WO2021143604A1 - 资源确定方法及通信设备 - Google Patents

资源确定方法及通信设备 Download PDF

Info

Publication number
WO2021143604A1
WO2021143604A1 PCT/CN2021/070548 CN2021070548W WO2021143604A1 WO 2021143604 A1 WO2021143604 A1 WO 2021143604A1 CN 2021070548 W CN2021070548 W CN 2021070548W WO 2021143604 A1 WO2021143604 A1 WO 2021143604A1
Authority
WO
WIPO (PCT)
Prior art keywords
psfch
sidelink
resource
time domain
timing
Prior art date
Application number
PCT/CN2021/070548
Other languages
English (en)
French (fr)
Inventor
刘思綦
纪子超
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2022543157A priority Critical patent/JP2023511296A/ja
Priority to EP21741571.0A priority patent/EP4092942A4/en
Priority to KR1020227027551A priority patent/KR20220125336A/ko
Publication of WO2021143604A1 publication Critical patent/WO2021143604A1/zh
Priority to US17/863,334 priority patent/US20220346066A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present invention relates to the field of communication technology, in particular to a method for determining a resource and a communication device.
  • Sidelink (direct link or sidelink) terminals can communicate with other terminals on Sidelink, and these terminals are usually vehicles, road site units (RSU), mobile phones, etc. that support Sidelink technology.
  • RSU road site units
  • mobile phones etc. that support Sidelink technology.
  • the user When the user performs Sidelink transmission (sending or receiving), it will be based on the selected synchronization source (synchronization reference source) or also called synchronization reference (synchronization reference) or timing reference (timing reference) timing.
  • the user's synchronization The source can be a base station, a Global Navigation Satellite System (GNSS), timing generated by its own local clock, or timing provided by other devices.
  • Sidelink resources may be numbered based on Sidelink timing. At this time, the frame number of Sidelink is called Direct Frame Number (DFN).
  • DFN Direct Frame Number
  • control node on carrier 1 schedules a user to perform Sidelink transmission on carrier 2, and the user uses the timing of the control node on carrier 2 as the Sidelink timing of its own Sidelink transmission.
  • a control node working on carrier 1 schedules a user to perform Sidelink transmission on carrier 2.
  • the user uses other timing on carrier 2, for example, GNSS timing as the Sidelink timing of its own Sidelink transmission.
  • GNSS timing is used as the Sidelink timing of its own Sidelink transmission.
  • Uu timing and Sidelink timing may not be aligned.
  • the subcarrier spacing (SCS) of the sidelink and Uu may also be different, so the timing accuracy is also different.
  • the Hybrid Automatic Repeat reQuest (HARQ) feedback mechanism is also introduced in the Sidelink technology; the Sidelink receiving user receives the Sidelink data (Sidelink data is in the physical side).
  • the PSSCH is transmitted on the link shared channel PSSCH, where the PSSCH is scheduled by the side link control information SCI, and the SCI is transmitted on the physical side link control channel PSCCH and/or PSSCH).
  • the Sidelink HARQ-ACK information can be fed back to indicate whether the Sidelink transmission is Whether it succeeds or fails, the Sidelink HARQ-ACK is transmitted on the Physical Sidelink Feedback Channel (PSFCH) resource.
  • PSFCH Physical Sidelink Feedback Channel
  • the transmission of Sidelink data packets may be carried out between the control node and the terminal (the control node is working on the sidelink at this time), or it may be carried out on the sidelink between the terminal and the terminal. In the latter case, the control node It may not be possible to directly know whether the transmission of the sidelink data packet is successful.
  • the user needs to send Sidelink HARQ ACK information (such as sidelink ACK/NACK) to the control node, so that the control node can further determine whether the transmission on the sidelink is successful.
  • the terminal that sends the Sidelink HARQ-ACK information corresponding to a certain sidelink transmission to the control node is the sending terminal that sends this sidelink transmission.
  • the control node needs to allocate Physical Uplink Control Channel (PUCCH)/Physical Uplink Shared Channel (PUSCH) resources to the terminal.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • Sidelink timing and Uu timing may be different, and/or timing accuracy is different, the Sidelink transmission resource/PSFCH/PUCCH/PUSCH resource position understood by the user and the Sidelink transmission resource/PSFCH/PUCCH/PUSCH resource understood by the control node may be different or possible There is ambiguity.
  • the embodiment of the present invention provides a method for determining a resource and a communication device to solve the problem in the prior art that a terminal and a control node may have inconsistent understanding of uplink channel resources.
  • a method for determining resources includes:
  • the target domain resource of the uplink channel determines the target domain resource of the uplink channel;
  • the time interval y 2 is the time interval between the PSFCH and the target uplink channel; wherein, the time domain resource of the target uplink channel satisfies any one of the following conditions:
  • the Ath time domain resource not earlier than T PSFCH_SL +y 2;
  • A is an integer greater than or equal to 1.
  • the embodiment of the present invention also provides a resource determination method, including:
  • the timing offset is the time offset between the Sidelink timing and the Uu timing
  • the Sidelink timing, the Uu timing, and the timing offset determine to configure the Sidelink authorized resource and/or the hybrid automatic repeat request HARQ process for configuring the Sidelink authorized resource.
  • the embodiment of the present invention also provides a communication device, including:
  • a first determining module y 2 according to the time interval and the next physical link feedback channels PSFCH position of the first time domain T PSFCH_SL, or, according to a time interval y 2 and the second time domain PSFCH position T PSFCH_Uu, determining a target uplink The time domain resource of the channel; the time interval y 2 is the time interval between the PSFCH and the target uplink channel; wherein the time domain resource of the target uplink channel satisfies any one of the following conditions:
  • the Ath time domain resource not earlier than T PSFCH_SL +y 2;
  • A is an integer greater than or equal to 1.
  • the embodiment of the present invention also provides a communication device, including:
  • the second acquisition module is configured to acquire at least one of Sidelink timing, Uu timing, and timing offset of the sidelink; wherein, the timing offset is the time offset between the Sidelink timing and the Uu timing;
  • the second determining module is configured to determine, according to at least one of the Sidelink timing, the Uu timing, and the timing offset, to configure the Sidelink authorized resource and/or the hybrid automatic repeat request HARQ for configuring the Sidelink authorized resource process.
  • the embodiment of the present invention also provides a communication device, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • a communication device including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the embodiment of the present invention also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the above-mentioned resource determination method are implemented.
  • the terminal and the control node determine the time domain resources of the target uplink channel according to the time interval y 2 and the first time domain position of the PSFCH, or the terminal and the control node determine the time domain resources of the target uplink channel according to the time interval y 2 and the second time of the PSFCH.
  • the domain position determines the time domain resources of the target uplink channel, and determines the conditions that the time domain resources of the target uplink channel meets, so that the terminal and the control node can have the same understanding of the time domain resources of the target uplink channel, thereby ensuring that the control node has the target uplink channel.
  • the appropriateness of resource allocation improves the accuracy of the terminal in determining the resource of the target uplink channel.
  • FIG. 1 shows one of the steps of a method for determining a resource according to an embodiment of the present invention
  • FIG. 2 shows a schematic diagram of the principle of Example 1 of a method for determining a resource provided by an embodiment of the present invention
  • FIG. 3 shows a schematic diagram of the principle of Example 2 of a resource determination method provided by an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of the principle of Example 3 of a resource determination method provided by an embodiment of the present invention
  • FIG. 5 shows one of the schematic diagrams of the principle of Example 4 of the resource determination method provided by the embodiment of the present invention
  • FIG. 6 shows the second schematic diagram of the principle of Example 4 of the resource determination method provided by the embodiment of the present invention.
  • FIG. 7 shows the third schematic diagram of the principle of Example 4 of the resource determination method provided by the embodiment of the present invention.
  • FIG. 8 shows one of the schematic structural diagrams of a communication device provided by an embodiment of the present invention.
  • FIG. 9 shows the second step flow chart of the resource determination method provided by the embodiment of the present invention.
  • FIG. 10 shows the second structural diagram of a communication device provided by an embodiment of the present invention.
  • FIG. 11 shows a schematic structural diagram of a terminal provided by an embodiment of the present invention.
  • Figure 12 shows a schematic structural diagram of a network side device provided by an embodiment of the present invention.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present invention should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the resource determination method provided by the embodiments of the present invention can be applied to both terminals and control nodes; among them, the terminal can be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, Wearable devices (Wearable Device), in-vehicle devices, or personal digital assistants (Personal Digital Assistant, PDA), etc. It should be noted that the specific type of the terminal is not limited in the embodiment of the present invention.
  • the control node refers to the base station or some Integrated Access Backhaul (IAB) nodes.
  • IAB Integrated Access Backhaul
  • the control node can be a terminal, a road side unit (RSU), a base station, or some similar RSU Or other IAB network facilities, so some control nodes may have both sidelink and Uu links; among them, the base station can be a commonly used base station, or an evolved node base station (eNB), or a 5G system Network side equipment (for example, next generation node base station (gNB) or transmission and reception point (TRP)) or cell and other equipment in the network.
  • RSU road side unit
  • eNB evolved node base station
  • 5G system Network side equipment for example, next generation node base station (gNB) or transmission and reception point (TRP)
  • gNB next generation node base station
  • TRP transmission and reception point
  • Uu transmission, Uu SCS, Uu link, and Uu resource mentioned in the implementation of the present invention means the uplink transmission and/or downlink transmission between the terminal and the base station, and the uplink SCS and/or between the terminal and the base station.
  • the scheduling of the terminal by the control node includes: Inter-RAT sidelink scheduling and intra-RAT sidelink scheduling);
  • the control node when the control node is an LTE base station, the control node can schedule NR sidelink (this case is called Inter-RAT sidelink scheduling) or LTE sidelink (this case is called intra-RAT sidelink scheduling).
  • the control node when the control node is a 5G or later version base station, the control node can schedule NR sidelink (in this case, it is called intra-RAT sidelink scheduling) or LTE sidelink (in this case, it is called: Inter-RAT sidelink scheduling).
  • an embodiment of the present invention provides a method for determining a resource, including:
  • Step 101 according to the time interval y 2 and the next physical link feedback channels PSFCH position of the first time domain T PSFCH_SL, or, according to a time interval y 2 and the second time domain PSFCH position T PSFCH_Uu, determining a target uplink channel time domain Resource;
  • the time interval y 2 is the time interval between the PSFCH and the target uplink channel; wherein, the time domain resource of the target uplink channel satisfies any one of the following conditions:
  • T PSFCH_SL + y A-th time domain resource 2, otherwise known as: + y is not earlier than the time of the first domain resource 2
  • a time-domain resources correspond T PSFCH_SL;
  • T PSFCH_Uu + y A-th time domain resource 2, otherwise known as: + y is not earlier than the time of the first domain resource 2
  • a time-domain resources correspond T PSFCH_Uu;
  • A is an integer greater than or equal to 1.
  • the terminal and the control node can achieve the same understanding of the time domain resource of the target uplink channel based on Sidelink timing;
  • the terminal and the control node can realize the same understanding of the time domain resource of the target uplink channel based on Uu timing.
  • the time interval y 2 can be pre-appointed; for the terminal, the time interval y 2 can also be configured by higher layers, or configured by the base station through the downlink control information DCI.
  • the target uplink channel includes: physical uplink control channel PUCCH or physical uplink shared channel PUSCH.
  • the foregoing Ath time domain resource may specifically be: the Ath time domain resource, or the Ath available time domain resource.
  • the first available time domain resource in the time range (if the first time domain resource in the time range of T PSFCH_SL + y 2 is unavailable, and the second time domain resource is available, then the time range of T PSFCH_SL + y 2
  • the second time domain resource within is the first available time domain resource mentioned above).
  • the 15 kHz time slot corresponding to T PSFCH_SL + y 2 corresponds to two 30 kHz time slots
  • the first 15kHz time slot corresponding to T PSFCH_SL +y 2 can be used for uplink 30kHz UL time slot.
  • the terminal and the control node can respectively determine T PSFCH_Uu according to at least one of the downlink control information DCI, PSCCH configuration, PSSCH configuration, and PSFCH configuration.
  • T PSFCH_SL is the receiving or sending time of the PSFCH, for example, the start of the Sidelink time slot for receiving or sending the PSFCH.
  • the above-mentioned time domain resource may be a time slot, for example, not earlier than the Ath time slot of T PSFCH_Uu +y 2 or not earlier than the Ath time slot of the Sidelink time slot corresponding to T PSFCH_Uu +y 2 Time slots, or not earlier than the Ath time slot of the Uu time slot corresponding to T PSFCH_Uu + y 2.
  • the aforementioned not earlier than means that the start point of the time domain resource is not earlier than, for example, the start point of the time slot is not earlier than.
  • the target uplink channel is used to transmit sidelink sidelink hybrid automatic repeat request response HARQ-ACK information.
  • a target uplink channel resource may be associated with one or more (physical Sidelink feedback channels) PSFCH, and the terminal will send the Sidelink HARQ-ACK information obtained from its associated PSFCH after certain processing on the target uplink channel To the control node.
  • PSFCH Physical Sidelink feedback channels
  • the HARQ-ACK information or other feedback information of the Uu link can also be multiplexed on the target uplink channel, which is not specifically limited here.
  • the first time domain position of the PSFCH is the time domain position of the PSFCH determined based on Sidelink timing; the second time domain position of the PSFCH is the time domain position of the PSFCH determined based on Uu timing.
  • the time offset between Sidelink timing and Uu timing may be 0 or not.
  • the subcarrier spacing (SubCarrier Spacing, SCS) of the sidelink and the subcarrier spacing of Uu may be the same or different; therefore, the timing accuracy may be the same or may be different.
  • the method further includes:
  • the time interval y 1 between the DCI and the Sidelink resource indicated by the DCI, the time interval gap, and the timing offset offset between the Sidelink timing and the Uu timing Item determine the first time domain position T PSFCH_SL of the PSFCH ; where the time interval gap is the time interval between the Sidelink resource and the PSFCH corresponding to the Sidelink resource, or the time interval gap is the time interval between the Sidelink resource and the target uplink channel
  • T PSFCH_SL T DCI_Uu '+y 1 +gap+offset.
  • T DCI_Uu ' equal to the start or end of the time domain resource where T DCI_Uu or T DCI_Uu is located.
  • the time between the first time domain resource Sidelink position T PSFCH_SL downlink control information (DCI) in the time domain position T DCI_Uu, DCI, and indicates the interval DCI y 1, the time interval between the GAP, and Uu timing and the timing Sidelink At least one of the offsets is related.
  • the method further includes: determining the PSFCH according to the second time domain position T PSFCH_Uu of the PSFCH and the timing offset offset between the Sidelink timing and the Uu timing
  • T PSFCH_SL T PSFCH_Uu + offset.
  • the first time domain position T PSFCH_SL is related to the second time domain position T PSFCH_Uu of the PSFCH and the timing offset offset between the Sidelink timing and the Uu timing.
  • T DCI_Uu is the time when the terminal receives the DCI minus 1/2 TA (TA is a related amount of time advance, for example, Timing Advance).
  • y 1 is the time interval between DCI and the first Sidelink resource indicated by the DCI; in another implementation, gap is the first Sidelink resource and the PSFCH corresponding to the first Sidelink resource The time interval between. In another implementation, the gap is the time interval between the first Sidelink resource and the PSFCH corresponding to the target uplink channel. Further optionally, the gap may be the time interval between the PSFCH corresponding to the first sidelink resource and the last sidelink resource.
  • a DCI schedules B sidelink resources or a configured sidelink authorization resource contains B sidelink resources.
  • Each sidelink resource corresponds to a PSFCH timing.
  • the PSFCH timings corresponding to different sidelink resources may be the same PSFCH timings, but they are also It may be different PSFCH timings, and these timings may correspond to the same target uplink channel.
  • gap is the time interval between the PSFCH timing corresponding to the first Sidelink resource and the B-th Sidelink resource.
  • the start time of the first Sidelink transmission is no earlier than the first Sidelink time domain resource (for example, Sidelink time slot) of T DCI_Uu + y 1.
  • the method further includes:
  • T PSFCH_SL T DCI_Uu '+y 1 +gap.
  • T DCI_Uu ' is equal to the start or end of the time domain resource where T DCI_Uu or T DCI_Uu is located.
  • the time between the first time domain resource Sidelink position T PSFCH_SL downlink control information (DCI) in the time domain position T DCI_Uu, DCI, and indicates the DCI is associated by at least one y 1, and the time interval of the gap.
  • DCI time domain resource Sidelink position
  • the method further includes:
  • the first time domain position T PSFCH_SL is related to the second time domain position T PSFCH_Uu of the PSFCH .
  • T DCI_Uu is the time when the terminal receives DCI minus 1/2TA (TA is a related amount of time advance, such as Timing Advance.
  • TA is a related amount of time advance, such as Timing Advance.
  • the first Sidelink transmission starts The time of is no earlier than the first Sidelink time domain resource of T DCI_Uu + y 1 (for example, a Sidelink time slot).
  • one possibility of the time domain resource is a Uu time slot or a Sidelink time slot; preferably, the time slot resource is a Sidelink time slot.
  • y 1 is the time interval between DCI and the first PSSCH and PSCCH resource indicated by the DCI; or, y 1 is the time interval between the DCI and the first PSSCH resource indicated by the DCI; Or, y 1 is the time interval between the DCI and the first PSCCH resource indicated by the DCI.
  • y 1 is the time interval between DCI and the first Sidelink transmission indicated by the DCI; or gap is the time interval between the first Sidelink transmission and the PSFCH corresponding to the first Sidelink transmission.
  • the gap is the time interval between the first Sidelink resource and the PSFCH corresponding to the target uplink channel. Further optionally, the gap may be the time interval between the PSFCH corresponding to the first sidelink resource and the last sidelink resource.
  • a DCI schedules B sidelink resources or a configured sidelink authorization resource contains B sidelink resources.
  • Each sidelink resource corresponds to a PSFCH timing.
  • the PSFCH timings corresponding to different sidelink resources may be the same PSFCH timings, but they are also It may be different PSFCH timings, and these timings may correspond to the same target uplink channel.
  • gap is the time interval between the PSFCH timing corresponding to the first Sidelink resource and the B-th Sidelink resource.
  • the offset is calculated according to the Sidelink subcarrier interval, or the offset is calculated according to the uplink subcarrier interval. Preferably, the offset is calculated according to the uplink subcarrier interval.
  • the y 2 is calculated according to the Sidelink subcarrier interval, or the y 2 is calculated according to the uplink subcarrier interval.
  • the gap is calculated based on the Sidelink subcarrier spacing, or the gap is calculated based on the uplink subcarrier spacing.
  • N Sidelink transmissions correspond to the same PSFCH time domain resource or only one PSFCH time domain resource before the target uplink channel can correspond to N Sidelink transmissions, and the scheduled or configured Sidelink When the number of transmissions is N, the method further includes:
  • the gap is determined according to the period N of the PSFCH and the interval K between the PSFCH and the corresponding physical side link shared channel PSSCH. That is, when the number of Sidelink transmissions scheduled by the control node is the same as the PSFCH period, or when the number of Sidelink transmissions is configured to be the same as the PSFCH period,
  • N is the period of the PSFCH
  • K is the minimum interval between the PSFCH and the corresponding physical side link shared channel PSSCH (for example, MinTimeGapPSFCH).
  • the granularity of K and N is logical time slot (such as Sidelink time slot); the granularity of y 2 is physical time slot; therefore, the actual distance between K Sidelink time slots may be greater than K The duration of the time slot, the actual distance between N Sidelink time slots may be greater than the duration of N time slots.
  • the Ath time domain resource includes: the Ath Sidelink time domain resource, or the Ath Uu time domain resource.
  • the Ath Uu time domain resource is the Ath uplink time domain resource.
  • the uplink time domain resource is a resource that can be used for transmission in the uplink resource.
  • the first time slot that satisfies any one of the above conditions is a downlink time slot. At this time, it cannot be used for PUCCH transmission, and it needs to be extended to the latest time slot that can be used for uplink transmission.
  • the sub-carrier spacing of the above parameters such as T PSFCH_SL , T PSFCH_Uu , y 2 , T DCI_Uu ', T DCI_Uu , y 1 , gap, offset, N, and K may be the same or different; or, the above parameters may be logical Time, or physical time; therefore, in the specific calculation process of the formula mentioned in the above embodiment of the present invention, it may be necessary to convert SCS and/or unified conversion to logical time or physical time, which is not specifically limited here.
  • all sidelink resources configured by DCI or higher layers correspond to the same PSFCH timing (occasion, or time domain resource) as an example.
  • the implementation method is similar, but The gap may need to be recalculated, for example, calculated as the time interval between the PSFCH timing corresponding to the first sidelink resource and the target uplink channel.
  • the PSFCH timing corresponding to the target uplink channel is the PSFCH timing corresponding to the last sidelink resource.
  • Example 1 There is a timing offset offset between Sidelink timing and Uu timing.
  • time slot 1 It is different from the position of time slot 1'.
  • the terminal actually thinks that the PUCCH cannot be sent earlier than slot 1'. Since the PUCCH resource is a Uu resource, the PUCCH resource actually used for sidelink HARQ-ACK information feedback should be one of the following situations:
  • T PSFCH_Uu is the starting point of the time slot where PSFCH is located. Therefore, T PSFCH_Uu +2 corresponds to time slot 1 in Figure 2, and T PSFCH_Uu +3 corresponds to time slot 2 in Figure 2.
  • T PSFCH_Uu is defined as where PSFCH is located At the end of the time slot, the time slots corresponding to T PSFCH_Uu +2 and T PSFCH_Uu +3 will be adjusted accordingly, such as shifting backward.
  • Example 2 There is a timing offset offset between Sidelink timing and Uu timing.
  • UL SCS uplink subcarrier interval
  • Sidelink SCS Sidelink subcarrier interval
  • the PUCCH resource actually used for sidelink HARQ-ACK information feedback should be one of the following situations:
  • corresponding Uu time slot or UL time slot corresponding to T PSFCH_Uu +1+ceil(0.25) T PSFCH_Uu +2; here 1 and 0.5 respectively refer to the number of time slots after y 2 and offset are converted according to UL SCS;
  • T PSFCH_Uu +2 corresponds to the latest available UL time slot of the Uu time slot, where 1 and 0.25 respectively refer to the time when y 2 and offset are converted according to UL SCS Number of slots
  • T PSFCH_Uu + 1 + ceil ( 0.5) T PSFCH_Uu + 1UL slot duration + Uu 1SL slot duration corresponding to the time slot or UL slot, where 1 refers to the number of slots in accordance with the terms of the SCS UL y 2, 0.5 Refers to the number of time slots converted by the offset according to the sidelink SCS;
  • T PSFCH_Uu is the beginning of the time slot where the PSFCH is located. Therefore, T PSFCH_Uu +1 corresponds to the time slot of the UL SCS corresponding to time slot 1 in Figure 3; when T PSFCH_Uu +1 is defined as the end of the time slot where the PSFCH is located , The time slot corresponding to T PSFCH_Uu +y 2 will be adjusted accordingly, such as shifting backward.
  • Example 3 There is a timing offset offset between Sidelink timing and Uu timing.
  • time slot 1 and time slot The position of 1' is different. Therefore, the PUCCH resource actually used for sidelink HARQ-ACK information feedback should be one of the following situations:
  • T PSFCH_Uu +4+ceil(1.5) T PSFCH_Uu +6 corresponding to the latest available UL time slot of Uu time slot, where 4 and 1.5 respectively refer to the time when y 2 and offset are converted according to UL SCS Number of slots
  • T PSFCH_Uu + 2 + ceil (0.75) T PSFCH_Uu +1 UL slot duration + 1 SL slot duration corresponding Uu time slot or UL time slot, where 2 refers to the number of time slots converted by y 2 according to UL SCS, 0.75 Refers to the number of time slots converted by the offset according to the sidelink SCS;
  • the PUCCH resource on time slot 3 as shown in FIG. 4.
  • time slot 3 corresponds to "+3" (A is equal to 1) in Figure 4; with “UL SCS” as the accuracy, time slot 3 corresponds to 4 in “+6” (A is equal to 1) and "+7” (A is equal to 2)
  • the PUCCH resources actually used for sidelink's HARQ-ACK information feedback are "+3", "+6" and "+3" in Figure 4 +7" any one of them.
  • the case where A is not equal to 1 can also be called: the second time domain resource, the third time domain resource, etc. within the time domain range of T PSFCH_Uu + y 2 or T PSFCH_SL + y 2 .
  • the SCS corresponding to the time domain range of T PSFCH_Uu +y 2 or T PSFCH_SL +y 2 is different from the SCS corresponding to "the second time domain resource and the third time domain resource".
  • T PSFCH_Uu is the beginning of the time slot where the PSFCH is located. Therefore, T PSFCH_Uu +1 corresponds to the time slot of the UL SCS corresponding to time slot 1 in Figure 3; when T PSFCH_Uu +1 is defined as the end of the time slot where the PSFCH is located , The time slot corresponding to T PSFCH_Uu +y 2 will be adjusted accordingly, such as shifting backward.
  • the base station and the control node have the same understanding of PUCCH resources, that is, the PUCCH resource is time slot 1'.
  • the PUCCH resource is the latest available Uu time slot or UL time slot not earlier than time slot 1'.
  • the PUCCH resource is the latest available Uu time slot or UL time slot not earlier than time slot 1'.
  • the terminal and the control node determine the time domain resource of the target uplink channel according to the time interval y 2 and the first time domain position of the PSFCH, or the terminal and the control node determine the time domain resource of the target uplink channel according to the time interval y 2 and the second time domain position of the PSFCH determine the time domain resource of the target uplink channel, and determine the condition that the time domain resource of the target uplink channel meets, so that the terminal and the control node can have the same understanding of the time domain resource of the target uplink channel Therefore, the appropriateness of the resource allocation of the target uplink channel by the control node is ensured, and the accuracy of the terminal in determining the resource of the target uplink channel is improved.
  • an embodiment of the present invention also provides a communication device 800, including:
  • a first determining module 801 according to the time interval y 2 and the next physical link feedback channels PSFCH position of the first time domain T PSFCH_Uu, or, according to a time interval y 2 and the second time domain PSFCH position T PSFCH_SL, determining a target The time domain resource of the uplink channel;
  • the time interval y 2 is the time interval between the PSFCH and the target uplink channel; wherein, the time domain resource of the target uplink channel satisfies any one of the following conditions:
  • the Ath time domain resource not earlier than T PSFCH_SL +y 2;
  • A is an integer greater than or equal to 1.
  • the target uplink channel is used to transmit the sidelink sidelink hybrid automatic repeat request response HARQ-ACK information.
  • the first time domain position of the PSFCH is the time domain position of the PSFCH determined based on Sidelink timing
  • the second time domain position of the PSFCH is the time domain position of the PSFCH determined based on Uu timing.
  • the method further includes:
  • the time interval y 1 between the DCI and the Sidelink resource indicated by the DCI, the time interval gap, and the timing offset offset between the Sidelink timing and the Uu timing Item determine the first time domain position T PSFCH_SL of the PSFCH ; where the time interval gap is the time interval between the Sidelink resource and the PSFCH corresponding to the Sidelink resource, or the time interval gap is the time interval between the Sidelink resource and the target uplink channel The time interval between PSFCH;
  • a second timing offset between a time domain offset position of T PSFCH_Uu PSFCH and Sidelink Uu timing and timing is determined in the first time domain position PSFCH T PSFCH_SL.
  • the method further includes:
  • the time interval gap is the time interval between the Sidelink resource and the PSFCH corresponding to the Sidelink resource, or the time interval gap is the time interval between the Sidelink resource and the PSFCH corresponding to the target uplink channel;
  • the first time domain position T PSFCH_SL of the PSFCH is determined .
  • the offset is calculated according to the Sidelink subcarrier interval, or the offset is calculated according to the uplink subcarrier interval.
  • the y 2 is calculated according to the Sidelink subcarrier interval, or the y 2 is calculated according to the uplink subcarrier interval.
  • the gap is calculated based on the Sidelink subcarrier spacing, or the gap is calculated based on the uplink subcarrier spacing.
  • the method when the number of Sidelink resources scheduled by the control node is the same as the period of the PSFCH, the method further includes:
  • the gap is determined according to the period N of the PSFCH and the interval K between the PSFCH and the corresponding physical side link shared channel PSSCH.
  • the Ath available time domain resource includes: the Ath available Sidelink time domain resource, or the Ath available Uu time domain resource.
  • the communication device provided by the embodiment of the present invention can implement each process implemented by the communication device in the method embodiments of FIG. 1 to FIG.
  • the terminal and the control node determine the time domain resource of the target uplink channel according to the time interval y 2 and the first time domain position of the PSFCH, or the terminal and the control node determine the time domain resource of the target uplink channel according to the time interval y 2 and the second time domain position of the PSFCH determine the time domain resource of the target uplink channel, and determine the condition that the time domain resource of the target uplink channel meets, so that the terminal and the control node can have the same understanding of the time domain resource of the target uplink channel Therefore, the appropriateness of the resource allocation of the target uplink channel by the control node is ensured, and the accuracy of the terminal in determining the resource of the target uplink channel is improved.
  • the communication device provided by the embodiment of the present invention is a communication device capable of executing the above resource determination method, and all the embodiments of the above resource determination method are applicable to the communication device, and can achieve the same or similar beneficial effects. .
  • the embodiment of the present invention also provides a communication device, including a processor, a memory, and a computer program stored in the memory and running on the processor, and when the computer program is executed by the processor, the foregoing resource determination method is implemented
  • a communication device including a processor, a memory, and a computer program stored in the memory and running on the processor, and when the computer program is executed by the processor, the foregoing resource determination method is implemented
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the above-mentioned resource determination method embodiment is realized, and the same technology can be achieved. The effect, in order to avoid repetition, will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • an embodiment of the present invention also provides a method for determining a resource, including:
  • Step 901 Obtain at least one of sidelink timing, Uu timing, and timing offset; wherein, the timing offset is the time offset between the Sidelink timing and the Uu timing;
  • Step 902 according to at least one of the Sidelink timing, the Uu timing, and the timing offset, determine to configure a Sidelink authorized resource (sidelink configured grant or configured sidelink grant) and/or a mix of the configured Sidelink authorized resources Automatic retransmission request HARQ process.
  • a Sidelink authorized resource sidelink configured grant or configured sidelink grant
  • the timing offset is the offset between Uu timing and Sidelink timing.
  • the accuracy of the offset may be at least one of microseconds us; symbol; time slot slot; subframe subframe; millisecond ms; frame frame; second second, etc.
  • the timing offset offset may need to be converted into a corresponding unit, for example, into at least one of the number of us, the number of symbols, the number of slots, the number of subframes, the number of ms, the number of seconds, and the number of frames, which is not limited.
  • the embodiment of the present invention provides at least three ways to determine the configuration of Sidelink authorized resources and/or the hybrid automatic repeat request HARQ process for configuring Sidelink authorized resources, which respectively include:
  • Manner 1 Based on Sidelink timing (for example, direct frame number DFN), it is determined to configure the Sidelink authorized resource and/or the hybrid automatic repeat request HARQ process for configuring the Sidelink authorized resource.
  • Sidelink timing for example, direct frame number DFN
  • Manner 2 Based on Uu timing (for example, system frame number SFN) and timing offset, determine the configuration of Sidelink authorized resources and/or the hybrid automatic repeat request HARQ process for configuring Sidelink authorized resources.
  • Uu timing for example, system frame number SFN
  • timing offset determine the configuration of Sidelink authorized resources and/or the hybrid automatic repeat request HARQ process for configuring Sidelink authorized resources.
  • Manner 3 Based on Uu timing (for example, the system frame number SFN), it is determined to configure the Sidelink authorized resource and/or the hybrid automatic repeat request HARQ process for configuring the Sidelink authorized resource.
  • Uu timing for example, the system frame number SFN
  • one implementation is that the terminal assumes that y 4 is large enough to process the steps involved in the Sidelink transmission/PSFCH transceiver/PUCCH/PUSCH process. Another implementation is that the terminal needs to transmit TA/2 or TA in advance when configuring Sidelink authorized resource transmission. Another implementation is that when the terminal configures Sidelink authorized resource transmission, assume or expect to configure the boundary of the time slot where the Sidelink authorized resource is located and the latest received downlink control information or synchronization signal block SSB or channel state information The timing of the time slot in which the reference signal CSI-RS or other downlink signals is located is aligned with the time slot boundary, subframe boundary, or frame boundary deduced after TA/2 or TA; it should be noted that boundary alignment does not mean overlap.
  • the method further includes:
  • the physical sidelink feedback channel PSFCH and the channel used to transmit the HARQ-ACK information of the Sidelink Interval y 4 configure at least one of the time domain range S 1 occupied by the data resources and/or control resources in the Sidelink authorized resources, the period N of the PSFCH, and the interval K between the PSFCH and the corresponding physical sidelink shared channel PSSCH , To determine the cycle of configuring Sidelink authorized resources.
  • K is the minimum interval between the PSFCH and the corresponding PSSCH.
  • the period for configuring Sidelink authorized resources satisfies at least one of the following conditions:
  • y 3 is the interval between the downlink control information DCI and the Sidelink resource indicated by the DCI or the offset value (for example, timeOffsetCGType1) authorized by the Sidelink configuration.
  • the value may be 0.
  • y 4 is the interval between the physical sidelink feedback channel PSFCH and the channel used to transmit Sidelink's HARQ-ACK information
  • S 1 is the time domain range occupied by the data resources and/or control resources in the configured Sidelink authorized resources
  • N is the period of the PSFCH
  • K is the minimum interval between the PSFCH and the corresponding physical side link shared channel PSSCH.
  • S 1 may be an indication of DCI, it may be configured by higher layers, which is not particularly limited.
  • the data resources and control resources in the Sidelink authorized resources are configured in a cycle to be located in sidelink time slot 1, sidelink time slot 9 and sidelink time slot 10, then S1 corresponds to 10 sidelink time slots or S1 corresponds to sidelink time slot 1 to sidelink time slot 10 corresponds to the length of physical time.
  • the period is greater than or equal to y 3 +S 1 +(N+K-1), which can ensure that the PSFCH corresponding to the last transmission in each period is in the corresponding period.
  • the period is greater than or equal to S 1 +(N+K-1)+y 4 ; the period is greater than or equal to y 3 +S 1 +(N+K-1)+y 4 to ensure that the last transmission in each period corresponds to Both PUCCH or PSUCH are in the corresponding resources.
  • y 4 specifically refers to the interval between the last PSFCH associated with sidelink transmission in each cycle and the corresponding PUCCH or PUSCH.
  • the minimum period 3 sidelink slots
  • the timing offset 0
  • the time domain range occupied by the time domain resources indicated by the Sidelink control information 1 slot
  • the sub-carrier spacing SCS of the parameter may be the same or different; among them, one way of implementation is that K and N are logical time slots (such as sidelink time slots); and y 3 and y 4 are physical time slots; further accuracy or SCS It may also be different, so the above formula may need to be converted to SCS and/or unified to logical time or physical time, and there is no specific limitation here.
  • the period is defined in terms of physical time, if the configured Sidelink authorized resources conflict with non-Sidelink resources, the sidelink authorized resources configured in the conflicting part or the configured Sidelink authorized resources in the period are considered invalid.
  • determining the HARQ process for configuring Sidelink authorized resources in step 902 includes:
  • the HARQ process start value and/or process offset value determine the HARQ process for configuring Sidelink authorized resources
  • the HARQ process for configuring the Sidelink authorized resource corresponding to the identification information for configuring the Sidelink authorized resource is determined.
  • the terminal and the control node determine the configuration of Sidelink authorized resources and/or the combination of the configured Sidelink authorized resources according to at least one of the Sidelink timing, the Uu timing, and the timing offset
  • the automatic retransmission request HARQ process can achieve the same understanding of the configuration of Sidelink authorized resources between the terminal and the control node, thereby ensuring the appropriateness of the allocation of the sidelink authorized resources by the control node, and improving the accuracy of the terminal in determining the configuration of the Sidelink authorized resources.
  • Example 5 Determine to configure Sidelink authorized resources based on DFN.
  • nrofHARQ-Processes the number of HARQ processes.
  • S is the number (for example, startSLsymbols) of the start symbol of a PSSCH transmission opportunity or PSCCH transmission opportunity in the configured Sidelink authorized resource in the time slot.
  • timeOffsetCGType1 indicates the start time slot of the Type 1 resource of the configuration authorization relative to DFN0#, or the offset of the Type 1 resource of the configuration authorization relative to DFN0#, such as a slot offset.
  • the existence of the configured sidelink authorized resource satisfies the following formula, for example, the start symbol satisfies the following formula:
  • the existence of the configured sidelink authorized resource satisfies the following formula, for example, the start symbol satisfies the following formula:
  • DFN start time , slot start time , and symbol start time are the DFN, time slot, and symbol of PSCCH transmission opportunity or PSSCH transmission opportunity, respectively.
  • they are respectively the DFN, time slot and symbol of the first PSCCH transmission opportunity or the first PSSCH transmission opportunity in a period.
  • numberOfSlotsPerFrame is the number of time slots contained in each frame
  • numberOfSymbolsPerSlot is the number of symbols contained in each time slot
  • slot number in the frame is the slot number in the frame
  • symbol number in the slot is the symbol number in the slot.
  • the associated HARQ process ID is derived from the following equation:
  • HARQ Process ID ID_offset+[floor(CURRENT_symbol/periodicity)]modulonrofHARQ-Processes;
  • CURRENT_symbol (DFN ⁇ numberOfSlotsPerFrame ⁇ numberOfSymbolsPerSlot+slot number in the frame ⁇ numberOfSymbolsPerSlot+symbol number in the slot);
  • ID_offset is the HARQ ID offset or minimum HARQ ID corresponding to the configured sidelink authorized resource.
  • ID_offset has a corresponding relationship with the ID of the configured sidelink authorized resource.
  • the ID_offset can be 0.
  • At least one of the aforementioned DFN and sidelink slot is a frame or slot number obtained after sorting the sidelink resources.
  • Example 6 Configure Sidelink authorized resources based on SFN and timing offset offset.
  • the timing offset is the offset between Uu timing and Sidelink timing.
  • S is the number (for example, startSLsymbols) of the start symbol of a PSSCH transmission opportunity or PSCCH transmission opportunity in the configured Sidelink authorized resource in the time slot.
  • the existence of the configured sidelink authorized resource satisfies the following formula, for example, the start symbol satisfies the following formula:
  • the existence of the configured sidelink authorized resource satisfies the following formula, for example, the start symbol satisfies the following formula:
  • SFN start time , slot start time , and symbol start time are the SFN, time slot, and symbol of the PSCCH transmission opportunity or PSSCH transmission opportunity, respectively.
  • they are respectively the SFN, time slot and symbol of the first PSCCH transmission opportunity or the first PSSCH transmission opportunity in a period.
  • numberOfSlotsPerFrame is the number of time slots contained in each frame
  • numberOfSymbolsPerSlot is the number of symbols contained in each time slot
  • slot number in the frame is the slot number in the frame
  • symbol number in the slot is the symbol number in the slot.
  • the associated HARQ process ID is derived from the following equation:
  • CURRENT_symbol (SFN ⁇ numberOfSlotsPerFrame ⁇ numberOfSymbolsPerSlot+slot number in the frame ⁇ numberOfSymbolsPerSlot+symbol number in the slot)+offset
  • ID_offset is the HARQ ID offset or minimum HARQ ID corresponding to the CG.
  • ID_offset has a corresponding relationship with the ID of the configured sidelink authorized resource.
  • the ID_offset can be 0.
  • an embodiment of the present invention also provides a communication device 100, including:
  • the second acquisition module 110 is configured to acquire at least one of Sidelink timing, Uu timing, and timing offset of the sidelink; wherein, the timing offset is a time offset between Sidelink timing and Uu timing;
  • the second determining module 120 is configured to determine, according to at least one of the Sidelink timing, the Uu timing, and the timing offset, a hybrid automatic retransmission request for configuring a Sidelink authorized resource and/or the configuring a Sidelink authorized resource HARQ process.
  • the communication device further includes:
  • the period determining module is used to configure the sidelink authorized offset value y 3 , the physical sidelink feedback channel PSFCH, and the HARQ-ACK used to transmit Sidelink according to the interval y 3 between the Sidelink resources indicated by the downlink control information DCI and the DCI.
  • the interval between information channels y 4 , the time domain range S 1 occupied by the data resources and/or control resources in the configured Sidelink authorized resources, the period N of the PSFCH, and the interval between the PSFCH and the corresponding physical sidelink shared channel PSSCH At least one item in K determines the period for configuring Sidelink authorized resources.
  • determining the HARQ process for configuring Sidelink authorized resources includes:
  • the HARQ process start value and/or process offset value determine the HARQ process for configuring Sidelink authorized resources
  • the HARQ process for configuring the Sidelink authorized resource corresponding to the identification information for configuring the Sidelink authorized resource is determined.
  • the terminal and the control node determine the configuration of Sidelink authorized resources and/or the combination of the configured Sidelink authorized resources according to at least one of the Sidelink timing, the Uu timing, and the timing offset
  • the automatic retransmission request HARQ process can achieve the same understanding of the configuration of Sidelink authorized resources between the terminal and the control node, thereby ensuring the appropriateness of the allocation of sidelink authorized resources by the control node, and improving the accuracy of the terminal in determining the configuration of Sidelink authorized resources.
  • the communication device provided by the embodiment of the present invention is a communication device capable of executing the above resource determination method, and all the embodiments of the above resource determination method are applicable to the communication device, and can achieve the same or similar beneficial effects. .
  • the embodiment of the present invention also provides a communication device, including a processor, a memory, and a computer program stored in the memory and running on the processor, and the computer program is executed by the processor to implement the above resource determination method
  • a communication device including a processor, a memory, and a computer program stored in the memory and running on the processor, and the computer program is executed by the processor to implement the above resource determination method
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the above-mentioned resource determination method embodiment is realized, and the same technology can be achieved. The effect, in order to avoid repetition, will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • FIG. 11 is a schematic diagram of the hardware structure of a terminal that implements each embodiment of the present invention.
  • the terminal 500 includes but is not limited to: a radio frequency unit 501 and a network module 502 , Audio output unit 503, input unit 504, sensor 505, display unit 506, user input unit 507, interface unit 508, memory 509, processor 510, power supply 511 and other components.
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal, a wearable device, a pedometer, and the like.
  • Processor 510 y 2 according to the time interval and a physical link feedback channels next to the first time domain PSFCH position T PSFCH_SL, or, according to a time interval y 2 and the second time domain PSFCH position T PSFCH_Uu, determining a target uplink channel
  • the time domain resource of the; the time interval y 2 is the time interval between the PSFCH and the target uplink channel; wherein the time domain resource of the target uplink channel satisfies any one of the following conditions:
  • the Ath time domain resource not earlier than T PSFCH_SL +y 2;
  • A is an integer greater than or equal to 1.
  • Examples terminal and the control node determines a target uplink channel according to the time interval and the first time domain position y 2 in the time domain resource PSFCH embodiment of the present invention, or the terminal and the control node and the distance y 2 according to the time
  • the second time domain position of the PSFCH determines the time domain resources of the target uplink channel, and determines the conditions satisfied by the time domain resources of the target uplink channel, which can realize that the terminal and the control node have the same understanding of the time domain resources of the target uplink channel, thereby ensuring
  • the appropriateness of the resource allocation of the control node to the target uplink channel improves the accuracy of the terminal in determining the resource of the target uplink channel.
  • the communication device provided by the embodiment of the present invention is a communication device capable of executing the above-mentioned resource determination method, and all the embodiments of the above-mentioned resource determination method are applicable to the communication device, and can achieve the same or similar beneficial effects. .
  • the radio frequency unit 501 is configured to obtain at least one of sidelink timing, Uu timing, and timing offset; wherein, the timing offset is the time offset between the Sidelink timing and the Uu timing;
  • the processor 510 is configured to determine, according to at least one of the Sidelink timing, the Uu timing, and the timing offset, a sidelink authorized resource configuration and/or a hybrid automatic repeat request HARQ process for configuring the Sidelink authorized resource .
  • the terminal and the control node in the embodiment of the present invention determine the configuration of Sidelink authorized resources and/or the hybrid automatic retransmission of the configured Sidelink authorized resources Requesting the HARQ process can achieve the same understanding of the configuration of Sidelink authorized resources between the terminal and the control node, thereby ensuring the appropriateness of the allocation of the sidelink authorized resources by the control node, and improving the accuracy of the terminal in determining the configuration of the Sidelink authorized resources.
  • the communication device provided by the embodiment of the present invention is a communication device capable of executing the above resource determination method, and all the embodiments of the above resource determination method are applicable to the communication device, and can achieve the same or similar beneficial effects. .
  • the radio frequency unit 501 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, after receiving the downlink data from the base station, it is processed by the processor 510; Uplink data is sent to the base station.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 501 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 502, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 503 can convert the audio data received by the radio frequency unit 501 or the network module 502 or stored in the memory 509 into an audio signal and output it as sound. Moreover, the audio output unit 503 may also provide audio output related to a specific function performed by the terminal 500 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 503 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 504 is used to receive audio or video signals.
  • the input unit 504 may include a graphics processing unit (GPU) 5041 and a microphone 5042.
  • the graphics processor 5041 is configured to respond to images of still pictures or videos obtained by an image capture device (such as a camera) in the video capture mode or the image capture mode. Data is processed.
  • the processed image frame may be displayed on the display unit 506.
  • the image frame processed by the graphics processor 5041 may be stored in the memory 509 (or other storage medium) or sent via the radio frequency unit 501 or the network module 502.
  • the microphone 5042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 501 for output in the case of a telephone call mode.
  • the terminal 500 further includes at least one sensor 505, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 5061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 5061 and/or when the terminal 500 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal gestures (such as horizontal and vertical screen switching, related games, Magnetometer posture calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 505 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 506 is used to display information input by the user or information provided to the user.
  • the display unit 506 may include a display panel 5061, and the display panel 5061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 507 can be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 507 includes a touch panel 5071 and other input devices 5072.
  • the touch panel 5071 also known as a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 5071 or near the touch panel 5071. operate).
  • the touch panel 5071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 510, the command sent by the processor 510 is received and executed.
  • the touch panel 5071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 507 may also include other input devices 5072.
  • other input devices 5072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 5071 can be overlaid on the display panel 5061.
  • the touch panel 5071 detects a touch operation on or near it, it is transmitted to the processor 510 to determine the type of the touch event, and then the processor 510 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 5061.
  • the touch panel 5071 and the display panel 5061 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 5071 and the display panel 5061 can be integrated. Realize the input and output functions of the terminal, the specifics are not limited here.
  • the interface unit 508 is an interface for connecting an external device to the terminal 500.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 508 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 500 or may be used to communicate between the terminal 500 and the external device. Transfer data between.
  • the memory 509 can be used to store software programs and various data.
  • the memory 509 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 509 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 510 is the control center of the terminal. It uses various interfaces and lines to connect various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 509, and calling data stored in the memory 509. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 510 may include one or more processing units; preferably, the processor 510 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., and the modem The processor mainly deals with wireless communication. It can be understood that the above-mentioned modem processor may not be integrated into the processor 510.
  • the terminal 500 may also include a power source 511 (such as a battery) for supplying power to various components.
  • a power source 511 such as a battery
  • the power source 511 may be logically connected to the processor 510 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system. Function.
  • the terminal 500 includes some functional modules not shown, which will not be repeated here.
  • FIG. 12 is a structural diagram of a network-side device according to an embodiment of the present invention, which can realize the above-mentioned information reception The details of the method and achieve the same effect.
  • the network side device 1200 includes: a processor 1201, a transceiver 1202, a memory 1203, and a bus interface, where:
  • the processor 1201 is configured to read a program in the memory 1203 and execute the following process:
  • the target domain resource of the uplink channel determines the target domain resource of the uplink channel;
  • the time interval y 2 is the time interval between the PSFCH and the target uplink channel; wherein, the time domain resource of the target uplink channel satisfies any one of the following conditions:
  • the Ath time domain resource not earlier than T PSFCH_SL +y 2;
  • A is an integer greater than or equal to 1.
  • Examples terminal and the control node determines a target uplink channel according to the time interval and the first time domain position y 2 in the time domain resource PSFCH embodiment of the present invention, or the terminal and the control node and the distance y 2 according to the time
  • the second time domain position of the PSFCH determines the time domain resources of the target uplink channel, and determines the conditions satisfied by the time domain resources of the target uplink channel, which can realize that the terminal and the control node have the same understanding of the time domain resources of the target uplink channel, thereby ensuring
  • the appropriateness of the resource allocation of the control node to the target uplink channel improves the accuracy of the terminal in determining the resource of the target uplink channel.
  • the communication device provided by the embodiment of the present invention is a communication device capable of executing the above resource determination method, and all the embodiments of the above resource determination method are applicable to the communication device, and can achieve the same or similar beneficial effects. .
  • the processor 1201 is configured to read a program in the memory 1203, and execute the following process:
  • the timing offset is the time offset between the Sidelink timing and the Uu timing
  • the Sidelink timing, the Uu timing, and the timing offset determine to configure the Sidelink authorized resource and/or the hybrid automatic repeat request HARQ process for configuring the Sidelink authorized resource.
  • the terminal and the control node in the embodiment of the present invention determine the configuration of Sidelink authorized resources and/or the hybrid automatic retransmission of the configured Sidelink authorized resources Requesting the HARQ process can achieve the same understanding of the configuration of Sidelink authorized resources between the terminal and the control node, thereby ensuring the appropriateness of the allocation of the sidelink authorized resources by the control node, and improving the accuracy of the terminal in determining the configuration of the Sidelink authorized resources.
  • the communication device provided by the embodiment of the present invention is a communication device capable of executing the above resource determination method, and all the embodiments of the above resource determination method are applicable to the communication device, and can achieve the same or similar beneficial effects. .
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1201 and various circuits of the memory represented by the memory 1203 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 1202 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the method described in each embodiment of the present invention.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种资源确定方法及通信设备,该方法包括:根据时间间隔y 2和物理旁链路反馈信道PSFCH的第一时域位置,或者,根据时间间隔y 2和PSFCH的第二时域位置,确定目标上行信道的时域资源;所述时间间隔y 2为PSFCH与目标上行信道之间的时间间隔。

Description

资源确定方法及通信设备
相关申请的交叉引用
本申请主张在2020年1月14日在中国提交的中国专利申请号No.202010038446.9的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其是指一种资源确定方法及通信设备。
背景技术
Sidelink(直通链路或旁链路)终端可以在Sidelink上和其他终端进行通信,这些终端通常是支持Sidelink技术的车辆、路侧单元(Road Site Unit,RSU)、手机等。
用户在进行Sidelink传输(发送或者接收)时会基于选择的同步源(synchronization reference source)或又称为同步参考(synchronization reference)或又称为定时参考(timing reference)的定时来进行,用户的同步源可以是基站、全球卫星导航系统(Global Navigation Satellite System,GNSS)、自身本地时钟产生的定时或者其他设备提供的定时。Sidelink资源可能基于Sidelink定时进行编号,此时Sidelink的帧号称为直连帧号(Direct Frame Number,DFN)。可能存在以下场景:
一种场景是载波1上的控制节点调度用户在载波2上进行Sidelink传输,该用户在载波2上使用该控制节点的定时作为自己Sidelink传输的Sidelink定时。
另一种场景是工作在载波1上的控制节点调度用户在载波2上进行Sidelink传输,该用户在载波2上使用其他定时,例如GNSS的定时作为自己Sidelink传输的Sidelink定时。此时Uu定时和Sidelink定时可能不对齐。
此外,sidelink和Uu的子载波间隔(subcarrier spacing,SCS)也可能不同,因此定时精度也不相同。
为了提高Sidelink上数据传输的可靠度和资源利用率,在Sidelink技术 中也引入了混合自动重选请求(Hybrid Automatic Repeat reQuest,HARQ)反馈机制;Sidelink接收用户收到Sidelink数据(Sidelink数据在物理旁链路共享信道PSSCH上传输,其中PSSCH由旁链路控制信息SCI调度,SCI在物理旁链路控制信道PSCCH和/或PSSCH上传输)后可以通过反馈Sidelink HARQ-ACK信息来指示Sidelink的传输是成功还是失败,该Sidelink HARQ-ACK在物理旁链路反馈信道(Physical Sidelink Feedback Channel,PSFCH)资源上传输。
Sidelink数据包的传输可能是在控制节点和终端之间进行的(此时控制节点工作在sidelink),也可能是在终端和终端之间的sidelink上进行的,对后者这种情况,控制节点可能无法直接知道该sidelink数据包的传输是否成功,需要由用户将Sidelink HARQ ACK信息(例如sidelink ACK/NACK)发送给控制节点,从而控制节点才可以进一步确定sidelink上的传输是否成功。将某个sidelink传输对应的Sidelink HARQ-ACK信息发给控制节点的终端是发送这个sidelink传输的发送终端。为了保证Sidelink HARQ-ACK信息的发送,控制节点需要为终端分配物理上行控制信道(Physical Uplink Control Channel,PUCCH)/物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源。
但是Sidelink定时和Uu定时可能不同,和/或,定时精度不同,用户理解的Sidelink传输资源/PSFCH/PUCCH/PUSCH资源位置和控制节点理解的Sidelink传输资源/PSFCH/PUCCH/PUSCH资源可能不同或可能存在模糊性。
发明内容
本发明实施例提供一种资源确定方法及通信设备,以解决现有技术中终端和控制节点对上行信道资源的理解可能不一致的问题。
为了解决上述技术问题,本发明实施例是这样实现的:一种资源确定方法,包括:
根据时间间隔y 2和物理旁链路反馈信道PSFCH的第一时域位置T PSFCH_SL,或者,根据时间间隔y 2和PSFCH的第二时域位置T PSFCH_Uu,确定目标上行信道的时域资源;所述时间间隔y 2为PSFCH与目标上行信道之间的时间间隔;其中,所述目标上行信道的时域资源满足下述任意一项条件:
T PSFCH_SL+y 2的时间范围内第A个时域资源;
T PSFCH_Uu+y 2的时间范围内第A个时域资源;
和T PSFCH_SL+y 2重叠的第A个时域资源;
和T PSFCH_Uu+y 2重叠的第A个时域资源;
不早于T PSFCH_SL+y 2的第A个时域资源;
不早于T PSFCH_Uu+y 2的第A个时域资源;
其中,A为大于或者等于1的整数。
本发明实施例还提供了一种资源确定方法,包括:
获取旁链路Sidelink定时、Uu定时以及定时偏移中的至少一项;其中,定时偏移为Sidelink定时和Uu定时之间时间偏移;
根据所述Sidelink定时、所述Uu定时以及所述定时偏移中的至少一项,确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程。
本发明实施例还提供了一种通信设备,包括:
第一确定模块,用于根据时间间隔y 2和物理旁链路反馈信道PSFCH的第一时域位置T PSFCH_SL,或者,根据时间间隔y 2和PSFCH的第二时域位置T PSFCH_Uu,确定目标上行信道的时域资源;所述时间间隔y 2为PSFCH与目标上行信道之间的时间间隔;其中,所述目标上行信道的时域资源满足下述任意一项条件:
T PSFCH_SL+y 2的时间范围内第A个时域资源;
T PSFCH_Uu+y 2的时间范围内第A个时域资源;
和T PSFCH_SL+y 2重叠的第A个时域资源;
和T PSFCH_Uu+y 2重叠的第A个时域资源;
不早于T PSFCH_SL+y 2的第A个时域资源;
不早于T PSFCH_Uu+y 2的第A个时域资源;
其中,A为大于或者等于1的整数。
本发明实施例还提供了一种通信设备,包括:
第二获取模块,用于获取旁链路Sidelink定时、Uu定时以及定时偏移中的至少一项;其中,定时偏移为Sidelink定时和Uu定时之间时间偏移;
第二确定模块,用于根据所述Sidelink定时、所述Uu定时以及所述定时偏移中的至少一项,确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程。
本发明实施例还提供了一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的资源确定方法的步骤。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上所述的资源确定方法的步骤。
在本发明实施例中,终端和控制节点根据时间间隔y 2和PSFCH的第一时域位置确定目标上行信道的时域资源,或者,终端和控制节点根据时间间隔y 2和PSFCH的第二时域位置确定目标上行信道的时域资源,且确定目标上行信道的时域资源满足的条件,能够实现终端和控制节点对目标上行信道的时域资源的理解一致,从而保证控制节点对目标上行信道的资源分配的适当性,提升终端确定目标上行信道的资源的准确率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示本发明实施例提供的资源确定方法的步骤流程图之一;
图2表示本发明实施例提供的资源确定方法的示例一的原理示意图;
图3表示本发明实施例提供的资源确定方法的示例二的原理示意图;
图4表示本发明实施例提供的资源确定方法的示例三的原理示意图;
图5表示本发明实施例提供的资源确定方法的示例四的原理示意图之一;
图6表示本发明实施例提供的资源确定方法的示例四的原理示意图之二;
图7表示本发明实施例提供的资源确定方法的示例四的原理示意图之三;
图8表示本发明实施例提供的通信设备的结构示意图之一;
图9表示本发明实施例提供的资源确定方法的步骤流程图之二;
图10表示本发明实施例提供的通信设备的结构示意图之二;
图11表示本发明实施例提供的终端的结构示意图;
图12表示本发明实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本发明实施例提供的资源确定方法既可以应用于终端也可以应用于控制节点;其中,终端可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本、可穿戴式设备(Wearable Device)、车载设备或者个人数字助理(Personal Digital Assistant,PDA)等。需要说明的是,在本发明实施例中并不限定终端的具体类型。控制节点指的是基站或者一些集成接入回程节点(Integrated Access Backhaul,IAB),在sidelink中,控制节点可以是终端,路侧单元(Road Side Unit,RSU),基站,也可能是一些类似RSU或者IAB的其他网络设施,因此一些控制节点可能同时具备sidelink和Uu链路;其中,基站可以为通常所用的基站,也可以为演进型基站(evolved node base station,eNB),还可以为5G系统中的网络侧设备(例如下一代基站(next generation node base station,gNB)或发送和接收点(transmission and reception point,TRP))或者小区cell等设备。
需要说明的是,本发明实施提及的Uu传输、Uu SCS、Uu链路、Uu资源的含义是终端和基站之间上行传输和/或下行的传输、终端和基站之间上行SCS和/或下行SCS、终端和基站之间上行链路和/或下行链路、终端和基站之 间上行资源和/或下行资源等。
其中,控制节点对终端的调度包括:Inter-RAT sidelink调度和intra-RAT sidelink调度);
例如,控制节点为LTE基站时,控制节点可以调度NR sidelink(此种情况称为:Inter-RAT sidelink调度)或者LTE sidelink(此种情况称为:intra-RAT sidelink调度)。控制节点为5G或者以后版本的基站时,控制节点可以调度NR sidelink(此种情况称为:intra-RAT sidelink调度)或者LTE sidelink(此种情况称为:Inter-RAT sidelink调度)。
如图1所示,本发明实施例提供一种资源确定方法,包括:
步骤101,根据时间间隔y 2和物理旁链路反馈信道PSFCH的第一时域位置T PSFCH_SL,或者,根据时间间隔y 2和PSFCH的第二时域位置T PSFCH_Uu,确定目标上行信道的时域资源;所述时间间隔y 2为PSFCH与目标上行信道之间的时间间隔;其中,所述目标上行信道的时域资源满足下述任意一项条件:
T PSFCH_SL+y 2的时间范围内第A个时域资源;
T PSFCH_Uu+y 2的时间范围内第A个时域资源;
和T PSFCH_SL+y 2重叠的第A个时域资源;
和T PSFCH_Uu+y 2重叠的第A个时域资源;
不早于T PSFCH_SL+y 2的第A个时域资源,或称为:不早于对应T PSFCH_SL+y 2的时域资源的第A个时域资源;
不早于T PSFCH_Uu+y 2的第A个时域资源,或称为:不早于对应T PSFCH_Uu+y 2的时域资源的第A个时域资源;
其中,A为大于或者等于1的整数。
本发明实施例中,若目标上行信道的时域资源为T PSFCH_SL+y 2的时间范围内第A个时域资源,或者,T PSFCH_SL+y 2重叠的第A个时域资源,或者,不早于T PSFCH_SL+y 2的第A个时域资源的情况下,终端和控制节点能够基于Sidelink定时实现对目标上行信道的时域资源的理解一致;
若目标上行信道的时域资源为T PSFCH_Uu+y 2的时间范围内第A个时域资源,或者,和T PSFCH_Uu+y 2重叠的第A个时域资源,或者,不早于T PSFCH_Uu+y 2的第A个时域资源的情况下,终端和控制节点能够基于Uu定时实现对目标 上行信道的时域资源的理解一致。
本步骤中,对于终端和控制节点而言,时间间隔y 2可以是预先约定的;对于终端来说,时间间隔y 2也可以是高层配置的,或者是基站通过下行控制信息DCI配置的,在此不做具体限定。目标上行信道包括:物理上行控制信道PUCCH或物理上行共享信道PUSCH。
可选的,上述第A个时域资源具体可以为:第A个时域资源,或者,第A个可用时域资源。例如,T PSFCH_SL+y 2的时间范围内第1(假设A=1)个时域资源为:T PSFCH_SL+y 2的时间范围内的第1个时域资源,或者,T PSFCH_SL+y 2的时间范围内的第1个可用时域资源(若T PSFCH_SL+y 2的时间范围内的第1个时域资源不可用、第2个时域资源可用,则该T PSFCH_SL+y 2的时间范围内的第2个时域资源为上述第1个可用时域资源)。
例如T PSFCH_SL+y 2对应的15kHz时隙对应两个30kHz的时隙,第A=1个时域资源则表示T PSFCH_SL+y 2对应的15kHz时隙内的第一个30kHz的时隙。
例如T PSFCH_SL+y 2对应的15kHz时隙对应两个30kHz的时隙,其中第一个时隙用于下行,第二个时隙用于上行,第A=1个可用的时域资源则表示T PSFCH_SL+y 2对应的15kHz时隙内的第一个可用于上行30kHz的UL时隙。
需要说明的是,终端和控制节点根据下行控制信息DCI、PSCCH配置、PSSCH配置、PSFCH配置中的至少一个可以分别确定T PSFCH_Uu。可选的,T PSFCH_SL为PSFCH的接收或发送时间,例如,接收或发送PSFCH的Sidelink时隙的起点。
作为一种实现方式,上述时域资源可以为时隙,例如,不早于T PSFCH_Uu+y 2的第A个时隙,或者,不早于对应T PSFCH_Uu+y 2的Sidelink时隙的第A个时隙,或者,不早于对应T PSFCH_Uu+y 2的Uu时隙的第A个时隙。
可选地,上述不早于是指时域资源的起点不早于,例如,时隙的起点不早于。
可选的,所述目标上行信道用于传输旁链路Sidelink的混合自动重传请求应答HARQ-ACK信息。
例如,一个目标上行信道的资源可能关联一个或者多个(物理Sidelink反馈信道)PSFCH,终端将从其关联的PSFCH上获取的Sidelink的HARQ-ACK 信息经过一定的处理后在该目标上行信道上发送给控制节点。
其中,Uu链路的HARQ-ACK信息或其他反馈信息也可以复用在目标上行信道上,在此不做具体限定。
可选的,PSFCH的第一时域位置为基于Sidelink定时确定的PSFCH的时域位置;PSFCH的第二时域位置为基于Uu定时确定的PSFCH的时域位置。
需要说明是,Sidelink定时和Uu定时之间的时间偏移可以为0,也可以不为0。sidelink的子载波间隔(SubCarrier Spacing,SCS)和Uu的子载波间隔可能相同,也可能不同;因此定时精度可能相同也可能不相同。
作为一个可选实施例,在Sidelink定时和Uu定时之间存在定时偏移的情况下,所述方法还包括:
根据下行控制信息DCI的时域位置T DCI_Uu、DCI和所述DCI指示的Sidelink资源之间的时间间隔y 1、时间间隔gap、以及Sidelink定时和Uu定时之间的定时偏移offset中的至少一项,确定PSFCH的第一时域位置T PSFCH_SL;其中,时间间隔gap为Sidelink资源和所述Sidelink资源对应的PSFCH之间的时间间隔,或者时间间隔gap为Sidelink资源和所述目标上行信道对应的PSFCH之间的时间间隔。例如,T PSFCH_SL=T DCI_Uu’+y 1+gap+offset。其中,T DCI_Uu’等于T DCI_Uu或T DCI_Uu所在时域资源的起点或终点。
换言之,第一时域位置T PSFCH_SL与下行控制信息DCI的时域位置T DCI_Uu、DCI和所述DCI指示的Sidelink资源之间的时间间隔y 1、时间间隔gap、以及Sidelink定时和Uu定时之间的定时偏移offset中的至少一项相关。
或者,在Sidelink定时和Uu定时之间存在定时偏移的情况下,所述方法还包括:根据PSFCH的第二时域位置T PSFCH_Uu以及Sidelink定时和Uu定时之间的定时偏移offset,确定PSFCH的第一时域位置T PSFCH_SL。例如,T PSFCH_SL=T PSFCH_Uu+offset。
换言之,第一时域位置T PSFCH_SL与PSFCH的第二时域位置T PSFCH_Uu以及Sidelink定时和Uu定时之间的定时偏移offset相关。
其中,由于定时偏移的值可能为整数,也可能为非整数;在定时偏移的值为非整数的情况下,上述公式中offset的一种取值是对定时偏移向上取整 后对应的值,例如offset=ceil(定时偏移);另一个取值是对定时偏移向下取整后对应的值,例如offset=floor(定时偏移)。具体的,在一种实现中,T DCI_Uu为终端接收到DCI的时间减去1/2TA(TA为时间提前的相关量,例如定时提前Timing Advance。
在一种实现中y 1为DCI和所述DCI指示的第一个Sidelink资源之间的时间间隔;另一种实现中,gap为第一个Sidelink资源和所述第一个Sidelink资源对应的PSFCH之间的时间间隔。另一种实现中gap为第一个Sidelink资源和所述目标上行信道对应的PSFCH之间的时间间隔。进一步可选地,gap可能是第一个sidelink资源和最后一个Sidelink资源对应的PSFCH之间的时间间隔。
具体地,假设一个DCI调度B个sidelink资源或者一个配置sidelink授权资源中包含B个sidelink资源,每个sidelink资源对应一个PSFCH时机,不同的sidelink资源对应的PSFCH时机可能为相同的PSFCH时机,但是也可能为不同的PSFCH时机,这些时机可能对应同一个目标上行信道。在一种实现中,gap为第一个Sidelink资源和第B个Sidelink资源对应的PSFCH时机之间的时间间隔。
需要说明的是,第一个Sidelink传输开始的时间不早于T DCI_Uu+y 1的第一个Sidelink时域资源(例如Sidelink时隙)。
作为一个可选实施例,在Sidelink定时和Uu定时之间不存在定时偏移(即定时偏移为0,或者,Sidelink定时和Uu定时对齐)的情况下,所述方法还包括:
根据下行控制信息DCI的时域位置T DCI_Uu、DCI和所述DCI指示的Sidelink资源之间的时间间隔y 1以及时间间隔gap中的至少一项,确定PSFCH的第一时域位置T PSFCH_SL;其中,时间间隔gap为Sidelink资源和所述Sidelink资源对应的PSFCH之间的时间间隔,或者时间间隔gap为Sidelink资源和所述目标上行信道对应的PSFCH之间的时间间隔;例如,T PSFCH_SL=T DCI_Uu’+y 1+gap。其中,T DCI_Uu’等于T DCI_Uu或T DCI_Uu所在时域资源的起点或终点。
换言之,第一时域位置T PSFCH_SL与下行控制信息DCI的时域位置T DCI_Uu、 DCI和所述DCI指示的Sidelink资源之间的时间间隔y 1、以及时间间隔gap中的至少一项相关。
或者,在Sidelink定时和Uu定时之间不存在定时偏移(即定时偏移为0,或者,Sidelink定时和Uu定时对齐)的情况下,所述方法还包括:
根据PSFCH的第二时域位置T PSFCH_Uu,确定PSFCH的第一时域位置T PSFCH_SL;例如,T PSFCH_SL=T PSFCH_Uu
换言之,第一时域位置T PSFCH_SL与PSFCH的第二时域位置T PSFCH_Uu相关。
具体的,在一种实现中,T DCI_Uu为终端接收到DCI的时间减去1/2TA(TA为时间提前的相关量,例如定时提前Timing Advance。在一种实现中,第一个Sidelink传输开始的时间不早于T DCI_Uu+y 1的第一个Sidelink时域资源(例如Sidelink时隙)。
需要说明的是,上述T DCI_Uu所在时域资源的起点或终点中,时域资源的一种可能性是Uu时隙或Sidelink时隙;优选的,该时隙资源为Sidelink时隙。
可选的,y 1为DCI和所述DCI指示的第一个PSSCH和PSCCH资源之间的时间间隔;或者,y 1为DCI和所述DCI指示的第一个PSSCH资源之间的时间间隔;或者,y 1为DCI和所述DCI指示的第一个PSCCH资源之间的时间间隔。
具体的,y 1为DCI和DCI指示的第一Sidelink传输之间的时间间隔;或者,gap为第一个Sidelink传输和第一个Sidelink传输对应的PSFCH之间的时间间隔。另一种实现中gap为第一个Sidelink资源和所述目标上行信道对应的PSFCH之间的时间间隔。进一步可选地,gap可能是第一个sidelink资源和最后一个Sidelink资源对应的PSFCH之间的时间间隔。
具体地,假设一个DCI调度B个sidelink资源或者一个配置sidelink授权资源中包含B个sidelink资源,每个sidelink资源对应一个PSFCH时机,不同的sidelink资源对应的PSFCH时机可能为相同的PSFCH时机,但是也可能为不同的PSFCH时机,这些时机可能对应同一个目标上行信道。在一种实现中,gap为第一个Sidelink资源和第B个Sidelink资源对应的PSFCH时机之间的时间间隔。
作为另一个可选实施例,所述offset是根据Sidelink子载波间隔计算的, 或者,所述offset是根据上行链路子载波间隔计算的。优选的,所述offset是根据上行链路子载波间隔计算的。
作为又一个可选实施例,所述y 2是根据Sidelink子载波间隔计算的,或者,所述y 2是上行链路子载波间隔计算的。
作为另一个可选实施例,所述gap是根据Sidelink子载波间隔计算的,或者,所述gap是根据上行链路子载波间隔计算的。
可选的,对于某些特殊情况下,例如N个Sidelink传输都对应相同的PSFCH时域资源或者该目标上行信道前只有一个PSFCH时域资源可以和N个Sidelink传输对应,且调度或配置的Sidelink传输的个数为N时,所述方法还包括:
根据PSFCH的周期N和PSFCH和对应的物理旁链路共享信道PSSCH之间的间隔K,确定所述gap。即在控制节点调度的Sidelink传输的个数与PSFCH的周期相同的情况下,或者配置Sidelink传输的个数与PSFCH的周期相同的情况下,
gap=K+N;
其中,在一种实现中,N为PSFCH的周期,K为PSFCH和对应的物理旁链路共享信道PSSCH之间的最小间隔(例如MinTimeGapPSFCH)。
需要说明的是,在一种实现中,K和N的粒度为逻辑时隙(例如Sidelink时隙);y 2的粒度为物理时隙;因此K个Sidelink时隙之间的实际距离可能大于K时隙的时长,N个Sidelink时隙之间的实际距离是可能大于N时隙的时长的。
作为另一个可选实施例,所述第A个时域资源包括:第A个Sidelink时域资源,或者,第A个Uu时域资源。
其中,所述第A个Uu时域资源为第A个上行时域资源。
可选地,上行时域资源是可以用于上行资源内传输的资源。
例如,满足上述任意一项条件的第一个时隙为下行时隙,此时不能用于PUCCH传输,需要继续顺延到最近一个可用于上行传输的时隙。
需要说明的是,上述T PSFCH_SL、T PSFCH_Uu、y 2、T DCI_Uu’、T DCI_Uu、y 1、gap、offset、N、K等参量的子载波间隔可能相同或不同;或者,上述参量可能为逻 辑时间,或者,物理时间;因此本发明的上述实施例提及的公式的具体计算过程中可能需要转换SCS和/或统一转换为逻辑时间或物理时间,在此不做具体限制。
下面结合几个示例及附图对本发明实施例提供的资源确定方法进行描述。需要说明的,下述实例中主要以DCI或者高层配置的所有sidelink资源对应相同的PSFCH时机(occasion,或者时域资源)进行举例,当不同的资源对应不同的PSFCH时机时,实现方法类似,但是gap可能需要重新计算,例如计算为第一sidelink资源和目标上行信道对应的PSFCH时机的时间间隔,可选地,目标上行信道对应的PSFCH时机为最后一个sidelink资源对应的PSFCH时机。
进一步需要说明的是,图2-图7中,阴影部分为PSFCH。
示例一,Sidelink定时和Uu定时之间存在定时偏移offset。
假设offset=0.5个Sidelink时隙=0.5个UL时隙;DCI调度两个Sidelink传输且K=N=2;上行链路子载波间隔(UL SCS)=Sidelink子载波间隔(Sidelink SCS)=30kHz。
按照基站定时,y2=2(30kHz时隙)对应的时隙为时隙1,而按照Sidelink定时y2=2对应的时隙为时隙1’,如图2所示,可以看出时隙1和时隙1’的位置不同。终端实际上会认为PUCCH的发送不能早于时隙1’,由于PUCCH资源是Uu资源,因此实际用于sidelink的HARQ-ACK信息反馈的PUCCH资源应该是以下情况中的一种:
和时隙1’重叠且不早于时隙1’的可用Uu时隙或UL时隙;
或者说,不早于时隙1’的最近一个可用Uu时隙或UL时隙;
或者说,对应T PSFCH_Uu+2+ceil(0.5)=T PSFCH_Uu+3对应的Uu时隙;
或者说,不早于T PSFCH_Uu+2+ceil(0.5)=T PSFCH_Uu+3对应的Uu时隙的最近一个可用UL时隙。
例如,如图2所示的时隙2上的PUCCH资源。该示例中,假设T PSFCH_Uu是PSFCH所在时隙的起点,因此,T PSFCH_Uu+2对应图2中的时隙1,T PSFCH_Uu+3对应图2中的时隙2;当T PSFCH_Uu定义为PSFCH所在时隙的终点时,T PSFCH_Uu+2和T PSFCH_Uu+3对应的时隙会对应性调整,例如后移。
示例二,Sidelink定时和Uu定时之间存在定时偏移offset。
假设offset=0.5Sidelink时隙=0.25UL时隙;DCI调度两个Sidelink传输且K=N=2;上行链路子载波间隔(UL SCS)=15kHz,Sidelink子载波间隔(Sidelink SCS)=30kHz。
按照基站定时y2=1(15kHz时隙)对应的时隙为时隙1,而按照Sidelink定时y2=1对应的时隙为时隙1’,如图3所示,可以看出时隙1和时隙1’的位置不同。因此实际用于sidelink的HARQ-ACK信息反馈的PUCCH资源应该是以下情况中的一种:
和时隙1’重叠且不早于时隙1’的可用Uu时隙或UL时隙;
或者说,不早于时隙1’的最近一个可用Uu时隙或UL时隙;
或者说,对应T PSFCH_Uu+2+ceil(0.5)=T PSFCH_Uu+3对应的sidelink时隙的最近一个可用Uu时隙或UL时隙,这里的2和0.5是分别指y 2和offset按照sidelink SCS换算后的时隙数;
或者说,对应T PSFCH_Uu+1+ceil(0.25)=T PSFCH_Uu+2对应的Uu时隙或UL时隙;这里的1和0.5是分别指y 2和offset按照UL SCS换算后的时隙数;
或者说,对应T PSFCH_Uu+1+ceil(0.25)=T PSFCH_Uu+2对应的Uu时隙的最近一个可用UL时隙,这里的1和0.25是分别指y 2和offset按照UL SCS换算后的时隙数;
或者说,T PSFCH_Uu+1+ceil(0.5)=T PSFCH_Uu+1UL slot duration+1SL slot duration对应的Uu时隙或者UL时隙,这里的1指y 2按照UL SCS换算后的时隙数,0.5是指offset按照sidelink SCS换算后的时隙数;
或者说,T PSFCH_Uu+1+ceil(0.5)=T PSFCH_Uu+1UL slot duration+1SL slot duration对应的Uu时隙的最近一个可用UL时隙,这里的1指y 2按照UL SCS换算后的时隙数,0.5是指offset按照sidelink SCS换算后的时隙数。
例如,如图3所示的时隙2上的PUCCH资源。该示例中,假设T PSFCH_Uu是PSFCH所在时隙的起点,因此,T PSFCH_Uu+1对应图3中时隙1对应的UL SCS的时隙;当T PSFCH_Uu+1定义为PSFCH所在时隙的终点时,T PSFCH_Uu+y 2 对应的时隙会对应性调整,例如后移。
示例三,Sidelink定时和Uu定时之间存在定时偏移offset。
假设offset=0.75Sidelink时隙=1.5UL时隙;DCI调度两个Sidelink传输且K=N=2;上行链路子载波间隔(UL SCS)=30kHz,Sidelink子载波间隔(Sidelink SCS)=15kHz。
按照基站定时y2=4(30kHz)对应的时隙为时隙1,而按照Sidelink定时y2=4对应的时隙为时隙1’,如图4所示,可以看出时隙1和时隙1’的位置不同。因此实际用于sidelink的HARQ-ACK信息反馈的PUCCH资源应该是以下情况中的一种:
和时隙1’重叠且不早于时隙1’的可用Uu时隙或UL时隙;
或者说,不早于时隙1’的最近一个可用Uu时隙或UL时隙;
或者说,对应T PSFCH_Uu+2+ceil(0.75)=T PSFCH_Uu+3对应的时隙的最近可用Uu时隙或UL时隙,这里的2和0.75是分别指y 2和offset按照sidelink SCS换算后的时隙数;
或者说,对应T PSFCH_Uu+4+ceil(1.5)=T PSFCH_Uu+6对应的可用Uu时隙或UL时隙;这里的4和1.5是分别指y 2和offset按照UL SCS换算后的时隙数;
或者说,对应T PSFCH_Uu+4+ceil(1.5)=T PSFCH_Uu+6对应的Uu时隙的最近一个可用UL时隙,这里的4和1.5是分别指y 2和offset按照UL SCS换算后的时隙数;
或者说,T PSFCH_Uu+2+ceil(0.75)=T PSFCH_Uu+1UL slot duration+1SL slot duration对应的Uu时隙或者UL时隙,这里的2指y 2按照UL SCS换算后的时隙数,0.75是指offset按照sidelink SCS换算后的时隙数;
或者说,T PSFCH_Uu+2+ceil(0.75)=T PSFCH_Uu+1UL slot duration+1SL slot duration对应的Uu时隙的最近一个可用UL时隙,这里的2指y 2按照UL SCS换算后的时隙数,0.75是指offset按照sidelink SCS换算后的时隙数。
例如,如图4所示的时隙3上的PUCCH资源。再例如,如图4所示,以“Sidelink SCS”为精度,时隙3对应图4中的“+3”(A等于1);以“UL  SCS”为精度,时隙3对应4中的“+6”(A等于1)和“+7”(A等于2),则实际用于sidelink的HARQ-ACK信息反馈的PUCCH资源为图4中的“+3”、“+6”和“+7”中的任意一个。
换言之,A不等于1的情况,也可称为:不早于T PSFCH_Uu+y 2或T PSFCH_SL+y 2的时域范围内的内的第2个时域资源、第3个时域资源等。其中,T PSFCH_Uu+y 2或T PSFCH_SL+y 2的时域范围对应的SCS和“第2个时域资源、第3个时域资源”对应的SCS不同。
该示例中,假设T PSFCH_Uu是PSFCH所在时隙的起点,因此,T PSFCH_Uu+1对应图3中时隙1对应的UL SCS的时隙;当T PSFCH_Uu+1定义为PSFCH所在时隙的终点时,T PSFCH_Uu+y 2对应的时隙会对应性调整,例如后移。
示例四,Sidelink定时和Uu定时对齐,即定时偏移offset=0。
假设DCI调度两个Sidelink传输且K=N=2,UL SCS=30kHz,SL SCS=30kHz。如图5所示,y 1=1时隙;y 2=1(30kHz)时隙,此时基站和控制节点对PUCCH资源的理解一致,即PUCCH资源为时隙1’。
假设DCI调度两个Sidelink传输且K=N=2,UL SCS=15kHz,SL SCS=30kHz。如图6所示,y 1=2时隙;y 2=1(15kHz)时隙,此时PUCCH资源为不早于时隙1’的最近一个可用Uu时隙或UL时隙。
假设DCI调度两个Sidelink传输且K=N=2,UL SCS=30kHz,SL SCS=15kHz。如图7所示,y 1=1时隙;y 2=4(30kHz)时隙,此时PUCCH资源为不早于时隙1’的最近一个可用Uu时隙或UL时隙。
综上,本发明实施例中终端和控制节点根据所述时间间隔y 2和所述PSFCH的第一时域位置确定目标上行信道的时域资源,或者,终端和控制节点根据所述时间间隔y 2和所述PSFCH的第二时域位置确定目标上行信道的时域资源,且确定目标上行信道的时域资源满足的条件,能够实现终端和控制节点对目标上行信道的时域资源的理解一致,从而保证控制节点对目标上行信道的资源分配的适当性,提升终端确定目标上行信道的资源的准确率。
如图8所示,本发明实施例还提供一种通信设备800,包括:
第一确定模块801,用于根据时间间隔y 2和物理旁链路反馈信道PSFCH的第一时域位置T PSFCH_Uu,或者,根据时间间隔y 2和PSFCH的第二时域位置 T PSFCH_SL,确定目标上行信道的时域资源;所述时间间隔y 2为PSFCH与目标上行信道之间的时间间隔;其中,所述目标上行信道的时域资源满足下述任意一项条件:
T PSFCH_SL+y 2的时间范围内第A个时域资源;
T PSFCH_Uu+y 2的时间范围内第A个时域资源;
和T PSFCH_SL+y 2重叠的第A个时域资源;
和T PSFCH_Uu+y 2重叠的第A个时域资源;
不早于T PSFCH_SL+y 2的第A个时域资源;
不早于T PSFCH_Uu+y 2的第A个时域资源;
其中,A为大于或者等于1的整数。
可选的,本发明的上述实施例中,所述目标上行信道用于传输旁链路Sidelink的混合自动重传请求应答HARQ-ACK信息。
可选的,本发明的上述实施例中,PSFCH的第一时域位置为基于Sidelink定时确定的PSFCH的时域位置;
PSFCH的第二时域位置为基于Uu定时确定的PSFCH的时域位置。
可选的,本发明的上述实施例中,所述方法还包括:
根据下行控制信息DCI的时域位置T DCI_Uu、DCI和所述DCI指示的Sidelink资源之间的时间间隔y 1、时间间隔gap、以及Sidelink定时和Uu定时之间的定时偏移offset中的至少一项,确定PSFCH的第一时域位置T PSFCH_SL;其中,时间间隔gap为Sidelink资源和所述Sidelink资源对应的PSFCH之间的时间间隔,或者时间间隔gap为Sidelink资源和所述目标上行信道对应的PSFCH之间的时间间隔;
或者,
根据PSFCH的第二时域位置T PSFCH_Uu以及Sidelink定时和Uu定时之间的定时偏移offset,确定PSFCH的第一时域位置T PSFCH_SL
可选的,本发明的上述实施例中,所述方法还包括:
根据下行控制信息DCI的时域位置T DCI_Uu、DCI和所述DCI指示的Sidelink资源之间的时间间隔y 1以及时间间隔gap中的至少一项,确定PSFCH的第一时域位置T PSFCH_SL;其中,时间间隔gap为Sidelink资源和所述Sidelink 资源对应的PSFCH之间的时间间隔,或者时间间隔gap为Sidelink资源和所述目标上行信道对应的PSFCH之间的时间间隔;
或者,
根据PSFCH的第二时域位置T PSFCH_Uu,确定PSFCH的第一时域位置T PSFCH_SL
可选的,本发明的上述实施例中,所述offset是根据Sidelink子载波间隔计算的,或者,所述offset是根据上行链路子载波间隔计算的。
可选的,本发明的上述实施例中,所述y 2是根据Sidelink子载波间隔计算的,或者,所述y 2是上行链路子载波间隔计算的。
可选的,本发明的上述实施例中,所述gap是根据Sidelink子载波间隔计算的,或者,所述gap是根据上行链路子载波间隔计算的。
可选的,本发明的上述实施例中,在控制节点调度的Sidelink资源的个数与PSFCH的周期相同的情况下,所述方法还包括:
根据PSFCH的周期N和PSFCH和对应的物理旁链路共享信道PSSCH之间的间隔K,确定所述gap。
可选的,本发明的上述实施例中,所述第A个可用时域资源包括:第A个可用Sidelink时域资源,或者,第A个可用Uu时域资源。
本发明实施例提供的通信设备能够实现图1至图7的方法实施例中通信设备实现的各个过程,为避免重复,这里不再赘述。
综上,本发明实施例中终端和控制节点根据所述时间间隔y 2和所述PSFCH的第一时域位置确定目标上行信道的时域资源,或者,终端和控制节点根据所述时间间隔y 2和所述PSFCH的第二时域位置确定目标上行信道的时域资源,且确定目标上行信道的时域资源满足的条件,能够实现终端和控制节点对目标上行信道的时域资源的理解一致,从而保证控制节点对目标上行信道的资源分配的适当性,提升终端确定目标上行信道的资源的准确率。
需要说明的是,本发明实施例提供的通信设备是能够执行上述资源确定方法的通信设备,则上述资源确定方法的所有实施例均适用于该通信设备,且均能达到相同或相似的有益效果。
优选的,本发明实施例还提供一种通信设备,包括处理器,存储器,存储 在存储器上并可在所述处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
如图9所示,本发明实施例还提供一种资源确定方法,包括:
步骤901,获取旁链路Sidelink定时、Uu定时以及定时偏移中的至少一项;其中,定时偏移为Sidelink定时和Uu定时之间时间偏移;
步骤902,根据所述Sidelink定时、所述Uu定时以及所述定时偏移中的至少一项,确定配置Sidelink授权资源(sidelink configured grant或configured sidelink grant)和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程。
其中,定时偏移为Uu定时和Sidelink定时之间的offset,该offset的精度可能是微秒us;符号;时隙slot;子帧subframe;毫秒ms;帧frame;秒second等中的至少一个,在公式中定时偏移offset可能需要转换为相应的单位,例如转化为us数目,符号数目,slot数目,subframe数目,ms数目,second数目,frame数目中的至少一个,不做限制。
本发明实施例提供至少三种确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程的方式,分别包括:
方式一:基于Sidelink定时(例如直接帧号DFN),确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程。
方式二:基于Uu定时(例如系统帧号SFN)以及定时偏移,确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程。
方式三:基于Uu定时(例如系统帧号SFN),确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程。
方式三,一种实现方式是,终端假设y 4足够大到处理完Sidelink传输/PSFCH收发/PUCCH/PUSCH进程涉及的步骤。另一种实现方式是,终端在配置Sidelink授权资源传输时需要提前TA/2或TA进行传输。又一个实现方式是,终端在配置Sidelink授权资源传输时,假设(assume)或者期望(expect)配置Sidelink授权资源所在时隙边界和最近一次收到的下行控制信息或同步信号块SSB或信道状态信息参考信号CSI-RS或其他下行信号所在的时隙的定时提前TA/2或TA后推出的时隙边界或子帧边界或帧边界对齐;需要说明的是,边界对齐不意味着重叠。
作为一个可选实施例,所述方法还包括:
根据下行控制信息DCI和DCI指示的Sidelink资源之间的间隔y 3或者配置Sidelink授权的偏移值y 3、物理旁链路反馈信道PSFCH和用于传输Sidelink的HARQ-ACK信息的信道之间的间隔y 4、配置Sidelink授权资源内数据资源和/或控制资源占据的时域范围S 1、PSFCH的周期N以及PSFCH和对应的物理旁链路共享信道PSSCH之间的间隔K中的至少一项,确定配置Sidelink授权资源的周期。可选的,K为PSFCH和对应的PSSCH之间的最小间隔。
例如,所述配置Sidelink授权资源的周期满足下述至少一个条件:
大于y 3+S 1+(N+K-1);
等于y 3+S 1+(N+K-1);
大于S 1+(N+K-1)+y 4
等于S 1+(N+K-1)+y 4
大于y 3+S 1+(N+K-1)+y 4
等于y 3+S 1+(N+K-1)+y 4
其中,y 3为下行控制信息DCI和DCI指示的Sidelink资源之间的间隔或者配置Sidelink授权的偏移值(例如,timeOffsetCGType1),可选地,该值可能为0,此时上述公式中没有y 3;y 4为物理旁链路反馈信道PSFCH和用于传输Sidelink的HARQ-ACK信息的信道之间的间隔;S 1为配置Sidelink授权资源内数据资源和/或控制资源占据的时域范围;N为PSFCH的周期;K为PSFCH和对应的物理旁链路共享信道PSSCH之间的最小间隔。
可选的,S 1可能是DCI指示的,也可能是高层配置的,在此不做具体限 定。
例如一个周期内配置Sidelink授权资源内数据资源和控制资源分别位于sidelink时隙1,sidelink时隙9和sidelink时隙10,则S1对应10个sidelink时隙或者S1对应sidelink时隙1到sidelink时隙10对应的物理时间长度。
其中,周期大于或者等于y 3+S 1+(N+K-1),可保证每个周期内的最后一个传输对应的PSFCH都在相应的周期内。周期大于或者等于S 1+(N+K-1)+y 4;周期大于或者等于y 3+S 1+(N+K-1)+y 4,可保证每个周期内最后一个传输对应的PUCCH或PSUCH都在相应的资源内。
可选的,对于配置Sidelink授权资源,y 4具体指每个周期内最后一个和sidelink传输关联的PSFCH和对应PUCCH或PUSCH之间的间隔。
例如,周期最小值=3sidelink slots,此时定时偏移=0,Sidelink控制信息指示的时域资源占据的时域范围=1slot,N=1,K=2,y4=0。
需要说明的是,上述y 3+S 1+(N+K-1)或S 1+(N+K-1)+y 4或y 3+S 1+(N+K-1)+y 4的参量的子载波间隔SCS可能相同或不同;其中,一种实现方式是,K和N为逻辑时隙(例如sidelink时隙);而y 3和y 4是物理时隙;进一步的精度或者SCS也可能不同,因此上述公式可能需要转换SCS和/或统一转换为逻辑时间或物理时间,在此不做具体限制。
当周期按照物理时间定义时,如果配置Sidelink授权资源和非Sidelink的资源冲突,认为该冲突部分的配置Sidelink授权资源或者该周期内的配置Sidelink授权资源无效。
可选的,步骤902中确定配置Sidelink授权资源的HARQ进程,包括:
根据HARQ进程起始值和/或进程偏移值,确定配置Sidelink授权资源的HARQ进程;
和/或,
根据配置Sidelink授权资源的标识信息,确定与所述配置Sidelink授权资源的标识信息对应的配置Sidelink授权资源的HARQ进程。
综上,本发明实施例中终端和控制节点根据所述Sidelink定时、所述Uu定时以及所述定时偏移中的至少一项,确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程,能够实现终端和控 制节点对配置Sidelink授权资源的理解一致,从而保证控制节点对配置Sidelink授权资源分配的适当性,提升终端确定配置Sidelink授权资源的准确率。
为了更清楚的描述本发明实施例提供的资源确定方法,下面结合两个示例进行详细说明。
示例五,基于DFN确定配置Sidelink授权资源。
假设一个配置Sidelink授权资源和nrofHARQ-Processes(HARQ进程数)个进程关联。S为配置Sidelink授权资源中一个PSSCH传输机会或PSCCH传输机会的起始符号在时隙中的编号(例如startSLsymbols)。
可选地,“timeOffsetCGType1”指示配置授权的Type 1资源相对于DFN0#的起始时隙,或者是配置授权的Type 1资源相对于DFN0#的偏移,例如slot偏移。
对于configured grant Type 1,配置sidelink授权资源的存在于满足下列公式,例如起始符号满足下列公式:
[(DFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot)+(slot number in the frame×numberOfSymbolsPerSlot)+symbol number in the slot]=
(timeDomainOffset×numberOfSymbolsPerSlot+S+N×periodicity)modulo(1024×numberOfSlotsPerFrame×numberOfSymbolsPerSlot),for all N>=0。
对于configured grant Type 2,配置sidelink授权资源的存在于满足下列公式,例如起始符号满足下列公式:
[(DFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot)+(slot number in the frame×numberOfSymbolsPerSlot)+symbol number in the slot]=
[(DFN start time×numberOfSlotsPerFrame×numberOfSymbolsPerSlot+slot start  time×numberOfSymbolsPerSlot+symbol start time)+N×periodicity]modulo(1024×numberOfSlotsPerFrame×numberOfSymbolsPerSlot),for all N>=0。
其中,DFN start time,slot start time,和symbol start time分别是PSCCH传输机会或PSSCH的传输机会的DFN,时隙和符号。可选地,分别是一个周期内第一个PSCCH传输机会或第一个PSSCH的传输机会的DFN,时隙和符号。
其中,numberOfSlotsPerFrame为每帧包含的时隙数目;numberOfSymbolsPerSlot为每时隙包含的符号数目;slot number in the frame为帧中的时隙编号、symbol number in the slot为时隙中的符号编号。
可选地,对于一个配置sidelink授权资源,从以下等式中得出关联的HARQ进程ID:
HARQ Process ID=ID_offset+[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes;
其中,CURRENT_symbol=(DFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot+slot number in the frame×numberOfSymbolsPerSlot+symbol number in the slot);
ID_offset为该配置sidelink授权资源对应的HARQ ID偏移或者最小HARQ ID。
可选地,ID_offset和配置sidelink授权资源ID有对应关系。
可选地,该ID_offset可以为0.
可选地,上述DFN,sidelink slot中的至少一项为对sidelink资源进行排序后得到的frame或slot编号。
示例六,基于SFN和定时偏移offset配置Sidelink授权资源。
假设一个配置Sidelink授权资源和nrofHARQ-Processes(HARQ进程数)个进程关联。定时偏移offset为Uu定时和Sidelink定时之间的偏移。
S为配置Sidelink授权资源中一个PSSCH传输机会或PSCCH传输机会的起始符号在时隙中的编号(例如startSLsymbols)。
对于configured grant Type 1,配置sidelink授权资源的存在于满足下列公式,例如起始符号满足下列公式:
[(SFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot)+(slot number in the frame×numberOfSymbolsPerSlot)+symbol number in the slot]+Offset=(timeDomainOffset×numberOfSymbolsPerSlot+S+N×periodicity)modulo(1024×numberOfSlotsPerFrame×numberOfSymbolsPerSlot),for all N>=0。
对于configured grant Type 2,配置sidelink授权资源的存在于满足下列公式,例如起始符号满足下列公式:
[(SFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot)+(slot number in the frame×numberOfSymbolsPerSlot)+symbol number in the slot]+Offset=[(SFN start time×numberOfSlotsPerFrame×numberOfSymbolsPerSlot+slot start time×numberOfSymbolsPerSlot+symbol start time)+N×periodicity]modulo(1024×numberOfSlotsPerFrame×numberOfSymbolsPerSlot),for all N>=0。
其中,SFN start time,slot start time,和symbol start time分别是PSCCH传输机会或PSSCH的传输机会的SFN,时隙和符号。可选地,分别是一个周期内第一个PSCCH传输机会或第一个PSSCH的传输机会的SFN,时隙和符号。
其中,numberOfSlotsPerFrame为每帧包含的时隙数目;numberOfSymbolsPerSlot为每时隙包含的符号数目;slot number in the frame为帧中的时隙编号、symbol number in the slot为时隙中的符号编号。
可选地,对于一个配置sidelink授权资源,从以下等式中得出关联的HARQ进程ID:
HARQ Process ID=ID_offset+[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes
其中,CURRENT_symbol=(SFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot+slot number in the frame×numberOfSymbolsPerSlot+symbol number in the slot)+offset
ID_offset为该CG对应的HARQ ID偏移或者最小HARQ ID。
可选地,ID_offset和配置sidelink授权资源ID有对应关系。
可选地,该ID_offset可以为0.
如图10所示,本发明实施例还提供一种通信设备100,包括:
第二获取模块110,用于获取旁链路Sidelink定时、Uu定时以及定时偏移中的至少一项;其中,定时偏移为Sidelink定时和Uu定时之间时间偏移;
第二确定模块120,用于根据所述Sidelink定时、所述Uu定时以及所述定时偏移中的至少一项,确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程。
可选的,本发明的上述实施例中,所述通信设备还包括:
周期确定模块,用于根据下行控制信息DCI和DCI指示的Sidelink资源 之间的间隔y 3或者配置Sidelink授权的偏移值y 3、物理旁链路反馈信道PSFCH和用于传输Sidelink的HARQ-ACK信息的信道之间的间隔y 4、配置Sidelink授权资源内数据资源和/或控制资源占据的时域范围S 1、PSFCH的周期N以及PSFCH和对应的物理旁链路共享信道PSSCH之间的间隔K中的至少一项,确定配置Sidelink授权资源的周期。
可选的,本发明的上述实施例中,确定配置Sidelink授权资源的HARQ进程,包括:
根据HARQ进程起始值和/或进程偏移值,确定配置Sidelink授权资源的HARQ进程;
和/或,
根据配置Sidelink授权资源的标识信息,确定与所述配置Sidelink授权资源的标识信息对应的配置Sidelink授权资源的HARQ进程。
综上,本发明实施例中终端和控制节点根据所述Sidelink定时、所述Uu定时以及所述定时偏移中的至少一项,确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程,能够实现终端和控制节点对配置Sidelink授权资源的理解一致,从而保证控制节点对配置Sidelink授权资源分配的适当性,提升终端确定配置Sidelink授权资源的准确率。
需要说明的是,本发明实施例提供的通信设备是能够执行上述资源确定方法的通信设备,则上述资源确定方法的所有实施例均适用于该通信设备,且均能达到相同或相似的有益效果。
优选的,本发明实施例还提供一种通信设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、 随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
在本发明实施例提供的资源确定方法应用于终端的情况下,图11为实现本发明各个实施例的一种终端的硬件结构示意图,该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509、处理器510、以及电源511等部件。本领域技术人员可以理解,图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
处理器510,用于根据时间间隔y 2和物理旁链路反馈信道PSFCH的第一时域位置T PSFCH_SL,或者,根据时间间隔y 2和PSFCH的第二时域位置T PSFCH_Uu,确定目标上行信道的时域资源;所述时间间隔y 2为PSFCH与目标上行信道之间的时间间隔;其中,所述目标上行信道的时域资源满足下述任意一项条件:
T PSFCH_SL+y 2的时间范围内第A个时域资源;
T PSFCH_Uu+y 2的时间范围内第A个时域资源;
和T PSFCH_SL+y 2重叠的第A个时域资源;
和T PSFCH_Uu+y 2重叠的第A个时域资源;
不早于T PSFCH_SL+y 2的第A个时域资源;
不早于T PSFCH_Uu+y 2的第A个时域资源;
其中,A为大于或者等于1的整数。
本发明实施例中终端和控制节点根据所述时间间隔y 2和所述PSFCH的第一时域位置确定目标上行信道的时域资源,或者,终端和控制节点根据所述时间间隔y 2和所述PSFCH的第二时域位置确定目标上行信道的时域资源,且确定目标上行信道的时域资源满足的条件,能够实现终端和控制节点对目标上行信道的时域资源的理解一致,从而保证控制节点对目标上行信道的资源分配的适当性,提升终端确定目标上行信道的资源的准确率。
需要说明的是,本发明实施例提供的通信设备是能够执行上述资源确定方法的通信设备,则上述资源确定方法的所有实施例均适用于该通信设备, 且均能达到相同或相似的有益效果。
或者,射频单元501,用于获取旁链路Sidelink定时、Uu定时以及定时偏移中的至少一项;其中,定时偏移为Sidelink定时和Uu定时之间时间偏移;
处理器510,用于根据所述Sidelink定时、所述Uu定时以及所述定时偏移中的至少一项,确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程。
本发明实施例中终端和控制节点根据所述Sidelink定时、所述Uu定时以及所述定时偏移中的至少一项,确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程,能够实现终端和控制节点对配置Sidelink授权资源的理解一致,从而保证控制节点对配置Sidelink授权资源分配的适当性,提升终端确定配置Sidelink授权资源的准确率。
需要说明的是,本发明实施例提供的通信设备是能够执行上述资源确定方法的通信设备,则上述资源确定方法的所有实施例均适用于该通信设备,且均能达到相同或相似的有益效果。
应理解的是,本发明实施例中,射频单元501可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器510处理;另外,将上行的数据发送给基站。通常,射频单元501包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元501还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块502为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元503可以将射频单元501或网络模块502接收的或者在存储器509中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元503还可以提供与终端500执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元503包括扬声器、蜂鸣器以及受话器等。
输入单元504用于接收音频或视频信号。输入单元504可以包括图形处理器(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041 对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元506上。经图形处理器5041处理后的图像帧可以存储在存储器509(或其它存储介质)中或者经由射频单元501或网络模块502进行发送。麦克风5042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元501发送到移动通信基站的格式输出。
终端500还包括至少一种传感器505,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板5061的亮度,接近传感器可在终端500移动到耳边时,关闭显示面板5061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器505还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元506用于显示由用户输入的信息或提供给用户的信息。显示单元506可包括显示面板5061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板5061。
用户输入单元507可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元507包括触控面板5071以及其他输入设备5072。触控面板5071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板5071上或在触控面板5071附近的操作)。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器510,接收处理器510发来的命令并加以执行。此外,可以采用电阻 式、电容式、红外线以及表面声波等多种类型实现触控面板5071。除了触控面板5071,用户输入单元507还可以包括其他输入设备5072。具体地,其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板5071可覆盖在显示面板5061上,当触控面板5071检测到在其上或附近的触摸操作后,传送给处理器510以确定触摸事件的类型,随后处理器510根据触摸事件的类型在显示面板5061上提供相应的视觉输出。虽然在图11中,触控面板5071与显示面板5061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板5071与显示面板5061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元508为外部装置与终端500连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元508可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端500内的一个或多个元件或者可以用于在终端500和外部装置之间传输数据。
存储器509可用于存储软件程序以及各种数据。存储器509可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器509可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器510是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器509内的软件程序和/或模块,以及调用存储在存储器509内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器510可包括一个或多个处理单元;优选的,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解 的是,上述调制解调处理器也可以不集成到处理器510中。
终端500还可以包括给各个部件供电的电源511(比如电池),优选的,电源511可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端500包括一些未示出的功能模块,在此不再赘述。
在本发明实施例提供的资源确定方法应用于控制节点,且所述控制节点为网络侧设备的情况下,图12是本发明一实施例的网络侧设备的结构图,能够实现上述的信息接收方法的细节,并达到相同的效果。如图12所示,网络侧设备1200包括:处理器1201、收发机1202、存储器1203和总线接口,其中:
处理器1201,用于读取存储器1203中的程序,执行下列过程:
根据时间间隔y 2和物理旁链路反馈信道PSFCH的第一时域位置T PSFCH_SL,或者,根据时间间隔y 2和PSFCH的第二时域位置T PSFCH_Uu,确定目标上行信道的时域资源;所述时间间隔y 2为PSFCH与目标上行信道之间的时间间隔;其中,所述目标上行信道的时域资源满足下述任意一项条件:
T PSFCH_SL+y 2的时间范围内第A个时域资源;
T PSFCH_Uu+y 2的时间范围内第A个时域资源;
和T PSFCH_SL+y 2重叠的第A个时域资源;
和T PSFCH_Uu+y 2重叠的第A个时域资源;
不早于T PSFCH_SL+y 2的第A个时域资源;
不早于T PSFCH_Uu+y 2的第A个时域资源;
其中,A为大于或者等于1的整数。
本发明实施例中终端和控制节点根据所述时间间隔y 2和所述PSFCH的第一时域位置确定目标上行信道的时域资源,或者,终端和控制节点根据所述时间间隔y 2和所述PSFCH的第二时域位置确定目标上行信道的时域资源,且确定目标上行信道的时域资源满足的条件,能够实现终端和控制节点对目标上行信道的时域资源的理解一致,从而保证控制节点对目标上行信道的资源分配的适当性,提升终端确定目标上行信道的资源的准确率。
需要说明的是,本发明实施例提供的通信设备是能够执行上述资源确定 方法的通信设备,则上述资源确定方法的所有实施例均适用于该通信设备,且均能达到相同或相似的有益效果。
或者,处理器1201,用于读取存储器1203中的程序,执行下列过程:
获取旁链路Sidelink定时、Uu定时以及定时偏移中的至少一项;其中,定时偏移为Sidelink定时和Uu定时之间时间偏移;
根据所述Sidelink定时、所述Uu定时以及所述定时偏移中的至少一项,确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程。
本发明实施例中终端和控制节点根据所述Sidelink定时、所述Uu定时以及所述定时偏移中的至少一项,确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程,能够实现终端和控制节点对配置Sidelink授权资源的理解一致,从而保证控制节点对配置Sidelink授权资源分配的适当性,提升终端确定配置Sidelink授权资源的准确率。
需要说明的是,本发明实施例提供的通信设备是能够执行上述资源确定方法的通信设备,则上述资源确定方法的所有实施例均适用于该通信设备,且均能达到相同或相似的有益效果。
在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1201代表的一个或多个处理器和存储器1203代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1202可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种资源确定方法,包括:
    根据时间间隔y 2和物理旁链路反馈信道PSFCH的第一时域位置T PSFCH_SL,或者,根据时间间隔y 2和PSFCH的第二时域位置T PSFCH_Uu,确定目标上行信道的时域资源;所述时间间隔y 2为PSFCH与目标上行信道之间的时间间隔;其中,所述目标上行信道的时域资源满足下述任意一项条件:
    T PSFCH_SL+y 2的时间范围内第A个时域资源;
    T PSFCH_Uu+y 2的时间范围内第A个时域资源;
    和T PSFCH_SL+y 2重叠的第A个时域资源;
    和T PSFCH_Uu+y 2重叠的第A个时域资源;
    不早于T PSFCH_SL+y 2的第A个时域资源;
    不早于T PSFCH_Uu+y 2的第A个时域资源;
    其中,A为大于或者等于1的整数。
  2. 根据权利要求1所述的方法,其中,所述目标上行信道用于传输旁链路Sidelink的混合自动重传请求应答HARQ-ACK信息。
  3. 根据权利要求1所述的方法,其中,
    PSFCH的第一时域位置为基于Sidelink定时确定的PSFCH的时域位置;
    PSFCH的第二时域位置为基于Uu定时确定的PSFCH的时域位置。
  4. 根据权利要求1所述的方法,还包括:
    根据下行控制信息DCI的时域位置T DCI_Uu、DCI和所述DCI指示的Sidelink资源之间的时间间隔y 1、时间间隔gap、以及Sidelink定时和Uu定时之间的定时偏移offset中的至少一项,确定PSFCH的第一时域位置T PSFCH_SL;其中,时间间隔gap为Sidelink资源和所述Sidelink资源对应的PSFCH之间的时间间隔,或者时间间隔gap为Sidelink资源和所述目标上行信道对应的PSFCH之间的时间间隔;
    或者,
    根据PSFCH的第二时域位置T PSFCH_Uu以及Sidelink定时和Uu定时之间的定时偏移offset,确定PSFCH的第一时域位置T PSFCH_SL
  5. 根据权利要求1所述的方法,还包括:
    根据下行控制信息DCI的时域位置T DCI_Uu、DCI和所述DCI指示的Sidelink资源之间的时间间隔y 1以及时间间隔gap中的至少一项,确定PSFCH的第一时域位置T PSFCH_SL;其中,时间间隔gap为Sidelink资源和所述Sidelink资源对应的PSFCH之间的时间间隔,或者时间间隔gap为Sidelink资源和所述目标上行信道对应的PSFCH之间的时间间隔;
    或者,
    根据PSFCH的第二时域位置T PSFCH_Uu,确定PSFCH的第一时域位置T PSFCH_SL
  6. 根据权利要求4所述的方法,其中,所述offset是根据Sidelink子载波间隔计算的,或者,所述offset是根据上行链路子载波间隔计算的。
  7. 根据权利要求1所述的方法,其中,所述y 2是根据Sidelink子载波间隔计算的,或者,所述y 2是上行链路子载波间隔计算的。
  8. 根据权利要求4或5所述的方法,其中,所述gap是根据Sidelink子载波间隔计算的,或者,所述gap是根据上行链路子载波间隔计算的。
  9. 根据权利要求4或5所述的方法,其中,在控制节点调度的Sidelink资源的个数与PSFCH的周期相同的情况下,所述方法还包括:
    根据PSFCH的周期N和PSFCH和对应的物理旁链路共享信道PSSCH之间的间隔K,确定所述gap。
  10. 根据权利要求1所述的方法,其中,所述第A个时域资源包括:第A个Sidelink时域资源,或者,第A个Uu时域资源。
  11. 一种资源确定方法,包括:
    获取旁链路Sidelink定时、Uu定时以及定时偏移中的至少一项;其中,定时偏移为Sidelink定时和Uu定时之间时间偏移;
    根据所述Sidelink定时、所述Uu定时以及所述定时偏移中的至少一项,确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程。
  12. 根据权利要求11所述的方法,还包括:
    根据下行控制信息DCI和DCI指示的Sidelink资源之间的间隔y 3或者配 置Sidelink授权的偏移值y 3、物理旁链路反馈信道PSFCH和用于传输Sidelink的HARQ-ACK信息的信道之间的间隔y 4、配置Sidelink授权资源内数据资源和/或控制资源占据的时域范围S 1、PSFCH的周期N以及PSFCH和对应的物理旁链路共享信道PSSCH之间的间隔K中的至少一项,确定配置Sidelink授权资源的周期。
  13. 根据权利要求11所述的方法,其中,确定配置Sidelink授权资源的HARQ进程,包括:
    根据HARQ进程起始值和/或进程偏移值,确定配置Sidelink授权资源的HARQ进程;
    和/或,
    根据配置Sidelink授权资源的标识信息,确定与所述配置Sidelink授权资源的标识信息对应的配置Sidelink授权资源的HARQ进程。
  14. 一种通信设备,包括:
    第一确定模块,用于根据时间间隔y 2和物理旁链路反馈信道PSFCH的第一时域位置T PSFCH_SL,或者,根据时间间隔y 2和PSFCH的第二时域位置T PSFCH_Uu,确定目标上行信道的时域资源;所述时间间隔y 2为PSFCH与目标上行信道之间的时间间隔;其中,所述目标上行信道的时域资源满足下述任意一项条件:
    T PSFCH_SL+y 2的时间范围内第A个时域资源;
    T PSFCH_Uu+y 2的时间范围内第A个时域资源;
    和T PSFCH_SL+y 2重叠的第A个时域资源;
    和T PSFCH_Uu+y 2重叠的第A个时域资源;
    不早于T PSFCH_SL+y 2的第A个时域资源;
    不早于T PSFCH_Uu+y 2的第A个时域资源;
    其中,A为大于或者等于1的整数。
  15. 一种通信设备,包括:
    第二获取模块,用于获取旁链路Sidelink定时、Uu定时以及定时偏移中的至少一项;其中,定时偏移为Sidelink定时和Uu定时之间时间偏移;
    第二确定模块,用于根据所述Sidelink定时、所述Uu定时以及所述定时 偏移中的至少一项,确定配置Sidelink授权资源和/或所述配置Sidelink授权资源的混合自动重传请求HARQ进程。
  16. 一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的资源确定方法的步骤;或者,所述计算机程序被所述处理器执行时实现如权利要求11至13中任一项所述的资源确定方法的步骤。
  17. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的资源确定方法的步骤;或者,所述计算机程序被处理器执行时实现如权利要求11至13中任一项所述的资源确定方法的步骤。
PCT/CN2021/070548 2020-01-14 2021-01-07 资源确定方法及通信设备 WO2021143604A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022543157A JP2023511296A (ja) 2020-01-14 2021-01-07 リソース決定方法及び通信機器
EP21741571.0A EP4092942A4 (en) 2020-01-14 2021-01-07 RESOURCE DETERMINATION PROCESS AND COMMUNICATION DEVICE
KR1020227027551A KR20220125336A (ko) 2020-01-14 2021-01-07 자원 결정 방법 및 통신 장치
US17/863,334 US20220346066A1 (en) 2020-01-14 2022-07-12 Resource determining method and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010038446.9A CN113132066B (zh) 2020-01-14 2020-01-14 资源确定方法及通信设备
CN202010038446.9 2020-01-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/863,334 Continuation US20220346066A1 (en) 2020-01-14 2022-07-12 Resource determining method and communications device

Publications (1)

Publication Number Publication Date
WO2021143604A1 true WO2021143604A1 (zh) 2021-07-22

Family

ID=76771292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070548 WO2021143604A1 (zh) 2020-01-14 2021-01-07 资源确定方法及通信设备

Country Status (6)

Country Link
US (1) US20220346066A1 (zh)
EP (1) EP4092942A4 (zh)
JP (1) JP2023511296A (zh)
KR (1) KR20220125336A (zh)
CN (1) CN113132066B (zh)
WO (1) WO2021143604A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021071234A1 (ko) * 2019-10-07 2021-04-15 엘지전자 주식회사 Nr v2x에서 psfch 자원을 선택하는 방법 및 장치
BR112022016055A2 (pt) * 2020-02-14 2023-02-23 Guangdong Oppo Mobile Telecommunications Corp Ltd Método de processamento de informações e aparelho de processamento de informações
CN115866530A (zh) * 2021-09-22 2023-03-28 中信科智联科技有限公司 一种信息传输方法和装置
CN116367311A (zh) * 2021-12-20 2023-06-30 维沃移动通信有限公司 通信资源的确定方法、装置及终端
WO2024031698A1 (en) * 2022-08-12 2024-02-15 Zte Corporation Systems and methods for authorization configuration in device-to-device communications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923894A (zh) * 2017-03-23 2018-11-30 中兴通讯股份有限公司 一种信息传输的方法、装置和系统
CN110311762A (zh) * 2019-07-16 2019-10-08 北京展讯高科通信技术有限公司 反馈信息传输方法、装置、终端及存储介质
CN110381599A (zh) * 2018-04-13 2019-10-25 维沃移动通信有限公司 Sidelink的传输方法和终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392431A (zh) * 2018-04-19 2019-10-29 中兴通讯股份有限公司 一种实现边链路资源配置的方法、装置及系统
TWI690238B (zh) * 2018-06-29 2020-04-01 華碩電腦股份有限公司 無線通訊系統中處理側鏈路接收的方法和設備
CN115280859A (zh) * 2020-02-12 2022-11-01 Lg 电子株式会社 在nr v2x中基于侧链路cg资源执行侧链路通信的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923894A (zh) * 2017-03-23 2018-11-30 中兴通讯股份有限公司 一种信息传输的方法、装置和系统
CN110381599A (zh) * 2018-04-13 2019-10-25 维沃移动通信有限公司 Sidelink的传输方法和终端
CN110311762A (zh) * 2019-07-16 2019-10-08 北京展讯高科通信技术有限公司 反馈信息传输方法、装置、终端及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "On Resource Allocation for NR V2X Mode 1", 3GPP DRAFT; R1-1912459, vol. RAN WG1, 8 November 2019 (2019-11-08), Reno, USA, pages 1 - 10, XP051820045 *
See also references of EP4092942A4 *
VIVO: "Discussion on mode 1 resource allocation mechanism", 3GPP DRAFT; R1-1912021, vol. RAN WG1, 9 November 2019 (2019-11-09), Reno, USA, pages 1 - 18, XP051823163 *

Also Published As

Publication number Publication date
KR20220125336A (ko) 2022-09-14
US20220346066A1 (en) 2022-10-27
EP4092942A1 (en) 2022-11-23
CN113132066B (zh) 2022-06-14
CN113132066A (zh) 2021-07-16
EP4092942A4 (en) 2023-05-24
JP2023511296A (ja) 2023-03-17

Similar Documents

Publication Publication Date Title
WO2021143604A1 (zh) 资源确定方法及通信设备
JP7285959B2 (ja) チャネルモニタリング方法、端末及びネットワーク機器
US20210250924A1 (en) Resource indication method, device and system
US11337269B2 (en) Cell processing method, terminal device, and network device
CN110475364B (zh) 一种非周期跟踪参考信号的接收方法及终端
CN110034862B (zh) 一种下行反馈方法、移动通信终端及网络侧设备
KR20210062689A (ko) 정보 전송 방법 및 단말
CN111835458B (zh) 一种信息传输、接收方法、终端及网络侧设备
CN111435901A (zh) 混合自动重传请求确认反馈方法、终端和网络设备
CN110943816B (zh) 一种资源配置方法、终端及网络设备
WO2020192674A1 (zh) 搜索空间的配置方法及装置、通信设备
CN112770350A (zh) 一种失败报告的上报方法及相关设备
WO2021063281A1 (zh) 旁链路资源的确定方法及终端
WO2020156428A1 (zh) 信息发送方法、信息检测方法、终端设备及网络设备
US20220240266A1 (en) Information transmission method, information receiving method, terminal, and network side device
WO2021057655A1 (zh) 信息指示方法、设备及系统
CN110831235A (zh) 一种信息传输方法及终端
WO2021018130A1 (zh) 物理上行链路控制信道传输方法、装置、设备及介质
WO2021057896A1 (zh) 上行传输方法及终端
WO2020057409A1 (zh) 传输控制方法及终端设备
WO2021147777A1 (zh) 一种通信处理方法及相关设备
WO2021093767A1 (zh) 资源确定、资源配置方法、终端及网络设备
WO2021143603A1 (zh) 信息处理方法及通信设备
WO2021057900A1 (zh) 上行传输方法、资源配置方法、终端和网络侧设备
CN113193930B (zh) 信息处理方法及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543157

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227027551

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021741571

Country of ref document: EP

Effective date: 20220816