WO2021145072A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
WO2021145072A1
WO2021145072A1 PCT/JP2020/043648 JP2020043648W WO2021145072A1 WO 2021145072 A1 WO2021145072 A1 WO 2021145072A1 JP 2020043648 W JP2020043648 W JP 2020043648W WO 2021145072 A1 WO2021145072 A1 WO 2021145072A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage medium
heat transfer
transfer direction
ceramic substrate
heat
Prior art date
Application number
PCT/JP2020/043648
Other languages
French (fr)
Japanese (ja)
Inventor
一成 山田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2021570666A priority Critical patent/JPWO2021145072A1/ja
Publication of WO2021145072A1 publication Critical patent/WO2021145072A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This technology relates to the technical field of an electronic device having a plurality of media slots into which storage media are mounted.
  • Various electronic devices such as mobile terminals represented by mobile phones and cameras that function as image pickup devices have a printed wiring board arranged inside the housing, and a plurality of media slots are mounted on the printed wiring board.
  • a media slot for example, a storage medium such as a memory card can be attached and detached by opening a lid that is openable and closable in the housing, and the storage medium mounted in the media slot can be used. Data is written or read by being accessed.
  • heat is generated in the storage medium when the storage medium is accessed and the storage medium is driven.
  • the capacity of the data stored in the storage medium has been increasing, and the access speed when writing or reading the data has been increased, so that the data can be stored from the storage medium.
  • the calorific value also tends to increase.
  • the amount of heat generated from the storage medium has tended to increase, and in particular, in an electronic device having a plurality of media slots, the amount of heat generated when the storage medium is driven tends to increase.
  • the heat generated in the storage medium is efficiently released, but in each storage medium mounted in each media slot, it depends on the operating state of the electronic device.
  • the amount of heat generated may differ, and it may be difficult to ensure an efficient heat dissipation state depending on the heat dissipation path.
  • the purpose of the electronic device of the present technology is to improve the heat dissipation efficiency regardless of the access state to each storage medium.
  • the electronic device includes a plurality of media slots into which storage media are mounted, a printed wiring board in which the plurality of media slots are mounted, and a board mounting in which the printed wiring board is mounted.
  • the base and a heat transfer direction switching unit capable of conducting heat generated by the storage medium and switching the heat transfer direction are provided, and the storage medium is installed in each of the plurality of media slots according to an access state to the storage medium.
  • the heat transfer direction of the heat transfer direction switching unit can be switched.
  • the heat generated in the storage medium is conducted in the heat transfer direction switched according to the access state to the storage medium installed in each of the plurality of media slots.
  • the storage medium is put into a driven state at the time of access and a non-driven state at the time of non-access, and at least one of the storage media is in the driven state and the non-driven state, respectively.
  • the state is set, the heat generated in the storage medium in the driven state is transmitted to the media slot in which the storage medium in the non-driven state is mounted so that the heat is transferred to the heat transfer direction switching unit. It is desirable that the thermal direction can be switched.
  • the storage medium is put into a driven state at the time of access and a non-driven state at the time of non-access, and at least one of the storage media is in the driven state and the non-driven state, respectively.
  • the heat transfer direction of the heat transfer direction switching unit is switched so that the heat generated in the storage medium in the driven state is conducted toward the media slot in which the storage medium is not mounted when the state is set. It is desirable to be.
  • a heat radiating body for releasing heat is provided, and the storage medium is put into a driving state at the time of access and a non-driving state at the time of non-access, and all the media slots are filled with.
  • the heat transfer direction of the heat transfer direction switching unit is switched so that heat is transferred from all the storage media toward the heat radiating body. It is desirable to be.
  • the heat transfer direction of the Pelche element that functions as the heat transfer direction switching unit is changed according to the direction of the supplied current.
  • the heat transfer direction switching portion is arranged in contact with the substrate mounting base.
  • a copper block is attached to the printed wiring board, and the copper block is positioned in a state of being in contact with the substrate mounting base and facing at least one of the media slots. Is desirable.
  • the heat generated in the storage medium is transferred to the board mounting base or the media slot via the copper block located facing the media slot.
  • a plurality of media slots are located on one side of the printed wiring board.
  • an access state detection unit for detecting an access state to the storage medium is provided, and the heat transfer direction switching unit is provided according to the detection result of the access state detection unit. It is desirable to switch the heat transfer direction.
  • the heat generated in the storage medium is transferred by switching the heat transfer direction of the heat transfer direction switching unit according to the detection result of the access state detection unit.
  • a change operation unit for changing the access state to the storage medium installed in each of the plurality of media slots is provided, and the change operation unit responds to the operation of the change operation unit. It is desirable that the heat transfer direction of the heat transfer direction switching unit can be switched.
  • the heat generated in the storage medium is transferred by switching the heat transfer direction of the heat transfer direction switching unit according to the operation of the change operation unit that changes the access state to the storage medium installed in the media slot.
  • FIGS. 8 and 9 show an embodiment of the present technology, and this figure is a perspective view of an electronic device. It is sectional drawing which follows the line II-II of FIG. It is sectional drawing of the electronic device which shows the internal structure of a printed wiring board and the like. It is a rear view of a printed wiring board. It is a perspective view of a printed wiring board and the like. It is an enlarged cross-sectional view which shows a part of the internal structure of an electronic device.
  • FIGS. 8 and 9 the heat conduction path is shown, and this figure is a schematic cross-sectional view showing an example in which the first storage medium is in the driven state and the second storage medium is in the non-driven state. be.
  • FIG. 11 shows an example in which a heat conductive member is provided as a heat transfer direction switching portion, and this figure shows a case where the first storage medium is in the driven state and the second storage medium is in the non-driven state.
  • FIG. 11 shows an example in which a heat conductive member is provided as a heat transfer direction switching portion, and this figure shows a case where the first storage medium is in the driven state and the second storage medium is in the non-driven state.
  • FIG. 11 shows an example in which a heat conductive member is provided as a heat transfer direction switching portion, and this figure shows a case where the first storage medium is in the driven state and the second storage medium is in the non-driven state.
  • FIG. 13 shows an example in which the first media slot and the second media slot are arranged on opposite sides of the board mounting base.
  • the first storage medium is in the driving state and the second storage is stored.
  • It is a schematic cross-sectional view which shows the heat conduction path when a medium is in a non-driving state.
  • It is a schematic cross-sectional view which shows the heat conduction path when both the 1st storage medium and the 2nd storage medium are in a driving state.
  • FIGS. 16 to 18 the heat conduction path in the example in which the three media slots are provided is shown.
  • the first storage medium is in the driving state and the second storage medium and the third storage medium are stored.
  • the heat conduction path in the example in which the four media slots are provided is shown.
  • the first storage medium is in the driving state and the second storage medium and the third storage medium are stored.
  • the embodiment shown below is an application of the electronic device of the present technology to a single-lens reflex camera which is a still camera among imaging devices such as a camera.
  • the scope of application of this technology is not limited to single-lens reflex cameras.
  • This technology includes, for example, imaging devices such as still cameras and video cameras other than single-lens reflex cameras, mobile terminals represented by mobile phones, display devices such as televisions, sound output devices such as headphones, earphones and speakers, computers and the like. It can be widely applied to various electronic devices in which a printed wiring board is arranged inside a housing such as an information processing device.
  • the direction in which the photographer sees the subject at the time of shooting with the still camera indicates the front-back, up-down, left-right directions. Therefore, when expressed with reference to the optical axis passing through the center of the lens or mount portion of the still camera, the object side (subject) on the optical axis is the front, and the image plane side on the optical axis is the rear.
  • the directions shown below in the front-back, up-down, left-right directions are for convenience of explanation, and the implementation of the present technology is not limited to these directions.
  • the electronic device (single-lens reflex camera) 1 is composed of a device main body 2 and an interchangeable lens 3 (see FIGS. 1 and 2). However, in the imaging device to which the interchangeable lens 3 is not attached, the electronic device 1 may be composed of only the device main body 2.
  • the device main body 2 is composed of necessary parts arranged inside and outside the housing 4.
  • various operation units 5, 5, ... are arranged on the upper surface, the rear surface, and the like.
  • the operation unit 5 is provided with, for example, a power button, a shutter button, a zoom knob, a mode switching knob, and the like.
  • a display 6 is arranged on the rear surface of the housing 4.
  • a circular opening (not shown) is formed on the front surface of the housing 4, and an annular mount portion (not shown) for mounting the interchangeable lens 3 is provided around the opening.
  • An image sensor (not shown) such as CCD (Charge Coupled Device) or CMOS (Complementary Metal-Oxide Semiconductor) is arranged inside the housing 4, and the image sensor is located behind the opening.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the housing 4 has a first opening 4a formed on one side surface and a second opening 4b formed on the lower surface.
  • a finder portion 7 is provided at the upper end portion of the housing 4. The user of the electronic device 1 can visually recognize the image of the subject through the display 6 or the finder unit 7, and can also visually recognize the image or video captured by the display 6.
  • the grip portion 4c is a portion in which the front portion is projected so as to bulge forward from the other portions, and is gripped by the user's hand when taking a picture of the electronic device 1.
  • the grip portion 4c protruding so that the front portion bulges forward from the other portion is gripped by hand at the time of photographing, so that a stable gripping state of the electronic device 1 is ensured. Further, since the portion provided with the shutter button is provided as the grip portion 4c, the user can operate the shutter button with the same hand as the hand holding the grip portion 4c, so that shooting can be performed easily and quickly. This makes it possible to easily perform shooting and reduce the loss of shooting opportunities.
  • the housing 4 is supported by a first lid 8 that opens and closes the first opening 4a.
  • a first lid 8 that opens and closes the first opening 4a.
  • the inner wall portion 9 is formed with a first insertion hole 9a and a second insertion hole 9b separated from each other on the lower side and the upper side.
  • the inner wall portion 9 may be integrally formed with the housing 4 as a part of the housing 4.
  • the housing 4 is supported by a second lid 10 that opens and closes the second opening 4b.
  • a battery case 11 is arranged inside the housing 4.
  • the battery case 11 is formed in a box shape that is opened downward by, for example, a metal material having high heat dissipation, and is located above the second lid 10.
  • the battery case 11 is opened or closed by opening and closing the second opening 4b by the second lid 10.
  • a terminal portion (not shown) is provided inside the battery case 11.
  • the battery 40 is inserted into the battery case 11 and attached.
  • the terminal portion provided inside the battery case 11 is connected to the connector portion (not shown) provided in the battery 40.
  • the interchangeable lens 3 is detachable from the device main body 2, and the required parts are arranged inside and outside the outer cylinder 12.
  • a plurality of adjusting rings 13 are rotatably supported on the outer peripheral surface of the outer cylinder 12.
  • the adjustment ring 13 has, for example, a function of performing focusing adjustment, zooming adjustment, light intensity adjustment of the aperture, and the like.
  • a plurality of lens groups are arranged apart from each other in the optical axis direction (front-back direction).
  • a lens mount (not shown) is attached to the rear end of the outer cylinder 12.
  • the interchangeable lens 3 is attached to the apparatus main body 2 by connecting the lens mount to the mount portion.
  • a board mounting base 14 is arranged inside the housing 4 (see FIG. 2).
  • the substrate mounting base 14 is, for example, a chassis made of a metal material having high thermal conductivity, and is formed in a horizontally long substantially rectangular shape.
  • the rear surface portion 11a of the battery case 11 is attached to one of the left and right side portions of the front surface 14a of the board mounting base 14.
  • a printed wiring board 15 is arranged inside the housing 4 (see FIGS. 2 to 5).
  • the printed wiring board 15 is used as, for example, a double-sided board formed in a horizontally long shape, and on both sides, for example, electronic components (not shown) are mounted on both sides.
  • the printed wiring board 15 may be a single-sided board on which electronic components and the like are mounted on only one side in the thickness direction.
  • the printed wiring board 15 is mounted with the front surface 15a in contact with the rear surface 14b of the board mounting base 14 (see FIG. 6).
  • One of the left and right side portions 16 of the printed wiring board 15 is located directly behind the battery case 11 with the board mounting base 14 interposed therebetween.
  • the perche element 17 and the copper block 18 are attached to the side portion 16 in a state of being separated from each other in the vertical direction (see FIGS. 4 to 6).
  • the perche element 17 and the copper block 18 are formed, for example, in the shape of a rectangular plate.
  • the Perche element 17 has, for example, a structure in which a conductive layer 17c having a semiconductor element is provided between a pair of first ceramic substrates 17a and a second ceramic substrate 17b (see FIG. 6).
  • the perche element 17 has a function of conducting heat in the thickness direction, and the heat transfer direction can be switched according to the direction of the current supplied to the conductive layer 17c.
  • the Perche element 17 when a current is supplied to the conductive layer 17c in one direction, heat is conducted from the first ceramic substrate 17a to the second ceramic substrate 17b, and heat is conducted to the conductive layer 17c in the other direction.
  • an electric current is supplied from the second ceramic substrate 17b, heat is conducted from the second ceramic substrate 17b to the first ceramic substrate 17a.
  • the Pelche element 17 is capable of switching the heat transfer direction, and functions as a heat transfer direction switching unit.
  • the front surface of the first ceramic substrate 17a is positioned on the same plane as the front surface 15a of the printed wiring board 15 and is brought into surface contact with the rear surface 14b of the substrate mounting base 14, so that the second ceramic substrate 17b The rear surface is located on the same plane as the rear surface 15b of the printed wiring board 15.
  • the front surface 18a is positioned on the same plane as the front surface 15a of the printed wiring board 15 and is in surface contact with the rear surface 14b of the substrate mounting base 14, and the rear surface 18b is in the same plane as the rear surface 15b of the printed wiring board 15. Located on top.
  • the first media slot 19 and the second media slot 20 are attached to the rear surface of the side portion 16 in a state of being separated from each other on the lower side and the upper side, respectively (see FIGS. 3 and 5).
  • the first media slot 19 has a first case body 21 formed of a metal material having high thermal conductivity and a first connector 22 attached to a side portion 16.
  • the first case body 21 is opened to one of the front side and the side side, and is attached to the rear surface 15b of the printed wiring board 15 in a state of covering the copper block 18 from the rear side. Therefore, the rear surface portion of the first case body 21 is in a state of facing the copper block 18.
  • One end on the side of the first case body 21 is attached to the inner wall portion 9 in the vicinity of the first insertion hole 9a, and the other end on the side of the first case body 21 has a first The connector 22 is located.
  • the first storage medium 50 is inserted and installed in the first media slot 19.
  • the first storage medium 50 is inserted into the first insertion hole 9a of the inner wall portion 9 and inserted into the first case body 21 in the state where the first lid body 8 is opened, and is inserted into the first media slot 19. It will be installed.
  • a terminal portion (not shown) formed in the first storage medium 50 is connected to the first connector 22.
  • the first storage medium 50 mounted in the first media slot 19 is accessed via a printed wiring board 15 and a first connector 22 by a control unit (not shown) such as a central processing unit to obtain a signal. Input / output is performed, and data is written or the written data is read.
  • the state in which the data is written or read to the first storage medium 50 is the driving state of the first storage medium 50, and the data is not written or read to the first storage medium 50.
  • the state is the non-driving state of the first storage medium 50.
  • the second media slot 20 has a second case body 23 made of a metal material having high thermal conductivity and a second connector 24 attached to the side portion 16.
  • the second case body 23 is opened to one of the front side and the side side, and is attached to the rear surface 15b of the printed wiring board 15 in a state of covering the perche element 17 from the rear side. Therefore, the rear surface portion of the second case body 23 is in a state of facing the Pelche element 17.
  • One end on the side of the second case 23 is attached to the inner wall 9 in the vicinity of the second insertion hole 9b, and the other end on the side of the second case 23 has a second.
  • the connector 24 is located.
  • the second storage medium 60 is inserted and installed in the second media slot 20.
  • the second storage medium 60 is inserted into the second insertion hole 9b of the inner wall portion 9 and inserted into the second case body 23 in the state where the first lid body 8 is opened, and is inserted into the second media slot 20. It will be installed.
  • a terminal portion (not shown) formed in the second storage medium 60 is connected to the second connector 24.
  • the second storage medium 60 mounted in the second media slot 20 is accessed by the control unit via the printed wiring board 15 and the second connector 24 to input and output signals, and data is input and output. Writing or reading of the written data is performed.
  • the state in which the data is written or read to the second storage medium 60 is the driving state of the second storage medium 60, and the data is not written or read to the second storage medium 60.
  • the state is the non-driving state of the second storage medium 60.
  • the first connector 22 and the second connector 24 are located in the vicinity of the copper block 18 and the Pelche element 17, respectively.
  • the first storage medium 50 and the second storage medium 60 are put into either a driven state or a non-driven state, but the first storage medium 50 and the second storage medium 60 are driven.
  • the first storage medium 50 and the second storage medium 60 generate heat, respectively.
  • the electronic device 1 is provided with an access state detection unit that detects access states to the first storage medium 50 and the second storage medium 60, respectively.
  • a control unit such as the central processing unit described above is an access state detection unit. Functions as. Therefore, the access state detection unit detects the access state to the first storage medium 50 and the second storage medium 60, and the first storage medium 50 and the second storage medium 60 are determined by the detection result of the access state detection unit, respectively. It is determined whether it is in the driven state or the non-driven state.
  • Heat conduction path The heat conduction path generated in the first storage medium 50 and the second storage medium 60 in the above-mentioned electronic device 1 will be described below (see FIGS. 7 to 9).
  • FIGS. 7 to 9 in order to facilitate understanding, the configuration and positional relationship of each part are simplified and shown, and the heat transfer direction can be switched. 17 is shown with a crossed diagonal line. Further, in the following, for the sake of simplicity, both the first storage medium 50 and the second storage medium 60 mounted in the first media slot 19 or the second media slot 20 are put into a driving state. Yes, it will be described as not being in the non-driving state in the mounted state.
  • the storage medium even when the storage medium is not installed in the media slot, the storage medium will be described as being in the non-driving state (an example in which three or four media slots are provided (FIGS. 14 to 27). ) Is the same.)
  • the heat transfer direction of the perche element 17 is from the first ceramic substrate 17a to the second ceramic substrate 17b. It can be switched to a state in which it is heading (see FIG. 7).
  • the heat generated in the first storage medium 50 is transmitted to the board mounting base 14 via the copper block 18, is conducted from the board mounting base 14 to the battery case 11, and is also conducted from the board mounting base 14 to the Perche element 17. Will be done.
  • the heat conducted to the battery case 11 is released from the battery case 11 or the battery 40. Therefore, the battery case 11 and the battery 40 function as a heat radiating body that releases heat.
  • the heat conducted to the Perche element 17 is switched from the second ceramic substrate 17b to the direction in which the heat transfer direction of the Perche element 17 is directed from the first ceramic substrate 17a to the second ceramic substrate 17b. It is conducted to the second media slot 20 and discharged from the second media slot 20.
  • the heat generated in the first storage medium 50 is released from the battery case 11, the battery 40, or the second media slot 20. Further, at least a part of the heat released from the battery case 11, the battery 40 or the second media slot 20 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
  • the heat transfer direction of the perche element 17 is from the second ceramic substrate 17b to the first ceramic.
  • the state can be switched to the direction toward the substrate 17a (see FIG. 8).
  • the heat generated in the second storage medium 60 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a in the heat transfer direction of the perche element 17, so that the first ceramic substrate 17a is used. It is transmitted from 17a to the board mounting base 14, is conducted from the board mounting base 14 to the battery case 11, and is also conducted from the board mounting base 14 to the copper block 18.
  • the heat conducted to the battery case 11 is released from the battery case 11 or the battery 40.
  • the heat conducted to the copper block 18 is conducted from the copper block 18 to the first media slot 19 and discharged from the first media slot 19.
  • the heat generated in the second storage medium 60 is released from the battery case 11, the battery 40, or the first media slot 19. Further, at least a part of the heat released from the battery case 11, the battery 40 or the first media slot 19 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
  • the heat transfer direction of the perche element 17 goes from the second ceramic substrate 17b to the first ceramic substrate 17a. It can be switched to the direction (see FIG. 9).
  • the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18 and conducted from the substrate mounting base 14 to the battery case 11.
  • the heat generated in the second storage medium 60 is transferred from the first ceramic substrate 17a because the heat transfer direction of the perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the battery case 11.
  • the heat conducted to the battery case 11 is released from the battery case 11 or the battery 40.
  • the heat generated in both the first storage medium 50 and the second storage medium 60 is released from the battery case 11 or the battery 40. Further, at least a part of the heat released from the battery case 11 or the battery 40 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
  • the heat generated in the first storage medium 50 and the second storage medium 60 is conducted through the substrate mounting base 14 that functions as the mounting member of the printed wiring board 15.
  • a dedicated member for conducting heat generated in the first storage medium 50 and the second storage medium 60 is not required, and the number of parts can be reduced and the heat transfer efficiency can be improved. ..
  • the perche element 17 that functions as a heat transfer direction switching portion is arranged in contact with the substrate mounting base 14.
  • the heat generated in the first storage medium 50 and the second storage medium 60 is easily conducted between the substrate mounting base 14 and the Pelche element 17, and the heat transfer efficiency is improved by switching the heat transfer direction by the Pelche element 17. It is possible to improve the heat dissipation efficiency after improving the heat dissipation efficiency.
  • the copper block 18 is attached to the printed wiring board 15, and the copper block 18 is positioned in contact with the substrate mounting base 14 and facing the first media slot 19.
  • the heat generated in the first storage medium 50 or the second storage medium 60 passes through the copper block 18 located facing the first media slot 19 to the substrate mounting base 14 or the first media slot 19. Therefore, it is possible to improve the heat dissipation efficiency by improving the heat transfer efficiency from the first storage medium 50 and the second storage medium 60 to the substrate mounting base 14 or the first media slot 19.
  • heat transfer is performed by the copper block 18 attached to the printed wiring board 15, but instead of the copper block 18, for example, a through hole is formed, and heat transfer is performed by the through hole. It may be configured to be performed.
  • both the first storage medium 50 and the second storage medium 60 mounted in the first media slot 19 and the second media slot 20, which are all media slots are put into a driving state, respectively.
  • a Pelche element that functions as a heat transfer direction switching unit so that heat is transferred from the first storage medium 50 and the second storage medium 60, which are all storage media, toward the battery case 11 and the battery 40 that function as radiators.
  • the heat transfer direction of 17 is switched.
  • first media slot 19 and the second media slot 20 are mounted on the same surface of the printed wiring board 15, the first media slot 19 and the second media slot 20 are mounted on the printed wiring board 15. It is located on one surface side, and it is possible to improve the heat dissipation efficiency of the heat generated in the first storage medium 50 and the second storage medium 60 while ensuring the thinness of the electronic device 1.
  • the heat transfer direction of the Pelche element 17 described above is switched according to, for example, the detection result of the access state detection unit.
  • the heat transfer direction of the Pelche element 17 is the first. It is switched to a state in which the direction is from the ceramic substrate 17a of the above to the second ceramic substrate 17b. Further, when it is detected from the detection result of the access state detection unit that the first storage medium 50 is in the non-driving state and the second storage medium 60 is in the driving state, the heat transfer direction of the Pelche element 17 is the second. It is switched to a state in which the direction is from the ceramic substrate 17b of the above to the first ceramic substrate 17a.
  • the heat transfer direction of the perche element 17 is the second ceramic.
  • the state is switched from the substrate 17b toward the first ceramic substrate 17a.
  • the heat generated in the first storage medium 50 and the second storage medium 60 is transferred by switching the heat transfer direction of the Pelche element 17 according to the detection result of the access state detection unit, so that the first storage medium
  • the heat generated in the 50 and the second storage medium 60 can be conducted in a direction according to the situation to improve the heat dissipation efficiency.
  • the first storage medium 50 is preferentially used with respect to the second storage medium 60, and the first storage medium 50 is installed in the first media slot 19.
  • the storage medium 50 will be described as being put into a driven state regardless of whether the second storage medium 60 is in a driven state or a non-driven state (description of the configuration shown in FIGS. 12 to 27 below). The same applies to.)
  • the heat conductive member 25 is made movable inside the board mounting base 14 and the printed wiring board 15 by, for example, a moving mechanism having an actuator (not shown) in the vertical direction.
  • the heat conductive member 25 is made of, for example, a metal material having high heat conductivity.
  • the heat conductive member 25 is moved to the lower moving end (see FIG. 10). At this time, the heat generated in the first storage medium 50 is transmitted to the board mounting base 14 via the copper block 18, is conducted from the board mounting base 14 to the battery case 11, and is conducted from the board mounting base 14 to the heat conductive member 25. Conducted.
  • the heat conducted to the battery case 11 is released from the battery case 11 or the battery 40.
  • the heat conducted to the heat conductive member 25 is conducted from the heat conductive member 25 to the second media slot 20 and discharged from the second media slot 20.
  • the heat generated in the first storage medium 50 is released from the battery case 11, the battery 40, or the second media slot 20. Further, at least a part of the heat released from the battery case 11, the battery 40 or the second media slot 20 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
  • the heat conductive member 25 is moved to the upper moving end (see FIG. 11). At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18 and conducted from the substrate mounting base 14 to the battery case 11. The heat generated in the second storage medium 60 is transferred to the heat conductive member 25, and is conducted from the heat conductive member 25 to the battery case 11.
  • the heat conducted to the battery case 11 is released from the battery case 11 or the battery 40.
  • the heat generated in both the first storage medium 50 and the second storage medium 60 is released from the battery case 11 or the battery 40. Further, at least a part of the heat released from the battery case 11 or the battery 40 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
  • the heat conductive member 25 is moved to the lower moving end and the first storage medium 60 is moved to the lower moving end.
  • the heat generated in the storage medium 50 is conducted from the substrate mounting base 14 to the second media slot 20 via the heat conductive member 25, and both the first storage medium 50 and the second storage medium 60 are put into a driving state. If so, the heat conductive member 25 is moved to the upper moving end, and the heat generated in the second storage medium 60 is conducted to the battery case 11 via the heat conductive member 25.
  • the heat transfer direction of the heat conductive member 25 is switched according to the access state to the first storage medium 50 and the second storage medium 60.
  • a printed wiring board 26 different from the printed wiring board 15 is attached to the front surface 14a of the board mounting base 14, a second media slot 20 is attached to the front surface of the printed wiring board 26, and printed wiring is performed.
  • the copper block 18 is attached to the position of the substrate 15 facing the first media slot 19, and the Pelche element 17 is attached to the position of the printed wiring board 26 facing the second media slot 20.
  • the heat transfer direction of the perche element 17 is from the second ceramic substrate 17b to the first ceramic substrate 17a. It can be switched to a state in which it faces (see FIG. 12). At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18 and conducted from the substrate mounting base 14 to the Perche element 17.
  • the heat transfer direction of the Perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a, the heat conducted to the Perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17a. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the first storage medium 50 is released from the battery case 11, the battery 40, or the second media slot 20. Further, at least a part of the heat released from the battery case 11, the battery 40 or the second media slot 20 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
  • the heat transfer direction of the perche element 17 is from the first ceramic substrate 17a to the second ceramic substrate 17b. It can be switched to the direction (see FIG. 13).
  • the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18, and is discharged mainly from the outer peripheral surface of the substrate mounting base 14.
  • the heat generated in the second storage medium 60 is transferred from the second ceramic substrate 17b because the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b. It is transmitted to the board mounting base 14 and is discharged mainly from the outer peripheral surface of the board mounting base 14.
  • both the heat generated in the first storage medium 50 and the second storage medium 60 is released from the substrate mounting base 14. Further, at least a part of the heat released from the substrate mounting base 14 is conducted to the housing 4, and is released from the housing 4 to the atmosphere.
  • the third media slot 27 has a third case body 28 and a third connector (not shown), is mounted on the printed wiring board 26, and is located on the front side of the first media slot 19 with the board mounting base 14 interposed therebetween.
  • a perche element 29 is attached to the printed wiring board 26 at a position facing the front surface of the third case body 28, and the perche element 29, like the perche element 17, has a heat transfer direction according to the direction of the supplied current. Functions as a heat transfer direction switching unit that can switch between.
  • the perche element 29 has a pair of a first ceramic substrate 29a and a second ceramic substrate 29b, and the first ceramic substrate 29a is located in front of the second ceramic substrate 29b.
  • FIGS. 15 to 18 in order to facilitate understanding, the configuration and positional relationship of each part are shown in a simplified manner, and the perche elements 17 and 29 are shown with crossed diagonal lines. Further, in the following, for the sake of simplicity, the first storage medium 50 and the second storage medium mounted in the first media slot 19, the second media slot 20, or the third media slot 27 will be described below. It will be described as assuming that both the 60 and the third storage medium 70 are in the driven state and are not in the non-driven state in the mounted state.
  • the heat transfer direction of the perche element 17 is from the first ceramic substrate 17a.
  • the state is switched to the direction toward the second ceramic substrate 17b, and the heat transfer direction of the perche element 29 is switched to the state toward the first ceramic substrate 29a from the second ceramic substrate 29b (see FIG. 15). ).
  • the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18.
  • the heat transferred to the board mounting base 14 is conducted from the board mounting base 14 to the perche element 29 and also to the perche element 17. Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat conducted to the Perche element 17 is switched from the second ceramic substrate 17b to the direction in which the heat transfer direction of the Perche element 17 is directed from the first ceramic substrate 17a to the second ceramic substrate 17b. It is conducted to the second media slot 20 and discharged from the second media slot 20.
  • the heat generated in the first storage medium 50 is released from the third media slot 27, the battery case 11, the battery 40, or the second media slot 20. Further, at least a part of the heat released from the third media slot 27, the battery case 11, the battery 40 or the second media slot 20 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
  • the heat transfer direction of the perche element 17 is from the second ceramic substrate 17b.
  • the state is switched to the direction toward the first ceramic substrate 17a, and the heat transfer direction of the perche element 29 is switched to the state toward the first ceramic substrate 29a from the second ceramic substrate 29b (see FIG. 16). ).
  • the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18 and conducted from the substrate mounting base 14 to the Pelche element 29. Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the second storage medium 60 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a in the heat transfer direction of the Pelche element 17, so that the first ceramic substrate is used. It is transmitted from 17a to the substrate mounting base 14, and is conducted from the substrate mounting base 14 to the perche element 29.
  • the heat conducted to the Pelche element 29 is conducted from the first ceramic substrate 29a to the third media slot 27, discharged from the third media slot 27, and conducted to the battery case 11 to the battery case 11 or the battery. Emitted from 40.
  • the heat generated in the first storage medium 50 and the second storage medium 60 is released from the battery case 11, the battery 40, or the third media slot 27. Further, at least a part of the heat released from the battery case 11, the battery 40 or the third media slot 27 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
  • the heat transfer direction of the perche element 17 is from the first ceramic substrate 17a.
  • the state is switched to the direction toward the second ceramic substrate 17b, and the heat transfer direction of the perche element 29 is switched to the state toward the second ceramic substrate 29b from the first ceramic substrate 29a (see FIG. 17). ).
  • the heat generated in the first storage medium 50 is transmitted to the substrate mounting base 14 via the copper block 18, and is conducted from the substrate mounting base 14 to the Pelche element 17. Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20.
  • the heat generated in the third storage medium 70 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b in the heat transfer direction of the perche element 29, so that the second ceramic substrate is used. It is transmitted from 29b to the board mounting base 14, and is conducted from the board mounting base 14 to the perche element 17. Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20.
  • the heat generated in the first storage medium 50 and the third storage medium 70 is released from the second media slot 20. Further, at least a part of the heat released from the second media slot 20 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
  • the heat transfer direction of the perche element 17 is from the second ceramic substrate 17b to the first.
  • the state is switched to the direction toward the ceramic substrate 17a, and the heat transfer direction of the perche element 29 is switched to the state toward the second ceramic substrate 29b from the first ceramic substrate 29a (see FIG. 18).
  • the heat generated in the first storage medium 50 is transferred to the board mounting base 14 via the copper block 18 and discharged mainly from the outer peripheral surface of the board mounting base 14.
  • the heat generated in the second storage medium 60 is transferred from the first ceramic substrate 17a because the heat transfer direction of the perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a. It is transmitted to the board mounting base 14 and is discharged mainly from the outer peripheral surface of the board mounting base 14.
  • the heat generated in the third storage medium 70 is transferred from the second ceramic substrate 29b because the heat transfer direction of the perche element 29 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b. It is transmitted to the board mounting base 14 and is discharged mainly from the outer peripheral surface of the board mounting base 14.
  • the heat generated in the first storage medium 50, the second storage medium 60, and the third storage medium 70 is released from the substrate mounting base 14. Further, at least a part of the heat released from the substrate mounting base 14 is conducted to the housing 4, and is released from the housing 4 to the atmosphere.
  • the electronic device 1 has a third medium in addition to the first media slot 19 and the second media slot 20.
  • Four media slots, slot 27 and a fourth media slot 30, may be provided (see FIG. 19).
  • the fourth media slot 30 has a fourth case body 31 and a fourth connector (not shown), is mounted on the printed wiring board 26, and is located on the front side of the second media slot 20 with the board mounting base 14 interposed therebetween.
  • a perche element 32 is attached to the printed wiring board 26 at a position facing the front surface portion of the fourth case body 31, and the perche element 32, like the perche element 17 and the perche element 29, depends on the direction of the supplied current. It functions as a heat transfer direction switching unit that can switch the heat transfer direction.
  • the perche element 32 has a pair of a first ceramic substrate 32a and a second ceramic substrate 32b, and the first ceramic substrate 32a is located in front of the second ceramic substrate 32b.
  • FIGS. 20 to 27 in order to facilitate understanding, the configuration and positional relationship of each part are shown in a simplified manner, and the Perche elements 17, 29, and 32 are shown with diagonal lines crossed. Further, in the following, for the sake of simplicity, the first storage medium mounted in the first media slot 19, the second media slot 20, the third media slot 27, or the fourth media slot 30. It will be described as assuming that the 50, the second storage medium 60, the third storage medium 70, or the fourth storage medium 80 are all in the driven state and are not in the non-driven state in the mounted state.
  • the heat transfer direction of the ceramic element 17 is set.
  • the state is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, and the heat transfer direction of the perche element 29 is the direction from the second ceramic substrate 29b to the first ceramic substrate 29a.
  • the thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the second ceramic substrate 32b to the first ceramic substrate 32a (see FIG. 20).
  • the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18.
  • the heat transferred to the board mounting base 14 is conducted from the board mounting base 14 to the perche element 29 and also to the perche element 17 and the perche element 32.
  • the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40. Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20.
  • the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the first storage medium 50 is released from the third media slot 27, the battery case 11, the battery 40, the second media slot 20, or the fourth media slot 30. Further, at least a part of the heat released from the third media slot 27, the battery case 11, the battery 40, the second media slot 20 or the fourth media slot 30 is conducted to the housing 4, and is transmitted from the housing 4. Released into the atmosphere.
  • the heat transfer direction of the ceramic element 17 is set.
  • the state is switched from the second ceramic substrate 17b to the direction toward the first ceramic substrate 17a, and the heat transfer direction of the perche element 29 is the direction toward the first ceramic substrate 29a from the second ceramic substrate 29b.
  • the thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the second ceramic substrate 32b to the first ceramic substrate 32a (see FIG. 21).
  • the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18, and is conducted from the substrate mounting base 14 to the perche element 29 and also to the perche element 32.
  • the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40. Since the heat transfer direction of the Perche element 32 is switched from the second ceramic substrate 32b to the first ceramic substrate 32a, the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the second storage medium 60 is transferred to the substrate mounting base 14 because the heat transfer direction of the Perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a. It is transmitted and conducted from the substrate mounting base 14 to the Perche element 32 and also to the Perche element 29.
  • the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40. Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the first storage medium 50 and the second storage medium 60 is released from the battery case 11, the battery 40, the third media slot 27, or the fourth media slot 30. Further, at least a part of the heat released from the battery case 11, the battery 40, the third media slot 27 or the fourth media slot 30 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
  • the heat transfer direction of the ceramic element 17 is set.
  • the state is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, and the heat transfer direction of the perche element 29 is the direction from the first ceramic substrate 29a to the second ceramic substrate 29b.
  • the thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the second ceramic substrate 32b to the first ceramic substrate 32a (see FIG. 22).
  • the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18, and is conducted from the substrate mounting base 14 to the perche element 17 and also to the perche element 32.
  • the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20. Since the heat transfer direction of the Perche element 32 is switched from the second ceramic substrate 32b to the first ceramic substrate 32a, the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the third storage medium 70 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b in the heat transfer direction of the perche element 29, so that the second ceramic substrate is used. It is transmitted from 29b to the substrate mounting base 14, is conducted from the substrate mounting base 14 to the perche element 17, and is also conducted to the perche element 32.
  • the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20. Since the heat transfer direction of the Perche element 32 is switched from the second ceramic substrate 32b to the first ceramic substrate 32a, the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the first storage medium 50 and the third storage medium 70 is released from the battery case 11, the battery 40, the second media slot 20, or the fourth media slot 30. Further, at least a part of the heat released from the battery case 11, the battery 40, the second media slot 20 or the fourth media slot 30 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
  • the heat transfer direction of the ceramic element 17 is set.
  • the state is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, and the heat transfer direction of the perche element 29 is the direction from the second ceramic substrate 29b to the first ceramic substrate 29a.
  • the thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the first ceramic substrate 32a to the second ceramic substrate 32b (see FIG. 23).
  • the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18, and is conducted from the substrate mounting base 14 to the perche element 29 and also to the perche element 17.
  • the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40. Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20.
  • the heat generated in the fourth storage medium 80 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b in the heat transfer direction of the perche element 29, so that the second ceramic substrate is used. It is transmitted from 29b to the substrate mounting base 14, is conducted from the substrate mounting base 14 to the perche element 17, and is also conducted to the perche element 29.
  • the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20. Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the first storage medium 50 and the fourth storage medium 80 is released from the battery case 11, the battery 40, the second media slot 20, or the third media slot 27. Further, at least a part of the heat released from the battery case 11, the battery 40, the second media slot 20 or the third media slot 27 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
  • the heat transfer direction of the ceramic element 17 is set.
  • the state is switched from the second ceramic substrate 17b to the direction toward the first ceramic substrate 17a, and the heat transfer direction of the perche element 29 is in the direction from the first ceramic substrate 29a to the second ceramic substrate 29b.
  • the thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the second ceramic substrate 32b to the first ceramic substrate 32a (see FIG. 24).
  • the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18 and conducted from the substrate mounting base 14 to the Pelche element 32.
  • the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the second storage medium 60 is transferred from the first ceramic substrate 17a because the heat transfer direction of the perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the perche element 32.
  • the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the third storage medium 70 is transferred from the second ceramic substrate 29b because the heat transfer direction of the perche element 29 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the perche element 32.
  • the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the first storage medium 50, the second storage medium 60, and the third storage medium 70 is released from the battery case 11, the battery 40, or the fourth media slot 30. Further, at least a part of the heat released from the battery case 11, the battery 40 or the fourth media slot 30 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
  • the heat transfer direction of the ceramic element 17 is set.
  • the state is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, and the heat transfer direction of the perche element 29 is the direction from the first ceramic substrate 29a to the second ceramic substrate 29b.
  • the thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the first ceramic substrate 32a to the second ceramic substrate 32b (see FIG. 25).
  • the heat generated in the first storage medium 50 is transmitted to the substrate mounting base 14 via the copper block 18, and is conducted from the substrate mounting base 14 to the Pelche element 17.
  • the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20.
  • the heat generated in the third storage medium 70 is transferred from the second ceramic substrate 29b because the heat transfer direction of the perche element 29 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the perche element 17.
  • the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20.
  • the heat generated in the fourth storage medium 80 is transferred from the second ceramic substrate 32b because the heat transfer direction of the perche element 32 is switched from the first ceramic substrate 32a to the second ceramic substrate 32b. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the perche element 17.
  • the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20.
  • the heat generated in the first storage medium 50, the third storage medium 70, and the fourth storage medium 80 is released from the second media slot 20. Further, at least a part of the heat released from the second media slot 20 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
  • the heat transfer direction of the ceramic element 17 is set.
  • the state is switched from the second ceramic substrate 17b to the direction toward the first ceramic substrate 17a, and the heat transfer direction of the perche element 29 is the direction toward the first ceramic substrate 29a from the second ceramic substrate 29b.
  • the thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the first ceramic substrate 32a to the second ceramic substrate 32b (see FIG. 26).
  • the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18 and conducted from the substrate mounting base 14 to the Pelche element 29.
  • the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the second storage medium 60 is transferred from the first ceramic substrate 17a because the heat transfer direction of the perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the ceramic cooling element 29.
  • the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the fourth storage medium 80 is transferred from the second ceramic substrate 32b because the heat transfer direction of the perche element 32 is switched from the first ceramic substrate 32a to the second ceramic substrate 32b. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the ceramic cooling element 29.
  • the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
  • the heat generated in the first storage medium 50, the second storage medium 60, and the fourth storage medium 80 is released from the third media slot 27. Further, at least a part of the heat released from the third media slot 27 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
  • the ceramic element 17 has a second heat transfer direction.
  • the state is switched from the ceramic substrate 17b to the direction toward the first ceramic substrate 17a, and the heat transfer direction of the perche element 29 is switched to the direction from the first ceramic substrate 29a to the second ceramic substrate 29b.
  • the thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the first ceramic substrate 32a to the second ceramic substrate 32b (see FIG. 27).
  • the heat generated in the first storage medium 50 is transferred to the board mounting base 14 via the copper block 18 and discharged mainly from the outer peripheral surface of the board mounting base 14.
  • the heat generated in the second storage medium 60 is transferred from the first ceramic substrate 17a because the heat transfer direction of the perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a. It is transmitted to the board mounting base 14 and is discharged mainly from the outer peripheral surface of the board mounting base 14.
  • the heat generated in the third storage medium 70 is transferred from the second ceramic substrate 29b because the heat transfer direction of the perche element 29 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b. It is transmitted to the board mounting base 14 and is discharged mainly from the outer peripheral surface of the board mounting base 14.
  • the heat generated in the fourth storage medium 80 is transferred from the second ceramic substrate 32b because the heat transfer direction of the perche element 32 is switched from the first ceramic substrate 32a to the second ceramic substrate 32b. It is transmitted to the board mounting base 14 and is discharged mainly from the outer peripheral surface of the board mounting base 14.
  • the heat generated in the first storage medium 50, the second storage medium 60, the third storage medium 70, and the fourth storage medium 80 is released from the substrate mounting base 14. Further, at least a part of the heat released from the substrate mounting base 14 is conducted to the housing 4, and is released from the housing 4 to the atmosphere.
  • the heat transfer direction switching unit (Pelche elements 17, 29, 32 or the heat transfer member 25, the same applies hereinafter, which conducts heat and enables switching of the heat transfer direction.
  • a storage medium (the first media slot 19, the second media slot 20, the third media slot 27 or the fourth media slot 30, the same shall apply hereinafter).
  • the heat transfer direction of the heat transfer direction switching unit is switched according to the access state to the storage medium 50, the second storage medium 60, the third storage medium 70, or the fourth storage medium 80, the same applies hereinafter).
  • the heat generated in the storage medium is conducted in the heat transfer direction switched according to the access state to the storage media installed in each of the plurality of media slots, so that the heat dissipation efficiency is improved regardless of the access state to the storage medium. Can be planned.
  • the amount of heat generated may differ depending on the operating state of the electronic device 1, and the heat transfer direction of the heat transfer direction switching unit depends on the access state to the storage medium.
  • the heat generated in the stored medium in the driven state is installed in the media slot or the storage medium in which the storage medium in the non-driving state is installed.
  • the heat transfer direction of the heat transfer direction switching unit is switched so that it is conducted toward the media slot in which is not installed.
  • heat is transferred from the storage medium in the driven state to the media slot in which the storage medium in the non-drive state is installed or the media slot in which the storage medium is not installed by the heat transfer direction switching unit whose heat transfer direction is switched. Since it is conducted, it is possible to improve the heat transfer efficiency and the heat dissipation efficiency.
  • the heat transfer direction is changed according to the direction of the supplied current. Since the heat transfer directions of the Pelche elements 17, 29, and 32 that function as switching portions are converted, the heat transfer directions can be easily and surely controlled.
  • the electronic device 1 has a change operation unit that changes the access state to each storage medium installed in each of the plurality of media slots, and the heat transfer direction of the heat transfer direction switching unit is changed according to the operation of the change operation unit. It may be configured to be switchable.
  • the change operation unit for example, any operation unit 5 of the operation units 5, 5, ... Can be used.
  • each storage is performed by switching the heat transfer direction of the heat transfer direction switching unit according to the operation of the change operation unit that changes the access state to each storage medium installed in the media slot. Since the heat generated in the medium is transferred, the heat generated in each storage medium can be conducted in a direction according to the situation to improve the heat dissipation efficiency.
  • the electronic device 1 is provided with at least two media slots, a storage medium installed in one of the plurality of media slots may be used as the main storage medium.
  • the first storage medium 50 mounted in the first media slot 19 is used as the main storage medium, and the second media slot 19 is used.
  • the second storage medium 60 mounted in the media slot 20 of the above is used as an auxiliary storage medium and all the storage capacity of the first storage medium 50 is used, the second storage is automatically performed. Data may be stored in the medium 60.
  • the access state detection unit detects that the first storage medium 50 is in the non-driving state and the second storage medium 60 is in the driving state, so that heat is transferred according to the detection result. It is possible to switch the heat transfer direction of the direction switching unit.
  • the driven state and the non-driven state of the first storage medium 50 and the second storage medium 60 can be switched by the operation of the user, and the heat transfer of the heat transfer direction switching unit is made according to the switching operation of the user. It is also possible to have a configuration in which the direction can be switched.
  • the number of media slots may be five or more, and the number and arrangement of the copper blocks, the Pelce elements and the heat transfer members located opposite to these media slots may be at least one Pelce element or heat. It is optional as long as a transmission member is provided.
  • the electronic device (imaging device) 1 is equipped with, for example, an interchangeable lens having a camera block 90 that has an imaging function.
  • the electronic device 1 has a lens barrel, the electronic device 1 is provided with the camera block 90.
  • the electronic device 1 has a camera signal processing unit 91 that performs signal processing such as analog-to-digital conversion of the captured image signal, and an image processing unit 92 that performs recording / playback processing of the image signal. Further, the electronic device 1 includes a display unit 93 for displaying a captured image and the like, an R / W (reader / writer) 94 for writing and reading an image signal to the memory 99, and the entire electronic device 1.
  • a CPU Central Processing Unit
  • a lens drive control unit 96 to control the drive of a lens arranged in a camera block 90
  • an operation unit 97 operation unit
  • the electronic device 1 is provided with an image sensor 98 such as a CCD or CMOS that converts an optical image captured by the camera block 90 into an electrical signal.
  • an image sensor 98 such as a CCD or CMOS that converts an optical image captured by the camera block 90 into an electrical signal.
  • the camera signal processing unit 91 performs various signal processing such as conversion of the output signal from the image pickup element 98 into a digital signal, noise removal, image quality correction, and conversion into a luminance / color difference signal.
  • the image processing unit 92 performs compression coding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and the like.
  • the display unit 93 has a function of displaying various data such as an operation state of the user's operation unit 97 and a captured image.
  • the electronic device 1 may not be provided with the display unit 93, and may be configured so that the captured image data is sent to another display device to display the image.
  • the R / W 94 writes the image data encoded by the image processing unit 92 to the memory 99 and reads the image data recorded in the memory 99.
  • the CPU 95 functions as a control processing unit that controls each circuit block provided in the electronic device 1, and controls each circuit block based on an instruction input signal or the like from the operation unit 97.
  • the lens drive control unit 96 controls a drive source for moving the lens based on a control signal from the CPU 95.
  • the operation unit 97 outputs an instruction input signal corresponding to the operation by the user to the CPU 95.
  • the memory 99 is, for example, a semiconductor memory that can be attached to and detached from a slot connected to the R / W 94, or a semiconductor memory that is preliminarily incorporated inside the electronic device 1.
  • the shot image signal is output to the display unit 93 via the camera signal processing unit 91 and displayed as a camera-through image.
  • the CPU 95 outputs a control signal to the lens drive control unit 96, and the lens is moved based on the control of the lens drive control unit 96.
  • the shot image signal is output from the camera signal processing unit 91 to the image processing unit 92, compressed and encoded, and converted into digital data in a predetermined data format. Will be converted.
  • the converted data is output to R / W 94 and written to memory 99.
  • the R / W 94 reads the predetermined image data from the memory 99 in response to the operation on the operation unit 97, and the image processing unit 92 performs the decompression / decoding process. After that, the reproduced image signal is output to the display unit 93 and the reproduced image is displayed.
  • imaging means converting the photoelectric conversion process of converting the light captured by the image pickup element 98 into an electric signal to the digital signal of the output signal from the image pickup element 98 by the camera signal processing unit 91. , Noise removal, image quality correction, conversion to brightness / color difference signals, etc., compression coding / decompression decoding processing of image signals based on a predetermined image data format by the image processing unit 92, conversion processing of data specifications such as resolution, etc. , A process including only a part or all of a series of processes up to the process of writing an image signal to the memory 99 by the R / W 94.
  • imaging may refer only to the photoelectric conversion process for converting the light captured by the image pickup element 98 into an electric signal, and from the photoelectric conversion process for converting the light captured by the image pickup element 98 into an electric signal. It may also refer to processing such as conversion of the output signal from the image pickup element 98 by the camera signal processing unit 91 into a digital signal, noise removal, image quality correction, and conversion into a brightness / color difference signal, and is captured by the image pickup element 98. After the photoelectric conversion process for converting light into an electric signal, the camera signal processing unit 91 converts the output signal from the image pickup element 98 into a digital signal, noise removal, image quality correction, conversion into a brightness / color difference signal, and the like.
  • the camera block 90 and the electronic device 1 are configured to include only a part or all of the image sensor 98, the camera signal processing unit 91, the image processing unit 92, and the R / W 94 that perform the above processing. You may be.
  • the camera block 90 may be configured to include a part of the image sensor 98, the camera signal processing unit 91, the image processing unit 92, and the R / W 94.
  • the present technology can also be configured as follows.
  • the storage medium is put into a driving state at the time of access and is put into a non-driving state at the time of non-access.
  • the heat transfer direction of the heat transfer direction switching unit is switched so that the heat generated in the storage medium in the driven state is conducted toward the media slot in which the storage medium in the non-drive state is mounted.
  • the storage medium is put into a driving state at the time of access and is put into a non-driving state at the time of non-access.
  • At least one of the storage media is put into a driven state and a non-driven state, respectively.
  • the heat transfer direction of the heat transfer direction switching unit is switched so that the heat generated in the storage medium in the driven state is conducted toward the media slot in which the storage medium is not mounted.
  • a radiator that dissipates heat is provided,
  • the storage medium is put into a driving state at the time of access and is put into a non-driving state at the time of non-access.
  • the electronic device wherein the heat transfer direction of the heat transfer direction switching unit is switched so that heat is transferred from all the storage media toward the heat radiating body.
  • a copper block is attached to the printed wiring board, The electronic device according to any one of (1) to (7) above, wherein the copper block is positioned in a state of being in contact with the substrate mounting base and facing at least one of the media slots.
  • An access state detection unit for detecting the access state to the storage medium is provided.
  • the electronic device according to any one of (1) to (9) above, wherein the heat transfer direction of the heat transfer direction switching unit is switched according to the detection result of the access state detection unit.
  • a change operation unit for changing the access state to the storage medium installed in each of the plurality of media slots is provided.
  • the electronic device according to any one of (1) to (9) above, wherein the heat transfer direction of the heat transfer direction switching unit is switched according to the operation of the change operation unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The present invention comprises: a plurality of media slots each having a storage medium inserted therein; a printed wiring board on which each of the plurality of media slots is mounted; a substrate attachment base on which the printed wiring board is attached; and a heat transfer direction switching unit capable of switching the direction in which heat generated by the storage mediums is conducted. The heat transfer direction switching unit switches the heat transfer direction in accordance with the access state for the storage mediums inserted in each of the plurality of media slots. Because heat generated in the storage mediums is conducted in the direction to which heat transfer is switched in accordance with the access states for the storage mediums inserted in each of the plurality of media slots, this configuration enables improvement of heat radiation efficiency regardless of the access states for the storage mediums.

Description

電子機器Electronics
 本技術は記憶媒体がそれぞれ装着される複数のメディアスロットを有する電子機器についての技術分野に関する。 This technology relates to the technical field of an electronic device having a plurality of media slots into which storage media are mounted.
 携帯電話に代表される携帯端末や撮像装置として機能するカメラ等の各種の電子機器には、筐体の内部に配置されたプリント配線基板を有し、プリント配線基板に複数のメディアスロットが実装されたものがある(例えば、特許文献1及び特許文献2参照)。メディアスロットに対しては、例えば、筐体に開閉可能に支持された蓋体が開放されることによりメモリーカード等の記憶媒体の装着及び取出が可能にされ、メディアスロットに装着された記憶媒体に対してアクセスされることによりデータの書き込み又は読み出しが行われる。 Various electronic devices such as mobile terminals represented by mobile phones and cameras that function as image pickup devices have a printed wiring board arranged inside the housing, and a plurality of media slots are mounted on the printed wiring board. (See, for example, Patent Document 1 and Patent Document 2). With respect to the media slot, for example, a storage medium such as a memory card can be attached and detached by opening a lid that is openable and closable in the housing, and the storage medium mounted in the media slot can be used. Data is written or read by being accessed.
 このような複数のメディアスロットを有する電子機器においては、記憶媒体に対するアクセスが行われ記憶媒体が駆動状態にされているときに、記憶媒体において熱が生じる。特に、近年、データ量の増加により、記憶媒体に記憶されるデータの大容量化が進展されていると共にデータの書込や読出を行うときのアクセス速度の高速化も図られ、記憶媒体からの発熱量も大きくなる傾向にある。 In an electronic device having such a plurality of media slots, heat is generated in the storage medium when the storage medium is accessed and the storage medium is driven. In particular, in recent years, due to the increase in the amount of data, the capacity of the data stored in the storage medium has been increasing, and the access speed when writing or reading the data has been increased, so that the data can be stored from the storage medium. The calorific value also tends to increase.
 記憶媒体の発熱量が増加すると、発生した熱により筐体の内部の温度分布が不均一になり、周囲の電子部品等に熱の影響が及んで電子機器の動作に支障が生じたり記憶媒体の寿命の低下や動作不良を生じるおそれがある。 When the amount of heat generated by the storage medium increases, the heat generated causes the temperature distribution inside the housing to become uneven, which affects the surrounding electronic components and the like, causing problems in the operation of electronic devices and the storage medium. There is a risk of shortening the service life and causing malfunction.
特開2013-101478号公報Japanese Unexamined Patent Publication No. 2013-101478 特開2012-134814号公報Japanese Unexamined Patent Publication No. 2012-134814
 上記したように、近年、記憶媒体からの発熱量が大きくなる傾向にあり、特に、複数のメディアスロットを有する電子機器においては、記憶媒体の駆動時における発熱量が大きくなり易い。 As described above, in recent years, the amount of heat generated from the storage medium has tended to increase, and in particular, in an electronic device having a plurality of media slots, the amount of heat generated when the storage medium is driven tends to increase.
 従って、複数のメディアスロットを有する電子機器においては、記憶媒体に発生した熱が効率的に放出されることが望ましいが、各メディアスロットに装着された各記憶媒体においては電子機器の動作状態に応じて熱の発生量が異なる場合もあり、放熱経路によっては効率的な放熱状態を確保し難くなるおそれがある。 Therefore, in an electronic device having a plurality of media slots, it is desirable that the heat generated in the storage medium is efficiently released, but in each storage medium mounted in each media slot, it depends on the operating state of the electronic device. The amount of heat generated may differ, and it may be difficult to ensure an efficient heat dissipation state depending on the heat dissipation path.
 そこで、本技術電子機器は、各記憶媒体に対するアクセス状態に拘わらず放熱効率の向上を図ることを目的とする。 Therefore, the purpose of the electronic device of the present technology is to improve the heat dissipation efficiency regardless of the access state to each storage medium.
 第1に、本技術に係る電子機器は、記憶媒体がそれぞれ装着される複数のメディアスロットと、前記複数のメディアスロットがそれぞれ実装されたプリント配線基板と、前記プリント配線基板が取り付けられた基板取付ベースと、前記記憶媒体で発生する熱を伝導し伝熱方向の切替が可能な伝熱方向切替部とを備え、前記複数のメディアスロットにそれぞれ装着された前記記憶媒体に対するアクセス状態に応じて前記伝熱方向切替部の伝熱方向が切り替えられるものである。 First, the electronic device according to the present technology includes a plurality of media slots into which storage media are mounted, a printed wiring board in which the plurality of media slots are mounted, and a board mounting in which the printed wiring board is mounted. The base and a heat transfer direction switching unit capable of conducting heat generated by the storage medium and switching the heat transfer direction are provided, and the storage medium is installed in each of the plurality of media slots according to an access state to the storage medium. The heat transfer direction of the heat transfer direction switching unit can be switched.
 これにより、複数のメディアスロットにそれぞれ装着された記憶媒体に対するアクセス状態に応じて切り替えられた伝熱方向へ記憶媒体に発生する熱が伝導される。 As a result, the heat generated in the storage medium is conducted in the heat transfer direction switched according to the access state to the storage medium installed in each of the plurality of media slots.
 第2に、上記した本技術に係る電子機器においては、前記記憶媒体はアクセス時に駆動状態にされ非アクセス時に非駆動状態にされ、前記記憶媒体のうち少なくとも一つずつがそれぞれ駆動状態と非駆動状態にされたときに、駆動状態にある前記記憶媒体に発生する熱が非駆動状態にある前記記憶媒体が装着された前記メディアスロットへ向けて伝導されるように前記伝熱方向切替部の伝熱方向が切り替えられることが望ましい。 Secondly, in the above-mentioned electronic device according to the present technology, the storage medium is put into a driven state at the time of access and a non-driven state at the time of non-access, and at least one of the storage media is in the driven state and the non-driven state, respectively. When the state is set, the heat generated in the storage medium in the driven state is transmitted to the media slot in which the storage medium in the non-driven state is mounted so that the heat is transferred to the heat transfer direction switching unit. It is desirable that the thermal direction can be switched.
 これにより、伝熱方向が切り替えられた伝熱方向切替部によって駆動状態にある記憶媒体から非駆動状態にある記憶媒体が装着されたメディアスロットへ向けて熱が伝導される。 As a result, heat is conducted from the storage medium in the driven state to the media slot in which the storage medium in the non-driven state is mounted by the heat transfer direction switching unit whose heat transfer direction is switched.
 第3に、上記した本技術に係る電子機器においては、前記記憶媒体はアクセス時に駆動状態にされ非アクセス時に非駆動状態にされ、前記記憶媒体のうち少なくとも一つずつがそれぞれ駆動状態と非駆動状態にされたときに、駆動状態にある前記記憶媒体に発生する熱が前記記憶媒体が装着されていない前記メディアスロットへ向けて伝導されるように前記伝熱方向切替部の伝熱方向が切り替えられることが望ましい。 Third, in the electronic device according to the present technology described above, the storage medium is put into a driven state at the time of access and a non-driven state at the time of non-access, and at least one of the storage media is in the driven state and the non-driven state, respectively. The heat transfer direction of the heat transfer direction switching unit is switched so that the heat generated in the storage medium in the driven state is conducted toward the media slot in which the storage medium is not mounted when the state is set. It is desirable to be.
 これにより、伝熱方向が切り替えられた伝熱方向切替部によって駆動状態にある記憶媒体から記憶媒体が装着されていないメディアスロットへ向けて熱が伝導される。 As a result, heat is conducted from the storage medium in the driven state to the media slot in which the storage medium is not mounted by the heat transfer direction switching unit whose heat transfer direction is switched.
 第4に、上記した本技術に係る電子機器においては、熱を放出する放熱体が設けられ、前記記憶媒体はアクセス時に駆動状態にされ非アクセス時に非駆動状態にされ、全ての前記メディアスロットにそれぞれ前記記憶媒体が装着され全ての前記記憶媒体が駆動状態にされたときに、全ての前記記憶媒体から前記放熱体へ向けて伝熱されるように前記伝熱方向切替部の伝熱方向が切り替えられることが望ましい。 Fourth, in the above-mentioned electronic device according to the present technology, a heat radiating body for releasing heat is provided, and the storage medium is put into a driving state at the time of access and a non-driving state at the time of non-access, and all the media slots are filled with. When the storage media are attached and all the storage media are driven, the heat transfer direction of the heat transfer direction switching unit is switched so that heat is transferred from all the storage media toward the heat radiating body. It is desirable to be.
 これにより、伝熱方向が切り替えられた伝熱方向切替部によって駆動状態にある全ての記憶媒体から放熱体へ向けて熱が伝導される。 As a result, heat is conducted from all the storage media in the driven state toward the radiator by the heat transfer direction switching unit whose heat transfer direction is switched.
 第5に、上記した本技術に係る電子機器においては、前記伝熱方向切替部として、供給される電流の向きに応じて伝熱方向が変換されるペルチェ素子が用いられることが望ましい。 Fifth, in the above-mentioned electronic device according to the present technology, it is desirable that a Perche element whose heat transfer direction is changed according to the direction of the supplied current is used as the heat transfer direction switching unit.
 これにより、供給される電流の向きに応じて伝熱方向切替部として機能するペルチェ素子の伝熱方向が変換される。 As a result, the heat transfer direction of the Pelche element that functions as the heat transfer direction switching unit is changed according to the direction of the supplied current.
 第6に、上記した本技術に係る電子機器においては、前記記憶媒体に発生する熱が前記基板取付ベースを伝導されることが望ましい。 Sixth, in the above-mentioned electronic device according to the present technology, it is desirable that the heat generated in the storage medium is conducted through the substrate mounting base.
 これにより、記憶媒体に発生する熱を伝導するための専用の部材を必要としない。 This eliminates the need for a dedicated member to conduct the heat generated in the storage medium.
 第7に、上記した本技術に係る電子機器においては、前記伝熱方向切替部が前記基板取付ベースに接した状態で配置されることが望ましい。 Seventh, in the above-mentioned electronic device according to the present technology, it is desirable that the heat transfer direction switching portion is arranged in contact with the substrate mounting base.
 これにより、記憶媒体に発生した熱が基板取付ベースと伝熱方向切替部の間で伝導され易くなる。 This makes it easier for the heat generated in the storage medium to be conducted between the board mounting base and the heat transfer direction switching portion.
 第8に、上記した本技術に係る電子機器においては、前記プリント配線基板に銅ブロックが取り付けられ、前記銅ブロックが前記基板取付ベースに接し前記メディアスロットの少なくとも一つに対向した状態で位置されることが望ましい。 Eighth, in the above-mentioned electronic device according to the present technology, a copper block is attached to the printed wiring board, and the copper block is positioned in a state of being in contact with the substrate mounting base and facing at least one of the media slots. Is desirable.
 これにより、記憶媒体に発生した熱がメディアスロットに対向して位置された銅ブロックを介して基板取付ベース又はメディアスロットに伝達される。 As a result, the heat generated in the storage medium is transferred to the board mounting base or the media slot via the copper block located facing the media slot.
 第9に、上記した本技術に係る電子機器においては、前記複数のメディアスロットが前記プリント配線基板における同一の面に実装されることが望ましい。 Ninth, in the above-mentioned electronic device according to the present technology, it is desirable that the plurality of media slots are mounted on the same surface of the printed wiring board.
 これにより、複数のメディアスロットがプリント配線基板の一方の面側に位置される。 As a result, a plurality of media slots are located on one side of the printed wiring board.
 第10に、上記した本技術に係る電子機器においては、前記記憶媒体に対するアクセス状態を検出するアクセス状態検出部が設けられ、前記アクセス状態検出部の検出結果に応じて前記伝熱方向切替部の伝熱方向が切り替えられることが望ましい。 Tenth, in the above-mentioned electronic device according to the present technology, an access state detection unit for detecting an access state to the storage medium is provided, and the heat transfer direction switching unit is provided according to the detection result of the access state detection unit. It is desirable to switch the heat transfer direction.
 これにより、アクセス状態検出部の検出結果に応じた伝熱方向切替部の伝熱方向の切替により記憶媒体に発生する熱が伝達される。 As a result, the heat generated in the storage medium is transferred by switching the heat transfer direction of the heat transfer direction switching unit according to the detection result of the access state detection unit.
 第11に、上記した本技術に係る電子機器においては、前記複数のメディアスロットにそれぞれ装着された前記記憶媒体に対するアクセス状態を変更する変更操作部が設けられ、前記変更操作部の操作に応じて前記伝熱方向切替部の伝熱方向が切り替えられることが望ましい。 Eleventh, in the electronic device according to the present technology described above, a change operation unit for changing the access state to the storage medium installed in each of the plurality of media slots is provided, and the change operation unit responds to the operation of the change operation unit. It is desirable that the heat transfer direction of the heat transfer direction switching unit can be switched.
 これにより、メディアスロットに装着された記憶媒体に対するアクセス状態を変更する変更操作部の操作に応じた伝熱方向切替部の伝熱方向の切替により記憶媒体に発生する熱が伝達される。 As a result, the heat generated in the storage medium is transferred by switching the heat transfer direction of the heat transfer direction switching unit according to the operation of the change operation unit that changes the access state to the storage medium installed in the media slot.
図2乃至図28と共に本技術の実施の形態を示すものであり、本図は、電子機器の斜視図である。2 to 28 show an embodiment of the present technology, and this figure is a perspective view of an electronic device. 図1のII-II線に沿う断面図である。It is sectional drawing which follows the line II-II of FIG. プリント配線基板等の内部構造を示す電子機器の断面図である。It is sectional drawing of the electronic device which shows the internal structure of a printed wiring board and the like. プリント配線基板の背面図である。It is a rear view of a printed wiring board. プリント配線基板等の斜視図である。It is a perspective view of a printed wiring board and the like. 電子機器の内部構造の一部を示す拡大断面図である。It is an enlarged cross-sectional view which shows a part of the internal structure of an electronic device. 図8及び図9と共に熱の伝導経路を示すものであり、本図は、第1の記憶媒体が駆動状態にあり第2の記憶媒体が非駆動状態にある場合の例を示す概略断面図である。Along with FIGS. 8 and 9, the heat conduction path is shown, and this figure is a schematic cross-sectional view showing an example in which the first storage medium is in the driven state and the second storage medium is in the non-driven state. be. 第2の記憶媒体が駆動状態にあり第1の記憶媒体が非駆動状態にある場合の例を示す概略断面図である。It is schematic cross-sectional view which shows the example of the case where the 2nd storage medium is in a driven state and the 1st storage medium is in a non-driven state. 第1の記憶媒体と第2の記憶媒体が何れも駆動状態にある場合の例を示す概略断面図である。It is schematic cross-sectional view which shows the example in the case where both the 1st storage medium and the 2nd storage medium are in a driving state. 図11と共に伝熱方向切替部として熱伝導部材が設けられた例を示すものであり、本図は、第1の記憶媒体が駆動状態にあり第2の記憶媒体が非駆動状態にある場合の熱の伝導経路を示す概略断面図である。FIG. 11 shows an example in which a heat conductive member is provided as a heat transfer direction switching portion, and this figure shows a case where the first storage medium is in the driven state and the second storage medium is in the non-driven state. It is a schematic cross-sectional view which shows the conduction path of heat. 第1の記憶媒体と第2の記憶媒体が何れも駆動状態にある場合の熱の伝導経路を示す概略断面図である。It is a schematic cross-sectional view which shows the heat conduction path when both the 1st storage medium and the 2nd storage medium are in a driving state. 図13と共に第1のメディアスロットと第2のメディアスロットが基板取付ベースの反対側に配置された例を示すものであり、本図は、第1の記憶媒体が駆動状態にあり第2の記憶媒体が非駆動状態にある場合の熱の伝導経路を示す概略断面図である。FIG. 13 shows an example in which the first media slot and the second media slot are arranged on opposite sides of the board mounting base. In this figure, the first storage medium is in the driving state and the second storage is stored. It is a schematic cross-sectional view which shows the heat conduction path when a medium is in a non-driving state. 第1の記憶媒体と第2の記憶媒体が何れも駆動状態にある場合の熱の伝導経路を示す概略断面図である。It is a schematic cross-sectional view which shows the heat conduction path when both the 1st storage medium and the 2nd storage medium are in a driving state. 三つのメディアスロットが設けられた例を示す斜視図である。It is a perspective view which shows the example which provided three media slots. 図16乃至図18と共に三つのメディアスロットが設けられた例における熱の伝導経路を示すものであり、本図は、第1の記憶媒体が駆動状態にあり第2の記憶媒体と第3の記憶媒体が非駆動状態にある場合の例を示す概略断面図である。Along with FIGS. 16 to 18, the heat conduction path in the example in which the three media slots are provided is shown. In this figure, the first storage medium is in the driving state and the second storage medium and the third storage medium are stored. It is schematic cross-sectional view which shows the example of the case where a medium is in a non-driving state. 第1の記憶媒体と第2の記憶媒体が駆動状態にあり第3の記憶媒体が非駆動状態にある場合の例を示す概略断面図である。It is schematic cross-sectional view which shows the example of the case where the 1st storage medium and the 2nd storage medium are in a driven state, and the 3rd storage medium is in a non-driven state. 第1の記憶媒体と第3の記憶媒体が駆動状態にあり第2の記憶媒体が非駆動状態にある場合の例を示す概略断面図である。It is schematic cross-sectional view which shows the example of the case where the 1st storage medium and the 3rd storage medium are in a driven state, and the 2nd storage medium is in a non-driven state. 第1の記憶媒体と第2の記憶媒体と第3の記憶媒体が何れも駆動状態にある場合の例を示す概略断面図である。It is schematic cross-sectional view which shows the example in the case where the 1st storage medium, the 2nd storage medium and the 3rd storage medium are all in a driving state. 四つのメディアスロットが設けられた例を示す斜視図である。It is a perspective view which shows the example which provided four media slots. 図21乃至図27と共に四つのメディアスロットが設けられた例における熱の伝導経路を示すものであり、本図は、第1の記憶媒体が駆動状態にあり第2の記憶媒体と第3の記憶媒体と第4の記憶媒体が非駆動状態にある場合の例を示す概略断面図である。Along with FIGS. 21 to 27, the heat conduction path in the example in which the four media slots are provided is shown. In this figure, the first storage medium is in the driving state and the second storage medium and the third storage medium are stored. It is a schematic cross-sectional view which shows the example in the case where a medium and a 4th storage medium are in a non-driving state. 第1の記憶媒体と第2の記憶媒体が駆動状態にあり第3の記憶媒体と第4の記憶媒体が非駆動状態にある場合の例を示す概略断面図である。It is schematic cross-sectional view which shows the example in the case where the 1st storage medium and the 2nd storage medium are in a driven state, and the 3rd storage medium and the 4th storage medium are in a non-driven state. 第1の記憶媒体と第3の記憶媒体が駆動状態にあり第2の記憶媒体と第4の記憶媒体が非駆動状態にある場合の例を示す概略断面図である。It is schematic cross-sectional view which shows the example in the case where the 1st storage medium and the 3rd storage medium are in a driven state, and the 2nd storage medium and the 4th storage medium are in a non-driven state. 第1の記憶媒体と第4の記憶媒体が駆動状態にあり第2の記憶媒体と第3の記憶媒体が非駆動状態にある場合の例を示す概略断面図である。It is schematic cross-sectional view which shows the example in the case where the 1st storage medium and the 4th storage medium are in a driving state, and the 2nd storage medium and the 3rd storage medium are in a non-driving state. 第1の記憶媒体と第2の記憶媒体と第3の記憶媒体が駆動状態にあり第4の記憶媒体が非駆動状態にある場合の例を示す概略断面図である。It is schematic cross-sectional view which shows the example of the case where the 1st storage medium, the 2nd storage medium and the 3rd storage medium are in the driven state, and the 4th storage medium is in the non-driven state. 第1の記憶媒体と第3の記憶媒体と第4の記憶媒体が駆動状態にあり第2の記憶媒体が非駆動状態にある場合の例を示す概略断面図である。It is a schematic cross-sectional view which shows the example in the case where the 1st storage medium, the 3rd storage medium and the 4th storage medium are in a driven state, and the 2nd storage medium is in a non-driven state. 第1の記憶媒体と第2の記憶媒体と第4の記憶媒体が駆動状態にあり第3の記憶媒体が非駆動状態にある場合の例を示す概略断面図である。It is a schematic cross-sectional view which shows the example in the case where the 1st storage medium, the 2nd storage medium and the 4th storage medium are in a driven state, and the 3rd storage medium is in a non-driven state. 第1の記憶媒体と第2の記憶媒体と第3の記憶媒体と第4の記憶媒体が駆動状態にある場合の例を示す概略断面図である。It is schematic cross-sectional view which shows the example of the case where the 1st storage medium, the 2nd storage medium, the 3rd storage medium and the 4th storage medium are in a driving state. 電子機器(撮像装置)のブロック図である。It is a block diagram of an electronic device (imaging apparatus).
 以下に、本技術電子機器を実施するための形態を添付図面を参照して説明する。 The mode for implementing the electronic device of the present technology will be described below with reference to the attached drawings.
 以下に示した実施の形態は、本技術電子機器をカメラ等の撮像装置のうちスチルカメラである一眼レフカメラに適用したものである。但し、本技術の適用範囲は一眼レフカメラに限られることはない。本技術は、例えば、一眼レフカメラ以外のスチルカメラやビデオカメラ等の撮像装置、携帯電話に代表される携帯端末、テレビジョン等の表示装置、ヘッドホンやイヤホンやスピーカー等の音響出力装置、コンピューター等の情報処理装置等の筐体の内部にプリント配線基板が配置された各種の電子機器に広く適用することができる。 The embodiment shown below is an application of the electronic device of the present technology to a single-lens reflex camera which is a still camera among imaging devices such as a camera. However, the scope of application of this technology is not limited to single-lens reflex cameras. This technology includes, for example, imaging devices such as still cameras and video cameras other than single-lens reflex cameras, mobile terminals represented by mobile phones, display devices such as televisions, sound output devices such as headphones, earphones and speakers, computers and the like. It can be widely applied to various electronic devices in which a printed wiring board is arranged inside a housing such as an information processing device.
 以下の説明にあっては、スチルカメラの撮影時において撮影者から被写体を見た方向で前後上下左右の方向を示すものとする。従って、スチルカメラの有するレンズ又はマウント部の中心を通る光軸を基準に表現すれば、光軸上の物体側(被写体)が前方となり、光軸上の像面側が後方となる。尚、以下に示す前後上下左右の方向は説明の便宜上のものであり、本技術の実施に関しては、これらの方向に限定されることはない。 In the following explanation, it is assumed that the direction in which the photographer sees the subject at the time of shooting with the still camera indicates the front-back, up-down, left-right directions. Therefore, when expressed with reference to the optical axis passing through the center of the lens or mount portion of the still camera, the object side (subject) on the optical axis is the front, and the image plane side on the optical axis is the rear. The directions shown below in the front-back, up-down, left-right directions are for convenience of explanation, and the implementation of the present technology is not limited to these directions.
 <電子機器の構成>
 電子機器(一眼レフカメラ)1は装置本体2と交換レンズ3によって構成されている(図1及び図2参照)。但し、交換レンズ3が装着されない撮像装置においては、電子機器1が装置本体2のみによって構成されていてもよい。
<Configuration of electronic devices>
The electronic device (single-lens reflex camera) 1 is composed of a device main body 2 and an interchangeable lens 3 (see FIGS. 1 and 2). However, in the imaging device to which the interchangeable lens 3 is not attached, the electronic device 1 may be composed of only the device main body 2.
 装置本体2は筐体4の内外に所要の各部が配置されて成る。筐体4には、例えば、上面や後面等に各種の操作部5、5、・・・が配置されている。操作部5としては、例えば、電源釦、シャッター釦、ズーム摘子、モード切替摘子等が設けられている。 The device main body 2 is composed of necessary parts arranged inside and outside the housing 4. In the housing 4, for example, various operation units 5, 5, ... Are arranged on the upper surface, the rear surface, and the like. The operation unit 5 is provided with, for example, a power button, a shutter button, a zoom knob, a mode switching knob, and the like.
 筐体4の後面にはディスプレイ6が配置されている。筐体4の前面には円形状の図示しない開口が形成され、開口の周囲の部分に交換レンズ3を装着するための図示しない円環状のマウント部が設けられている。 A display 6 is arranged on the rear surface of the housing 4. A circular opening (not shown) is formed on the front surface of the housing 4, and an annular mount portion (not shown) for mounting the interchangeable lens 3 is provided around the opening.
 筐体4の内部にはCCD(Charge Coupled Device)やCMOS(Complementary Metal-Oxide Semiconductor)等の図示しない撮像素子が配置され、撮像素子は開口の後方に位置されている。 An image sensor (not shown) such as CCD (Charge Coupled Device) or CMOS (Complementary Metal-Oxide Semiconductor) is arranged inside the housing 4, and the image sensor is located behind the opening.
 筐体4には、一方の側面部に第1の開口部4aが形成され下面部に第2の開口部4bが形成されている。筐体4の上端部にはファインダー部7が設けられている。電子機器1の使用者はディスプレイ6又はファインダー部7により被写体の像を視認することが可能であり、ディスプレイ6により撮影した画像や映像を視認することも可能である。 The housing 4 has a first opening 4a formed on one side surface and a second opening 4b formed on the lower surface. A finder portion 7 is provided at the upper end portion of the housing 4. The user of the electronic device 1 can visually recognize the image of the subject through the display 6 or the finder unit 7, and can also visually recognize the image or video captured by the display 6.
 筐体4の一部、例えば、シャッター釦が設けられた部分である右端部は、グリップ部4cとして設けられている。グリップ部4cは前側の部分が他の部分より前側に膨らむように突出され、電子機器1の撮影時等に使用者の手で把持される部分である。 A part of the housing 4, for example, the right end portion where the shutter button is provided is provided as the grip portion 4c. The grip portion 4c is a portion in which the front portion is projected so as to bulge forward from the other portions, and is gripped by the user's hand when taking a picture of the electronic device 1.
 前側の部分が他の部分より前側に膨らむように突出されたグリップ部4cが撮影時に手で把持されることにより、電子機器1の安定した把持状態が確保される。また、シャッター釦が設けられた部分がグリップ部4cとして設けられることにより、使用者がグリップ部4cを把持した手と同じ手でシャッター釦を操作することが可能になり、撮影を容易かつ速やかに行うことが可能になり、撮影を容易に行うことができると共に撮影機会の損失を低減することができる。 The grip portion 4c protruding so that the front portion bulges forward from the other portion is gripped by hand at the time of photographing, so that a stable gripping state of the electronic device 1 is ensured. Further, since the portion provided with the shutter button is provided as the grip portion 4c, the user can operate the shutter button with the same hand as the hand holding the grip portion 4c, so that shooting can be performed easily and quickly. This makes it possible to easily perform shooting and reduce the loss of shooting opportunities.
 筐体4には第1の開口部4aを開閉する第1の蓋体8が支持されている。第1の蓋体8によって第1の開口部4aが開閉されることにより、筐体4の内部において第1の開口部4aの内側に配置された内壁部9と内壁部9が開放され又は閉塞される。内壁部9には下側と上側に第1の挿通孔9aと第2の挿通孔9bが離隔して形成されている。尚、内壁部9は筐体4の一部として筐体4に一体に形成されていてもよい。 The housing 4 is supported by a first lid 8 that opens and closes the first opening 4a. By opening and closing the first opening 4a by the first lid 8, the inner wall portion 9 and the inner wall portion 9 arranged inside the first opening 4a inside the housing 4 are opened or closed. Will be done. The inner wall portion 9 is formed with a first insertion hole 9a and a second insertion hole 9b separated from each other on the lower side and the upper side. The inner wall portion 9 may be integrally formed with the housing 4 as a part of the housing 4.
 筐体4には第2の開口部4bを開閉する第2の蓋体10が支持されている。筐体4の内部にはバッテリーケース11が配置されている。バッテリーケース11は、例えば、放熱性の高い金属材料によって下方に開口された箱状に形成され、第2の蓋体10の上方に位置されている。 The housing 4 is supported by a second lid 10 that opens and closes the second opening 4b. A battery case 11 is arranged inside the housing 4. The battery case 11 is formed in a box shape that is opened downward by, for example, a metal material having high heat dissipation, and is located above the second lid 10.
 第2の蓋体10によって第2の開口部4bが開閉されることにより、バッテリーケース11が開放され又は閉塞される。バッテリーケース11の内部には図示しない端子部が設けられている。 The battery case 11 is opened or closed by opening and closing the second opening 4b by the second lid 10. A terminal portion (not shown) is provided inside the battery case 11.
 バッテリーケース11にはバッテリー40が挿入されて装着される。バッテリーケース11にバッテリー40が装着され第2の蓋体10が閉塞された状態においては、バッテリーケース11の内部に設けられた端子部がバッテリー40に設けられた図示しないコネクター部に接続される。 The battery 40 is inserted into the battery case 11 and attached. When the battery 40 is attached to the battery case 11 and the second lid 10 is closed, the terminal portion provided inside the battery case 11 is connected to the connector portion (not shown) provided in the battery 40.
 交換レンズ3は装置本体2に着脱可能にされ、外筒12の内外に所要の各部が配置されて成る。 The interchangeable lens 3 is detachable from the device main body 2, and the required parts are arranged inside and outside the outer cylinder 12.
 外筒12の外周面には複数の調整用リング13が回転可能に支持されている。調整用リング13は、例えば、フォーカシング調整やズーミング調整や絞りの光量調整等を行う機能を有している。 A plurality of adjusting rings 13 are rotatably supported on the outer peripheral surface of the outer cylinder 12. The adjustment ring 13 has, for example, a function of performing focusing adjustment, zooming adjustment, light intensity adjustment of the aperture, and the like.
 外筒12の内部には図示しない複数のレンズ群が光軸方向(前後方向)に離隔して配置されている。外筒12の後端部には図示しないレンズマウントが取り付けられている。レンズマウントがマウント部に結合されることにより、交換レンズ3が装置本体2に装着される。 Inside the outer cylinder 12, a plurality of lens groups (not shown) are arranged apart from each other in the optical axis direction (front-back direction). A lens mount (not shown) is attached to the rear end of the outer cylinder 12. The interchangeable lens 3 is attached to the apparatus main body 2 by connecting the lens mount to the mount portion.
 筐体4の内部には基板取付ベース14が配置されている(図2参照)。基板取付ベース14は、例えば、熱伝導性の高い金属材料によって形成されたシャーシであり、横長の略矩形状に形成されている。基板取付ベース14の前面14aにおける左右一方の側部にはバッテリーケース11の後面部11aが取り付けられている。 A board mounting base 14 is arranged inside the housing 4 (see FIG. 2). The substrate mounting base 14 is, for example, a chassis made of a metal material having high thermal conductivity, and is formed in a horizontally long substantially rectangular shape. The rear surface portion 11a of the battery case 11 is attached to one of the left and right side portions of the front surface 14a of the board mounting base 14.
 筐体4の内部にはプリント配線基板15が配置されている(図2乃至図5参照)。プリント配線基板15は、例えば、横長の形状に形成され、例えば、両面にそれぞれ図示しない電子部品等が実装された両面基板として用いられている。尚、プリント配線基板15は厚み方向における一方の面のみに電子部品等が実装された片面基板であってもよい。 A printed wiring board 15 is arranged inside the housing 4 (see FIGS. 2 to 5). The printed wiring board 15 is used as, for example, a double-sided board formed in a horizontally long shape, and on both sides, for example, electronic components (not shown) are mounted on both sides. The printed wiring board 15 may be a single-sided board on which electronic components and the like are mounted on only one side in the thickness direction.
 プリント配線基板15は前面15aが基板取付ベース14の後面14bに接した状態で取り付けられている(図6参照)。プリント配線基板15は左右一方の側部16が基板取付ベース14を挟んでバッテリーケース11の真後ろに位置されている。 The printed wiring board 15 is mounted with the front surface 15a in contact with the rear surface 14b of the board mounting base 14 (see FIG. 6). One of the left and right side portions 16 of the printed wiring board 15 is located directly behind the battery case 11 with the board mounting base 14 interposed therebetween.
 側部16にはペルチェ素子17と銅ブロック18が上下に離隔した状態で取り付けられている(図4乃至図6参照)。ペルチェ素子17と銅ブロック18は、例えば、矩形の板状に形成されている。 The perche element 17 and the copper block 18 are attached to the side portion 16 in a state of being separated from each other in the vertical direction (see FIGS. 4 to 6). The perche element 17 and the copper block 18 are formed, for example, in the shape of a rectangular plate.
 ペルチェ素子17は、例えば、一対の第1のセラミック基板17aと第2のセラミック基板17bの間に半導体素子を有する導電層17cが設けられた構造にされている(図6参照)。ペルチェ素子17は厚み方向において熱を伝導する機能を有し、導電層17cに供給される電流の向きに応じて伝熱方向の切替が可能にされている。 The Perche element 17 has, for example, a structure in which a conductive layer 17c having a semiconductor element is provided between a pair of first ceramic substrates 17a and a second ceramic substrate 17b (see FIG. 6). The perche element 17 has a function of conducting heat in the thickness direction, and the heat transfer direction can be switched according to the direction of the current supplied to the conductive layer 17c.
 従って、ペルチェ素子17において、導電層17cに一方の向きで電流が供給されると、第1のセラミック基板17aから第2のセラミック基板17bへ向けて熱が伝導され、導電層17cに他方の向きで電流が供給されると、第2のセラミック基板17bから第1のセラミック基板17aへ向けて熱が伝導される。このようにペルチェ素子17は伝熱方向の切替が可能にされており、伝熱方向切替部として機能する。 Therefore, in the Perche element 17, when a current is supplied to the conductive layer 17c in one direction, heat is conducted from the first ceramic substrate 17a to the second ceramic substrate 17b, and heat is conducted to the conductive layer 17c in the other direction. When an electric current is supplied from the second ceramic substrate 17b, heat is conducted from the second ceramic substrate 17b to the first ceramic substrate 17a. In this way, the Pelche element 17 is capable of switching the heat transfer direction, and functions as a heat transfer direction switching unit.
 ペルチェ素子17は、例えば、第1のセラミック基板17aの前面がプリント配線基板15の前面15aと同一平面上に位置されて基板取付ベース14の後面14bに面接触され、第2のセラミック基板17bの後面がプリント配線基板15の後面15bと同一平面上に位置されている。 In the perche element 17, for example, the front surface of the first ceramic substrate 17a is positioned on the same plane as the front surface 15a of the printed wiring board 15 and is brought into surface contact with the rear surface 14b of the substrate mounting base 14, so that the second ceramic substrate 17b The rear surface is located on the same plane as the rear surface 15b of the printed wiring board 15.
 銅ブロック18は、例えば、前面18aがプリント配線基板15の前面15aと同一平面上に位置されて基板取付ベース14の後面14bに面接触され、後面18bがプリント配線基板15の後面15bと同一平面上に位置されている。 In the copper block 18, for example, the front surface 18a is positioned on the same plane as the front surface 15a of the printed wiring board 15 and is in surface contact with the rear surface 14b of the substrate mounting base 14, and the rear surface 18b is in the same plane as the rear surface 15b of the printed wiring board 15. Located on top.
 側部16の後面には下側と上側にそれぞれ第1のメディアスロット19と第2のメディアスロット20が離隔した状態で取り付けられている(図3及び図5参照)。 The first media slot 19 and the second media slot 20 are attached to the rear surface of the side portion 16 in a state of being separated from each other on the lower side and the upper side, respectively (see FIGS. 3 and 5).
 第1のメディアスロット19は熱伝導性の高い金属材料によって形成された第1のケース体21と側部16に取り付けられた第1のコネクター22とを有している。第1のケース体21は前方及び側方における一方に開口され、銅ブロック18を後方から覆う状態でプリント配線基板15の後面15bに取り付けられている。従って、第1のケース体21の後面部は銅ブロック18と対向した状態にされている。第1のケース体21の側方における一方の端部は第1の挿通孔9aの近傍において内壁部9に取り付けられ、第1のケース体21の側方における他方の端部には第1のコネクター22が位置されている。 The first media slot 19 has a first case body 21 formed of a metal material having high thermal conductivity and a first connector 22 attached to a side portion 16. The first case body 21 is opened to one of the front side and the side side, and is attached to the rear surface 15b of the printed wiring board 15 in a state of covering the copper block 18 from the rear side. Therefore, the rear surface portion of the first case body 21 is in a state of facing the copper block 18. One end on the side of the first case body 21 is attached to the inner wall portion 9 in the vicinity of the first insertion hole 9a, and the other end on the side of the first case body 21 has a first The connector 22 is located.
 第1のメディアスロット19には第1の記憶媒体50が挿入されて装着される。第1の記憶媒体50は第1の蓋体8が開放された状態において、内壁部9の第1の挿通孔9aに挿通され第1のケース体21に挿入されて第1のメディアスロット19に装着される。第1の記憶媒体50が第1のメディアスロット19に装着された状態においては、第1の記憶媒体50に形成された図示しない端子部が第1のコネクター22に接続される。 The first storage medium 50 is inserted and installed in the first media slot 19. The first storage medium 50 is inserted into the first insertion hole 9a of the inner wall portion 9 and inserted into the first case body 21 in the state where the first lid body 8 is opened, and is inserted into the first media slot 19. It will be installed. When the first storage medium 50 is installed in the first media slot 19, a terminal portion (not shown) formed in the first storage medium 50 is connected to the first connector 22.
 第1のメディアスロット19に装着された第1の記憶媒体50には、プリント配線基板15及び第1のコネクター22を介して中央演算処理装置等の図示しない制御部によりアクセスが行われて信号の入出力が行われ、データの書込又は書き込まれたデータの読取が行われる。第1の記憶媒体50に対するデータの書込又は読取が行われている状態は第1の記憶媒体50の駆動状態であり、第1の記憶媒体50に対するデータの書込も読取も行われていない状態は第1の記憶媒体50の非駆動状態である。 The first storage medium 50 mounted in the first media slot 19 is accessed via a printed wiring board 15 and a first connector 22 by a control unit (not shown) such as a central processing unit to obtain a signal. Input / output is performed, and data is written or the written data is read. The state in which the data is written or read to the first storage medium 50 is the driving state of the first storage medium 50, and the data is not written or read to the first storage medium 50. The state is the non-driving state of the first storage medium 50.
 第2のメディアスロット20は熱伝導性の高い金属材料によって形成された第2のケース体23と側部16に取り付けられた第2のコネクター24とを有している。第2のケース体23は前方及び側方における一方に開口され、ペルチェ素子17を後方から覆う状態でプリント配線基板15の後面15bに取り付けられている。従って、第2のケース体23の後面部はペルチェ素子17と対向した状態にされている。第2のケース体23の側方における一方の端部は第2の挿通孔9bの近傍において内壁部9に取り付けられ、第2のケース体23の側方における他方の端部には第2のコネクター24が位置されている。 The second media slot 20 has a second case body 23 made of a metal material having high thermal conductivity and a second connector 24 attached to the side portion 16. The second case body 23 is opened to one of the front side and the side side, and is attached to the rear surface 15b of the printed wiring board 15 in a state of covering the perche element 17 from the rear side. Therefore, the rear surface portion of the second case body 23 is in a state of facing the Pelche element 17. One end on the side of the second case 23 is attached to the inner wall 9 in the vicinity of the second insertion hole 9b, and the other end on the side of the second case 23 has a second. The connector 24 is located.
 第2のメディアスロット20には第2の記憶媒体60が挿入されて装着される。第2の記憶媒体60は第1の蓋体8が開放された状態において、内壁部9の第2の挿通孔9bに挿通され第2のケース体23に挿入されて第2のメディアスロット20に装着される。第2の記憶媒体60が第2のメディアスロット20に装着された状態においては、第2の記憶媒体60に形成された図示しない端子部が第2のコネクター24に接続される。 The second storage medium 60 is inserted and installed in the second media slot 20. The second storage medium 60 is inserted into the second insertion hole 9b of the inner wall portion 9 and inserted into the second case body 23 in the state where the first lid body 8 is opened, and is inserted into the second media slot 20. It will be installed. When the second storage medium 60 is installed in the second media slot 20, a terminal portion (not shown) formed in the second storage medium 60 is connected to the second connector 24.
 第2のメディアスロット20に装着された第2の記憶媒体60には、プリント配線基板15及び第2のコネクター24を介して制御部によりアクセスが行われて信号の入出力が行われ、データの書込又は書き込まれたデータの読取が行われる。第2の記憶媒体60に対するデータの書込又は読取が行われている状態は第2の記憶媒体60の駆動状態であり、第2の記憶媒体60に対するデータの書込も読取も行われていない状態は第2の記憶媒体60の非駆動状態である。 The second storage medium 60 mounted in the second media slot 20 is accessed by the control unit via the printed wiring board 15 and the second connector 24 to input and output signals, and data is input and output. Writing or reading of the written data is performed. The state in which the data is written or read to the second storage medium 60 is the driving state of the second storage medium 60, and the data is not written or read to the second storage medium 60. The state is the non-driving state of the second storage medium 60.
 尚、第1の記憶媒体50と第2の記憶媒体60に関し、第1のメディアスロット19又は第2のメディアスロット20に装着された状態でデータの書込又は読取が行われている場合は駆動状態であり、第1のメディアスロット19又は第2のメディアスロット20に装着された状態においてもデータの書込又は読取が行われていない場合は非駆動状態である。 When data is written or read in the first media slot 19 or the second media slot 20 with respect to the first storage medium 50 and the second storage medium 60, it is driven. It is a non-driving state when data is not written or read even when the data is installed in the first media slot 19 or the second media slot 20.
 第1のコネクター22と第2のコネクター24はそれぞれ銅ブロック18とペルチェ素子17の近傍に位置されている。 The first connector 22 and the second connector 24 are located in the vicinity of the copper block 18 and the Pelche element 17, respectively.
 上記のように、第1の記憶媒体50と第2の記憶媒体60は駆動状態又は非駆動状態の何れかの状態にされるが、第1の記憶媒体50と第2の記憶媒体60が駆動状態にあるときには第1の記憶媒体50と第2の記憶媒体60がそれぞれ発熱する。 As described above, the first storage medium 50 and the second storage medium 60 are put into either a driven state or a non-driven state, but the first storage medium 50 and the second storage medium 60 are driven. When in the state, the first storage medium 50 and the second storage medium 60 generate heat, respectively.
 電子機器1には第1の記憶媒体50と第2の記憶媒体60に対するアクセス状態をそれぞれ検出するアクセス状態検出部が設けられ、例えば、上記した中央演算処理装置等の制御部がアクセス状態検出部として機能する。従って、アクセス状態検出部によって第1の記憶媒体50と第2の記憶媒体60に対するアクセス状態が検出され、アクセス状態検出部の検出結果によって第1の記憶媒体50と第2の記憶媒体60がそれぞれ駆動状態であるか非駆動状態であるかが判別される。 The electronic device 1 is provided with an access state detection unit that detects access states to the first storage medium 50 and the second storage medium 60, respectively. For example, a control unit such as the central processing unit described above is an access state detection unit. Functions as. Therefore, the access state detection unit detects the access state to the first storage medium 50 and the second storage medium 60, and the first storage medium 50 and the second storage medium 60 are determined by the detection result of the access state detection unit, respectively. It is determined whether it is in the driven state or the non-driven state.
 <熱の伝導経路>
 以下に、上記した電子機器1において第1の記憶媒体50と第2の記憶媒体60に発生する熱の伝導経路について説明する(図7乃至図9参照)。
<Heat conduction path>
The heat conduction path generated in the first storage medium 50 and the second storage medium 60 in the above-mentioned electronic device 1 will be described below (see FIGS. 7 to 9).
 尚、図7乃至図9においては、理解を容易にするために、各部の構成及び位置関係を簡略化して示すと共に伝熱方向の切替が可能にされた伝熱方向切替部として機能するペルチェ素子17をクロスした斜線を付して示す。また、以下には、説明を簡単にするために、第1のメディアスロット19又は第2のメディアスロット20に装着された第1の記憶媒体50又は第2の記憶媒体60は何れも駆動状態にあり、装着された状態において非駆動状態にはされていないこととして説明を行う。 In addition, in FIGS. 7 to 9, in order to facilitate understanding, the configuration and positional relationship of each part are simplified and shown, and the heat transfer direction can be switched. 17 is shown with a crossed diagonal line. Further, in the following, for the sake of simplicity, both the first storage medium 50 and the second storage medium 60 mounted in the first media slot 19 or the second media slot 20 are put into a driving state. Yes, it will be described as not being in the non-driving state in the mounted state.
 尚、以下には、各記憶媒体に発生する熱が伝熱される主とした伝熱経路のみについて説明する(メディアスロットが三つ又は四つ設けられた例(図14乃至図27)においても同じ。)。従って、例えば、第1の記憶媒体50が第1のメディアスロット19に装着された状態においては第1の記憶媒体50に発生した熱が第1のメディアスロット19やプリント配線基板15等からも放出され、第2の記憶媒体60が第2のメディアスロット20に装着された状態においては第2の記憶媒体60に発生した熱が第2のメディアスロット20やプリント配線基板15等からも放出されるが、これらの熱の放出量は少なく、以下には、これらの熱の伝導経路についての説明は省略する。 In the following, only the main heat transfer path through which the heat generated in each storage medium is transferred will be described (the same applies to the example in which three or four media slots are provided (FIGS. 14 to 27). ). Therefore, for example, when the first storage medium 50 is mounted in the first media slot 19, the heat generated in the first storage medium 50 is also released from the first media slot 19, the printed wiring board 15, and the like. In the state where the second storage medium 60 is mounted in the second media slot 20, the heat generated in the second storage medium 60 is also released from the second media slot 20, the printed wiring board 15, and the like. However, the amount of these heats released is small, and the description of the conduction path of these heats will be omitted below.
 また、以下においては、記憶媒体がメディアスロットに装着されていない場合にも、この記憶媒体が非駆動状態にあるとして説明する(メディアスロットが三つ又は四つ設けられた例(図14乃至図27)においても同じ。)。 Further, in the following, even when the storage medium is not installed in the media slot, the storage medium will be described as being in the non-driving state (an example in which three or four media slots are provided (FIGS. 14 to 27). ) Is the same.)
 第1の記憶媒体50が駆動状態にされ第2の記憶媒体60が非駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向になる状態に切り替えられる(図7参照)。 When the first storage medium 50 is in the driving state and the second storage medium 60 is in the non-driving state, the heat transfer direction of the perche element 17 is from the first ceramic substrate 17a to the second ceramic substrate 17b. It can be switched to a state in which it is heading (see FIG. 7).
 このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14からバッテリーケース11に伝導されると共に基板取付ベース14からペルチェ素子17に伝導される。 At this time, the heat generated in the first storage medium 50 is transmitted to the board mounting base 14 via the copper block 18, is conducted from the board mounting base 14 to the battery case 11, and is also conducted from the board mounting base 14 to the Perche element 17. Will be done.
 バッテリーケース11に伝導された熱はバッテリーケース11又はバッテリー40から放出される。従って、バッテリーケース11とバッテリー40は熱を放出する放熱体として機能する。 The heat conducted to the battery case 11 is released from the battery case 11 or the battery 40. Therefore, the battery case 11 and the battery 40 function as a heat radiating body that releases heat.
 一方、ペルチェ素子17に伝導された熱は、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向に切り替えられているため、第2のセラミック基板17bから第2のメディアスロット20に伝導され、第2のメディアスロット20から放出される。 On the other hand, the heat conducted to the Perche element 17 is switched from the second ceramic substrate 17b to the direction in which the heat transfer direction of the Perche element 17 is directed from the first ceramic substrate 17a to the second ceramic substrate 17b. It is conducted to the second media slot 20 and discharged from the second media slot 20.
 従って、第1の記憶媒体50に発生した熱はバッテリーケース11、バッテリー40又は第2のメディアスロット20から放出される。また、バッテリーケース11、バッテリー40又は第2のメディアスロット20から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50 is released from the battery case 11, the battery 40, or the second media slot 20. Further, at least a part of the heat released from the battery case 11, the battery 40 or the second media slot 20 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
 逆に、第1の記憶媒体50が非駆動状態にされ第2の記憶媒体60が駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向になる状態に切り替えられる(図8参照)。 On the contrary, when the first storage medium 50 is in the non-driving state and the second storage medium 60 is in the driving state, the heat transfer direction of the perche element 17 is from the second ceramic substrate 17b to the first ceramic. The state can be switched to the direction toward the substrate 17a (see FIG. 8).
 このとき第2の記憶媒体60に発生した熱は、ペルチェ素子17の伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向に切り替えられているため、第1のセラミック基板17aから基板取付ベース14に伝達され、基板取付ベース14からバッテリーケース11に伝導されると共に基板取付ベース14から銅ブロック18に伝導される。 At this time, the heat generated in the second storage medium 60 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a in the heat transfer direction of the perche element 17, so that the first ceramic substrate 17a is used. It is transmitted from 17a to the board mounting base 14, is conducted from the board mounting base 14 to the battery case 11, and is also conducted from the board mounting base 14 to the copper block 18.
 バッテリーケース11に伝導された熱はバッテリーケース11又はバッテリー40から放出される。 The heat conducted to the battery case 11 is released from the battery case 11 or the battery 40.
 一方、銅ブロック18に伝導された熱は、銅ブロック18から第1のメディアスロット19に伝導され、第1のメディアスロット19から放出される。 On the other hand, the heat conducted to the copper block 18 is conducted from the copper block 18 to the first media slot 19 and discharged from the first media slot 19.
 従って、第2の記憶媒体60に発生した熱はバッテリーケース11、バッテリー40又は第1のメディアスロット19から放出される。また、バッテリーケース11、バッテリー40又は第1のメディアスロット19から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the second storage medium 60 is released from the battery case 11, the battery 40, or the first media slot 19. Further, at least a part of the heat released from the battery case 11, the battery 40 or the first media slot 19 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
 また、第1の記憶媒体50と第2の記憶媒体60が何れも駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向になる状態に切り替えられる(図9参照)。このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14からバッテリーケース11に伝導される。第2の記憶媒体60に発生した熱は、ペルチェ素子17の伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向に切り替えられているため、第1のセラミック基板17aから基板取付ベース14に伝達され、基板取付ベース14からバッテリーケース11に伝導される。 Further, when both the first storage medium 50 and the second storage medium 60 are in the driving state, the heat transfer direction of the perche element 17 goes from the second ceramic substrate 17b to the first ceramic substrate 17a. It can be switched to the direction (see FIG. 9). At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18 and conducted from the substrate mounting base 14 to the battery case 11. The heat generated in the second storage medium 60 is transferred from the first ceramic substrate 17a because the heat transfer direction of the perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the battery case 11.
 バッテリーケース11に伝導された熱はバッテリーケース11又はバッテリー40から放出される。 The heat conducted to the battery case 11 is released from the battery case 11 or the battery 40.
 従って、第1の記憶媒体50と第2の記憶媒体60に発生した熱は何れもバッテリーケース11又はバッテリー40から放出される。また、バッテリーケース11又はバッテリー40から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in both the first storage medium 50 and the second storage medium 60 is released from the battery case 11 or the battery 40. Further, at least a part of the heat released from the battery case 11 or the battery 40 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
 上記したように、電子機器1にあっては、第1の記憶媒体50と第2の記憶媒体60に発生する熱がプリント配線基板15の取付部材として機能する基板取付ベース14を伝導される。 As described above, in the electronic device 1, the heat generated in the first storage medium 50 and the second storage medium 60 is conducted through the substrate mounting base 14 that functions as the mounting member of the printed wiring board 15.
 従って、第1の記憶媒体50と第2の記憶媒体60に発生する熱を伝導するための専用の部材を必要とせず、部品点数の削減を図った上で伝熱効率の向上を図ることができる。 Therefore, a dedicated member for conducting heat generated in the first storage medium 50 and the second storage medium 60 is not required, and the number of parts can be reduced and the heat transfer efficiency can be improved. ..
 また、伝熱方向切替部として機能するペルチェ素子17が基板取付ベース14に接した状態で配置されている。 Further, the perche element 17 that functions as a heat transfer direction switching portion is arranged in contact with the substrate mounting base 14.
 従って、第1の記憶媒体50と第2の記憶媒体60に発生した熱が基板取付ベース14とペルチェ素子17の間で伝導され易くなるため、ペルチェ素子17による伝熱方向の切替によって伝熱効率の向上を図った上で放熱効率の向上を図ることができる。 Therefore, the heat generated in the first storage medium 50 and the second storage medium 60 is easily conducted between the substrate mounting base 14 and the Pelche element 17, and the heat transfer efficiency is improved by switching the heat transfer direction by the Pelche element 17. It is possible to improve the heat dissipation efficiency after improving the heat dissipation efficiency.
 さらに、プリント配線基板15に銅ブロック18が取り付けられ、銅ブロック18が基板取付ベース14に接し第1のメディアスロット19に対向した状態で位置されている。 Further, the copper block 18 is attached to the printed wiring board 15, and the copper block 18 is positioned in contact with the substrate mounting base 14 and facing the first media slot 19.
 従って、第1の記憶媒体50又は第2の記憶媒体60に発生した熱が第1のメディアスロット19に対向して位置された銅ブロック18を介して基板取付ベース14又は第1のメディアスロット19に伝達されるため、第1の記憶媒体50と第2の記憶媒体60から基板取付ベース14又は第1のメディアスロット19への伝熱効率の向上による放熱効率の向上を図ることができる。 Therefore, the heat generated in the first storage medium 50 or the second storage medium 60 passes through the copper block 18 located facing the first media slot 19 to the substrate mounting base 14 or the first media slot 19. Therefore, it is possible to improve the heat dissipation efficiency by improving the heat transfer efficiency from the first storage medium 50 and the second storage medium 60 to the substrate mounting base 14 or the first media slot 19.
 尚、上記には、プリント配線基板15に取り付けられた銅ブロック18によって伝熱が行われる例を示したが、銅ブロック18に代えて、例えば、スルーホールが形成され、スルーホールによって伝熱が行われる構成にされていてもよい。 In the above, an example in which heat transfer is performed by the copper block 18 attached to the printed wiring board 15, but instead of the copper block 18, for example, a through hole is formed, and heat transfer is performed by the through hole. It may be configured to be performed.
 さらにまた、全てのメディアスロットである第1のメディアスロット19と第2のメディアスロット20にそれぞれ装着された第1の記憶媒体50と第2の記憶媒体60が何れも駆動状態にされたときに、全ての記憶媒体である第1の記憶媒体50と第2の記憶媒体60から放熱体として機能するバッテリーケース11とバッテリー40へ向けて伝熱されるように伝熱方向切替部として機能するペルチェ素子17の伝熱方向が切り替えられる。 Furthermore, when both the first storage medium 50 and the second storage medium 60 mounted in the first media slot 19 and the second media slot 20, which are all media slots, are put into a driving state, respectively. A Pelche element that functions as a heat transfer direction switching unit so that heat is transferred from the first storage medium 50 and the second storage medium 60, which are all storage media, toward the battery case 11 and the battery 40 that function as radiators. The heat transfer direction of 17 is switched.
 従って、伝熱方向が切り替えられたペルチェ素子17によって駆動状態にある全ての記憶媒体から放熱体へ向けて熱が伝導されるため、伝熱効率及び放熱効率の向上を図ることができる。 Therefore, since the heat is conducted from all the storage media in the driven state to the heat radiating body by the Pelche element 17 whose heat transfer direction is switched, the heat transfer efficiency and the heat radiating efficiency can be improved.
 さらにまた、第1のメディアスロット19と第2のメディアスロット20がプリント配線基板15における同一の面に実装されているため、第1のメディアスロット19と第2のメディアスロット20がプリント配線基板15の一方の面側に位置され、電子機器1の薄型化を確保した上で第1の記憶媒体50と第2の記憶媒体60に発生する熱の放熱効率の向上を図ることができる。 Furthermore, since the first media slot 19 and the second media slot 20 are mounted on the same surface of the printed wiring board 15, the first media slot 19 and the second media slot 20 are mounted on the printed wiring board 15. It is located on one surface side, and it is possible to improve the heat dissipation efficiency of the heat generated in the first storage medium 50 and the second storage medium 60 while ensuring the thinness of the electronic device 1.
 上記したペルチェ素子17の伝熱方向の切替は、例えば、アクセス状態検出部の検出結果に応じて行われる。 The heat transfer direction of the Pelche element 17 described above is switched according to, for example, the detection result of the access state detection unit.
 即ち、アクセス状態検出部の検出結果によって第1の記憶媒体50が駆動状態であり第2の記憶媒体60が非駆動状態であることが検出されると、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向になる状態に切り替えられる。また、アクセス状態検出部の検出結果によって第1の記憶媒体50が非駆動状態であり第2の記憶媒体60が駆動状態であることが検出されると、ペルチェ素子17の伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向になる状態に切り替えられる。さらに、アクセス状態検出部の検出結果によって第1の記憶媒体50と第2の記憶媒体60の何れもが駆動状態であることが検出されると、ペルチェ素子17の伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向になる状態に切り替えられる。 That is, when it is detected by the detection result of the access state detection unit that the first storage medium 50 is in the driving state and the second storage medium 60 is in the non-driving state, the heat transfer direction of the Pelche element 17 is the first. It is switched to a state in which the direction is from the ceramic substrate 17a of the above to the second ceramic substrate 17b. Further, when it is detected from the detection result of the access state detection unit that the first storage medium 50 is in the non-driving state and the second storage medium 60 is in the driving state, the heat transfer direction of the Pelche element 17 is the second. It is switched to a state in which the direction is from the ceramic substrate 17b of the above to the first ceramic substrate 17a. Further, when it is detected by the detection result of the access state detection unit that both the first storage medium 50 and the second storage medium 60 are in the driving state, the heat transfer direction of the perche element 17 is the second ceramic. The state is switched from the substrate 17b toward the first ceramic substrate 17a.
 従って、アクセス状態検出部の検出結果に応じたペルチェ素子17の伝熱方向の切替により第1の記憶媒体50と第2の記憶媒体60に発生する熱が伝達されるため、第1の記憶媒体50と第2の記憶媒体60に発生する熱を状況に応じた方向へ伝導して放熱効率の向上を図ることができる。 Therefore, the heat generated in the first storage medium 50 and the second storage medium 60 is transferred by switching the heat transfer direction of the Pelche element 17 according to the detection result of the access state detection unit, so that the first storage medium The heat generated in the 50 and the second storage medium 60 can be conducted in a direction according to the situation to improve the heat dissipation efficiency.
 尚、アクセス状態検出部の検出結果によって第1の記憶媒体50と第2の記憶媒体60の何れもが非駆動状態であることが検出された場合には、例えば、ペルチェ素子17に電流が供給されないように設定されている。 When it is detected by the detection result of the access state detection unit that both the first storage medium 50 and the second storage medium 60 are in the non-driving state, for example, a current is supplied to the Pelche element 17. It is set not to be done.
 <異なる伝熱方向切替部の例>
 上記には、伝熱方向の切替が可能にされた伝熱方向切替部としてペルチェ素子17が設けられた例を示したが、伝熱方向切替部はペルチェ素子17以外であってもよく、例えば、以下のような熱伝導部材が伝熱方向切替部として設けられていてもよい(図10及び図11参照)。
<Example of different heat transfer direction switching part>
In the above, an example in which the heat transfer direction switching unit is provided as the heat transfer direction switching unit capable of switching the heat transfer direction is shown, but the heat transfer direction switching unit may be other than the heat transfer element 17, for example. , The following heat conduction members may be provided as heat transfer direction switching portions (see FIGS. 10 and 11).
 尚、以下の例においては、説明を簡単にするために、第1の記憶媒体50が第2の記憶媒体60に対して優先的に使用され、第1のメディアスロット19に装着された第1の記憶媒体50は第2の記憶媒体60が駆動状態か非駆動状態にされているか否かに拘わらず駆動状態にされることとして説明を行う(以下の図12乃至図27に示す構成の説明についても同じ。)。 In the following example, for the sake of simplicity, the first storage medium 50 is preferentially used with respect to the second storage medium 60, and the first storage medium 50 is installed in the first media slot 19. The storage medium 50 will be described as being put into a driven state regardless of whether the second storage medium 60 is in a driven state or a non-driven state (description of the configuration shown in FIGS. 12 to 27 below). The same applies to.)
 熱伝導部材25は基板取付ベース14とプリント配線基板15の内部において、例えば、上下方向へ図示しないアクチュエーター等を有する移動機構によって移動可能にされている。熱伝導部材25は、例えば、熱伝導性の高い金属材料によって形成されている。 The heat conductive member 25 is made movable inside the board mounting base 14 and the printed wiring board 15 by, for example, a moving mechanism having an actuator (not shown) in the vertical direction. The heat conductive member 25 is made of, for example, a metal material having high heat conductivity.
 第1の記憶媒体50が駆動状態にされ第2の記憶媒体60が非駆動状態にされている場合に、熱伝導部材25は下方の移動端に移動される(図10参照)。このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14からバッテリーケース11に伝導されると共に基板取付ベース14から熱伝導部材25に伝導される。 When the first storage medium 50 is in the driven state and the second storage medium 60 is in the non-driven state, the heat conductive member 25 is moved to the lower moving end (see FIG. 10). At this time, the heat generated in the first storage medium 50 is transmitted to the board mounting base 14 via the copper block 18, is conducted from the board mounting base 14 to the battery case 11, and is conducted from the board mounting base 14 to the heat conductive member 25. Conducted.
 バッテリーケース11に伝導された熱はバッテリーケース11又はバッテリー40から放出される。 The heat conducted to the battery case 11 is released from the battery case 11 or the battery 40.
 一方、熱伝導部材25に伝導された熱は、熱伝導部材25から第2のメディアスロット20に伝導され、第2のメディアスロット20から放出される。 On the other hand, the heat conducted to the heat conductive member 25 is conducted from the heat conductive member 25 to the second media slot 20 and discharged from the second media slot 20.
 従って、第1の記憶媒体50に発生した熱はバッテリーケース11、バッテリー40又は第2のメディアスロット20から放出される。また、バッテリーケース11、バッテリー40又は第2のメディアスロット20から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50 is released from the battery case 11, the battery 40, or the second media slot 20. Further, at least a part of the heat released from the battery case 11, the battery 40 or the second media slot 20 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
 また、第1の記憶媒体50と第2の記憶媒体60が何れも駆動状態にされている場合に、熱伝導部材25は上方の移動端に移動される(図11参照)。このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14からバッテリーケース11に伝導される。第2の記憶媒体60に発生した熱は熱伝導部材25に伝達され、熱伝導部材25からバッテリーケース11に伝導される。 Further, when both the first storage medium 50 and the second storage medium 60 are in the driving state, the heat conductive member 25 is moved to the upper moving end (see FIG. 11). At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18 and conducted from the substrate mounting base 14 to the battery case 11. The heat generated in the second storage medium 60 is transferred to the heat conductive member 25, and is conducted from the heat conductive member 25 to the battery case 11.
 バッテリーケース11に伝導された熱はバッテリーケース11又はバッテリー40から放出される。 The heat conducted to the battery case 11 is released from the battery case 11 or the battery 40.
 従って、第1の記憶媒体50と第2の記憶媒体60に発生した熱は何れもバッテリーケース11又はバッテリー40から放出される。また、バッテリーケース11又はバッテリー40から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in both the first storage medium 50 and the second storage medium 60 is released from the battery case 11 or the battery 40. Further, at least a part of the heat released from the battery case 11 or the battery 40 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
 上記したように、第1の記憶媒体50が駆動状態にされ第2の記憶媒体60が非駆動状態にされている場合には、熱伝導部材25が下方の移動端に移動されて第1の記憶媒体50に発生した熱が基板取付ベース14から熱伝導部材25を介して第2のメディアスロット20に伝導され、第1の記憶媒体50と第2の記憶媒体60が何れも駆動状態にされている場合には、熱伝導部材25が上方の移動端に移動されて第2の記憶媒体60に発生した熱が熱伝導部材25を介してバッテリーケース11に伝導される。 As described above, when the first storage medium 50 is in the driven state and the second storage medium 60 is in the non-driven state, the heat conductive member 25 is moved to the lower moving end and the first storage medium 60 is moved to the lower moving end. The heat generated in the storage medium 50 is conducted from the substrate mounting base 14 to the second media slot 20 via the heat conductive member 25, and both the first storage medium 50 and the second storage medium 60 are put into a driving state. If so, the heat conductive member 25 is moved to the upper moving end, and the heat generated in the second storage medium 60 is conducted to the battery case 11 via the heat conductive member 25.
 従って、第1の記憶媒体50と第2の記憶媒体60に対するアクセス状態に応じて熱伝導部材25の伝熱方向が切り替えられることになる。 Therefore, the heat transfer direction of the heat conductive member 25 is switched according to the access state to the first storage medium 50 and the second storage medium 60.
 <メディアスロットの配置位置が異なる例>
 上記には、第1のメディアスロット19と第2のメディアスロット20が基板取付ベース14の後面14b側に配置された例を示したが、第1のメディアスロット19と第2のメディアスロット20は基板取付ベース14の前面14a側と後面14b側に配置されていてもよい(図12及び図13参照)。例えば、第1のメディアスロット19が基板取付ベース14の後面14b側に配置され、第2のメディアスロット20が基板取付ベース14の前面14a側に配置される。
<Example of different media slot placement positions>
In the above, an example in which the first media slot 19 and the second media slot 20 are arranged on the rear surface 14b side of the board mounting base 14 is shown, but the first media slot 19 and the second media slot 20 are arranged. It may be arranged on the front surface 14a side and the rear surface 14b side of the board mounting base 14 (see FIGS. 12 and 13). For example, the first media slot 19 is arranged on the rear surface 14b side of the board mounting base 14, and the second media slot 20 is arranged on the front surface 14a side of the board mounting base 14.
 この場合には、例えば、基板取付ベース14の前面14aにプリント配線基板15とは別のプリント配線基板26が取り付けられ、プリント配線基板26の前面に第2のメディアスロット20が取り付けられ、プリント配線基板15の第1のメディアスロット19に対向する位置に銅ブロック18が取り付けられ、プリント配線基板26の第2のメディアスロット20に対向する位置にペルチェ素子17が取り付けられる。 In this case, for example, a printed wiring board 26 different from the printed wiring board 15 is attached to the front surface 14a of the board mounting base 14, a second media slot 20 is attached to the front surface of the printed wiring board 26, and printed wiring is performed. The copper block 18 is attached to the position of the substrate 15 facing the first media slot 19, and the Pelche element 17 is attached to the position of the printed wiring board 26 facing the second media slot 20.
 第1の記憶媒体50が駆動状態にされ第2の記憶媒体60が非駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向になる状態に切り替えられる(図12参照)。このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子17に伝導される。 When the first storage medium 50 is in the driving state and the second storage medium 60 is in the non-driving state, the heat transfer direction of the perche element 17 is from the second ceramic substrate 17b to the first ceramic substrate 17a. It can be switched to a state in which it faces (see FIG. 12). At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18 and conducted from the substrate mounting base 14 to the Perche element 17.
 ペルチェ素子17に伝導された熱は、ペルチェ素子17の伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向に切り替えられているため、第1のセラミック基板17aから第2のメディアスロット20に伝導され、第2のメディアスロット20から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 Since the heat transfer direction of the Perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a, the heat conducted to the Perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17a. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 従って、第1の記憶媒体50に発生した熱はバッテリーケース11、バッテリー40又は第2のメディアスロット20から放出される。また、バッテリーケース11、バッテリー40又は第2のメディアスロット20から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50 is released from the battery case 11, the battery 40, or the second media slot 20. Further, at least a part of the heat released from the battery case 11, the battery 40 or the second media slot 20 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
 また、第1の記憶媒体50と第2の記憶媒体60が何れも駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向になる状態に切り替えられる(図13参照)。このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14の主に外周面から放出される。第2の記憶媒体60に発生した熱は、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向に切り替えられているため、第2のセラミック基板17bから基板取付ベース14に伝達され、基板取付ベース14の主に外周面から放出される。 Further, when both the first storage medium 50 and the second storage medium 60 are in the driving state, the heat transfer direction of the perche element 17 is from the first ceramic substrate 17a to the second ceramic substrate 17b. It can be switched to the direction (see FIG. 13). At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18, and is discharged mainly from the outer peripheral surface of the substrate mounting base 14. The heat generated in the second storage medium 60 is transferred from the second ceramic substrate 17b because the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b. It is transmitted to the board mounting base 14 and is discharged mainly from the outer peripheral surface of the board mounting base 14.
 従って、第1の記憶媒体50と第2の記憶媒体60に発生した熱は何れも基板取付ベース14から放出される。また、基板取付ベース14から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, both the heat generated in the first storage medium 50 and the second storage medium 60 is released from the substrate mounting base 14. Further, at least a part of the heat released from the substrate mounting base 14 is conducted to the housing 4, and is released from the housing 4 to the atmosphere.
 <三つのメディアスロットが設けられた構成>
 上記には、第1のメディアスロット19と第2のメディアスロット20の二つのメディアスロットが設けられた構成の例について説明したが、電子機器1には第1のメディアスロット19と第2のメディアスロット20に加えて第3のメディアスロット27の三つのメディアスロットが設けられていてもよい(図14参照)。
<Configuration with three media slots>
Although an example of a configuration in which two media slots of a first media slot 19 and a second media slot 20 are provided has been described above, the electronic device 1 has the first media slot 19 and the second media. In addition to the slot 20, three media slots of the third media slot 27 may be provided (see FIG. 14).
 第3のメディアスロット27は第3のケース体28と図示しない第3のコネクターとを有し、プリント配線基板26に取り付けられ、基板取付ベース14を挟んで第1のメディアスロット19の前側に位置されている。プリント配線基板26には第3のケース体28の前面部に対向する位置にペルチェ素子29が取り付けられ、ペルチェ素子29はペルチェ素子17と同様に、供給される電流の向きに応じて伝熱方向の切替が可能な伝熱方向切替部として機能する。ペルチェ素子29は一対の第1のセラミック基板29aと第2のセラミック基板29bを有し、第1のセラミック基板29aが第2のセラミック基板29bの前側に位置されている。 The third media slot 27 has a third case body 28 and a third connector (not shown), is mounted on the printed wiring board 26, and is located on the front side of the first media slot 19 with the board mounting base 14 interposed therebetween. Has been done. A perche element 29 is attached to the printed wiring board 26 at a position facing the front surface of the third case body 28, and the perche element 29, like the perche element 17, has a heat transfer direction according to the direction of the supplied current. Functions as a heat transfer direction switching unit that can switch between. The perche element 29 has a pair of a first ceramic substrate 29a and a second ceramic substrate 29b, and the first ceramic substrate 29a is located in front of the second ceramic substrate 29b.
 以下に、第1のメディアスロット19と第2のメディアスロット20と第3のメディアスロット27が設けられた場合における熱の伝導経路について説明する(図15乃至図18参照)。 The heat conduction path when the first media slot 19, the second media slot 20, and the third media slot 27 are provided will be described below (see FIGS. 15 to 18).
 尚、図15乃至図18においては、理解を容易にするために、各部の構成及び位置関係を簡略化して示すと共にペルチェ素子17、29をクロスした斜線を付して示す。また、以下には、説明を簡単にするために、第1のメディアスロット19、第2のメディアスロット20又は第3のメディアスロット27に装着された第1の記憶媒体50、第2の記憶媒体60又は第3の記憶媒体70は何れも駆動状態にあり、装着された状態において非駆動状態にはされていないこととして説明を行う。 Note that, in FIGS. 15 to 18, in order to facilitate understanding, the configuration and positional relationship of each part are shown in a simplified manner, and the perche elements 17 and 29 are shown with crossed diagonal lines. Further, in the following, for the sake of simplicity, the first storage medium 50 and the second storage medium mounted in the first media slot 19, the second media slot 20, or the third media slot 27 will be described below. It will be described as assuming that both the 60 and the third storage medium 70 are in the driven state and are not in the non-driven state in the mounted state.
 第1の記憶媒体50が駆動状態にされ第2の記憶媒体60と第3の記憶媒体70が非駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向になる状態に切り替えられ、ペルチェ素子29は伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向になる状態に切り替えられる(図15参照)。 When the first storage medium 50 is in the driving state and the second storage medium 60 and the third storage medium 70 are in the non-driving state, the heat transfer direction of the perche element 17 is from the first ceramic substrate 17a. The state is switched to the direction toward the second ceramic substrate 17b, and the heat transfer direction of the perche element 29 is switched to the state toward the first ceramic substrate 29a from the second ceramic substrate 29b (see FIG. 15). ).
 このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達される。基板取付ベース14に伝達された熱は基板取付ベース14からペルチェ素子29に伝導されると共にペルチェ素子17にも伝導される。ペルチェ素子29に伝導された熱は、ペルチェ素子29の伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向に切り替えられているため、第1のセラミック基板29aから第3のメディアスロット27に伝導され、第3のメディアスロット27から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18. The heat transferred to the board mounting base 14 is conducted from the board mounting base 14 to the perche element 29 and also to the perche element 17. Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 一方、ペルチェ素子17に伝導された熱は、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向に切り替えられているため、第2のセラミック基板17bから第2のメディアスロット20に伝導され、第2のメディアスロット20から放出される。 On the other hand, the heat conducted to the Perche element 17 is switched from the second ceramic substrate 17b to the direction in which the heat transfer direction of the Perche element 17 is directed from the first ceramic substrate 17a to the second ceramic substrate 17b. It is conducted to the second media slot 20 and discharged from the second media slot 20.
 従って、第1の記憶媒体50に発生した熱は第3のメディアスロット27、バッテリーケース11、バッテリー40又は第2のメディアスロット20から放出される。また、第3のメディアスロット27、バッテリーケース11、バッテリー40又は第2のメディアスロット20から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50 is released from the third media slot 27, the battery case 11, the battery 40, or the second media slot 20. Further, at least a part of the heat released from the third media slot 27, the battery case 11, the battery 40 or the second media slot 20 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
 第1の記憶媒体50と第2の記憶媒体60が駆動状態にされ第3の記憶媒体70が非駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向になる状態に切り替えられ、ペルチェ素子29は伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向になる状態に切り替えられる(図16参照)。 When the first storage medium 50 and the second storage medium 60 are in the driving state and the third storage medium 70 is in the non-driving state, the heat transfer direction of the perche element 17 is from the second ceramic substrate 17b. The state is switched to the direction toward the first ceramic substrate 17a, and the heat transfer direction of the perche element 29 is switched to the state toward the first ceramic substrate 29a from the second ceramic substrate 29b (see FIG. 16). ).
 このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子29に伝導される。ペルチェ素子29に伝導された熱は、ペルチェ素子29の伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向に切り替えられているため、第1のセラミック基板29aから第3のメディアスロット27に伝導され、第3のメディアスロット27から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18 and conducted from the substrate mounting base 14 to the Pelche element 29. Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 一方、第2の記憶媒体60に発生した熱は、ペルチェ素子17の伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向に切り替えられているため、第1のセラミック基板17aから基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子29に伝導される。 On the other hand, the heat generated in the second storage medium 60 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a in the heat transfer direction of the Pelche element 17, so that the first ceramic substrate is used. It is transmitted from 17a to the substrate mounting base 14, and is conducted from the substrate mounting base 14 to the perche element 29.
 ペルチェ素子29に伝導された熱は、第1のセラミック基板29aから第3のメディアスロット27に伝導され、第3のメディアスロット27から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 The heat conducted to the Pelche element 29 is conducted from the first ceramic substrate 29a to the third media slot 27, discharged from the third media slot 27, and conducted to the battery case 11 to the battery case 11 or the battery. Emitted from 40.
 従って、第1の記憶媒体50と第2の記憶媒体60に発生した熱はバッテリーケース11、バッテリー40又は第3のメディアスロット27から放出される。また、バッテリーケース11、バッテリー40又は第3のメディアスロット27から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50 and the second storage medium 60 is released from the battery case 11, the battery 40, or the third media slot 27. Further, at least a part of the heat released from the battery case 11, the battery 40 or the third media slot 27 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
 第1の記憶媒体50と第3の記憶媒体70が駆動状態にされ第2の記憶媒体60が非駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向になる状態に切り替えられ、ペルチェ素子29は伝熱方向が第1のセラミック基板29aから第2のセラミック基板29bへ向かう方向になる状態に切り替えられる(図17参照)。 When the first storage medium 50 and the third storage medium 70 are in the driving state and the second storage medium 60 is in the non-driving state, the heat transfer direction of the perche element 17 is from the first ceramic substrate 17a. The state is switched to the direction toward the second ceramic substrate 17b, and the heat transfer direction of the perche element 29 is switched to the state toward the second ceramic substrate 29b from the first ceramic substrate 29a (see FIG. 17). ).
 このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子17に伝導される。ペルチェ素子17に伝導された熱は、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向に切り替えられているため、第2のセラミック基板17bから第2のメディアスロット20に伝導され、第2のメディアスロット20から放出される。 At this time, the heat generated in the first storage medium 50 is transmitted to the substrate mounting base 14 via the copper block 18, and is conducted from the substrate mounting base 14 to the Pelche element 17. Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20.
 一方、第3の記憶媒体70に発生した熱は、ペルチェ素子29の伝熱方向が第1のセラミック基板29aから第2のセラミック基板29bへ向かう方向に切り替えられているため、第2のセラミック基板29bから基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子17に伝導される。ペルチェ素子17に伝導された熱は、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向に切り替えられているため、第2のセラミック基板17bから第2のメディアスロット20に伝導され、第2のメディアスロット20から放出される。 On the other hand, the heat generated in the third storage medium 70 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b in the heat transfer direction of the perche element 29, so that the second ceramic substrate is used. It is transmitted from 29b to the board mounting base 14, and is conducted from the board mounting base 14 to the perche element 17. Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20.
 従って、第1の記憶媒体50と第3の記憶媒体70に発生した熱は第2のメディアスロット20から放出される。また、第2のメディアスロット20から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50 and the third storage medium 70 is released from the second media slot 20. Further, at least a part of the heat released from the second media slot 20 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
 第1の記憶媒体50と第2の記憶媒体60と第3の記憶媒体70が何れも駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向になる状態に切り替えられ、ペルチェ素子29は伝熱方向が第1のセラミック基板29aから第2のセラミック基板29bへ向かう方向になる状態に切り替えられる(図18参照)。 When the first storage medium 50, the second storage medium 60, and the third storage medium 70 are all driven, the heat transfer direction of the perche element 17 is from the second ceramic substrate 17b to the first. The state is switched to the direction toward the ceramic substrate 17a, and the heat transfer direction of the perche element 29 is switched to the state toward the second ceramic substrate 29b from the first ceramic substrate 29a (see FIG. 18).
 このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14の主に外周面から放出される。 At this time, the heat generated in the first storage medium 50 is transferred to the board mounting base 14 via the copper block 18 and discharged mainly from the outer peripheral surface of the board mounting base 14.
 第2の記憶媒体60に発生した熱は、ペルチェ素子17の伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向に切り替えられているため、第1のセラミック基板17aから基板取付ベース14に伝達され、基板取付ベース14の主に外周面から放出される。 The heat generated in the second storage medium 60 is transferred from the first ceramic substrate 17a because the heat transfer direction of the perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a. It is transmitted to the board mounting base 14 and is discharged mainly from the outer peripheral surface of the board mounting base 14.
 第3の記憶媒体70に発生した熱は、ペルチェ素子29の伝熱方向が第1のセラミック基板29aから第2のセラミック基板29bへ向かう方向に切り替えられているため、第2のセラミック基板29bから基板取付ベース14に伝達され、基板取付ベース14の主に外周面から放出される。 The heat generated in the third storage medium 70 is transferred from the second ceramic substrate 29b because the heat transfer direction of the perche element 29 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b. It is transmitted to the board mounting base 14 and is discharged mainly from the outer peripheral surface of the board mounting base 14.
 従って、第1の記憶媒体50と第2の記憶媒体60と第3の記憶媒体70に発生した熱は基板取付ベース14から放出される。また、基板取付ベース14から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50, the second storage medium 60, and the third storage medium 70 is released from the substrate mounting base 14. Further, at least a part of the heat released from the substrate mounting base 14 is conducted to the housing 4, and is released from the housing 4 to the atmosphere.
 <四つのメディアスロットが設けられた構成>
 上記には、二つのメディアスロット又は三つのメディアスロットが設けられた構成の例について説明したが、電子機器1には第1のメディアスロット19と第2のメディアスロット20に加えて第3のメディアスロット27と第4のメディアスロット30の四つのメディアスロットが設けられていてもよい(図19参照)。
<Configuration with four media slots>
Although an example of a configuration in which two media slots or three media slots are provided has been described above, the electronic device 1 has a third medium in addition to the first media slot 19 and the second media slot 20. Four media slots, slot 27 and a fourth media slot 30, may be provided (see FIG. 19).
 第4のメディアスロット30は第4のケース体31と図示しない第4のコネクターとを有し、プリント配線基板26に取り付けられ、基板取付ベース14を挟んで第2のメディアスロット20の前側に位置されている。プリント配線基板26には第4のケース体31の前面部に対向する位置にペルチェ素子32が取り付けられ、ペルチェ素子32はペルチェ素子17及びペルチェ素子29と同様に、供給される電流の向きに応じて伝熱方向の切替が可能な伝熱方向切替部として機能する。ペルチェ素子32は一対の第1のセラミック基板32aと第2のセラミック基板32bを有し、第1のセラミック基板32aが第2のセラミック基板32bの前側に位置されている。 The fourth media slot 30 has a fourth case body 31 and a fourth connector (not shown), is mounted on the printed wiring board 26, and is located on the front side of the second media slot 20 with the board mounting base 14 interposed therebetween. Has been done. A perche element 32 is attached to the printed wiring board 26 at a position facing the front surface portion of the fourth case body 31, and the perche element 32, like the perche element 17 and the perche element 29, depends on the direction of the supplied current. It functions as a heat transfer direction switching unit that can switch the heat transfer direction. The perche element 32 has a pair of a first ceramic substrate 32a and a second ceramic substrate 32b, and the first ceramic substrate 32a is located in front of the second ceramic substrate 32b.
 以下に、第1のメディアスロット19と第2のメディアスロット20と第3のメディアスロット27と第4のメディアスロット30が設けられた場合における熱の伝導経路について説明する(図20乃至図27参照)。 The heat conduction path when the first media slot 19, the second media slot 20, the third media slot 27, and the fourth media slot 30 are provided will be described below (see FIGS. 20 to 27). ).
 尚、図20乃至図27においては、理解を容易にするために、各部の構成及び位置関係を簡略化して示すと共にペルチェ素子17、29、32をクロスした斜線を付して示す。また、以下には、説明を簡単にするために、第1のメディアスロット19、第2のメディアスロット20、第3のメディアスロット27又は第4のメディアスロット30に装着された第1の記憶媒体50、第2の記憶媒体60、第3の記憶媒体70又は第4の記憶媒体80は何れも駆動状態にあり、装着された状態において非駆動状態にはされていないこととして説明を行う。 Note that, in FIGS. 20 to 27, in order to facilitate understanding, the configuration and positional relationship of each part are shown in a simplified manner, and the Perche elements 17, 29, and 32 are shown with diagonal lines crossed. Further, in the following, for the sake of simplicity, the first storage medium mounted in the first media slot 19, the second media slot 20, the third media slot 27, or the fourth media slot 30. It will be described as assuming that the 50, the second storage medium 60, the third storage medium 70, or the fourth storage medium 80 are all in the driven state and are not in the non-driven state in the mounted state.
 第1の記憶媒体50が駆動状態にされ第2の記憶媒体60と第3の記憶媒体70と第4の記憶媒体80が非駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向になる状態に切り替えられ、ペルチェ素子29は伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向になる状態に切り替えられ、ペルチェ素子32は伝熱方向が第2のセラミック基板32bから第1のセラミック基板32aへ向かう方向になる状態に切り替えられる(図20参照)。 When the first storage medium 50 is in the driving state and the second storage medium 60, the third storage medium 70, and the fourth storage medium 80 are in the non-driving state, the heat transfer direction of the ceramic element 17 is set. The state is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, and the heat transfer direction of the perche element 29 is the direction from the second ceramic substrate 29b to the first ceramic substrate 29a. The thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the second ceramic substrate 32b to the first ceramic substrate 32a (see FIG. 20).
 このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達される。基板取付ベース14に伝達された熱は基板取付ベース14からペルチェ素子29に伝導されると共にペルチェ素子17とペルチェ素子32にも伝導される。 At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18. The heat transferred to the board mounting base 14 is conducted from the board mounting base 14 to the perche element 29 and also to the perche element 17 and the perche element 32.
 ペルチェ素子29に伝導された熱は、ペルチェ素子29の伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向に切り替えられているため、第1のセラミック基板29aから第3のメディアスロット27に伝導され、第3のメディアスロット27から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。ペルチェ素子17に伝導された熱は、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向に切り替えられているため、第2のセラミック基板17bから第2のメディアスロット20に伝導され、第2のメディアスロット20から放出される。ペルチェ素子32に伝導された熱は、ペルチェ素子32の伝熱方向が第2のセラミック基板32bから第1のセラミック基板32aへ向かう方向に切り替えられているため、第1のセラミック基板32aから第4のメディアスロット30に伝導され、第4のメディアスロット30から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40. Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20. Since the heat transfer direction of the Perche element 32 is switched from the second ceramic substrate 32b to the first ceramic substrate 32a, the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 従って、第1の記憶媒体50に発生した熱は第3のメディアスロット27、バッテリーケース11、バッテリー40、第2のメディアスロット20又は第4のメディアスロット30から放出される。また、第3のメディアスロット27、バッテリーケース11、バッテリー40、第2のメディアスロット20又は第4のメディアスロット30から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50 is released from the third media slot 27, the battery case 11, the battery 40, the second media slot 20, or the fourth media slot 30. Further, at least a part of the heat released from the third media slot 27, the battery case 11, the battery 40, the second media slot 20 or the fourth media slot 30 is conducted to the housing 4, and is transmitted from the housing 4. Released into the atmosphere.
 第1の記憶媒体50と第2の記憶媒体60が駆動状態にされ第3の記憶媒体70と第4の記憶媒体80が非駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向になる状態に切り替えられ、ペルチェ素子29は伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向になる状態に切り替えられ、ペルチェ素子32は伝熱方向が第2のセラミック基板32bから第1のセラミック基板32aへ向かう方向になる状態に切り替えられる(図21参照)。 When the first storage medium 50 and the second storage medium 60 are in the driving state and the third storage medium 70 and the fourth storage medium 80 are in the non-driving state, the heat transfer direction of the ceramic element 17 is set. The state is switched from the second ceramic substrate 17b to the direction toward the first ceramic substrate 17a, and the heat transfer direction of the perche element 29 is the direction toward the first ceramic substrate 29a from the second ceramic substrate 29b. The thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the second ceramic substrate 32b to the first ceramic substrate 32a (see FIG. 21).
 このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子29に伝導されると共にペルチェ素子32にも伝導される。 At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18, and is conducted from the substrate mounting base 14 to the perche element 29 and also to the perche element 32.
 ペルチェ素子29に伝導された熱は、ペルチェ素子29の伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向に切り替えられているため、第1のセラミック基板29aから第3のメディアスロット27に伝導され、第3のメディアスロット27から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。ペルチェ素子32に伝導された熱は、ペルチェ素子32の伝熱方向が第2のセラミック基板32bから第1のセラミック基板32aへ向かう方向に切り替えられているため、第1のセラミック基板32aから第4のメディアスロット30に伝導され、第4のメディアスロット30から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40. Since the heat transfer direction of the Perche element 32 is switched from the second ceramic substrate 32b to the first ceramic substrate 32a, the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 一方、第2の記憶媒体60に発生した熱は、ペルチェ素子17の伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向に切り替えられているため、基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子32に伝導されると共にペルチェ素子29にも伝導される。 On the other hand, the heat generated in the second storage medium 60 is transferred to the substrate mounting base 14 because the heat transfer direction of the Perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a. It is transmitted and conducted from the substrate mounting base 14 to the Perche element 32 and also to the Perche element 29.
 ペルチェ素子32に伝導された熱は、ペルチェ素子32の伝熱方向が第2のセラミック基板32bから第1のセラミック基板32aへ向かう方向に切り替えられているため、第1のセラミック基板32aから第4のメディアスロット30に伝導され、第4のメディアスロット30から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。ペルチェ素子29に伝導された熱は、ペルチェ素子29の伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向に切り替えられているため、第1のセラミック基板29aから第3のメディアスロット27に伝導され、第3のメディアスロット27から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 Since the heat transfer direction of the Perche element 32 is switched from the second ceramic substrate 32b to the first ceramic substrate 32a, the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40. Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 従って、第1の記憶媒体50と第2の記憶媒体60に発生した熱はバッテリーケース11、バッテリー40、第3のメディアスロット27又は第4のメディアスロット30から放出される。また、バッテリーケース11、バッテリー40、第3のメディアスロット27又は第4のメディアスロット30から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50 and the second storage medium 60 is released from the battery case 11, the battery 40, the third media slot 27, or the fourth media slot 30. Further, at least a part of the heat released from the battery case 11, the battery 40, the third media slot 27 or the fourth media slot 30 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
 第1の記憶媒体50と第3の記憶媒体70が駆動状態にされ第2の記憶媒体60と第4の記憶媒体80が非駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向になる状態に切り替えられ、ペルチェ素子29は伝熱方向が第1のセラミック基板29aから第2のセラミック基板29bへ向かう方向になる状態に切り替えられ、ペルチェ素子32は伝熱方向が第2のセラミック基板32bから第1のセラミック基板32aへ向かう方向になる状態に切り替えられる(図22参照)。 When the first storage medium 50 and the third storage medium 70 are in the driving state and the second storage medium 60 and the fourth storage medium 80 are in the non-driving state, the heat transfer direction of the ceramic element 17 is set. The state is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, and the heat transfer direction of the perche element 29 is the direction from the first ceramic substrate 29a to the second ceramic substrate 29b. The thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the second ceramic substrate 32b to the first ceramic substrate 32a (see FIG. 22).
 このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子17に伝導されると共にペルチェ素子32にも伝導される。 At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18, and is conducted from the substrate mounting base 14 to the perche element 17 and also to the perche element 32.
 ペルチェ素子17に伝導された熱は、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向に切り替えられているため、第2のセラミック基板17bから第2のメディアスロット20に伝導され、第2のメディアスロット20から放出される。ペルチェ素子32に伝導された熱は、ペルチェ素子32の伝熱方向が第2のセラミック基板32bから第1のセラミック基板32aへ向かう方向に切り替えられているため、第1のセラミック基板32aから第4のメディアスロット30に伝導され、第4のメディアスロット30から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20. Since the heat transfer direction of the Perche element 32 is switched from the second ceramic substrate 32b to the first ceramic substrate 32a, the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 一方、第3の記憶媒体70に発生した熱は、ペルチェ素子29の伝熱方向が第1のセラミック基板29aから第2のセラミック基板29bへ向かう方向に切り替えられているため、第2のセラミック基板29bから基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子17に伝導されると共にペルチェ素子32にも伝導される。 On the other hand, the heat generated in the third storage medium 70 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b in the heat transfer direction of the perche element 29, so that the second ceramic substrate is used. It is transmitted from 29b to the substrate mounting base 14, is conducted from the substrate mounting base 14 to the perche element 17, and is also conducted to the perche element 32.
 ペルチェ素子17に伝導された熱は、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向に切り替えられているため、第2のセラミック基板17bから第2のメディアスロット20に伝導され、第2のメディアスロット20から放出される。ペルチェ素子32に伝導された熱は、ペルチェ素子32の伝熱方向が第2のセラミック基板32bから第1のセラミック基板32aへ向かう方向に切り替えられているため、第1のセラミック基板32aから第4のメディアスロット30に伝導され、第4のメディアスロット30から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20. Since the heat transfer direction of the Perche element 32 is switched from the second ceramic substrate 32b to the first ceramic substrate 32a, the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 従って、第1の記憶媒体50と第3の記憶媒体70に発生した熱はバッテリーケース11、バッテリー40、第2のメディアスロット20又は第4のメディアスロット30から放出される。また、バッテリーケース11、バッテリー40、第2のメディアスロット20又は第4のメディアスロット30から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50 and the third storage medium 70 is released from the battery case 11, the battery 40, the second media slot 20, or the fourth media slot 30. Further, at least a part of the heat released from the battery case 11, the battery 40, the second media slot 20 or the fourth media slot 30 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
 第1の記憶媒体50と第4の記憶媒体80が駆動状態にされ第2の記憶媒体60と第3の記憶媒体70が非駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向になる状態に切り替えられ、ペルチェ素子29は伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向になる状態に切り替えられ、ペルチェ素子32は伝熱方向が第1のセラミック基板32aから第2のセラミック基板32bへ向かう方向になる状態に切り替えられる(図23参照)。 When the first storage medium 50 and the fourth storage medium 80 are in the driving state and the second storage medium 60 and the third storage medium 70 are in the non-driving state, the heat transfer direction of the ceramic element 17 is set. The state is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, and the heat transfer direction of the perche element 29 is the direction from the second ceramic substrate 29b to the first ceramic substrate 29a. The thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the first ceramic substrate 32a to the second ceramic substrate 32b (see FIG. 23).
 このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子29に伝導されると共にペルチェ素子17にも伝導される。 At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18, and is conducted from the substrate mounting base 14 to the perche element 29 and also to the perche element 17.
 ペルチェ素子29に伝導された熱は、ペルチェ素子29の伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向に切り替えられているため、第1のセラミック基板29aから第3のメディアスロット27に伝導され、第3のメディアスロット27から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。ペルチェ素子17に伝導された熱は、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向に切り替えられているため、第2のセラミック基板17bから第2のメディアスロット20に伝導され、第2のメディアスロット20から放出される。 Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40. Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20.
 一方、第4の記憶媒体80に発生した熱は、ペルチェ素子29の伝熱方向が第1のセラミック基板29aから第2のセラミック基板29bへ向かう方向に切り替えられているため、第2のセラミック基板29bから基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子17に伝導されると共にペルチェ素子29にも伝導される。 On the other hand, the heat generated in the fourth storage medium 80 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b in the heat transfer direction of the perche element 29, so that the second ceramic substrate is used. It is transmitted from 29b to the substrate mounting base 14, is conducted from the substrate mounting base 14 to the perche element 17, and is also conducted to the perche element 29.
 ペルチェ素子17に伝導された熱は、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向に切り替えられているため、第2のセラミック基板17bから第2のメディアスロット20に伝導され、第2のメディアスロット20から放出される。ペルチェ素子29に伝導された熱は、ペルチェ素子29の伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向に切り替えられているため、第1のセラミック基板29aから第3のメディアスロット27に伝導され、第3のメディアスロット27から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20. Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 従って、第1の記憶媒体50と第4の記憶媒体80に発生した熱はバッテリーケース11、バッテリー40、第2のメディアスロット20又は第3のメディアスロット27から放出される。また、バッテリーケース11、バッテリー40、第2のメディアスロット20又は第3のメディアスロット27から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50 and the fourth storage medium 80 is released from the battery case 11, the battery 40, the second media slot 20, or the third media slot 27. Further, at least a part of the heat released from the battery case 11, the battery 40, the second media slot 20 or the third media slot 27 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
 第1の記憶媒体50と第2の記憶媒体60と第3の記憶媒体70が駆動状態にされ第4の記憶媒体80が非駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向になる状態に切り替えられ、ペルチェ素子29は伝熱方向が第1のセラミック基板29aから第2のセラミック基板29bへ向かう方向になる状態に切り替えられ、ペルチェ素子32は伝熱方向が第2のセラミック基板32bから第1のセラミック基板32aへ向かう方向になる状態に切り替えられる(図24参照)。 When the first storage medium 50, the second storage medium 60, and the third storage medium 70 are in the driving state and the fourth storage medium 80 is in the non-driving state, the heat transfer direction of the ceramic element 17 is set. The state is switched from the second ceramic substrate 17b to the direction toward the first ceramic substrate 17a, and the heat transfer direction of the perche element 29 is in the direction from the first ceramic substrate 29a to the second ceramic substrate 29b. The thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the second ceramic substrate 32b to the first ceramic substrate 32a (see FIG. 24).
 このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子32に伝導される。 At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18 and conducted from the substrate mounting base 14 to the Pelche element 32.
 ペルチェ素子32に伝導された熱は、ペルチェ素子32の伝熱方向が第2のセラミック基板32bから第1のセラミック基板32aへ向かう方向に切り替えられているため、第1のセラミック基板32aから第4のメディアスロット30に伝導され、第4のメディアスロット30から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 Since the heat transfer direction of the Perche element 32 is switched from the second ceramic substrate 32b to the first ceramic substrate 32a, the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 第2の記憶媒体60に発生した熱は、ペルチェ素子17の伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向に切り替えられているため、第1のセラミック基板17aから基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子32に伝導される。 The heat generated in the second storage medium 60 is transferred from the first ceramic substrate 17a because the heat transfer direction of the perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the perche element 32.
 ペルチェ素子32に伝導された熱は、ペルチェ素子32の伝熱方向が第2のセラミック基板32bから第1のセラミック基板32aへ向かう方向に切り替えられているため、第1のセラミック基板32aから第4のメディアスロット30に伝導され、第4のメディアスロット30から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 Since the heat transfer direction of the Perche element 32 is switched from the second ceramic substrate 32b to the first ceramic substrate 32a, the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 第3の記憶媒体70に発生した熱は、ペルチェ素子29の伝熱方向が第1のセラミック基板29aから第2のセラミック基板29bへ向かう方向に切り替えられているため、第2のセラミック基板29bから基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子32に伝導される。 The heat generated in the third storage medium 70 is transferred from the second ceramic substrate 29b because the heat transfer direction of the perche element 29 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the perche element 32.
 ペルチェ素子32に伝導された熱は、ペルチェ素子32の伝熱方向が第2のセラミック基板32bから第1のセラミック基板32aへ向かう方向に切り替えられているため、第1のセラミック基板32aから第4のメディアスロット30に伝導され、第4のメディアスロット30から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 Since the heat transfer direction of the Perche element 32 is switched from the second ceramic substrate 32b to the first ceramic substrate 32a, the heat conducted to the Perche element 32 is switched from the first ceramic substrate 32a to the fourth. It is conducted to the media slot 30 of the above and is discharged from the fourth media slot 30 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 従って、第1の記憶媒体50と第2の記憶媒体60と第3の記憶媒体70に発生した熱はバッテリーケース11、バッテリー40又は第4のメディアスロット30から放出される。また、バッテリーケース11、バッテリー40又は第4のメディアスロット30から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50, the second storage medium 60, and the third storage medium 70 is released from the battery case 11, the battery 40, or the fourth media slot 30. Further, at least a part of the heat released from the battery case 11, the battery 40 or the fourth media slot 30 is conducted to the housing 4, and is discharged from the housing 4 to the atmosphere.
 第1の記憶媒体50と第3の記憶媒体70と第4の記憶媒体80が駆動状態にされ第2の記憶媒体60が非駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向になる状態に切り替えられ、ペルチェ素子29は伝熱方向が第1のセラミック基板29aから第2のセラミック基板29bへ向かう方向になる状態に切り替えられ、ペルチェ素子32は伝熱方向が第1のセラミック基板32aから第2のセラミック基板32bへ向かう方向になる状態に切り替えられる(図25参照)。 When the first storage medium 50, the third storage medium 70, and the fourth storage medium 80 are in the driving state and the second storage medium 60 is in the non-driving state, the heat transfer direction of the ceramic element 17 is set. The state is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, and the heat transfer direction of the perche element 29 is the direction from the first ceramic substrate 29a to the second ceramic substrate 29b. The thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the first ceramic substrate 32a to the second ceramic substrate 32b (see FIG. 25).
 このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子17に伝導される。 At this time, the heat generated in the first storage medium 50 is transmitted to the substrate mounting base 14 via the copper block 18, and is conducted from the substrate mounting base 14 to the Pelche element 17.
 ペルチェ素子17に伝導された熱は、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向に切り替えられているため、第2のセラミック基板17bから第2のメディアスロット20に伝導され、第2のメディアスロット20から放出される。 Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20.
 第3の記憶媒体70に発生した熱は、ペルチェ素子29の伝熱方向が第1のセラミック基板29aから第2のセラミック基板29bへ向かう方向に切り替えられているため、第2のセラミック基板29bから基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子17に伝導される。 The heat generated in the third storage medium 70 is transferred from the second ceramic substrate 29b because the heat transfer direction of the perche element 29 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the perche element 17.
 ペルチェ素子17に伝導された熱は、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向に切り替えられているため、第2のセラミック基板17bから第2のメディアスロット20に伝導され、第2のメディアスロット20から放出される。 Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20.
 第4の記憶媒体80に発生した熱は、ペルチェ素子32の伝熱方向が第1のセラミック基板32aから第2のセラミック基板32bへ向かう方向に切り替えられているため、第2のセラミック基板32bから基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子17に伝導される。 The heat generated in the fourth storage medium 80 is transferred from the second ceramic substrate 32b because the heat transfer direction of the perche element 32 is switched from the first ceramic substrate 32a to the second ceramic substrate 32b. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the perche element 17.
 ペルチェ素子17に伝導された熱は、ペルチェ素子17の伝熱方向が第1のセラミック基板17aから第2のセラミック基板17bへ向かう方向に切り替えられているため、第2のセラミック基板17bから第2のメディアスロット20に伝導され、第2のメディアスロット20から放出される。 Since the heat transfer direction of the perche element 17 is switched from the first ceramic substrate 17a to the second ceramic substrate 17b, the heat conducted to the perche element 17 is switched from the second ceramic substrate 17b to the second ceramic substrate 17b. It is conducted to the media slot 20 of the above and is discharged from the second media slot 20.
 従って、第1の記憶媒体50と第3の記憶媒体70と第4の記憶媒体80に発生した熱は第2のメディアスロット20から放出される。また、第2のメディアスロット20から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50, the third storage medium 70, and the fourth storage medium 80 is released from the second media slot 20. Further, at least a part of the heat released from the second media slot 20 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
 第1の記憶媒体50と第2の記憶媒体60と第4の記憶媒体80が駆動状態にされ第3の記憶媒体70が非駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向になる状態に切り替えられ、ペルチェ素子29は伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向になる状態に切り替えられ、ペルチェ素子32は伝熱方向が第1のセラミック基板32aから第2のセラミック基板32bへ向かう方向になる状態に切り替えられる(図26参照)。 When the first storage medium 50, the second storage medium 60, and the fourth storage medium 80 are in the driving state and the third storage medium 70 is in the non-driving state, the heat transfer direction of the ceramic element 17 is set. The state is switched from the second ceramic substrate 17b to the direction toward the first ceramic substrate 17a, and the heat transfer direction of the perche element 29 is the direction toward the first ceramic substrate 29a from the second ceramic substrate 29b. The thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the first ceramic substrate 32a to the second ceramic substrate 32b (see FIG. 26).
 このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子29に伝導される。 At this time, the heat generated in the first storage medium 50 is transferred to the substrate mounting base 14 via the copper block 18 and conducted from the substrate mounting base 14 to the Pelche element 29.
 ペルチェ素子29に伝導された熱は、ペルチェ素子29の伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向に切り替えられているため、第1のセラミック基板29aから第3のメディアスロット27に伝導され、第3のメディアスロット27から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 第2の記憶媒体60に発生した熱は、ペルチェ素子17の伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向に切り替えられているため、第1のセラミック基板17aから基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子29に伝導される。 The heat generated in the second storage medium 60 is transferred from the first ceramic substrate 17a because the heat transfer direction of the perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the ceramic cooling element 29.
 ペルチェ素子29に伝導された熱は、ペルチェ素子29の伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向に切り替えられているため、第1のセラミック基板29aから第3のメディアスロット27に伝導され、第3のメディアスロット27から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 第4の記憶媒体80に発生した熱は、ペルチェ素子32の伝熱方向が第1のセラミック基板32aから第2のセラミック基板32bへ向かう方向に切り替えられているため、第2のセラミック基板32bから基板取付ベース14に伝達され、基板取付ベース14からペルチェ素子29に伝導される。 The heat generated in the fourth storage medium 80 is transferred from the second ceramic substrate 32b because the heat transfer direction of the perche element 32 is switched from the first ceramic substrate 32a to the second ceramic substrate 32b. It is transmitted to the board mounting base 14 and is conducted from the board mounting base 14 to the ceramic cooling element 29.
 ペルチェ素子29に伝導された熱は、ペルチェ素子29の伝熱方向が第2のセラミック基板29bから第1のセラミック基板29aへ向かう方向に切り替えられているため、第1のセラミック基板29aから第3のメディアスロット27に伝導され、第3のメディアスロット27から放出されると共にバッテリーケース11に伝導されてバッテリーケース11又はバッテリー40から放出される。 Since the heat transfer direction of the perche element 29 is switched from the second ceramic substrate 29b to the first ceramic substrate 29a, the heat conducted to the perche element 29 is switched from the first ceramic substrate 29a to the third ceramic substrate 29a. It is conducted to the media slot 27 of the above and is discharged from the third media slot 27 and is also conducted to the battery case 11 and discharged from the battery case 11 or the battery 40.
 従って、第1の記憶媒体50と第2の記憶媒体60と第4の記憶媒体80に発生した熱は第3のメディアスロット27から放出される。また、第3のメディアスロット27から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50, the second storage medium 60, and the fourth storage medium 80 is released from the third media slot 27. Further, at least a part of the heat released from the third media slot 27 is conducted to the housing 4 and released from the housing 4 to the atmosphere.
 第1の記憶媒体50と第2の記憶媒体60と第3の記憶媒体70と第4の記憶媒体80が何れも駆動状態にされている場合に、ペルチェ素子17は伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向になる状態に切り替えられ、ペルチェ素子29は伝熱方向が第1のセラミック基板29aから第2のセラミック基板29bへ向かう方向になる状態に切り替えられ、ペルチェ素子32は伝熱方向が第1のセラミック基板32aから第2のセラミック基板32bへ向かう方向になる状態に切り替えられる(図27参照)。 When the first storage medium 50, the second storage medium 60, the third storage medium 70, and the fourth storage medium 80 are all driven, the ceramic element 17 has a second heat transfer direction. The state is switched from the ceramic substrate 17b to the direction toward the first ceramic substrate 17a, and the heat transfer direction of the perche element 29 is switched to the direction from the first ceramic substrate 29a to the second ceramic substrate 29b. The thermoelectric cooling element 32 is switched to a state in which the heat transfer direction is from the first ceramic substrate 32a to the second ceramic substrate 32b (see FIG. 27).
 このとき第1の記憶媒体50に発生した熱は銅ブロック18を介して基板取付ベース14に伝達され、基板取付ベース14の主に外周面から放出される。 At this time, the heat generated in the first storage medium 50 is transferred to the board mounting base 14 via the copper block 18 and discharged mainly from the outer peripheral surface of the board mounting base 14.
 第2の記憶媒体60に発生した熱は、ペルチェ素子17の伝熱方向が第2のセラミック基板17bから第1のセラミック基板17aへ向かう方向に切り替えられているため、第1のセラミック基板17aから基板取付ベース14に伝達され、基板取付ベース14の主に外周面から放出される。 The heat generated in the second storage medium 60 is transferred from the first ceramic substrate 17a because the heat transfer direction of the perche element 17 is switched from the second ceramic substrate 17b to the first ceramic substrate 17a. It is transmitted to the board mounting base 14 and is discharged mainly from the outer peripheral surface of the board mounting base 14.
 第3の記憶媒体70に発生した熱は、ペルチェ素子29の伝熱方向が第1のセラミック基板29aから第2のセラミック基板29bへ向かう方向に切り替えられているため、第2のセラミック基板29bから基板取付ベース14に伝達され、基板取付ベース14の主に外周面から放出される。 The heat generated in the third storage medium 70 is transferred from the second ceramic substrate 29b because the heat transfer direction of the perche element 29 is switched from the first ceramic substrate 29a to the second ceramic substrate 29b. It is transmitted to the board mounting base 14 and is discharged mainly from the outer peripheral surface of the board mounting base 14.
 第4の記憶媒体80に発生した熱は、ペルチェ素子32の伝熱方向が第1のセラミック基板32aから第2のセラミック基板32bへ向かう方向に切り替えられているため、第2のセラミック基板32bから基板取付ベース14に伝達され、基板取付ベース14の主に外周面から放出される。 The heat generated in the fourth storage medium 80 is transferred from the second ceramic substrate 32b because the heat transfer direction of the perche element 32 is switched from the first ceramic substrate 32a to the second ceramic substrate 32b. It is transmitted to the board mounting base 14 and is discharged mainly from the outer peripheral surface of the board mounting base 14.
 従って、第1の記憶媒体50と第2の記憶媒体60と第3の記憶媒体70と第4の記憶媒体80に発生した熱は基板取付ベース14から放出される。また、基板取付ベース14から放出された熱の少なくとも一部は筐体4に伝導され、筐体4から大気中に放出される。 Therefore, the heat generated in the first storage medium 50, the second storage medium 60, the third storage medium 70, and the fourth storage medium 80 is released from the substrate mounting base 14. Further, at least a part of the heat released from the substrate mounting base 14 is conducted to the housing 4, and is released from the housing 4 to the atmosphere.
 <まとめ>
 以上に記載した通り、電子機器1にあっては、熱を伝導し伝熱方向の切替が可能にされた伝熱方向切替部(ペルチェ素子17、29、32又は熱伝導部材25、以下同じ。)を備え、複数のメディアスロット(第1のメディアスロット19、第2のメディアスロット20、第3のメディアスロット27又は第4のメディアスロット30、以下同じ。)にそれぞれ装着された記憶媒体(第1の記憶媒体50、第2の記憶媒体60、第3の記憶媒体70又は第4の記憶媒体80、以下同じ。)に対するアクセス状態に応じて伝熱方向切替部の伝熱方向が切り替えられる。
<Summary>
As described above, in the electronic device 1, the heat transfer direction switching unit ( Pelche elements 17, 29, 32 or the heat transfer member 25, the same applies hereinafter, which conducts heat and enables switching of the heat transfer direction. A storage medium (the first media slot 19, the second media slot 20, the third media slot 27 or the fourth media slot 30, the same shall apply hereinafter). The heat transfer direction of the heat transfer direction switching unit is switched according to the access state to the storage medium 50, the second storage medium 60, the third storage medium 70, or the fourth storage medium 80, the same applies hereinafter).
 従って、複数のメディアスロットにそれぞれ装着された記憶媒体に対するアクセス状態に応じて切り替えられた伝熱方向へ記憶媒体に発生した熱が伝導されるため、記憶媒体に対するアクセス状態に拘わらず放熱効率の向上を図ることができる。 Therefore, the heat generated in the storage medium is conducted in the heat transfer direction switched according to the access state to the storage media installed in each of the plurality of media slots, so that the heat dissipation efficiency is improved regardless of the access state to the storage medium. Can be planned.
 特に、各メディアスロットに装着された各記憶媒体においては電子機器1の動作状態に応じて熱の発生量が異なる場合があり、記憶媒体に対するアクセス状態に応じて伝熱方向切替部の伝熱方向が切り替えられることにより、各記憶媒体の駆動状態や熱の発生量に応じた放熱経路を設定して効率的な放熱状態を確保することができる。 In particular, in each storage medium installed in each media slot, the amount of heat generated may differ depending on the operating state of the electronic device 1, and the heat transfer direction of the heat transfer direction switching unit depends on the access state to the storage medium. By switching between, it is possible to set a heat dissipation path according to the driving state of each storage medium and the amount of heat generated, and to secure an efficient heat dissipation state.
 また、記憶媒体のうち少なくとも一つずつが駆動状態と非駆動状態にされたときに、駆動状態にある記憶媒体に発生する熱が非駆動状態にある記憶媒体が装着されたメディアスロット又は記憶媒体が装着されていないメディアスロットへ向けて伝導されるように伝熱方向切替部の伝熱方向が切り替えられる。 Further, when at least one of the storage media is put into the driven state and the non-driven state, the heat generated in the stored medium in the driven state is installed in the media slot or the storage medium in which the storage medium in the non-driving state is installed. The heat transfer direction of the heat transfer direction switching unit is switched so that it is conducted toward the media slot in which is not installed.
 従って、伝熱方向が切り替えられた伝熱方向切替部によって駆動状態にある記憶媒体から非駆動状態にある記憶媒体が装着されたメディアスロット又は記憶媒体が装着されていないメディアスロットへ向けて熱が伝導されるため、伝熱効率及び放熱効率の向上を図ることができる。 Therefore, heat is transferred from the storage medium in the driven state to the media slot in which the storage medium in the non-drive state is installed or the media slot in which the storage medium is not installed by the heat transfer direction switching unit whose heat transfer direction is switched. Since it is conducted, it is possible to improve the heat transfer efficiency and the heat dissipation efficiency.
 さらに、伝熱方向切替部として、供給される電流の向きに応じて伝熱方向が変換されるペルチェ素子17、29、32が用いられることにより、供給される電流の向きに応じて伝熱方向切替部として機能するペルチェ素子17、29、32の伝熱方向が変換されるため、伝熱方向の制御を容易かつ確実に行うことができる。 Further, by using the Perche elements 17, 29, 32 whose heat transfer direction is changed according to the direction of the supplied current as the heat transfer direction switching unit, the heat transfer direction is changed according to the direction of the supplied current. Since the heat transfer directions of the Pelche elements 17, 29, and 32 that function as switching portions are converted, the heat transfer directions can be easily and surely controlled.
 尚、電子機器1は、複数のメディアスロットにそれぞれ装着された各記憶媒体に対するアクセス状態を変更する変更操作部を有し、変更操作部の操作に応じて伝熱方向切替部の伝熱方向が切り替えられる構成にされてもよい。変更操作部として、例えば、操作部5、5、・・・のうちの何れかの操作部5を用いることが可能である。 The electronic device 1 has a change operation unit that changes the access state to each storage medium installed in each of the plurality of media slots, and the heat transfer direction of the heat transfer direction switching unit is changed according to the operation of the change operation unit. It may be configured to be switchable. As the change operation unit, for example, any operation unit 5 of the operation units 5, 5, ... Can be used.
 このような変更操作部が設けられることにより、メディアスロットにそれぞれ装着された各記憶媒体に対するアクセス状態を変更する変更操作部の操作に応じた伝熱方向切替部の伝熱方向の切替により各記憶媒体に発生する熱が伝達されるため、各記憶媒体に発生する熱を状況に応じた方向へ伝導して放熱効率の向上を図ることができる。 By providing such a change operation unit, each storage is performed by switching the heat transfer direction of the heat transfer direction switching unit according to the operation of the change operation unit that changes the access state to each storage medium installed in the media slot. Since the heat generated in the medium is transferred, the heat generated in each storage medium can be conducted in a direction according to the situation to improve the heat dissipation efficiency.
 <その他>
 電子機器1においては、少なくとも二つのメディアスロットが設けられているが、複数のメディアスロットのうち一つのメディアスロットに装着される記憶媒体がメインの記憶媒体として用いられる構成にされていてもよい。
<Other>
Although the electronic device 1 is provided with at least two media slots, a storage medium installed in one of the plurality of media slots may be used as the main storage medium.
 例えば、第1のメディアスロット19と第2のメディアスロット20が設けられている場合に、第1のメディアスロット19に装着される第1の記憶媒体50がメインの記憶媒体として用いられ、第2のメディアスロット20に装着される第2の記憶媒体60が補助的な記憶媒体として用いられ、第1の記憶媒体50が有する記憶容量の全てが使用された場合に、自動的に第2の記憶媒体60に対してデータが記憶される構成にされていてもよい。 For example, when the first media slot 19 and the second media slot 20 are provided, the first storage medium 50 mounted in the first media slot 19 is used as the main storage medium, and the second media slot 19 is used. When the second storage medium 60 mounted in the media slot 20 of the above is used as an auxiliary storage medium and all the storage capacity of the first storage medium 50 is used, the second storage is automatically performed. Data may be stored in the medium 60.
 このような場合に、第1の記憶媒体50が非駆動状態にされ第2の記憶媒体60が駆動状態にされたことがアクセス状態検出部によって検出されることにより、検出結果に応じて伝熱方向切替部の伝熱方向が切り替えられるようにすることが可能である。 In such a case, the access state detection unit detects that the first storage medium 50 is in the non-driving state and the second storage medium 60 is in the driving state, so that heat is transferred according to the detection result. It is possible to switch the heat transfer direction of the direction switching unit.
 また、第1の記憶媒体50と第2の記憶媒体60の駆動状態と非駆動状態が使用者の操作によりの切替可能にされ、使用者の切替操作に応じて伝熱方向切替部の伝熱方向が切り替えられる構成にすることも可能である。 Further, the driven state and the non-driven state of the first storage medium 50 and the second storage medium 60 can be switched by the operation of the user, and the heat transfer of the heat transfer direction switching unit is made according to the switching operation of the user. It is also possible to have a configuration in which the direction can be switched.
 さらに、メディアスロットの数は五つ以上設けられていてもよく、これらのメディアスロットに対向して位置される銅ブロック、ペルチェ素子及び熱伝達部材の数及び配置態様は少なくとも一つのペルチェ素子又は熱伝達部材が設けられていれば任意である。 Further, the number of media slots may be five or more, and the number and arrangement of the copper blocks, the Pelce elements and the heat transfer members located opposite to these media slots may be at least one Pelce element or heat. It is optional as long as a transmission member is provided.
 <電子機器の一実施形態>
 以下に、本技術電子機器(撮像装置)の一実施形態の構成例について説明する(図28参照)。
<One Embodiment of Electronic Equipment>
Hereinafter, a configuration example of an embodiment of the electronic device (imaging device) of the present technology will be described (see FIG. 28).
 電子機器(撮像装置)1には、例えば、撮像機能を担うカメラブロック90を有する交換レンズが装着される。尚、電子機器1がレンズ鏡筒を有する場合には、電子機器1にカメラブロック90が設けられる。 The electronic device (imaging device) 1 is equipped with, for example, an interchangeable lens having a camera block 90 that has an imaging function. When the electronic device 1 has a lens barrel, the electronic device 1 is provided with the camera block 90.
 電子機器1は、撮影された画像信号のアナログ-デジタル変換等の信号処理を行うカメラ信号処理部91と、画像信号の記録再生処理を行う画像処理部92とを有している。また、電子機器1は、撮影された画像等を表示する表示部93と、メモリー99への画像信号の書込及び読出を行うR/W(リーダ/ライタ)94と、電子機器1の全体を制御するCPU(Central Processing Unit)95と、カメラブロック90に配置されたレンズの駆動を制御するレンズ駆動制御部96と、ユーザーによって所要の操作が行われる各種のスイッチ等の操作部97(操作部5)とを有している。 The electronic device 1 has a camera signal processing unit 91 that performs signal processing such as analog-to-digital conversion of the captured image signal, and an image processing unit 92 that performs recording / playback processing of the image signal. Further, the electronic device 1 includes a display unit 93 for displaying a captured image and the like, an R / W (reader / writer) 94 for writing and reading an image signal to the memory 99, and the entire electronic device 1. A CPU (Central Processing Unit) 95 to control, a lens drive control unit 96 to control the drive of a lens arranged in a camera block 90, and an operation unit 97 (operation unit) such as various switches in which a user performs a required operation. 5) and.
 電子機器1には、カメラブロック90によって取り込まれた光学像を電気的信号に変換するCCDやCMOS等の撮像素子98が設けられている。 The electronic device 1 is provided with an image sensor 98 such as a CCD or CMOS that converts an optical image captured by the camera block 90 into an electrical signal.
 カメラ信号処理部91は、撮像素子98からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の各種の信号処理を行う。 The camera signal processing unit 91 performs various signal processing such as conversion of the output signal from the image pickup element 98 into a digital signal, noise removal, image quality correction, and conversion into a luminance / color difference signal.
 画像処理部92は、所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理等を行う。 The image processing unit 92 performs compression coding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and the like.
 表示部93はユーザーの操作部97に対する操作状態や撮影した画像等の各種のデータを表示する機能を有している。尚、電子機器1においては、表示部93が設けられていなくてもよく、撮影された画像データが他の表示装置に送出されて画像が表示されるように構成されていてもよい。 The display unit 93 has a function of displaying various data such as an operation state of the user's operation unit 97 and a captured image. The electronic device 1 may not be provided with the display unit 93, and may be configured so that the captured image data is sent to another display device to display the image.
 R/W94は、画像処理部92によって符号化された画像データのメモリー99への書込及びメモリー99に記録された画像データの読出を行う。 The R / W 94 writes the image data encoded by the image processing unit 92 to the memory 99 and reads the image data recorded in the memory 99.
 CPU95は、電子機器1に設けられた各回路ブロックを制御する制御処理部として機能し、操作部97からの指示入力信号等に基づいて各回路ブロックを制御する。 The CPU 95 functions as a control processing unit that controls each circuit block provided in the electronic device 1, and controls each circuit block based on an instruction input signal or the like from the operation unit 97.
 レンズ駆動制御部96は、CPU95からの制御信号に基づいてレンズを移動させる駆動源を制御する。 The lens drive control unit 96 controls a drive source for moving the lens based on a control signal from the CPU 95.
 操作部97はユーザーによる操作に応じた指示入力信号をCPU95に対して出力する。 The operation unit 97 outputs an instruction input signal corresponding to the operation by the user to the CPU 95.
 メモリー99は、例えば、R/W94に接続されたスロットに対して着脱可能な半導体メモリー又は電子機器1の内部に予め組み込まれている半導体メモリーである。 The memory 99 is, for example, a semiconductor memory that can be attached to and detached from a slot connected to the R / W 94, or a semiconductor memory that is preliminarily incorporated inside the electronic device 1.
 以下に、電子機器1における動作を説明する。 The operation of the electronic device 1 will be described below.
 撮影の待機状態では、CPU95による制御の下で、撮影された画像信号がカメラ信号処理部91を介して表示部93に出力され、カメラスルー画像として表示される。また、操作部97からの指示入力信号が入力されると、CPU95がレンズ駆動制御部96に制御信号を出力し、レンズ駆動制御部96の制御に基づいてレンズが移動される。 In the shooting standby state, under the control of the CPU 95, the shot image signal is output to the display unit 93 via the camera signal processing unit 91 and displayed as a camera-through image. When the instruction input signal from the operation unit 97 is input, the CPU 95 outputs a control signal to the lens drive control unit 96, and the lens is moved based on the control of the lens drive control unit 96.
 操作部97からの指示入力信号により撮影動作が行われると、撮影された画像信号がカメラ信号処理部91から画像処理部92に出力されて圧縮符号化処理され、所定のデータフォーマットのデジタルデータに変換される。変換されたデータはR/W94に出力され、メモリー99に書き込まれる。 When the shooting operation is performed by the instruction input signal from the operation unit 97, the shot image signal is output from the camera signal processing unit 91 to the image processing unit 92, compressed and encoded, and converted into digital data in a predetermined data format. Will be converted. The converted data is output to R / W 94 and written to memory 99.
 メモリー99に記録された画像データを再生する場合には、操作部97に対する操作に応じて、R/W94によってメモリー99から所定の画像データが読み出され、画像処理部92によって伸張復号化処理が行われた後に、再生画像信号が表示部93に出力されて再生画像が表示される。 When the image data recorded in the memory 99 is reproduced, the R / W 94 reads the predetermined image data from the memory 99 in response to the operation on the operation unit 97, and the image processing unit 92 performs the decompression / decoding process. After that, the reproduced image signal is output to the display unit 93 and the reproduced image is displayed.
 尚、本技術において、「撮像」とは、撮像素子98による取り込まれた光を電気信号に変換する光電変換処理から、カメラ信号処理部91による撮像素子98からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理、画像処理部92による所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理、R/W94によるメモリー99への画像信号の書込処理までの一連の処理の一部のみ、または全てを含む処理のことを言う。 In the present technology, "imaging" means converting the photoelectric conversion process of converting the light captured by the image pickup element 98 into an electric signal to the digital signal of the output signal from the image pickup element 98 by the camera signal processing unit 91. , Noise removal, image quality correction, conversion to brightness / color difference signals, etc., compression coding / decompression decoding processing of image signals based on a predetermined image data format by the image processing unit 92, conversion processing of data specifications such as resolution, etc. , A process including only a part or all of a series of processes up to the process of writing an image signal to the memory 99 by the R / W 94.
 即ち、「撮像」とは、撮像素子98による取り込まれた光を電気信号に変換する光電変換処理のみを指してもよく、撮像素子98による取り込まれた光を電気信号に変換する光電変換処理からカメラ信号処理部91による撮像素子98からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理までを指してもよく、撮像素子98による取り込まれた光を電気信号に変換する光電変換処理からカメラ信号処理部91による撮像素子98からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理を経て、画像処理部92による所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理までを指してもよく、撮像素子98による取り込まれた光を電気信号に変換する光電変換処理からカメラ信号処理部91による撮像素子98からの出力信号に対するデジタル信号への変換、ノイズ除去、画質補正、輝度・色差信号への変換等の処理、及び画像処理部92による所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理までを指してもよく、R/W94によるメモリー99への画像信号の書込処理までを指してもよい。 That is, "imaging" may refer only to the photoelectric conversion process for converting the light captured by the image pickup element 98 into an electric signal, and from the photoelectric conversion process for converting the light captured by the image pickup element 98 into an electric signal. It may also refer to processing such as conversion of the output signal from the image pickup element 98 by the camera signal processing unit 91 into a digital signal, noise removal, image quality correction, and conversion into a brightness / color difference signal, and is captured by the image pickup element 98. After the photoelectric conversion process for converting light into an electric signal, the camera signal processing unit 91 converts the output signal from the image pickup element 98 into a digital signal, noise removal, image quality correction, conversion into a brightness / color difference signal, and the like. It may also refer to compression coding / decompression decoding processing of an image signal based on a predetermined image data format by the image processing unit 92 and conversion processing of data specifications such as resolution, and the light captured by the image pickup element 98 is an electric signal. The photoelectric conversion process for converting to a digital signal by the camera signal processing unit 91 to a digital signal for the output signal from the image pickup element 98, noise removal, image quality correction, conversion to a brightness / color difference signal, and the like, and the image processing unit 92. It may refer to compression coding / decompression decoding processing of an image signal based on a predetermined image data format, conversion processing of data specifications such as resolution, and writing processing of an image signal to the memory 99 by R / W94. You may point.
 上記の処理において各処理の順番は適宜入れ替わってもよい。 In the above processing, the order of each processing may be changed as appropriate.
 また、本技術において、カメラブロック90及び電子機器1は、上記の処理を行う撮像素子98、カメラ信号処理部91、画像処理部92、R/W94の一部のみまたは全てを含むように構成されていてもよい。 Further, in the present technology, the camera block 90 and the electronic device 1 are configured to include only a part or all of the image sensor 98, the camera signal processing unit 91, the image processing unit 92, and the R / W 94 that perform the above processing. You may be.
 さらに、カメラブロック90が撮像素子98、カメラ信号処理部91、画像処理部92、R/W94のうち一部を含んで構成されていてもよい。 Further, the camera block 90 may be configured to include a part of the image sensor 98, the camera signal processing unit 91, the image processing unit 92, and the R / W 94.
 <本技術>
 本技術は、以下のような構成にすることもできる。
<This technology>
The present technology can also be configured as follows.
 (1)
 記憶媒体がそれぞれ装着される複数のメディアスロットと、
 前記複数のメディアスロットがそれぞれ実装されたプリント配線基板と、
 前記プリント配線基板が取り付けられた基板取付ベースと、
 前記記憶媒体で発生する熱を伝導し伝熱方向の切替が可能な伝熱方向切替部とを備え、
 前記複数のメディアスロットにそれぞれ装着された前記記憶媒体に対するアクセス状態に応じて前記伝熱方向切替部の伝熱方向が切り替えられる
 電子機器。
(1)
Multiple media slots into which storage media are installed, and
A printed wiring board on which the plurality of media slots are mounted, and
The board mounting base to which the printed wiring board is mounted and
It is provided with a heat transfer direction switching unit that conducts heat generated in the storage medium and can switch the heat transfer direction.
An electronic device in which the heat transfer direction of the heat transfer direction switching unit is switched according to an access state to the storage medium installed in each of the plurality of media slots.
 (2)
 前記記憶媒体はアクセス時に駆動状態にされ非アクセス時に非駆動状態にされ、
 前記記憶媒体のうち少なくとも一つずつがそれぞれ駆動状態と非駆動状態にされたときに、
 駆動状態にある前記記憶媒体に発生する熱が非駆動状態にある前記記憶媒体が装着された前記メディアスロットへ向けて伝導されるように前記伝熱方向切替部の伝熱方向が切り替えられる
 前記(1)に記載の電子機器。
(2)
The storage medium is put into a driving state at the time of access and is put into a non-driving state at the time of non-access.
When at least one of the storage media is put into a driven state and a non-driven state, respectively.
The heat transfer direction of the heat transfer direction switching unit is switched so that the heat generated in the storage medium in the driven state is conducted toward the media slot in which the storage medium in the non-drive state is mounted. The electronic device according to 1).
 (3)
 前記記憶媒体はアクセス時に駆動状態にされ非アクセス時に非駆動状態にされ、
 前記記憶媒体のうち少なくとも一つずつがそれぞれ駆動状態と非駆動状態にされたときに、
 駆動状態にある前記記憶媒体に発生する熱が前記記憶媒体が装着されていない前記メディアスロットへ向けて伝導されるように前記伝熱方向切替部の伝熱方向が切り替えられる
 前記(1)に記載の電子機器。
(3)
The storage medium is put into a driving state at the time of access and is put into a non-driving state at the time of non-access.
When at least one of the storage media is put into a driven state and a non-driven state, respectively.
The heat transfer direction of the heat transfer direction switching unit is switched so that the heat generated in the storage medium in the driven state is conducted toward the media slot in which the storage medium is not mounted. Electronic equipment.
 (4)
 熱を放出する放熱体が設けられ、
 前記記憶媒体はアクセス時に駆動状態にされ非アクセス時に非駆動状態にされ、
 全ての前記メディアスロットにそれぞれ前記記憶媒体が装着され全ての前記記憶媒体が駆動状態にされたときに、
 全ての前記記憶媒体から前記放熱体へ向けて伝熱されるように前記伝熱方向切替部の伝熱方向が切り替えられる
 前記(1)に記載の電子機器。
(4)
A radiator that dissipates heat is provided,
The storage medium is put into a driving state at the time of access and is put into a non-driving state at the time of non-access.
When the storage medium is installed in all the media slots and all the storage media are put into a driving state,
The electronic device according to (1), wherein the heat transfer direction of the heat transfer direction switching unit is switched so that heat is transferred from all the storage media toward the heat radiating body.
 (5)
 前記伝熱方向切替部として、供給される電流の向きに応じて伝熱方向が変換されるペルチェ素子が用いられた
 前記(1)から前記(4)の何れかに記載の電子機器。
(5)
The electronic device according to any one of (1) to (4) above, wherein a Perche element whose heat transfer direction is changed according to the direction of the supplied current is used as the heat transfer direction switching unit.
 (6)
 前記記憶媒体に発生する熱が前記基板取付ベースを伝導される
 前記(1)から前記(5)の何れかに記載の電子機器。
(6)
The electronic device according to any one of (1) to (5) above, wherein the heat generated in the storage medium is conducted through the substrate mounting base.
 (7)
 前記伝熱方向切替部が前記基板取付ベースに接した状態で配置された
 前記(6)に記載の電子機器。
(7)
The electronic device according to (6), wherein the heat transfer direction switching portion is arranged in contact with the substrate mounting base.
 (8)
 前記プリント配線基板に銅ブロックが取り付けられ、
 前記銅ブロックが前記基板取付ベースに接し前記メディアスロットの少なくとも一つに対向した状態で位置された
 前記(1)から前記(7)の何れかに記載の電子機器。
(8)
A copper block is attached to the printed wiring board,
The electronic device according to any one of (1) to (7) above, wherein the copper block is positioned in a state of being in contact with the substrate mounting base and facing at least one of the media slots.
 (9)
 前記複数のメディアスロットが前記プリント配線基板における同一の面に実装された
 前記(1)から前記(8)の何れかに記載の電子機器。
(9)
The electronic device according to any one of (1) to (8) above, wherein the plurality of media slots are mounted on the same surface of the printed wiring board.
 (10)
 前記記憶媒体に対するアクセス状態を検出するアクセス状態検出部が設けられ、
 前記アクセス状態検出部の検出結果に応じて前記伝熱方向切替部の伝熱方向が切り替えられる
 前記(1)から前記(9)の何れかに記載の電子機器。
(10)
An access state detection unit for detecting the access state to the storage medium is provided.
The electronic device according to any one of (1) to (9) above, wherein the heat transfer direction of the heat transfer direction switching unit is switched according to the detection result of the access state detection unit.
 (11)
 前記複数のメディアスロットにそれぞれ装着された前記記憶媒体に対するアクセス状態を変更する変更操作部が設けられ、
 前記変更操作部の操作に応じて前記伝熱方向切替部の伝熱方向が切り替えられる
 前記(1)から前記(9)の何れかに記載の電子機器。
(11)
A change operation unit for changing the access state to the storage medium installed in each of the plurality of media slots is provided.
The electronic device according to any one of (1) to (9) above, wherein the heat transfer direction of the heat transfer direction switching unit is switched according to the operation of the change operation unit.
1   電子機器
11  バッテリーケース(放熱体)
14  基板取付ベース
15  プリント配線基板
17  ペルチェ素子(伝熱方向切替部)
18  銅ブロック
19  第1のメディアスロット
20  第2のメディアスロット
25  熱伝導部材(伝熱方向切替部)
26  プリント配線基板
27  第3のメディアスロット
29  ペルチェ素子(伝熱方向切替部)
30  第4のメディアスロット
32  ペルチェ素子(伝熱方向切替部)
40  バッテリー(放熱体)
50  第1の記憶媒体
60  第2の記憶媒体
70  第3の記憶媒体
80  第4の記憶媒体
1 Electronic device 11 Battery case (heat radiator)
14 Board mounting base 15 Printed wiring board 17 Perche element (heat transfer direction switching part)
18 Copper block 19 First media slot 20 Second media slot 25 Heat transfer member (heat transfer direction switching part)
26 Printed circuit board 27 Third media slot 29 Pelche element (heat transfer direction switching part)
30 Fourth media slot 32 Perche element (heat transfer direction switching unit)
40 Battery (heat radiator)
50 First storage medium 60 Second storage medium 70 Third storage medium 80 Fourth storage medium

Claims (11)

  1.  記憶媒体がそれぞれ装着される複数のメディアスロットと、
     前記複数のメディアスロットがそれぞれ実装されたプリント配線基板と、
     前記プリント配線基板が取り付けられた基板取付ベースと、
     前記記憶媒体で発生する熱を伝導し伝熱方向の切替が可能な伝熱方向切替部とを備え、
     前記複数のメディアスロットにそれぞれ装着された前記記憶媒体に対するアクセス状態に応じて前記伝熱方向切替部の伝熱方向が切り替えられる
     電子機器。
    Multiple media slots into which storage media are installed, and
    A printed wiring board on which the plurality of media slots are mounted, and
    The board mounting base to which the printed wiring board is mounted and
    It is provided with a heat transfer direction switching unit that conducts heat generated in the storage medium and can switch the heat transfer direction.
    An electronic device in which the heat transfer direction of the heat transfer direction switching unit is switched according to an access state to the storage medium installed in each of the plurality of media slots.
  2.  前記記憶媒体はアクセス時に駆動状態にされ非アクセス時に非駆動状態にされ、
     前記記憶媒体のうち少なくとも一つずつがそれぞれ駆動状態と非駆動状態にされたときに、
     駆動状態にある前記記憶媒体に発生する熱が非駆動状態にある前記記憶媒体が装着された前記メディアスロットへ向けて伝導されるように前記伝熱方向切替部の伝熱方向が切り替えられる
     請求項1に記載の電子機器。
    The storage medium is put into a driving state at the time of access and is put into a non-driving state at the time of non-access.
    When at least one of the storage media is put into a driven state and a non-driven state, respectively.
    Claim that the heat transfer direction of the heat transfer direction switching unit is switched so that the heat generated in the storage medium in the driven state is conducted toward the media slot in which the storage medium in the non-drive state is mounted. The electronic device according to 1.
  3.  前記記憶媒体はアクセス時に駆動状態にされ非アクセス時に非駆動状態にされ、
     前記記憶媒体のうち少なくとも一つずつがそれぞれ駆動状態と非駆動状態にされたときに、
     駆動状態にある前記記憶媒体に発生する熱が前記記憶媒体が装着されていない前記メディアスロットへ向けて伝導されるように前記伝熱方向切替部の伝熱方向が切り替えられる
     請求項1に記載の電子機器。
    The storage medium is put into a driving state at the time of access and is put into a non-driving state at the time of non-access.
    When at least one of the storage media is put into a driven state and a non-driven state, respectively.
    The first aspect of the present invention, wherein the heat transfer direction of the heat transfer direction switching unit is switched so that the heat generated in the storage medium in the driven state is conducted toward the media slot in which the storage medium is not mounted. Electronics.
  4.  熱を放出する放熱体が設けられ、
     前記記憶媒体はアクセス時に駆動状態にされ非アクセス時に非駆動状態にされ、
     全ての前記メディアスロットにそれぞれ前記記憶媒体が装着され全ての前記記憶媒体が駆動状態にされたときに、
     全ての前記記憶媒体から前記放熱体へ向けて伝熱されるように前記伝熱方向切替部の伝熱方向が切り替えられる
     請求項1に記載の電子機器。
    A radiator that dissipates heat is provided,
    The storage medium is put into a driving state at the time of access and is put into a non-driving state at the time of non-access.
    When the storage medium is installed in all the media slots and all the storage media are put into a driving state,
    The electronic device according to claim 1, wherein the heat transfer direction of the heat transfer direction switching unit is switched so that heat is transferred from all the storage media toward the heat radiating body.
  5.  前記伝熱方向切替部として、供給される電流の向きに応じて伝熱方向が変換されるペルチェ素子が用いられた
     請求項1に記載の電子機器。
    The electronic device according to claim 1, wherein a Perche element whose heat transfer direction is changed according to the direction of the supplied current is used as the heat transfer direction switching unit.
  6.  前記記憶媒体に発生する熱が前記基板取付ベースを伝導される
     請求項1に記載の電子機器。
    The electronic device according to claim 1, wherein the heat generated in the storage medium is conducted through the substrate mounting base.
  7.  前記伝熱方向切替部が前記基板取付ベースに接した状態で配置された
     請求項6に記載の電子機器。
    The electronic device according to claim 6, wherein the heat transfer direction switching unit is arranged in contact with the substrate mounting base.
  8.  前記プリント配線基板に銅ブロックが取り付けられ、
     前記銅ブロックが前記基板取付ベースに接し前記メディアスロットの少なくとも一つに対向した状態で位置された
     請求項1に記載の電子機器。
    A copper block is attached to the printed wiring board,
    The electronic device according to claim 1, wherein the copper block is positioned in a state of being in contact with the substrate mounting base and facing at least one of the media slots.
  9.  前記複数のメディアスロットが前記プリント配線基板における同一の面に実装された
     請求項1に記載の電子機器。
    The electronic device according to claim 1, wherein the plurality of media slots are mounted on the same surface of the printed wiring board.
  10.  前記記憶媒体に対するアクセス状態を検出するアクセス状態検出部が設けられ、
     前記アクセス状態検出部の検出結果に応じて前記伝熱方向切替部の伝熱方向が切り替えられる
     請求項1に記載の電子機器。
    An access state detection unit for detecting the access state to the storage medium is provided.
    The electronic device according to claim 1, wherein the heat transfer direction of the heat transfer direction switching unit is switched according to the detection result of the access state detection unit.
  11.  前記複数のメディアスロットにそれぞれ装着された前記記憶媒体に対するアクセス状態を変更する変更操作部が設けられ、
     前記変更操作部の操作に応じて前記伝熱方向切替部の伝熱方向が切り替えられる
     請求項1に記載の電子機器。
    A change operation unit for changing the access state to the storage medium installed in each of the plurality of media slots is provided.
    The electronic device according to claim 1, wherein the heat transfer direction of the heat transfer direction switching unit is switched according to the operation of the change operation unit.
PCT/JP2020/043648 2020-01-16 2020-11-24 Electronic device WO2021145072A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021570666A JPWO2021145072A1 (en) 2020-01-16 2020-11-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-005042 2020-01-16
JP2020005042 2020-01-16

Publications (1)

Publication Number Publication Date
WO2021145072A1 true WO2021145072A1 (en) 2021-07-22

Family

ID=76864200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043648 WO2021145072A1 (en) 2020-01-16 2020-11-24 Electronic device

Country Status (2)

Country Link
JP (1) JPWO2021145072A1 (en)
WO (1) WO2021145072A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271643A (en) * 2008-05-01 2009-11-19 Fujitsu Ltd Housing for electronic apparatus and electronic apparatus
JP2015029036A (en) * 2013-06-27 2015-02-12 ソニー株式会社 Electronic apparatus and control method of electronic apparatus
JP2015125309A (en) * 2013-12-26 2015-07-06 キヤノン株式会社 Imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271643A (en) * 2008-05-01 2009-11-19 Fujitsu Ltd Housing for electronic apparatus and electronic apparatus
JP2015029036A (en) * 2013-06-27 2015-02-12 ソニー株式会社 Electronic apparatus and control method of electronic apparatus
JP2015125309A (en) * 2013-12-26 2015-07-06 キヤノン株式会社 Imaging device

Also Published As

Publication number Publication date
JPWO2021145072A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
US11265476B2 (en) Imaging apparatus having two mount surfaces to mount accessories
JP7476289B2 (en) Imaging device
US20210232024A1 (en) Imaging apparatus
JP5100582B2 (en) Imaging device
JP5410908B2 (en) Imaging device
CN101676790A (en) Camera body and imaging device equipped with same
JP6218469B2 (en) Imaging device
JP4748385B2 (en) Imaging device
JP2008131251A (en) Digital camera
WO2021049144A1 (en) Electronic equipment and imaging device
US20210337096A1 (en) Image pickup apparatus with circuit board equipped with heating element
JP2007166290A (en) Imaging device
WO2021251194A1 (en) Electronic device
WO2021145072A1 (en) Electronic device
JP2007180706A (en) Imaging apparatus
JP2014235206A (en) Imaging device
JP6861334B2 (en) Imaging device
JP7211411B2 (en) Imaging device and imaging unit
WO2022196048A1 (en) Imaging device
JP6223031B2 (en) Imaging device
WO2016194479A1 (en) Image pickup device
JP5875258B2 (en) Imaging device
WO2021117344A1 (en) Electronic device
JP4511417B2 (en) Digital camera
JP6141132B2 (en) Imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913426

Country of ref document: EP

Kind code of ref document: A1