WO2021143416A1 - 一种基于光热原理的太阳能燃气轮机发电系统 - Google Patents

一种基于光热原理的太阳能燃气轮机发电系统 Download PDF

Info

Publication number
WO2021143416A1
WO2021143416A1 PCT/CN2020/135901 CN2020135901W WO2021143416A1 WO 2021143416 A1 WO2021143416 A1 WO 2021143416A1 CN 2020135901 W CN2020135901 W CN 2020135901W WO 2021143416 A1 WO2021143416 A1 WO 2021143416A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas turbine
solar
power generation
shell
generation system
Prior art date
Application number
PCT/CN2020/135901
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
永旭腾风新能源动力科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永旭腾风新能源动力科技(北京)有限公司 filed Critical 永旭腾风新能源动力科技(北京)有限公司
Priority to US17/625,347 priority Critical patent/US20220252054A1/en
Priority to KR1020227010133A priority patent/KR20220048038A/ko
Priority to AU2020422038A priority patent/AU2020422038B2/en
Priority to CA3156293A priority patent/CA3156293A1/en
Priority to JP2022507654A priority patent/JP2022544152A/ja
Priority to EP20914619.0A priority patent/EP3964709B1/en
Publication of WO2021143416A1 publication Critical patent/WO2021143416A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/064Devices for producing mechanical power from solar energy with solar energy concentrating means having a gas turbine cycle, i.e. compressor and gas turbine combination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/061Parabolic linear or trough concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/062Parabolic point or dish concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/40Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/48Arrangements for moving or orienting solar heat collector modules for rotary movement with three or more rotation axes or with multiple degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the invention relates to the technical field of energy recovery and utilization, in particular to a solar gas turbine power generation system based on the principle of light and heat.
  • Solar energy is a clean, pollution-free renewable energy source, and its development and utilization are of great significance for reducing the current pressure on fossil energy consumption and environmental pollution.
  • Solar thermal power generation technology is a technology that converts the thermal energy of solar energy into electric energy.
  • the direct thermal power generation efficiency of solar thermal power generation technology is low, generally about 20%, and a large amount of light-to-heat conversion energy is not utilized.
  • the solar thermal power generation system alone cannot provide sufficient energy at night or on cloudy and rainy days. Therefore, the power generation technology that combines solar energy with other power generation systems has attracted more and more attention.
  • the combination with gas turbine power generation systems can not only improve the overall power generation capacity and power generation stability of the system, but also have higher efficiency.
  • Gas turbine power generation system has a series of advantages such as high efficiency, fast starting, good peak shaving performance, short construction period, small footprint, low water consumption and low environmental pollution.
  • fuel supply problems such as natural gas
  • gas turbine power generation technology is in a certain degree The above is constrained. Therefore, under the condition of ensuring system efficiency and power, minimizing fuel consumption is beneficial to the wider promotion of gas turbine power generation systems.
  • another major advantage of the combination of solar heat collection and gas turbine power generation systems is to use the sun's radiant energy to replace part of the required fuel heat energy, thereby reducing the amount of fuel required by the gas turbine power generation system.
  • the purpose of the present invention is to provide a solar gas turbine power generation system based on the photothermal principle, which can realize the combined cycle of solar energy and gas turbine, and the energy utilization rate is higher than that of a single solar power generation or gas turbine power generation. Efficient use of.
  • a solar gas turbine power generation system based on the photothermal principle comprising: a gas turbine, a solar energy collection device and a solar reflector; the gas turbine is fixed above the solar reflector by a fixed rod;
  • the gas turbine includes an air pressure impeller, a turbine, a regenerator, and a combustion chamber.
  • the regenerator includes an outer shell, a middle shell, and an inner shell.
  • a low-temperature air inlet passage is formed between the middle shell and the outer shell.
  • a high temperature intake passage is formed between the middle shell and the inner shell. The inlet and outlet of the low temperature intake passage are respectively communicated with the outlet of the air pressure impeller and the inlet of the combustion chamber, and the inlet and outlet of the high temperature intake passage are respectively connected with the The flat exit is connected to the outside world;
  • the solar energy collection device includes a heat absorbing plate, the heat absorbing plate is wrapped on the shell of the heat regenerator, and the heat absorbing plate is located on the reflective condensing point or focusing line of the solar reflector.
  • outer shell, the middle shell and the inner shell are arranged parallel to each other from the outside to the inside;
  • a plurality of fins are arranged on the inner side of the shell, each of the fins is arranged along the length direction of the regenerator, and one end of the fin is fixed in the shell.
  • outer shell, the middle shell and the inner shell are coaxial and cylindrically arranged from the outside to the inside;
  • Each of the fins is radially arranged in the casing along the length direction of the gas turbine, and each of the fins is arranged along the radial direction of the casing.
  • outer shell, the middle shell and the inner shell are coaxially arranged in a square tube shape from the outside to the inside;
  • the fins are arranged in each plate surface of the casing along the length direction of the gas turbine, and each fin is arranged perpendicular to the casing.
  • the solar reflector has a large area close to the head of the gas turbine and a small area close to the tail of the gas turbine.
  • the solar reflector is installed on the installation stand through an adjustment device, the adjustment device includes a telescopic rod, a hinge, a base, an expansion bottle, and a pipe;
  • a plurality of pedestals are fixed on the top of the mounting table, the pedestals are an even number and are arranged symmetrically in pairs, the pedestals are connected to a telescopic rod through a hinge, and the telescopic rod is connected to the bottom of the solar mirror;
  • An expansion bottle is fixed on the top surface of each base on the top surface of the installation platform, and the expansion bottle is connected to the telescopic rod of the opposite base through a pipe.
  • the expansion bottle is heated, the telescopic rod on the opposite side can be extended and then Raise the solar mirror on this side.
  • the telescopic rod includes a top rod and a sleeve rod, the bottom of the sleeve rod is arranged on the base through a hinge, the bottom of the top rod is sleeved in the sleeve rod and slidably fits with the sleeve rod, and the top of the top rod is connected The bottom of the solar reflector;
  • the expansion bottle is filled with expansion liquid, and when the expansion bottle is heated, the expansion liquid expands and lifts the ejector rod connected to the expansion bottle.
  • the bases are evenly distributed along a circle, and the telescopic rods are evenly distributed along a corresponding circle.
  • the base and the telescopic rod are arranged in two symmetrical rows along the installation platform.
  • expansion bottle is embedded in the bottle holder, and the bottle holder is fixedly installed on the installation platform.
  • the present invention has the following beneficial effects:
  • the present invention uses the principle of the combination of solar energy and gas turbine, and heats the working fluid by covering the heat-absorbing plate that receives sunlight on the shell of the gas turbine regenerator, which can improve the efficiency of energy utilization; and by reheating
  • the reasonable layout of the air compressor structure, through the cooperation of air compressor impeller, turbine, regenerator and combustion chamber, can recycle the heat produced by each link in the system, and the energy recovery efficiency is high.
  • the regenerator structure proposed in the present invention can improve the heat exchange efficiency of the working fluid through the low temperature air inlet passage and the high temperature air inlet passage. Since the fins are only fixed on the shell at one end and the other end does not need to be fixed and sealed, the return is greatly reduced. Difficulty in the manufacture of heat exchangers.
  • the present invention solves the problem of the temperature drop from the front end to the rear end caused by the long heat absorption plate due to the solution that the solar reflector has a large area close to the head of the gas turbine and a small area close to the tail of the gas turbine.
  • the entire tracking process of the solar energy of the present invention does not consume electric energy, and the tracking is more accurate, and higher energy utilization rate can be obtained.
  • Figure 1 is a schematic diagram of the working principle of the solar gas turbine power generation system of the present invention.
  • Fig. 2 is a schematic side view of the structure of the regenerator according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the front view of the regenerator according to an embodiment of the present invention.
  • Fig. 4 is a schematic side view of the structure of the regenerator according to another embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the front view of the regenerator according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a structure for tracking sunlight according to an embodiment of the present invention.
  • FIG. 7 is a top view of a structure for tracking sunlight according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a structure for tracking sunlight according to another embodiment of the present invention.
  • FIG. 9 is a top view of a structure for tracking sunlight according to another embodiment of the present invention.
  • a solar gas turbine power generation system based on the photothermal principle provided by an embodiment of the present invention includes a gas turbine 1, a solar reflector 2 and a solar energy collection device 21. As shown in FIG. 1, a solar gas turbine power generation system based on the photothermal principle provided by an embodiment of the present invention includes a gas turbine 1, a solar reflector 2 and a solar energy collection device 21. As shown in FIG. 1, a gas turbine 1, a solar reflector 2 and a solar energy collection device 21.
  • the gas turbine 1 of the present invention includes an air compressor impeller 102, a turbine 104, a regenerator 101 and a combustion chamber 105.
  • the gas turbine 1 is fixed above the solar reflector 2 by a fixing rod 5, and the solar collector 21 is located on the sunlight reflection focusing point (opposite-dish mirror) or focus line (opposite-groove mirror).
  • the solar energy collection device 21 includes a heat absorbing plate 211 arranged on the gas turbine 1, the heat absorbing plate 211 is wrapped on the shell of the regenerator 101, and can also be used as a part or all of the shell of the regenerator 101.
  • the gas turbine regenerator 101 includes a coaxial outer-to-in cylindrical outer shell, a middle shell and an inner shell, and a heat-absorbing plate 211 is covered on the outer shell.
  • a plurality of fins 1011 are arranged on the inner side of the casing along the length direction of the gas turbine 1, and each fin 1011 is distributed in a radial shape, and a single fin 1011 is fixed in the casing at one end, and suspended between the other end and the middle casing. There is a gap.
  • a low-temperature air inlet passage 1012 is formed between the middle shell and the outer shell.
  • the fin 1011 functions to increase the heat dissipation area.
  • the heat of the heat-absorbing plate 211 can be fully transferred through the outer shell and the fin 1011, so that the low-temperature air inlet channel 1012
  • the temperature is pre-increased; a high-temperature intake passage 1013 is formed between the middle shell and the inner shell; the inlet and the outlet of the low-temperature intake passage 1012 are respectively communicated with the outlet of the air pressure impeller 102 and the inlet of the combustion chamber 105, and the high-temperature inlet
  • the inlet and outlet of the air passage 1013 are respectively connected with the outlet of the turbine 104 and the outside atmosphere or other waste heat recycling equipment.
  • the high-temperature gas in the combustion chamber 105 pushes the turbine 104 to perform work and flows into the high-temperature intake passage 1013.
  • the compressed gas is discharged from the air compressor impeller 102 into the low-temperature intake passage 1012.
  • the low-temperature gas enters the combustion chamber 105 from the low-temperature intake passage 1012 for combustion.
  • the high-temperature gas is exhausted through the high-temperature inlet passage 1013, and the gas can be discharged to the atmosphere or further participate in the waste heat recovery cycle.
  • the gas turbine regenerator 101 includes a square cylindrical shell, a middle shell, and an inner shell that are parallel to each other from the outside to the inside.
  • the fins 1011 are parallel to each other and arranged along the length direction of the regenerator 101, and a single fin 1011 is fixed in the shell at one end.
  • a low-temperature air inlet passage 1012 is formed between the middle shell and the outer shell. The fin 1011 functions to increase the heat dissipation area.
  • the heat of the heat-absorbing plate 211 can be fully transferred through the outer shell and the fin 1011, so that the low-temperature air inlet channel 1012
  • the temperature is pre-increased; a high-temperature air inlet passage 1013 is formed between the middle shell and the inner shell.
  • the inlet and outlet of the low-temperature air inlet passage 1012 are respectively connected with the outlet of the air pressure impeller 102 and the inlet of the combustion chamber 105, and the inlet and outlet of the high-temperature air inlet passage 1013 are respectively connected with the outlet of the turbine 104 and the outside atmosphere or other
  • the waste heat recycling equipment is connected.
  • the high-temperature gas in the combustion chamber 105 pushes the turbine 104 to perform work and flows into the high-temperature intake passage 1013.
  • the compressed gas is discharged from the air compressor impeller 102 into the low-temperature intake passage 1012. After the high-temperature gas and the low-temperature gas exchange heat, The low-temperature gas enters the combustion chamber 105 from the low-temperature intake passage 1012 for combustion, and the high-temperature gas is exhausted through the high-temperature intake passage 1013.
  • the gas can be discharged to the atmosphere or further participate in the waste heat recovery cycle.
  • the specific working process of the solar gas turbine power generation system based on the photothermal principle is:
  • the gas enters the air pressure impeller 102, and after compression, it enters the inlet of the low-temperature inlet passage 1012 of the regenerator 101; the temperature of the gas in the regenerator 101 is 500°C-600°C; from the outlet of the low-temperature inlet passage 1012 of the regenerator 101
  • the gas flowing out of the gas flows into the combustion chamber 105 for combustion, and the high-temperature gas after combustion flows into the turbine 104 and drives the motor 103 to generate electricity.
  • the gas from the outlet of the turbine 104 flows into the inlet of the high-temperature inlet passage 1013 of the regenerator 101 After the temperature in the regenerator 101 is lowered, it is discharged from the outlet of the high temperature intake passage 1013 of the regenerator 101 to the outside; the temperature in the combustion chamber 105 is 800°C-950°C, preferably 900°C.
  • the motor 103 is a heuristic integrated motor, which first acts as a motor to drive the air compressor impeller 102 to rotate, and then acts as a generator to generate electricity after being accelerated to be able to operate independently.
  • the heat-absorbing plate 211 is longer, especially when the grooved mirror is used, the length of the heat-absorbing plate and the grooved mirror can reach 20 meters, and there is a temperature drop from the front end to the rear end, so the rear section needs more The heat.
  • a layout structure of the solar reflector 2 is provided: the area of the reflector is increased in the rear section, that is, the area of the solar reflector 2 close to the head of the gas turbine 1 is large, and the area close to the tail of the gas turbine 1 is small.
  • the solar reflector 2 of the present invention is a reflector with a fixed condensing point. Specifically, a dish-type solar reflector or a trough-type reflector can be selected; when a dish-type reflector is selected, the heat-absorbing plate 211 It is located on the reflection focusing point of the reflector. When a grooved reflector is selected, the heat absorption plate 211 is located on the focus line of the reflector.
  • the present invention also includes an installation stand 3 and an adjusting device 4.
  • the installation stand 3 is a flat plate fixed on the ground or embedded in the ground, and steel plate may be used.
  • the adjusting device 4 includes a top rod 401, a sleeve rod 402, a hinge 403, a base 404, an expansion bottle 405, and a pipe 406.
  • a plurality of pedestals 404 are fixed on the top of the mounting table 3, the pedestals 404 are an even number, are arranged symmetrically in pairs, and are distributed along a circumference (preferably, see FIG. 7, the pedestals 404 are evenly distributed along the circumference), and the pedestals 404 extend and contract
  • the rod is connected to the bottom of the solar reflector 2.
  • the telescopic rod includes a top rod 401 and a sleeve rod 402.
  • the top rod 401 can slide inside the sleeve rod 402.
  • the bottom of the sleeve rod 402 is set on the base 404 through a hinge 403, and the bottom of the top rod 401 is sleeved
  • the inner and the top of the sleeve rod 402 are connected to the bottom of the solar reflector 2 (preferably, see FIG. 7, the top rod 401 is evenly distributed along a circle at the bottom of the solar reflector 2);
  • the outer side of each base 404 is located on the top surface of the mounting platform 3 and is fixed with Expansion bottle 405, the expansion bottle 405 is filled with expansion fluid (expandable kerosene), and is connected to the sleeve rod 402 on the opposite side of the base 404 through a pipe 406.
  • expansion fluid expandable kerosene
  • each expansion bottle 405 can be nested in the bottle holder 407, and the bottle holder 407 is fixed on the installation platform 3.
  • the power generation system of the present invention can automatically track the sunlight under the action of the adjusting device 4 to ensure that the solar reflector 2 always receives the side of the stronger light.
  • the telescopic rods are arranged in three pairs, and the solar reflector 2 can be adjusted from three angles.
  • the telescopic rods can also be set as integer pairs such as one pair, two pairs, four pairs, five pairs...etc. The more telescopic rods are set, the more precise the angle of the solar reflector 2 can be adjusted.
  • each base 404 is arranged in two symmetrical rows, and the rest are the same as the dish mirror.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种基于光热原理的太阳能燃气轮机发电系统,包括:燃气轮机(1)、太阳能收集装置(21)以及太阳能反射镜(2);其中,燃气轮机(1)包括空压叶轮(102)、透平(104)、回热器(101)以及燃烧室(105),回热器(101)包括外壳、中壳和内壳,中壳和外壳之间形成低温进气通道(1012),中壳和内壳之间形成高温进气通道(1013),低温进气通道(1012)的进口和出口分别与空压叶轮(102)的出口和燃烧室(105)的进口连通,高温进气通道(1013)的进口和出口分别与透平(104)的出口和外界连通;太阳能收集装置(21)包括吸热板(211),吸热板(211)包覆在所述回热器(101)的外壳上。本技术方案能够实现太阳能和燃气轮机的联合循环,能源利用率高于单一的太阳能发电或燃气轮机发电,实现了能源的高效利用。

Description

一种基于光热原理的太阳能燃气轮机发电系统 技术领域
本发明涉及能量回收及利用技术领域,尤其涉及一种基于光热原理的太阳能燃气轮机发电系统。
背景技术
太阳能是一种清洁、无污染的可再生能源,其开发和利用对于减轻目前化石能源消耗压力、环境污染压力具有重要意义。
太阳能热发电技术是将太阳能的热能转变为电能技术,太阳能聚焦主要有碟式、塔式、槽式和菲涅尔式四种方式。太阳能热发电技术的直接热发电效率较低,一般在20%左右,大量的光热转换能量没有得到利用。另外,单独的太阳能热发电系统在夜间或者阴雨天无法提供充足的能量。因此,太阳能与其他发电系统相结合的发电技术越来越受到关注,其中与燃气轮机发电系统的结合,既可以提高系统整体的发电能力和发电稳定性,而且具有较高效率。
燃气轮机发电系统具有效率高、起动快、调峰性能好、建设周期短、占地面积小,耗水少以及环境污染小等一系列优点,但是由于天然气等燃料供应问题,燃气轮机发电技术在一定程度上受到了制约。因此,在保证系统效率和功率的条件下,尽量减少燃料的消耗有利于燃气轮机发电系统的更广泛推广。此外,太阳能集热与燃气轮机发电系统结合的另一大优势是利用太阳的辐射能代替部分需要的燃料热能,从而减少燃气轮机发电系统需要的燃料量。
另外,目前的太阳能发电系统中的反射镜大多是固定安装,通过固定在某一角度的反射镜来吸收太阳光,该角度虽然是经过计算的最优角度。但是,由于反射镜固定,而太阳是转动的,就会存在太阳并不总是直射反射镜的问题,在太阳斜射反射镜时,其反射的太阳光较少,使太 阳能不能被充分利用,造成能源浪费。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种基于光热原理的太阳能燃气轮机发电系统,能够实现太阳能和燃气轮机的联合循环,能源利用率高于单一的太阳能发电或燃气轮机发电,实现了能源的高效利用。
本发明的技术方案如下:
一种基于光热原理的太阳能燃气轮机发电系统,包括:燃气轮机、太阳能收集装置以及太阳能反射镜;所述燃气轮机通过固定杆固定在太阳能反射镜上方;
其中,所述燃气轮机包括空压叶轮、透平、回热器以及燃烧室,所述回热器包括外壳、中壳和内壳,所述中壳和外壳之间形成低温进气通道,所述中壳和内壳之间形成高温进气通道,所述低温进气通道的进口和出口分别与空压叶轮的出口和燃烧室的进口连通,所述高温进气通道的进口和出口分别与透平的出口和外界连通;
所述太阳能收集装置包括吸热板,所述吸热板包覆在所述回热器的外壳上,所述吸热板位于所述太阳能反射镜的反光聚点或聚焦线上。
进一步的,所述外壳、中壳和内壳由外到内相互平行设置;
所述外壳内侧设置多个翅片,各个所述翅片沿回热器长度方向设置,且所述翅片一头固定在外壳内。
进一步的,所述外壳、中壳和内壳为同轴且由外向内设置的圆筒状;
各个所述翅片呈辐状沿燃气轮机的长度方向布设在外壳内,各所述翅片沿外壳径向设置。
进一步的,所述外壳、中壳和内壳为同轴且由外向内设置的方筒状;
所述翅片沿燃气轮机的长度方向布设在外壳的各个板面内,各所述翅片垂直于外壳设置。
进一步的,所述太阳能反射镜靠近燃气轮机头部面积大、靠近燃气轮机尾部面积小。
进一步的,还包括安装台,所述太阳能反射镜通过调节装置安装于所述安装台,所述调节装置包括伸缩杆、铰链、基座、膨胀瓶以及管道;
所述安装台顶部固定多个基座,所述基座为偶数个、成对对称设置,所述基座通过铰链连接伸缩杆,所述伸缩杆连接太阳能反射镜底部;
各基座外侧位于安装台顶面固定有膨胀瓶,所述膨胀瓶通过管道连接至其对侧基座的伸缩杆上,所述膨胀瓶受热时,能够使得其对侧的伸缩杆伸出进而使该侧的太阳能反射镜抬高。
进一步的,所述伸缩杆包括顶杆、套杆,所述套杆底部通过铰链设置在基座上,所述顶杆底部套入套杆内且与套杆滑动配合,所述顶杆顶部连接太阳能反射镜底部;
所述膨胀瓶内填充膨胀液,所述膨胀瓶受热时,所述膨胀液膨胀顶起与其连接的顶杆。
进一步的,所述基座沿一圆周均匀分布,所述伸缩杆沿一对应的圆周均匀分布。
进一步的,所述基座及伸缩杆沿安装台设置为对称的两排。
进一步的,所述膨胀瓶镶嵌于所述瓶座内,所述瓶座固定安装于所述安装台。
与现有技术相比,本发明具有如下有益效果:
1、本发明使用太阳能加燃气轮机联合的原理,通过将接收太阳光的吸热板包覆在燃气轮机的回热器的外壳上对工质进行加热,能够提高能 源的利用效率;且通过对回热器结构的合理布局,通过空压叶轮、透平、回热器以及燃烧室的配合,能够将系统中各环节产出的热量循环利用,能量回收效率高。
2、本发明所提用的回热器结构能够通过低温进气通道和高温进气通道提高工质换热效率,由于翅片仅仅一头固定在外壳上、另一头无需固定密封,大大降低了回热器的制造难度。
3、本发明通过太阳能反射镜靠近燃气轮机头部面积大、靠近燃气轮机尾部面积小的方案能够解决由于吸热板较长而导致的从前端向后端存在温降的问题。
4、本发明对太阳能的整个追踪过程不消耗电能,并且追踪较为精准,能够获得更高的能源利用率。
附图说明
图1为本发明太阳能燃气轮机发电系统的工作原理示意图。
图2为本发明一种实施例的回热器侧视结构示意图。
图3为本发明一种实施例的回热器主视结构示意图。
图4为本发明另一种实施例的回热器侧视结构示意图。
图5为本发明另一种实施例的回热器主视结构示意图。
图6为本发明一种实施例的追踪太阳光的结构示意图。
图7为本发明一种实施例的追踪太阳光的结构俯视图。
图8为本发明另一种实施例的追踪太阳光的结构示意图。
图9为本发明另一种实施例的追踪太阳光的结构俯视图。
具体实施方式
为了更好的了解本发明的技术方案,下面结合具体实施例、说明书附图对本发明作进一步说明。
如图1所述,为本发明实施例提供的一种基于光热原理的太阳能燃气轮机发电系统,包括燃气轮机1、太阳能反射镜2以及太阳能收 集装置21。
本发明的燃气轮机1包括空压叶轮102、透平104、回热器101和燃烧室105。
燃气轮机1通过固定杆5固定在太阳能反射镜2上方,并使太阳能收集装置21位于太阳光反射聚点(对碟式反光镜)或聚焦线(对槽式反光镜)上。具体地,太阳能收集装置21包括设置在燃气轮机1上的吸热板211,该吸热板211包覆在回热器101外壳上,也可作为回热器101的部分或全部外壳。
作为本发明的一种实施方式,参见图2、3,燃气轮机的回热器101包括同轴的、由外向内的圆筒状外壳、中壳和内壳,吸热板211包覆在该外壳上,所述外壳内侧沿燃气轮机1的长度方向设置多个翅片1011,各个所述翅片1011呈辐状分布且单个翅片1011一头固定在外壳内,另一头悬置、与中壳之间存在间隙。所述中壳和外壳之间形成低温进气通道1012,翅片1011的作用是增大散热面积,吸热板211的热量可以通过外壳和翅片1011充分传递,使低温进气通道1012内的温度预升高;中壳和内壳之间形成高温进气通道1013;所述低温进气通道1012的进口和出口分别与空压叶轮102的出口和燃烧室105的进口连通,所述高温进气通道1013的进口和出口分别与透平104的出口和外界大气或者其他余热循环利用设备连通。
燃烧室105的高温气推动透平104做功后流入高温进气通道1013内,经压缩后的气体从压气机的空压叶轮102排出进入低温进气通道1012,高温气体和低温气体换热后,低温气体从低温进气通道1012进入燃烧室105燃烧,通过提高进入燃烧室105气体的温度,提高燃料的利用率。高温气体经高温进气通道1013排气,该气体可排至大气或进一步参与余热回收循环。
作为本发明的另一种实施方式,参见图4、5,燃气轮机回热器101 包括相互平行的、由外到内的方筒状外壳、中壳和内壳,吸热板211包覆在该外壳上,各个所述翅片1011相互平行、沿回热器101长度方向设置,且单个翅片1011一头固定在外壳内。所述中壳和外壳之间形成低温进气通道1012,翅片1011的作用是增大散热面积,吸热板211的热量可以通过外壳和翅片1011充分传递,使低温进气通道1012内的温度预升高;中壳和内壳之间形成高温进气通道1013。所述低温进气通道1012的进口和出口分别与空压叶轮102的出口和燃烧室105的进口连通,所述高温进气通道1013的进口和出口分别与透平104的出口和外界大气或者其他余热循环利用设备连通。
燃烧室105的高温气推动透平104做功后流入高温进气通道1013内,经压缩后的气体从压气机的空压叶轮102排出进入低温进气通道1012,高温气体和低温气体换热后,低温气体从低温进气通道1012进入燃烧室105燃烧,高温气体经高温进气通道1013排气,该气体可排至大气或进一步参与余热回收循环。
对于本发明上述实施例基于光热原理的太阳能燃气轮机发电系统的具体工作过程为:
气体通入空压叶轮102,经压缩后进入回热器101中低温进气通道1012进口;回热器101内的气体温度为500℃-600℃;从回热器101低温进气通道1012出口中流出的气体通入燃烧室105内燃烧,燃烧后的高温气体通入透平104经透平带动电机103发电,经透平104出口的气体通入回热器101的高温进气通道1013进口,在回热器101内降温后从回热器101高温进气通道1013出口排出至外界;燃烧室105内的温度为800℃-950℃,优选地,为900度。其中,电机103为启发一体式电机,先作为电动机带动空压叶轮102旋转,待加速到能独立运行后则作为发电机发电。
进一步的,由于吸热板211较长,特别是使用槽式反光镜时,吸 热板及槽式反光镜的长度可达20米,从前端向后端存在温降,因此后段需要更多的热量。为解决上述问题,本发明实施例中,提供有一种太阳能反射镜2的布局结构:在后段增加反射镜的面积,即太阳能反射镜2靠近燃气轮机1头部面积大、靠近燃气轮机1尾部面积小。
本发明的太阳能反射镜2,参见图6~9,为有固定聚点的反射镜,具体地,可选用碟式太阳能反射镜或槽式反光镜;选择碟式反光镜时,吸热板211位于反光镜的反射聚点上,选择槽式反光镜时,吸热板211位于反光镜的聚焦线上。
优选地,参见图6~9,本发明还包括安装台3和调节装置4。
其中,安装台3为一固定在地表或者镶嵌在地面内的平板,可选用钢板。
对于碟式反光镜,参见图6,调节装置4包括顶杆401、套杆402、铰链403、基座404、膨胀瓶405、管道406。
安装台3顶部固定多个基座404,基座404为偶数个,成对对称设置,并沿一圆周分布(优选地,参见图7,基座404沿圆周均匀分布),基座404通过伸缩杆连接太阳能反射镜2底部,伸缩杆包括顶杆401和套杆402,顶杆401可在套杆402内滑动,套杆402底部通过铰链403设置在基座404上,顶杆401底部套入套杆402内、顶部连接在太阳能反射镜2底部(优选地,参见图7,顶杆401在太阳能反射镜2底部沿一圆周均匀分布);各基座404外侧位于安装台3顶面固定有膨胀瓶405,膨胀瓶405内装填膨胀液(可选膨胀煤油),通过管道406连接至其对侧的基座404上的套杆402,膨胀瓶405受热时,膨胀油膨胀,顶起对侧顶杆401,进而使太阳能反射镜2在对侧抬高,以便吸收光照强烈的一侧光线。
进一步地,当太阳光恰好垂直射向地面时,各膨胀瓶405受热程度相同,该时刻太阳能反射镜2轴心垂直于地面。各膨胀瓶405可以 嵌套在瓶座407内,将瓶座407固定在安装台3上。
参见图6,在本实施例的调节装置4结构中,假设强光位于左侧,则右侧的伸缩杆长度长于左侧,太阳能反射镜2右侧高于左侧,以便接受左侧较强的光照;反之则可以接受右侧较强的光照。因此,本发明的发电系统在调节装置4作用下能够实现自动跟踪太阳光,以保证太阳能反射镜2始终接收较强光照的一侧。
参见图7,本实施例的调节装置4结构中,伸缩杆设置为三对,可以从三个角度调节太阳能反射镜2。伸缩杆也可以设置为一对、两对、四对、五对……等整数对。伸缩杆设置越多,可以越精准地调节太阳能反射镜2的角度。
对于槽式反光镜:参见图8、9,安装台3顶部固定多个基座404,各个基座404设置为对称的两排,其余与碟式反光镜的设置相同。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能。

Claims (10)

  1. 一种基于光热原理的太阳能燃气轮机发电系统,其特征在于,包括:燃气轮机、太阳能收集装置以及太阳能反射镜;所述燃气轮机通过固定杆固定在太阳能反射镜上方;
    其中,所述燃气轮机包括空压叶轮、透平、回热器以及燃烧室,所述回热器包括外壳、中壳和内壳,所述中壳和外壳之间形成低温进气通道,所述中壳和内壳之间形成高温进气通道,所述低温进气通道的进口和出口分别与空压叶轮的出口和燃烧室的进口连通,所述高温进气通道的进口和出口分别与透平的出口和外界连通;
    所述太阳能收集装置包括吸热板,所述吸热板包覆在所述回热器的外壳上,所述吸热板位于所述太阳能反射镜的反光聚点或聚焦线上。
  2. 根据权利要求1所述的基于光热原理的太阳能燃气轮机发电系统,其特征在于,所述外壳、中壳和内壳由外到内相互平行设置;
    所述外壳内侧设置多个翅片,各个所述翅片沿回热器长度方向设置,且所述翅片一头固定在外壳内。
  3. 根据权利要求2所述的基于光热原理的太阳能燃气轮机发电系统,其特征在于,所述外壳、中壳和内壳为同轴且由外向内设置的圆筒状;
    各个所述翅片呈辐状沿燃气轮机的长度方向布设在外壳内,各所述翅片沿外壳径向设置。
  4. 根据权利要求2所述的基于光热原理的太阳能燃气轮机发电系统,其特征在于,所述外壳、中壳和内壳为同轴且由外向内设置的方筒状;
    所述翅片沿燃气轮机的长度方向布设在外壳的各个板面内,各所述翅片垂直于外壳设置。
  5. 根据权利要求1所述的基于光热原理的太阳能燃气轮机发电系 统,其特征在于,所述太阳能反射镜靠近燃气轮机头部面积大、靠近燃气轮机尾部面积小。
  6. 根据权利要求1所述的基于光热原理的太阳能燃气轮机发电系统,其特征在于,还包括安装台,所述太阳能反射镜通过调节装置安装于所述安装台,所述调节装置包括伸缩杆、铰链、基座、膨胀瓶以及管道;
    所述安装台顶部固定多个基座,所述基座为偶数个、成对对称设置,所述基座通过铰链连接伸缩杆,所述伸缩杆连接太阳能反射镜底部;
    各基座外侧位于安装台顶面固定有膨胀瓶,所述膨胀瓶通过管道连接至其对侧基座的伸缩杆上,所述膨胀瓶受热时,能够使得其对侧的伸缩杆伸出进而使该侧的太阳能反射镜抬高。
  7. 根据权利要求6所述的基于光热原理的太阳能燃气轮机发电系统,其特征在于,所述伸缩杆包括顶杆、套杆,所述套杆底部通过铰链设置在基座上,所述顶杆底部套入套杆内且与套杆滑动配合,所述顶杆顶部连接太阳能反射镜底部;
    所述膨胀瓶内填充膨胀液,所述膨胀瓶受热时,所述膨胀液膨胀顶起与其连接的顶杆。
  8. 根据权利要求6所述的基于光热原理的太阳能燃气轮机发电系统,其特征在于,所述基座沿一圆周均匀分布,所述伸缩杆沿一对应的圆周均匀分布。
  9. 根据权利要求6所述的基于光热原理的太阳能燃气轮机发电系统,其特征在于,所述基座及伸缩杆沿安装台设置为对称的两排。
  10. 根据权利要求6所述的基于光热原理的太阳能燃气轮机发电系统,其特征在于,所述膨胀瓶镶嵌于所述瓶座内,所述瓶座固定安装于所述安装台。
PCT/CN2020/135901 2020-01-19 2020-12-11 一种基于光热原理的太阳能燃气轮机发电系统 WO2021143416A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/625,347 US20220252054A1 (en) 2020-01-19 2020-12-11 Solar gas turbine power generation system based on photothermal principle
KR1020227010133A KR20220048038A (ko) 2020-01-19 2020-12-11 광열 원리에 기반한 태양열 가스 터빈 발전 시스템
AU2020422038A AU2020422038B2 (en) 2020-01-19 2020-12-11 Solar gas turbine power generation system employing photothermal principle
CA3156293A CA3156293A1 (en) 2020-01-19 2020-12-11 Solar gas turbine power generation system based on photothermal principle
JP2022507654A JP2022544152A (ja) 2020-01-19 2020-12-11 光熱原理に基づく太陽熱ガスタービン発電システム
EP20914619.0A EP3964709B1 (en) 2020-01-19 2020-12-11 Solar gas turbine power generation system employing photothermal principle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010062944.7A CN111156139A (zh) 2020-01-19 2020-01-19 一种基于光热原理的太阳能燃气轮机发电系统
CN202010062944.7 2020-01-19

Publications (1)

Publication Number Publication Date
WO2021143416A1 true WO2021143416A1 (zh) 2021-07-22

Family

ID=70564472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135901 WO2021143416A1 (zh) 2020-01-19 2020-12-11 一种基于光热原理的太阳能燃气轮机发电系统

Country Status (8)

Country Link
US (1) US20220252054A1 (zh)
EP (1) EP3964709B1 (zh)
JP (1) JP2022544152A (zh)
KR (1) KR20220048038A (zh)
CN (1) CN111156139A (zh)
AU (1) AU2020422038B2 (zh)
CA (1) CA3156293A1 (zh)
WO (1) WO2021143416A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111156139A (zh) * 2020-01-19 2020-05-15 至玥腾风科技集团有限公司 一种基于光热原理的太阳能燃气轮机发电系统
CN111742744B (zh) * 2020-07-31 2021-12-28 福建拓海建设工程有限公司 一种园林景观用遮阳花箱
CN112502836A (zh) * 2020-11-13 2021-03-16 至玥腾风科技集团有限公司 一种微型燃气轮机联合循环系统
CN117662270B (zh) * 2023-11-29 2024-06-14 国家能源蓬莱发电有限公司 一种利用外界热源的压缩空气储能系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332888A (ja) * 1994-06-09 1995-12-22 Mitsubishi Heavy Ind Ltd 蓄熱熱交換器
CN105626406A (zh) * 2016-01-25 2016-06-01 东南大学 基于布雷顿循环的大型碟式太阳能热发电系统
US20160281638A1 (en) * 2012-07-24 2016-09-29 Alan Carl HOLSAPPLE Stirling Engine with Regenerator Internal to the Displacer Piston and Integral Geometry for Heat Transfer and Fluid Flow
CN209083420U (zh) * 2018-10-15 2019-07-09 上海和兰透平动力技术有限公司 回热型燃气轮机
CN111156139A (zh) * 2020-01-19 2020-05-15 至玥腾风科技集团有限公司 一种基于光热原理的太阳能燃气轮机发电系统
CN211777846U (zh) * 2020-01-19 2020-10-27 至玥腾风科技集团有限公司 一种基于光热原理的太阳能燃气轮机发电系统

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079591A (en) * 1976-08-02 1978-03-21 Derby Ronald C Solar power plant
US4628692A (en) * 1980-09-04 1986-12-16 Pierce John E Solar energy power system
US4739620A (en) * 1980-09-04 1988-04-26 Pierce John E Solar energy power system
US4414812A (en) * 1981-04-30 1983-11-15 R & D Associates Hot air solar engine
US4942736A (en) * 1988-09-19 1990-07-24 Ormat Inc. Method of and apparatus for producing power from solar energy
US5417052A (en) * 1993-11-05 1995-05-23 Midwest Research Institute Hybrid solar central receiver for combined cycle power plant
US5444972A (en) * 1994-04-12 1995-08-29 Rockwell International Corporation Solar-gas combined cycle electrical generating system
DE19723543C2 (de) * 1997-06-05 2003-04-17 Deutsch Zentr Luft & Raumfahrt Energieerzeugungsanlage
US6293338B1 (en) * 1999-11-04 2001-09-25 Williams International Co. L.L.C. Gas turbine engine recuperator
US7191597B2 (en) * 2003-01-21 2007-03-20 Los Angeles Advisory Services, Inc. Hybrid generation with alternative fuel sources
US20070157614A1 (en) * 2003-01-21 2007-07-12 Goldman Arnold J Hybrid Generation with Alternative Fuel Sources
ES2327991B1 (es) * 2006-08-04 2010-07-15 Abengoa Solar New Technologies, S.A. Planta de concentracion solar.
US20080127647A1 (en) * 2006-09-15 2008-06-05 Skyfuel, Inc. Solar-Generated Steam Retrofit for Supplementing Natural-Gas Combustion at Combined Cycle Power Plants
US20080131830A1 (en) * 2006-12-05 2008-06-05 Nix Martin E Use of renewable energy like solar, wind, geothermal, biomass, and hydropower for manufacturing combustion air for a fossil fuel burner and firebox
BRPI0919160A2 (pt) * 2008-09-17 2017-02-07 Siemens Concentrated Solar Power Ltd usina de energia térmica solar
US8039984B2 (en) * 2009-05-21 2011-10-18 Advanced Solar Power Israel Ltd. System for converting solar radiation into electricity
JP2011007149A (ja) * 2009-06-29 2011-01-13 Mitsubishi Heavy Ind Ltd ガスタービンプラント
US8443615B2 (en) * 2009-08-04 2013-05-21 Combined Power, Llc Systems and methods of dry cooling
AU2010326107B2 (en) * 2009-12-01 2016-02-25 Areva Solar, Inc. Utilizing steam and/or hot water generated using solar energy
US20130098354A1 (en) * 2010-04-15 2013-04-25 Axisol Inc. Solar collectors
GB201006497D0 (en) * 2010-04-19 2010-06-02 Dow Corning Solar thermal power plant
US20120102950A1 (en) * 2010-11-02 2012-05-03 Alliance For Sustainable Energy, Llc. Solar thermal power plant with the integration of an aeroderivative turbine
WO2012131022A2 (en) * 2011-04-01 2012-10-04 Nuovo Pignone S.P.A. Organic rankine cycle for concentrated solar power system
EP2718553B1 (en) * 2011-06-13 2019-08-28 Euroturbine AB Power generation plant and method of operating a power generation plant
US20130118145A1 (en) * 2011-11-11 2013-05-16 8 River Capital, LLC Hybrid fossil fuel and solar heated supercritical carbon dioxide power generating system and method
CN202468183U (zh) * 2012-03-07 2012-10-03 霍尔伯特·海登 太阳能混合动力回热涡流气轮机发电系统
JP2014001641A (ja) * 2012-06-15 2014-01-09 Tokyo Institute Of Technology 太陽熱ガスタービン発電システム
US20140033676A1 (en) * 2012-08-02 2014-02-06 Raymond Pang Unique method of solar integration in combined cycle power plant
TWI545257B (zh) * 2012-10-29 2016-08-11 Atomic Energy Council 多功能太陽能熱電共生系統
US20140223906A1 (en) * 2013-02-08 2014-08-14 Skyfuel, Inc. Solar/gas hybrid power system configurations and methods of use
US20150128558A1 (en) * 2013-11-11 2015-05-14 Bechtel Power Corporation Solar fired combined cycle with supercritical turbine
US9816490B2 (en) * 2014-06-04 2017-11-14 William M. Conlon Dispatchable solar hybrid power plant
JP6320228B2 (ja) * 2014-07-31 2018-05-09 三菱日立パワーシステムズ株式会社 太陽熱空気タービン発電システム
WO2018046979A1 (en) * 2016-09-07 2018-03-15 Aurae Technologies Limited Method of generating power, cold, and distilled water using atmospheric evaporation driven systems
WO2018156529A1 (en) * 2017-02-23 2018-08-30 COMBINED POWER LLC, dba HYPERLIGHT ENERGY Systems and methods of generating solar energy and dry cooling
US20190048859A1 (en) * 2017-08-11 2019-02-14 Do Sun Im Solar energy power generation system
US11313274B2 (en) * 2019-10-09 2022-04-26 King Fahd University Of Petroleum And Minerals Integrated power generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332888A (ja) * 1994-06-09 1995-12-22 Mitsubishi Heavy Ind Ltd 蓄熱熱交換器
US20160281638A1 (en) * 2012-07-24 2016-09-29 Alan Carl HOLSAPPLE Stirling Engine with Regenerator Internal to the Displacer Piston and Integral Geometry for Heat Transfer and Fluid Flow
CN105626406A (zh) * 2016-01-25 2016-06-01 东南大学 基于布雷顿循环的大型碟式太阳能热发电系统
CN209083420U (zh) * 2018-10-15 2019-07-09 上海和兰透平动力技术有限公司 回热型燃气轮机
CN111156139A (zh) * 2020-01-19 2020-05-15 至玥腾风科技集团有限公司 一种基于光热原理的太阳能燃气轮机发电系统
CN211777846U (zh) * 2020-01-19 2020-10-27 至玥腾风科技集团有限公司 一种基于光热原理的太阳能燃气轮机发电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3964709A4 *

Also Published As

Publication number Publication date
AU2020422038B2 (en) 2024-01-04
JP2022544152A (ja) 2022-10-17
US20220252054A1 (en) 2022-08-11
CN111156139A (zh) 2020-05-15
KR20220048038A (ko) 2022-04-19
AU2020422038A1 (en) 2022-01-06
EP3964709B1 (en) 2023-06-07
EP3964709A4 (en) 2022-08-31
CA3156293A1 (en) 2021-07-22
EP3964709A1 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
WO2021143416A1 (zh) 一种基于光热原理的太阳能燃气轮机发电系统
CN208578679U (zh) 一种基于塔式定日镜的改良布雷顿光热发电系统
WO2012022273A1 (zh) 太阳能氨水热电转换系统
CN100429397C (zh) 簇式储热太阳能光热发电装置
CN105042891A (zh) 一种碟式太阳能集热利用系统
CN108800605A (zh) 一种太阳能集热管及温差发电系统
CN102207344A (zh) 双镜聚焦太阳能制冷装置
CN211777846U (zh) 一种基于光热原理的太阳能燃气轮机发电系统
CN102155365A (zh) 一种热砂蓄热太阳能碟式斯特林机发电装置及其方法
CN202082057U (zh) 一种热砂蓄热太阳能碟式斯特林机发电装置
CN208073689U (zh) 一种带有菲涅尔镜和蜂窝回热器的蒸汽循环发电机
CN101586881B (zh) 集热式太阳能光热电系统
CN108561281A (zh) 一种带有菲涅尔镜和蜂窝回热器的蒸汽循环发电机
CN210486142U (zh) 腔体式气液两相吸热器
CN210440172U (zh) 一种能实现全天发电的太阳能发电系统
CN212296731U (zh) 一种基于光热原理的太阳能燃气轮机发电系统
CN201450463U (zh) 集热式太阳能光热电系统
CN104158488B (zh) 太阳能利用系统
CN108644079A (zh) 循环相变分离腔体旋转式热电转换装置
CN110567175B (zh) 腔体式气液两相吸热器
CN204100616U (zh) 蓄热式平板太阳能集热器
CN209053750U (zh) 一种光热循环发电系统
CN204046517U (zh) 太阳能利用系统
CN207333117U (zh) 太阳能碟式集热装置与低温斯特林发电机组联合发电系统
CN106089611A (zh) 太阳光热斯特林发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020914619

Country of ref document: EP

Effective date: 20211130

ENP Entry into the national phase

Ref document number: 2020422038

Country of ref document: AU

Date of ref document: 20201211

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022507654

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227010133

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3156293

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE