WO2021143245A1 - 一种磁流变液颗粒碰撞阻尼器 - Google Patents

一种磁流变液颗粒碰撞阻尼器 Download PDF

Info

Publication number
WO2021143245A1
WO2021143245A1 PCT/CN2020/122636 CN2020122636W WO2021143245A1 WO 2021143245 A1 WO2021143245 A1 WO 2021143245A1 CN 2020122636 W CN2020122636 W CN 2020122636W WO 2021143245 A1 WO2021143245 A1 WO 2021143245A1
Authority
WO
WIPO (PCT)
Prior art keywords
impactor
magnetorheological fluid
horizontal
disc
damper
Prior art date
Application number
PCT/CN2020/122636
Other languages
English (en)
French (fr)
Inventor
杜妍辰
林俊文
Original Assignee
上海理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海理工大学 filed Critical 上海理工大学
Publication of WO2021143245A1 publication Critical patent/WO2021143245A1/zh
Priority to US17/383,802 priority Critical patent/US11906011B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/002Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising at least one fluid spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids
    • F16F2224/045Fluids magnetorheological
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/066Variable stiffness

Definitions

  • the invention relates to the technical field of collision dampers, in particular to a magnetorheological fluid particle collision damper.
  • the collision damper is a passive control technology for vibration.
  • the main working principle is a damper that realizes momentum exchange and structural energy dissipation through the collision and friction between the impactor and the impactor, and between the impactor and the containing cavity. Its structure is simple. , Easy to manufacture, low cost, no power supply, little modification to the original system and adapt to various harsh environments.
  • collision dampers have developed rapidly, but the principle of vibration reduction is mainly based on energy exchange and frictional energy consumption in the collision process. Most single-body collision dampers have short working time, fewer collisions, and average damping effect. Secondly, The traditional particle damper is composed of particles of the same size, and the number of collisions under external excitation is small, and the energy dissipation effect is poor.
  • the purpose of the present invention is to provide a magnetorheological fluid particle collision damper to solve the above-mentioned problems in the prior art and to effectively improve the vibration damping effect.
  • the present invention provides a magnetorheological fluid particle collision damper, including a damper cavity unit, the damper cavity unit is circumferentially provided with electromagnetic coils; the damper cavity A number of horizontal shock absorbers are evenly arranged inside the body unit, the left and right ends of the damper cavity unit are symmetrically arranged with disc type shock absorbers, and the outer diameter of the disc type shock absorber is smaller than that of the damper cavity
  • the inner diameter of the unit; the horizontal shock absorber and the disc shock absorber are respectively connected to the inner wall of the damper cavity unit through a spring;
  • the horizontal shock absorber includes a horizontal impactor connected to the inner wall of the damper cavity unit through a spring; a horizontal magnetorheological fluid cavity is provided in the horizontal impactor; the horizontal magnetic A horizontal impactor container is arranged in the rheological fluid cavity; a first impactor group is arranged in the horizontal impactor container, and the first impactor group is composed of several impactors of different sizes;
  • the disk-type shock absorber includes a disk-type impactor, which is connected to the inner wall of the damper cavity unit through a spring; the disk-type impactor is provided with a disk-shaped magnetorheological fluid cavity The disk-shaped magnetorheological fluid cavity is slidably connected with a number of disk-shaped impactor containers, the disk-shaped impactor containers are distributed in a circumferential array; the disk-shaped impactor container is provided with a second impactor group;
  • Both the horizontal magnetorheological fluid cavity and the disc-shaped magnetorheological fluid cavity are filled with magnetorheological fluid.
  • the damper cavity unit has a cylindrical structure, and the disc-shaped shock absorber is circular; a plurality of the horizontal shock absorbers are uniformly distributed in a circular array inside the damper cavity unit.
  • the horizontal shock absorber further includes a sliding groove, and the horizontal impactor is slidably connected with the sliding groove.
  • the first impactor group includes a number of first impactors and a number of second impactors; the first impactor and the second impactor are spaced apart and arranged in a concentric arrangement; An impactor is arranged at the left and right ends of the horizontal impactor container; the size of the first impactor is larger than the size of the second impactor; the second impactor group includes a plurality of third impactors;
  • the horizontal impactor further includes two first damping rods, the two first damping rods are respectively arranged on the left and right sides of the horizontal impactor container; one end of the first damping rod is connected to the first impactor Connected, the other end of the first damper rod is in contact with the magnetorheological fluid in the horizontal magnetorheological fluid cavity.
  • a sliding rail is provided at the bottom of the horizontal impactor container, and the first impactor and the second impactor are slidably connected to the sliding rail.
  • the disc-shaped magnetorheological fluid cavity includes an inner ring and an outer ring, and the inner ring communicates with the bottom of the outer ring; the disc-shaped impactor container is arranged between the inner ring and the outer ring.
  • the two ends of the disc-shaped impactor container are respectively fixedly connected with a second damping rod, and the disc-shaped impactor container is connected to the disc-shaped magnetorheological fluid cavity through the second damping rod In contact with the magnetorheological liquid.
  • the spring is a variable stiffness spring.
  • the magnetorheological liquid is composed of three parts: soft magnetic particles, carrier liquid, and additives.
  • the first impactor group and the second impactor group are both composed of several pulleys and particles, and the particles are composed of one or more of ceramics, quartz stone, metal, and concrete.
  • the diameter is 5-50mm.
  • the size of the output magnetic field of the electromagnetic coil can be adjusted.
  • the present invention controls the viscosity of the magnetorheological fluid in each magnetorheological fluid cavity by changing the size of the magnetic field, and realizes the control of the vibration performance between the impactor and the main system. Through the control of the vibration performance, Effectively increase the damping range to meet the damping ability of different environments and different equipment;
  • the present invention adopts two different size impactors arranged at intervals, which can reach a stable state faster under the action of external excitation, reduces the peak displacement and peak acceleration of vibration, and effectively improves the vibration damping effect;
  • the present invention restricts the position of the disc shock absorber through six springs, can provide tuning stiffness in different directions, and effectively realize the transmission and dissipation of vibration energy of the main structure in various directions.
  • Figure 1 is a schematic diagram of the structure of the magnetorheological fluid particle collision damper of the present invention
  • Figure 2 is a side view of the magnetorheological fluid particle collision damper of the present invention.
  • Electromagnetic coil 2. Damper cavity unit; 3. First spring; 4. Horizontal impactor housing; 5. Horizontal magnetorheological fluid cavity; 6. Horizontal impactor container; 7. First damping Rod; 8, the first piston; 9, the first pulley; 10, the first particle; 11, the second pulley; 12, the second particle; 13, the second spring; 14, the shell of the disc impactor; 15, the chute 16.
  • this embodiment provides a magnetorheological fluid particle collision damper, including a damper cavity unit 2, which has a cylindrical structure; the damper cavity unit 2 There is an electromagnetic coil 1 in the circumferential direction of the damper cavity unit 2, and a number of horizontal shock absorbers are evenly arranged inside the damper cavity unit 2; in this embodiment, the number of horizontal shock absorbers is four, and the four horizontal shock absorbers are uniformly arranged in a circular array Distributed inside the damper cavity unit 2, the horizontal shock absorbers are spaced at an angle of 90°; the left and right ends of the damper cavity unit 2 are respectively provided with disc-shaped shock absorbers, the disc-shaped shock absorbers The outer diameter of the disc type shock absorber is smaller than the inner diameter of the damper cavity unit 2; the horizontal shock absorber and the disc type shock absorber are connected to the damper cavity unit 2 through a spring respectively. The inner wall is connected.
  • the horizontal shock absorber includes a horizontal impactor, the horizontal impactor includes a horizontal impactor housing 4, the left and right ends of the horizontal impactor housing 4 are respectively fixedly connected to the first spring 3, the horizontal impactor housing 4 passes The first spring 3 is fixedly connected to the inner wall of the damper cavity unit 2.
  • a horizontal magnetorheological fluid cavity 5 is sleeved in the horizontal impactor housing 4, and the horizontal magnetorheological fluid cavity 5 is filled with a magnetorheological fluid; the magnetorheological fluid is covered with a horizontal impactor Container 6.
  • the horizontal impactor container 6 is provided with a first impactor group, the first impactor group includes a plurality of first impactors and second impactors, the first impactor and the second impactor are spaced apart
  • the first impactor is arranged in a distributed and concentric arrangement on the same rail, and the first impactor is arranged at the left and right ends of the horizontal impactor container 6.
  • the horizontal impactor further includes two first damping rods 7, and the two first damping rods 7 are respectively arranged on the left and right sides of the horizontal impactor container 6.
  • the first impactor includes a first pulley 9 and a first particle 10.
  • One end of the first damper rod 7 is fixedly connected to the first pulley 9, and the other end of the first damper rod 7 is connected to the horizontal magnetic flux.
  • the magnetorheological fluid in the fluid fluid chamber 5 is in contact with each other; the left and right ends of the first pulley 9 are fixedly connected to the first damper rod 7 or the first particles 10;
  • the second impactor includes a first Two trolleys 11 and second particles 12, the left and right ends of the second trolley 11 are respectively connected to the second particles 12; the size of the first trolley 9 is larger than the size of the second trolley 11;
  • the size of the first particles 10 is larger than the size of the second particles 12.
  • a first piston 8 is provided at the junction of the first damping rod 7 and the side wall of the horizontal impactor container 6 for sealing.
  • the horizontal shock absorber further includes a sliding groove 15, and the horizontal impactor housing 4 is slidably connected to the sliding groove 15, and the degree of freedom of movement of the horizontal impactor housing 4 is restricted by the sliding groove 15.
  • the bottom of the horizontal impactor container 6 is provided with a slide rail, and the first pulley 9 and the second pulley 11 slide on the slide rail to ensure that the first impactor and the second impactor collide with each other in the center. There will be the possibility of collision with the upper and lower walls of the horizontal impactor container 6, so as to ensure that all the collision actions are effective collisions, and the efficiency of momentum exchange is higher.
  • the disc-shaped shock absorber includes a disc-shaped impactor, the disc-shaped impactor includes a disc-shaped impactor housing 14, and the disc-shaped impactor housing 14 is fixedly connected with a plurality of second springs 13 in the circumferential direction.
  • the impactor housing 14 is fixedly connected to the inner wall of the damper cavity unit 2 through the second spring 13; in this embodiment, the number of the second spring 13 is six, and the disc-shaped impact is restricted by the six second springs 13
  • the position of the housing 14 can provide different tuning stiffness on the plane formed by the six second springs 13.
  • a disk-shaped magnetorheological fluid cavity 18 is sleeved in the disk-shaped impactor housing 14, and the disk-shaped magnetorheological fluid cavity 18 is filled with a magnetorheological fluid.
  • the disk-shaped magnetorheological fluid cavity 18 is slidably connected with a plurality of disk-shaped impactor containers 19, and the disk-shaped impactor containers 19 are distributed in a circumferential array;
  • the disk-shaped magnetorheological fluid cavity 18 includes an inner ring And the outer ring, the inner ring communicates with the bottom of the outer ring, the disc-shaped impactor container 19 is arranged at the groove between the inner ring and the outer ring; the disc-shaped impactor container 19
  • the two ends are respectively fixedly connected with second damping rods 17, and the disc-shaped impactor container 19 is in contact with the magnetorheological fluid in the disc-shaped magnetorheological fluid cavity 18 through the second damping rods.
  • the number of disc-shaped impactor containers 19 is six, which corresponds to the positions of the six second springs 13.
  • a second piston 16 is provided at the junction of the second damping rod 17 and the side wall of the magnetorheological fluid cavity 18 for sealing.
  • the disc-shaped impactor container 19 is provided with a second impactor group, the second impactor group includes a plurality of third impactors; the third impactor includes a third pulley 20, the third pulley 20 The third particles 21 are fixedly connected to both ends.
  • the size of the output magnetic field of the electromagnetic coil 1 can be adjusted, and the change of the output magnetic field of the electromagnetic coil 1 can control the level of the magnetorheological fluid in the horizontal magnetorheological fluid cavity 5 and the disc-shaped magnetorheological fluid cavity 18. Viscosity, thereby achieving the purpose of controlling the vibration performance between the impactor and the main system.
  • the first spring 3 and the second spring 13 are variable stiffness springs.
  • the variable stiffness spring transfers the energy of the main structure to the damper through resonance, it can quickly reduce the vibration energy of the high-order modes of the basic structure. , Improve the energy efficiency of the damper.
  • the first particles 10, the second particles 12, and the third particles 21 are composed of one or more of ceramics, quartz stone, metal, and concrete.
  • the first particles 10, the second particles 12, The diameter of the third particle 21 is 5-50mm; the distance between the first impactor and the second impactor is 5-10mm; the projected area of the first impactor group on the horizontal plane is 20% of the horizontal plane of the damper cavity unit 2 -40%.
  • the working principle of the magnetorheological fluid particle collision damper of the present invention is:
  • the electromagnetic coil 1 arranged on the outer periphery of the damper cavity unit 2 outputs a controllable magnetic field, and the magnetorheological liquid in the horizontal magnetorheological fluid cavity 5 and the disc-shaped magnetorheological fluid cavity 18 can be changed by adjusting the magnitude of the magnetic field.
  • the horizontal shock absorber passes the first spring 3 and damping
  • the side walls of the damper cavity unit 2 are connected, and the position of the horizontal damper is restricted by the sliding groove 15 so that the horizontal damper can move in the horizontal direction intelligently, effectively avoiding collision with the inner wall of the damper cavity unit 2;
  • the impactor container 6 is provided with an impactor group, and the impactor trolley slides through the slide rails to ensure that only the center collision occurs between the impactors, avoiding the collision between the trolley and the upper and lower walls of the horizontal impactor container 6, thereby effectively ensuring the impact
  • the collisions between the devices are all effective collisions, the momentum exchange efficiency is higher, and the collision energy is transferred to the horizontal magnetorheological fluid cavity 5 through the damper rod, and the magnetorheological fluid in the horizontal magnetorheological fluid cavity 5
  • the change of viscosity controls the size of impactor collision

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

一种磁流变液颗粒碰撞阻尼器,包括阻尼器腔体单元(2),阻尼器腔体单元(2)周向设有电磁线圈(1),内部均匀设有若干个水平减震器,左右两端对称设有盘型减震器;水平减震器、盘型减震器分别通过弹簧与阻尼器腔体单元(2)的内壁连接;水平减震器包括填充有磁流变液体的水平磁流变液腔体(5),水平磁流变液腔体(5)内设有水平冲击器容器(6),水平冲击器容器(6)内设有第一冲击器群,第一冲击器群由若干个不同尺寸的冲击器组成;盘型减震器包括填充有磁流变液体的盘型磁流变液腔体(18);盘型磁流变液腔体(18)滑动连接有若干个盘型冲击器容器(19),盘型冲击器容器(19)呈圆周阵列分布,盘型冲击器容器(19)内设有第二冲击器群,提高了减振效果。

Description

一种磁流变液颗粒碰撞阻尼器 技术领域
本发明涉及碰撞阻尼器技术领域,特别是涉及一种磁流变液颗粒碰撞阻尼器。
背景技术
碰撞阻尼器属于振动的被动控制技术,主要工作原理是通过冲击器与冲击器之间、冲击器与容纳腔体之间的碰撞与摩擦实现动量交换和结构能量耗散的阻尼器,其结构简单,制造方便,成本低廉,无需电源,对原系统改动小并且适应各种恶劣的环境。
近几年碰撞阻尼器发展迅速,但是减振的原理主要基于碰撞过程中的能量交换和摩擦耗能,且大多数单体碰撞阻尼器工作时间短,碰撞次数少,减振效果一般,其次,传统颗粒阻尼器由尺寸相同的颗粒组成颗粒群,在外激励下碰撞次数少从而能量耗散效果差。
发明内容
本发明的目的是提供一种磁流变液颗粒碰撞阻尼器,以解决上述现有技术存在的问题,能够有效提高减振效果。
为实现上述目的,本发明提供了如下方案:本发明提供一种磁流变液颗粒碰撞阻尼器,包括阻尼器腔体单元,所述阻尼器腔体单元周向设有电磁线圈;所述阻尼器腔体单元内部均匀设有若干个水平减震器,所述阻尼器腔体单元的左右两端对称设有盘型减震器,所述盘型减震器的外径小于所述阻尼器腔体单元的内径;所述水平减震器、所述盘型减震器分别通过弹簧与所述阻尼器腔体单元的内壁连接;
所述水平减震器包括水平冲击器,所述水平冲击器通过弹簧与所述阻尼器腔体单元的内壁连接;所述水平冲击器内设有水平磁流变液腔体;所述水平磁流变液腔体内设有水平冲击器容器;所述水平冲击器容器内设有第一冲击器群,所述第一冲击器群由若干个不同尺寸的冲击器组成;
所述盘型减震器包括盘型冲击器,所述盘型冲击器通过弹簧与所述阻尼器腔体单元的内壁连接;所述盘型冲击器内设有盘型磁流变液腔体;所述盘型磁流变液腔体滑动连接有若干个盘型冲击器容器,所述盘型冲击器容器呈圆周阵列分布;所述盘型冲击器容器内设有第二冲击器群;
所述水平磁流变液腔体、所述盘型磁流变液腔体内均填充有磁流变液体。
优选地,所述阻尼器腔体单元为圆柱体结构,所述盘型减震器为圆形;若干个所述水平减震器呈圆周阵列均匀分布在所述阻尼器腔体单元的内部。
优选地,所述水平减震器还包括滑槽,所述水平冲击器与所述滑槽滑动连接。
优选地,所述第一冲击器群包括若干个第一冲击器和若干个第二冲击器;所述第一冲击器与所述第二冲击器间隔分布且对心同轨排列;所述第一冲击器设置于所述水平冲击器容器的左右两端;所述第一冲击器的尺寸大于所述第二冲击器的尺寸;所述第二冲击器群包括若干个第三冲击器;
所述水平冲击器还包括两个第一阻尼棒,两个所述第一阻尼棒分别设置于所述水平冲击器容器的左右两侧;所述第一阻尼棒一端与所述第一冲击器相连,所述第一阻尼棒另一端与所述水平磁流变液腔体中的磁流变液体相接触。
优选地,所述水平冲击器容器底部设有滑轨,所述第一冲击器和所述第二冲击器与所述滑轨滑动连接。
优选地,所述盘型磁流变液腔体包括内环和外环,所述内环与所述外环底部相连通;所述盘型冲击器容器设置于所述内环与所述外环中间的凹槽处;所述盘型冲击器容器两端分别固定连接有第二阻尼棒,所述盘型冲击器容器通过所述第二阻尼棒与所述盘型磁流变液腔体中的磁流变液体相接触。
优选地,所述弹簧为变刚度弹簧。
优选地,所述磁流变液体由软磁颗粒、载液、和添加剂三部分构成。
优选地,所述第一冲击器群、第二冲击器群均由若干个滑车和颗粒组成,所述颗粒由陶瓷、石英石、金属、混凝土中的一种或多种组成,所述颗粒的直径为5-50mm。
优选地,所述电磁线圈输出磁场的大小能够进行调节。
本发明公开了以下技术效果:
(1)本发明通过磁场大小的改变,控制各磁流变液腔内中磁流变液的粘度,实现了对冲击器与主系统间的振动效能进行控制,通过对振动效能的控制,能够有效增加减振范围,满足不同环境和不同设 备的减振能力;
(2)本发明采用两种不同尺寸的冲击器间隔排列,在外激励的作用下能够更快达到稳定状态,降低了振动的峰值位移和峰值加速度,有效提高了减振效果;
(3)本发明通过六个弹簧来限制盘式减震器的位置,能够提供不同方向的调谐刚度,有效实现了在各个方向上主体结构振动能量的传递和耗散。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明磁流变液颗粒碰撞阻尼器的结构示意图;
图2为本发明磁流变液颗粒碰撞阻尼器的侧视图;
其中,1、电磁线圈;2、阻尼器腔体单元;3、第一弹簧;4、水平冲击器外壳;5、水平磁流变液腔体;6、水平冲击器容器;7、第一阻尼棒;8、第一活塞;9、第一滑车;10、第一颗粒;11、第二滑车;12、第二颗粒;13、第二弹簧;14、盘型冲击器外壳;15、滑槽;16、第二活塞;17、第二阻尼棒;18、盘型磁流变液腔体;19、盘型冲击器容器;20、第三滑车;21、第三颗粒。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参照图1-2所示,本实施例提供一种磁流变液颗粒碰撞阻尼器,包括阻尼器腔体单元2,阻尼器腔体单元2为圆柱形结构;所述阻尼器腔体单元2的周向设有电磁线圈1,所述阻尼器腔体单元2内部均匀设有若干个水平减震器;本实施例中水平减震器的数量为四个,四个水平减震器呈圆周阵列均匀分布在阻尼器腔体单元2内部,水平减震器之间间隔90°角;所述阻尼器腔体单元2的左右两端分别对称设有盘型减震器,所述盘型减震器为圆形,所述盘型减震器外径小于所述阻尼器腔体单元2内径;所述水平减震器、所述盘型减震器分别通过弹簧与所述阻尼器腔体单元2的内壁连接。
所述水平减震器包括水平冲击器,所述水平冲击器包括水平冲击器外壳4,所述水平冲击器外壳4左右两端分别固定连接有第一弹簧3,所述水平冲击器外壳4通过所述第一弹簧3与所述阻尼器腔体单元2内壁固定连接。
所述水平冲击器外壳4内套接有水平磁流变液腔体5,所述水平磁流变液腔体5内填充有磁流变液体;所述磁流变液体包覆有水平冲 击器容器6。
所述水平冲击器容器6内设有第一冲击器群,所述第一冲击器群包括若干个第一冲击器和第二冲击器,所述第一冲击器与所述第二冲击器间隔分布且对心同轨排列,所述第一冲击器设置于所述水平冲击器容器6的左右两端。
所述水平冲击器还包括两个第一阻尼棒7,两个所述第一阻尼棒7分别设置于所述水平冲击器容器6的左右两侧。
所述第一冲击器包括第一滑车9和第一颗粒10,所述第一阻尼棒7一端与所述第一滑车9固定连接,所述第一阻尼棒7另一端与所述水平磁流变液腔体5中的磁流变液体相接触;所述第一滑车9的左右两端与所述第一阻尼棒7或所述第一颗粒10固定连接;所述第二冲击器包括第二滑车11和第二颗粒12,所述第二滑车11的左右两端分别与所述第二颗粒12相连接;所述第一滑车9的尺寸大于所述第二滑车11的尺寸;所述第一颗粒10的尺寸大于所述第二颗粒12的尺寸。
所述第一阻尼棒7与所述水平冲击器容器6侧壁交接处设有第一活塞8,进行密封。
所述水平减震器还包括滑槽15,所述水平冲击器外壳4与所述滑槽15滑动连接,通过滑槽15限制水平冲击器外壳4的移动自由度。
所述水平冲击器容器6底部设有滑轨,所述第一滑车9和所述第二滑车11在所述滑轨上滑动,保证第一冲击器和第二冲击器发生对心碰撞,不会出现与水平冲击器容器6上下壁撞击的可能,从而保证 撞击动作全部为有效撞击,动量交换的效率更高。
所述盘型减震器包括盘型冲击器,所述盘型冲击器包括盘型冲击器外壳14,所述盘型冲击器外壳14周向固定连接有若干个第二弹簧13,所述盘型冲击器外壳14通过所述第二弹簧13与所述阻尼器腔体单元2内壁固定连接;本实施例中第二弹簧13的数量为六个,通过六个第二弹簧13限制盘型冲击器外壳14的位置,能够在六个第二弹簧13所组成的平面上提供不同的调谐刚度。
所述盘型冲击器外壳14内套接有盘型磁流变液腔体18,所述盘型磁流变液腔体18内填充有磁流变液体。
所述盘型磁流变液腔体18滑动连接有若干个盘型冲击器容器19,所述盘型冲击器容器19呈圆周阵列分布;所述盘型磁流变液腔体18包括内环和外环,所述内环与所述外环底部相连通,所述盘型冲击器容器19设置于所述内环与所述外环中间的凹槽处;所述盘型冲击器容器19两端分别固定连接有第二阻尼棒17,所述盘型冲击器容器19通过所述第二阻尼棒与所述盘型磁流变液腔体18中的磁流变液体相接触。本实施例中盘型冲击器容器19的数量为六个,且与六个第二弹簧13的位置相对应。
所述第二阻尼棒17与所述磁流变液腔体18侧壁的交接处设有第二活塞16,进行密封。
所述盘型冲击器容器19内设有第二冲击器群,所述第二冲击器群包括若干个第三冲击器;所述第三冲击器包括第三滑车20,所述第三滑车20两端均固定连接有第三颗粒21。
进一步优化方案,电磁线圈1输出磁场的大小能够进行调节,通过电磁线圈1输出磁场的变化,来控制水平磁流变液腔体5和盘型磁流变液腔体18中磁流变液体的粘度,借此达到控制冲击器与主系统间振动效能的目的。
进一步优化方案,所述第一弹簧3和所述第二弹簧13为变刚度弹簧,变刚度弹簧在通过共振的方式使主体结构能量传递到阻尼器时,能够迅速降低基本结构高阶模态的振动能量,提高阻尼器的耗能效率。
进一步优化方案,所述第一颗粒10、第二颗粒12、第三颗粒21由陶瓷、石英石、金属、混凝土中的一种或多种组成,所述第一颗粒10、第二颗粒12、第三颗粒21的直径为5-50mm;所述第一冲击器和所述第二冲击器间距为5-10mm;第一冲击器群在水平面投影面积为阻尼器腔体单元2水平面的20%-40%。
本发明磁流变液颗粒碰撞阻尼器的工作原理为:
设置于阻尼器腔体单元2外周的电磁线圈1输出大小可控的磁场,通过调节磁场的大小来改变水平磁流变液腔体5和盘型磁流变液腔体18中磁流变液体的粘度,达到控制冲击器与主系统间振动效能的目的;通过振动效能控制装置的减振范围,能够满足不同振动环境与不同设备的减振能力;水平减震器通过第一弹簧3与阻尼器腔体单元2的侧壁连接,并通过滑槽15限制水平减振器的位置,使水平减振器智能在水平方向移动,有效避免了与阻尼器腔体单元2的内壁发生碰撞;水平冲击器容器6内设有冲击器群,冲击器滑车通过滑轨进 行滑动,保证冲击器间只发生对心碰撞,避免了滑车与水平冲击器容器6的上下壁进行碰撞,从而有效保证了冲击器之间的撞击全部为有效撞击,动量交换的效率更高,且碰撞能量通过阻尼棒传递到水平磁流变液腔体5内,通过对水平磁流变液腔体5内磁流变液体粘度的改变来控制冲击器碰撞能量传递到主系统的大小;冲击器群采用两种不同尺寸的冲击器间隔排列,使冲击器颗粒的球心对中碰撞,能够在外激励下更快达到稳定状态,降低了振动的峰值位移和峰值加速度;通过六个第二弹簧13来限制盘式减震器的位置,能够在六个第二弹簧13所组成的平面上提供不同的调谐刚度,从而在各个方向上实现主体结构振动能量的传递和耗散。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

  1. 一种磁流变液颗粒碰撞阻尼器,其特征在于,包括阻尼器腔体单元(2),所述阻尼器腔体单元(2)周向设有电磁线圈(1);所述阻尼器腔体单元(2)内部均匀设有若干个水平减震器,所述阻尼器腔体单元(2)的左右两端对称设有盘型减震器,所述盘型减震器的外径小于所述阻尼器腔体单元(2)的内径;所述水平减震器、所述盘型减震器分别通过弹簧与所述阻尼器腔体单元(2)的内壁连接;
    所述水平减震器包括水平冲击器,所述水平冲击器通过弹簧与所述阻尼器腔体单元(2)的内壁连接;所述水平冲击器内设有水平磁流变液腔体(5);所述水平磁流变液腔体(5)内设有水平冲击器容器(6);所述水平冲击器容器(6)内设有第一冲击器群,所述第一冲击器群由若干个不同尺寸的冲击器组成;
    所述盘型减震器包括盘型冲击器,所述盘型冲击器通过弹簧与所述阻尼器腔体单元(2)的内壁连接;所述盘型冲击器内设有盘型磁流变液腔体(18);所述盘型磁流变液腔体(18)滑动连接有若干个盘型冲击器容器(19),所述盘型冲击器容器(19)呈圆周阵列分布;所述盘型冲击器容器(19)内设有第二冲击器群;
    所述水平磁流变液腔体(5)、所述盘型磁流变液腔体(18)内均填充有磁流变液体。
  2. 根据权利要求1所述的磁流变液颗粒碰撞阻尼器,其特征在于,所述阻尼器腔体单元(2)为圆柱体结构,所述盘型减震器为圆形;若干个所述水平减震器呈圆周阵列均匀分布在所述阻尼器腔体单元(2)的内部。
  3. 根据权利要求1所述的磁流变液颗粒碰撞阻尼器,其特征在于,所述水平减震器还包括滑槽(15),所述水平冲击器与所述滑槽(15)滑动连接。
  4. 根据权利要求1所述的磁流变液颗粒碰撞阻尼器,其特征在于,所述第一冲击器群包括若干个第一冲击器和若干个第二冲击器;所述第一冲击器与所述第二冲击器间隔分布且对心同轨排列;所述第一冲击器设置于所述水平冲击器容器(6)的左右两端;所述第一冲击器的尺寸大于所述第二冲击器的尺寸;所述第二冲击器群包括若干个第三冲击器;
    所述水平冲击器还包括两个第一阻尼棒(7),两个所述第一阻尼棒(7)分别设置于所述水平冲击器容器(6)的左右两侧;所述第一阻尼棒(7)一端与所述第一冲击器相连,所述第一阻尼棒(7)另一端与所述水平磁流变液腔体(5)中的磁流变液体相接触。
  5. 根据权利要求4所述的磁流变液颗粒碰撞阻尼器,其特征在于,所述水平冲击器容器(6)底部设有滑轨,所述第一冲击器和所述第二冲击器与所述滑轨滑动连接。
  6. 根据权利要求1所述的磁流变液颗粒碰撞阻尼器,其特征在于,所述盘型磁流变液腔体(18)包括内环和外环,所述内环与所述外环底部相连通;所述盘型冲击器容器(19)设置于所述内环与所述外环中间的凹槽处;所述盘型冲击器容器(19)两端分别固定连接有第二阻尼棒(17),所述盘型冲击器容器(19)通过所述第二阻尼棒与所述盘型磁流变液腔体(18)中的磁流变液体相接触。
  7. 根据权利要求1所述的磁流变液颗粒碰撞阻尼器,其特征在于,所述弹簧为变刚度弹簧。
  8. 根据权利要求1所述的磁流变液颗粒碰撞阻尼器,其特征在于,所述磁流变液体由软磁颗粒、载液、和添加剂三部分构成。
  9. 根据权利要求1所述的磁流变液颗粒碰撞阻尼器,其特征在于,所述第一冲击器群、第二冲击器群均由若干个滑车和颗粒组成,所述颗粒由陶瓷、石英石、金属、混凝土中的一种或多种组成,所述颗粒的直径为5-50mm。
  10. 根据权利要求1所述的磁流变液颗粒碰撞阻尼器,其特征在于,所述电磁线圈(1)输出磁场的大小能够进行调节。
PCT/CN2020/122636 2020-01-13 2020-10-22 一种磁流变液颗粒碰撞阻尼器 WO2021143245A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/383,802 US11906011B2 (en) 2020-01-13 2021-07-23 Magnetorheological fluid particle impact damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010033026.1A CN111173880B (zh) 2020-01-13 2020-01-13 一种磁流变液颗粒碰撞阻尼器
CN202010033026.1 2020-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/383,802 Continuation US11906011B2 (en) 2020-01-13 2021-07-23 Magnetorheological fluid particle impact damper

Publications (1)

Publication Number Publication Date
WO2021143245A1 true WO2021143245A1 (zh) 2021-07-22

Family

ID=70656318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122636 WO2021143245A1 (zh) 2020-01-13 2020-10-22 一种磁流变液颗粒碰撞阻尼器

Country Status (3)

Country Link
US (1) US11906011B2 (zh)
CN (1) CN111173880B (zh)
WO (1) WO2021143245A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113931929A (zh) * 2021-09-16 2022-01-14 上海工程技术大学 一种可自主减振降噪的滚动轴承装置
CN114962529A (zh) * 2022-04-25 2022-08-30 重庆大学 多励磁多盘片式磁流变宽频隔振器
CN116234208A (zh) * 2023-02-24 2023-06-06 西北核技术研究所 一种气溶胶采样器用爆炸冲击防护装置
CN114962529B (zh) * 2022-04-25 2024-06-04 重庆大学 多励磁多盘片式磁流变宽频隔振器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113915283B (zh) * 2021-09-29 2022-10-04 华中科技大学 一种磁液复合的平面多自由度调谐质量阻尼器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236514A1 (de) * 2002-08-30 2004-03-18 Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, dieses vertreten durch das Bundesamt für Wehrtechnik und Beschaffung Repositionierende, geregelte Feder-Dämpfersysteme für große Verschiebungen
CN102052423A (zh) * 2009-11-10 2011-05-11 上海工程技术大学 磁流变扭转减振装置
CN105041954A (zh) * 2015-07-19 2015-11-11 湖南城市学院 一种智能可调式减振装置
CN105546023A (zh) * 2016-02-25 2016-05-04 西安电子科技大学 一种基于磁流变阻尼器的新型组合减振器
KR101757435B1 (ko) * 2016-07-07 2017-07-12 인하대학교 산학협력단 세탁기 진동 저감 메커니즘
CN108253075A (zh) * 2018-01-22 2018-07-06 东北大学 一种具有多频段振动能量回收能力的磁流变阻尼器
CN108708928A (zh) * 2018-06-21 2018-10-26 山东大学 一种半主动磁流变调谐质量阻尼器
CN108953469A (zh) * 2018-08-22 2018-12-07 西南交通大学 一种吸收多方向高频高强度振动的减振装置
CN209654838U (zh) * 2019-02-28 2019-11-19 沈阳天眼智云信息科技有限公司 磁流变管道减振系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3863333B2 (ja) * 1999-05-20 2006-12-27 株式会社日立製作所 鉄道車両、鉄道車両用台車及び連結部材
US6474598B2 (en) * 2000-05-24 2002-11-05 Cartercopters, L.L.C. Landing gear shock absorber with variable viscosity fluid
CN1283936C (zh) * 2004-04-20 2006-11-08 南京航空航天大学 多级磁流变阻尼器
CN102209444A (zh) * 2010-03-29 2011-10-05 鸿富锦精密工业(深圳)有限公司 缓冲脚垫
CN103498884B (zh) * 2013-10-08 2015-12-23 同济大学 悬吊式多单元碰撞阻尼器
CN103939517B (zh) * 2013-12-06 2016-05-18 重庆材料研究院有限公司 抗冲击磁流变缓冲器的抗过冲击的方法
CN204553671U (zh) * 2015-04-20 2015-08-12 中国人民解放军装甲兵工程学院 双筒式磁流变阻尼器
CN205064679U (zh) * 2015-09-18 2016-03-02 珠海市业成轨道交通设备科技有限公司 一种轨道机车车辆用油压减振器的活塞单元
CN106402239B (zh) * 2016-12-09 2018-04-06 淮阴工学院 一种自适应颗粒阻尼吸振器及其控制方法
CN108131420B (zh) * 2017-12-25 2019-09-10 重庆大学 一种具备高效吸能特性的缓冲装置
CN108488305B (zh) * 2018-06-20 2020-12-18 上海理工大学 一种带增稠液弹性碰撞阻尼器
CN109654324A (zh) * 2019-02-28 2019-04-19 沈阳天眼智云信息科技有限公司 磁流变管道减振系统及减振方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236514A1 (de) * 2002-08-30 2004-03-18 Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, dieses vertreten durch das Bundesamt für Wehrtechnik und Beschaffung Repositionierende, geregelte Feder-Dämpfersysteme für große Verschiebungen
CN102052423A (zh) * 2009-11-10 2011-05-11 上海工程技术大学 磁流变扭转减振装置
CN105041954A (zh) * 2015-07-19 2015-11-11 湖南城市学院 一种智能可调式减振装置
CN105546023A (zh) * 2016-02-25 2016-05-04 西安电子科技大学 一种基于磁流变阻尼器的新型组合减振器
KR101757435B1 (ko) * 2016-07-07 2017-07-12 인하대학교 산학협력단 세탁기 진동 저감 메커니즘
CN108253075A (zh) * 2018-01-22 2018-07-06 东北大学 一种具有多频段振动能量回收能力的磁流变阻尼器
CN108708928A (zh) * 2018-06-21 2018-10-26 山东大学 一种半主动磁流变调谐质量阻尼器
CN108953469A (zh) * 2018-08-22 2018-12-07 西南交通大学 一种吸收多方向高频高强度振动的减振装置
CN209654838U (zh) * 2019-02-28 2019-11-19 沈阳天眼智云信息科技有限公司 磁流变管道减振系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113931929A (zh) * 2021-09-16 2022-01-14 上海工程技术大学 一种可自主减振降噪的滚动轴承装置
CN113931929B (zh) * 2021-09-16 2024-01-23 上海工程技术大学 一种可自主减振降噪的滚动轴承装置
CN114962529A (zh) * 2022-04-25 2022-08-30 重庆大学 多励磁多盘片式磁流变宽频隔振器
CN114962529B (zh) * 2022-04-25 2024-06-04 重庆大学 多励磁多盘片式磁流变宽频隔振器
CN116234208A (zh) * 2023-02-24 2023-06-06 西北核技术研究所 一种气溶胶采样器用爆炸冲击防护装置

Also Published As

Publication number Publication date
CN111173880B (zh) 2021-07-06
CN111173880A (zh) 2020-05-19
US20210348669A1 (en) 2021-11-11
US11906011B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2021143245A1 (zh) 一种磁流变液颗粒碰撞阻尼器
AU2020100594A4 (en) A Magnetorheological Fluid Particle Impact Damper
CN104595402B (zh) 一种采用环形永磁铁的电磁分支电路阻尼吸振器
CN112144684B (zh) 一种电涡流式颗粒惯容阻尼器
CN105546023A (zh) 一种基于磁流变阻尼器的新型组合减振器
CN107061599B (zh) 一种滚珠式电涡流全向阻尼装置
CN105240432B (zh) 一种用于太空的一阶浮力磁性液体减振器
CN104763768A (zh) 一种惯容和阻尼一体式充气减振器
CN112854506A (zh) 结合碰撞阻尼的杆式调谐颗粒质量阻尼装置
CN111677799B (zh) 基于水平预压弹簧的三自由度电磁隔振器
CN109577726B (zh) 一种变刚度电磁颗粒阻尼器
CN106917840B (zh) 一种阻塞性活塞式颗粒阻尼器
CN212053292U (zh) 电涡流颗粒阻尼器
CN104565180B (zh) 一种磁力直线磁性液体阻尼减振器
CN112832399B (zh) 一种多级自适应复合惯容减振装置、方法及结构
CN106286667A (zh) 带轴承的电磁阻尼器
CN102661346B (zh) 双出杆磁流变弹性体板式减振器
CN108799394A (zh) 动力吸振器与吸振器群系统
CN110685485B (zh) 一种非线性电磁颗粒阻尼器
CN102661352B (zh) 单出杆磁流变弹性体板式减振器
CN111734776B (zh) 基于水平预压弹簧与磁弹簧并联的三自由度低频隔振器
CN112814188A (zh) 结合碰撞阻尼的电涡流调谐颗粒质量阻尼装置
CN114135635A (zh) 一种电磁调谐惯容减振装置
CN202628903U (zh) 单出杆磁流变弹性体板式减振器
CN208764222U (zh) 动力吸振器与吸振器群系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914362

Country of ref document: EP

Kind code of ref document: A1