WO2021143703A1 - 一种相位动力装置及流体实验系统 - Google Patents

一种相位动力装置及流体实验系统 Download PDF

Info

Publication number
WO2021143703A1
WO2021143703A1 PCT/CN2021/071377 CN2021071377W WO2021143703A1 WO 2021143703 A1 WO2021143703 A1 WO 2021143703A1 CN 2021071377 W CN2021071377 W CN 2021071377W WO 2021143703 A1 WO2021143703 A1 WO 2021143703A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase power
pipe section
piston
pipe
fluid
Prior art date
Application number
PCT/CN2021/071377
Other languages
English (en)
French (fr)
Inventor
陈兴隆
刘庆杰
伍家忠
韩海水
俞宏伟
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to US17/793,195 priority Critical patent/US20230204395A1/en
Publication of WO2021143703A1 publication Critical patent/WO2021143703A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • F15D1/04Arrangements of guide vanes in pipe elbows or duct bends; Construction of pipe conduit elements or elbows with respect to flow, specially for reducing losses in flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/206Measuring pressure, force or momentum of a fluid flow which is forced to change its direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/07Arrangement or mounting of devices, e.g. valves, for venting or aerating or draining
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices

Definitions

  • the invention relates to the technical field of oil field development, in particular to a phase power device and a fluid experiment system.
  • the experimental device when conducting experimental research on fluid in a continuous flow environment, if the fluid flow rate is small ( ⁇ 1m 3 /d), the experimental research can be carried out in a small laboratory, if the fluid flow rate is large (> 1m 3 /d).
  • the configuration of the experimental device has higher requirements for the site. If there is a high-voltage requirement, the requirements for the experimental device will be more stringent.
  • the experimental device with fluid flow rate greater than 1m 3 /d flow condition in addition to pipelines and measuring devices, also needs to be equipped with collection tanks, stabilization tanks, supplementary pumps and large-displacement high-pressure pumps.
  • embodiments of the present invention provide a phase power device and a fluid experiment system, which can at least partially solve the problems in the prior art.
  • the present invention provides a phase power device, including a circulation pipe and a preset number of phase power control components, wherein:
  • the circulation pipeline is used to provide a channel for circulating fluid flow, and the preset number of phase power control components are arranged on the circulation pipeline to drive the fluid in the circulation pipeline to circulate.
  • the circulating pipeline includes four direct flow pipe sections, four elbow pipe sections, at least one phase power pipe section and at least one observation window pipe section, wherein:
  • the four direct flow pipe sections, the four elbow pipe sections, at least one phase power pipe section and at least one observation window pipe section are connected end to end to form the circulation pipeline, and the phase power control is provided on the phase power pipe section part.
  • observation window pipe section and the phase power pipe section respectively have four, of which:
  • Each phase power pipe section is provided with one phase power control component, and the four direct current pipe sections, the four observation window pipe sections, the four elbow pipe sections and the four phase power pipe sections are divided into four groups Pipelines, each group of pipelines includes one said direct flow pipe section, one said observation window pipe section, one said elbow pipe section and one said phase power pipe section; the phase power section, the direct flow section, and the said phase power section of each group of pipelines
  • the observation window section and the elbow section are connected in sequence, and the groups of pipes are connected end to end.
  • flanges are set at both ends of each DC pipe section, flanges are set at both ends of each observation window pipe section, flanges are set at both ends of each elbow pipe section, and flanges are set at both ends of each phase power pipe section.
  • the direct flow pipe section, the elbow pipe section, the phase power pipe section and the observation window section are connected by flanges to form the circulation pipeline.
  • a fluid injection interface a pressure sensor interface, an operation window and a safety valve are provided on the direct current pipe section.
  • the preset number of phase power control components are evenly arranged along the circulation pipeline.
  • the phase power control component includes a piston barrel, a piston, a baffle ring and a joint, wherein:
  • the piston is arranged in the piston barrel and moves along the piston barrel, the joint is arranged at the tail of the piston barrel, and the baffle ring is fixed on the inner wall of the piston barrel for aligning the piston
  • the movement in the direction close to the circulation pipe is restricted, the front end of the piston barrel is arranged on the circulation pipe, and the piston barrel is communicated with the circulation pipe.
  • the phase power control component includes a piston barrel, a piston and a baffle ring, wherein:
  • the piston is arranged in the piston barrel and moves along the piston barrel, the piston includes a piston rod, the piston rod extends out of the rear end of the piston barrel, and the baffle ring is fixed on the piston barrel.
  • the inner wall is used to limit the movement of the piston in the direction close to the circulation pipe, the front end of the piston barrel is arranged on the circulation pipe, and the piston barrel is in communication with the circulation pipe.
  • the preset number is 4 or 8.
  • the present invention provides a fluid experiment system, including the phase power device described in any of the above embodiments, a power joint control module, a fluid injection module, a pressure detection module, a flow rate detection module, and an integrated control module, wherein:
  • the power joint control module is respectively connected with a preset number of phase power control components, and is used to provide power to the preset number of phase power control components, and the fluid injection module is used to inject fluid into the circulating pipeline.
  • the pressure detection module is used to detect the pressure in the circulation pipeline
  • the flow detection module is used to detect the flow rate of the fluid in the circulation pipeline
  • the integrated control module is respectively connected with the pressure detection module, the flow detection module and the The power joint control module is connected, and is used to control the actions of the preset number of phase power control components through the power joint control module.
  • the phase power device and the fluid experiment system provided by the embodiment of the present invention include a circulation pipe and a preset number of phase power control components.
  • the circulation pipe is used to provide a channel for fluid circulation, and the preset number of phase power control components are arranged in the circulation pipe. Above, it is used to drive the fluid in the circulating pipeline to circulate, so that the fluid can meet the set flow requirement during the experiment, reduce the use of auxiliary equipment, and reduce the cost of the experiment.
  • Fig. 1 is a schematic structural diagram of a phase power device provided by an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the working principle of a phase power device provided by an embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of a phase power device provided by another embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a phase power device provided by another embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a phase power control component of a phase power device according to an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a gas storage tank joint control device provided by an embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a phase power control component of a phase power device according to another embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of a fluid experiment system provided by an embodiment of the present invention.
  • 21-phase power control component 22-phase power control component
  • Fig. 1 is a schematic structural diagram of a phase power device provided by an embodiment of the present invention.
  • the phase power device provided by an embodiment of the present invention includes a circulation pipe 1 and a preset number of phase power control components 2, wherein:
  • the circulation pipe 1 is used to provide a channel for circulating fluid flow, and a preset number of phase power control components 2 are arranged on the circulation pipe 1 to drive the fluid in the circulation pipe 1 to circulate.
  • the preset number is set according to actual needs, which is not limited in the embodiment of the present invention.
  • the phase power control component 2 may adopt a piston type component, and the phase power control component 2 may be connected to an external power device.
  • the power device pushes the piston to drive the fluid in the circulating pipe 1 to circulate.
  • the power device may adopt a motor or hydraulic pressure. Device or gas storage tank.
  • the phase power control component 2 can be welded to the circulating pipe 1 and communicated with the circulating pipe 1.
  • the fluid in the circulating pipe 1 circulates in the circulating pipe 1 under the action of a preset number of phase power control components 2 to reach a set flow rate.
  • the circulating pipe 1 can be welded or divided into multiple sections of pipes, and two adjacent sections of pipes are connected by flanges. It is understandable that the circulating pipe 1 has a fluid injection interface, and a pressure gauge interface and an operating window can also be provided on the circulating pipe 1.
  • phase power control components 2 as an example to illustrate the working principle of the phase power device provided by the embodiment of the present invention.
  • phase power control component 21 is a schematic diagram of the working principle of the phase power device provided by an embodiment of the present invention.
  • the phase power control component 21, the phase power control component 22, the phase power control component 23, and the phase power control component 24 are clockwise
  • the direction is set on the circulation pipeline 1.
  • the pistons of the phase power control part 21, the phase power control part 22, the phase power control part 23 and the phase power control part 24 alternately push forwards and backwards, and the overall four states are always maintained.
  • the piston of the phase power control part 21 is about to push to the bottom at the top
  • the piston of the phase power control part 22 is about to push to the top in the middle
  • the piston of the phase power control part 23 is about to push to the top at the bottom
  • the phase power control part 24 is about to push to the top.
  • the piston in the middle is about to push towards the bottom.
  • the piston movement rates of the phase power control part 21, the phase power control part 22, the phase power control part 23, and the phase power control part 24 are the same, so the fluid volume in the circulation pipe 1 remains constant, after ignoring the local pressure fluctuations caused by the piston movement ,
  • the pressure in the closed pipeline is constant, that is, the fluid flow under high pressure conditions can be realized in the circulating pipeline 1.
  • the piston movement speed of the phase power control component 21 is Set the piston movement speed of the phase power control part 22 as The piston movement speed of the phase power control part 22 is The piston movement speed of the phase power control part 23 is The piston movement speed of the phase power control component 24 is Set the fluid flow rate in the pipe section a corresponding to the phase power control component 21 as The fluid flow rate in the pipe section b corresponding to the phase power control component 22 is The fluid flow rate in the pipe section c corresponding to the phase power control component 23 is The fluid flow rate in the pipe section d corresponding to the phase power control component 24 is Among them, i represents the number of piston movements.
  • i is the number of piston movements and j is the imaginary unit vector.
  • the continuous pushing of the piston of the phase power control component provides power for the continuous flow of fluid in the circulation pipe 1, and the movement speed of the piston determines the size of the fluid flow.
  • the fluid in the circulating pipe 1 is alternately pushed by the pistons of the four phase power control components 2 to gradually reach the design flow rate U c from a static state.
  • the internal friction of the fluid and the resistance generated by the pipe wall area cause energy loss to the flow.
  • energy must be supplemented.
  • the energy loss of the internal frictional force in the fluid is expressed as h f
  • the pressure drop caused by the internal frictional energy loss of the fluid is expressed as ⁇ p f
  • Energy loss resistance of the wall - wall region is represented as h 'f
  • the resistance of the wall wall region results in energy loss is expressed as the pressure drop ⁇ p' f
  • the total resistance loss is expressed as ⁇ h f
  • the pressure drop caused by the total resistance loss is expressed as ⁇ p.
  • represents the friction factor
  • d represents the inner diameter of the circulating pipe 1
  • l represents the length of the circulating pipe 1
  • l e represents the equivalent length of the pipe deformation structure of the circulating pipe 1
  • U represents the fluid flow rate.
  • the pistons of the four-phase power control components 2 push the fluid in the piston barrel to drive the fluid flow in the circulation pipe 1, that is, the fluid in the piston barrel is a source of energy supplement.
  • the fluid mass in the piston barrel is ⁇ m
  • the piston area S and the piston pushing distance L.
  • the initial velocity of the fluid in the piston cylinder is u 0
  • the fluid acceleration is a
  • the action time is t.
  • the fluid flow rate in the circulating pipe 1 is U
  • the corresponding pressure is P. It is assumed that the piston is powered by a gas source, and the gas source pressure is P gas .
  • the piston of the phase power control component 2 performs work (supplement energy) on the internal fluid as follows:
  • the piston force of the phase power control component 2 is:
  • the fluid velocity in the piston barrel of the phase power control component 2 is:
  • is the set value.
  • increasing the gas source pressure P gas will not only increase the movement speed of a single piston, but also increase the frequency f of piston movement.
  • the value of ⁇ gradually decreases until U reaches the design flow rate U c , the movement frequency f is reduced to a minimum, and the gas source pressure P gas is constant.
  • the fluid flow in the circulation pipe 1 is dynamically balanced, and the piston movement of the four-phase power control component 2 is in a stable state.
  • the total resistance loss is balanced with the supplementary energy, namely:
  • the phase power device provided by the embodiment of the present invention includes a circulation pipe and a preset number of phase power control components.
  • the circulation pipe is used to provide a passage for fluid to circulate, and the preset number of phase power control components are arranged on the circulation pipe.
  • the phase power device provided by the embodiment of the present invention makes the flow simulation in the laboratory equal to the field application, and no longer adopts the flow rate equivalent simulation, which improves the authenticity of the experiment.
  • Fig. 3 is a schematic structural diagram of a phase power device provided by another embodiment of the present invention.
  • the circulation pipeline 1 includes four direct current pipe sections: direct current pipe section 11a, direct current pipe section 11a, and direct current pipe section 11a.
  • Pipe section 11b, direct-flow pipe section 11c and direct-flow pipe section 11d four elbow pipe sections: elbow pipe section 12a, elbow pipe section 12b, elbow pipe section 12c and elbow pipe section 12d, at least one phase power pipe section and at least one observation window pipe section, of which :
  • the direct flow pipe section 11a, the direct flow pipe section 11b, the direct flow pipe section 11c and the direct flow pipe section 11d, the elbow pipe section 12a, the elbow pipe section 12b, the elbow pipe section 12c and the elbow pipe section 12d, at least one phase power pipe section and at least one observation window pipe section are connected end to end.
  • the phase power control component is arranged on the phase power pipe section.
  • the number of phase power pipe sections and observation window pipe sections are set according to actual needs, which is not limited in the embodiment of the present invention.
  • the phase power device includes two phase power pipe sections: phase power pipe section 13a and phase power pipe section 13b, two observation window pipe sections: observation window pipe section 14a and observation window pipe section 14b, phase power pipe section 13a
  • a phase power control component 2a is provided on the upper side
  • a phase power control component 2b is provided on the phase power pipe section 13b.
  • DC pipe section 11a, elbow pipe section 12a, phase power pipe section 13a, DC pipe section 11b, observation window pipe section 14a, elbow pipe section 12b, DC pipe section 11c, elbow pipe section 12c, phase power pipe section 13b, DC pipe section 11d, and elbow pipe section 12d Connect in turn to form a circulating pipeline 1.
  • the observation window pipe section 14a and the observation window pipe section 14b can be provided with glass observation windows to facilitate the observation and recording of the fluid in the circulating pipeline during the experiment.
  • the observation window pipe can also be provided with an operating window for installing a flow meter, The flow meter is used to measure the fluid flow rate in the circulation pipe 1.
  • Fig. 4 is a schematic structural diagram of a phase power device provided by another embodiment of the present invention.
  • the phase power device includes four observation window pipe sections: observation window Pipe section 44a, observation window pipe section 44b, observation window pipe section 44c and observation window pipe section 44d, and four phase power pipe sections: phase power pipe section 43a, phase power pipe section 43b, phase power pipe section 43c, and phase power pipe section 43d, of which:
  • Each phase power pipe section is provided with one phase power control component, for example, the phase power pipe section 43a is provided with a phase power control component 21, the phase power pipe section 43a is provided with a phase power control component 22, and the phase power pipe section 43c is provided with a phase power control component. 23.
  • a phase power control component 24 is provided on the phase power pipe section 43d.
  • the four direct current pipe sections, the four observation window pipe sections, the four elbow pipe sections, and the four phase power pipe sections are divided into four groups of pipelines, and each group of pipes includes one direct current pipe section and one Observation window pipe section, one said elbow pipe section and one said phase power pipe section, for example, phase power pipe section 43a, direct flow pipe section 41a, observation window pipe section 44a and elbow pipe section 42a are a group of pipes, phase power pipe section 43b, direct flow pipe section 41b , Observation window pipe section 44b and elbow pipe section 42b are a set of pipes, phase power pipe section 43c, DC pipe section 41c, observation window pipe section 44c and elbow pipe section 42c are a set of pipes, phase power pipe section 43d, DC pipe section 41d, observation window pipe section 44d and the elbow pipe section 42d are a group of pipes; the phase power section, the direct current section, the observation window section and the elbow section of each group of pipes are connected in sequence, and each group of pipes are connected end to end, such as phase The power pipe section 43a
  • the phase power device provided by the embodiment of the present invention facilitates the combination of the circulation pipeline by arranging the circulation pipeline into multiple sections.
  • flanges are provided at both ends of each DC pipe section
  • flanges are provided at both ends of each observation window pipe section
  • both ends of each elbow pipe section are provided
  • Flanges flanges are provided at both ends of each phase power pipe section
  • the direct flow pipe section, the elbow pipe section, the phase power pipe section and the observation window section are connected by flanges to form the circulating pipeline.
  • an O-ring groove can be installed in the flange, and an O-ring can be installed in the O-ring groove to play a sealing role.
  • phase power pipe section 43a, the direct flow pipe section 41a, the observation window pipe section 44a and the elbow pipe section 42a are connected by flanges
  • phase power pipe section 43b, the direct flow pipe section 41b, the observation window pipe section 44b and the elbow pipe section 42b are connected by flanges in sequence
  • the phase power pipe section 43c, the direct flow pipe section 41c, the observation window pipe section 44c and the elbow pipe section 42c are connected by flanges
  • the phase power pipe section 43d, the direct flow pipe section 41d, the observation window pipe section 44d and the elbow pipe section 42d are connected by flanges in sequence.
  • Pipe section 42a and phase power pipe section 43b are connected by flanges
  • elbow pipe section 42b and phase power pipe section 43c are connected by flanges
  • elbow pipe section 42c and phase power pipe section 43d are connected by flanges
  • elbow pipe section 42d and phase power pipe section 43a pass through The flange is connected.
  • each section of the circulation pipeline is connected by flanges, which facilitates the assembly of the circulation pipeline.
  • a fluid injection port, a pressure sensor port, an operating window, and a safety valve are provided on the direct current pipe section.
  • the fluid injection interface is connected to a fluid pump, the fluid pump can inject fluid into the circulation pipe 1 through the fluid injection interface, the pressure sensor interface is used to connect to a pressure sensor, and the operating window can adopt a flange and straight pipe structure, It is convenient for the operation after the connection of the circulation pipeline 1 is completed, and the safety valve is used for pressure relief.
  • the specific positions of the fluid injection interface, the pressure sensor interface, the operation window, and the safety valve on the direct current pipe section are set according to actual needs, which are not limited in the embodiment of the present invention.
  • the observation window tube section is provided with a glass observation window, one glass observation window may be provided in the observation window tube section, or two observation windows may be symmetrically provided in the observation window tube section,
  • the observation window is used to observe and study the fluid flow in the circulation pipe 1.
  • the preset number of phase power control components 2 are evenly arranged along the circulation pipe 1.
  • the preset number of phase power control components 2 uniformly on the circulation pipeline, it is convenient to control the piston movement speed of the phase power control components 2 and maintain the stability of the fluid flow in each section of the circulation pipeline.
  • Fig. 5 is a schematic structural diagram of a phase power control component of a phase power device according to an embodiment of the present invention.
  • the phase power control component 2 includes a piston cylinder 201, Piston 202, retaining ring 203 and joint 204, of which:
  • the piston 202 is arranged in the piston barrel 201 and moves along the piston barrel 201.
  • the joint 204 is arranged at the tail of the piston barrel 201.
  • the baffle ring 203 is fixed on the inner wall of the piston barrel 201 for moving the piston 201 in the direction close to the circulation pipe 1.
  • the stop ring 203 may adopt a circular ring structure, the front end of the piston cylinder 201 is arranged on the circulation pipe 1, and the piston cylinder 201 is in communication with the circulation pipe 1.
  • the piston cylinder 201 can be welded to the circulation pipe 1, and the included angle between the piston cylinder 201 and the circulation pipe 1 can be 30°, 45°, 60°, etc., which can be set according to actual needs, which is not limited in the embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a gas storage tank joint control device provided by an embodiment of the present invention, as shown in FIG. 6,
  • the gas storage tank joint control device provided by the embodiment of the present invention includes a high-pressure gas storage tank 61, a gas booster pump 62, a gas cylinder 63 and a pneumatic valve 64.
  • the gas cylinder 63 is connected to the gas booster pump 62, and the gas booster pump 62 is connected to the gas booster pump 62.
  • the high-pressure gas storage tank 61 is connected, the high-pressure gas storage tank 61 is connected with the pneumatic valve 64, and the pneumatic valve 64 is connected to the joint 204 through a gas pipe.
  • the gas in the gas cylinder 63 is operated by the gas booster pump 62 to make the gas in the high-pressure gas storage tank 61 reach a set pressure.
  • the pneumatic valve 64 is opened, the gas can quickly flow out into the piston barrel 201 to push the piston 202 to move to the circulation pipe 1.
  • the pneumatic valve 64 is closed, and the joint 204 releases air.
  • the joint 204 can be connected to the pneumatic valve 64 through a three-way solenoid valve.
  • FIG. 7 is a schematic structural diagram of a phase power control component of a phase power device according to another embodiment of the present invention.
  • the phase power control component 2 includes a piston cylinder 201 , The piston 202 and the retaining ring 203, in which:
  • the piston 201 is arranged in the piston cylinder 202 and moves along the piston cylinder 201.
  • the piston 202 includes a piston rod 205.
  • the piston rod 205 extends out of the rear end of the piston cylinder 201.
  • the piston rod 205 can be connected to a motor, and the motor drives the movement of the piston 202.
  • the baffle ring 203 is fixed on the inner wall of the piston cylinder 201 to limit the movement of the piston 202 in the direction close to the circulation pipe 1.
  • the baffle ring 203 can adopt a circular ring structure, and the front end of the piston cylinder 201 is arranged on the circulation pipe 1.
  • the piston cylinder 201 communicates with the circulation pipe 1.
  • the piston cylinder 201 can be welded to the circulating pipe 1, and the included angle between the piston cylinder 201 and the circulating pipe 1 can be 30°, 45°, 60°, etc., which can be set according to actual needs, which is not limited in the embodiment of the present invention.
  • the preset number is 4 or 8, that is, 4 phase power control components 2 or 8 phase power control components 2 can be provided on the circulation pipe 1.
  • the phase power control component 2 can be evenly arranged on the circulation pipe 1.
  • FIG. 8 is a schematic structural diagram of a fluid experiment system provided by an embodiment of the present invention.
  • the fluid experiment system provided by an embodiment of the present invention includes any of the foregoing implementations.
  • the phase power device 80, the power joint control module 81, the fluid injection module 82, the pressure detection module 83, the flow rate detection module 84 and the integrated control module 85 in which:
  • the power joint control module 81 is respectively connected to a preset number of phase power control components 802, and is used to provide power to the preset number of phase power control components 802.
  • the fluid injection module 82 is used to inject fluid into the circulation pipe 801, and the pressure
  • the detection module 83 is used to detect the pressure in the circulation pipeline 801
  • the flow detection module 84 is used to detect the flow rate of the fluid in the circulation pipeline 801
  • the integrated control module 85 is respectively connected to the pressure detection module 83, the flow detection module 84 and the power joint control module 81 , Used to control the actions of the preset number of phase power control components 802 through the power joint control module 81.
  • the power joint control module 81 provides power for the phase power control component 802, which may be implemented in a hydraulic joint control mode, a motor joint control mode, or a gas high-pressure storage tank joint control mode.
  • the applicable conditions of the above three power modes are shown in Table 1.
  • the power supply mode of the power joint control module 81 is selected according to actual needs, which is not limited in the embodiment of the present invention.
  • the fluid injection module 82 injects fluid into the circulation pipe 801 so that the fluid in the circulation pipe 801 reaches a preset pressure. Moreover, when the fluid accelerates to a stable process, pressure fluctuations will occur.
  • the pressure detected by the pressure detection module 83 can be used to replenish fluid to the circulation pipe 801 through the fluid injection module 82 or suck fluid out to adjust the fluid pressure in the circulation pipe 801. .
  • the fluid injection module 82 can be connected to the circulation pipe 801 through a fluid injection interface provided on the circulation pipe 801. Among them, the fluid injection module 82 may adopt a plunger pump.
  • the preset pressure is set according to actual needs, which is not limited in the embodiment of the present invention.
  • the pressure detection module 83 may be arranged on the circulation pipe 801 to detect the pressure of the fluid in the circulation pipe 801 and transmit the detected fluid pressure to the integrated control module 85.
  • the pressure detection module 83 may adopt a pressure sensor.
  • the flow rate detection module 84 is used to detect the flow rate of the fluid in the circulation pipe 801 and transmit the detected flow rate of the fluid to the integrated control module 85.
  • the flow rate detection module 84 can measure the movement of objects by observing the object in the observation window of the circulation pipe 801, for example, using a laser tracking method of velocimetry of fluorescent particles, which is particularly suitable for laboratories.
  • the venturi tube can also be used to measure the fluid flow rate, but the venturi tube needs to be installed on the parallel bypass. This speed measurement method is suitable for industrial applications.
  • the integrated control module 85 may adopt an industrial computer to control the actions of the preset number of phase power control components 802 through the power joint control module 81, including control of the piston movement speed of the phase power control component 802.
  • the integrated control module 85 receives the fluid pressure P sent by the pressure detection module 83 and the fluid flow rate U sent by the flow rate detection module 84.
  • U ⁇ U c for the set ⁇
  • the integrated control module 85 can calculate P gas according to formula (2), formula (4), formula (5), and formula (6).
  • the integrated control module 85 sets the working pressure of the power joint control module 81 as P gas , and the preset number of phase power control components 802 drives the fluid in the circulation pipe 1 to start flowing.
  • the integrated control module 85 determines that U reaches the design flow rate U c , it calculates P gas according to formula (1) and formula (7), and maintains P gas constant.
  • the fluid experiment system provided by the embodiment of the present invention may also include an observation module.
  • the observation module may include an industrial camera, a video camera, an adjustment bracket, an image capture card, and a storage computer.
  • the observation module is used to record the experiment process and may be an industrial camera or The lens of the camera is aligned with the observation window set on the circulation pipe 801, and the fluid flowing through the observation window in the circulation pipe 801 is photographed during the experiment.
  • the fluid experiment system includes a phase power device, a power joint control module, a fluid injection module, a pressure detection module, a flow rate detection module, and a comprehensive control module.
  • the power joint control module is respectively associated with a preset number of phase power control components Connected to provide power for a preset number of phase power control components.
  • the fluid injection module is used to inject fluid into the circulating pipeline
  • the pressure detection module is used to detect the pressure in the circulating pipeline
  • the flow rate detection module is used to detect the fluid in the circulating pipeline.
  • the integrated control module is connected to the pressure detection module, the flow detection module and the power control module respectively, and is used to control the actions of a preset number of phase power control components through the power control module. Because the phase power device is used for experiments, it can Reduce the use of auxiliary equipment and reduce the cost of experiments. In addition, the flow simulation in the laboratory is equivalent to the field application, and the flow rate equivalent simulation is no longer used, which improves the authenticity of the experiment.
  • the following uses the fluid experimental system provided by the embodiment of the present invention to simulate the actual injection situation of the water-gas dispersion system to describe the working process of the fluid experimental system provided by the embodiment of the present invention.
  • Bubbles are generated under high-pressure and large-flow conditions and flow with the fluid to record whether the bubbles rise, merge, and the degree of action.
  • Experimental conditions The phase power device 80 is placed vertically, the fluid flow rate is 15m 3 /d, the direction is clockwise, the fluid pressure is 20MPa, and the temperature is room temperature. Bubbles are generated at the bottom of the circulation pipe. Observe the movement of the bubbles in the circulation pipe.
  • the phase power device shown in FIG. 4 is used and placed vertically, and the four phase power control components 802 have the same shape and size. Since the fluid flow rate is 15m 3 /d, it can be seen from Table 1 that the power joint control module 81 should adopt the gas storage tank joint control method, and the gas storage tank joint control device shown in Figure 6 can be used to provide power to the phase power control component 802.
  • the gas storage tank joint control device is connected with the four phase power control components 802.
  • a bubble generating device can be installed at the bottom of the direct flow pipe section on the right side of the circulating pipeline 801, and after disassembling the opposite operating window of the direct flow pipe section, a bubble generating device can be installed in the pipe of the direct flow pipe section, And the gas injection pipeline is connected to the outside of the pipeline through a special sealed channel on the operating window on one side, and the gas device is connected.
  • the design flow rate U c can be obtained.
  • the integrated control module 85 calculates the gas supply pressure P gas of the gas storage tank joint control device according to the set ⁇ , and the pistons of the four phase power control components move at the same speed.
  • gas enters the phase power control component 21 and the phase power control component 24, pushing the piston to move to the bottom, and the piston of the phase power control component 22 and the phase power control component 23 moves to the rear end to discharge gas.
  • the piston of the phase power control part 21 advances to the middle
  • the piston of the phase power control part 22 retreats to the top
  • the piston of the phase power control part 23 retreats to the middle
  • the piston of the phase power control part 24 advances to the bottom.
  • the fluid in the circulation pipe 801 has obtained a velocity U 1 .
  • the integrated control module 85 continues to control the gas storage tank joint control device to drive the pistons of the four phase power control components 802 until the fluid flow rate U reaches the design flow rate U c , that is, in the circulating pipeline shown in Fig. 4, a clockwise direction is formed Stable closed continuous flow with a flow rate of 15m 3 /d.

Abstract

一种相位动力装置,包括:循环管道(1)和预设数量个相位动力控制部件(2),循环管道(1)用于提供流体循环流动的通道,预设数量个相位动力控制部件(2)设置在循环管道(1)上,用于驱动循环管道(1)内的流体循环流动。还提供一种流体实验系统,包括相位动力装置。该相位动力装置及流体实验系统,能够使流体在实验时达到设定的流量要求,减少辅助设备的使用,降低了实验成本。

Description

一种相位动力装置及流体实验系统 技术领域
本发明涉及油田开发技术领域,具体涉及一种相位动力装置及流体实验系统。
背景技术
对流体流动过程的研究非常广泛,其中观察固体颗粒、气泡、具有排斥性液滴等在连续流体中的运动状态,在流体运动的研究及应用中非常普遍。
现有技术中,在对流体在连续流动的环境下进行实验研究时,如果流体流量较小时(<1m 3/d),可以在小型实验室内进行实验研究,如果流体流量较大时(>1m 3/d),实验装置的配置对场地要求较高,如果有高压要求,对实验装置的要求会更加严格。在油田开发工业应用中,流体流量大于1m 3/d流动条件的实验装置,除管线、测量装置外,还需要配置收集罐、稳定罐、补充泵和大排量高压泵。特别是在研究井筒管柱内的流体流动时,需要建立高度20米左右的有机管柱。所以,现有的对流体的连续流动进行研究的实验装置存在占地广、辅助设备多、操作复杂等问题。
发明内容
针对现有技术中的问题,本发明实施例提供一种相位动力装置及流体实验系统,能够至少部分地解决现有技术中存在的问题。
一方面,本发明提出一种相位动力装置,包括循环管道和预设数量个相位动力控制部件,其中:
所述循环管道用于提供流体循环流动的通道,所述预设数量个相位动力控制部件设置在所述循环管道上,用于驱动所述循环管道内的流体循环流动。
其中,所述循环管道包括四个直流管段、四个弯头管段、至少一个相位动力管段和至少一个观察窗管段,其中:
四个所述直流管段、四个所述弯头管段、至少一个所述相位动力管段和至少一个所述观察窗管段首尾相连构成所述循环管道,所述相位动力管段上设置所述相位动力控制部件。
其中,所述观察窗管段和所述相位动力管段分别有四个,其中:
每个相位动力管段上设置一个所述相位动力控制部件,将四个所述直流管段、四个所述观察窗管段、四个所述弯头管段和四个所述相位动力管段分为四组管道,每组管道包括一个所述直流管段、一个所述观察窗管段、一个所述弯头管段和一个所述相位动力管段;每组管道的所述相位动力段、所述直流段、所述观察窗段和所述弯头段依次相连,各组管道之间首尾相连。
其中,每个直流管段的两端设置法兰,每个观察窗管段的两端设置法兰,每个弯头管段的两端设置法兰,每个相位动力管段的两端设置法兰,所述直流管段、所述弯头管段、所述相位动力管段和所述观察窗段通过法兰连接成所述循环管道。
其中,所述直流管段上设置流体注入接口、压力传感器接口、操作窗口和安全阀。
其中,所述预设数量个相位动力控制部件沿所述循环管道均匀设置。
其中,所述相位动力控制部件包括活塞筒、活塞、挡环和接头,其中:
所述活塞设置在所述活塞筒内,沿所述活塞筒运动,所述接头设置在所述活塞筒的尾部,所述挡环固定在所述活塞筒的内壁上,用于对所述活塞靠近所述循环管道方向上的运动进行限位,所述活塞筒的前端设置在所述循环管道上,所述活塞筒与所述循环管道相连通。
其中,所述相位动力控制部件包括活塞筒、活塞和挡环,其中:
所述活塞设置在所述活塞筒内,沿所述活塞筒运动,所述活塞包括活塞杆,所述活塞杆伸出所述活塞筒的后端,所述挡环固定在所述活塞筒的内壁上,用于对所述活塞靠近所述循环管道方向上的运动进行限位,所述活塞筒的前端设置在所述循环管道上,所述活塞筒与所述循环管道相连通。
其中,所述预设数量为4或者8。
另一方面,本发明提供一种流体实验系统,包括上述任一实施例所述的相位动力装置,动力联控模块、流体注入模块、压力检测模块、流速检测模块和综合控制模块,其中:
所述动力联控模块分别与预设数量个相位动力控制部件相连,用于为所述预设数量个相位动力控制部件提供动力,所述流体注入模块用于向循环管道内注入流体,所述压力检测模块用于检测循环管道内的压力,所述流速检测模块用于检测所述循环管道内流体的流速,所述综合控制模块分别与所述压力检测模块、所述流速检测模块和所述动力联控模块相连,用于通过所述动力联控模块控制所述预设数量个相位动力控制部件的动作。
本发明实施例提供的相位动力装置及流体实验系统,包括循环管道和预设数量个相位动力控制部件,循环管道用于提供流体循环流动的通道,预设数量个相位动力控制部件设置在循环管道上,用于驱动循环管道内的流体循环流动,能够使流体在实验时达到设定的流量要求,减少辅助设备的使用,降低了实验成本。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例提供的相位动力装置的结构示意图。
图2是本发明一实施例提供的相位动力装置的工作原理示意图。
图3是本发明另一实施例提供的相位动力装置的结构示意图。
图4是本发明又一实施例提供的相位动力装置的结构示意图。
图5是本发明一实施例提供的相位动力装置的相位动力控制部件的结构示意图。
图6是本发明一实施例提供的气体储罐联控装置的结构示意图。
图7是本发明另一实施例提供的相位动力装置的相位动力控制部件的结构示意图。
图8是本发明一实施例提供的流体实验系统的结构示意图。
附图标记说明:
1-循环管道;                   2-相位动力控制部件;
11a-直流管段;                 11b-直流管段;
11c-直流管段;                 11d-直流管段;
12a-弯头管段;                 12b-弯头管段;
12c-弯头管段;                 12d-弯头管段;
13a-相位动力管段;             13b-相位动力管段;
14a-观察窗管段;               14b-观察窗管段;
21-相位动力控制部件;          22-相位动力控制部件;
23-相位动力控制部件;          24-相位动力控制部件;
2a-相位动力控制部件;          2b-相位动力控制部件;
201-活塞筒;                   202-活塞;
203-挡环;                     204-接头;
205-活塞杆;                   41a-直流管段;
41b-直流管段;                 41c-直流管段;
41d-直流管段;                 42a-弯头管段;
42b-弯头管段;                 42c-弯头管段;
42d-弯头管段;                 43a-相位动力管段;
43b-相位动力管段;             43c-相位动力管段;
43d-相位动力管段;             44a-观察窗管段;
44b观察窗管段;                44c观察窗管段;
44d-观察窗管段;               61-高压储气罐;
62-气体增压泵;                63-气瓶;
64-气动阀;                    80-相位动力装置;
81-动力联控模块;              82-流体注入模块;
83-压力检测模块;              84-流速检测模块;
85-综合控制模块;              801-循环管道;
802-相位动力控制部件。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1是本发明一实施例提供的相位动力装置的结构示意图,如图1所示,本发明实施例提供的相位动力装置包括循环管道1和预设数量个相位动力控制部件2,其中:
循环管道1用于提供流体循环流动的通道,预设数量个相位动力控制部件2设置在循环管道1上,用于驱动循环管道1内的流体循环流动。其中,所述预设数量根据实际需要进行设置,本发明实施例不做限定。
具体地,相位动力控制部件2可以采用活塞式部件,相位动力控制部件2可以外接动力装置,所述动力装置推动活塞运动驱动循环管道1内的流体循环流动,所述动力装置可以采用电机、液压装置或者气体储罐。相位动力控制部件2可以焊接在循环管道1上,与循环管道1相连通。循环管道1内的流体在预设数量个相位动力控制部件2的作用下,在循环管道1内循环流动,达到设定的流速。循环管道1可以焊接而成,也可以分为多段管道,相邻两段管道通过法兰连接而成。可理解的是,循环管道1具有流体注入接口,在循环管道1上还可以设置压力计接口和操作窗口。
下面以采用4个相位动力控制部件2为例,来说明本发明实施例提供的相位动力装置的工作原理。
图2是本发明一实施例提供的相位动力装置的工作原理示意图,如图2所示,相位动力控制部件21、相位动力控制部件22、相位动力控制部件23和相位动力控制部件24沿顺时针方向设置在循环管道1上,相位动力控制部件21、相位动力控制部件22、相位动力控制部件23和相位动力控制部件24的活塞交替前推和后退,整体上始终保持着4种状态,在初始时刻可以设置相位动力控制部件21的活塞在顶端即将向底部推动,相位动力控制部件22的活塞在中部即将向顶部推动,相位动力控制部件23的活塞在底部即将向顶部推动,相位动力控制部件24的活塞在中部即将向底部推动。相位动力控制部件21、相位动力控制部件22、相位动力控制部件23和相位动力控制部件24的活塞运动速率相同,因而循环管道1内的流体体积保持恒定,在忽略活塞运动造成的局部压力波动后,封闭管道内的压力恒定,即循环管道1内可实现高压力条件下的流体流动。
设定相位动力控制部件21的活塞运动速度为
Figure PCTCN2021071377-appb-000001
相位动力控制部件22的活塞运动速度为
Figure PCTCN2021071377-appb-000002
相位动力控制部件23的活塞运动速度为
Figure PCTCN2021071377-appb-000003
相位动力控制部件24的活塞运动速度为
Figure PCTCN2021071377-appb-000004
设定相位动力控制部件21对应的管道段a内的流体流速为
Figure PCTCN2021071377-appb-000005
相位动力控制部件22对应的管道段b内的流体流速为
Figure PCTCN2021071377-appb-000006
相位动力控制部件23对应的管道段c内的流体流速为
Figure PCTCN2021071377-appb-000007
相位动力控制部件24对应的管道段d内的流体流速为
Figure PCTCN2021071377-appb-000008
其中,i表示活塞运动次数。
各个相位动力控制部件的活塞运动速度与各个相位动力控制部件对应的管道段内的流体流速之间存在如下关系:
Figure PCTCN2021071377-appb-000009
Figure PCTCN2021071377-appb-000010
Figure PCTCN2021071377-appb-000011
Figure PCTCN2021071377-appb-000012
假设相位动力控制部件的活塞运动速度方向与相位动力控制部件对应的管道段内流体的流速方向呈45°,那么相邻的相位动力控制部件的活塞运动速度具有如下关系:
Figure PCTCN2021071377-appb-000013
Figure PCTCN2021071377-appb-000014
Figure PCTCN2021071377-appb-000015
Figure PCTCN2021071377-appb-000016
其中,i为活塞运动次数,j为虚数单位向量。
在各相位动力控制部件的活塞保持顺序、等速率运动的条件下,经过一定的轮次,循环管道1的各管道段内的流体流速逐渐一致并保持稳定,相应地各相位动力控制部件的活塞运动频次和速度也趋于恒定,循环管道1内的流体整体稳定。
可见,相位动力控制部件的活塞的连续推动为循环管道1内流体连续流动提供了动力,活塞的运动速度决定了流体流量的大小。
循环管道1内的流体在4个相位动力控制部件2的活塞的交替推动下,由静止状态逐渐达到设计流速U c,由于流体内部摩擦力及管壁壁面区域产生阻力对流动产生能量损耗。要维持设计流速U c,则必须进行能量补充。
流体内部摩擦力能量损耗表示为h f,流体内部摩擦力能量损耗导致的压降表示为Δp f。管壁壁面区域阻力的能量损耗表示为h' f,管壁壁面区域阻力的能量损耗导致的压降表示为Δp' f。总阻力损失表示为Σh f,总阻力损失导致的压降表示为ΣΔp。由流体力学可知:
Figure PCTCN2021071377-appb-000017
其中,λ表示摩擦因数,d表示循环管道1的内径,l表示循环管道1的长度,l e表示循环管道1的管变形结构的当量长度,U表示流体流速。
4个相位动力控制部件2的活塞推动活塞筒内的流体进而推动循环管道1内流体流动,即活塞筒内流体为能量补充的来源。设活塞筒内的流体质量为Δm,活塞面积S,活塞推动距离L。活塞筒内流体初始速度为u 0,流体加速度为a,作用时间t。设循环管 道1内的流体流速为U,对应压力为P。假设由气源为活塞提供动力,气源压力为P gas
在相位动力装置工作时,相位动力控制部件2的活塞受到压力为:
F=ΔPS=(P gas-P)S   (2)
相位动力控制部件2的活塞对内部流体做功(补充能量)为:
W=FL    (3)
相位动力控制部件2的活塞受力为:
F=Δma   (4)
相位动力控制部件2的活塞筒内的流体速度为:
u=u 0+at    (5)
当U<U c时,开始补充能量,调控气源压力P gas,使u大于U,相位动力控制部件2的活塞运动。设ε=u-U(6)。
ε为设定值,当ε较大时,提高气源压力P gas,不仅提高单个活塞的运动速度,也提高了活塞运动的频次f。当ε值逐渐降低,直至U达到设计流速U c时,运动频次f降至最低,气源压力P gas恒定。
此时,循环管道1内的流体流动动态平衡,4个相位动力控制部件2的活塞运动呈稳定状态。总阻力损失与补充能量达到平衡,即:
ΣΔp=fΔP=f(P gas-P)    (7)
本发明实施例提供的相位动力装置,包括循环管道和预设数量个相位动力控制部件,循环管道用于提供流体循环流动的通道,预设数量个相位动力控制部件设置在循环管道上,用于驱动循环管道内的流体循环流动,能够使流体在实验时达到设定的流量要求,减少辅助设备的使用,降低了实验成本。由于采用循环管道,占用空间小。此外,通过本发明实施例提供的相位动力装置使实验室内的流量模拟与现场应用等量,不再采用流速等效模拟,提高了实验的真实性。
图3是本发明另一实施例提供的相位动力装置的结构示意图,如图3所示,在上述各实施例的基础上,进一步地,循环管道1包括四个直流管段:直流管段11a、直流管段11b、直流管段11c和直流管段11d,四个弯头管段:弯头管段12a、弯头管段12b、弯头管段12c和弯头管段12d,至少一个相位动力管段和至少一个观察窗管段,其中:
直流管段11a、直流管段11b、直流管段11c和直流管段11d、弯头管段12a、弯头管段12b、弯头管段12c和弯头管段12d、至少一个相位动力管段和至少一个观察窗管段首尾相连构成循环管道1,所述相位动力管段上设置所述相位动力控制部件。其中,相位动力管段和观察窗管段的数量根据实际需要进行设置,本发明实施例不做限定。
例如,如图3所示,所述相位动力装置包括两个相位动力管段:相位动力管段13a和相位动力管段13b,两个观察窗管段:观察窗管段14a和观察窗管段14b,相位动力管段13a上设置相位动力控制部件2a,相位动力管段13b上设置相位动力控制部件2b。直流管段11a、弯头管段12a、相位动力管段13a、直流管段11b、观察窗管段14a、弯头管段12b、直流管段11c、弯头管段12c、相位动力管段13b、直流管段11d和弯头管段12d依次连接构成循环管道1。观察窗管段14a和观察窗管段14b上可以设置玻璃观察窗,以便于在实验时对循环管道内的流体进行观察和记录,所述观察窗管道上还可以设置操作窗口,用于安装流速计,所述流速计用于测量循环管道1内的流体流速。
图4是本发明又一实施例提供的相位动力装置的结构示意图,如图4所示,在上述各实施例的基础上,进一步地,所述相位动力装置包括四个观察窗管段:观察窗管段44a、观察窗管段44b、观察窗管段44c和观察窗管段44d,和四个相位动力管段:相位动力管段43a、相位动力管段43b、相位动力管段43c和相位动力管段43d,其中:
每个相位动力管段上设置一个所述相位动力控制部件,例如相位动力管段43a上设置相位动力控制部件21,相位动力管段43a上设置相位动力控制部件22,相位动力管段43c上设置相位动力控制部件23,相位动力管段43d上设置相位动力控制部件24。将四个所述直流管段、四个所述观察窗管段、四个所述弯头管段和四个所述相位动力管段分为四组管道,每组管道包括一个所述直流管段、一个所述观察窗管段、一个所述弯头管段和一个所述相位动力管段,例如相位动力管段43a、直流管段41a、观察窗管段44a和弯头管段42a为一组管道,相位动力管段43b、直流管段41b、观察窗管段44b和弯头管段42b为一组管道,相位动力管段43c、直流管段41c、观察窗管段44c和弯头管段42c为一组管道,相位动力管段43d、直流管段41d、观察窗管段44d和弯头管段42d为一组管道;每组管道的所述相位动力段、所述直流段、所述观察窗段和所述弯头段依次相连,各组管道之间首尾相连,例如相位动力管段43a、直流管段41a、观察窗管段44a和弯头管段42a依次相连,相位动力管段43b、直流管段41b、观察窗管段44b和弯头管段42b依次相连,相位动力管段43c、直流管段41c、观察窗管段44c和弯头管段42c依次相连,相位动力管段43d、直流管段41d、观察窗管段44d和弯头管段42d依次相连,弯 头管段42a与相位动力管段43b相连,弯头管段42b与相位动力管段43c相连,弯头管段42c与相位动力管段43d相连,弯头管段42d与相位动力管段43a相连。其中,相位动力控制部件21、相位动力控制部件22、相位动力控制部件23和相位动力控制部件24可以沿循环管道1均匀设置。
本发明实施例提供的相位动力装置,通过将循环管道设置为多段,方便循环管道的组合。
如图4所示,在上述各实施例的基础上,进一步地,每个直流管段的两端设置法兰,每个观察窗管段的两端设置法兰,每个弯头管段的两端设置法兰,每个相位动力管段的两端设置法兰,所述直流管段、所述弯头管段、所述相位动力管段和所述观察窗段通过法兰连接成所述循环管道。其中,法兰内可以设置O型圈卡槽,O型圈卡槽内可以安装O型圈,起到密封作用。
例如,相位动力管段43a、直流管段41a、观察窗管段44a和弯头管段42a依次通过法兰相连,相位动力管段43b、直流管段41b、观察窗管段44b和弯头管段42b依次通过法兰相连,相位动力管段43c、直流管段41c、观察窗管段44c和弯头管段42c依次通过法兰相连,相位动力管段43d、直流管段41d、观察窗管段44d和弯头管段42d依次通过法兰相连,弯头管段42a与相位动力管段43b通过法兰相连,弯头管段42b与相位动力管段43c通过法兰相连,弯头管段42c与相位动力管段43d通过法兰相连,弯头管段42d与相位动力管段43a通过法兰相连。
本发明实施例提供的相位动力装置,通过法兰将循环管道的各段管道相连,方便循环管道的组装。
在上述各实施例的基础上,进一步地,所述直流管段上设置流体注入接口、压力传感器接口、操作窗口和安全阀。所述流体注入接口用户接流体泵,流体泵可以通过所述流体注入接口向循环管道1内注入流体,压力传感器接口用于接压力传感器,所述操作窗可以采用法兰加直管的结构,方便在循环管道1连接完成后的操作,所述安全阀用于泄压。其中,所述流体注入接口、所述压力传感器接口、所述操作窗口和所述安全阀在所述直流管段上的具体位置,根据实际需要就进行设置,本发明实施例不做限定。
在上述各实施例的基础上,进一步地,所述观察窗管段设置玻璃观察窗,可以在所述观察窗管段设置一个玻璃观察窗,也可以在所述观察窗管段对称设置两个观察窗,所述观察窗用于观察和研究循环管道1内的流体流动情况。
在上述各实施例的基础上,进一步地,所述预设数量个相位动力控制部件2沿循环管道1均匀设置。通过将所述预设数量个相位动力控制部件2均匀设置在循环管道上,可以便于对相位动力控制部件2的活塞运动速度进行控制,以及保持循环管道内各段流体流动的稳定性。
图5是本发明一实施例提供的相位动力装置的相位动力控制部件的结构示意图,如图5所示,在上述各实施例的基础上,进一步地,相位动力控制部件2包括活塞筒201、活塞202、挡环203和接头204,其中:
活塞202设置在活塞筒201内,沿活塞筒201运动,接头204设置在活塞筒201的尾部,挡环203固定在活塞筒201的内壁上,用于对活塞201靠近循环管道1方向上的运动进行限位,挡环203可以采用圆环结构,活塞筒201的前端设置在循环管道1上,活塞筒201与循环管道1相连通。其中,活塞筒201可以焊接在循环管道1上,活塞筒201与循环管道1之间的夹角可以为30°、45°60°等,根据实际需要进行设置,本发明实施例不做限定。
其中,接头204可以与外部管线连接,所述外部管线可以与气体储罐联控装置相连,图6是本发明一实施例提供的气体储罐联控装置的结构示意图,如图6所示,本发明实施例提供的气体储罐联控装置包括高压储气罐61、气体增压泵62、气瓶63和气动阀64,气瓶63与气体增压泵62相连,气体增压泵62与高压储气罐61相连,高压储气罐61与气动阀64相连,气动阀64通过气管连接接头204。气瓶63内的气体经过气体增压泵62的作用,使高压储气罐61内的气体达到设定的压力。当气动阀64开启时,气体可以快速流出至活塞筒201内推动活塞202向循环管道1运动。当活塞202向接头204运动时,气动阀64关闭,接头204放空气体。其中,接头204可以通过三通电磁阀与气动阀64相连接。
图7是本发明另一实施例提供的相位动力装置的相位动力控制部件的结构示意图,如图7所示,在上述各实施例的基础上,进一步地,相位动力控制部件2包括活塞筒201、活塞202和挡环203,其中:
活塞201设置在活塞筒202内,沿活塞筒201运动,活塞202包括活塞杆205,活塞杆205伸出活塞筒201的后端,活塞杆205可以与电机相连,通过电机带动活塞202的运动,挡环203固定在活塞筒201的内壁上,用于对活塞202靠近循环管道1方向上的运动进行限位,挡环203可以采用圆环结构,活塞筒201的前端设置在循环管道1上,活塞筒201与循环管道1相连通。其中,活塞筒201可以焊接在循环管道1上,活 塞筒201与循环管道1之间的夹角可以为30°、45°60°等,根据实际需要进行设置,本发明实施例不做限定。
在上述各实施例的基础上,进一步地,所述预设数量为4或者8,即在循环管道1上可以设置4个相位动力控制部件2或者8个相位动力控制部件2。相位动力控制部件2可以均匀的设置在循环管道1上。
图8是本发明一实施例提供的流体实验系统的结构示意图,如图8所示,在上述各实施例的基础上,进一步地,本发明实施例提供的流体实验系统,包括上述任一实施例所述的相位动力装置80,动力联控模块81、流体注入模块82、压力检测模块83、流速检测模块84和综合控制模块85,其中:
动力联控模块81分别与预设数量个相位动力控制部件802相连,用于为所述预设数量个相位动力控制部件802提供动力,流体注入模块82用于向循环管道801内注入流体,压力检测模块83用于检测循环管道801内的压力,流速检测模块84用于检测循环管道801内流体的流速,综合控制模块85分别与压力检测模块83、流速检测模块84和动力联控模块81相连,用于通过动力联控模块81控制所述预设数量个相位动力控制部件802的动作。
具体地,动力联控模块81为相位动力控制部件802提供动力,可以采用液压联控方式,电机联控方式或者气体高压储罐联控方式实现。上述三种动力方式的适用条件,详见表1,动力联控模块81提供动力的方式根据实际需要进行选择,本发明实施例不做限定。
表1 三种动力方式对比
Figure PCTCN2021071377-appb-000018
流体注入模块82向循环管道801内注入流体,使循环管道801内的流体达到预设压力。而且在流体加速至稳定过程中,会出现压力波动情况,可以利用压力检测模块83检 测到的压力,通过流体注入模块82向循环管道801补充流体或者吸出流体对循环管道801内的流体压力进行调节。流体注入模块82可以通过循环管道801上设置的流体注入接口与循环管道801相连接。其中,流体注入模块82可以采用柱塞泵。所述预设压力根据实际需要进行设置,本发明实施例不做限定。
压力检测模块83可以设置在循环管道801上,用于检测循环管道801内流体的压力,并将检测获得的流体压力传输给综合控制模块85。压力检测模块83可以采用压力传感器。
流速检测模块84用于检测循环管道801内流体的流速,并将检测获得的流体流速传输给综合控制模块85。流速检测模块84可以通过在循环管道801的观察窗口内配套观察物体运动测量,例如利用激光跟踪荧光粒子的测速方式,该测速方式尤其适用于实验室。也可以采用文丘里管测量流体流速,但文丘里管需要安装在并联旁路上,该测速方式适合在工业上应用。
综合控制模块85可以采用工业计算机,用于通过动力联控模块81控制所述预设数量个相位动力控制部件802的动作,包括对相位动力控制部件802的活塞运动速度的控制。综合控制模块85接收压力检测模块83发送的流体压力P和流速检测模块84发送的流体流速U。在初始时刻,U<U c,对于设定的ε,综合控制模块85根据公式(2)、公式(4)、公式(5)和公式(6)可以计算出P gas。综合控制模块85设定动力联控模块81的工作压力为P gas,所述预设数量个相位动力控制部件802驱动循环管道1内的流体开始流动。当综合控制模块85判断出U达到设计流速U c时,根据公式(1)和公式(7)计算出P gas,并维持P gas恒定。
本发明实施例提供的流体实验系统还可以包括观察模块,所述观察模块可以包括工业相机、摄像机、调节支架、图像采集卡和存储计算机,所述观察模块用于记录实验过程,可以工业相机或者摄像机的镜头对准循环管道801上设置的观察窗,在实验的过程中对循环管道801内流过观察窗的流体进行摄像。
本发明实施例提供的流体实验系统,包括相位动力装置、动力联控模块、流体注入模块、压力检测模块、流速检测模块和综合控制模块,动力联控模块分别与预设数量个相位动力控制部件相连,用于为预设数量个相位动力控制部件提供动力,流体注入模块用于向循环管道内注入流体,压力检测模块用于检测循环管道内的压力,流速检测模块用于检测循环管道内流体的流速,综合控制模块分别与压力检测模块、流速检测模块和动力联控模块相连,用于通过动力联控模块控制预设数量个相位动力控制部件的动作, 由于采用相位动力装置进行实验,能够减少辅助设备的使用,降低了实验成本。此外,使实验室内的流量模拟与现场应用等量,不再采用流速等效模拟,提高了实验的真实性。
下面采用本发明实施例提供的流体实验系统,模拟水气分散体系实际注入情况,对本发明实施例提供的流体实验系统的工作过程进行说明。以高压大流量条件下气泡生成,并随流体流动,记录气泡是否上浮、是否合并、作用程度情况。实验条件:相位动力装置80竖直放置,流体流量为15m 3/d,方向顺时针方向流动,流体压力20MPa,温度为室温,在循环管道的底部生成气泡,观察循环管道内气泡的运动情况。
(1)流程准备及装置安装
采用图4所示的相位动力装置,竖直放置,四个相位动力控制部件802的形状和尺寸相同。由于流体流量为15m 3/d,由表1可知,动力联控模块81宜采用气体储罐联控方式,可采用图6所示的气体储罐联控装置为相位动力控制部件802提供动力,将气体储罐联控装置与四个相位动力控制部件802相连。
由于要产生气泡,可以在循环管道801的管道右侧直流管段的底部安装气泡生成装置,将所述直流管段的对侧操作窗拆开后,在所述直流管段的管道内安装生泡装置,并将注气管线通过一侧的操作窗上的专用密封孔道连接至管道外面,连接气体装置。
(2)将管道内充满流体(水)并升压
通过流体注入模块82将循环管道801管道内充满水;
在常压的条件下,调整4个相位动力控制部件802中活塞的初始位置,使相位动力控制部件21的活塞在顶端即将向底部推动,相位动力控制部件22的活塞在中部即将向顶部推动,相位动力控制部件23的活塞在底部即将向顶部推动,相位动力控制部件24。在活塞两侧分别注入气体和/或水,使4个活塞到达初始位置。
然后对通过流体注入模块82向循环管道801内注入水,并保持各个活塞的初始位置,提高循环管道801内的压力,直至循环管道801内的流体压力达到20MPa。
(3)实现大流量稳定流动
根据目标流量15m 3/d流量,可以获得设计流速U c
初始位置时刻,综合控制模块85根据设定的ε计算出气体储罐联控装置的供气气压P gas,4个相位动力控制部件的活塞以相同的速率运动。其中:气体进入相位动力控制部件21和相位动力控制部件24,推动活塞向底部移动,相位动力控制部件22和相位动力控制部件23的活塞向后端移动排出气体。接着,相位动力控制部件21的活塞推进到中 部,相位动力控制部件22的活塞后退到顶部,相位动力控制部件23的活塞后退到中部,相位动力控制部件24的活塞推进到底部。此时循环管道801内流体获得了速率U 1。综合控制模块85继续控制气体储罐联控装置驱动四个相位动力控制部件802的活塞运动,直至流体流速U达到设计流速U c,即在图4所示的循环管道内,顺时针方向形成了流量为15m 3/d的稳定封闭式连续流动。
(4)目标观察实验
在循环管道内的流体稳定连续流动的情况下,实施目标观察实验。将高压气体注入气泡生成装置内,控制气体压力与内部流体压力差,控制气泡以一定速度喷出,喷出后的气泡即受到流体流动的影响。通过观察窗管段的玻璃观察窗外设置的工业相机记录气泡形态。那么在其它3个玻璃观察窗,可以观察到水平段运移状态,左侧直流管段的加速携带效果,顶部直流管段的水平运移状态。
在相位动力装置运行过程中,为防止压力失控等情况,安装了安全阀,以保障实验安全。
在本说明书的描述中,参考术语“一个实施例”、“一个具体实施例”、“一些实施例”、“例如”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种相位动力装置,其特征在于,包括循环管道和预设数量个相位动力控制部件,其中:
    所述循环管道用于提供流体循环流动的通道,所述预设数量个相位动力控制部件设置在所述循环管道上,用于驱动所述循环管道内的流体循环流动。
  2. 根据权利要求1所述的相位动力装置,其特征在于,所述循环管道包括四个直流管段、四个弯头管段、至少一个相位动力管段和至少一个观察窗管段,其中:
    四个所述直流管段、四个所述弯头管段、至少一个所述相位动力管段和至少一个所述观察窗管段首尾相连构成所述循环管道,所述相位动力管段上设置所述相位动力控制部件。
  3. 根据权利要求2所述的相位动力装置,其特征在于,所述观察窗管段和所述相位动力管段分别有四个,其中:
    每个相位动力管段上设置一个所述相位动力控制部件,将四个所述直流管段、四个所述观察窗管段、四个所述弯头管段和四个所述相位动力管段分为四组管道,每组管道包括一个所述直流管段、一个所述观察窗管段、一个所述弯头管段和一个所述相位动力管段;每组管道的所述相位动力段、所述直流段、所述观察窗段和所述弯头段依次相连,各组管道之间首尾相连。
  4. 根据权利要求2所述的相位动力装置,其特征在于,每个直流管段的两端设置法兰,每个观察窗管段的两端设置法兰,每个弯头管段的两端设置法兰,每个相位动力管段的两端设置法兰,所述直流管段、所述弯头管段、所述相位动力管段和所述观察窗段通过法兰连接成所述循环管道。
  5. 根据权利要求2所述的相位动力装置,其特征在于,所述直流管段上设置流体注入接口、压力传感器接口、操作窗口和安全阀。
  6. 根据权利要求1所述的相位动力装置,其特征在于,所述预设数量个相位动力控制部件沿所述循环管道均匀设置。
  7. 根据权利要求1所述的相位动力装置,其特征在于,所述相位动力控制部件包括活塞筒、活塞、挡环和接头,其中:
    所述活塞设置在所述活塞筒内,沿所述活塞筒运动,所述接头设置在所述活塞筒的尾部,所述挡环固定在所述活塞筒的内壁上,用于对所述活塞靠近所述循环管道方向上 的运动进行限位,所述活塞筒的前端设置在所述循环管道上,所述活塞筒与所述循环管道相连通。
  8. 根据权利要求1所述的相位动力装置,其特征在于,所述相位动力控制部件包括活塞筒、活塞和挡环,其中:
    所述活塞设置在所述活塞筒内,沿所述活塞筒运动,所述活塞包括活塞杆,所述活塞杆伸出所述活塞筒的后端,所述挡环固定在所述活塞筒的内壁上,用于对所述活塞靠近所述循环管道方向上的运动进行限位,所述活塞筒的前端设置在所述循环管道上,所述活塞筒与所述循环管道相连通。
  9. 根据权利要求1至8任一项所述的相位动力装置,其特征在于,所述预设数量为4或者8。
  10. 一种流体实验系统,其特征在于,包括如权利要求1至9任一项所述的相位动力装置,动力联控模块、流体注入模块、压力检测模块、流速检测模块和综合控制模块,其中:
    所述动力联控模块分别与预设数量个相位动力控制部件相连,用于为所述预设数量个相位动力控制部件提供动力,所述流体注入模块用于向循环管道内注入流体,所述压力检测模块用于检测循环管道内的压力,所述流速检测模块用于检测所述循环管道内流体的流速,所述综合控制模块分别与所述压力检测模块、所述流速检测模块和所述动力联控模块相连,用于通过所述动力联控模块控制所述预设数量个相位动力控制部件的动作。
PCT/CN2021/071377 2020-01-17 2021-01-13 一种相位动力装置及流体实验系统 WO2021143703A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/793,195 US20230204395A1 (en) 2020-01-17 2021-01-13 Phase power device and fluid experiment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010058049.8A CN113138063B (zh) 2020-01-17 2020-01-17 一种相位动力装置及流体实验系统
CN202010058049.8 2020-01-17

Publications (1)

Publication Number Publication Date
WO2021143703A1 true WO2021143703A1 (zh) 2021-07-22

Family

ID=76808684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071377 WO2021143703A1 (zh) 2020-01-17 2021-01-13 一种相位动力装置及流体实验系统

Country Status (3)

Country Link
US (1) US20230204395A1 (zh)
CN (1) CN113138063B (zh)
WO (1) WO2021143703A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231395A (ja) * 1992-02-21 1993-09-07 Mitsubishi Heavy Ind Ltd 造波装置
JPH0850077A (ja) * 1994-08-08 1996-02-20 Shimizu Corp 無反射平面造波水槽
CN205280325U (zh) * 2015-12-29 2016-06-01 国家海洋技术中心 一种多功能垂直循环造流试验设施
CN107462398A (zh) * 2017-09-28 2017-12-12 哈尔滨工程大学 一种立式循环水槽的加压补水装置
CN207540982U (zh) * 2017-09-30 2018-06-26 中交天津港航勘察设计研究院有限公司 可调整倾斜管道角度固液两相流动测试系统
CN109029916A (zh) * 2018-09-21 2018-12-18 河海大学 一种自反馈泥沙冲刷率测量系统及测量方法
CN110672302A (zh) * 2019-10-12 2020-01-10 西安交通大学 一种低扰动大流量的高速循环水洞实验系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3513696A (en) * 1968-04-03 1970-05-26 Alexander E Blair Apparatus for determining the rate of ascent or descent of free objects in a liquid medium
JPS61207943A (ja) * 1985-03-12 1986-09-16 Mitsubishi Heavy Ind Ltd 回流水槽
WO2006010202A1 (en) * 2004-07-28 2006-02-02 Ian Gray Pump control system
US8056400B2 (en) * 2008-02-26 2011-11-15 United States Of America As Represented By The Secretary Of The Navy Method and apparatus for fluid sampling
CN203515536U (zh) * 2013-08-30 2014-04-02 中国石油天然气股份有限公司 用于水力压裂模拟实验的流体交替连续泵入装置
US9612232B2 (en) * 2014-01-11 2017-04-04 Ofi Testing Equipment, Inc. Static gel strength measurement apparatus and method
CN204495541U (zh) * 2015-03-18 2015-07-22 北京市环境保护科学研究院 利用环形水槽模拟天然河道水流特性的装置
JP2016215107A (ja) * 2015-05-19 2016-12-22 セイコーエプソン株式会社 流体輸送装置及びその制御方法並びに化学合成装置
KR101885616B1 (ko) * 2016-08-25 2018-08-06 한국생산기술연구원 해저 유전용 파이프라인의 유체유동 모사장치
CN106769674B (zh) * 2016-11-25 2019-02-05 中国石油大学(华东) 一种用于溶气原油测试的环道实验装置
CN107842355A (zh) * 2017-09-24 2018-03-27 西南石油大学 一种测量环空多相流流态及流体压强实验装置
CN107561077A (zh) * 2017-09-30 2018-01-09 中交天津港航勘察设计研究院有限公司 一种可调整倾斜管道角度固液两相流动测试系统
CN108827830B (zh) * 2018-06-15 2023-11-14 西南石油大学 一种高温高压钻井液流动性能测试装置及方法
CN209417006U (zh) * 2018-11-20 2019-09-20 上海艺旻科技有限公司 臭味检测仪
CN109430918A (zh) * 2018-12-15 2019-03-08 段家忠 一种食品非传统卤制设施及卤制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231395A (ja) * 1992-02-21 1993-09-07 Mitsubishi Heavy Ind Ltd 造波装置
JPH0850077A (ja) * 1994-08-08 1996-02-20 Shimizu Corp 無反射平面造波水槽
CN205280325U (zh) * 2015-12-29 2016-06-01 国家海洋技术中心 一种多功能垂直循环造流试验设施
CN107462398A (zh) * 2017-09-28 2017-12-12 哈尔滨工程大学 一种立式循环水槽的加压补水装置
CN207540982U (zh) * 2017-09-30 2018-06-26 中交天津港航勘察设计研究院有限公司 可调整倾斜管道角度固液两相流动测试系统
CN109029916A (zh) * 2018-09-21 2018-12-18 河海大学 一种自反馈泥沙冲刷率测量系统及测量方法
CN110672302A (zh) * 2019-10-12 2020-01-10 西安交通大学 一种低扰动大流量的高速循环水洞实验系统

Also Published As

Publication number Publication date
US20230204395A1 (en) 2023-06-29
CN113138063A (zh) 2021-07-20
CN113138063B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
de Vries et al. Design and operation of a Tesla-type valve for pulsating heat pipes
Lu et al. Experimental investigation on liquid absorption of jet pump under operating limits
WO2021143703A1 (zh) 一种相位动力装置及流体实验系统
CN102706786A (zh) 一种动态泥页岩孔隙压力传递实验装置
CN107605713A (zh) 一种大流量的无阀微泵
Liu et al. A rotary ferrofluidic vane micropump with C shape baffle
CN113358328A (zh) 一种实现溶液饱和度可控的循环水槽实验装置
Doihara et al. Liquid low-flow calibration rig using syringe pump and weighing tank system
CN113439160A (zh) 泵送系统和流体输送装置
CN102639987A (zh) 细胞观察仪器
CN103994082B (zh) 一种离心泵内部非稳定流动可视化实验装置
CN110805429A (zh) 一种动态裂缝自支撑压裂工艺研究装置及其导流测定方法
BRPI1011659B1 (pt) aparelho para transportar fluidos a partir de um primeiro reservatório para um segundo reservatório
Ntengwe et al. Evaluation of friction losses in pipes and fittings of process engineering plants
CN1773291A (zh) 水流场粒子成像测速系统中示踪粒子的高速投放装置
CN203906319U (zh) 一种离心泵内部非稳定流动可视化实验装置
CN209244790U (zh) 气动泵
CN208292725U (zh) 一种超临界流体水氧化废水处理装置
CN214836922U (zh) 可调流量的计量式连续输送装置及体积管输送泵
CN106020254A (zh) 一种流量控制装置
CN208333851U (zh) 气压驱动式夹持的异型阀门爆破压力测试系统
CN106643992A (zh) 15号航空液压油微小流量标准装置
CN113280263B (zh) 可调流量的计量式连续输送装置
Ganderton Unit Processes in Pharmacy: Pharmaceutical Monographs
CN218445553U (zh) 一种用于检测建筑空间气流场的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741657

Country of ref document: EP

Kind code of ref document: A1