit and the warning unit are activated, but when the calculated influence level exceeds the reference value, at least one of the tilting operation detection unit and the warning unit is not activated.
  • a road rage detection system is provided that includes a selective activation unit.
  • each section in the form of quoting the numbers of the other sections does not necessarily prevent the technical features described in each section from being separated and independent from the technical features described in the other sections. It does not mean, and it should be interpreted that the technical features described in each section can be made independent as appropriate according to their properties.
  • a tilting driving detection system that detects tilting driving performed on the own vehicle by a driver of a nearby vehicle located near the own vehicle while driving.
  • a monitoring unit that is mounted on the own vehicle and can perform at least one of monitoring the surrounding vehicles including nearby vehicles relative to the own vehicle and monitoring the occupants in the vehicle.
  • a tilting driving detection unit that detects the tilting driving performed by the driver of a nearby vehicle on the own vehicle
  • a warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
  • an influence variable indicating the degree of the driving environment of the own vehicle Based on the monitoring result of the monitoring unit, an influence variable indicating the degree of the driving environment of the own vehicle, an influence variable indicating the degree of the road environment of the own vehicle, and an influence variable indicating the degree of the driving skill of the driver of the own vehicle. , At least one of an influence variable indicating the degree of driving manners of the driver of the own vehicle and an influence variable indicating the degree of intimidation received from the own vehicle as a result of the driver of a nearby vehicle visually recognizing the own vehicle.
  • An influence variable detector that detects one and Based on the detected at least one influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
  • both the tilting operation detection unit and the warning unit are activated, but when the calculated influence level exceeds the reference value, at least one of the tilting operation detection unit and the warning unit is not activated.
  • Road rage detection system including selective starter and.
  • the monitoring unit includes a camera mounted on the own vehicle and capable of photographing surrounding vehicles.
  • the tilting operation detection system according to item (1), wherein the tilting operation detection unit detects the tilting operation based on a signal representing a shooting result of the camera.
  • the camera is at least one of a front camera that captures a front image of the own vehicle, a rear camera that captures a rear image of the own vehicle, and a side camera that captures a side image of the own vehicle.
  • the tilting operation detection system according to item (2) including.
  • the influence variable representing the degree of the driving environment includes at least one of the degree of congestion of the traffic condition around the own vehicle and the degree of bad weather around the own vehicle (1) to (5).
  • the influence variable representing the degree of the road environment includes at least one of the number of lanes in the road on which the own vehicle is traveling and the degree of curvature of the lane in which the own vehicle is traveling (7).
  • the tilting operation detection system according to any one of 1) to (6).
  • Items (1) to (7) include at least one of the driving frequency of the driver of the own vehicle and the cumulative mileage of the driver of the own vehicle as the influence variable representing the degree of the driving skill.
  • the influence variable indicating the degree of driving manners is at least one of the frequency of passing by the driver of the own vehicle overtaking the surrounding vehicles and the frequency of acceleration and deceleration of the own vehicle by the driver of the own vehicle.
  • the tilting operation detection system according to any one of (1) to (8) including.
  • the influential variables that indicate the degree of intimidation are the distinction between whether or not the own vehicle is a light vehicle, whether or not the own vehicle is a domestic vehicle, and the fact that the vehicle is on board the own vehicle.
  • the tilting driving detection system according to any one of (1) to (9), which includes at least one of the number of occupants.
  • the monitoring unit includes an indoor camera mounted on the own vehicle and capable of photographing the occupants in the room of the own vehicle.
  • Items (1) to (10) include the other occupant number detection unit that detects the number of other occupants riding in the own vehicle based on the signal representing the shooting result of the indoor camera. The tilting operation detection system described in either.
  • program may be interpreted to mean, for example, a combination of instructions executed by a computer to perform its function, or not only a combination of those instructions, but also each instruction. It can be interpreted to include, but is not limited to, files and data processed according to.
  • this program may achieve its intended purpose by being executed by a computer alone, or by being executed by a computer together with other programs. Yes, but not limited to them. In the latter case, the program according to this section may be based on data, but is not limited thereto.
  • recording medium can be interpreted to mean various types of recording media, such recording media being magnetic recordings such as, for example, flexible discs. It includes, but is not limited to, media, optical recording media such as CDs and CD-ROMs, magneto-optical recording media such as MOs, and unremovable storage such as ROMs.
  • a tilting driving detection system that detects tilting driving performed on the own vehicle by a driver of a nearby vehicle located in the vicinity of the own vehicle while driving.
  • a monitoring unit that is mounted on the own vehicle and can perform at least one of monitoring the surrounding vehicles including nearby vehicles relative to the own vehicle and monitoring the occupants in the vehicle.
  • the road rage detection unit determines whether or not the driver of a nearby vehicle performs the road rage on the own vehicle based on the monitoring result of the surrounding vehicle by the monitoring unit.
  • a warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
  • an influence variable indicating the degree of the driving environment of the own vehicle Based on the monitoring result of the monitoring unit, an influence variable indicating the degree of the driving environment of the own vehicle, an influence variable indicating the degree of the road environment of the own vehicle, and an influence variable indicating the degree of the driving skill of the driver of the own vehicle. , At least one of an influence variable indicating the degree of driving manners of the driver of the own vehicle and an influence variable indicating the degree of intimidation received from the own vehicle as a result of the driver of a nearby vehicle visually recognizing the own vehicle.
  • An influence variable detector that detects one and Based on the detected at least one influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
  • the tilt operation detection unit When the calculated degree of influence exceeds the reference value by activating the activation necessity determination program prior to activating the tilt operation detection program by the tilt operation detection unit, the tilt operation detection unit is notified of the tilt.
  • the operation detection program is activated and the warning unit is activated, but if the warning unit is not exceeded, at least one of the tilt operation detection program is not activated and the warning unit is not activated is performed.
  • Road rage detection system including a selective starter.
  • a tilting driving detection system that detects tilting driving performed on the own vehicle by a driver of a nearby vehicle located in the vicinity of the own vehicle while driving.
  • a tilting driving detection unit that detects the tilting driving performed by the driver of a nearby vehicle on the own vehicle
  • a warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
  • It is an influence variable detection unit that detects an influence variable indicating the degree of driving skill of the driver of the own vehicle, and the influence variable is the driving frequency of the driver of the own vehicle and the cumulative mileage of the driver of the own vehicle.
  • the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
  • the calculated degree of influence exceeds the reference value
  • both the tilting operation detection unit and the warning unit are activated, but when the calculated influence level exceeds the reference value, at least one of the tilting operation detection unit and the warning unit is not activated.
  • Road rage detection system including selective starter and.
  • a tilting driving detection system that detects tilting driving performed on the own vehicle by a driver of a nearby vehicle located in the vicinity of the own vehicle while driving.
  • An indoor camera that is mounted on your vehicle and can take pictures of the occupants inside your vehicle
  • a tilting driving detection unit that detects the tilting driving performed by the driver of a nearby vehicle on the own vehicle
  • a warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
  • It is an influence variable detection unit that detects an influence variable indicating the degree of intimidation received from the own vehicle as a result of the driver of a nearby vehicle visually recognizing the own vehicle, and the influence variable is on board the own vehicle.
  • the influence variable detection unit includes the number of other occupants, which is the number of other occupants, and the influence variable detection unit includes the other occupant number detection unit that detects the number of other occupants based on the signal representing the shooting result of the indoor camera.
  • the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
  • the calculated degree of influence exceeds the reference value
  • both the tilting operation detection unit and the warning unit are activated, but when the calculated influence level exceeds the reference value, at least one of the tilting operation detection unit and the warning unit is not activated.
  • Road rage detection system including selective starter and.
  • a tilting driving detection system that detects tilting driving performed on the own vehicle by a driver of a nearby vehicle located in the vicinity of the own vehicle while driving.
  • a monitoring unit that is mounted on the own vehicle and can perform at least one of monitoring the surrounding vehicles including nearby vehicles relative to the own vehicle and monitoring the occupants in the vehicle.
  • the road rage detection program When, By activating the road rage detection program, whether the driver of a nearby vehicle is performing any of a plurality of predetermined types of road rage on the own vehicle based on the monitoring result of the surrounding vehicle by the monitoring unit.
  • a tilting operation detection unit that determines whether or not it is present and thereby detects tilting operation
  • a warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
  • an influence variable indicating the degree of the driving environment of the own vehicle Based on the monitoring result of the monitoring unit, an influence variable indicating the degree of the driving environment of the own vehicle, an influence variable indicating the degree of the road environment of the own vehicle, and an influence variable indicating the degree of the driving skill of the driver of the own vehicle. , At least one of an influence variable indicating the degree of driving manners of the driver of the own vehicle and an influence variable indicating the degree of intimidation received from the own vehicle as a result of the driver of a nearby vehicle visually recognizing the own vehicle.
  • An influence variable detector that detects one and Based on the detected at least one influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
  • a tilting operation detection system that includes a selective activation unit that activates the driving detection program but does not activate the tilting operation detection program if the tilting operation detection unit is not exceeded.
  • FIG. 1 is a perspective view showing a tilting driving detection system according to an exemplary embodiment of the present invention, which is mounted on the own vehicle, together with an exemplary usage environment.
  • FIG. 2 shows the tilting driving detection system shown in FIG. 1 in a functional block diagram of other sensors mounted on the same own vehicle and used together with the tilting driving detection system, and the tilting driving detection system.
  • Calculates the degree of influence y as a composite value of a plurality of influence variables x and conceptually expresses an algorithm for permitting / prohibiting the road rage detection process using the degree of influence y.
  • FIG. 3 conceptually represents the types of road rage that can be detected by the road rage detection unit shown in FIG.
  • FIG. 4 is a flowchart conceptually representing an impact degree calculation program executed by the computer of the tilting operation detection system in order for the tilting operation detection system shown in FIG. 1 to calculate the influence degree y.
  • Figure 5 shows in conceptual graph algorithm for calculating the influence variables x 1 by the execution of the influence degree calculation program shown in FIG. FIG.
  • FIG. 6 conceptually graphically represents an algorithm for calculating the influence variable x 2 by executing the influence degree calculation program shown in FIG.
  • Figure 7 shows in conceptual graph algorithm for calculating the influence variables x 3 by the execution of the influence degree calculation program shown in FIG.
  • FIG. 8 conceptually graphically represents an algorithm for calculating the influence variable x 4 by executing the influence degree calculation program shown in FIG.
  • FIG. 9 conceptually graphically represents an algorithm for calculating the influence variable x 5 by executing the influence degree calculation program shown in FIG.
  • FIG. 10 conceptually represents a start-up necessity determination program executed by the computer of the road rage detection system in order to determine whether or not the selective start unit shown in FIG. 2 should activate the road rage detection unit. It is a flowchart.
  • FIG. 10 conceptually represents a start-up necessity determination program executed by the computer of the road rage detection system in order to determine whether or not the selective start unit shown in FIG. 2 should activate the road rage detection unit. It is a flowchart.
  • FIG. 10 conceptual
  • FIG. 11 is a flowchart conceptually representing a first road rage detection program executed by the computer of the road rage detection system in order for the road rage detection unit shown in FIG. 2 to detect the road rage.
  • FIG. 12 is a flowchart conceptually representing a second road rage detection program executed by the computer of the road rage detection system in order for the road rage detection unit shown in FIG. 2 to detect the road rage.
  • system 10 a tilting driving detection system (hereinafter, simply referred to as “system”) 10 according to an exemplary embodiment of the present invention, which is mounted on the own vehicle 20, is assumed to be the system 10. It is shown in a perspective view with an exemplary usage environment.
  • the system 10 is configured to detect or estimate the tilting operation performed on the own vehicle 20 by the driver of a nearby vehicle located in the vicinity of the own vehicle 20 while traveling.
  • the front vehicle 22 an example of the "neighborhood vehicle”
  • the rear vehicle 24 another example of the "neighborhood vehicle”
  • the vehicles 20, 22, and 24 are traveling in the same direction in the same one (that is, the traveling lane) in a plurality of traveling lanes on the same road.
  • the system 10 has a front camera 30 (an example of the "front camera”) and a rear camera 32 (an example of the "rear camera”) mounted on the own vehicle 20.
  • the front camera 30 is a camera capable of capturing the front of the own vehicle 20 and its surroundings as a moving image (that is, a series of frame images), while the rear camera 32 captures the rear of the own vehicle 20 and its surroundings as a moving image. It is a possible camera.
  • the front camera 30 and the rear camera 32 both form an example of the "monitoring unit".
  • another example of the “monitoring unit” may be only the front camera 30 that captures the front of the own vehicle 20, or only the rear camera 32 that captures the rear of the own vehicle 20.
  • It may be an omnidirectional camera that captures the omnidirectional image of the own vehicle 20 by itself.
  • the front camera 30 is mounted on the interior component of the own vehicle 20 at or near the front window
  • the rear camera 32 is mounted on the interior component of the own vehicle 20 at or near the rear window.
  • the system 10 further includes a display 40 that displays a front image and a rear image taken by the front camera 30 and the rear camera 32, respectively, on the screen in substantially real time.
  • the system 10 further includes an indoor camera 42 capable of photographing the inside of the own vehicle 20, in particular, another occupant riding in the own vehicle 20.
  • the indoor camera 42 is installed close to the front camera 30, for example, and photographs the occupants seated in the passenger seat and the rear seat of the own vehicle 20 in substantially real time.
  • the system 10 further includes a signal processing unit 44.
  • the signal processing unit 44 is realized by the computer 50.
  • the computer 50 is mainly composed of a processor 52 and a memory 54. Data representing moving images (that is, a series of frame images) taken by the front camera 30 and the rear camera 32, respectively, are stored in the memory 54.
  • the first memory 54 means the first memory in which the program and data for detecting the tilt are stored
  • the second memory 54 Means a second memory in which data representing moving images taken by the front camera 30 and the rear camera 32 are stored.
  • these two types of information may be stored together in the same memory 54.
  • the system 10 further includes an input unit 56 and a battery 58.
  • the input unit 56 is operated by the driver or another person, whereby necessary information is input to the system 10.
  • the input unit 56 may be a keypad mounted on the system 10 and operated by the driver with a finger, but the input unit 56 has a receiver and receives an information signal from the driver's communication terminal (for example, a smartphone). When transmitted by a short-range wireless system (for example, Bluetooth (registered trademark)), the information signal may be received and information may be acquired from an operator such as a driver.
  • a short-range wireless system for example, Bluetooth (registered trademark)
  • the battery 58 is an example of a power source that supplies electric energy to the system 10, but the required electric energy may be supplied from a power source of the own vehicle 20 (not shown, for example, a vehicle battery).
  • the system 10 further has a warning unit 70.
  • the warning unit 70 is configured to give a warning to the driver of the own vehicle 20 when the system 10 detects the tilting operation.
  • the warning unit 70 has a buzzer 72 for issuing a warning sound that calls attention to the driver of the own vehicle 20, and a speaker 72 that outputs a warning message by voice to the driver of the own vehicle 20. And a display 40 that outputs a warning message as an image to the driver of the own vehicle 20.
  • the first display 40 means a first display that outputs a warning message as an image
  • the second display 40 is a front display. It means a second display that outputs moving images taken by the camera 30 and the rear camera 32, respectively.
  • the two types of information may be displayed on the screen of the same display 40 in two different display areas.
  • the first unit includes a front camera 30, a display 40, an indoor camera 42, a signal processing unit 44, an input unit 56, a battery 58, and a warning unit 70 in a first housing.
  • the second unit is configured by housing the rear camera 32 in the second housing. The second unit is connected to the first unit by wire or wirelessly.
  • the system 10 uses another sensor mounted on the own vehicle 20.
  • Other sensors are operated by the driver to activate an odometer 80 that measures the cumulative mileage of the vehicle 20 and a drive source for the vehicle 20 (eg, an internal combustion engine, an electric motor, or both).
  • a drive source for the vehicle 20 eg, an internal combustion engine, an electric motor, or both.
  • It has a vehicle switch sensor 82 that detects on / off of a vehicle switch (not shown).
  • the vehicle switch is generally referred to as an ignition switch.
  • Other sensors include a clock (for example, a device that measures time and date) 84, an acceleration sensor 86 that detects the acceleration and deceleration of the own vehicle 20, and a vehicle speed sensor that detects the traveling speed of the own vehicle as the vehicle speed. Has 88 and.
  • the acceleration sensor 86 it is possible to adopt a program that estimates the acceleration from the speed difference (that is, the speed deviation) between the plurality of vehicle speed detection values sequentially detected by the vehicle speed sensor 88.
  • the signal processing unit 44 includes a road rage detection unit 100, a selective activation unit 102, an influence degree calculation unit 104, and an influence variable detection unit 106.
  • the tilting driving detection unit 100 when the tilting driving detection unit 100 is activated, the drivers of the nearby vehicles 22 and 24 will be the own vehicle 20 based on the image signal or the video signal from the front camera 30 and / or the rear camera 32. It is configured to perform a tilting operation detection process for detecting the tilting operation performed on the camera.
  • the tilting driving detection unit 100 activates the tilting driving detection program described later, and the driver of a nearby vehicle determines the own vehicle in advance based on the monitoring result of the peripheral vehicle by the monitoring unit. It is configured to determine whether or not one of the plurality of types of tilting operations is being performed, thereby detecting the tilting operation.
  • the tilting operation detection unit 100 when the tilting operation detection unit 100 is activated, it is possible to detect a plurality of types of tilting operation as shown in the table format on the left side of FIG.
  • the types of the tilting driving are the tilting driving caused by the front vehicle 22 and detected by at least the front camera 30, and the tilting driving caused by the rear vehicle 24 and detected by using at least the rear camera 32. It is classified as what is done.
  • the types of road rage caused by the front vehicle 22 are classified into the obstruction of the course by the front vehicle 22 and the abnormal approach by the front vehicle 22.
  • the obstruction of the course by the front vehicle 22 occurs after the vehicle 24 traveling behind the own vehicle 20 suddenly accelerates and overtakes the own vehicle 20, as shown in a schematic plan view in the upper right part of FIG. , It is an act of intimid the driver of the own vehicle 20 by entering in front of the own vehicle 20 and obstructing the course of the own vehicle 20.
  • the front vehicle 22 traveling in front of the own vehicle 20 intentionally decelerates to reduce the inter-vehicle distance from the own vehicle 20. It is an act of squeezing and approaching the own vehicle 20 abnormally, thereby threatening the driver of the own vehicle 20.
  • the abnormal approach by the front vehicle 22 does not always occur as a tilting operation by the front vehicle 22, but is caused by a legitimate sudden braking by the driver of the front vehicle 22, or the driver of the own vehicle 20 is inattentive. It may occur when the brake operation timing is delayed due to caution.
  • the tilting driving detection unit 100 detects these two types of tilting driving by the vehicle in front 22 by using at least the front camera 30.
  • the types of tilting driving caused by the rear vehicle 24 are classified into meandering driving by the rear vehicle 24 and abnormal approach by the rear vehicle 24.
  • the rear vehicle 24 meanders immediately behind the own vehicle 20 as shown in a schematic plan view in the lower right part of FIG. 3, whereby the driver of the own vehicle 20 It is an act that threatens.
  • the rear vehicle 24 rapidly closes the distance between the vehicle and the own vehicle 20 and approaches the own vehicle 20 abnormally, thereby threatening the driver of the own vehicle 20. It is an act to do.
  • the tilting driving detection unit 100 detects these two types of tilting driving by the rear vehicle 24 by using at least the rear camera 32.
  • the tilting driving detection unit 100 replaces or in addition to at least one of these actions, the rear vehicle 24 closes the distance between the vehicle and the own vehicle 20, and the short distance between the vehicles is reduced. Tracking the own vehicle 20 while maintaining the distance, thereby intimidating the driver of the own vehicle 20, and the rear vehicle 24 deviating from the same traveling lane as the own vehicle 20 and moving to the adjacent traveling lane. After that, the act of the vehicle that was the rear vehicle 24 moving to the side of the own vehicle 20 and the vehicle that was the rear vehicle 24 running in parallel with the own vehicle 20 in that state was adopted as the tilting operation to be detected. You may.
  • the influence variable detection unit 106 has an influence variable representing the degree of the driving environment of the own vehicle 20 (for example, congestion degree, illuminance, weather) and the degree of the road environment of the own vehicle 20 (for example, the number of lanes, the road width, and the road).
  • the influence variable representing the degree of bending), the influence variable representing the degree of driving skill of the driver of the own vehicle 20 (for example, driving experience, cumulative mileage, driving frequency, acceleration / deceleration frequency), and the driver of the own vehicle 20 Influential variables that represent the degree of driving manners (for example, overtaking frequency, lane change frequency, steering frequency), and the intimidating feeling that the drivers of nearby vehicles 22 and 24 receive from the own vehicle 20 as a result of visually recognizing the own vehicle 20. It is configured to detect at least one of the influence variables that represent the degree.
  • the influence variable detection unit 106 detects the five influence variables x 1 , x 2 , x 3 , x 4 and x 5 described below.
  • x 1 Congestion degree of the road on which the own vehicle 20 is traveling
  • x 2 The number of lanes (that is, the number of lanes) on the road on which the own vehicle 20 is traveling x 3 : Driving skill of the driver of the own vehicle 20 x 4 : Driving manners of the driver of the own vehicle 20 x 5 : Intimidating feeling of the own vehicle 20
  • the influence degree calculation unit 104 is configured to calculate the influence degree y that induces driving by the drivers of the neighboring vehicles 22 and 24 based on the detected at least one influence variable x.
  • the influence degree calculation unit 104 calculates the influence degree y as a composite value of the plurality of (five) influence variables x described above, as conceptually expressed in text at the lower part of FIG.
  • the influence variable detection unit 102 of the system 10 detects a plurality of influence variables x, and the influence degree calculation unit 104 calculates the influence degree y from the influence variables x, which is executed by the computer 50. It is a flowchart which conceptually represents an influence degree calculation program.
  • step S401 when the execution of the influence degree calculation program is started, first, in step S401, it is awaited that the vehicle switch is switched from off to on by using the vehicle switch sensor 82.
  • the vehicle switch When the vehicle switch is switched on, the front camera 30 and the rear camera 32 are activated in step S402, and the front image and the rear image of the own vehicle 20 are taken.
  • step S403 the captured front image and rear image are displayed on the screen of the display 40 in substantially real time.
  • step S404 the above-mentioned plurality of influence variables x are detected.
  • these influential variables x are defined to have domains in common with each other.
  • any influence variable x can be defined as a variable having a binary value, defined as a variable having three or more discrete values, and can vary between a lower limit value and an upper limit value. Defined as a variable with continuous values.
  • Figure 5 is an algorithm for calculating the influence variables x 1 by the execution of the influence degree calculation program is represented by a conceptually graph.
  • the influence variable x 1 reflects the congestion degree b 1 of the road on which the own vehicle 20 is actually traveling.
  • the congestion b 1 as represented in the graph on the left side of FIG. 5, the rule of thumb, the surroundings of the vehicle 20 between the number a 1 in the vicinity of vehicles traveling with the vehicle 20 , as its often the number of vehicles a 1 is the degree of congestion b 1 relationship that high is established.
  • step S404 objects representing other vehicles are extracted from the frame image taken by the front camera 30 at each time in synchronization with each other, and the number m 1 of other vehicles is measured and the rear is measured.
  • Objects representing other vehicles are extracted from the frame image captured by the camera 32, and the number m 2 of other vehicles is measured. Further, the sum of the measured number m 1 and m 2 is calculated as the number of vehicles a 1.
  • step S404 in accordance with what is stored in the memory 54 a predetermined relationship (e.g., approximate proportional relationship) between the number of vehicles a 1 and congestion degree b 1, the number of vehicles measurement of a 1 is converted to a value of the congestion degree b 1.
  • a predetermined relationship e.g., approximate proportional relationship
  • the space on the road required to change the behavior (for example, acceleration / deceleration, steering) is reduced, it becomes difficult to make such a behavior change, and it becomes difficult to perform a tilting operation.
  • the relationship that the variable x 1 decreases is established.
  • this step S404 further, according to a predetermined relationship (for example, an approximate inverse proportional relationship) between the congestion degree b 1 and the influence variable x 1 stored in the memory 54. , The measured value of the congestion degree b 1 is converted into the value of the influence variable x 1.
  • a predetermined relationship for example, an approximate inverse proportional relationship
  • the congestion degree b 1 it may be used in poor degree of weather around the vehicle 20.
  • the higher the degree of bad weather that is, the worse the weather, such as heavy rain, heavy fog, heavy snow, snowstorm, short visibility, narrow visibility, and difficult road conditions) the relationship that is less likely to perform driving driver tilt, have between the influence variables x 1 or influence y.
  • the influence variable detection unit 106 may estimate the weather at that time from, for example, an image taken by the front camera 30 or the rear camera 32.
  • the local weather information at the point where the own vehicle 20 is traveling may be received from the weather server by communicating with an external weather server.
  • FIG. 6 conceptually shows a graph of an algorithm for calculating the influence variable x 2 by executing this influence degree calculation program.
  • the influence variable x 2 reflects the number of lanes (that is, the number of lanes) a 2 of the road on which the own vehicle 20 is actually traveling.
  • step S404 for each time, the front camera 30 and / or the lane line from the frame image captured by the rear camera 32 (i.e., white) number of lanes a 2 is extracted objects that represent is measured NS.
  • the influence variable x 2 changes its behavior freely as the number of lanes a 2 increases with the number of lanes a 2 as a rule of thumb. Since the space on the road required for (for example, accelerating / decelerating and steering) increases, it becomes easy to make such a behavior change, and it becomes easy to perform a tilting operation, the influence variable x 2 is set. The relationship of rising is established.
  • step S404 further, in accordance with what is stored in the memory 54 a predetermined relationship (e.g., approximate proportional relationship) between the number of lanes a 2 and influence variables x 2, measurement of number of lanes a 2 is converted to a value of impact the variable x 2.
  • a predetermined relationship e.g., approximate proportional relationship
  • curve of the road on which the vehicle 20 is traveling may be used curve of the road on which the vehicle 20 is traveling (or radius of curvature and tortuosity).
  • the road curve degree the more it is large (i.e., the larger the curvature, the more the radius of curvature is small), the relationship of is less likely to perform driving driver near the vehicle tilt, influence variable x 2 or influence It has between y.
  • Figure 7 is an algorithm for calculating the influence variables x 3 by the execution of the influence degree calculation program is represented by a conceptually graph.
  • the influence variable x 3 reflects the driving skill b 3 of the driver of the own vehicle 20.
  • the degree of the driving skill b 3 is the cumulative mileage a 31 of the driver, the driving frequency a 32 (times / continuous driving time or times / week) of the driver, and the driving of the driver. reflecting the acceleration and deceleration of the frequency a 33 (times / continuous running distance or times / continuous operation time) carried out inside.
  • the driving skill b 3 increases as the cumulative mileage a 31 (km) increases, and the driving frequency a 32 increases.
  • the acceleration frequency a 33 As the driver is unfamiliar, during running, there is a tendency to unwanted acceleration or deceleration increases, therefore, the smaller the acceleration frequency a 33, indicating that the high driving skill b 3 of the driver.
  • the cumulative mileage a 31 is measured using the odometer 80. Further, one unit time is measured using the clock 84, and the number of transitions from off (end of operation) to on (start of operation) detected by the vehicle switch sensor 82 per unit time is defined as the operation frequency a 32. Be measured. Further, one unit distance is measured using the mileage meter 80, and the number of accelerations / decelerations (that is, acceleration or deceleration above the reference value) of the own vehicle 20 detected by the acceleration sensor 86 per unit distance is It is measured as the acceleration / deceleration frequency a 33.
  • the measured value of the cumulative traveling distance a 31, the measured value of the operating frequency a 32, the driving skill b 3 is calculated as a composite value of a measure of acceleration and deceleration frequency a 33. That is, the driving skill b 3 is described as a function f in which the measured value of the cumulative mileage a 31 (km), the measured value of the driving frequency a 32 , and the measured value of the acceleration / deceleration frequency a 33 are input variables, respectively. It is.
  • an example of an equation describing the function f is shown, which is an equation for calculating the weighted sum.
  • the coefficient k 31 multiplied by the measured value of the cumulative mileage a 31 (km) is a positive constant
  • the coefficient k 32 multiplied by the measured value of the driving frequency a 32 is also a positive constant
  • the acceleration / deceleration frequency a 33 is measured.
  • the coefficient k 33 to be multiplied by the value is also a positive constant.
  • the influence variables x 3 as represented graphically in the bottom right of FIG. 7, the rule of thumb, between the driving skill b 3, the higher its driving technique b 3, the behavior of the vehicle 20 is because there is less likely to feel uncomfortable to the driver in the vicinity of the vehicle, the impact variable x 3 is established a relationship of a decrease.
  • this step S404 further, according to a predetermined relationship (for example, an approximate inverse proportional relationship) between the driving skill b 3 and the influence variable x 3 stored in the memory 54. , The measured value of the driving skill b 3 is converted into the value of the influence variable x 3.
  • a predetermined relationship for example, an approximate inverse proportional relationship
  • Figure 9 is an algorithm for calculating the influence variables x 4 by the execution of the influence degree calculation program is represented by a conceptually graph.
  • the influence variable x 4 reflects the driving manner b 4 of the driver of the own vehicle 20.
  • the driving manners b 4 as represented in the graph on the left side of FIG. 9, the heuristic, the passing frequency a 4 to the vehicle 20 overtakes the vicinity vehicle (number / distance traveled or number / operating time) during the relationship that the higher the passing frequency a 4 are driving manners b 4 bad is established.
  • an object representing another vehicle is extracted as a target vehicle from the frame image taken by the front camera 30 and / or the rear camera 32 at each time. Further, the traveling locus of the selected target vehicle is measured relative to the own vehicle 20 on, for example, a two-dimensional polar coordinate system.
  • the position of the target vehicle and the position of the own vehicle 20 are mapped on the two-dimensional polar coordinate system, respectively, and it is determined whether or not the own vehicle 20 has overtaken the target vehicle. Furthermore, once a unit distance is measured using the odometer 80, the number of times that the overtaking i.e. passing occurs on the per unit distance is measured as a passing frequency a 4.
  • step S404 in accordance with what is stored in the memory 54 a predetermined relationship (e.g., approximate inverse proportional relationship) between the passing frequency a 4 and driving manners b 4, passing measurement frequency a 4 is converted to a value of driving manners b 4.
  • a predetermined relationship e.g., approximate inverse proportional relationship
  • influence variables x 4 as represented in the graph on the right side of FIG. 8, on the empirical rule, between the driving manners b 4, as its driving manners b 4 is good, near the behavior of the vehicle 20 is reduces the possibility that upset the driver of the vehicle, since reckless driving is also reduced can occur, influence variable x 4 is established a relationship of a decrease.
  • step S404 further, in accordance with what is stored in the memory 54 a predetermined relationship (e.g., approximate inverse proportional relationship) between the driving manners b 4 and influence variables x 4 , measurement of driving manners b 4 is converted to a value of impact the variable x 4.
  • a predetermined relationship e.g., approximate inverse proportional relationship
  • the driving manners b 4 is determined based on the passing frequency a 4 of the vehicle 20, in place of or in addition to it, based on the frequency of the lane change of the vehicle 20 May be determined. This is because, as a rule of thumb, the higher the passing frequency of the own vehicle 20 and the higher the frequency of lane change, the more cases the damage of the tilting driving is met.
  • the own vehicle 20 is a light vehicle, is a domestic vehicle, and is not accompanied by another occupant, that is, when the own vehicle 20 gives less intimidation to the driver of a nearby vehicle, the own vehicle
  • the behavior of 20 makes the driver of a nearby vehicle uncomfortable, the driver of the nearby vehicle looks down on the driver of the own vehicle 20 and resents it, and there is a case where the psychology of trying to revenge by tilting driving works. Not a little observed.
  • the existence of the own vehicle 20 (for example, factors that cause the intimidating feeling of the own vehicle 20, such as the appearance, size, vehicle type, and number of passengers of the own vehicle 20) itself. It may stimulate the driver of a nearby vehicle and induce road rage.
  • the influence variable x 5 reflects the intimidating feeling b 5 that the own vehicle 20 psychologically gives to the driver of the nearby vehicle.
  • the extent of the intimidating b 5 is, on the rule of thumb, lower than when the vehicle 20 is an ordinary motor vehicle in the case of mini-cars, also, than the case of a foreign-made car when the vehicle 20 is in the domestic automobile It is low, and when the number of other occupants of the own vehicle 20 is 0, it is lower than when it is not 0.
  • the intimidating feeling b 5 is a variable a 51 that is 0 when the own vehicle 20 is a light vehicle and 1 in other cases, 0 when the own vehicle 20 is a domestic vehicle, and 0 in other cases. It reflects the variable a 52 that becomes 1 and the variable a 53 that increases according to the number of other occupants of the own vehicle 20 (that is, the number of occupants other than the driver).
  • the intimidating feeling b 5 increases according to the variable a 51 , increases according to the variable a 52 , and also increases. It increases according to the variable a 53.
  • the value of the variable a 51 is determined from the information input to the input unit 56 by the driver or another person for the vehicle type of the own vehicle 20, and the driver for the country of origin of the own vehicle 20.
  • the value of the variable a 52 is determined from the information input to the input unit 56 by another person, and an object representing another occupant is extracted from the indoor image data taken by the indoor camera 42, and the extracted object is extracted.
  • the value of the variable a 53 is measured as the number of occupants, which is the number of objects.
  • each speaker is identified from other speakers by recognizing each voice. Something that has the ability to do so may be installed.
  • the number of occupants of the own vehicle 20 is set to the value obtained by subtracting 1 from the number of speakers identified by the smart speaker by using the smart speaker instead of the indoor camera 42, in the variable a 53 .
  • the value may be measured.
  • an example of the "monitoring unit" used by the influence variable detection unit 106 may be an image recognition device such as cameras 30 and 32, or a voice recognition device such as a smart speaker.
  • the value of the variable a 53 may be determined from the information (for example, the number of passengers) input to the input unit 56 by the driver or another person.
  • the intimidating feeling b 5 is calculated as a combined value of the measured value of the variable a 51 , the measured value of the variable a 52 , and the measured value of the variable a 53. That is, the intimidating feeling b 5 is described as a function g in which the measured value of the variable a 51 , the measured value of the variable a 52 , and the measured value of the variable a 53 are input variables, respectively.
  • an example of an equation describing the function g is shown, which is an equation for calculating the weighted sum.
  • the coefficient k 51 multiplied by the measured value of the variable a 51 is a positive constant
  • the coefficient k 52 multiplied by the measured value of the variable a 52 is also a positive constant
  • the coefficient k 53 multiplied by the measured value of the variable a 53 is also It is a positive constant.
  • the influence variables x 5 as represented graphically in the bottom right of FIG. 9, the rule of thumb, between the intimidating b 5, the higher its intimidating b 5, the behavior of the vehicle 20 is Since it is unlikely to cause discomfort to the driver of a nearby vehicle, the relationship that the influence variable x 5 is reduced is established.
  • this step S404 further, according to a predetermined relationship (for example, an approximate inverse proportional relationship) between the intimidating feeling b 5 and the influence variable x 5 and stored in the memory 54. , The measured value of the intimidating feeling b 5 is converted into the value of the influence variable x 5.
  • a predetermined relationship for example, an approximate inverse proportional relationship
  • the portion of the computer 50 for executing step S404 constitutes the influence variable detection unit 106.
  • step S405 the degree of influence y is used as a composite value of the influence variables x 1- x 5.
  • FIG. 2 shows that the degree of influence y is calculated as a simple sum of the influence variables x 1 to x 5 as an example of the calculation formula. Instead of this, the degree of influence y may be calculated as a weighted sum of those influence variables x 1 ⁇ x 5. In any case, the calculated influence degree y is stored in the memory 54.
  • step S406 it is determined whether or not the vehicle switch is switched from on to off by using the vehicle switch sensor 82. If the vehicle switch remains on, the determination in step S406 becomes NO, and the process returns to step S402. On the other hand, when the vehicle switch is switched off, the determination in step S406 becomes YES, and in step S407, the front camera 30 and the rear camera 32 are stopped, and the front image and the rear image of the own vehicle 20 are taken. finish.
  • the selective starting unit 102 activates both the tilting operation detection unit 100 and the warning unit 70, but if it does not exceed, the tilting operation detection unit 100 and the warning It is configured so that at least one of the parts 70 is not activated. This reduces the frequency of false detections and false alarms in road rage.
  • the tilting operation detection unit 100 is activated, but the warning unit 70 is not activated, even if the tilting operation detection unit 100 causes an erroneous detection. Even if it occurs, it is prevented from being known to the driver via the warning unit 70, and eventually, the frequency of false detection of the tilting operation is reduced.
  • the selective activation unit 102 permits / prohibits the road rage detection process using the influence degree y and the reference value y 0. .
  • the reference value y 0 is a default value that cannot be changed by the driver, but may be defined as a variable value that can be changed by the driver using the input unit 56. In any case, the reference value y 0 is stored in the memory 54.
  • the selective activation unit 102 determines whether or not the tilt operation detection unit 100 (that is, the first tilt operation detection program shown in FIG. 11 and the second tilt operation detection program shown in FIG. 12) should be activated.
  • the start-up necessity determination program executed by the computer 50 is represented by a flowchart conceptually represented.
  • This activation necessity determination program is repeatedly executed while the vehicle switch is in the ON state.
  • the selective activation unit 102 activates the activation necessity determination program before the tilt operation detection unit 100 activates the first and second tilt operation detection programs.
  • step S1001 the latest influence degree y and the reference value y 0 are read from the memory 54.
  • step S1002 determines whether the degree of influence y is larger than the reference value y 0 . If the degree of influence y is larger than the reference value y 0 , the determination in step S1002 is YES, and subsequently, in step S1004, if the tilting operation detection process is in the execution state, it is maintained or stopped. If it is in a state, it can then be transitioned to the running state (ie, activated).
  • This activation necessity determination program then returns to step S1001.
  • FIG. 11 is represented by a flowchart conceptually represented by the first tilting driving detection program executed by the computer 50 to detect the tilting driving by the vehicle in front 22.
  • the activation and stop of the first tilting operation detection program are linked to the determination result of the activation necessity determination program shown in FIG.
  • step S1101 a series of frame images of moving images taken by the front camera 30 are stored in the memory 54 in association with each time.
  • each front camera image signal for example, two-dimensional pixel data
  • each frame image captured by the front camera 30 is stored in the memory 54 in association with each time.
  • step S1102-1105 the front vehicle approach detection process is performed.
  • a front camera image signal representing a representative one of the plurality of frame images captured by the front camera 30 is taken in from the memory 54.
  • step S1103 predetermined image processing is executed on the captured front camera image signal.
  • an image representing the vehicle in front 22 is cut out from other parts and extracted as a target image, and image processing on the target image (for example, a geometric feature of an actual target) is performed.
  • the distance Df between the vehicle in front and the vehicle in front 20 is measured by the comparison with the vehicle (perspective projection conversion).
  • an image of the license plate is extracted from the target image, the geometrical features of the license plate image are compared with the geometrical features of the actual license plate, and from the comparison result, a projection conversion method or the like is performed. May be used to estimate the distance Df between vehicles ahead.
  • An example of the estimation method is disclosed in Japanese Patent Application Laid-Open No. 2015-215738.
  • the license plate of a vehicle is an example of an object whose specific absolute dimensions are known or standardized, and as another example, for example, two parallel parts separating both sides of one traveling lane. There are white lines in the book, and the distance between those two white lines is known.
  • the front inter-vehicle distance Df may be acquired by using the front radar mounted on the own vehicle 20 instead of the front camera 30.
  • the "radar” has a transmitter and a receiver, and the receiver receives a portion of the electromagnetic wave transmitted from the transmitter that is reflected from the object, and the receiver and the object are based on the received signal. Is configured to measure the distance of.
  • step S1104 the reference value Df 0 is read from the memory 54, and it is determined whether or not the measured front-vehicle distance Df is shorter than the reference value Df 0.
  • step S1104 determines whether the front vehicle 22 is performing the tilting operation of approaching the vehicle ahead. Is determined.
  • step S1150-1151 the warning unit 70 is activated.
  • a warning sound is generated using the buzzer 72.
  • the warning sound may be a warning sound having the same characteristics regardless of the type of detected tilting operation, or may be a warning sound having different characteristics depending on the type of detected tilting operation.
  • a warning message (a unique icon is also possible) is displayed using the display 40.
  • the warning message may have the same content regardless of the type of detected tilting operation, or may have a different content depending on the type of detected tilting operation.
  • step S1106-1109 the road rage detection unit 100 detects the path obstruction.
  • step S1106 the current value of the vehicle speed V is taken in from the vehicle speed sensor 88.
  • step S1107 it is determined whether or not the current value of the vehicle speed V has decreased from the previous value because the own vehicle 20 is decelerating.
  • step S1107 the determination in step S1107 is YES, and in step S1108, it is determined whether or not the current value of the front inter-vehicle distance Df does not increase from the previous value.
  • NS It is determined whether or not the inter-vehicle distance (hereinafter, referred to as "front inter-vehicle distance") Df with the preceding vehicle 22 does not increase despite the deceleration of the own vehicle 20.
  • step S1108 the determination in step S1108 was YES, and in step S1109, the vehicle in front 22 obstructed the course. It is determined that there is a possibility.
  • step S1152-1153 the warning unit 70 is activated in the same manner as in step S1150-1151.
  • FIG. 12 is represented by a flowchart conceptually represented by the second tilting driving detection program executed by the computer 50 to detect the tilting driving by the rear vehicle 24.
  • the activation and stop of the second tilting operation detection program are linked to the determination result of the activation necessity determination program shown in FIG.
  • step S1201 a moving image (a series of frame images) taken by the rear camera 32 is stored in the memory 54 in association with each time in the same manner as in step S1101. Will be done. Specifically, each rear camera image signal representing each frame image captured by the rear camera 32 is stored in the memory 54 in association with each time.
  • step S1202-1204 the meandering operation detection process is performed in step S1202-1204.
  • a rear camera image signal representing a representative one of the plurality of frame images captured by the rear camera 32 is taken in from the memory 54.
  • step S1203 two types of predetermined image processing are executed on the captured rear camera image signal.
  • the rear inter-vehicle distance Dr between the rear vehicle 24 and the own vehicle 20 is measured in the same manner as in step S1103 based on the captured rear camera image signal.
  • the rear inter-vehicle distance Dr may be acquired by using the rear radar mounted on the own vehicle 20 instead of the rear camera 32.
  • the traveling locus of the rear vehicle 24 is detected by using the rear camera 32.
  • a rear vehicle existing in the rear view of the own vehicle 20 from an image (a series of frame images associated with each time) taken by the rear camera 32. 24 is identified as the target.
  • the position of the identified target (eg, the representative point assigned to the target) is estimated two-dimensionally from moment to moment in plan view, whereby the rear vehicle 24 is tracked and the rear vehicle 24-2.
  • the change in the dimensional position is estimated as the traveling locus.
  • the positions of the identified targets are the distance (radius) r from the own vehicle 20 (for example, the front camera 30) and the angle (azimuth) ⁇ separated from the traveling direction of the own vehicle 20 in a plan view. It may be estimated from moment to moment on the two-dimensional polar coordinate system defined by.
  • the two-dimensional polar coordinate system may be defined so as to have the position of the rear camera 32 as the origin, for example.
  • the distance d estimated at the time when the angle ⁇ is 0 degrees means the inter-vehicle distance (hereinafter, referred to as “rear inter-vehicle distance”) Dr between the rear vehicle 24 and the own vehicle 20. This distance d is measured by paying attention to the license plate of the rear vehicle 24 in the same manner as the above-mentioned rear-vehicle distance Dr, regardless of whether or not the direction in which the distance d extends coincides with the traveling direction of the own vehicle 20. NS.
  • step S1204 it is determined whether or not the travel locus of the detected rear vehicle 24 indicates meandering driving.
  • step S1204 the determination in step S1204 is YES, and in step S1205, the rear vehicle 24 may be driving in a meandering manner. It is judged.
  • step S1250-1251 the warning unit 70 is activated in the same manner as in step S1150-1151.
  • step S1206-1207 the rear vehicle approach detection process is performed.
  • step S1206 the reference value Dr 0 is read from the memory 54, and further, it is determined whether or not the latest value of the rear vehicle distance Dr measured in step S1203 is shorter than the reference value Dr 0. NS.
  • step S1206 determines whether the rear vehicle 24 is performing the tilting operation of approaching the rear vehicle. Is determined.
  • step S1252-1253 the warning unit 70 is activated.
  • the portion of the computer 50 in the impact calculation program shown in FIG. 4 that mainly executes steps S402-404 is "influence variable detection".
  • a part of the same influence calculation program that mainly executes step S405 constitutes a part 106 ”and a part of the same influence calculation program that mainly executes step S405.
  • the portion of the computer 50 that executes the activation necessity determination program in FIG. 10 constitutes the "selective activation unit 102".
  • a selective activation unit 102 that substantially functions as a switch of the tilt operation detection unit 100 is added to the tilt operation detection unit 100, that is, the tilt operation detection unit 100 and the selective activation unit 100 are selectively activated.
  • the unit 102 and the unit 102 coexist in series.
  • both the pre-filter executed by the selective activation unit 102 and the actual filter executed by the road rage detection unit 100, that is, the two-stage filter in series is passed.
  • Road rage is detected only when the AND condition is satisfied.
  • the current tilting operation detection system in which the tilting operation detection program is implemented is simply required to start a new work without substantially changing the specifications of the tilting operation detection program.
  • an improved road rage detection system is completed, which makes it possible to reduce false detections and warnings of road rage.
  • the start-up necessity determination program is designed in common for a plurality of vehicle types, whereas the tilting driving detection program can be individually designed for a plurality of vehicle types, and the system design can be performed. Efficiency is improved.
  • the start-up necessity determination program and the road rage detection program in substantially parallel manner (for example, to be executed by different processors).
  • the repetition cycle of the program tilt operation
  • the start-up necessity determination program and the tilt operation detection program are combined and executed as one comprehensive program, that is, when the de facto serial processing is performed.
  • the effect of shortening the detection cycle) and facilitating real-time detection of road rage can also be obtained. That is, it is possible to increase the speed of detecting the tilting operation.
  • the road rage detection program is executed once until the stop-necessity determination is made at the next execution.
  • the repetition cycle T1 of the start-up necessity determination program and the repetition cycle T2 of the road rage detection program coincide with each other.
  • the repetition cycle T1 of the start-up necessity determination program is set longer than the repetition cycle T2 of the tilting operation detection program, so that the start-up necessity determination program is executed once to determine the start-up necessity. It is possible to execute the tilting operation detection program a plurality of times until the stop necessity determination is issued at the next execution. According to this example, the total number of executions of the start necessity determination program is reduced, thereby reducing the processing load on the processor.
  • the sensor or monitoring unit used by the road rage detection unit 100 and the sensor or monitoring unit used by the influence variable detection unit 106, the influence degree calculation unit 104, and the selective activation unit 102.
  • the sensor used by the road rage detection unit 100 and the sensor used by the selective activation unit 102 are different from each other. The invention may be carried out.
  • the method in which the tilting driving detection unit 100 uses the monitoring units such as the cameras 30 and 32 focuses on a specific vehicle among a plurality of nearby vehicles, specifically, a specific vehicle such as a front vehicle 22 or a rear vehicle 24.
  • the method of using the monitoring units such as the cameras 30 and 32 by the influence variable detection unit 106, the influence degree calculation unit 104, and the selective activation unit 102 is to achieve a predetermined purpose.
  • the unspecified vehicles are different from each other, such that the vehicle achieves a predetermined purpose by paying attention to whether it is a front vehicle 22 or a rear vehicle 24 or a non-specific vehicle.
  • the monitoring unit used by the road rage detection unit 100 monitors a specific vehicle among a plurality of nearby vehicles, specifically, a specific vehicle such as a front vehicle 22 or a rear vehicle 24, separately from other vehicles.
  • the monitoring unit used by the influence variable detection unit 106, the influence degree calculation unit 104, and the selective activation unit 102 selects an unspecified one among a plurality of nearby vehicles as the front vehicle 22 or It is configured to monitor indiscriminately without distinguishing between the rear vehicle 24 and other vehicles 24.
  • the tilting operation detection unit 100, the selective activation unit 102, the influence degree calculation unit 104, and the influence variable detection unit 106 are all mounted on the own vehicle 20, but these elements are added. At least one of them is realized by a computer in a communication device (for example, a mobile communication terminal such as a smartphone) used by the driver of the own vehicle 20, or an external communication device capable of communicating with the in-vehicle communication device of the own vehicle 20.
  • the present invention may be implemented in a mode realized by an external server capable of communicating with the communication device of the server or the driver of the own vehicle 20.
  • the condition that the tilting operation detection unit 100 determines the success or failure in order to detect the tilting operation and the success or failure in order for the selective starting unit 102 to activate the tilting operation detecting unit 100 The conditions for determining the presence or absence of are different from each other.
  • the former condition is set from the viewpoint of whether or not a cause that is supposed to induce driving by the driver of another vehicle actually occurs, while the latter condition is set by the driver of another vehicle. It is set from the viewpoint of whether or not the road rage actually occurred. Therefore, those conditions do not match each other.
  • the tilting operation detection unit 100 determines whether or not the other vehicle is performing any of a plurality of predetermined types of tilting operation.
  • the production determination unit determines the presence or absence of a result event of the tilting operation
  • the "preliminary determination unit” determines the presence or absence of the causal event of the triggering reason of the tilting operation.
  • the tilting operation detection unit is activated, and thereby, for the first time at this point, the presence or absence of the result event of the tilting operation is determined.
  • the "preliminary judgment unit” functions as a screening function for the "production judgment unit” to remove in advance events that are unlikely to cause road rage.

Abstract

[Problem] To provide a technology for detecting road rage, with a reduction in the frequency of occurrence of erroneous detection. [Solution] A road rage detecting system (10) installed in a host vehicle (20) includes: a monitoring unit (30, 32) capable of monitoring nearby vehicles; a road rage detecting unit (100) for detecting road rage by a nearby vehicle; a warning unit (70) for issuing a warning if road rage is detected; an influence variable detecting unit (106) for detecting, on the basis of a signal from the monitoring unit, at least one of influence variable (x1) representing the travel environment, influence variable (x2) representing the road environment, influence variable (x3) representing the driving skill of the driver of the host vehicle, influence variable (x4) representing the driving manners of the driver of the host vehicle, and influence variable (x5) representing a sense of intimidation felt by the driver of the nearby vehicle from the host vehicle; a degree of influence calculating unit (104) for calculating a degree of influence provoking road rage, on the basis of the detected influence variable; and a selective activation unit (102) for activating the road rage detecting unit if the degree of influence exceeds a reference value, and not activating the road rage detecting unit if the reference value is not exceeded.

Description

あおり運転検知システムRoad rage detection system
 本発明は、走行中に自車両の近傍に位置する近傍車両が自車両の運転者に対して行うあおり運転を検知する技術に関し、特に、実際にはあおり運転が発生していないにもかかわらずあおり運転が誤検知または誤警報される頻度を低減する技術に関する。 The present invention relates to a technique for detecting a tilting operation performed by a nearby vehicle located in the vicinity of the own vehicle while traveling on the driver of the own vehicle, particularly even though the tilting operation does not actually occur. It relates to a technique for reducing the frequency of false detections or false alarms of road rage.
 近年、社会問題の一つとしてあおり運転、すなわち、近傍車両の運転者が道路走行中にその近傍車両を故意に異常に運転操作することによって自車両の運転者をあおって威嚇するという道路上の不正行為が深刻化しつつある。これに対し、社会においては、法制度の強化を含め、あおり運転に対する種々の防止対策が検討されている。 In recent years, as one of the social problems, driving on the road, that is, the driver of a nearby vehicle intimidates the driver of his / her own vehicle by intentionally and abnormally driving the nearby vehicle while driving on the road. Cheating is becoming more serious. On the other hand, in society, various preventive measures against road rage, including strengthening the legal system, are being considered.
 このような事情を背景として、従来、自車両において、前方車両(「前走車」または「先行車」ともいう。)、後方車両(「後走車」または「後続車」ともいう。)または側方車両(「並走車」ともいう。)である近傍車両(「他車両」または「周辺車両」ともいう。)の運転者による異常運転または危険運転としてのあおり運転を検知する技術、あおり運転の存在を自車両の運転者に早期に警告して認識させ、それにより、あおり運転の助長を抑止する行為を自車両の運転者に促す技術が既に存在する。 Against this background, conventionally, in the own vehicle, the front vehicle (also referred to as "front vehicle" or "preceding vehicle"), the rear vehicle (also referred to as "rear vehicle" or "following vehicle") or Ari, a technology that detects abnormal driving or dangerous driving by the driver of a nearby vehicle (also referred to as "another vehicle" or "peripheral vehicle") that is a side vehicle (also referred to as a "parallel vehicle"). There is already a technology that prompts the driver of the own vehicle to warn and recognize the existence of driving at an early stage, thereby encouraging the driver of the own vehicle to act to deter the promotion of tilting driving.
 例えば、特許文献1には、運転支援装置が開示されている。この運転支援装置は、自車両に搭載された複数の要素として、自車両の運動状態変数を検出するセンサとしての車両速度センサ、車両加速度センサおよび車両後方を撮影するカメラと、車間距離センサとしてのレーダ(例えば、ミリ波レーダセンサ)と、運転者に対する視覚的・聴覚的な出力装置としてのディスプレイおよびスピーカと、自車両の挙動を自動制御する車両制御系とを有する。 For example, Patent Document 1 discloses a driving support device. As a plurality of elements mounted on the own vehicle, this driving support device includes a vehicle speed sensor as a sensor for detecting the motion state variable of the own vehicle, a vehicle acceleration sensor, a camera for photographing the rear of the vehicle, and an inter-vehicle distance sensor. It has a radar (for example, a millimeter-wave radar sensor), a display and a speaker as a visual and auditory output device for the driver, and a vehicle control system that automatically controls the behavior of the own vehicle.
 この運転支援装置は、後続車があおり運転を自車両に対して行っているか否かを判定する。具体的には、自車両の走行状態(速度、加速度、カメラ画像から抽出される情報)と、他車両の走行状態(車間距離)と、周辺の道路環境(混雑度合い)から、他車両からのあおり運転を検知する。 This driving support device determines whether or not the following vehicle is driving with respect to its own vehicle. Specifically, from the driving condition of the own vehicle (speed, acceleration, information extracted from the camera image), the traveling condition of the other vehicle (inter-vehicle distance), and the surrounding road environment (congestion degree), the vehicle from the other vehicle Detects tilting operation.
 さらに、この運転支援装置は、他車両のあおり運転を誘発する要因をパラメータに数値化する。その数値化の一例においては、自車両の車速が低いほど、自車両が後続車からのあおり行為を受ける可能性が高くなるという統計データに基づき、前記パラメータは、自車両の車速が低いほど高いレベルを有するように(すなわち、あおり運転を誘発する要因が強いことを表すように)設定される。 Furthermore, this driving support device quantifies the factors that induce the tilting driving of other vehicles as parameters. In one example of the quantification, the parameter is higher as the vehicle speed of the own vehicle is lower, based on the statistical data that the lower the vehicle speed of the own vehicle, the higher the possibility that the own vehicle will be tilted by the following vehicle. It is set to have a level (ie, to indicate that the factors that induce road rage are strong).
 特許文献2は、あおり運転感知システムを開示している。このシステムは、自車両に搭載された複数の要素として、前方カメラおよび後方カメラと、車間距離センサと、あおり運転を行っている自車両の運転者にあおり運転を行っていることを認知させるとともに、自車両があおられていることを他車両の運転者に視覚的に知らせるためのランプと、あおり運転が発生していることを警察に通報するための通信機とを有する。 Patent Document 2 discloses a tilting driving detection system. This system makes the driver of the own vehicle who is driving the vehicle aware that the driver of the own vehicle is driving by the front camera and the rear camera, the inter-vehicle distance sensor, and the driver of the own vehicle as multiple elements mounted on the own vehicle. It has a lamp for visually informing the driver of another vehicle that the own vehicle is being driven, and a communication device for notifying the police that a road rage is occurring.
 特許文献3は、危険車両検出装置を開示している。この装置は、自車両に搭載された複数の要素として、撮像用のCCDカメラ(前方カメラおよび後方カメラ)と、車間距離検出用のミリ波レーダ(前方レーダ、後方レーダおよび側方レーダ)と、自車両の舵角を検出する舵角センサと、自車両のヨーレートを検出するヨーレートセンサと、自車両の加速度を検出する加速度センサと、自車両の車速を検出する車速センサとを有する。 Patent Document 3 discloses a dangerous vehicle detection device. This device has a CCD camera for imaging (front camera and rear camera), a millimeter-wave radar for inter-vehicle distance detection (front radar, rear radar, and side radar) as multiple elements mounted on the own vehicle. It has a steering angle sensor that detects the steering angle of the own vehicle, a yaw rate sensor that detects the yaw rate of the own vehicle, an acceleration sensor that detects the acceleration of the own vehicle, and a vehicle speed sensor that detects the vehicle speed of the own vehicle.
 この危険車両検出装置は、先行車または後続車があおり運転を行っているか否かを判定する。 This dangerous vehicle detection device determines whether or not the preceding vehicle or the following vehicle is driving.
 具体的には、カメラ画像(周辺画像)から、走行車線画像および車両画像を抽出し、それら画像から、他車両の蛇行および斜線逸脱を判定する。また、前記カメラ画像(例えば、車両ウインカーの画像)から、他車両の運転者の運転状態を監視する。 Specifically, the traveling lane image and the vehicle image are extracted from the camera image (peripheral image), and the meandering and diagonal line deviation of other vehicles are determined from the images. In addition, the driving state of the driver of another vehicle is monitored from the camera image (for example, an image of a vehicle blinker).
 また、前記カメラ画像において、車線が撮影されているとき、車線と他車両とを幾何学的に比較する。また、前記カメラ画像において、車線が存在しないかまたは車線を撮影できないとき、自車両の舵角とヨーレートとから、他車両の撮像位置の変化量を推定し、その変化量により、前記カメラ画像における他車の左右方向の揺らぎ量を相殺ないしは減殺する。 Also, in the camera image, when the lane is photographed, the lane and another vehicle are geometrically compared. In addition, when there is no lane or the lane cannot be photographed in the camera image, the amount of change in the imaging position of another vehicle is estimated from the steering angle and yaw rate of the own vehicle, and the amount of change is used in the camera image. The amount of fluctuation in the left-right direction of other vehicles is offset or reduced.
 特許文献4は、運転支援装置を開示している。この装置は、自車両に搭載された複数の要素として、後方カメラおよび前方カメラを有する。 Patent Document 4 discloses a driving support device. This device has a rear camera and a front camera as a plurality of elements mounted on the own vehicle.
 この運転支援装置は、後続車があおり運転を行っているか否かを判定する。具体的には、(1)後続車が自車両を追い越した(同じ後続車が後方カメラで撮影された後に前方カメラで撮影された)(進路割込み)か、(2)後続車が車線変更した(後続車が後方カメラで撮影された後に前方カメラでは撮影されなかった)(異常接近並走、幅寄せ並走)か、または、(3)後続車が自車両との間の車間距離を維持した(異常接近追尾)ときに、後続車のあおり運転が発生したと判定する。 This driving support device determines whether or not the following vehicle is driving. Specifically, either (1) the following vehicle overtook the own vehicle (the same following vehicle was photographed by the rear camera and then by the front camera) (course interruption), or (2) the following vehicle changed lanes. (After the following vehicle was photographed by the rear camera, it was not photographed by the front camera) (Abnormal approach parallel running, Tailgating parallel running), or (3) The following vehicle maintains the inter-vehicle distance from the own vehicle. When (abnormal approach tracking) is performed, it is determined that the following vehicle has tilted.
 特許文献5は、煽り運転解消システムを開示している。このシステムは、自車両に搭載された複数の要素として、後方カメラを有する。 Patent Document 5 discloses a fanning operation elimination system. This system has a rear camera as a plurality of elements mounted on the own vehicle.
 この煽り運転解消システムは、後続車が車間距離を詰めて自車両を煽る短車間煽り運転と、後続車が急加速して自車両に急接近する急加速煽り運転と、後続車がその前部を左右に揺らして自車両を煽るふらつき煽り運転とを検知することが可能である。 This road rage elimination system consists of short-distance road rage in which the following vehicle closes the distance between vehicles and incites the own vehicle, sudden acceleration in which the following vehicle accelerates rapidly and approaches the own vehicle, and the following vehicle is in front of it. It is possible to detect the staggering and fanning driving of the own vehicle by rocking it from side to side.
 特許文献6は、危険予兆判定装置を開示している。この装置は、自車両に搭載されたカメラを有する。そのカメラは、他車両の運転者の頭部および胸部の一部を撮像する。 Patent Document 6 discloses a danger sign determination device. This device has a camera mounted on its own vehicle. The camera captures a portion of the driver's head and chest of another vehicle.
 この危険予兆判定装置は、前記カメラによって取得された画像データから、自車両の運転者の視線、顔の向き、瞬きおよび手の動きをそれぞれ特徴量として抽出し、それら特徴量に基づき、自車両の運転者の運転集中度、安全確認度、危険感受性および危険の予兆の有無を判定する。 This danger sign determination device extracts the line of sight, face orientation, blinking, and hand movement of the driver of the own vehicle as feature quantities from the image data acquired by the camera, and based on these feature quantities, the own vehicle Determine the driver's concentration of driving, safety confirmation, risk sensitivity, and the presence or absence of signs of danger.
特開2006-205773号公報Japanese Unexamined Patent Publication No. 2006-205773 実用新案登録第3221891号公報Utility Model Registration No. 3221891 特開2007-072641号公報Japanese Unexamined Patent Publication No. 2007-072641 特開2018-112892号公報Japanese Unexamined Patent Publication No. 2018-11892 特開2019-119371号公報JP-A-2019-119371 特開2019-079150号公報JP-A-2019-079150
 前述の複数の特許文献によれば、既に提案されているあおり運転検知システムは、近傍車両を自車両に対して相対的に監視する監視部(例えば、外界センサ)と、その監視結果に基づき、近傍車両の運転者によるあおり運転を検知するあおり運転検知部と、そのあおり運転が検知されると、そのことを自車両の運転者に聴覚的におよび/または視覚的に(もしくは触覚的に)警告する警告部とを含むように構成される可能性がある。 According to the above-mentioned plurality of patent documents, the already proposed road rage detection system is based on a monitoring unit (for example, an outside world sensor) that monitors a nearby vehicle relative to its own vehicle and the monitoring result thereof. A tilting driving detection unit that detects the tilting driving by the driver of a nearby vehicle, and when the tilting driving is detected, the driver of the own vehicle is notified audibly and / or visually (or tactilely) of the tilting driving. It may be configured to include a warning section to warn.
 しかし、そのあおり運転検知システムのうちの前記あおり運転検知部には、誤検知または誤警報という問題が少なからず存在する。すなわち、実際にはあおり運転が発生していないにもかかわらず、あおり運転が発生しているとの誤った情報を運転者に告知してしまうという問題があるのである。 However, there are not a few problems of false detection or false alarm in the tilting operation detection unit of the tilting operation detection system. That is, there is a problem that the driver is notified of erroneous information that the road rage is occurring even though the road rage is not actually occurring.
 なお、この出願書類の全体を通じ、「車両」という用語は、自動車のみならず、自動二輪車および自転車(原動機付きか否かを問わない)を含み、車輪を用いて走行する全ての種類の移動体を意味する用語として解釈される。 Throughout this application document, the term "vehicle" includes not only automobiles, but also motorcycles and bicycles (with or without a motor), and all types of moving objects that travel on wheels. Is interpreted as a term that means.
 以上説明した事情を背景として、本発明は、誤検知または誤警報の発生頻度が低減された状態であおり運転を検知する技術を提供することを課題としてなされたものである。 Against the background of the circumstances described above, the present invention has been made as an object to provide a technique for detecting driving in a state where the frequency of false detections or false alarms is reduced.
 その課題を解決するために、本発明の第1の側面によれば、走行中に自車両の近傍に位置する近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知システムであって、
 自車両に搭載され、近傍車両を含む周辺車両を自車両に対して相対的に監視することと、自車両の室内の乗員を監視することとのうちの少なくとも一方を行うことが可能な監視部と、
 あおり運転検知プログラムを起動させることにより、前記監視部による周辺車両の監視結果に基づき、近傍車両の運転者が自車両に対して、予め定められた複数種類のあおり運転のいずれかを行っているか否かを判定し、それにより、あおり運転を検知するあおり運転検知部と、
 自車両に搭載され、前記あおり運転が検知されると、自車両の運転者に対して警告を出す警告部と、
 前記監視部の監視結果に基づき、自車両の走行環境の程度を表す影響変数と、自車両の道路環境の程度を表す影響変数と、自車両の運転者の運転技量の程度を表す影響変数と、自車両の運転者の運転マナーの程度を表す影響変数と、近傍車両の運転者が、自車両を視認した結果、その自車両から受ける威圧感の程度を表す影響変数とのうちの少なくとも一つを検知する影響変数検知部と、
 その検知された少なくとも一つの影響変数に基づき、近傍車両の運転者にあおり運転を誘発する影響度を計算する影響度計算部と、
 前記あおり運転検知部が前記あおり運転検知プログラムを起動させるのに先立って起動要否判定プログラムを起動させることにより、前記計算された影響度が基準値を超えると、前記あおり運転検知部に前記あおり運転検知プログラムを起動させるが、超えないと、前記あおり運転検知部に前記あおり運転検知プログラムを起動させない選択的起動部と
 を含むあおり運転検知システムが提供される。
In order to solve the problem, according to the first aspect of the present invention, a tilting driving detection system that detects a tilting operation performed on the own vehicle by a driver of a nearby vehicle located in the vicinity of the own vehicle while driving. And
A monitoring unit that is mounted on the own vehicle and can perform at least one of monitoring the surrounding vehicles including nearby vehicles relative to the own vehicle and monitoring the occupants in the vehicle. When,
By activating the road rage detection program, whether the driver of a nearby vehicle is performing any of a plurality of predetermined types of road rage on the own vehicle based on the monitoring result of the surrounding vehicle by the monitoring unit. A tilting operation detection unit that determines whether or not it is present and thereby detects tilting operation,
A warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
Based on the monitoring result of the monitoring unit, an influence variable indicating the degree of the driving environment of the own vehicle, an influence variable indicating the degree of the road environment of the own vehicle, and an influence variable indicating the degree of the driving skill of the driver of the own vehicle. , At least one of an influence variable indicating the degree of driving manners of the driver of the own vehicle and an influence variable indicating the degree of intimidation received from the own vehicle as a result of the driver of a nearby vehicle visually recognizing the own vehicle. An influence variable detector that detects one and
Based on the detected at least one influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
When the calculated degree of influence exceeds the reference value by activating the activation necessity determination program prior to activating the swaying operation detection program by the swaying operation detection unit, the swaying operation detection unit is notified of the swaying operation detection unit. A road rage detection system is provided that includes a road rage detection unit that activates the road rage detection program, but does not start the road rage detection program, and a selective start unit that does not activate the road rage detection program.
 また、本発明の第2の側面によれば、走行中に自車両の近傍に位置する近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知システムであって、
 近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知部と、
 自車両に搭載され、前記あおり運転が検知されると、自車両の運転者に対して警告を出す警告部と、
 自車両の運転者の運転技量の程度を表す影響変数を検知する影響変数検知部であって、前記影響変数は、自車両の運転者の運転頻度と、自車両の運転者の累積走行距離とのうちの少なくとも一つを含むものと、
 その検知された影響変数に基づき、近傍車両の運転者にあおり運転を誘発する影響度を計算する影響度計算部と、
 前記計算された影響度が基準値を超えると、前記あおり運転検知部および前記警告部の双方を起動させるが、超えないと、前記あおり運転検知部および前記警告部のうちの少なくとも一方を起動させない選択的起動部と
 を含むあおり運転検知システムが提供される。
Further, according to the second aspect of the present invention, it is a tilting driving detection system that detects a tilting operation performed on the own vehicle by a driver of a nearby vehicle located in the vicinity of the own vehicle while traveling.
A tilting driving detection unit that detects the tilting driving performed by the driver of a nearby vehicle on the own vehicle,
A warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
It is an influence variable detection unit that detects an influence variable indicating the degree of driving skill of the driver of the own vehicle, and the influence variable is the driving frequency of the driver of the own vehicle and the cumulative mileage of the driver of the own vehicle. And one that contains at least one of
Based on the detected influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
When the calculated degree of influence exceeds the reference value, both the tilting operation detection unit and the warning unit are activated, but when the calculated influence level exceeds the reference value, at least one of the tilting operation detection unit and the warning unit is not activated. A road rage detection system is provided that includes a selective activation unit.
 本発明によって下記の各態様が得られる。各態様は、項に区分し、各項には番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、本発明が採用し得る技術的特徴の一部およびそれの組合せの理解を容易にするためであり、本発明が採用し得る技術的特徴およびそれの組合せが以下の態様に限定されると解釈すべきではない。すなわち、下記の態様には記載されていないが本明細書には記載されている技術的特徴を本発明の技術的特徴として適宜抽出して採用することは妨げられないと解釈すべきなのである。 According to the present invention, the following aspects can be obtained. Each aspect shall be divided into sections, each section shall be numbered, and the numbers of other sections shall be cited as necessary. This is to facilitate understanding of some of the technical features that can be adopted by the present invention and combinations thereof, and the technical features that can be adopted by the present invention and combinations thereof are limited to the following aspects. Should not be interpreted as. That is, it should be interpreted that it is not hindered from appropriately extracting and adopting the technical features described in the present specification as the technical features of the present invention, which are not described in the following aspects.
 さらに、各項を他の項の番号を引用する形式で記載することが必ずしも、各項に記載の技術的特徴を他の項に記載の技術的特徴から分離させて独立させることを妨げることを意味するわけではなく、各項に記載の技術的特徴をその性質に応じて適宜独立させることが可能であると解釈すべきである。 Furthermore, describing each section in the form of quoting the numbers of the other sections does not necessarily prevent the technical features described in each section from being separated and independent from the technical features described in the other sections. It does not mean, and it should be interpreted that the technical features described in each section can be made independent as appropriate according to their properties.
(1) 走行中に自車両の近傍に位置する近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知システムであって、
 自車両に搭載され、近傍車両を含む周辺車両を自車両に対して相対的に監視することと、自車両の室内の乗員を監視することとのうちの少なくとも一方を行うことが可能な監視部と、
 近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知部と、
 自車両に搭載され、前記あおり運転が検知されると、自車両の運転者に対して警告を出す警告部と、
 前記監視部の監視結果に基づき、自車両の走行環境の程度を表す影響変数と、自車両の道路環境の程度を表す影響変数と、自車両の運転者の運転技量の程度を表す影響変数と、自車両の運転者の運転マナーの程度を表す影響変数と、近傍車両の運転者が、自車両を視認した結果、その自車両から受ける威圧感の程度を表す影響変数とのうちの少なくとも一つを検知する影響変数検知部と、
 その検知された少なくとも一つの影響変数に基づき、近傍車両の運転者にあおり運転を誘発する影響度を計算する影響度計算部と、
 前記計算された影響度が基準値を超えると、前記あおり運転検知部および前記警告部の双方を起動させるが、超えないと、前記あおり運転検知部および前記警告部のうちの少なくとも一方を起動させない選択的起動部と
 を含むあおり運転検知システム。
(1) A tilting driving detection system that detects tilting driving performed on the own vehicle by a driver of a nearby vehicle located near the own vehicle while driving.
A monitoring unit that is mounted on the own vehicle and can perform at least one of monitoring the surrounding vehicles including nearby vehicles relative to the own vehicle and monitoring the occupants in the vehicle. When,
A tilting driving detection unit that detects the tilting driving performed by the driver of a nearby vehicle on the own vehicle,
A warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
Based on the monitoring result of the monitoring unit, an influence variable indicating the degree of the driving environment of the own vehicle, an influence variable indicating the degree of the road environment of the own vehicle, and an influence variable indicating the degree of the driving skill of the driver of the own vehicle. , At least one of an influence variable indicating the degree of driving manners of the driver of the own vehicle and an influence variable indicating the degree of intimidation received from the own vehicle as a result of the driver of a nearby vehicle visually recognizing the own vehicle. An influence variable detector that detects one and
Based on the detected at least one influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
When the calculated degree of influence exceeds the reference value, both the tilting operation detection unit and the warning unit are activated, but when the calculated influence level exceeds the reference value, at least one of the tilting operation detection unit and the warning unit is not activated. Road rage detection system including selective starter and.
(2) 前記監視部は、自車両に搭載され、周辺車両を撮影することが可能なカメラを含み、
 前記あおり運転検知部は、前記カメラの撮影結果を表す信号に基づき、前記あおり運転を検知する(1)項に記載のあおり運転検知システム。
(2) The monitoring unit includes a camera mounted on the own vehicle and capable of photographing surrounding vehicles.
The tilting operation detection system according to item (1), wherein the tilting operation detection unit detects the tilting operation based on a signal representing a shooting result of the camera.
(3) 前記カメラは、自車両の前方画像を撮影する前方カメラと、自車両の後方画像を撮影する後方カメラと、自車両の側方画像を撮影する側方カメラとのうちの少なくとも一つを含む(2)項に記載のあおり運転検知システム。 (3) The camera is at least one of a front camera that captures a front image of the own vehicle, a rear camera that captures a rear image of the own vehicle, and a side camera that captures a side image of the own vehicle. The tilting operation detection system according to item (2) including.
(4) 前記影響度計算部は、前記影響度を1つの影響変数から計算する(1)ないし(3)項のいずれかに記載のあおり運転検知システム。 (4) The tilting operation detection system according to any one of (1) to (3), wherein the influence degree calculation unit calculates the influence degree from one influence variable.
(5) 前記影響度計算部は、前記影響度を複数の影響変数の合成値として計算する(1)ないし(3)項のいずれかに記載のあおり運転検知システム。 (5) The tilting operation detection system according to any one of (1) to (3), wherein the influence degree calculation unit calculates the influence degree as a composite value of a plurality of influence variables.
(6) 前記走行環境の程度を表す影響変数は、自車両の周辺の交通状態の混雑度と、自車両の周辺の天候の劣悪度とのうちの少なくとも一つを含む(1)ないし(5)項のいずれかに記載のあおり運転検知システム。 (6) The influence variable representing the degree of the driving environment includes at least one of the degree of congestion of the traffic condition around the own vehicle and the degree of bad weather around the own vehicle (1) to (5). ) The tilting operation detection system described in any of the items.
(7) 前記道路環境の程度を表す影響変数は、自車両が走行している道路内の車線の数と、自車両が走行している車線の曲線度とのうちの少なくとも一つを含む(1)ないし(6)項のいずれかに記載のあおり運転検知システム。 (7) The influence variable representing the degree of the road environment includes at least one of the number of lanes in the road on which the own vehicle is traveling and the degree of curvature of the lane in which the own vehicle is traveling (7). The tilting operation detection system according to any one of 1) to (6).
(8) 前記運転技量の程度を表す影響変数は、自車両の運転者の運転頻度と、自車両の運転者の累積走行距離とのうちの少なくとも一つを含む(1)ないし(7)項のいずれかに記載のあおり運転検知システム。 (8) Items (1) to (7) include at least one of the driving frequency of the driver of the own vehicle and the cumulative mileage of the driver of the own vehicle as the influence variable representing the degree of the driving skill. The tilting operation detection system described in any of.
(9) 前記運転マナーの程度を表す影響変数は、自車両の運転者が周辺車両を追い抜くパッシングの頻度と、自車両の運転者が自車両を加減速させる頻度とのうちの少なくとも一つを含む(1)ないし(8)項のいずれかに記載のあおり運転検知システム。 (9) The influence variable indicating the degree of driving manners is at least one of the frequency of passing by the driver of the own vehicle overtaking the surrounding vehicles and the frequency of acceleration and deceleration of the own vehicle by the driver of the own vehicle. The tilting operation detection system according to any one of (1) to (8) including.
(10) 前記威圧感の程度を表す影響変数は、自車両が軽自動車であるか否かの区別と、自車両が国産車であるか否かの区別と、自車両に同乗している他の乗員の数とのうちの少なくとも一つを含む(1)ないし(9)項のいずれかに記載のあおり運転検知システム。 (10) The influential variables that indicate the degree of intimidation are the distinction between whether or not the own vehicle is a light vehicle, whether or not the own vehicle is a domestic vehicle, and the fact that the vehicle is on board the own vehicle. The tilting driving detection system according to any one of (1) to (9), which includes at least one of the number of occupants.
(11) 前記監視部は、自車両に搭載され、自車両の室内の乗員を撮影することが可能な室内カメラを含み、
 前記影響変数検知部は、前記室内カメラの撮影結果を表す信号に基づき、自車両に同乗している他の乗員の数を検知する他乗員数検知部を含む(1)ないし(10)項のいずれかに記載のあおり運転検知システム。
(11) The monitoring unit includes an indoor camera mounted on the own vehicle and capable of photographing the occupants in the room of the own vehicle.
Items (1) to (10) include the other occupant number detection unit that detects the number of other occupants riding in the own vehicle based on the signal representing the shooting result of the indoor camera. The tilting operation detection system described in either.
(12) (1)ないし(11)項のいずれかに記載のあおり運転検知システムを実施するためにそのあおり運転検知システムのコンピュータによって実行されるプログラム。 (12) A program executed by the computer of the tilting operation detection system in order to implement the tilting operation detection system according to any one of (1) to (11).
 本明細書の全体を通じて、「プログラム」という用語は、例えば、それの機能を果たすためにコンピュータにより実行される指令の組合せを意味するように解釈したり、それら指令の組合せのみならず、各指令に従って処理されるファイルやデータをも含むように解釈することが可能であるが、それらに限定されない。 Throughout this specification, the term "program" may be interpreted to mean, for example, a combination of instructions executed by a computer to perform its function, or not only a combination of those instructions, but also each instruction. It can be interpreted to include, but is not limited to, files and data processed according to.
 また、このプログラムは、それ単独でコンピュータにより実行されることにより、所期の目的を達するものとしたり、他のプログラムと共にコンピュータにより実行されることにより、所期の目的を達するものとすることができるが、それらに限定されない。後者の場合、本項に係るプログラムは、データを主体とするものとすることができるが、それに限定されない。 In addition, this program may achieve its intended purpose by being executed by a computer alone, or by being executed by a computer together with other programs. Yes, but not limited to them. In the latter case, the program according to this section may be based on data, but is not limited thereto.
(13) (12)項に記載のプログラムをコンピュータ読み取り可能に記録した記録媒体。 (13) A recording medium on which the program described in item (12) is recorded so that it can be read by a computer.
 本明細書の全体を通じて、「記録媒体」という用語は、種々な形式の記録媒体を意味するように解釈することが可能であり、そのような記録媒体は、例えば、フレキシブル・ディスク等の磁気記録媒体、CD、CD-ROM等の光記録媒体、MO等の光磁気記録媒体、ROM等のアンリムーバブル・ストレージ等を含むが、それらに限定されない。 Throughout the specification, the term "recording medium" can be interpreted to mean various types of recording media, such recording media being magnetic recordings such as, for example, flexible discs. It includes, but is not limited to, media, optical recording media such as CDs and CD-ROMs, magneto-optical recording media such as MOs, and unremovable storage such as ROMs.
(21) 走行中に自車両の近傍に位置する近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知システムであって、
 自車両に搭載され、近傍車両を含む周辺車両を自車両に対して相対的に監視することと、自車両の室内の乗員を監視することとのうちの少なくとも一方を行うことが可能な監視部と、
 あおり運転検知プログラムを起動させることにより、前記監視部による周辺車両の監視結果に基づき、近傍車両の運転者が自車両に対して行うあおり運転の有無を判定するあおり運転検知部と、
 自車両に搭載され、前記あおり運転が検知されると、自車両の運転者に対して警告を出す警告部と、
 前記監視部の監視結果に基づき、自車両の走行環境の程度を表す影響変数と、自車両の道路環境の程度を表す影響変数と、自車両の運転者の運転技量の程度を表す影響変数と、自車両の運転者の運転マナーの程度を表す影響変数と、近傍車両の運転者が、自車両を視認した結果、その自車両から受ける威圧感の程度を表す影響変数とのうちの少なくとも一つを検知する影響変数検知部と、
 その検知された少なくとも一つの影響変数に基づき、近傍車両の運転者にあおり運転を誘発する影響度を計算する影響度計算部と、
 前記あおり運転検知部が前記あおり運転検知プログラムを起動させるのに先立って起動要否判定プログラムを起動させることにより、前記計算された影響度が基準値を超えると、前記あおり運転検知部に前記あおり運転検知プログラムを起動させるとともに前記警告部を起動させるが、超えないと、前記あおり運転検知部に前記あおり運転検知プログラムを起動させないことと前記警告部を起動させないこととのうちの少なくとも一方を行う選択的起動部と
 を含むあおり運転検知システム。
(21) A tilting driving detection system that detects tilting driving performed on the own vehicle by a driver of a nearby vehicle located in the vicinity of the own vehicle while driving.
A monitoring unit that is mounted on the own vehicle and can perform at least one of monitoring the surrounding vehicles including nearby vehicles relative to the own vehicle and monitoring the occupants in the vehicle. When,
By activating the road rage detection program, the road rage detection unit determines whether or not the driver of a nearby vehicle performs the road rage on the own vehicle based on the monitoring result of the surrounding vehicle by the monitoring unit.
A warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
Based on the monitoring result of the monitoring unit, an influence variable indicating the degree of the driving environment of the own vehicle, an influence variable indicating the degree of the road environment of the own vehicle, and an influence variable indicating the degree of the driving skill of the driver of the own vehicle. , At least one of an influence variable indicating the degree of driving manners of the driver of the own vehicle and an influence variable indicating the degree of intimidation received from the own vehicle as a result of the driver of a nearby vehicle visually recognizing the own vehicle. An influence variable detector that detects one and
Based on the detected at least one influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
When the calculated degree of influence exceeds the reference value by activating the activation necessity determination program prior to activating the tilt operation detection program by the tilt operation detection unit, the tilt operation detection unit is notified of the tilt. The operation detection program is activated and the warning unit is activated, but if the warning unit is not exceeded, at least one of the tilt operation detection program is not activated and the warning unit is not activated is performed. Road rage detection system including a selective starter.
(22) 走行中に自車両の近傍に位置する近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知システムであって、
 近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知部と、
 自車両に搭載され、前記あおり運転が検知されると、自車両の運転者に対して警告を出す警告部と、
 自車両の運転者の運転技量の程度を表す影響変数を検知する影響変数検知部であって、前記影響変数は、自車両の運転者の運転頻度と、自車両の運転者の累積走行距離とのうちの少なくとも一つを含むものと、
 その検知された影響変数に基づき、近傍車両の運転者にあおり運転を誘発する影響度を計算する影響度計算部と、
 前記計算された影響度が基準値を超えると、前記あおり運転検知部および前記警告部の双方を起動させるが、超えないと、前記あおり運転検知部および前記警告部のうちの少なくとも一方を起動させない選択的起動部と
 を含むあおり運転検知システム。
(22) A tilting driving detection system that detects tilting driving performed on the own vehicle by a driver of a nearby vehicle located in the vicinity of the own vehicle while driving.
A tilting driving detection unit that detects the tilting driving performed by the driver of a nearby vehicle on the own vehicle,
A warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
It is an influence variable detection unit that detects an influence variable indicating the degree of driving skill of the driver of the own vehicle, and the influence variable is the driving frequency of the driver of the own vehicle and the cumulative mileage of the driver of the own vehicle. And one that contains at least one of
Based on the detected influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
When the calculated degree of influence exceeds the reference value, both the tilting operation detection unit and the warning unit are activated, but when the calculated influence level exceeds the reference value, at least one of the tilting operation detection unit and the warning unit is not activated. Road rage detection system including selective starter and.
(23) 走行中に自車両の近傍に位置する近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知システムであって、
 自車両に搭載され、自車両の室内の乗員を撮影することが可能な室内カメラと、
 近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知部と、
 自車両に搭載され、前記あおり運転が検知されると、自車両の運転者に対して警告を出す警告部と、
 近傍車両の運転者が、自車両を視認した結果、その自車両から受ける威圧感の程度を表す影響変数を検知する影響変数検知部であって、前記影響変数は、自車両に同乗している他の乗員の数である他乗員数を含み、当該影響変数検知部は、前記室内カメラの撮影結果を表す信号に基づき、前記他乗者数を検知する他乗員数検知部を含むものと、
 その検知された影響変数に基づき、近傍車両の運転者にあおり運転を誘発する影響度を計算する影響度計算部と、
 前記計算された影響度が基準値を超えると、前記あおり運転検知部および前記警告部の双方を起動させるが、超えないと、前記あおり運転検知部および前記警告部のうちの少なくとも一方を起動させない選択的起動部と
 を含むあおり運転検知システム。
(23) A tilting driving detection system that detects tilting driving performed on the own vehicle by a driver of a nearby vehicle located in the vicinity of the own vehicle while driving.
An indoor camera that is mounted on your vehicle and can take pictures of the occupants inside your vehicle,
A tilting driving detection unit that detects the tilting driving performed by the driver of a nearby vehicle on the own vehicle,
A warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
It is an influence variable detection unit that detects an influence variable indicating the degree of intimidation received from the own vehicle as a result of the driver of a nearby vehicle visually recognizing the own vehicle, and the influence variable is on board the own vehicle. The influence variable detection unit includes the number of other occupants, which is the number of other occupants, and the influence variable detection unit includes the other occupant number detection unit that detects the number of other occupants based on the signal representing the shooting result of the indoor camera.
Based on the detected influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
When the calculated degree of influence exceeds the reference value, both the tilting operation detection unit and the warning unit are activated, but when the calculated influence level exceeds the reference value, at least one of the tilting operation detection unit and the warning unit is not activated. Road rage detection system including selective starter and.
(24) 走行中に自車両の近傍に位置する近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知システムであって、
 自車両に搭載され、近傍車両を含む周辺車両を自車両に対して相対的に監視することと、自車両の室内の乗員を監視することとのうちの少なくとも一方を行うことが可能な監視部と、
 あおり運転検知プログラムを起動させることにより、前記監視部による周辺車両の監視結果に基づき、近傍車両の運転者が自車両に対して、予め定められた複数種類のあおり運転のいずれかを行っているか否かを判定し、それにより、あおり運転を検知するあおり運転検知部と、
 自車両に搭載され、前記あおり運転が検知されると、自車両の運転者に対して警告を出す警告部と、
 前記監視部の監視結果に基づき、自車両の走行環境の程度を表す影響変数と、自車両の道路環境の程度を表す影響変数と、自車両の運転者の運転技量の程度を表す影響変数と、自車両の運転者の運転マナーの程度を表す影響変数と、近傍車両の運転者が、自車両を視認した結果、その自車両から受ける威圧感の程度を表す影響変数とのうちの少なくとも一つを検知する影響変数検知部と、
 その検知された少なくとも一つの影響変数に基づき、近傍車両の運転者にあおり運転を誘発する影響度を計算する影響度計算部と、
 前記あおり運転検知部が前記あおり運転検知プログラムを起動させるのに先立って起動要否判定プログラムを起動させることにより、前記計算された影響度が基準値を超えると、前記あおり運転検知部に前記あおり運転検知プログラムを起動させるが、超えないと、前記あおり運転検知部に前記あおり運転検知プログラムを起動させない選択的起動部と
 を含むあおり運転検知システム。
(24) A tilting driving detection system that detects tilting driving performed on the own vehicle by a driver of a nearby vehicle located in the vicinity of the own vehicle while driving.
A monitoring unit that is mounted on the own vehicle and can perform at least one of monitoring the surrounding vehicles including nearby vehicles relative to the own vehicle and monitoring the occupants in the vehicle. When,
By activating the road rage detection program, whether the driver of a nearby vehicle is performing any of a plurality of predetermined types of road rage on the own vehicle based on the monitoring result of the surrounding vehicle by the monitoring unit. A tilting operation detection unit that determines whether or not it is present and thereby detects tilting operation,
A warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
Based on the monitoring result of the monitoring unit, an influence variable indicating the degree of the driving environment of the own vehicle, an influence variable indicating the degree of the road environment of the own vehicle, and an influence variable indicating the degree of the driving skill of the driver of the own vehicle. , At least one of an influence variable indicating the degree of driving manners of the driver of the own vehicle and an influence variable indicating the degree of intimidation received from the own vehicle as a result of the driver of a nearby vehicle visually recognizing the own vehicle. An influence variable detector that detects one and
Based on the detected at least one influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
When the calculated degree of influence exceeds the reference value by activating the activation necessity determination program prior to activating the tilt operation detection program by the tilt operation detection unit, the tilt operation detection unit is notified of the tilt. A tilting operation detection system that includes a selective activation unit that activates the driving detection program but does not activate the tilting operation detection program if the tilting operation detection unit is not exceeded.
図1は、本発明の例示的な一実施形態に従うあおり運転検知システムであって自車両に搭載されるものを、例示的な使用環境と共に示す斜視図である。FIG. 1 is a perspective view showing a tilting driving detection system according to an exemplary embodiment of the present invention, which is mounted on the own vehicle, together with an exemplary usage environment. 図2は、図1に示すあおり運転検知システムを、同じ自車両に搭載される他のセンサであって当該あおり運転検知システムと共に使用されるものを機能ブロック図で表すとともに、当該あおり運転検知システムが影響度yを複数の影響変数xの合成値として計算し、その影響度yを用いてあおり運転検知処理の許可・禁止を行うためのアルゴリズムを概念的にテキストで表す。FIG. 2 shows the tilting driving detection system shown in FIG. 1 in a functional block diagram of other sensors mounted on the same own vehicle and used together with the tilting driving detection system, and the tilting driving detection system. Calculates the degree of influence y as a composite value of a plurality of influence variables x, and conceptually expresses an algorithm for permitting / prohibiting the road rage detection process using the degree of influence y. 図3は、図2に示すあおり運転検知部によって検知可能なあおり運転の種類と各種類のあおり運転を検知するために使用されるカメラの種類とをそれぞれ概念的に表形式で表すとともに、当該あおり運転検知部によって検知可能な進路妨害を行う前方車両の例示的な挙動と、当該あおり運転検知部によって検知可能な蛇行運転を行う後方車両の例示的な挙動とをそれぞれ概念的に平面図で表す。FIG. 3 conceptually represents the types of road rage that can be detected by the road rage detection unit shown in FIG. 2 and the types of cameras used to detect each type of road rage, and also represents the above. Conceptually a plan view of the exemplary behavior of a vehicle in front that obstructs the course that can be detected by the road rage detection unit and the exemplary behavior of a vehicle behind that that performs meandering driving that can be detected by the road rage detection unit. show. 図4は、図1に示すあおり運転検知システムが影響度yを計算するために当該あおり運転検知システムのコンピュータによって実行される影響度計算プログラムを概念的に表すフローチャートである。FIG. 4 is a flowchart conceptually representing an impact degree calculation program executed by the computer of the tilting operation detection system in order for the tilting operation detection system shown in FIG. 1 to calculate the influence degree y. 図5は、図4に示す影響度計算プログラムの実行によって影響変数xを計算するためのアルゴリズムを概念的にグラフで表す。Figure 5 shows in conceptual graph algorithm for calculating the influence variables x 1 by the execution of the influence degree calculation program shown in FIG. 図6は、図4に示す影響度計算プログラムの実行によって影響変数xを計算するためのアルゴリズムを概念的にグラフで表す。FIG. 6 conceptually graphically represents an algorithm for calculating the influence variable x 2 by executing the influence degree calculation program shown in FIG. 図7は、図4に示す影響度計算プログラムの実行によって影響変数xを計算するためのアルゴリズムを概念的にグラフで表す。Figure 7 shows in conceptual graph algorithm for calculating the influence variables x 3 by the execution of the influence degree calculation program shown in FIG. 図8は、図4に示す影響度計算プログラムの実行によって影響変数xを計算するためのアルゴリズムを概念的にグラフで表す。FIG. 8 conceptually graphically represents an algorithm for calculating the influence variable x 4 by executing the influence degree calculation program shown in FIG. 図9は、図4に示す影響度計算プログラムの実行によって影響変数xを計算するためのアルゴリズムを概念的にグラフで表す。FIG. 9 conceptually graphically represents an algorithm for calculating the influence variable x 5 by executing the influence degree calculation program shown in FIG. 図10は、図2に示す選択的起動部があおり運転検知部を起動させるべきか否かを判定するために当該あおり運転検知システムのコンピュータによって実行される起動要否判定プログラムを概念的に表すフローチャートである。FIG. 10 conceptually represents a start-up necessity determination program executed by the computer of the road rage detection system in order to determine whether or not the selective start unit shown in FIG. 2 should activate the road rage detection unit. It is a flowchart. 図11は、図2に示すあおり運転検知部があおり運転を検知するために当該あおり運転検知システムのコンピュータによって実行される第1あおり運転検知プログラムを概念的に表すフローチャートである。FIG. 11 is a flowchart conceptually representing a first road rage detection program executed by the computer of the road rage detection system in order for the road rage detection unit shown in FIG. 2 to detect the road rage. 図12は、図2に示すあおり運転検知部があおり運転を検知するために当該あおり運転検知システムのコンピュータによって実行される第2あおり運転検知プログラムを概念的に表すフローチャートである。FIG. 12 is a flowchart conceptually representing a second road rage detection program executed by the computer of the road rage detection system in order for the road rage detection unit shown in FIG. 2 to detect the road rage.
 以下、本発明のさらに具体的でかつ例示的な一実施形態を図面に基づいて詳細に説明する。 Hereinafter, a more specific and exemplary embodiment of the present invention will be described in detail with reference to the drawings.
 図1には、本発明の例示的な一実施形態に従うあおり運転検知システム(以下、単に「システム」という。)10であって自車両20に搭載されるものが、そのシステム10に想定される例示的な使用環境と共に斜視図で示されている。 In FIG. 1, a tilting driving detection system (hereinafter, simply referred to as “system”) 10 according to an exemplary embodiment of the present invention, which is mounted on the own vehicle 20, is assumed to be the system 10. It is shown in a perspective view with an exemplary usage environment.
 概略的に説明すれば、システム10は、走行中に自車両20の近傍に位置する近傍車両の運転者が自車両20に対して行うあおり運転を検知ないしは推定するように構成される。図2に示すように、システム10が動作する環境においては、自車両20に加え、前方車両22(前記「近傍車両」の一例)および後方車両24(前記「近傍車両」の別の例)も存在する。それら車両20,22,24は、同じ道路のうちの複数本の走行車線のうちの同じもの(すなわち、走行レーン)を同じ方向に進行している。 Briefly, the system 10 is configured to detect or estimate the tilting operation performed on the own vehicle 20 by the driver of a nearby vehicle located in the vicinity of the own vehicle 20 while traveling. As shown in FIG. 2, in the environment in which the system 10 operates, in addition to the own vehicle 20, the front vehicle 22 (an example of the "neighborhood vehicle") and the rear vehicle 24 (another example of the "neighborhood vehicle") are also included. exist. The vehicles 20, 22, and 24 are traveling in the same direction in the same one (that is, the traveling lane) in a plurality of traveling lanes on the same road.
 図1および図2に示すように、システム10は、自車両20に搭載されるフロントカメラ30(前記「前方カメラ」の一例)およびリアカメラ32(前記「後方カメラ」の一例)を有する。フロントカメラ30は、自車両20の前方およびその周辺を動画(すなわち、一連のフレーム画像)として撮影可能なカメラであり、一方、リアカメラ32は、自車両20の後方およびその周辺を動画として撮影可能なカメラである。 As shown in FIGS. 1 and 2, the system 10 has a front camera 30 (an example of the "front camera") and a rear camera 32 (an example of the "rear camera") mounted on the own vehicle 20. The front camera 30 is a camera capable of capturing the front of the own vehicle 20 and its surroundings as a moving image (that is, a series of frame images), while the rear camera 32 captures the rear of the own vehicle 20 and its surroundings as a moving image. It is a possible camera.
 本実施形態においては、フロントカメラ30およびリアカメラ32が、いずれも、前記「監視部」の一例を構成する。ただし、その「監視部」の別の例は、自車両20の前方を撮影するフロントカメラ30のみであってもよいし、自車両20の後方を撮影するリアカメラ32のみであってもよいし、それ単独で自車両20の全方位を撮影する全方位カメラであってもよい。 In the present embodiment, the front camera 30 and the rear camera 32 both form an example of the "monitoring unit". However, another example of the "monitoring unit" may be only the front camera 30 that captures the front of the own vehicle 20, or only the rear camera 32 that captures the rear of the own vehicle 20. , It may be an omnidirectional camera that captures the omnidirectional image of the own vehicle 20 by itself.
 典型的な一例においては、フロントカメラ30が自車両20のうちフロントウインドウまたはその近傍の内装部品に装着され、一方、リアカメラ32が自車両20のうちリアウインドウまたはその近傍の内装部品に装着される。 In a typical example, the front camera 30 is mounted on the interior component of the own vehicle 20 at or near the front window, while the rear camera 32 is mounted on the interior component of the own vehicle 20 at or near the rear window. NS.
 図2に示すように、システム10は、さらに、フロントカメラ30およびリアカメラ32によってそれぞれ撮影された前方画像および後方画像を実質的にリアルタイムで画面上に表示するディスプレイ40を有する。 As shown in FIG. 2, the system 10 further includes a display 40 that displays a front image and a rear image taken by the front camera 30 and the rear camera 32, respectively, on the screen in substantially real time.
 図2に示すように、システム10は、さらに、自車両20の室内の様子、特に、自車両20に同乗している他の乗員を撮影することが可能な室内カメラ42を有する。室内カメラ42は、例えば、フロントカメラ30に近接して設置され、自車両20の助手席および後部座席に着座している乗員を実質的にリアルタイムで撮影する。 As shown in FIG. 2, the system 10 further includes an indoor camera 42 capable of photographing the inside of the own vehicle 20, in particular, another occupant riding in the own vehicle 20. The indoor camera 42 is installed close to the front camera 30, for example, and photographs the occupants seated in the passenger seat and the rear seat of the own vehicle 20 in substantially real time.
 図2に示すように、システム10は、さらに、信号処理部44を有する。その信号処理部44は、コンピュータ50によって実現される。そのコンピュータ50は、プロセッサ52とメモリ54とを主体として構成される。フロントカメラ30およびリアカメラ32によってそれぞれ撮影された動画(すなわち、一連のフレーム画像)を表すデータは、メモリ54に保存される。 As shown in FIG. 2, the system 10 further includes a signal processing unit 44. The signal processing unit 44 is realized by the computer 50. The computer 50 is mainly composed of a processor 52 and a memory 54. Data representing moving images (that is, a series of frame images) taken by the front camera 30 and the rear camera 32, respectively, are stored in the memory 54.
 なお、図2には、2個のメモリ54が示されているが、第1のメモリ54は、あおり検知のためのプログラムおよびデータが保存される第1メモリを意味し、第2のメモリ54は、フロントカメラ30およびリアカメラ32によってそれぞれ撮影された動画を表すデータが保存される第2メモリを意味する。ただし、それら2種類の情報を同じメモリ54に一緒に保存してもよい。 Although two memories 54 are shown in FIG. 2, the first memory 54 means the first memory in which the program and data for detecting the tilt are stored, and the second memory 54 Means a second memory in which data representing moving images taken by the front camera 30 and the rear camera 32 are stored. However, these two types of information may be stored together in the same memory 54.
 図2に示すように、システム10は、さらに、入力部56と、バッテリ58とを有する。入力部56は、運転者または別の者によって操作され、それにより、必要な情報がシステム10に入力される。 As shown in FIG. 2, the system 10 further includes an input unit 56 and a battery 58. The input unit 56 is operated by the driver or another person, whereby necessary information is input to the system 10.
 入力部56は、システム10に搭載されて運転者によって指で操作されるキーパッドでもよいが、入力部56は、受信機を有し、運転者の通信端末(例えば、スマートフォン)から情報信号が近距離無線方式(例えば、Bluetooth(登録商標)で送信されると、その情報信号を受信して運転者などの操作者から情報を取得するタイプであってもよい。 The input unit 56 may be a keypad mounted on the system 10 and operated by the driver with a finger, but the input unit 56 has a receiver and receives an information signal from the driver's communication terminal (for example, a smartphone). When transmitted by a short-range wireless system (for example, Bluetooth (registered trademark)), the information signal may be received and information may be acquired from an operator such as a driver.
 バッテリ58は、システム10に電気エネルギーを供給する電源の一例であるが、その必要な電気エネルギーは自車両20の電源(図示しないが、例えば車両バッテリ)から供給してもよい。 The battery 58 is an example of a power source that supplies electric energy to the system 10, but the required electric energy may be supplied from a power source of the own vehicle 20 (not shown, for example, a vehicle battery).
 図2に示すように、システム10は、さらに、警告部70を有する。その警告部70は、システム10によってあおり運転が検知されると、自車両20の運転者に対して警告を出すように構成される。 As shown in FIG. 2, the system 10 further has a warning unit 70. The warning unit 70 is configured to give a warning to the driver of the own vehicle 20 when the system 10 detects the tilting operation.
 具体的には、この警告部70は、自車両20の運転者に注意を喚起する警告音を発するためのブザー72と、警告用のメッセージを音声で自車両20の運転者に出力するスピーカ72と、警告用のメッセージを画像で自車両20の運転者に出力するディスプレイ40とを有する。 Specifically, the warning unit 70 has a buzzer 72 for issuing a warning sound that calls attention to the driver of the own vehicle 20, and a speaker 72 that outputs a warning message by voice to the driver of the own vehicle 20. And a display 40 that outputs a warning message as an image to the driver of the own vehicle 20.
 一例においては、上述の2種類の警告用のメッセージが、いずれも、前方車両22によるあおり運転が検知されると、「前方車両の運転者があおり運転を行っている可能性がありますので、より慎重に運転して下さい。」であり、また、後方車両24によるあおり運転が検知されると、例えば、「後方車両の運転者があおり運転を行っている可能性がありますので、より慎重に運転して下さい。」である。 In one example, when the above-mentioned two types of warning messages are both detected when the vehicle in front 22 is driving in a tilted manner, "The driver of the vehicle in front may be driving in a tilted manner. "Please drive carefully." And when the rear vehicle 24 detects the tilting driving, for example, "The driver of the rear vehicle may be driving tilting, so drive more carefully." Please do. "
 このように、あおり運転が検知された車両が前方車両22であるのか後方車両24であるのかによって区別されるように警告用メッセージを作成すれば、自車両20の運転者があおり運転を行っている他車両の位置を正確に意識して早期に運転修正を行うことが可能となり、その結果、近傍車両によるあおり運転が早期に停止するかないしは軽減されることが期待される。 In this way, if a warning message is created so as to distinguish whether the vehicle in which the tilting driving is detected is the front vehicle 22 or the rear vehicle 24, the driver of the own vehicle 20 performs the tilting driving. It is expected that it will be possible to correct the driving at an early stage while being accurately aware of the position of other vehicles, and as a result, the only way to stop the tilting driving by nearby vehicles at an early stage will be reduced.
 なお、図2には、2個のディスプレイ40が示されているが、第1のディスプレイ40は、警告用のメッセージを画像で出力する第1ディスプレイを意味し、第2のディスプレイ40は、フロントカメラ30およびリアカメラ32によってそれぞれ撮影された動画を出力する第2ディスプレイを意味する。ただし、それら2種類の情報を同じディスプレイ40の画面上に、互いに異なる2つの表示領域においてそれぞれ表示してもよい。 Although two displays 40 are shown in FIG. 2, the first display 40 means a first display that outputs a warning message as an image, and the second display 40 is a front display. It means a second display that outputs moving images taken by the camera 30 and the rear camera 32, respectively. However, the two types of information may be displayed on the screen of the same display 40 in two different display areas.
 システム10のハードウエア構成としては、図1に示すように、2個のユニット(すなわち、互いに物理的に独立した2個の構造体)が存在する。第1のユニットは、フロントカメラ30、ディスプレイ40、室内カメラ42、信号処理部44、入力部56およびバッテリ58および警告部70が第1ハウジング内に収容されて構成される。第2のユニットは、リアカメラ32が第2ハウジング内に収容されて構成される。この第2ユニットは、有線または無線で上記第1のユニットに接続される。 As a hardware configuration of the system 10, as shown in FIG. 1, there are two units (that is, two structures physically independent of each other). The first unit includes a front camera 30, a display 40, an indoor camera 42, a signal processing unit 44, an input unit 56, a battery 58, and a warning unit 70 in a first housing. The second unit is configured by housing the rear camera 32 in the second housing. The second unit is connected to the first unit by wire or wirelessly.
 図2に示すように、システム10は、自車両20に搭載される他のセンサを使用する。他のセンサとしては、自車両20の累積走行距離を測定する走行距離計80と、自車両20の駆動源(例えば、内燃機関、電気モータまたはそれらの双方)を起動させるために運転者によって操作される車両スイッチ(図示しない)のオン・オフを検出する車両スイッチセンサ82とを有する。自車両20の駆動源が内燃機関である場合には、前記車両スイッチは、一般に、イグニションスイッチと称される。 As shown in FIG. 2, the system 10 uses another sensor mounted on the own vehicle 20. Other sensors are operated by the driver to activate an odometer 80 that measures the cumulative mileage of the vehicle 20 and a drive source for the vehicle 20 (eg, an internal combustion engine, an electric motor, or both). It has a vehicle switch sensor 82 that detects on / off of a vehicle switch (not shown). When the drive source of the own vehicle 20 is an internal combustion engine, the vehicle switch is generally referred to as an ignition switch.
 他のセンサとして、さらに、時計(例えば、時刻と日付を計測する装置)84と、自車両20の加速度および減速度を検出する加速度センサ86と、自車両の走行速度を車速として検出する車速センサ88とを有する。加速度センサ86に代えて、車速センサ88によって順次検出された複数の車速検出値間の速度差(すなわち速度偏差)から加速度を推定するプログラムを採用することが可能である。 Other sensors include a clock (for example, a device that measures time and date) 84, an acceleration sensor 86 that detects the acceleration and deceleration of the own vehicle 20, and a vehicle speed sensor that detects the traveling speed of the own vehicle as the vehicle speed. Has 88 and. Instead of the acceleration sensor 86, it is possible to adopt a program that estimates the acceleration from the speed difference (that is, the speed deviation) between the plurality of vehicle speed detection values sequentially detected by the vehicle speed sensor 88.
 図2に示すように、信号処理部44は、あおり運転検知部100と、選択的起動部102と、影響度計算部104と、影響変数検知部106とを有する。 As shown in FIG. 2, the signal processing unit 44 includes a road rage detection unit 100, a selective activation unit 102, an influence degree calculation unit 104, and an influence variable detection unit 106.
 概略的に説明すれば、あおり運転検知部100は、起動させられると、フロントカメラ30および/またはリアカメラ32からの画像信号または映像信号に基づき、近傍車両22,24の運転者が自車両20に対して行うあおり運転を検知するためのあおり運転検知処理を行うように構成される。 Briefly, when the tilting driving detection unit 100 is activated, the drivers of the nearby vehicles 22 and 24 will be the own vehicle 20 based on the image signal or the video signal from the front camera 30 and / or the rear camera 32. It is configured to perform a tilting operation detection process for detecting the tilting operation performed on the camera.
 具体的には、あおり運転検知部100は、後述のあおり運転検知プログラムを起動させることにより、前記監視部による周辺車両の監視結果に基づき、近傍車両の運転者が自車両に対して、予め定められた複数種類のあおり運転のいずれかを行っているか否かを判定し、それにより、あおり運転を検知するように構成される。 Specifically, the tilting driving detection unit 100 activates the tilting driving detection program described later, and the driver of a nearby vehicle determines the own vehicle in advance based on the monitoring result of the peripheral vehicle by the monitoring unit. It is configured to determine whether or not one of the plurality of types of tilting operations is being performed, thereby detecting the tilting operation.
<あおり運転検知処理> <Road rage detection processing>
 具体的には、あおり運転検知部100は、起動させられると、図3のうちの左部に表形式で示すように、複数種類のあおり運転を検知することが可能である。 Specifically, when the tilting operation detection unit 100 is activated, it is possible to detect a plurality of types of tilting operation as shown in the table format on the left side of FIG.
 それらあおり運転の種類は、前方車両22によって引き起こされるあおり運転であって少なくともフロントカメラ30を用いて検知されるものと、後方車両24によって引き起こされるあおり運転であって少なくともリアカメラ32を用いて検知されるものとに分類される。 The types of the tilting driving are the tilting driving caused by the front vehicle 22 and detected by at least the front camera 30, and the tilting driving caused by the rear vehicle 24 and detected by using at least the rear camera 32. It is classified as what is done.
<前方車両によるあおり運転の検知> <Detection of tilting driving by the vehicle in front>
 前方車両22によって引き起こされるあおり運転の種類は、前方車両22による進路妨害と、前方車両22による異常接近とに分類される。 The types of road rage caused by the front vehicle 22 are classified into the obstruction of the course by the front vehicle 22 and the abnormal approach by the front vehicle 22.
 前方車両22による進路妨害は、図3のうちの右上部に概略的に平面図で示すように、自車両20の後方を走行中の車両24が、突然加速して自車両20を追い越した後、自車両20のすぐ前方に横入りして自車両20の進路を妨害し、それにより、自車両20の運転者を威嚇する行為である。 The obstruction of the course by the front vehicle 22 occurs after the vehicle 24 traveling behind the own vehicle 20 suddenly accelerates and overtakes the own vehicle 20, as shown in a schematic plan view in the upper right part of FIG. , It is an act of intimidating the driver of the own vehicle 20 by entering in front of the own vehicle 20 and obstructing the course of the own vehicle 20.
 これに対し、前方車両22による異常接近(すなわち、「前方車両接近」)は、自車両20の前方を走行中の前方車両22が意図的に減速して自車両20との間の車間距離を詰めて自車両20に異常に接近し、それにより、自車両20の運転者を威嚇する行為である。 On the other hand, in the abnormal approach by the front vehicle 22 (that is, "front vehicle approach"), the front vehicle 22 traveling in front of the own vehicle 20 intentionally decelerates to reduce the inter-vehicle distance from the own vehicle 20. It is an act of squeezing and approaching the own vehicle 20 abnormally, thereby threatening the driver of the own vehicle 20.
 なお、前方車両22による異常接近は、必ずしも前方車両22によるあおり運転として発生するとは限らず、前方車両22の運転者による正当な急ブレーキによって発生するか、または、自車両20の運転者の不注意によってブレーキ操作タイミングが遅れることによって発生することもある。 It should be noted that the abnormal approach by the front vehicle 22 does not always occur as a tilting operation by the front vehicle 22, but is caused by a legitimate sudden braking by the driver of the front vehicle 22, or the driver of the own vehicle 20 is inattentive. It may occur when the brake operation timing is delayed due to caution.
 あおり運転検知部100は、前方車両22によるそれら2種類のあおり運転を少なくともフロントカメラ30を用いて検知する。 The tilting driving detection unit 100 detects these two types of tilting driving by the vehicle in front 22 by using at least the front camera 30.
<後方車両によるあおり運転の検知> <Detection of tilting driving by a vehicle behind>
 一方、後方車両24によって引き起こされるあおり運転の種類は、後方車両24による蛇行運転と、後方車両24による異常接近とに分類される。 On the other hand, the types of tilting driving caused by the rear vehicle 24 are classified into meandering driving by the rear vehicle 24 and abnormal approach by the rear vehicle 24.
 後方車両24による蛇行運転は、図3のうちの右下部に概略的に平面図で示すように、後方車両24が自車両20のすぐ後方において蛇行運転し、それにより、自車両20の運転者を威嚇する行為である。 In the meandering operation by the rear vehicle 24, the rear vehicle 24 meanders immediately behind the own vehicle 20 as shown in a schematic plan view in the lower right part of FIG. 3, whereby the driver of the own vehicle 20 It is an act that threatens.
 これに対し、後方車両24による異常接近は、後方車両24が急速に自車両20との間の車間距離を詰めて自車両20に異常に接近し、それにより、自車両20の運転者を威嚇する行為である。 On the other hand, in the abnormal approach by the rear vehicle 24, the rear vehicle 24 rapidly closes the distance between the vehicle and the own vehicle 20 and approaches the own vehicle 20 abnormally, thereby threatening the driver of the own vehicle 20. It is an act to do.
 あおり運転検知部100は、後方車両24によるそれら2種類のあおり運転を少なくともリアカメラ32を用いて検知する。 The tilting driving detection unit 100 detects these two types of tilting driving by the rear vehicle 24 by using at least the rear camera 32.
 なお付言するに、あおり運転検知部100は、それら行為のうちの少なくとも一つの行為に代わるかまたはそれら行為に加えて、後方車両24が自車両20との間の車間距離を詰め、その短い車間距離を維持しつつ自車両20を追尾し、それにより、自車両20の運転者を威嚇する行為や、後方車両24が、自車両20と同じ走行車線から逸脱して隣の走行車線に移り、その後、後方車両24であった車両が自車両20の隣に幅寄せし、その状態で後方車両24であった車両が自車両20と並走するという行為を、検知すべきあおり運転として採用してもよい。 In addition, the tilting driving detection unit 100 replaces or in addition to at least one of these actions, the rear vehicle 24 closes the distance between the vehicle and the own vehicle 20, and the short distance between the vehicles is reduced. Tracking the own vehicle 20 while maintaining the distance, thereby intimidating the driver of the own vehicle 20, and the rear vehicle 24 deviating from the same traveling lane as the own vehicle 20 and moving to the adjacent traveling lane. After that, the act of the vehicle that was the rear vehicle 24 moving to the side of the own vehicle 20 and the vehicle that was the rear vehicle 24 running in parallel with the own vehicle 20 in that state was adopted as the tilting operation to be detected. You may.
<影響変数の検知> <Detection of influential variables>
 影響変数検知部106は、自車両20の走行環境の程度(例えば、混雑度、照度、天候)を表す影響変数と、自車両20の道路環境の程度(例えば、走行車線数、道路幅、道路屈曲度)を表す影響変数と、自車両20の運転者の運転技量の程度(例えば、運転経験、累積走行距離、運転頻度、加減速頻度)を表す影響変数と、自車両20の運転者の運転マナーの程度(例えば、追い越し頻度、車線変更頻度、操舵頻度)を表す影響変数と、近傍車両22,24の運転者が、自車両20を視認した結果、その自車両20から受ける威圧感の程度を表す影響変数とのうちの少なくとも一つを検知するように構成される。 The influence variable detection unit 106 has an influence variable representing the degree of the driving environment of the own vehicle 20 (for example, congestion degree, illuminance, weather) and the degree of the road environment of the own vehicle 20 (for example, the number of lanes, the road width, and the road). The influence variable representing the degree of bending), the influence variable representing the degree of driving skill of the driver of the own vehicle 20 (for example, driving experience, cumulative mileage, driving frequency, acceleration / deceleration frequency), and the driver of the own vehicle 20 Influential variables that represent the degree of driving manners (for example, overtaking frequency, lane change frequency, steering frequency), and the intimidating feeling that the drivers of nearby vehicles 22 and 24 receive from the own vehicle 20 as a result of visually recognizing the own vehicle 20. It is configured to detect at least one of the influence variables that represent the degree.
 本実施形態においては、影響変数検知部106が、次に説明する5個の影響変数x,x,x,xおよびxを検知する。 In the present embodiment, the influence variable detection unit 106 detects the five influence variables x 1 , x 2 , x 3 , x 4 and x 5 described below.
:自車両20が走行している道路の混雑度
:自車両20が走行している道路の走行車線数(すなわち、レーン数)
:自車両20の運転者の運転技量
:自車両20の運転者の運転マナー
:自車両20の威圧感
x 1 : Congestion degree of the road on which the own vehicle 20 is traveling x 2 : The number of lanes (that is, the number of lanes) on the road on which the own vehicle 20 is traveling
x 3 : Driving skill of the driver of the own vehicle 20 x 4 : Driving manners of the driver of the own vehicle 20 x 5 : Intimidating feeling of the own vehicle 20
 影響度計算部104は、前記検知された少なくとも一つの影響変数xに基づき、近傍車両22,24の運転者にあおり運転を誘発する影響度yを計算するように構成される。 The influence degree calculation unit 104 is configured to calculate the influence degree y that induces driving by the drivers of the neighboring vehicles 22 and 24 based on the detected at least one influence variable x.
 本実施形態においては、図2のうちの下部にテキストで概念的に表すように、影響度計算部104が影響度yを上述の複数(5個)の影響変数xの合成値として計算する。 In the present embodiment, the influence degree calculation unit 104 calculates the influence degree y as a composite value of the plurality of (five) influence variables x described above, as conceptually expressed in text at the lower part of FIG.
 図4には、システム10のうちの影響変数検知部102が複数の影響変数xを検知してそれら影響変数xから影響度yを影響度計算部104が計算するためにコンピュータ50によって実行される影響度計算プログラムを概念的に表すフローチャートである。 In FIG. 4, the influence variable detection unit 102 of the system 10 detects a plurality of influence variables x, and the influence degree calculation unit 104 calculates the influence degree y from the influence variables x, which is executed by the computer 50. It is a flowchart which conceptually represents an influence degree calculation program.
 図4に示すように、上記影響度計算プログラムの実行が開始されると、まず、ステップS401において、車両スイッチセンサ82を用いて前記車両スイッチがオフからオンに切り換わることが待たれる。前記車両スイッチがオンに切り換わると、ステップS402において、フロントカメラ30およびリアカメラ32が起動させられ、自車両20の前方画像および後方画像の撮影が開始される。 As shown in FIG. 4, when the execution of the influence degree calculation program is started, first, in step S401, it is awaited that the vehicle switch is switched from off to on by using the vehicle switch sensor 82. When the vehicle switch is switched on, the front camera 30 and the rear camera 32 are activated in step S402, and the front image and the rear image of the own vehicle 20 are taken.
 続いて、ステップS403において、それら撮影された前方画像および後方画像がディスプレイ40の画面上に実質的にリアルタイムで表示される。 Subsequently, in step S403, the captured front image and rear image are displayed on the screen of the display 40 in substantially real time.
 その後、ステップS404において、前述の複数の影響変数xが検知される。 After that, in step S404, the above-mentioned plurality of influence variables x are detected.
 一例においては、それら影響変数xが、それぞれ、互いに共通の変域を有するように定義される。この例においては、例えば、いずれの影響変数xも、2値を有する変数として定義されたり、3個以上の離散値を有する変数として定義されたり、下限値と上限値との間を変化し得る連続値を有する変数として定義される。 In one example, these influential variables x are defined to have domains in common with each other. In this example, for example, any influence variable x can be defined as a variable having a binary value, defined as a variable having three or more discrete values, and can vary between a lower limit value and an upper limit value. Defined as a variable with continuous values.
<影響変数xの検知> <Detection of influence variable x 1>
 図5には、この影響度計算プログラムの実行によって影響変数xを計算するためのアルゴリズムが概念的にグラフで表されている。 Figure 5 is an algorithm for calculating the influence variables x 1 by the execution of the influence degree calculation program is represented by a conceptually graph.
 影響変数xは、前述のように、自車両20が現に走行している道路の混雑度bを反映する。一方、その混雑度bは、図5のうちの左側にグラフで表すように、経験則上、自車両20の周辺を自車両20と共に走行している近傍車両の台数aとの間に、その車両台数aが多いほど混雑度bが高いという関係が成立する。 As described above, the influence variable x 1 reflects the congestion degree b 1 of the road on which the own vehicle 20 is actually traveling. On the other hand, the congestion b 1, as represented in the graph on the left side of FIG. 5, the rule of thumb, the surroundings of the vehicle 20 between the number a 1 in the vicinity of vehicles traveling with the vehicle 20 , as its often the number of vehicles a 1 is the degree of congestion b 1 relationship that high is established.
 よって、このステップS404においては、各時刻ごとに、互いに同期して、フロントカメラ30によって撮影されたフレーム画像から他車両を表すオブジェクトが抽出されて他車両の台数mが測定されるとともに、リアカメラ32によって撮影されたフレーム画像から他車両を表すオブジェクトが抽出されて他車両の台数mが測定される。さらに、それら測定された台数mとmとの和が車両台数aとして計算される。 Therefore, in this step S404, objects representing other vehicles are extracted from the frame image taken by the front camera 30 at each time in synchronization with each other, and the number m 1 of other vehicles is measured and the rear is measured. Objects representing other vehicles are extracted from the frame image captured by the camera 32, and the number m 2 of other vehicles is measured. Further, the sum of the measured number m 1 and m 2 is calculated as the number of vehicles a 1.
 さらに、このステップS404においては、車両台数aと混雑度bとの間に予め定められた関係(例えば、近似的な正比例関係)であってメモリ54に記憶されているものに従い、車両台数aの測定値が混雑度bの値に変換される。 Further, in this step S404, in accordance with what is stored in the memory 54 a predetermined relationship (e.g., approximate proportional relationship) between the number of vehicles a 1 and congestion degree b 1, the number of vehicles measurement of a 1 is converted to a value of the congestion degree b 1.
 一方、影響変数xは、図5のうちの右側にグラフで表すように、経験則上、混雑度bとの間に、その混雑度bが高いほど、複数の近傍車両がそれぞれ自由に挙動を変える(例えば、加減速、操舵を行う)ために必要な道路上のスペースが減少し、そのような挙動変更を行うことが困難となり、あおり運転を行うことも困難となるから、影響変数xが低下するという関係が成立する。 On the other hand, the influence variables x 1, as represented in the graph on the right side of FIG. 5, the rule of thumb, between the congestion degree b 1, the higher the degree of congestion b 1, freedom plurality of neighboring vehicles, respectively The space on the road required to change the behavior (for example, acceleration / deceleration, steering) is reduced, it becomes difficult to make such a behavior change, and it becomes difficult to perform a tilting operation. The relationship that the variable x 1 decreases is established.
 よって、このステップS404においては、さらに、混雑度bと影響変数xとの間に予め定められた関係(例えば、近似的な逆比例関係)であってメモリ54に記憶されているものに従い、混雑度bの測定値が影響変数xの値に変換される。 Therefore, in this step S404, further, according to a predetermined relationship (for example, an approximate inverse proportional relationship) between the congestion degree b 1 and the influence variable x 1 stored in the memory 54. , The measured value of the congestion degree b 1 is converted into the value of the influence variable x 1.
 なお付言するに、混雑度bに代わるかまたはそれに加えて、自車両20の周辺の天候の劣悪度を用いてもよい。その天候劣悪度は、それが高いほど(すなわち、豪雨、濃霧、大雪、吹雪、視程が短い天候、視界が狭い天候、運転し難い路面状況を招く天候など、天候が悪いほど)、近傍車両の運転者があおり運転を行う可能性が低いという関係を、影響変数xまたは影響度yとの間に有する。 It is added, in addition to either or alternative to the congestion degree b 1, it may be used in poor degree of weather around the vehicle 20. The higher the degree of bad weather (that is, the worse the weather, such as heavy rain, heavy fog, heavy snow, snowstorm, short visibility, narrow visibility, and difficult road conditions) the relationship that is less likely to perform driving driver tilt, have between the influence variables x 1 or influence y.
 すなわち、天候が悪い場合には、良好である場合に比較し、正常な運転にすらそれなりの慎重さが運転者の車両操縦に求められるため、それにもかかわらずあおり運転を行おうとすると、過重な慎重さが運転者の車両操縦に求められることになり、あおり運転を行うほどの精神的・技能的な余裕がなく、その意欲が減退することになることが期待されるのである。 In other words, when the weather is bad, the driver's vehicle maneuvering is required to be cautious even for normal driving compared to when the weather is good. Carefulness will be required for the driver's vehicle maneuvering, and it is expected that the motivation will be diminished because there is not enough mental and skill margin to drive in a tilted manner.
 さらに付言するに、影響変数検知部106は、天候劣悪度を参照する場合には、例えば、フロントカメラ30またはリアカメラ32が撮影した画像から、そのときの天候を推定してもよいし、または、外部の天候サーバと通信して、自車両20が走行している地点におけるローカルな天候情報を天候サーバから受信してもよい。 Further, when referring to the degree of bad weather, the influence variable detection unit 106 may estimate the weather at that time from, for example, an image taken by the front camera 30 or the rear camera 32. , The local weather information at the point where the own vehicle 20 is traveling may be received from the weather server by communicating with an external weather server.
<影響変数xの検知> <Detection of influence variable x 2>
 図6には、この影響度計算プログラムの実行によって影響変数xを計算するためのアルゴリズムが概念的にグラフで表されている。 FIG. 6 conceptually shows a graph of an algorithm for calculating the influence variable x 2 by executing this influence degree calculation program.
 影響変数xは、前述のように、自車両20が現に走行している道路の走行車線数(すなわち、レーン数)aを反映する。 As described above, the influence variable x 2 reflects the number of lanes (that is, the number of lanes) a 2 of the road on which the own vehicle 20 is actually traveling.
 よって、このステップS404においては、各時刻ごとに、フロントカメラ30および/またはリアカメラ32によって撮影されたフレーム画像から車線ライン(すなわち、白線)を表すオブジェクトが抽出されて車線数aが測定される。 Therefore, in this step S404, for each time, the front camera 30 and / or the lane line from the frame image captured by the rear camera 32 (i.e., white) number of lanes a 2 is extracted objects that represent is measured NS.
 一方、影響変数xは、図6にグラフで表すように、経験則上、車線数aとの間に、その車線数aが多いほど、複数の近傍車両がそれぞれ自由に挙動を変える(例えば、加減速、操舵を行う)ために必要な道路上のスペースが増加し、そのような挙動変更を行うことが容易となり、あおり運転を行うことも容易となるから、影響変数xが上昇するという関係が成立する。 On the other hand, as shown in the graph in FIG. 6 , the influence variable x 2 changes its behavior freely as the number of lanes a 2 increases with the number of lanes a 2 as a rule of thumb. Since the space on the road required for (for example, accelerating / decelerating and steering) increases, it becomes easy to make such a behavior change, and it becomes easy to perform a tilting operation, the influence variable x 2 is set. The relationship of rising is established.
 よって、このステップS404においては、さらに、車線数aと影響変数xとの間に予め定められた関係(例えば、近似的な正比例関係)であってメモリ54に記憶されているものに従い、車線数aの測定値が影響変数xの値に変換される。 Therefore, in this step S404, further, in accordance with what is stored in the memory 54 a predetermined relationship (e.g., approximate proportional relationship) between the number of lanes a 2 and influence variables x 2, measurement of number of lanes a 2 is converted to a value of impact the variable x 2.
 なお付言するに、車線数aに代わるかまたはそれに加えて、自車両20が走行している道路の曲線度(または曲率半径や屈曲度)を用いてもよい。その道路曲線度は、それが大きいほど(すなわち、曲率が大きいほど、曲率半径が小さいほど)、近傍車両の運転者があおり運転を行う可能性が低いという関係を、影響変数xまたは影響度yとの間に有する。 It is added, in addition to either or replace the number of lanes a 2, may be used curve of the road on which the vehicle 20 is traveling (or radius of curvature and tortuosity). The road curve degree, the more it is large (i.e., the larger the curvature, the more the radius of curvature is small), the relationship of is less likely to perform driving driver near the vehicle tilt, influence variable x 2 or influence It has between y.
 すなわち、道路が曲線である場合には、直線である場合に比較し、正常な運転にすらそれなりの慎重さが運転者の車両操縦に求められるため、それにもかかわらずあおり運転を行おうとすると、過重な慎重さが運転者の車両操縦に求められることになり、あおり運転を行うほどの精神的・技能的な余裕がなく、その意欲が減退することになることが期待されるのである。 In other words, when the road is curved, the driver's vehicle maneuvering is required to be cautious even for normal driving compared to when the road is straight. Excessive caution will be required for the driver's vehicle maneuvering, and it is expected that the motivation will be diminished because there is not enough mental and skill margin to drive in a tilted manner.
<影響変数xの検知> <Detection of influence variable x 3>
 図7には、この影響度計算プログラムの実行によって影響変数xを計算するためのアルゴリズムが概念的にグラフで表されている。 Figure 7 is an algorithm for calculating the influence variables x 3 by the execution of the influence degree calculation program is represented by a conceptually graph.
 影響変数xは、前述のように、自車両20の運転者の運転技量bを反映する。その運転技量bの程度は、経験則上、その運転者の累積走行距離a31と、その運転者の運転頻度a32(回/連続運転時間または回/週)と、その運転者が走行中に行う加減速の頻度a33(回/連続走行距離または回/連続運転時間)とを反映する。 As described above, the influence variable x 3 reflects the driving skill b 3 of the driver of the own vehicle 20. As a rule of thumb, the degree of the driving skill b 3 is the cumulative mileage a 31 of the driver, the driving frequency a 32 (times / continuous driving time or times / week) of the driver, and the driving of the driver. reflecting the acceleration and deceleration of the frequency a 33 (times / continuous running distance or times / continuous operation time) carried out inside.
 具体的には、図7のうちの左下部に3つのグラフでそれぞれ表すように、運転技量bは、累積走行距離a31(km)が長いほど上昇し、また、運転頻度a32が多いほど上昇し、また、加減速頻度a33が少ないほど上昇する。運転者が不慣れであるほど、走行中に、不要な加減速が増える傾向があり、よって、加減速頻度a33が少ないほど、運転者の運転技量bが高いことを表す。 Specifically, as shown in the three graphs at the lower left of FIG. 7, the driving skill b 3 increases as the cumulative mileage a 31 (km) increases, and the driving frequency a 32 increases. The more the acceleration / deceleration frequency a 33 decreases, the higher the increase. As the driver is unfamiliar, during running, there is a tendency to unwanted acceleration or deceleration increases, therefore, the smaller the acceleration frequency a 33, indicating that the high driving skill b 3 of the driver.
 よって、このステップS404においては、走行距離計80を用いて累積走行距離a31が測定される。さらに、1回の単位時間が時計84を用いて測定され、その単位時間当たりに車両スイッチセンサ82が検知したオフ(運転終了)からオン(運転開始)への遷移の回数が運転頻度a32として測定される。さらに、1回の単位距離が走行距離計80を用いて測定され、その単位距離当たりに加速度センサ86が検知した自車両20の加減速(すなわち、基準値以上の加速度または減速度)の回数が加減速頻度a33として測定される。 Therefore, in this step S404, the cumulative mileage a 31 is measured using the odometer 80. Further, one unit time is measured using the clock 84, and the number of transitions from off (end of operation) to on (start of operation) detected by the vehicle switch sensor 82 per unit time is defined as the operation frequency a 32. Be measured. Further, one unit distance is measured using the mileage meter 80, and the number of accelerations / decelerations (that is, acceleration or deceleration above the reference value) of the own vehicle 20 detected by the acceleration sensor 86 per unit distance is It is measured as the acceleration / deceleration frequency a 33.
 さらに、このステップS404においては、累積走行距離a31の測定値と、運転頻度a32の測定値と、加減速頻度a33の測定値との合成値として運転技量bが計算される。すなわち、運転技量bは、累積走行距離a31(km)の測定値と、運転頻度a32の測定値と、加減速頻度a33の測定値とをそれぞれ入力変数とする関数fとして記述されるのである。 Further, in this step S404, the measured value of the cumulative traveling distance a 31, the measured value of the operating frequency a 32, the driving skill b 3 is calculated as a composite value of a measure of acceleration and deceleration frequency a 33. That is, the driving skill b 3 is described as a function f in which the measured value of the cumulative mileage a 31 (km), the measured value of the driving frequency a 32 , and the measured value of the acceleration / deceleration frequency a 33 are input variables, respectively. It is.
 図7のうちの最上部には、その関数fを記述する式の一例が示されており、それは、重み付き和を計算するための式である。ここに、累積走行距離a31(km)の測定値に乗じられる係数k31は正の定数、運転頻度a32の測定値に乗じられる係数k32も正の定数、加減速頻度a33の測定値に乗じられる係数k33も正の定数である。 At the top of FIG. 7, an example of an equation describing the function f is shown, which is an equation for calculating the weighted sum. Here, the coefficient k 31 multiplied by the measured value of the cumulative mileage a 31 (km) is a positive constant, the coefficient k 32 multiplied by the measured value of the driving frequency a 32 is also a positive constant, and the acceleration / deceleration frequency a 33 is measured. The coefficient k 33 to be multiplied by the value is also a positive constant.
 一方、影響変数xは、図7のうちの右下部にグラフで表すように、経験則上、運転技量bとの間に、その運転技量bが高いほど、自車両20の挙動が近傍車両の運転者に不快感を与える可能性が低いから、影響変数xが低下するという関係が成立する。 Meanwhile, the influence variables x 3, as represented graphically in the bottom right of FIG. 7, the rule of thumb, between the driving skill b 3, the higher its driving technique b 3, the behavior of the vehicle 20 is because there is less likely to feel uncomfortable to the driver in the vicinity of the vehicle, the impact variable x 3 is established a relationship of a decrease.
 よって、このステップS404においては、さらに、運転技量bと影響変数xとの間に予め定められた関係(例えば、近似的な逆比例関係)であってメモリ54に記憶されているものに従い、運転技量bの測定値が影響変数xの値に変換される。 Therefore, in this step S404, further, according to a predetermined relationship (for example, an approximate inverse proportional relationship) between the driving skill b 3 and the influence variable x 3 stored in the memory 54. , The measured value of the driving skill b 3 is converted into the value of the influence variable x 3.
<影響変数xの検知> <Detection of influence variable x 4>
 図9には、この影響度計算プログラムの実行によって影響変数xを計算するためのアルゴリズムが概念的にグラフで表されている。 Figure 9 is an algorithm for calculating the influence variables x 4 by the execution of the influence degree calculation program is represented by a conceptually graph.
 影響変数xは、前述のように、自車両20の運転者の運転マナーbを反映する。一方、その運転マナーbは、図9のうちの左側にグラフで表すように、経験則上、自車両20が近傍車両を追い越すパッシング頻度a(回数/走行距離または回数/運転時間)との間に、そのパッシング頻度aが高いほど運転マナーbが悪いという関係が成立する。 As described above, the influence variable x 4 reflects the driving manner b 4 of the driver of the own vehicle 20. On the other hand, the driving manners b 4, as represented in the graph on the left side of FIG. 9, the heuristic, the passing frequency a 4 to the vehicle 20 overtakes the vicinity vehicle (number / distance traveled or number / operating time) during the relationship that the higher the passing frequency a 4 are driving manners b 4 bad is established.
 よって、このステップS404においては、各時刻ごとに、フロントカメラ30および/またはリアカメラ32によって撮影されたフレーム画像から他車両を表すオブジェクトがターゲット車両として抽出される。さらに、その選択されたターゲット車両の走行軌跡が例えば2次元極座標系上で、自車両20に対して相対的に測定される。 Therefore, in this step S404, an object representing another vehicle is extracted as a target vehicle from the frame image taken by the front camera 30 and / or the rear camera 32 at each time. Further, the traveling locus of the selected target vehicle is measured relative to the own vehicle 20 on, for example, a two-dimensional polar coordinate system.
 さらに、メモリ54上で、ターゲット車両の位置と自車両20の位置とがそれぞれ、前記2次元極座標系上にマッピングされ、自車両20がターゲット車両を追い越したか否かが判定される。さらに、1回の単位距離が走行距離計80を用いて測定され、その単位距離当たりに前記追い越しすなわちパッシングが発生した回数がパッシング頻度aとして測定される。 Further, on the memory 54, the position of the target vehicle and the position of the own vehicle 20 are mapped on the two-dimensional polar coordinate system, respectively, and it is determined whether or not the own vehicle 20 has overtaken the target vehicle. Furthermore, once a unit distance is measured using the odometer 80, the number of times that the overtaking i.e. passing occurs on the per unit distance is measured as a passing frequency a 4.
 さらに、このステップS404においては、パッシング頻度aと運転マナーbとの間に予め定められた関係(例えば、近似的な逆比例関係)であってメモリ54に記憶されているものに従い、パッシング頻度aの測定値が運転マナーbの値に変換される。 Further, in this step S404, in accordance with what is stored in the memory 54 a predetermined relationship (e.g., approximate inverse proportional relationship) between the passing frequency a 4 and driving manners b 4, passing measurement frequency a 4 is converted to a value of driving manners b 4.
 一方、影響変数xは、図8のうちの右側にグラフで表すように、経験則上、運転マナーbとの間に、その運転マナーbが良いほど、自車両20の挙動が近傍車両の運転者を不愉快にさせる可能性が低下し、あおり運転が発生する可能性も低下するから、影響変数xが低下するという関係が成立する。 On the other hand, the influence variables x 4, as represented in the graph on the right side of FIG. 8, on the empirical rule, between the driving manners b 4, as its driving manners b 4 is good, near the behavior of the vehicle 20 is reduces the possibility that upset the driver of the vehicle, since reckless driving is also reduced can occur, influence variable x 4 is established a relationship of a decrease.
 よって、このステップS404においては、さらに、運転マナーbと影響変数xとの間に予め定められた関係(例えば、近似的な逆比例関係)であってメモリ54に記憶されているものに従い、運転マナーbの測定値が影響変数xの値に変換される。 Therefore, in this step S404, further, in accordance with what is stored in the memory 54 a predetermined relationship (e.g., approximate inverse proportional relationship) between the driving manners b 4 and influence variables x 4 , measurement of driving manners b 4 is converted to a value of impact the variable x 4.
 なお付言するに、本実施形態においては、運転マナーbが自車両20のパッシング頻度aに基づいて判定されるが、それに代えてまたはそれに加えて、自車両20の車線変更の頻度に基づいて判定してもよい。経験則上、自車両20のパッシング頻度が高いほど、また、車線変更の頻度が高いほど、あおり運転の被害に合う事例が多いからである。 It is added, in the present embodiment, the driving manners b 4 is determined based on the passing frequency a 4 of the vehicle 20, in place of or in addition to it, based on the frequency of the lane change of the vehicle 20 May be determined. This is because, as a rule of thumb, the higher the passing frequency of the own vehicle 20 and the higher the frequency of lane change, the more cases the damage of the tilting driving is met.
<影響変数xの検知> <Detection of influence variable x 5>
 図9には、この影響度計算プログラムの実行によって影響変数xを計算するためのアルゴリズムが概念的にグラフで表されている。 In FIG. 9, the algorithm for calculating the influence variable x 5 by executing this influence degree calculation program is conceptually represented in a graph.
 自車両20が軽自動車であり、かつ、国産車であり、かつ、他の乗員が同乗していない場合、すなわち、自車両20が近傍車両の運転者に与える威圧感が少ない場合に、自車両20の挙動が少しでも近傍車両の運転者に不快感を与えると、その近傍車両の運転者は、自車両20の運転者を見下して憤慨し、あおり運転によって仕返ししようとする心理が働く事例が少なからず観察される。 When the own vehicle 20 is a light vehicle, is a domestic vehicle, and is not accompanied by another occupant, that is, when the own vehicle 20 gives less intimidation to the driver of a nearby vehicle, the own vehicle When the behavior of 20 makes the driver of a nearby vehicle uncomfortable, the driver of the nearby vehicle looks down on the driver of the own vehicle 20 and resents it, and there is a case where the psychology of trying to revenge by tilting driving works. Not a little observed.
 自車両20が近傍車両の運転者に与える威圧感が強い場合には、弱い場合より、近傍車両によるあおり運転という攻撃に対して自車両20の運転者が反撃してくる可能性が高いと近傍車両の運転者が予測する傾向があるため、近傍車両の運転者はあおり運転を自ずと自制することが期待される。 When the feeling of intimidation given to the driver of the nearby vehicle by the own vehicle 20 is strong, it is more likely that the driver of the own vehicle 20 will counterattack against the attack of tilting driving by the nearby vehicle than when it is weak. Since the driver of the vehicle tends to make a prediction, it is expected that the driver of a nearby vehicle will naturally restrain the driving.
 したがって、自車両20の実際の挙動とは無関係に、自車両20という存在(例えば、自車両20の外観、サイズ、車種、同乗者数など、自車両20の威圧感を引き起こすファクタ)自体が、近傍車両の運転者を刺激してあおり運転を誘発する可能性がある。 Therefore, regardless of the actual behavior of the own vehicle 20, the existence of the own vehicle 20 (for example, factors that cause the intimidating feeling of the own vehicle 20, such as the appearance, size, vehicle type, and number of passengers of the own vehicle 20) itself. It may stimulate the driver of a nearby vehicle and induce road rage.
 そこで、影響変数xは、前述のように、自車両20が近傍車両の運転者に心理的に与える威圧感bを反映する。その威圧感bの程度は、経験則上、自車両20が軽自動車である場合に普通自動車である場合より低く、また、自車両20が国産自動車である場合に外国製自動車である場合より低く、また、自車両20の他の乗員数が0である場合に0ではない場合より低い。 Therefore, as described above, the influence variable x 5 reflects the intimidating feeling b 5 that the own vehicle 20 psychologically gives to the driver of the nearby vehicle. The extent of the intimidating b 5 is, on the rule of thumb, lower than when the vehicle 20 is an ordinary motor vehicle in the case of mini-cars, also, than the case of a foreign-made car when the vehicle 20 is in the domestic automobile It is low, and when the number of other occupants of the own vehicle 20 is 0, it is lower than when it is not 0.
 よって、威圧感bは、自車両20が軽自動車である場合に0、それ以外の場合に1となる変数a51と、自車両20が国産自動車である場合に0、それ以外の場合に1となる変数a52と、自車両20の他の乗員数(すなわち、運転者以外の乗員の数)に応じて増加する変数a53とを反映する。 Therefore, the intimidating feeling b 5 is a variable a 51 that is 0 when the own vehicle 20 is a light vehicle and 1 in other cases, 0 when the own vehicle 20 is a domestic vehicle, and 0 in other cases. It reflects the variable a 52 that becomes 1 and the variable a 53 that increases according to the number of other occupants of the own vehicle 20 (that is, the number of occupants other than the driver).
 具体的には、図9のうちの左下部に3つのグラフでそれぞれ表すように、威圧感bは、変数a51に応じて増加し、また、変数a52に応じて増加し、また、変数a53に応じて増加する。 Specifically, as shown in the three graphs at the lower left of FIG. 9, the intimidating feeling b 5 increases according to the variable a 51 , increases according to the variable a 52 , and also increases. It increases according to the variable a 53.
 よって、このステップS404においては、自車両20の車種について運転者または他の者によって入力部56に入力された情報から変数a51の値が決定され、また、自車両20の生産国について運転者または他の者によって入力部56に入力された情報から変数a52の値が決定され、また、室内カメラ42によって撮影された室内画像データから他の乗員を表すオブジェクトが抽出され、その抽出されたオブジェクトの数である乗員数として変数a53の値が測定される。 Therefore, in this step S404, the value of the variable a 51 is determined from the information input to the input unit 56 by the driver or another person for the vehicle type of the own vehicle 20, and the driver for the country of origin of the own vehicle 20. Alternatively, the value of the variable a 52 is determined from the information input to the input unit 56 by another person, and an object representing another occupant is extracted from the indoor image data taken by the indoor camera 42, and the extracted object is extracted. The value of the variable a 53 is measured as the number of occupants, which is the number of objects.
 なお、自車両20にスマートスピーカ(すなわち、AIが搭載されたスピーカ)であって複数の話者が存在する場合に、それぞれの音声を認識することにより、各話者を他の話者から識別する能力を有するものが搭載される場合がある。この場合には、自車両20の乗員数を、室内カメラ42に代えて前記スマートスピーカを用いることにより、そのスマートスピーカによって識別された話者の数から1を引いた値として、変数a53の値を測定してもよい。このように、影響変数検知部106が利用する「監視部」の一例は、カメラ30,32などの画像認識装置であっても、スマートスピーカなどの音声認識装置であってもよい。 When the own vehicle 20 is a smart speaker (that is, a speaker equipped with AI) and there are a plurality of speakers, each speaker is identified from other speakers by recognizing each voice. Something that has the ability to do so may be installed. In this case, the number of occupants of the own vehicle 20 is set to the value obtained by subtracting 1 from the number of speakers identified by the smart speaker by using the smart speaker instead of the indoor camera 42, in the variable a 53 . The value may be measured. As described above, an example of the "monitoring unit" used by the influence variable detection unit 106 may be an image recognition device such as cameras 30 and 32, or a voice recognition device such as a smart speaker.
 また、これに代えて、変数a53の値は、運転者または他の者によって入力部56に入力された情報(例えば、同乗者数)から決定してもよい。 Alternatively, the value of the variable a 53 may be determined from the information (for example, the number of passengers) input to the input unit 56 by the driver or another person.
 さらに、このステップS404においては、変数a51の測定値と、変数a52の測定値と、変数a53の測定値との合成値として威圧感bが計算される。すなわち、威圧感bは、変数a51の測定値と、変数a52の測定値と、変数a53の測定値とをそれぞれ入力変数とする関数gとして記述されるのである。 Further, in this step S404, the intimidating feeling b 5 is calculated as a combined value of the measured value of the variable a 51 , the measured value of the variable a 52 , and the measured value of the variable a 53. That is, the intimidating feeling b 5 is described as a function g in which the measured value of the variable a 51 , the measured value of the variable a 52 , and the measured value of the variable a 53 are input variables, respectively.
 図9のうちの最上部には、その関数gを記述する式の一例が示されており、それは、重み付き和を計算するための式である。ここに、変数a51の測定値に乗じられる係数k51は正の定数、変数a52の測定値に乗じられる係数k52も正の定数、変数a53の測定値に乗じられる係数k53も正の定数である。 At the top of FIG. 9, an example of an equation describing the function g is shown, which is an equation for calculating the weighted sum. Here, the coefficient k 51 multiplied by the measured value of the variable a 51 is a positive constant, the coefficient k 52 multiplied by the measured value of the variable a 52 is also a positive constant, and the coefficient k 53 multiplied by the measured value of the variable a 53 is also It is a positive constant.
 一方、影響変数xは、図9のうちの右下部にグラフで表すように、経験則上、威圧感bとの間に、その威圧感bが高いほど、自車両20の挙動が近傍車両の運転者に不快感を与える可能性が低いから、影響変数xが低下するという関係が成立する。 Meanwhile, the influence variables x 5, as represented graphically in the bottom right of FIG. 9, the rule of thumb, between the intimidating b 5, the higher its intimidating b 5, the behavior of the vehicle 20 is Since it is unlikely to cause discomfort to the driver of a nearby vehicle, the relationship that the influence variable x 5 is reduced is established.
 よって、このステップS404においては、さらに、威圧感bと影響変数xとの間に予め定められた関係(例えば、近似的な逆比例関係)であってメモリ54に記憶されているものに従い、威圧感bの測定値が影響変数xの値に変換される。 Therefore, in this step S404, further, according to a predetermined relationship (for example, an approximate inverse proportional relationship) between the intimidating feeling b 5 and the influence variable x 5 and stored in the memory 54. , The measured value of the intimidating feeling b 5 is converted into the value of the influence variable x 5.
 以上の説明から明らかなように、本実施形態においては、コンピュータ50のうち、ステップS404を実行するための部分が、影響変数検知部106を構成している。 As is clear from the above description, in the present embodiment, the portion of the computer 50 for executing step S404 constitutes the influence variable detection unit 106.
 以上のようにして5個の影響変数x-xが検知されると、続いて、図4に示すように、ステップS405において、それら影響変数x-xの合成値として影響度yが計算される。図2には、その計算式の一例として、それら影響変数x-xの単純和として影響度yが計算されることが示されている。これに代えて、それら影響変数x-xの重み付き和として影響度yを計算してもよい。いずれにしても、その計算された影響度yはメモリ54に保存される。 When the five influence variables x 1- x 5 are detected as described above, then, as shown in FIG. 4, in step S405, the degree of influence y is used as a composite value of the influence variables x 1- x 5. Is calculated. FIG. 2 shows that the degree of influence y is calculated as a simple sum of the influence variables x 1 to x 5 as an example of the calculation formula. Instead of this, the degree of influence y may be calculated as a weighted sum of those influence variables x 1 − x 5. In any case, the calculated influence degree y is stored in the memory 54.
 続いて、ステップS406において、車両スイッチセンサ82を用いて前記車両スイッチがオンからオフに切り換わったか否かが判定される。前記車両スイッチがオンのままであると、ステップS406の判定がNOとなり、ステップS402に戻る。これに対し、前記車両スイッチがオフに切り換わると、ステップS406の判定がYESとなり、ステップS407において、フロントカメラ30およびリアカメラ32が停止させられ、自車両20の前方画像および後方画像の撮影が終了する。 Subsequently, in step S406, it is determined whether or not the vehicle switch is switched from on to off by using the vehicle switch sensor 82. If the vehicle switch remains on, the determination in step S406 becomes NO, and the process returns to step S402. On the other hand, when the vehicle switch is switched off, the determination in step S406 becomes YES, and in step S407, the front camera 30 and the rear camera 32 are stopped, and the front image and the rear image of the own vehicle 20 are taken. finish.
<あおり運転検知処理の選択的起動> <Selective activation of road rage detection processing>
 選択的起動部102は、前記計算された影響度yが基準値yを超えると、あおり運転検知部100および警告部70の双方を起動させるが、超えないと、あおり運転検知部100および警告部70のうちの少なくとも一方を起動させないように構成される。これにより、あおり運転の誤検知頻度および誤警報頻度が軽減される。 When the calculated influence degree y exceeds the reference value y 0 , the selective starting unit 102 activates both the tilting operation detection unit 100 and the warning unit 70, but if it does not exceed, the tilting operation detection unit 100 and the warning It is configured so that at least one of the parts 70 is not activated. This reduces the frequency of false detections and false alarms in road rage.
 影響度yが基準値yを超えない場合に、あおり運転検知部100を起動させない態様を採用すれば、必然的に警告部70も起動させられないから、あおり運転の誤検知頻度が軽減される。 When the degree of influence y does not exceed the reference value y 0, by adopting a manner which does not start the reckless driving detecting unit 100, since not necessarily warning unit 70 also activates, erroneous detection frequency of reckless driving is reduced NS.
 これに対し、影響度yが基準値yを超えない場合に、あおり運転検知部100は起動させるが、警告部70は起動させない態様を採用すれば、たとえあおり運転検知部100によって誤検知が発生しても、そのことが警告部70を介して運転者に知られることが防止され、結局、あおり運転の誤検知頻度が軽減される。 On the other hand, if the degree of influence y does not exceed the reference value y 0 , the tilting operation detection unit 100 is activated, but the warning unit 70 is not activated, even if the tilting operation detection unit 100 causes an erroneous detection. Even if it occurs, it is prevented from being known to the driver via the warning unit 70, and eventually, the frequency of false detection of the tilting operation is reduced.
 本実施形態においては、図2のうちの下部にテキストで概念的に表すように、選択的起動部102が影響度yと基準値yとを用いてあおり運転検知処理の許可・禁止を行う。ここに、基準値yは、運転者による変更が不可能なデフォールト値であるが、運転者が入力部56を用いて変更することが可能な可変値として定義してもよい。いずれにしても、基準値yは、メモリ54に保存される。 In the present embodiment, as conceptually represented by text at the bottom of FIG. 2, the selective activation unit 102 permits / prohibits the road rage detection process using the influence degree y and the reference value y 0. .. Here, the reference value y 0 is a default value that cannot be changed by the driver, but may be defined as a variable value that can be changed by the driver using the input unit 56. In any case, the reference value y 0 is stored in the memory 54.
 図10には、選択的起動部102があおり運転検知部100(すなわち、図11に示す第1あおり運転検知プログラムおよび図12に示す第2あおり運転検知プログラム)を起動させるべきか否かを判定するためにコンピュータ50によって実行される起動要否判定プログラムが概念的に表すフローチャートで表されている。 In FIG. 10, the selective activation unit 102 determines whether or not the tilt operation detection unit 100 (that is, the first tilt operation detection program shown in FIG. 11 and the second tilt operation detection program shown in FIG. 12) should be activated. The start-up necessity determination program executed by the computer 50 is represented by a flowchart conceptually represented.
 この起動要否判定プログラムは、前記車両スイッチがオン状態にある期間、繰返し実行される。選択的起動部102は、あおり運転検知部100が前記第1および第2あおり運転検知プログラムを起動させるのに先立ってこの起動要否判定プログラムを起動させる。 This activation necessity determination program is repeatedly executed while the vehicle switch is in the ON state. The selective activation unit 102 activates the activation necessity determination program before the tilt operation detection unit 100 activates the first and second tilt operation detection programs.
 この起動要否判定プログラムの各回の実行時には、まず、ステップS1001において、最新の影響度yおよび基準値yがメモリ54から読み込まれる。 At each execution of the start necessity determination program, first, in step S1001, the latest influence degree y and the reference value y 0 are read from the memory 54.
 次に、ステップS1002において、影響度yが基準値yより大きい(すなわち、y>yが成立する)か否かが判定される。今回は、y=yまたはy<yであると仮定すると、その判定がNOとなり、ステップS1003において、あおり運転検知処理が停止状態にあればそれに維持され、または、実行状態にあれば、それから停止状態に遷移させられる(すなわち、停止させられる)。 Next, in step S1002, it is determined whether or not the degree of influence y is larger than the reference value y 0 (that is, y> y 0 is satisfied). This time, assuming that y = y 0 or y <y 0 , the determination is NO, and in step S1003, if the road rage detection process is in the stopped state, it is maintained, or if it is in the executed state, it is maintained. It is then transitioned to a stopped state (ie, stopped).
 これに対し、影響度yが基準値yより大きい場合には、ステップS1002の判定がYESとなり、続いて、ステップS1004において、あおり運転検知処理が実行状態にあればそれに維持され、または、停止状態にあれば、それから実行状態に遷移させられる(すなわち、起動させられる)。 On the other hand, when the degree of influence y is larger than the reference value y 0 , the determination in step S1002 is YES, and subsequently, in step S1004, if the tilting operation detection process is in the execution state, it is maintained or stopped. If it is in a state, it can then be transitioned to the running state (ie, activated).
 この起動要否判定プログラムは、その後、ステップS1001に戻る。 This activation necessity determination program then returns to step S1001.
<あおり運転検知処理> <Road rage detection processing>
<前方車両によるあおり運転の検知> <Detection of tilting driving by the vehicle in front>
 図11には、前方車両22によるあおり運転を検知するためにコンピュータ50によって実行される第1あおり運転検知プログラムが概念的に表すフローチャートで表されている。この第1あおり運転検知プログラムの起動および停止は、図10に示す起動要否判定プログラムの判定結果に連動する。 FIG. 11 is represented by a flowchart conceptually represented by the first tilting driving detection program executed by the computer 50 to detect the tilting driving by the vehicle in front 22. The activation and stop of the first tilting operation detection program are linked to the determination result of the activation necessity determination program shown in FIG.
 この第1あおり運転検知プログラムが起動させられると、まず、ステップS1101において、フロントカメラ30によって撮影された動画であって一連のフレーム画像が各時刻に関連付けてメモリ54に保存される。具体的には、フロントカメラ30によって撮影された各フレーム画像を表す各フロントカメラ画像信号(例えば、2次元画素データ)が各時刻に関連付けてメモリ54に保存される。 When this first tilting operation detection program is activated, first, in step S1101, a series of frame images of moving images taken by the front camera 30 are stored in the memory 54 in association with each time. Specifically, each front camera image signal (for example, two-dimensional pixel data) representing each frame image captured by the front camera 30 is stored in the memory 54 in association with each time.
 次に、ステップS1102-1105において、前方車両接近検知処理が行われる。 Next, in step S1102-1105, the front vehicle approach detection process is performed.
 具体的には、まず、ステップS1102において、フロントカメラ30によって撮影された複数のフレーム画像のうち代表的なものを表すフロントカメラ画像信号がメモリ54から取り込まれる。 Specifically, first, in step S1102, a front camera image signal representing a representative one of the plurality of frame images captured by the front camera 30 is taken in from the memory 54.
 次に、ステップS1103において、その取り込まれたフロントカメラ画像信号に対し、所定の画像処理が実行される。 Next, in step S1103, predetermined image processing is executed on the captured front camera image signal.
 具体的には、そのフロントカメラ画像信号に基づき、前方車両22を表す画像が他の部分から切り出されてターゲット画像として抽出され、そのターゲット画像に対する画像処理(例えば、実際のターゲットの幾何学的特徴との比較、透視投影変換)により、前方車両22と自車両20との間の前方車間距離Dfが測定される。 Specifically, based on the front camera image signal, an image representing the vehicle in front 22 is cut out from other parts and extracted as a target image, and image processing on the target image (for example, a geometric feature of an actual target) is performed. The distance Df between the vehicle in front and the vehicle in front 20 is measured by the comparison with the vehicle (perspective projection conversion).
 一例においては、前記ターゲット画像からナンバープレートの画像が抽出され、そのナンバープレート画像の幾何学的特徴と、実際のナンバープレートの幾何学的特徴とが比較され、その比較結果から、投影変換法などを用いることにより、前方車間距離Dfを推定してもよい。その推定手法の一例が、特開2015-215738号公報に開示されている。 In one example, an image of the license plate is extracted from the target image, the geometrical features of the license plate image are compared with the geometrical features of the actual license plate, and from the comparison result, a projection conversion method or the like is performed. May be used to estimate the distance Df between vehicles ahead. An example of the estimation method is disclosed in Japanese Patent Application Laid-Open No. 2015-215738.
 ここに、車両のナンバープレートは、特定の絶対寸法が既知であるかまたは規格化されている対象物の一例であり、他の例として、例えば、1本の走行車線の両側を仕切る平行な2本の白線があり、それら2本の白線間の距離は既知である。 Here, the license plate of a vehicle is an example of an object whose specific absolute dimensions are known or standardized, and as another example, for example, two parallel parts separating both sides of one traveling lane. There are white lines in the book, and the distance between those two white lines is known.
 なお、前方車間距離Dfは、フロントカメラ30に代えて、自車両20に搭載される前方レーダを用いて取得してもよい。ここに、「レーダ」は、発信機と受信機とを有し、発信機から発信された電磁波のうち、対象物から反射した部分を受信機が受信し、その受信信号に基づいて対象物との距離を測定するように構成される。 The front inter-vehicle distance Df may be acquired by using the front radar mounted on the own vehicle 20 instead of the front camera 30. Here, the "radar" has a transmitter and a receiver, and the receiver receives a portion of the electromagnetic wave transmitted from the transmitter that is reflected from the object, and the receiver and the object are based on the received signal. Is configured to measure the distance of.
 その後、ステップS1104において、メモリ54から基準値Dfが読み込まれ、前記測定された前方車間距離Dfが基準値Dfより短いか否かが判定される。 After that, in step S1104, the reference value Df 0 is read from the memory 54, and it is determined whether or not the measured front-vehicle distance Df is shorter than the reference value Df 0.
 前方車間距離Dfが基準値Dfより短くはない場合には、その判定がNOとなり、ステップS1102に戻る。これに対し、前方車間距離Dfが基準値Dfより短い場合には、ステップS1104の判定がYESとなり、ステップS1105において、前方車両接近というあおり運転が前方車両22によって行われている可能性があると判定される。 If the distance Df between vehicles in front is not shorter than the reference value Df 0 , the determination is NO, and the process returns to step S1102. On the other hand, when the distance Df between vehicles ahead is shorter than the reference value Df 0 , the determination in step S1104 is YES, and in step S1105, there is a possibility that the front vehicle 22 is performing the tilting operation of approaching the vehicle ahead. Is determined.
 その後、ステップS1150-1151において、警告部70が起動させられる。 After that, in step S1150-1151, the warning unit 70 is activated.
 具体的には、まず、ステップS1150において、ブザー72を用いて警告音が発生させられる。その警告音は、検知されたあおり運転の種類の如何を問わず、同じ特性の警告音であっても、検知されたあおり運転の種類に応じて異なる特性の警告音であってもよい。 Specifically, first, in step S1150, a warning sound is generated using the buzzer 72. The warning sound may be a warning sound having the same characteristics regardless of the type of detected tilting operation, or may be a warning sound having different characteristics depending on the type of detected tilting operation.
 次に、ステップS1151において、ディスプレイ40を用いて警告用のメッセージ(固有のアイコンでも可)が表示される。その警告用のメッセージは、検知されたあおり運転の種類の如何を問わず、同じ内容のメッセージであっても、検知されたあおり運転の種類に応じて異なる内容のメッセージであってもよい。 Next, in step S1151, a warning message (a unique icon is also possible) is displayed using the display 40. The warning message may have the same content regardless of the type of detected tilting operation, or may have a different content depending on the type of detected tilting operation.
 続いて、ステップS1106-1109において、あおり運転検知部100による進路妨害検知が行われる。 Subsequently, in step S1106-1109, the road rage detection unit 100 detects the path obstruction.
 具体的には、まず、ステップS1106において、車速センサ88から車速Vの今回値が取り込まれる。次に、ステップS1107において、自車両20が減速中であるために車速Vの今回値が前回値から減少したか否かが判定される。 Specifically, first, in step S1106, the current value of the vehicle speed V is taken in from the vehicle speed sensor 88. Next, in step S1107, it is determined whether or not the current value of the vehicle speed V has decreased from the previous value because the own vehicle 20 is decelerating.
 今回は、自車両20の減速中ではないと仮定すると、その判定がNOとなり、ステップS1102に戻る。これに対し、今回は、自車両20の減速中であると仮定すると、ステップS1107の判定がYESとなり、ステップS1108において、前方車間距離Dfの今回値が前回値から増加しないか否かが判定される。自車両20の減速にもかかわらず前方車両22との間の車間距離(以下、「前方車間距離」という。)Dfが増加しないか否かが判定されるのである。 This time, assuming that the own vehicle 20 is not decelerating, the determination becomes NO, and the process returns to step S1102. On the other hand, this time, assuming that the own vehicle 20 is decelerating, the determination in step S1107 is YES, and in step S1108, it is determined whether or not the current value of the front inter-vehicle distance Df does not increase from the previous value. NS. It is determined whether or not the inter-vehicle distance (hereinafter, referred to as "front inter-vehicle distance") Df with the preceding vehicle 22 does not increase despite the deceleration of the own vehicle 20.
 今回は、自車両20の減速によって前方車間距離Dfが増加したと仮定すると、その判定がNOとなり、ステップS1102に戻る。これに対し、今回は、自車両20の減速にもかかわらず前方車間距離Dfが増加しなかったと仮定すると、ステップS1108の判定がYESとなり、ステップS1109において、前方車両22による進路妨害が行われている可能性があると判定される。 This time, assuming that the inter-vehicle distance Df in front has increased due to the deceleration of the own vehicle 20, the determination is NO, and the process returns to step S1102. On the other hand, this time, assuming that the distance Df in front of the vehicle did not increase despite the deceleration of the own vehicle 20, the determination in step S1108 was YES, and in step S1109, the vehicle in front 22 obstructed the course. It is determined that there is a possibility.
 その後、ステップS1152-1153において、ステップS1150-1151と同様にして、警告部70が起動させられる。 After that, in step S1152-1153, the warning unit 70 is activated in the same manner as in step S1150-1151.
 なお、進路妨害を検知するアルゴリズムとして、後方車両24が自車両20を追い越した(同じ車両がリアカメラ32で撮影された後にフロントカメラ30で撮影された)という事象が検知されたときに、進路妨害が行われた可能性があると判定するものを採用してもよい。 As an algorithm for detecting the course obstruction, when the event that the rear vehicle 24 overtakes the own vehicle 20 (the same vehicle is photographed by the rear camera 32 and then photographed by the front camera 30) is detected, the course is detected. Those that determine that interference may have occurred may be adopted.
<後方車両によるあおり運転の検知> <Detection of tilting driving by a vehicle behind>
 図12には、後方車両24によるあおり運転を検知するためにコンピュータ50によって実行される第2あおり運転検知プログラムが概念的に表すフローチャートで表されている。この第2あおり運転検知プログラムの起動および停止は、図10に示す起動要否判定プログラムの判定結果に連動する。 FIG. 12 is represented by a flowchart conceptually represented by the second tilting driving detection program executed by the computer 50 to detect the tilting driving by the rear vehicle 24. The activation and stop of the second tilting operation detection program are linked to the determination result of the activation necessity determination program shown in FIG.
 この第2あおり運転検知プログラムが起動させられると、まず、ステップS1201において、ステップS1101と同様にして、リアカメラ32によって撮影された動画(一連のフレーム画像)が各時刻に関連付けてメモリ54に保存される。具体的には、リアカメラ32によって撮影された各フレーム画像を表す各リアカメラ画像信号が各時刻に関連付けてメモリ54に保存される。 When the second tilting operation detection program is activated, first, in step S1201, a moving image (a series of frame images) taken by the rear camera 32 is stored in the memory 54 in association with each time in the same manner as in step S1101. Will be done. Specifically, each rear camera image signal representing each frame image captured by the rear camera 32 is stored in the memory 54 in association with each time.
 続いて、図12に示すように、ステップS1202-1204において、蛇行運転検知処理が行われる。 Subsequently, as shown in FIG. 12, the meandering operation detection process is performed in step S1202-1204.
 具体的には、まず、ステップS1202において、リアカメラ32によって撮影された複数のフレーム画像のうち代表的なものを表すリアカメラ画像信号がメモリ54から取り込まれる。 Specifically, first, in step S1202, a rear camera image signal representing a representative one of the plurality of frame images captured by the rear camera 32 is taken in from the memory 54.
 次に、ステップS1203において、その取り込まれたリアカメラ画像信号に対し、所定の2種類の画像処理が実行される。 Next, in step S1203, two types of predetermined image processing are executed on the captured rear camera image signal.
 第1の画像処理によれば、前記取り込まれたリアカメラ画像信号に基づき、ステップS1103と同様にして、後方車両24と自車両20との間の後方車間距離Drが測定される。 According to the first image processing, the rear inter-vehicle distance Dr between the rear vehicle 24 and the own vehicle 20 is measured in the same manner as in step S1103 based on the captured rear camera image signal.
 なお、後方車間距離Drは、リアカメラ32に代えて、自車両20に搭載される後方レーダを用いて取得してもよい。 The rear inter-vehicle distance Dr may be acquired by using the rear radar mounted on the own vehicle 20 instead of the rear camera 32.
 さらに、第2の画像処理によれば、リアカメラ32を用いて、後方車両24の走行軌跡が検知される。 Further, according to the second image processing, the traveling locus of the rear vehicle 24 is detected by using the rear camera 32.
 その目的を達成するために、一例においては、リアカメラ32によって撮影された映像(一連のフレーム画像であって、各時刻に関連付けられるもの)から、自車両20の後方視界内に存在する後方車両24がターゲットとして識別される。 In order to achieve that purpose, in one example, a rear vehicle existing in the rear view of the own vehicle 20 from an image (a series of frame images associated with each time) taken by the rear camera 32. 24 is identified as the target.
 さらに、その識別されたターゲットの位置(例えば、ターゲットに割り当てられた代表点)が、平面視において、2次元的に時々刻々推定され、それにより、後方車両24が追跡され、後方車両24の2次元位置の変化が走行軌跡として推定される。 Further, the position of the identified target (eg, the representative point assigned to the target) is estimated two-dimensionally from moment to moment in plan view, whereby the rear vehicle 24 is tracked and the rear vehicle 24-2. The change in the dimensional position is estimated as the traveling locus.
 ここに、その識別されたターゲットの位置は、平面視において、自車両20(例えば、フロントカメラ30)からの距離(半径)rと自車両20の進行方向から隔たった角度(方位角)θとにより定義される2次元極座標系上で時々刻々推定してもよい。 Here, the positions of the identified targets are the distance (radius) r from the own vehicle 20 (for example, the front camera 30) and the angle (azimuth) θ separated from the traveling direction of the own vehicle 20 in a plan view. It may be estimated from moment to moment on the two-dimensional polar coordinate system defined by.
 その2次元極座標系は、例えば、リアカメラ32の位置を原点として有するように定義してもよい。角度θが0度である時刻に推定された距離dは、後方車両24と自車両20との間の車間距離(以下、「後方車間距離」という。)Drを意味する。この距離dは、その距離dが延びる方向が自車両20の進行方向と一致するか否かを問わず、上述の後方車間距離Drと同様にして後方車両24のナンバープレートに着目して測定される。 The two-dimensional polar coordinate system may be defined so as to have the position of the rear camera 32 as the origin, for example. The distance d estimated at the time when the angle θ is 0 degrees means the inter-vehicle distance (hereinafter, referred to as “rear inter-vehicle distance”) Dr between the rear vehicle 24 and the own vehicle 20. This distance d is measured by paying attention to the license plate of the rear vehicle 24 in the same manner as the above-mentioned rear-vehicle distance Dr, regardless of whether or not the direction in which the distance d extends coincides with the traveling direction of the own vehicle 20. NS.
 その後、ステップS1204において、前記検知された後方車両24の走行軌跡が、蛇行運転を示しているか否かが判定される。 After that, in step S1204, it is determined whether or not the travel locus of the detected rear vehicle 24 indicates meandering driving.
 後方車両24が蛇行運転をしていない場合には、その判定がNOとなり、ステップS1202に戻る。これに対し、後方車両24が蛇行運転をしている場合には、ステップS1204の判定がYESとなり、ステップS1205において、後方車両24が蛇行運転という態様であおり運転を行っている可能性があると判定される。 If the rear vehicle 24 is not meandering, the determination is NO and the process returns to step S1202. On the other hand, when the rear vehicle 24 is meandering, the determination in step S1204 is YES, and in step S1205, the rear vehicle 24 may be driving in a meandering manner. It is judged.
 その後、ステップS1250-1251において、ステップS1150-1151と同様にして、警告部70が起動させられる。 After that, in step S1250-1251, the warning unit 70 is activated in the same manner as in step S1150-1151.
 続いて、ステップS1206-1207において、後方車両接近検知処理が行われる。 Subsequently, in step S1206-1207, the rear vehicle approach detection process is performed.
 具体的には、まず、ステップS1206において、メモリ54から基準値Drが読み込まれ、さらに、ステップS1203において測定された後方車間距離Drの最新値が基準値Drより短いか否かが判定される。 Specifically, first, in step S1206, the reference value Dr 0 is read from the memory 54, and further, it is determined whether or not the latest value of the rear vehicle distance Dr measured in step S1203 is shorter than the reference value Dr 0. NS.
 後方車間距離Drが基準値Drより短くはない場合には、その判定がNOとなり、ステップS1202に戻る。これに対し、後方車間距離Drが基準値Drより短い場合には、ステップS1206の判定がYESとなり、ステップS1207において、後方車両接近というあおり運転が後方車両24によって行われている可能性があると判定される。 If the distance between vehicles behind is not shorter than the reference value Dr 0 , the determination is NO, and the process returns to step S1202. On the other hand, when the rear vehicle distance Dr is shorter than the reference value Dr 0 , the determination in step S1206 is YES, and in step S1207, there is a possibility that the rear vehicle 24 is performing the tilting operation of approaching the rear vehicle. Is determined.
 その後、ステップS1252-1253において、警告部70が起動させられる。 After that, in step S1252-1253, the warning unit 70 is activated.
 以上の説明から明らかなように、本実施形態においては、説明の便宜上、コンピュータ50のうち、図4に示す影響度計算プログラムのうち、主にステップS402-404を実行する部分が「影響変数検知部106」を構成し、また、同じ影響度計算プログラムのうち、主にステップS405を実行する部分が「影響度計算部104」を構成している。 As is clear from the above description, in the present embodiment, for convenience of explanation, the portion of the computer 50 in the impact calculation program shown in FIG. 4 that mainly executes steps S402-404 is "influence variable detection". A part of the same influence calculation program that mainly executes step S405 constitutes a part 106 ”and a part of the same influence calculation program that mainly executes step S405.
 さらに、説明の便宜上、コンピュータ50のうち、図10に起動要否判定プログラムを実行する部分が「選択的起動部102」を構成している。 Further, for convenience of explanation, the portion of the computer 50 that executes the activation necessity determination program in FIG. 10 constitutes the "selective activation unit 102".
 さらに、説明の便宜上、コンピュータ50のうち、図11および図12にそれぞれ示す第1および第2あおり運転検知プログラムをそれぞれ実行する部分が互いに共同して「あおり運転検知部100」を構成している。 Further, for convenience of explanation, the parts of the computer 50 that execute the first and second tilting operation detection programs shown in FIGS. 11 and 12, respectively, form the "tilt operation detection unit 100" jointly with each other. ..
 さらに、本実施形態においては、あおり運転検知部100に対し、事実上、そのあおり運転検知部100のスイッチとして機能する選択的起動部102が追加され、すなわち、あおり運転検知部100と選択的起動部102とが直列に併存させられる。 Further, in the present embodiment, a selective activation unit 102 that substantially functions as a switch of the tilt operation detection unit 100 is added to the tilt operation detection unit 100, that is, the tilt operation detection unit 100 and the selective activation unit 100 are selectively activated. The unit 102 and the unit 102 coexist in series.
 それにより、本実施形態においては、選択的起動部102によって実行される事前のフィルタと、あおり運転検知部100によって実行される本番のフィルタとの双方、すなわち、直列2段のフィルタを通過するというアンド条件が成立したときにはじめて、あおり運転が検知される。 As a result, in the present embodiment, both the pre-filter executed by the selective activation unit 102 and the actual filter executed by the road rage detection unit 100, that is, the two-stage filter in series is passed. Road rage is detected only when the AND condition is satisfied.
 さらに、本実施形態によれば、あおり運転検知プログラムが実装された現行のあおり運転検知システムに対し、そのあおり運転検知プログラムの仕様を少なくとも実質的に変更することなく、単に、新作の起動要否判定プログラムを追加的に現行のあおり運転検知システムに実装するだけで、改良されたあおり運転検知システムが完成し、それにより、あおり運転の誤検知およびご警告を軽減することが可能となる。 Further, according to the present embodiment, the current tilting operation detection system in which the tilting operation detection program is implemented is simply required to start a new work without substantially changing the specifications of the tilting operation detection program. By simply additionally implementing the judgment program in the current road rage detection system, an improved road rage detection system is completed, which makes it possible to reduce false detections and warnings of road rage.
 さらに、本実施形態によれば、事前のフィルタのための起動要否判定プログラムと、本番のフィルタのためのあおり運転検知プログラムとをそれぞれモジュール化することが可能となる。 Further, according to the present embodiment, it is possible to modularize the start-up necessity determination program for the pre-filter and the tilt operation detection program for the actual filter, respectively.
 したがって、本実施形態によれば、起動要否判定プログラムは、複数の車種に共通に設計するのに対し、あおり運転検知プログラムは、複数の車種に個別に設計することが可能となり、システム設計の効率が向上する。 Therefore, according to the present embodiment, the start-up necessity determination program is designed in common for a plurality of vehicle types, whereas the tilting driving detection program can be individually designed for a plurality of vehicle types, and the system design can be performed. Efficiency is improved.
 さらに、本実施形態によれば、起動要否判定プログラムとあおり運転検知プログラムとをそれぞれ、事実上、並列的に実行させる(例えば、別々のプロセッサによって実行させる)ことが可能となる。この場合には、それら起動要否判定プログラムとあおり運転検知プログラムとを合体させて1個の包括プログラムとして実行させる場合、すなわち、事実上の直列処理を行う場合より、プログラムの繰返し周期(あおり運転検知周期)を短縮し、リアルタイムであおり運転を検知することが容易となるという効果も得られる。すなわち、あおり運転検知速度の高速化が可能となるのである。 Further, according to the present embodiment, it is possible to execute the start-up necessity determination program and the road rage detection program in substantially parallel manner (for example, to be executed by different processors). In this case, the repetition cycle of the program (tilt operation) is higher than when the start-up necessity determination program and the tilt operation detection program are combined and executed as one comprehensive program, that is, when the de facto serial processing is performed. The effect of shortening the detection cycle) and facilitating real-time detection of road rage can also be obtained. That is, it is possible to increase the speed of detecting the tilting operation.
 さらに、本実施形態によれば、起動要否判定プログラムが1回実行されて起動必要判定が出るごとに、次回の実行時に停止必要判定が出るまで、あおり運転検知プログラムが1回実行される。この場合、起動要否判定プログラムの繰返し周期T1と、あおり運転検知プログラムの繰返し周期T2とが互いに一致する。 Further, according to the present embodiment, every time the start-up necessity determination program is executed once and the start-up necessity determination is made, the road rage detection program is executed once until the stop-necessity determination is made at the next execution. In this case, the repetition cycle T1 of the start-up necessity determination program and the repetition cycle T2 of the road rage detection program coincide with each other.
 これに対し、一変形例として、起動要否判定プログラムの繰返し周期T1を、あおり運転検知プログラムの繰返し周期T2より長く設定し、それにより、起動要否判定プログラムが1回実行されて起動必要判定が出るごとに、次回の実行時に停止必要判定が出るまで、あおり運転検知プログラムが複数回実行されるようにすることが可能となる。この例によれば、起動要否判定プログラムの総実行回数が減少し、それにより、プロセッサの処理負担が軽減される。 On the other hand, as a modification, the repetition cycle T1 of the start-up necessity determination program is set longer than the repetition cycle T2 of the tilting operation detection program, so that the start-up necessity determination program is executed once to determine the start-up necessity. It is possible to execute the tilting operation detection program a plurality of times until the stop necessity determination is issued at the next execution. According to this example, the total number of executions of the start necessity determination program is reduced, thereby reducing the processing load on the processor.
 なお付言するに、本実施形態においては、あおり運転検知部100が利用するセンサまたは監視部と、影響変数検知部106,影響度計算部104および選択的起動部102が利用するセンサまたは監視部とが、いずれもフロントカメラ30およびリアカメラ32の組合せを含む点で、互いに共通するが、あおり運転検知部100が利用するセンサと、選択的起動部102が利用するセンサとが互いに異なる態様で本発明を実施してもよい。 In addition, in the present embodiment, the sensor or monitoring unit used by the road rage detection unit 100, and the sensor or monitoring unit used by the influence variable detection unit 106, the influence degree calculation unit 104, and the selective activation unit 102. However, although they are common to each other in that they include a combination of the front camera 30 and the rear camera 32, the sensor used by the road rage detection unit 100 and the sensor used by the selective activation unit 102 are different from each other. The invention may be carried out.
 ただし、あおり運転検知部100がカメラ30,32等の監視部を利用する仕方は、複数の近傍車両のうち特定のもの、具体的には、前方車両22または後方車両24という特定の車両に着目して所定の目的を達するというものであるのに対し、影響変数検知部106,影響度計算部104および選択的起動部102がカメラ30,32等の監視部を利用する仕方は、複数の近傍車両のうち不特定のものに、前方車両22または後方車両24であるのかそれら以外であるのかを区別することなく着目して所定の目的を達するというものであるというように、互いに異なる。 However, the method in which the tilting driving detection unit 100 uses the monitoring units such as the cameras 30 and 32 focuses on a specific vehicle among a plurality of nearby vehicles, specifically, a specific vehicle such as a front vehicle 22 or a rear vehicle 24. On the other hand, the method of using the monitoring units such as the cameras 30 and 32 by the influence variable detection unit 106, the influence degree calculation unit 104, and the selective activation unit 102 is to achieve a predetermined purpose. The unspecified vehicles are different from each other, such that the vehicle achieves a predetermined purpose by paying attention to whether it is a front vehicle 22 or a rear vehicle 24 or a non-specific vehicle.
 すなわち、あおり運転検知部100によって利用される監視部は、複数の近傍車両のうち特定のもの、具体的には、前方車両22または後方車両24という特定の車両を他の車両から区別して監視するように構成されるのに対し、影響変数検知部106,影響度計算部104および選択的起動部102によって利用される監視部は、複数の近傍車両のうち不特定のものを、前方車両22または後方車両24であるのかそれら以外であるのかを区別することなく無差別に監視するように構成されるのである。 That is, the monitoring unit used by the road rage detection unit 100 monitors a specific vehicle among a plurality of nearby vehicles, specifically, a specific vehicle such as a front vehicle 22 or a rear vehicle 24, separately from other vehicles. On the other hand, the monitoring unit used by the influence variable detection unit 106, the influence degree calculation unit 104, and the selective activation unit 102 selects an unspecified one among a plurality of nearby vehicles as the front vehicle 22 or It is configured to monitor indiscriminately without distinguishing between the rear vehicle 24 and other vehicles 24.
 さらに付言するに、本実施形態においては、あおり運転検知部100,選択的起動部102,影響度計算部104および影響変数検知部106がいずれも、自車両20に搭載されているが、それら要素のうちの少なくとも一つが、自車両20の運転者が使用する通信機器(例えば、スマートフォンなどの携帯通信端末)内のコンピュータによって実現される態様や、自車両20の車載通信装置と通信可能な外部サーバまたは自車両20の運転者の前記通信機器と通信可能な外部サーバによって実現される態様で本発明を実施してもよい。 Further, in the present embodiment, the tilting operation detection unit 100, the selective activation unit 102, the influence degree calculation unit 104, and the influence variable detection unit 106 are all mounted on the own vehicle 20, but these elements are added. At least one of them is realized by a computer in a communication device (for example, a mobile communication terminal such as a smartphone) used by the driver of the own vehicle 20, or an external communication device capable of communicating with the in-vehicle communication device of the own vehicle 20. The present invention may be implemented in a mode realized by an external server capable of communicating with the communication device of the server or the driver of the own vehicle 20.
 さらに付言するに、本実施形態においては、あおり運転検知部100があおり運転を検知するために成否の有無を判定する条件と、選択的起動部102があおり運転検知部100を起動させるために成否の有無を判定する条件とが互いに異なっている。前者の条件は、他車両の運転者にあおり運転が誘発されると想定される原因が実際に発生したか否かという視点で設定されるのに対し、後者の条件は、他車両の運転者に実際にあおり運転が発生したか否かという視点で設定される。そのため、それら条件は、互いに一致しない。 Further, in the present embodiment, the condition that the tilting operation detection unit 100 determines the success or failure in order to detect the tilting operation and the success or failure in order for the selective starting unit 102 to activate the tilting operation detecting unit 100 The conditions for determining the presence or absence of are different from each other. The former condition is set from the viewpoint of whether or not a cause that is supposed to induce driving by the driver of another vehicle actually occurs, while the latter condition is set by the driver of another vehicle. It is set from the viewpoint of whether or not the road rage actually occurred. Therefore, those conditions do not match each other.
 このことをさらに敷衍するに、本実施形態においては、あおり運転検知部100であって、他車両が、予め定められた複数種類のあおり運転のいずれかを行っているか否かを判定する本番判定部として作用するものと、選択的起動部102であって、近傍車両の運転者にあおり運転を誘発する影響度が基準値を超えるか否かを判定する事前判定部として作用するものとが、それらがそれらの順に時間直列的に実行されるように設けられている。 To further extend this, in the present embodiment, the tilting operation detection unit 100 determines whether or not the other vehicle is performing any of a plurality of predetermined types of tilting operation. One that acts as a unit and the selective activation unit 102 that acts as a pre-determination unit that determines whether or not the degree of influence that induces road rage on the driver of a nearby vehicle exceeds the reference value. They are provided so that they are executed in chronological order in their order.
 ここに、「本番判定部」は、あおり運転という結果事象の有無を判定するのに対し、「事前判定部」は、あおり運転の誘発事由という原因事象の有無を判定する。 Here, the "production determination unit" determines the presence or absence of a result event of the tilting operation, whereas the "preliminary determination unit" determines the presence or absence of the causal event of the triggering reason of the tilting operation.
 そして、本実施形態によれば、あおり運転にとっての原因事象が存在すれば、「あおり運転検知部」を起動させ、それにより、この時点ではじめて、あおり運転という結果事象の有無を判定する。 Then, according to the present embodiment, if a causal event for the tilting operation exists, the "tilting operation detection unit" is activated, and thereby, for the first time at this point, the presence or absence of the result event of the tilting operation is determined.
 よって、ここにおいて、「事前判定部」は、「本番判定部」にとり、あおり運転が発生する可能性がそもそも低い事象を事前に除去するスクリーニング機能を果たしている。 Therefore, here, the "preliminary judgment unit" functions as a screening function for the "production judgment unit" to remove in advance events that are unlikely to cause road rage.
 以上、本発明の例示的な実施の形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、前記[発明の概要]の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。 As described above, some of the exemplary embodiments of the present invention have been described in detail with reference to the drawings, but these are examples, and those skilled in the art, including the embodiments described in the [Summary of Invention] column. It is possible to carry out the present invention in other forms with various modifications and improvements based on knowledge.

Claims (11)

  1.  走行中に自車両の近傍に位置する近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知システムであって、
     自車両に搭載され、近傍車両を含む周辺車両を自車両に対して相対的に監視することと、自車両の室内の乗員を監視することとのうちの少なくとも一方を行うことが可能な監視部と、
     あおり運転検知プログラムを起動させることにより、前記監視部による周辺車両の監視結果に基づき、近傍車両の運転者が自車両に対して、予め定められた複数種類のあおり運転のいずれかを行っているか否かを判定し、それにより、あおり運転を検知するあおり運転検知部と、
     自車両に搭載され、前記あおり運転が検知されると、自車両の運転者に対して警告を出す警告部と、
     前記監視部の監視結果に基づき、自車両の走行環境の程度を表す影響変数と、自車両の道路環境の程度を表す影響変数と、自車両の運転者の運転技量の程度を表す影響変数と、自車両の運転者の運転マナーの程度を表す影響変数と、近傍車両の運転者が、自車両を視認した結果、その自車両から受ける威圧感の程度を表す影響変数とのうちの少なくとも一つを検知する影響変数検知部と、
     その検知された少なくとも一つの影響変数に基づき、近傍車両の運転者にあおり運転を誘発する影響度を計算する影響度計算部と、
     前記あおり運転検知部が前記あおり運転検知プログラムを起動させるのに先立って起動要否判定プログラムを起動させることにより、前記計算された影響度が基準値を超えると、前記あおり運転検知部に前記あおり運転検知プログラムを起動させるが、超えないと、前記あおり運転検知部に前記あおり運転検知プログラムを起動させない選択的起動部と
     を含むあおり運転検知システム。
    It is a tilting driving detection system that detects the tilting driving performed on the own vehicle by the driver of a nearby vehicle located near the own vehicle while driving.
    A monitoring unit that is mounted on the own vehicle and can perform at least one of monitoring the surrounding vehicles including nearby vehicles relative to the own vehicle and monitoring the occupants in the vehicle. When,
    By activating the road rage detection program, whether the driver of a nearby vehicle is performing any of a plurality of predetermined types of road rage on the own vehicle based on the monitoring result of the surrounding vehicle by the monitoring unit. A tilting operation detection unit that determines whether or not it is present and thereby detects tilting operation,
    A warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
    Based on the monitoring result of the monitoring unit, an influence variable indicating the degree of the driving environment of the own vehicle, an influence variable indicating the degree of the road environment of the own vehicle, and an influence variable indicating the degree of the driving skill of the driver of the own vehicle. , At least one of an influence variable indicating the degree of driving manners of the driver of the own vehicle and an influence variable indicating the degree of intimidation received from the own vehicle as a result of the driver of a nearby vehicle visually recognizing the own vehicle. An influence variable detector that detects one and
    Based on the detected at least one influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
    When the calculated degree of influence exceeds the reference value by activating the activation necessity determination program prior to activating the tilt operation detection program by the tilt operation detection unit, the tilt operation detection unit is notified of the tilt. A tilting operation detection system that includes a selective activation unit that activates the driving detection program but does not activate the tilting operation detection program if the tilting operation detection unit is not exceeded.
  2.  前記監視部は、自車両に搭載され、周辺車両を撮影することが可能なカメラを含み、
     前記あおり運転検知部は、前記カメラの撮影結果を表す信号に基づき、前記あおり運転を検知する請求項1に記載のあおり運転検知システム。
    The monitoring unit includes a camera mounted on the own vehicle and capable of photographing surrounding vehicles.
    The tilting operation detection system according to claim 1, wherein the tilting operation detection unit detects the tilting operation based on a signal representing a shooting result of the camera.
  3.  前記カメラは、自車両の前方画像を撮影する前方カメラと、自車両の後方画像を撮影する後方カメラと、自車両の側方画像を撮影する側方カメラとのうちの少なくとも一つを含む請求項2に記載のあおり運転検知システム。 The camera includes at least one of a front camera that captures a front image of the own vehicle, a rear camera that captures a rear image of the own vehicle, and a side camera that captures a side image of the own vehicle. The tilting operation detection system according to Item 2.
  4.  前記影響度計算部は、前記影響度を1つの影響変数から計算する請求項1ないし3のいずれかに記載のあおり運転検知システム。 The tilting operation detection system according to any one of claims 1 to 3, wherein the influence degree calculation unit calculates the influence degree from one influence variable.
  5.  前記影響度計算部は、前記影響度を複数の影響変数の合成値として計算する請求項1ないし3のいずれかに記載のあおり運転検知システム。 The tilting operation detection system according to any one of claims 1 to 3, wherein the influence degree calculation unit calculates the influence degree as a composite value of a plurality of influence variables.
  6.  前記走行環境の程度を表す影響変数は、自車両の周辺の交通状態の混雑度と、自車両の周辺の天候の劣悪度とのうちの少なくとも一つを含む請求項1ないし5のいずれかに記載のあおり運転検知システム。 The influence variable representing the degree of the driving environment is any one of claims 1 to 5, which includes at least one of the degree of congestion of the traffic condition around the own vehicle and the degree of bad weather around the own vehicle. The described tilting operation detection system.
  7.  前記道路環境の程度を表す影響変数は、自車両が走行している道路内の車線の数と、自車両が走行している車線の曲線度とのうちの少なくとも一つを含む請求項1ないし6のいずれかに記載のあおり運転検知システム。 The influence variable representing the degree of the road environment includes at least one of the number of lanes in the road on which the own vehicle is traveling and the degree of curvature of the lane in which the own vehicle is traveling. The tilting operation detection system according to any one of 6.
  8.  走行中に自車両の近傍に位置する近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知システムであって、
     近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知部と、
     自車両に搭載され、前記あおり運転が検知されると、自車両の運転者に対して警告を出す警告部と、
     自車両の運転者の運転技量の程度を表す影響変数を検知する影響変数検知部であって、前記影響変数は、自車両の運転者の運転頻度と、自車両の運転者の累積走行距離とのうちの少なくとも一つを含むものと、
     その検知された影響変数に基づき、近傍車両の運転者にあおり運転を誘発する影響度を計算する影響度計算部と、
     前記計算された影響度が基準値を超えると、前記あおり運転検知部および前記警告部の双方を起動させるが、超えないと、前記あおり運転検知部および前記警告部のうちの少なくとも一方を起動させない選択的起動部と
     を含むあおり運転検知システム。
    It is a tilting driving detection system that detects the tilting driving performed on the own vehicle by the driver of a nearby vehicle located near the own vehicle while driving.
    A tilting driving detection unit that detects the tilting driving performed by the driver of a nearby vehicle on the own vehicle,
    A warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
    It is an influence variable detection unit that detects an influence variable indicating the degree of driving skill of the driver of the own vehicle, and the influence variable is the driving frequency of the driver of the own vehicle and the cumulative mileage of the driver of the own vehicle. And one that contains at least one of
    Based on the detected influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
    When the calculated degree of influence exceeds the reference value, both the tilting operation detection unit and the warning unit are activated, but when the calculated influence level exceeds the reference value, at least one of the tilting operation detection unit and the warning unit is not activated. Road rage detection system including selective starter and.
  9.  前記運転マナーの程度を表す影響変数は、自車両の運転者が周辺車両を追い抜くパッシングの頻度と、自車両の運転者が自車両を加減速させる頻度とのうちの少なくとも一つを含む請求項1ないし7のいずれかに記載のあおり運転検知システム。 A claim that the influence variable representing the degree of driving manners includes at least one of a frequency of passing by the driver of the own vehicle overtaking a neighboring vehicle and a frequency of acceleration / deceleration of the own vehicle by the driver of the own vehicle. The tilting operation detection system according to any one of 1 to 7.
  10.  前記威圧感の程度を表す影響変数は、自車両が軽自動車であるか否かの区別と、自車両が国産車であるか否かの区別と、自車両に同乗している他の乗員の数とのうちの少なくとも一つを含む請求項1ないし7および9のいずれかに記載のあおり運転検知システム。 The influence variables that express the degree of intimidation are the distinction between whether or not the own vehicle is a light vehicle, whether or not the own vehicle is a domestic vehicle, and the other occupants who are riding in the own vehicle. The tilting operation detection system according to any one of claims 1 to 7 and 9, which comprises at least one of the numbers.
  11.  走行中に自車両の近傍に位置する近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知システムであって、
     自車両に搭載され、自車両の室内の乗員を撮影することが可能な室内カメラと、
     近傍車両の運転者が自車両に対して行うあおり運転を検知するあおり運転検知部と、
     自車両に搭載され、前記あおり運転が検知されると、自車両の運転者に対して警告を出す警告部と、
     近傍車両の運転者が、自車両を視認した結果、その自車両から受ける威圧感の程度を表す影響変数を検知する影響変数検知部であって、前記影響変数は、自車両に同乗している他の乗員の数である他乗員数を含み、当該影響変数検知部は、前記室内カメラの撮影結果を表す信号に基づき、前記他乗員数を検知する他乗員数検知部を含むものと、
     その検知された影響変数に基づき、近傍車両の運転者にあおり運転を誘発する影響度を計算する影響度計算部と、
     前記計算された影響度が基準値を超えると、前記あおり運転検知部および前記警告部の双方を起動させるが、超えないと、前記あおり運転検知部および前記警告部のうちの少なくとも一方を起動させない選択的起動部と
     を含むあおり運転検知システム。
    It is a tilting driving detection system that detects the tilting driving performed on the own vehicle by the driver of a nearby vehicle located near the own vehicle while driving.
    An indoor camera that is mounted on your vehicle and can take pictures of the occupants inside your vehicle,
    A tilting driving detection unit that detects the tilting driving performed by the driver of a nearby vehicle on the own vehicle,
    A warning unit that is mounted on the own vehicle and issues a warning to the driver of the own vehicle when the tilting operation is detected.
    It is an influence variable detection unit that detects an influence variable indicating the degree of intimidation received from the own vehicle as a result of the driver of a nearby vehicle visually recognizing the own vehicle, and the influence variable is on board the own vehicle. The influence variable detection unit includes the number of other occupants, which is the number of other occupants, and the influence variable detection unit includes the other occupant number detection unit that detects the number of other occupants based on the signal representing the shooting result of the indoor camera.
    Based on the detected influence variable, the influence degree calculation unit that calculates the influence degree that induces driving by the driver of a nearby vehicle, and the influence degree calculation unit.
    When the calculated degree of influence exceeds the reference value, both the tilting operation detection unit and the warning unit are activated, but when the calculated influence level exceeds the reference value, at least one of the tilting operation detection unit and the warning unit is not activated. Road rage detection system including selective starter and.
PCT/JP2021/001004 2020-01-17 2021-01-14 Road rage detecting system WO2021145367A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020005782A JP6778941B1 (en) 2020-01-17 2020-01-17 Road rage detection system
JP2020-005782 2020-01-17
JP2020050324A JP2021114274A (en) 2020-01-17 2020-03-19 Tailgating detection system
JP2020-050324 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021145367A1 true WO2021145367A1 (en) 2021-07-22

Family

ID=76863961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001004 WO2021145367A1 (en) 2020-01-17 2021-01-14 Road rage detecting system

Country Status (1)

Country Link
WO (1) WO2021145367A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117584985A (en) * 2024-01-18 2024-02-23 吉林大学 Driving anger index detection and vehicle control method and system based on driving state

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205773A (en) * 2005-01-25 2006-08-10 Fujitsu Ten Ltd Driving supporting device
WO2018123344A1 (en) * 2016-12-27 2018-07-05 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
JP2020052863A (en) * 2018-09-28 2020-04-02 株式会社デンソーテン Vehicle monitoring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205773A (en) * 2005-01-25 2006-08-10 Fujitsu Ten Ltd Driving supporting device
WO2018123344A1 (en) * 2016-12-27 2018-07-05 本田技研工業株式会社 Vehicle control device, vehicle control method, and program
JP2020052863A (en) * 2018-09-28 2020-04-02 株式会社デンソーテン Vehicle monitoring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117584985A (en) * 2024-01-18 2024-02-23 吉林大学 Driving anger index detection and vehicle control method and system based on driving state
CN117584985B (en) * 2024-01-18 2024-03-19 吉林大学 Driving anger index detection and vehicle control method and system based on driving state

Similar Documents

Publication Publication Date Title
US11027750B2 (en) Method and system for assisting drivers to drive with precaution
JP4320045B2 (en) Vehicle support system
JP4578795B2 (en) Vehicle control device, vehicle control method, and vehicle control program
JP4517393B2 (en) Driving assistance device
CN111361552B (en) Automatic driving system
US20180144636A1 (en) Distracted driver detection, classification, warning, avoidance system
JP6142718B2 (en) Driving support device and driving support method
US11351992B2 (en) Method and system for assisting drivers to drive with precaution
JP5397735B2 (en) Emergency vehicle approach detection system for vehicles
JP2005056372A5 (en)
JP2013514592A (en) Predictive human-machine interface using gaze technology, blind spot indicator and driver experience
JP2010125923A (en) Emergency refuge device
JP2009134704A (en) Surrounding monitor system, safe driving support system, and vehicle
JP4476575B2 (en) Vehicle status determination device
JP4946005B2 (en) Driver psychological state determination device and driver psychological state determination system
JP6269360B2 (en) Driving support system and driving support method
CN111443708B (en) Automatic driving system
JP2006163828A (en) Alarm device for vehicle, and method of alarming ambient condition of vehicle
JP2019026201A (en) Vehicle outside notification device
JP2019197303A (en) Vehicle outside notification device
KR20150051548A (en) Driver assistance systems and controlling method for the same corresponding to dirver&#39;s predisposition
JP6778941B1 (en) Road rage detection system
JP2023071426A (en) Driving support device
JP4961912B2 (en) Vehicle with user protection function outside the vehicle
WO2021145367A1 (en) Road rage detecting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741693

Country of ref document: EP

Kind code of ref document: A1