WO2021142721A1 - 确定混合自动重传请求进程信息的方法、设备及存储介质 - Google Patents

确定混合自动重传请求进程信息的方法、设备及存储介质 Download PDF

Info

Publication number
WO2021142721A1
WO2021142721A1 PCT/CN2020/072508 CN2020072508W WO2021142721A1 WO 2021142721 A1 WO2021142721 A1 WO 2021142721A1 CN 2020072508 W CN2020072508 W CN 2020072508W WO 2021142721 A1 WO2021142721 A1 WO 2021142721A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq process
terminal device
process identifier
data
harq
Prior art date
Application number
PCT/CN2020/072508
Other languages
English (en)
French (fr)
Inventor
赵振山
卢前溪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202210845610.6A priority Critical patent/CN115208520B/zh
Priority to PCT/CN2020/072508 priority patent/WO2021142721A1/zh
Priority to EP20913278.6A priority patent/EP4064776A4/en
Priority to CN202080073648.5A priority patent/CN114586438A/zh
Publication of WO2021142721A1 publication Critical patent/WO2021142721A1/zh
Priority to US17/808,249 priority patent/US20220322421A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0033Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation each allocating device acting autonomously, i.e. without negotiation with other allocating devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a method, device, and storage medium for determining progress information of a hybrid automatic repeat request.
  • the method, device and storage medium for the provider in the embodiments of the present application to determine the process information of the hybrid automatic repeat request can determine the process identifier of each HARQ process when the terminal device has multiple HARQ processes.
  • an embodiment of the present application provides a method for determining process information of a hybrid automatic repeat request.
  • the method includes: the first terminal device determines the second corresponding to the sideline transmission according to the first HARQ process identifier indicated by the network device. HARQ process ID.
  • an embodiment of the present application provides a terminal device, the terminal device includes: a processing unit configured to determine a second HARQ process identifier corresponding to side-line transmission according to the first HARQ process identifier indicated by the network device.
  • an embodiment of the present application provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, where:
  • the processor is used to execute the steps of the method for determining the process information of the hybrid automatic retransmission request when running the computer program.
  • an embodiment of the present application provides a chip, including: a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the above method for determining the process information of a hybrid automatic retransmission request .
  • an embodiment of the present application provides a storage medium storing an executable program, and when the executable program is executed by a processor, the above method for determining the process information of the hybrid automatic repeat request is realized.
  • an embodiment of the present application provides a computer program product, including computer program instructions that cause a computer to execute the above-mentioned method for determining the process information of a hybrid automatic retransmission request.
  • an embodiment of the present application provides a computer program that enables a computer to execute the aforementioned method for determining the process information of a hybrid automatic repeat request.
  • the method for determining the process information of the hybrid automatic repeat request includes: the first terminal device determines the second HARQ process identifier corresponding to the side-line transmission according to the first HARQ process identifier indicated by the network device. In this way, the first terminal device has multiple HARQ processes, and the HARQ process identifiers of the multiple HARQ processes conflict; the first terminal device can determine the second HARQ process according to the usage of the first HARQ process identifier indicated by the network device Identification, to solve the problem of data scheduling/transmission errors caused by the conflict of multiple first HARQ process identifications.
  • Figure 1 is a schematic diagram of the process of selecting transmission resources in the first mode of the application
  • Figure 2 is a schematic diagram of the process of selecting transmission resources in the second mode of the application
  • Figure 3 is a schematic diagram of service transmission in unicast transmission mode of the application
  • Figure 4 is a schematic diagram of service transmission in the multicast transmission mode of the application.
  • Figure 5 is a schematic diagram of service transmission in the broadcast transmission mode of the application.
  • Figure 6 is a schematic diagram of configuring multiple transmission resources for the network device of the application.
  • Figure 7 is a schematic diagram of service transmission in the broadcast transmission mode of the application.
  • FIG. 8 is a schematic diagram of an optional processing flow of the method for determining the process information of the hybrid automatic retransmission request provided by an embodiment of the application;
  • FIG. 9 is an optional schematic diagram of a resource selection window according to an embodiment of this application.
  • FIG. 10 is another optional schematic diagram of a resource selection window according to an embodiment of this application.
  • FIG. 11 is a schematic diagram of the composition structure of a terminal device according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of the hardware composition structure of a terminal device according to an embodiment of the application.
  • D2D communication is based on SL transmission technology, which is different from the traditional cellular system in which communication data is received or sent through base stations.
  • the Internet of Vehicles system uses D2D communication (ie, direct device-to-device communication), so it has a higher frequency spectrum. Efficiency and lower transmission delay.
  • the Third Generation Partnership Project (3GPP) defines two transmission modes: the first mode (also referred to as mode A) and the second mode (also referred to as mode B).
  • the first mode is that the network device allocates transmission resources to the terminal device
  • the second mode is that the terminal device independently selects the transmission resource.
  • the transmission resources of the terminal equipment are allocated by the network equipment, and the terminal equipment transmits data on the side link according to the resources allocated by the network equipment; the network equipment can allocate a single for the terminal equipment
  • the resources of the secondary transmission can also be allocated to the terminal equipment as semi-static transmission resources; specifically, the network equipment can allocate the side transmission resources to the terminal equipment through dynamic scheduling (Dynamic Grant, DG); or the network equipment can also be the terminal Allocate side-line configuration authorization (Configured Grant, CG) transmission resources.
  • the terminal device selects a transmission resource in the resource pool to send data.
  • transmission mode 3 and transmission mode 4 are introduced, wherein transmission mode 3 corresponds to the above-mentioned first mode, and transmission mode 4 corresponds to the above-mentioned second mode.
  • NR-V2X broadcast transmission mode, unicast transmission mode and multicast transmission mode are supported.
  • the unicast transmission mode as shown in Figure 3, there is only one terminal device at the receiving end, and unicast transmission is performed between UE1 and UE2.
  • the receiving end is all terminal devices in a communication group, or all terminal devices within a certain transmission distance.
  • UE1, UE2, UE3, and UE4 form a communication group, where UE1 is the terminal device at the transmitting end, used to send data, and UE2, UE3, and UE4 in the group are all at the receiving end.
  • Terminal equipment used to receive data.
  • the receiving end can be any terminal device.
  • UE1 is the terminal device of the transmitting end for sending data
  • other terminal devices around UE1, such as UE2, UE3, UE4, UE5, UE6 and UE7 is a terminal device at the receiving end for receiving data.
  • the resource allocation methods of the sideline CG mainly include two configuration authorization methods, namely the first type of configuration authorization (type-1 configured grant) and the second type of configuration authorization (type-2 configured grant).
  • the first type of configuration authorization the network equipment configures sideline transmission resources for the terminal equipment through (Radio Resource Control, RRC) signaling.
  • the transmission parameters configured by the RRC signaling may include: time domain resources, frequency domain resources, and demodulation reference signals All transmission resources and transmission parameters including (Demodulation Reference Signal, DMRS), Modulation and Coding Scheme (MCS), etc.
  • the terminal device can use the transmission parameters configured by the RRC signaling to perform side-line transmission on the configured time-frequency resources.
  • the second type of configuration authorization adopts a two-step resource configuration method; first, configure the transmission resources and transmission parameters including the period of time-frequency resources, redundancy version, number of retransmissions, number of HARQ processes, etc. through RRC signaling; then The downlink control signaling (Downlink Control Information, DCI) activates the transmission authorized by the second type of configuration, and simultaneously configures other transmission resources and transmission parameters including time domain resources, frequency domain resources, and MCS.
  • DCI Downlink Control Information
  • a terminal device receives RRC signaling, it cannot immediately use the transmission resources and transmission parameters configured by the RRC signaling for sideline transmission. Instead, it must wait until the corresponding DCI is received and other transmission resources and transmission parameters are configured. Perform side-line transmission.
  • the network device can also deactivate the configuration transmission through the DCI. After the terminal device receives the DCI indicating the deactivation, the transmission resource can no longer be used for side-line transmission.
  • the network device allocates the side-line transmission resource authorized by the configuration for the terminal device, when the terminal device has side-line data to transmit, it can directly use the side-line transmission resource for side-line transmission without sending a scheduling request to the network device ( Scheduling Request (SR)/Buffer Status Report (BSR) requests transmission resources, thereby reducing transmission delay.
  • Scheduling Request (SR)/Buffer Status Report (BSR) requests transmission resources, thereby reducing transmission delay.
  • the network device allocates periodic transmission resources, and in each cycle, the network device can configure multiple transmission resources, as shown in Figure 6: The transmission resources for the configuration authorization are repeated periodically. Each cycle includes 4 side-line transmission resources.
  • a side-line feedback channel is introduced.
  • the schematic diagram of the side-line feedback process is shown in Figure 7.
  • the terminal device at the transmitting end sends side-line data (including the Pysical Sidelink Control Channel (PSCCH) and the physical side) to the terminal device at the receiving end.
  • Pysical Sidelink Share Channel (PSSCH) the terminal device at the receiving end sends feedback information to the terminal device at the transmitting end, such as Hybrid Automatic Repeat reQuest (HARQ) feedback information;
  • HARQ Hybrid Automatic Repeat reQuest
  • HARQ feedback information is carried in a side-line feedback channel, such as a physical side-link feedback channel (PSFCH).
  • the terminal device at the sending end may decide whether the terminal device at the receiving end is required to send feedback information. For example, for broadcast communication, the terminal device at the sending end does not need the terminal device at the receiving end to send feedback information.
  • the terminal device at the transmitting end needs the terminal device at the receiving end to send feedback information; specifically, the terminal device at the transmitting end carries the instruction information in the Sidelink Control Information (SCI), so
  • SCI Sidelink Control Information
  • NR-V2X if the terminal device can work in the first mode and the second mode at the same time, and each side transmission corresponding to the first mode and the second mode has a corresponding HARQ process; because the network device does not know the terminal How many HARQ processes in the second mode exist on the device, and the process ID corresponding to the HARQ process in the second mode is not known. Therefore, the HARQ process ID in the first mode indicated by the network device for the terminal device and the terminal device in the second mode may be caused.
  • the process ID conflicts when selecting resources autonomously. In this scenario, there is no effective solution to how the terminal device determines the HARQ process identifier.
  • the embodiment of the application provides a method for determining the process information of a hybrid automatic retransmission request.
  • the method for determining the process information of a hybrid automatic retransmission request in the embodiment of the present application can be applied to various communication systems, such as global system of mobile communications.
  • GSM Global System for Mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE Long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • LTE- A The system, the new radio (NR) system, the evolution system of the NR system, the LTE (LTE-based access to unlicensed spectrum, LTE-U) system on the unlicensed band, the NR (NR-U) system on the unlicensed band based access to unlicensed spectrum (NR-U) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, wireless local area networks, WLAN), wireless fidelity (WiFi), next-generation communication systems or other communication systems, etc.
  • WiMAX worldwide interoperability for microwave access
  • WLAN wireless local area networks
  • WiFi wireless fidelity
  • M2M machine-to-machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the network equipment involved in the embodiments of this application may be a common base station (such as NodeB or eNB or gNB), a new radio controller (NR controller), a centralized network element (centralized unit), a new radio base station, Radio remote module, micro base station, relay, distributed unit, reception point (transmission reception point, TRP), transmission point (transmission point, TP), or any other equipment.
  • a common base station such as NodeB or eNB or gNB
  • NR controller new radio controller
  • a centralized network element centralized unit
  • a new radio base station Radio remote module
  • micro base station relay, distributed unit, reception point (transmission reception point, TRP), transmission point (transmission point, TP), or any other equipment.
  • TRP transmission reception point
  • TP transmission point
  • the terminal device may be any terminal.
  • the terminal device may be a user equipment for machine-type communication. That is to say, the terminal equipment can also be called user equipment, mobile station (MS), mobile terminal (mobile terminal), terminal (terminal), etc., and the terminal equipment can be accessed through a radio access network. , RAN) communicates with one or more core networks.
  • the terminal device can be a mobile phone (or called a "cellular" phone), a computer with a mobile terminal, etc., for example, the terminal device can also be portable, pocket-sized, Hand-held, computer-built or vehicle-mounted mobile devices that exchange language and/or data with wireless access networks.
  • the embodiments of this application There is no specific limitation in the embodiments of this application.
  • network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through licensed spectrum, or through unlicensed spectrum, or through licensed spectrum and terminal equipment at the same time. Unlicensed spectrum for communication.
  • Between network equipment and terminal equipment and between terminal equipment and terminal equipment can communicate through the frequency spectrum below 7 gigahertz (gigahertz, GHz), can also communicate through the frequency spectrum above 7 GHz, and can also use the frequency spectrum below 7 GHz and Communication is performed in the frequency spectrum above 7GHz.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • An optional processing procedure of the method for determining the process information of hybrid automatic retransmission request includes the following steps:
  • Step S101 The first terminal device determines the second HARQ process identifier corresponding to the sideline transmission according to the first HARQ process identifier indicated by the network device.
  • the first terminal device may be a sender device in a D2D communication system.
  • the first HARQ process identifier may be a HARQ process (Identify, ID) indicated when the network device allocates side-line transmission resources to the first terminal device.
  • the network device can allocate the side-line transmission resources to the first terminal device in two types of time-sharing, namely, dynamically allocating the side-line transmission resources through the DCI and assigning the semi-static transmission resources through the side-line configuration authorization.
  • the network device indicates the first HARQ process identifier in the DCI, and the first terminal device transmits the PSCCH/PSSCH on the side-line transmission resources allocated by the network device.
  • the first terminal device indicates the first HARQ process identifier to the second terminal device in the SCI, so that the second terminal device can perform data merging and feedback.
  • the first terminal device can also perform sideline data transmission by independently selecting transmission resources at the same time, the first HARQ ID indicated by the network device to the first terminal device may have been independently selected by the terminal device to transmit data for data transmission.
  • the first terminal device has multiple HARQ processes, and the HARQ process identifiers of the multiple HARQ processes conflict; the following is the determination provided by the embodiment of the application for the use of the first HARQ process identifier indicated by the network device The method of hybrid automatic retransmission request process information is described.
  • the first terminal device determines that the second HARQ process identifier is equal to the first HARQ process identifier.
  • the first HARQ process identifier not being used by the first terminal device may be used when the first HARQ process identifier is not used when the first terminal device autonomously selects a transmission resource.
  • the number of first HARQ process identifiers indicated by the network device to the first terminal device may be one or more.
  • the first terminal device determines that the unused HARQ process identifier other than the first HARQ process identifier is The second HARQ process identifier.
  • the number of first HARQ process identifiers indicated by the network device to the first terminal device may be one or more. It can be understood that, regardless of the number of the first HARQ process identifiers, the first terminal device needs to confirm the number of process identifiers used by the first terminal device in the first HARQ process identifiers; then, the The first terminal device then determines that the HARQ process identifier that is not used by itself is the second HARQ process identifier.
  • the number of first HARQ process identifiers indicated by the network device to the first terminal device is N, and the first HARQ process identifiers are A 1 , A 2 , A 3 , ... A N. If K of the N first HARQ process identifiers have been used when the first terminal device autonomously selects transmission resources (1 ⁇ K ⁇ N); the first terminal device can use N HARQ process identifiers that are not used by itself To update or replace the N HARQ processes that have been used; the first terminal device may also select K unused HARQ process identifiers to update or replace the K first HARQ process identifiers that have been used by the first terminal device; ( NK) The first HARQ process identifiers that are not used remain unchanged.
  • the first terminal device determines the HARQ process that needs to be terminated according to the first parameter.
  • the first terminal device determines that the HARQ process identifier corresponding to the HARQ process that needs to be terminated is the second HARQ process identifier.
  • all the HARQ processes supported by the first terminal device may be all the HARQ processes of the side link transmission of the first terminal device.
  • the first parameter may include a quality of service parameter of the data and/or a transmission mode of the data.
  • the quality of service parameter of the data includes at least one of the following: the priority of the data, the transmission delay of the data, and the reliability of the data.
  • the first parameter includes the priority of the data.
  • the first terminal device compares the priority of the sideline data transmitted by the first terminal device using the sideline transmission resource corresponding to the first HARQ process identifier allocated by the network device with The priority of all the sideline data currently transmitted; if the first terminal device uses the sideline transmission resource corresponding to the first HARQ process identifier, the priority of the sideline data transmitted is higher than that of at least one currently transmitted sideline data The first terminal device terminates the HARQ process of the side row data with the lowest priority among the side row data currently transmitted.
  • the first terminal device terminates the HARQ process of the side row data with the lowest priority among the two low priority side row data currently transmitted, and sets the HARQ process identifier corresponding to the terminated HARQ process As the second HARQ process identifier.
  • the first terminal device terminates the two low-priority side-line data currently transmitted, and uses the HARQ process identifier corresponding to the terminated HARQ process as the second HARQ process identifier.
  • the first parameter includes the data transmission mode.
  • the first terminal device terminates the HARQ process of the sideline data of the second mode currently transmitted. For example, the first terminal device may terminate the HARQ process of any one of the sideline data currently transmitted in the second mode, and use the HARQ process identifier corresponding to the terminated HARQ process as the second HARQ process identifier. For another example, the first terminal device may terminate the HARQ process of the side row data with the lowest priority among the side row data of the second mode currently transmitted. The first terminal device uses the HARQ process identifier corresponding to the terminated HARQ process as the second HARQ process identifier.
  • the priority of the side row data transmitted in the first mode is greater than the side row data transmitted in the second mode; further, in the side row data transmitted in the second mode, the first terminal device can be based on the side row data Select the HARQ process of the side row data that needs to be terminated, and use the HARQ process identifier corresponding to the terminated HARQ process as the second HARQ process identifier.
  • the first parameter includes the transmission mode of the data and the priority of the data.
  • the first terminal device compares the priority of the side row data transmitted by the side row transmission resource corresponding to the first HARQ identifier allocated by the network device with the priority of the side row data that is currently transmitted.
  • the priority of all sideline data in the second mode if at least one of the sideline data currently transmitted in the second mode has a priority lower than that of the side corresponding to the first terminal device using the first HARQ identifier
  • the priority of the side row data transmitted by the row transmission resource the first terminal device terminates the HARQ process corresponding to the side row data of the second mode with the lowest priority among the side row data currently transmitted, and corresponds to the terminated HARQ process
  • the HARQ process identifier of is used as the second HARQ process identifier.
  • the first terminal device terminates the HARQ process corresponding to the sideline data of the first mode with the lowest priority among the currently transmitted sideline data, and uses the HARQ process identifier corresponding to the terminated HARQ process as the second HARQ process identifier.
  • the three types of content included in the above-mentioned first parameter are merely examples, and other content or combinations of other content included in the first parameter are also applicable to the method for determining the process information of the hybrid automatic retransmission request provided in the embodiment of the present application.
  • the determining The method of hybrid automatic retransmission request process information may also include:
  • Step S102 The first terminal device determines the correspondence between the first HARQ process identifier and the second HARQ process identifier.
  • the method for determining the process information of the hybrid automatic repeat request may further include:
  • Step S103 The first terminal device receives a retransmission scheduling instruction sent by the network device.
  • the first HARQ process identifier is indicated in the retransmission scheduling indication, and the new data indication field in the retransmission scheduling indication is not reversed.
  • the non-reversal of the new data indication field means that the value of the new data indication field in the retransmission scheduling indication does not change from the value of the new data indication field in the scheduling indication for the first transmission.
  • Step S104 The first terminal device determines to retransmit the side row data corresponding to the second HARQ process identifier according to the correspondence between the first HARQ process identifier and the second HARQ process identifier.
  • step S201 the network device allocates side transmission resources to the first terminal device in a dynamic allocation manner, and indicates HARQ ID1.
  • Step S202 The first terminal device transmits the sideline data to the second terminal device on the allocated sideline transmission resources, and indicates HARQ ID2 in the SCI.
  • Step S203 The second terminal device sends side feedback information to the first terminal device.
  • the side row feedback information may be HARQ ACK or HARQ NACK.
  • Step S204 The first terminal device reports the side-line feedback information to the network device.
  • Step S205 In the case that the side-line feedback information is HARQ NACK, the network device dynamically schedules retransmission resources for the first terminal device, and indicates HARQ ID1 in the DCI, and the NDI field in the DCI is not inverted.
  • the first terminal device can determine the retransmission schedule for the side row data of HARQ ID2 according to the correspondence between HARQ ID1 and HARQ ID2; the first terminal device retransmits the side row data of HARQ ID2.
  • the number of the first HARQ process identifier may be one or multiple.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the network device when the network device allocates side configuration authorization (including the first type configuration authorization and the second type configuration authorization) to the first terminal device, the network device can configure multiple parallel side configurations for the first terminal device. Configure authorized transmission resources.
  • the network device indicates a HARQ process identifier in the configuration information of the side configuration authorization.
  • the configuration information may be RRC signaling; for the second type of configuration authorization, the configuration information may be RRC signaling or DCI.
  • the network device can indicate to the first terminal device that a sideline configuration authorization resource corresponds to N in two ways.
  • a HARQ process ID The two methods are described below.
  • the network device indicates the first HARQ process identifier with the smallest sequence number among the N HARQ process identifiers in the configuration information of the side configuration authorization; the configuration information is also used to indicate the number of the first HARQ process.
  • the network device indicates all the first HARQ process identifiers in the configuration information of the side-line configuration authorization. For example, the network device indicates the N HARQ process identifiers corresponding to the side configuration authorization in the configuration information of the side configuration authorization, and the N HARQ process identifiers may be continuous or discontinuous.
  • the configuration information of the sideline configuration authorization allocated by the network device to the first terminal device may include physical uplink control channel (PUCCH) transmission resources, which are used by the first terminal device to feed back to the network device Sideline feedback information to facilitate network equipment to allocate retransmission resources. Since the sideline transmission resource is a periodic resource, the PUCCH resource allocated by the network device to the first terminal device is also a periodic transmission resource. In the case that one side-line configuration authorization corresponds to N HARQ process identifiers, the network device can determine the HARQ process identifiers through the time domain resource location of the PUCCH.
  • PUCCH physical uplink control channel
  • the following describes the detailed processing flow of determining the HARQ process identifier by the network device in the embodiment of the present application through the time domain resource location of the PUCCH based on FIG. 10.
  • the network device configures a sideline configuration authorized transmission resource for the first terminal device, and configures a PUCCH resource in each transmission period.
  • the PUCCH resource is used by the first terminal device to report sideline feedback information to the network device.
  • the two transmission periods shown in FIG. 10 include PUCCH1 and PUCCH2; because PUCCH time domain resources of different periods are different, the network device can determine the HARQ process of the side row data corresponding to the side row feedback information carried by the PUCCH according to the received PUCCH Logo.
  • the network device configures two HARQ process IDs for the side-line configuration authorization, namely HARQ ID1 and HARQ ID2; the network device receives PUCCH1 on the first PUCCH resource, and can determine the corresponding side-line feedback information carried by PUCCH1
  • the HARQ process identifier of the side-line data is HARQ ID1; the network device receives PUCCH2 on the second PUCCH resource, and can determine that the HARQ process identifier of the side-line data corresponding to the side-line feedback information carried by PUCCH2 is HARQ ID2.
  • the first terminal device sends a new transmission of data on PSSCH1, indicates HARQ ID1 in the SCI, and the NDI value is 0.
  • the second terminal device fails the detection and feeds back NACK information on PSFCH1.
  • the first terminal device receives PSFCH1 to obtain the NACK information, and reports the NACK information to the network device on PUCCH1; the network device allocates retransmission resources for the first terminal device through DCI1,
  • the DCI1 indicates HARQ ID1, the NDI value is 1, and the uplink transmission resource is allocated, that is, the transmission resource used by PUCCH3;
  • the first terminal device receives the DCI1 sent by the network, and determines the side line for HARQ ID1 according to the HARQ ID1 and NDI information
  • the value of NDI is not reversed relative to the first transmission, so it indicates that it is retransmitted data.
  • the second terminal device succeeds in the detection and sends an ACK to the first terminal device, and the first terminal device sends PUCCH3 to the network to report the ACK information.
  • the composition structure of the terminal device 300 includes:
  • the processing unit 301 is configured to determine the second HARQ process identifier corresponding to the side-line transmission according to the first HARQ process identifier indicated by the network device.
  • the second HARQ process identifier is equal to the first HARQ process identifier.
  • the processing unit 301 is configured to determine unused HARQ processes other than the first HARQ process identifier when the first HARQ process identifier is used by the terminal device 300
  • the identifier is the second HARQ process identifier.
  • the processing unit 301 is configured to determine the HARQ process that needs to be terminated according to the first parameter when all the HARQ processes supported by the terminal device 300 are used.
  • the processing unit 301 is configured to determine that the HARQ process identifier corresponding to the HARQ process that needs to be terminated is the second HARQ process identifier.
  • the first parameter includes a quality of service parameter of the data and/or a transmission mode of the data.
  • the quality of service parameter of the data includes at least one of the following:
  • the priority of the data the transmission delay of the data and the reliability of the data.
  • the processing unit 301 is further configured to determine the correspondence between the first HARQ process identifier and the second HARQ process identifier.
  • the terminal device 300 further includes:
  • the receiving unit 302 is configured to receive a retransmission scheduling instruction sent by the network device, where the retransmission scheduling instruction indicates the first HARQ process identifier, and the new data in the retransmission scheduling instruction indicates that the field is not to be reversed.
  • the processing unit 301 is further configured to determine to retransmit the side row data corresponding to the second HARQ process identifier according to the corresponding relationship between the first HARQ process identifier and the second HARQ process identifier.
  • the first HARQ process identifier is indicated by DCI.
  • the first HARQ process identifier is indicated by configuration information authorized by side-line configuration.
  • the configuration information is used to indicate the first HARQ process identifier with the smallest sequence number among the at least two first HARQ process identifiers.
  • the configuration information is also used to indicate the number of the first HARQ process.
  • the processing unit 301 is further configured to determine that the first HARQ process identifier is divided by the sequence according to the first HARQ process identifier with the smallest sequence number and the number of the first HARQ process. Other first HARQ process identifiers other than the first HARQ process identifier with the smallest number.
  • the configuration information is used to indicate all the first HARQ process identifiers.
  • An embodiment of the present application also provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, wherein the processor is used to execute the above-mentioned terminal device when the computer program is running. Determine the steps of the method of hybrid automatic retransmission request process information.
  • FIG. 12 is a schematic diagram of the hardware composition structure of a terminal device according to an embodiment of the present application.
  • the terminal device 700 includes: at least one processor 701, a memory 702, and at least one network interface 704.
  • the various components in the terminal device 700 are coupled together through the bus system 705.
  • the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 705 in FIG. 12.
  • the memory 702 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), and electrically erasable Programmable read-only memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory, optical disk, or CD-ROM (CD) -ROM, Compact Disc Read-Only Memory); Magnetic surface memory can be disk storage or tape storage.
  • the volatile memory may be a random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • Synchronous Static Random Access Memory Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM synchronous connection dynamic random access memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 702 described in the embodiment of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 702 in the embodiment of the present application is used to store various types of data to support the operation of the terminal device 700. Examples of these data include: any computer program used to operate on the terminal device 700, such as an application program 7022.
  • the program for implementing the method of the embodiment of the present application may be included in the application program 7022.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the processor 701 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 702.
  • the processor 701 reads the information in the memory 702 and completes the steps of the foregoing method in combination with its hardware.
  • the terminal device 700 may be configured by one or more application specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), and complex programmable logic device (CPLD). , Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components to implement the foregoing method.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD complex programmable logic device
  • FPGA field-programmable logic device
  • controller MCU
  • MPU MPU
  • the embodiment of the present application also provides a storage medium for storing computer programs.
  • the storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process in each method of the embodiment of the present application.
  • An embodiment of the present application also provides a chip, including a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the above-mentioned method for determining the process information of the hybrid automatic retransmission request.
  • An embodiment of the present application also provides a computer program product, including computer program instructions, which cause a computer to execute the above-mentioned method for determining the process information of a hybrid automatic retransmission request.
  • An embodiment of the present application also provides a computer program that enables a computer to execute the above-mentioned method for determining the process information of a hybrid automatic retransmission request.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种确定混合自动重传请求进程信息的方法,包括:第一终端设备根据网络设备指示的第一混合自动重传请求(HARQ)进程标识,确定侧行传输对应的第二HARQ进程标识。本申请还公开了一种终端设备及存储介质。

Description

确定混合自动重传请求进程信息的方法、设备及存储介质 技术领域
本申请涉及无线通信技术领域,尤其涉及确定混合自动重传请求进程信息的方法、设备及存储介质。
背景技术
在侧行链路(Sidelink,SL)传输过程中,在终端设备具有多个混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程的情况下,如何确定HARQ进程的进程标识尚无有效解决方案。
发明内容
本申请实施例提供方确定混合自动重传请求进程信息的方法、设备及存储介质,能够在终端设备具有多个HARQ进程的情况下,确定各HARQ进程的进程标识。
第一方面,本申请实施例提供一种确定混合自动重传请求进程信息的方法,所述方法包括:第一终端设备根据网络设备指示的第一HARQ进程标识,确定侧行传输对应的第二HARQ进程标识。
第二方面,本申请实施例提供一种终端设备,所述终端设备包括:处理单元,配置为根据网络设备指示的第一HARQ进程标识,确定侧行传输对应的第二HARQ进程标识。
第三方面,本申请实施例提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
所述处理器用于运行所述计算机程序时,执行上述的确定混合自动重传请求进程信息的方法的步骤。
第四方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述的确定混合自动重传请求进程信息的方法。
第五方面,本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序 被处理器执行时,实现上述的确定混合自动重传请求进程信息的方法。
第六方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的确定混合自动重传请求进程信息的方法。
第七方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述的确定混合自动重传请求进程信息的方法。
本申请实施例提供的确定混合自动重传请求进程信息的方法,包括:第一终端设备根据网络设备指示的第一HARQ进程标识,确定侧行传输对应的第二HARQ进程标识。如此,第一终端设备存在多个HARQ进程,且多个HARQ进程的HARQ进程标识存在冲突的情况;第一终端设备能够根据网络设备指示的第一HARQ进程标识的使用情况来确定第二HARQ进程标识,解决多个第一HARQ进程标识的冲突导致的数据调度/传输错误的问题。
附图说明
图1为本申请第一模式下选择传输资源的流程示意图;
图2为本申请第二模式下选择传输资源的流程示意图;
图3为本申请单播传输方式下的业务传输示意图;
图4为本申请组播传输方式下的业务传输示意图;
图5为本申请广播传输方式下的业务传输示意图;
图6为本申请网络设备配置多个传输资源示意图;
图7为本申请广播传输方式下的业务传输示意图;
图8为本申请实施例提供的确定混合自动重传请求进程信息的方法的一种可选处理流程示意图;
图9为本申请实施例资源选择窗的一种可选示意图;
图10为本申请实施例资源选择窗的另一种可选示意图;
图11为本申请实施例终端设备的组成结构示意图;
图12为本申请实施例终端设备的硬件组成结构示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点和技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
在对本申请实施例提供的混合自动重传请求进程信息的方法进行详细说明之前,先对本申请实施例涉及的相关信息进行简要说明。
D2D通信是基于SL传输技术,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,车联网系统采用D2D通信的方式(即设备到设备直接通信的方式),因此具有更高的频谱效率以及更低的传输时延。对于D2D通信,第三代合作伙伴计划(Third Generation Partnership Project,3GPP)定义了两种传输模式:第一模式(也称为模式A)和第二模式(也称为模式B)。第一模式是网络设备为终端设备分配传输资源,第二模式是终端设备自主选择传输资源。
针对第一模式:如图1所示,终端设备的传输资源是由网络设备分配的,终端设备根据网络设备分配的资源在侧行链路上进行数据的发送;网络设备可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源;具体的,网络设备可以通过动态调度(Dynamic Grant,DG)的方式为终端设备分配侧行传输资源;或者网络设备也可以为终端分配侧行配置授权(Configured Grant,CG)传输资源。
针对第二模式:如图2所示,终端设备在资源池中选择一个传输资源进行数据的发送。
在LTE-V2X中引入了传输模式3和传输模式4,其中,传输模式3即对应上述第一模式,传输模式4即对应上述第二模式。
在NR-V2X中,支持广播传输方式、单播传输方式和组播传输方式。对于单播传输方式,如图3所示,只有一个接收端的终端设备,UE1与UE2之间进行单播传输。对于组播传输方式,接收端是一个通信组内的所有终设备,或者是在一定传输距离内的所有终端设备。对于组播传输方式,如图4所示,UE1、UE2、UE3和UE4构成一个通信组,其中UE1是发送端的终端设备,用于发送数据,该组内的UE2、UE3和UE4都是接收端的终端设备,用于接收数据。对于广播传输方式,接收端可以是任意一个终端设备,如图5所示,UE1是发送端的终端设备,用于发送数据,UE1周围的其他终端设备,如UE2、UE3、UE4、UE5、UE6和UE7都是接收端的终端设备,用于接收数据。
下面再对侧行CG进行简要说明
对于侧行CG的资源分配方式,主要包括两种配置授权方式,分别是第一类配置授权(type-1configured grant)和第二类配置授权(type-2configured grant)。
第一类配置授权:网络设备通过(Radio Resource Control,RRC)信令为终端设备配置侧行传输资源,该RRC信令配置的传输参数可以包括:时域资源、频域资源、解 调参考信号(Demodulation Reference Signal,DMRS)、调制与编码策略(Modulation and Coding Scheme,MCS)等在内的全部传输资源和传输参数。当终端设备接收到该RRC信令后,可使用所述RRC信令配置的传输参数在配置的时频资源上进行侧行传输。
第二类配置授权:采用两步的资源配置方式;首先,通过RRC信令配置包括时频资源的周期、冗余版本、重传次数、HARQ进程数等在内的传输资源和传输参数;再由下行控制信令(Downlink Control Information,DCI)激活第二类配置授权的传输,并同时配置包括时域资源、频域资源、MCS等在内的其他传输资源和传输参数。终端设备在接收到RRC信令时,不能立即使用该RRC信令所配置的传输资源和传输参数进行侧行传输,而是必须等接收到相应的DCI并配置其他传输资源和传输参数后,才能进行侧行传输。此外,网络设备还可以通过DCI去激活该配置传输,当终端设备接收到指示去激活的DCI后,不能再使用该传输资源进行侧行传输。
如果网络设备为终端设备分配了配置授权的侧行传输资源,当终端设备有侧行数据要传输时,可以直接使用该侧行传输资源进行侧行传输,而不需要向网络设备发送调度请求(Scheduling Request,SR)/缓冲状态报告(Buffer Status Report,BSR)请求传输资源,从而降低传输时延。
在侧行配置授权中,网络设备分配周期性的传输资源,并且在每个周期中,网络设备可以配置多个传输资源,如图6所示:配置授权的传输资源是周期性重复的,在每个周期内包括4个侧行传输资源。
在NR-V2X中,为了提高系统的可靠性,引入了侧行反馈信道。侧行反馈的流程示意图,如图7所示,对于单播传输方式,发送端的终端设备向接收端的终端设备发送侧行数据(包括物理侧行控制信道(Pysical Sidelink Control Channel,PSCCH)和物理侧行共享信道(Pysical Sidelink Share Channel,PSSCH)),接收端的终端设备向发送端的终端设备发送反馈信息,如混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈信息;发送端的终端设备根据接收端的终端设备的反馈信息判断是否需要进行数据重传。其中,HARQ反馈信息承载在侧行反馈信道中,例如物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)。发送端的终端设备可以决定是否需要接收端的终端设备发送反馈信息,例如对于广播通信,发送端的终端设备不需要接收端的终端设备发送反馈信息。对于单播通信,为了提高系统的可靠性,发送端的终端设备需要接收端的终端设备发送反馈信息;具体的,发送端的终端设备在侧行控制信息(Sidelink Control Information,SCI)中携带指示信息,所述指示信息用于指示接收端的终端设备是否需 要进行侧行反馈。
在NR-V2X中,若终端设备可以同时工作在第一模式和第二模式,且第一模式和第二模式分别对应的每个侧行传输都有对应的HARQ进程;由于网络设备不知道终端设备存在多少个第二模式的HARQ进程,也不知道第二模式的HARQ进程对应的进程标识,因此可能导致网络设备为终端设备指示的第一模式的HARQ进程标识与终端设备在第二模式中自主选取资源时的进程标识发生冲突。在该场景下终端设备如何确定HARQ进程标识尚无有效解决方案。
本申请实施例提供一种确定混合自动重传请求进程信息的方法,本申请实施例的确定混合自动重传请求进程信息的方法可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、新无线(new radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,D2D通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
本申请实施例中涉及的网络设备,可以是普通的基站(如NodeB或eNB或者gNB)、新无线控制器(new radio controller,NR controller)、集中式网元(centralized unit)、新无线基站、射频拉远模块、微基站、中继(relay)、分布式网元(distributed unit)、接收点(transmission reception point,TRP)、传输点(transmission point,TP)或者任何其它设备。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便 描述,本申请所有实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备。
在本申请实施例中,终端设备可以是任意的终端,比如,终端设备可以是机器类通信的用户设备。也就是说,该终端设备也可称之为用户设备、移动台(mobile station,MS)、移动终端(mobile terminal)、终端(terminal)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。本申请实施例中不做具体限定。
可选的,网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
可选的,网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过非授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和非授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过7吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过7GHz以上的频谱进行通信,还可以同时使用7GHz以下的频谱和7GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的应用确定混合自动重传请求进程信息的方法的一种可选处理流程,如图8所示,包括以下步骤:
步骤S101,第一终端设备根据网络设备指示的第一HARQ进程标识,确定侧行传输对应的第二HARQ进程标识。
在一些实施例中,所述第一终端设备可以是D2D通信系统中的发送端设备。所述第一HARQ进程标识可以为网络设备为第一终端设备分配侧行传输资源时指示的HARQ进程(process)标识(Identify,ID)。
网络设备为第一终端设备分配侧行传输资源可以有两种分配分时,分别是通过DCI 动态分配侧行传输资源和通过侧行配置授权分配半静态的传输资源。在动态分配侧行传输资源的方式中,网络设备在DCI中指示第一HARQ进程标识,第一终端设备在网络设备分配的侧行传输资源上传输PSCCH/PSSCH。在侧行数据传输中,第一终端设备在SCI中向第二终端设备指示第一HARQ进程标识,以便于第二终端设备进行数据合并和反馈等。但是,由于第一终端设备还可以同时以自主选择传输资源的方式进行侧行数据传输,因此,网络设备向第一终端设备指示的第一HARQ ID可能已经被终端设备自主选择传输资源进行数据传输时使用。在该场景下,第一终端设备存在多个HARQ进程,且多个HARQ进程的HARQ进程标识存在冲突的情况;下面针对网络设备指示的第一HARQ进程标识的使用情况对本申请实施例提供的确定混合自动重传请求进程信息的方法进行说明。
在一些实施方式中,若所述第一HARQ进程标识未被所述第一终端设备使用,则所述第一终端设备确定所述第二HARQ进程标识等于所述第一HARQ进程标识。其中,所述第一HARQ进程标识未被所述第一终端设备使用可以是所述第一HARQ进程标识未被所述第一终端设备自主选取传输资源时使用。这里,网络设备向所述第一终端设备指示的第一HARQ进程标识的数量可以为一个,也可以为多个。
在另一些实施方式中,若所述第一HARQ进程标识被所述第一终端设备使用,则所述第一终端设备确定所述第一HARQ进程标识之外的未被使用的HARQ进程标识为所述第二HARQ进程标识。这里,网络设备向所述第一终端设备指示的第一HARQ进程标识的数量可以为一个,也可以为多个。可以理解为,无论所述第一HARQ进程标识的数量为多少,所述第一终端设备需要确认所述第一HARQ进程标识中被所述第一终端设备使用的进程标识的数量;然后所述第一终端设备再确定自身未被使用的HARQ进程标识为所述第二HARQ进程标识。举例来说,网络设备向所述第一终端设备指示的第一HARQ进程标识的数量为N个,第一HARQ进程标识分别是A 1、A 2、A 3,…A N。如果N个第一HARQ进程标识中的K个已经被所述第一终端设备自主选取传输资源时使用(1≤K≤N);第一终端设备可以利用自身未被使用的N个HARQ进程标识来更新或替换已经被使用的N个HARQ进程;第一终端设备也可以选取K个未被使用的HARQ进程标识来更新或替换已经被第一终端设备使用的K个第一HARQ进程标识;(N-K)个未被使用的第一HARQ进程标识保持不变。
在又一些实施方式中,在所述第一终端设备支持的全部HARQ进程均被使用的情况下,所述第一终端设备根据第一参数确定需要终止的HARQ进程。所述第一终端设 备确定所述需要终止的HARQ进程对应的HARQ进程标识为所述第二HARQ进程标识。其中,所述第一终端设备支持的全部HARQ进程可以是所述第一终端设备的侧行链路传输的全部HARQ进程。
这里,所述第一参数可以包括数据的服务质量参数和/或数据的传输模式。所述数据的服务质量参数包括下述中的至少一项:数据的优先级、数据的传输时延和数据的可靠性。
下面分别以第一参数所包括的不同内容为例,对所述第一终端设备支持的全部HARQ进程均被使用的情况下,所述第一终端设备确定第二HARQ进程标识的处理过程进行说明。
1)第一参数包括数据的优先级。
在所述第一参数仅包括数据的优先级的情况下,第一终端设备比较第一终端设备使用网络设备分配的第一HARQ进程标识对应的侧行传输资源传输的侧行数据的优先级与当前传输的所有侧行数据的优先级的高低;如果第一终端设备使用所述第一HARQ进程标识对应的侧行传输资源传输的侧行数据的优先级高于至少一个当前传输的侧行数据的优先级,则第一终端设备终止当前传输的侧行数据中优先级最低的侧行数据的HARQ进程。举例来说,若第一HARQ进程标识为一个,且当前传输的侧行数据中有两个侧行数据的优先级低于第一终端设备使用所述第一HARQ进程标识对应的侧行传输资源传输的侧行数据的优先级,则第一终端设备终止当前传输的这两个低优先级侧行数据中优先级最低的侧行数据的HARQ进程,并将终止的HARQ进程对应的HARQ进程标识作为第二HARQ进程标识。再举例来说,若第一HARQ进程标识为两个,且当前传输的侧行数据中有两个侧行数据的优先级低于第一终端设备使用所述第一HARQ进程标识对应的侧行传输资源传输的侧行数据的优先级,则第一终端设备终止当前传输的这两个低优先级侧行数据,并将终止的HARQ进程对应的HARQ进程标识作为第二HARQ进程标识。
2)第一参数包括数据的传输模式。
在所述第一参数仅包括数据的传输模式的情况下,所述第一终端设备终止当前传输的第二模式的侧行数据的HARQ进程。举例来说,所述第一终端设备可以终止当前传输的第二模式的任意一个侧行数据的HARQ进程,并将终止的HARQ进程对应的HARQ进程标识作为第二HARQ进程标识。再举例来说,所述第一终端设备可以终止当前传输的第二模式的侧行数据中优先级最低的侧行数据的HARQ进程。第一终端设备将终 止的HARQ进程对应的HARQ进程标识作为第二HARQ进程标识。可以理解为,第一模式传输的侧行数据的优先级大于第二模式传输的侧行数据;进一步的,在第二模式传输的侧行数据中,所述第一终端设备可根据侧行数据的优先级选择需要终止的侧行数据的HARQ进程,并将终止的HARQ进程对应的HARQ进程标识作为第二HARQ进程标识。
3)第一参数包括数据的传输模式和数据的优先级。
在所述第一参数据的传输模式和数据的优先级,所述第一终端设备比较网络设备分配的第一HARQ标识对应的侧行传输资源传输的侧行数据的优先级与当前传输的第二模式的所有侧行数据的优先级,如果当前传输的第二模式的侧行数据中有至少一个侧行数据的优先级低于所述第一终端设备使用所述第一HARQ标识对应的侧行传输资源传输的侧行数据的优先级,则所述第一终端设备终止当前传输的侧行数据中优先级最低的第二模式的侧行数据对应的HARQ进程,并将终止的HARQ进程对应的HARQ进程标识作为第二HARQ进程标识。如果当前传输的第二模式的侧行数据的优先级均高于所述第一终端设备使用所述第一HARQ标识对应的侧行传输资源传输的侧行数据的优先级,则不进行任何处理,或者第一终端设备终止当前传输的侧行数据中优先级最低的第一模式的侧行数据对应的HARQ进程,并将终止的HARQ进程对应的HARQ进程标识作为第二HARQ进程标识。
需要说明的是,上述第一参数包括的三种内容仅仅作为示例,第一参数包括的其他内容或其他内容的组合也适用于本申请实施例提供的确定混合自动重传请求进程信息的方法。
在一些实施例中,在所述第一HARQ进程标识中被所述第一终端设备使用的情况下,或者在所述第一终端设备支持的全部HARQ进程均被使用的情况下,所述确定混合自动重传请求进程信息的方法还可以包括:
步骤S102,所述第一终端设备确定所述第一HARQ进程标识与所述第二HARQ进程标识的对应关系。
在一些实施例中,所述确定混合自动重传请求进程信息的方法还可以包括:
步骤S103,所述第一终端设备接收所述网络设备发送的重传调度指示。
在一些实施例中,所述重传调度指示中指示所述第一HARQ进程标识,所述重传调度指示中的新数据指示域不翻转。
其中,所述新数据指示域不翻转是指所述重传调度指示中的新数据指示域的取值相 对于首次传输的调度指示中的新数据指示域的取值没有变化。
步骤S104,所述第一终端设备根据第一HARQ进程标识与第二HARQ进程标识的对应关系,确定重传所述第二HARQ进程标识对应的侧行数据。
下面基于图9对本申请实施例提供的确定混合自动重传请求进程信息的方法的详细处理流程进行说明。
步骤S201,网络设备通过动态分配的方式为第一终端设备分配侧行传输资源,并指示HARQ ID1。
步骤S202,第一终端设备在分配的侧行传输资源上向第二终端设备传输侧行数据,并且在SCI中指示HARQ ID2。
在具体实施时,如果网络设备指示的HARQ ID1没有被所述第一终端设备占用,则HARQ ID2=HARQ ID1。如果网络设备指示的HARQ ID1已经被所述第一终端设备占用,则所述第一终端设备从未被占用的HARQ进程标识中选取一个,将其作为HARQ ID2,并且所述第一终端设备确定HARQ ID1和HARQ ID2之间的对应关系。
步骤S203,第二终端设备向第一终端设备发送侧行反馈信息。
在一些实施例中,所述侧行反馈信息可以是HARQ ACK或者HARQ NACK。
步骤S204,第一终端设备将所述侧行反馈信息上报至网络设备。
步骤S205,在侧行反馈信息是HARQ NACK的情况下,网络设备为第一终端设备动态调度重传资源,并且在DCI中指示HARQ ID1,并且DCI中的NDI域不翻转。
步骤S206,第一终端设备根据HARQ ID1和HARQ ID2之间的对应关系,即可确定是针对HARQ ID2的侧行数据的重传调度;第一终端设备对HARQ ID2的侧行数据进行重传。
需要说明的是,本申请实施例中,所述第一HARQ进程标识的数量可以是一个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请上述各实施例中,网络设备为第一终端设备分配侧行配置授权(包括第一类配置授权和第二类配置授权)时,网络设备可以为第一终端设备配置多个并行的侧行配置授权传输资源。
在一些实施例中,若一个侧行配置授权对应一个HARQ进程标识,则网络设备在 侧行配置授权的配置信息中指示一个HARQ进程标识。针对第一类配置授权,所述配置信息可以是RRC信令;针对第二类配置授权,所述配置信息可以是RRC信令或DCI。
在另一些实施例中,若一个侧行配置授权对应N个HARQ进程标识,N为大于1的正整数,则网络设备可以通过两种方式向第一终端设备指示一个侧行配置授权资源对应N个HARQ进程标识。下面分别对两种方式进行说明。
方式一,网络设备在侧行配置授权的配置信息中指示N个HARQ进程标识中序列号最小的第一HARQ进程标识;所述配置信息还用于指示所述第一HARQ进程的数量。举例来说,所述配置信息指示HARQ ID1和第一HARQ进程的数量N;则该侧行配置授权对应的N个HARQ进程标识是以HARQ ID1开始的N个HARQ ID。举例来说,若N=3,HARQ ID1=1,则该侧行配置授权对应的3个HARQ进程标识分别是1、2、和3。
方式二,网络设备在侧行配置授权的配置信息中指示全部第一HARQ进程标识。举例来说,网络设备在侧行配置授权的配置信息中指示侧行配置授权对应的N个HARQ进程标识,所述N个HARQ进程标识可以是连续的,也可以是不连续的。
本申请实施例中,网络设备为第一终端设备分配的侧行配置授权的配置信息中可以包括物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输资源,用于第一终端设备向网络设备反馈侧行反馈信息,以便于网络设备分配重传资源。由于侧行传输资源是周期性的资源,因此网络设备为第一终端设备分配的PUCCH资源也是周期性的传输资源。在一个侧行配置授权对应N个HARQ进程标识的情况下,网络设备可以通过PUCCH的时域资源位置确定HARQ进程标识。
下面基于图10对本申请实施例网络设备通过PUCCH的时域资源位置确定HARQ进程标识的详细处理流程进行说明。
网络设备为第一终端设备配置了侧行配置授权传输资源,并且在每个传输周期内配置一个PUCCH资源,PUCCH资源用于第一终端设备向网络设备上报侧行反馈信息。图10所示的两个传输周期包括PUCCH1和PUCCH2;由于不同周期的PUCCH时域资源不同,因此网络设备可以根据接收到的PUCCH确定该PUCCH承载的侧行反馈信息对应的侧行数据的HARQ进程标识。例如,网络设备为该侧行配置授权配置了两个HARQ进程标识,分别是HARQ ID1和HARQ ID2;网络设备在第一个PUCCH资源上接收到PUCCH1,可以确定PUCCH1承载的侧行反馈信息对应的侧行数据的HARQ进程标识是HARQ ID1;网络设备在第二个PUCCH资源上接收到PUCCH2,可以确定 PUCCH2承载的侧行反馈信息对应的侧行数据的HARQ进程标识是HARQ ID2。
第一终端设备在PSSCH1上发送数据的新传,在SCI中指示HARQ ID1,并且NDI取值为0。第二终端设备检测失败,在PSFCH1上反馈NACK信息,第一终端设备接收PSFCH1获取NACK信息,并且在PUCCH1上向网络设备上报该NACK信息;网络设备通过DCI1为第一终端设备分配重传资源,该DCI1中指示HARQ ID1,NDI值为1,并且分配上行传输资源,即PUCCH3所使用的传输资源;第一终端设备接收网络发送的DCI1,根据HARQ ID1和NDI信息确定是针对HARQ ID1的侧行数据的重传调度,第一终端设备在该重传资源上发送PSSCH2,并且SCI中指示HARQ ID1和NDI=0,NDI的取值相对于首次传输没有翻转,因此表示是重传的数据。第二终端设备检测成功,向第一终端设备发送ACK,第一终端设备向网络发送PUCCH3上报该ACK信息。
为实现本申请实施例所述确定混合自动重传请求进程信息的方法,本申请实施例提供一种终端设备,所述终端设备300的组成结构,如图11所示,包括:
处理单元301,配置为根据网络设备指示的第一HARQ进程标识,确定侧行传输对应的第二HARQ进程标识。
在一些实施例中,在所述第一HARQ进程标识未被所述终端设备300使用的情况下,所述第二HARQ进程标识等于所述第一HARQ进程标识。
在一些实施例中,所述处理单元301,配置为在所述第一HARQ进程标识被所述终端设备300使用的情况下,确定所述第一HARQ进程标识之外的未被使用的HARQ进程标识为所述第二HARQ进程标识。
在一些实施例中,所述处理单元301,配置为在所述终端设备300支持的全部HARQ进程均被使用的情况下,根据第一参数确定需要终止的HARQ进程。
在一些实施例中,所述处理单元301,配置为确定所述需要终止的HARQ进程对应的HARQ进程标识为所述第二HARQ进程标识。
在一些实施例中,所述第一参数包括数据的服务质量参数和/或数据的传输模式。
在一些实施例中,所述数据的服务质量参数包括下述中的至少一项:
数据的优先级、数据的传输时延和数据的可靠性。
在一些实施例中,所述处理单元301,还配置为确定所述第一HARQ进程标识与所述第二HARQ进程标识的对应关系。
在一些实施例中,所述终端设备300还包括:
接收单元302,配置为接收所述网络设备发送的重传调度指示,所述重传调度指示 中指示所述第一HARQ进程标识,所述重传调度指示中的新数据指示域不翻转。
在一些实施例中,所述处理单元301,还配置为根据第一HARQ进程标识与第二HARQ进程标识的对应关系,确定重传所述第二HARQ进程标识对应的侧行数据。
在一些实施例中,所述第一HARQ进程标识通过DCI指示。
在一些实施例中,所述第一HARQ进程标识通过侧行配置授权的配置信息指示。
在一些实施例中,所述配置信息用于指示至少两个所述第一HARQ进程标识中序列号最小的第一HARQ进程标识。
在一些实施例中,所述配置信息还用于指示所述第一HARQ进程的数量。
在一些实施例中,所述处理单元301,还配置为根据所述序列号最小的第一HARQ进程标识和所述第一HARQ进程的数量,确定所述第一HARQ进程标识中除所述序列号最小的第一HARQ进程标识以外的其他第一HARQ进程标识。
在一些实施例中,所述配置信息用于指示全部所述第一HARQ进程标识。
本申请实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的确定混合自动重传请求进程信息的方法的步骤。
图12是本申请实施例的终端设备的硬件组成结构示意图,终端设备700包括:至少一个处理器701、存储器702和至少一个网络接口704。终端设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图12中将各种总线都标为总线系统705。
可以理解,存储器702可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器 (SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中的存储器702用于存储各种类型的数据以支持终端设备700的操作。这些数据的示例包括:用于在终端设备700上操作的任何计算机程序,如应用程序7022。实现本申请实施例方法的程序可以包含在应用程序7022中。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,终端设备700可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本申请实施例还提供了一种存储介质,用于存储计算机程序。
可选的,该存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算 机程序,使得安装有所述芯片的设备执行上述的确定混合自动重传请求进程信息的方法。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的确定混合自动重传请求进程信息的方法。
本申请实施例还提供了一种计算机程序,所述计算机程序使得计算机执行上述的确定混合自动重传请求进程信息的方法。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应理解,本申请中术语“系统”和“网络”在本文中常被可互换使用。本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (37)

  1. 一种确定混合自动重传请求进程信息的方法,所述方法包括:
    第一终端设备根据网络设备指示的第一混合自动重传请求HARQ进程标识,确定侧行传输对应的第二HARQ进程标识。
  2. 根据权利要求1所述的方法,其中,在所述第一HARQ进程标识未被所述第一终端设备使用的情况下,所述第二HARQ进程标识等于所述第一HARQ进程标识。
  3. 根据权利要求1所述的方法,其中,在所述第一HARQ进程标识被所述第一终端设备使用的情况下,所述第一终端设备确定所述第一HARQ进程标识之外的未被使用的HARQ进程标识为所述第二HARQ进程标识。
  4. 根据权利要求1所述的方法,其中,在所述第一终端设备支持的全部HARQ进程均被使用的情况下,所述第一终端设备根据第一参数确定需要终止的HARQ进程。
  5. 根据权利要求4所述的方法,其中,所述第一终端设备确定所述需要终止的HARQ进程对应的HARQ进程标识为所述第二HARQ进程标识。
  6. 根据权利要求4或5所述的方法,其中,所述第一参数包括数据的服务质量参数和/或数据的传输模式。
  7. 根据权利要求6所述的方法,其中,所述数据的服务质量参数包括下述中的至少一项:
    数据的优先级、数据的传输时延和数据的可靠性。
  8. 根据权利要求3或5所述的方法,其中,所述方法还包括:
    所述第一终端设备确定所述第一HARQ进程标识与所述第二HARQ进程标识的对应关系。
  9. 根据权利要求1至8任一项所述的方法,其中,所述方法还包括:
    所述第一终端设备接收所述网络设备发送的重传调度指示,所述重传调度指示中指示所述第一HARQ进程标识,所述重传调度指示中的新数据指示域不翻转。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    所述第一终端设备根据第一HARQ进程标识与第二HARQ进程标识的对应关系,确定重传所述第二HARQ进程标识对应的侧行数据。
  11. 根据权利要求1至10任一项所述的方法,其中,所述第一HARQ进程标识通过下行控制信令DCI指示。
  12. 根据权利要求1至10任一项所述的方法,其中,所述第一HARQ进程标识通过侧行配置授权的配置信息指示。
  13. 根据权利要求12所述的方法,其中,所述配置信息用于指示至少两个所述第一HARQ进程标识中序列号最小的第一HARQ进程标识。
  14. 根据权利要求13所述的方法,其中,所述配置信息还用于指示所述第一HARQ进程的数量。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    所述第一终端设备根据所述序列号最小的第一HARQ进程标识和所述第一HARQ进程的数量,确定所述第一HARQ进程标识中除所述序列号最小的第一HARQ进程标识以外的其他第一HARQ进程标识。
  16. 根据权利要求12所述的方法,其中,所述配置信息用于指示全部所述第一HARQ进程标识。
  17. 一种终端设备,所述终端设备包括:
    处理单元,配置为根据网络设备指示的第一混合自动重传请求HARQ进程标识,确定侧行传输对应的第二HARQ进程标识。
  18. 根据权利要求17所述的终端设备,其中,在所述第一HARQ进程标识未被所述终端设备使用的情况下,所述第二HARQ进程标识等于所述第一HARQ进程标识。
  19. 根据权利要求17所述的终端设备,其中,所述处理单元,配置为在所述第一HARQ进程标识被所述终端设备使用的情况下,确定所述第一HARQ进程标识之外的未被使用的HARQ进程标识为所述第二HARQ进程标识。
  20. 根据权利要求17所述的终端设备,其中,所述处理单元,配置为在所述终端设备支持的全部HARQ进程均被使用的情况下,根据第一参数确定需要终止的HARQ进程。
  21. 根据权利要求20所述的终端设备,其中,所述处理单元,配置为确定所述需要终止的HARQ进程对应的HARQ进程标识为所述第二HARQ进程标识。
  22. 根据权利要求20或21所述的终端设备,其中,所述第一参数包括数据的服务质量参数和/或数据的传输模式。
  23. 根据权利要求22所述的终端设备,其中,所述数据的服务质量参数包括下述中的至少一项:
    数据的优先级、数据的传输时延和数据的可靠性。
  24. 根据权利要求19或21所述的终端设备,其中,所述处理单元,还配置为确定所述第一HARQ进程标识与所述第二HARQ进程标识的对应关系。
  25. 根据权利要求17至24任一项所述的终端设备,其中,所述终端设备还包括:
    接收单元,配置为接收所述网络设备发送的重传调度指示,所述重传调度指示中指示所述第一HARQ进程标识,所述重传调度指示中的新数据指示域不翻转。
  26. 根据权利要求25所述的终端设备,其中,所述处理单元,还配置为根据第一HARQ进程标识与第二HARQ进程标识的对应关系,确定重传所述第二HARQ进程标识对应的侧行数据。
  27. 根据权利要求17至26任一项所述的终端设备,其中,所述第一HARQ进程标识通过下行控制信令DCI指示。
  28. 根据权利要求17至26任一项所述的终端设备,其中,所述第一HARQ进程标识通过侧行配置授权的配置信息指示。
  29. 根据权利要求28所述的终端设备,其中,所述配置信息用于指示至少两个所述第一HARQ进程标识中序列号最小的第一HARQ进程标识。
  30. 根据权利要求29所述的终端设备,其中,所述配置信息还用于指示所述第一HARQ进程的数量。
  31. 根据权利要求30所述的终端设备,其中,所述处理单元,还配置为根据所述序列号最小的第一HARQ进程标识和所述第一HARQ进程的数量,确定所述第一HARQ进程标识中除所述序列号最小的第一HARQ进程标识以外的其他第一HARQ进程标识。
  32. 根据权利要求28所述的终端设备,其中,所述配置信息用于指示全部所述第一HARQ进程标识。
  33. 一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求1至16任一项所述的确定混合自动重传请求进程信息的方法的步骤。
  34. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至16中任一项所述的确定混合自动重传请求进程信息的方法。
  35. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至16任一项所述的确定混合自动重传请求进程信息的方法。
  36. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至16中任一项所述的确定混合自动重传请求进程信息的方法。
  37. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的确定混合自动重传请求进程信息的方法。
PCT/CN2020/072508 2020-01-16 2020-01-16 确定混合自动重传请求进程信息的方法、设备及存储介质 WO2021142721A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202210845610.6A CN115208520B (zh) 2020-01-16 2020-01-16 确定混合自动重传请求进程信息的方法、设备及存储介质
PCT/CN2020/072508 WO2021142721A1 (zh) 2020-01-16 2020-01-16 确定混合自动重传请求进程信息的方法、设备及存储介质
EP20913278.6A EP4064776A4 (en) 2020-01-16 2020-01-16 METHOD FOR DETERMINING HYBRID AUTOMATIC REPETITION REQUEST PROCESSING INFORMATION, DEVICE AND RECORDING MEDIA
CN202080073648.5A CN114586438A (zh) 2020-01-16 2020-01-16 确定混合自动重传请求进程信息的方法、设备及存储介质
US17/808,249 US20220322421A1 (en) 2020-01-16 2022-06-22 Method for determining hybrid automatic repeat request process information, device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072508 WO2021142721A1 (zh) 2020-01-16 2020-01-16 确定混合自动重传请求进程信息的方法、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/808,249 Continuation US20220322421A1 (en) 2020-01-16 2022-06-22 Method for determining hybrid automatic repeat request process information, device, and storage medium

Publications (1)

Publication Number Publication Date
WO2021142721A1 true WO2021142721A1 (zh) 2021-07-22

Family

ID=76863470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072508 WO2021142721A1 (zh) 2020-01-16 2020-01-16 确定混合自动重传请求进程信息的方法、设备及存储介质

Country Status (4)

Country Link
US (1) US20220322421A1 (zh)
EP (1) EP4064776A4 (zh)
CN (2) CN114586438A (zh)
WO (1) WO2021142721A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023065235A1 (zh) * 2021-10-21 2023-04-27 北京小米移动软件有限公司 一种直连通信方法、装置及存储介质
WO2023207885A1 (zh) * 2022-04-26 2023-11-02 华为技术有限公司 一种通信方法和通信装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170215183A1 (en) * 2016-01-22 2017-07-27 Qualcomm Incorporated Hybrid automatic repeat request feedback for unicast sidelink communications
CN107027180A (zh) * 2016-02-02 2017-08-08 中兴通讯股份有限公司 非授权载波上行数据的发送方法及终端
CN108811114A (zh) * 2017-05-05 2018-11-13 中兴通讯股份有限公司 一种半持续调度的混合自动重传请求的传输方法及装置
WO2019027304A1 (en) * 2017-08-04 2019-02-07 Samsung Electronics Co., Ltd. METHODS AND APPARATUS FOR RESOURCE AND FEEDBACK ALLOCATION IN VEHICLE VEHICLE COMMUNICATION
CN110050500A (zh) * 2016-08-12 2019-07-23 欧芬诺有限责任公司 无线网络和设备中的周期性资源分配
CN110637432A (zh) * 2017-05-15 2019-12-31 瑞典爱立信有限公司 在半永久调度和动态授权之间共享harq进程id的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536445A (zh) * 2019-04-30 2019-12-03 中兴通讯股份有限公司 Ue信息的报告方法、车辆网资源配置方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170215183A1 (en) * 2016-01-22 2017-07-27 Qualcomm Incorporated Hybrid automatic repeat request feedback for unicast sidelink communications
CN107027180A (zh) * 2016-02-02 2017-08-08 中兴通讯股份有限公司 非授权载波上行数据的发送方法及终端
CN110050500A (zh) * 2016-08-12 2019-07-23 欧芬诺有限责任公司 无线网络和设备中的周期性资源分配
CN108811114A (zh) * 2017-05-05 2018-11-13 中兴通讯股份有限公司 一种半持续调度的混合自动重传请求的传输方法及装置
CN110637432A (zh) * 2017-05-15 2019-12-31 瑞典爱立信有限公司 在半永久调度和动态授权之间共享harq进程id的方法
WO2019027304A1 (en) * 2017-08-04 2019-02-07 Samsung Electronics Co., Ltd. METHODS AND APPARATUS FOR RESOURCE AND FEEDBACK ALLOCATION IN VEHICLE VEHICLE COMMUNICATION

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRAUNHOFER HHI ET AL.: "Resource Allocation for Mode 2 NR V2X", 3GPP TSG RAN WG1 #99 R1-1912289, 22 November 2019 (2019-11-22), XP051819983 *
See also references of EP4064776A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023065235A1 (zh) * 2021-10-21 2023-04-27 北京小米移动软件有限公司 一种直连通信方法、装置及存储介质
WO2023207885A1 (zh) * 2022-04-26 2023-11-02 华为技术有限公司 一种通信方法和通信装置

Also Published As

Publication number Publication date
EP4064776A1 (en) 2022-09-28
CN115208520A (zh) 2022-10-18
CN115208520B (zh) 2024-03-05
CN114586438A (zh) 2022-06-03
US20220322421A1 (en) 2022-10-06
EP4064776A4 (en) 2022-09-28

Similar Documents

Publication Publication Date Title
US20220190983A1 (en) Method for data transmission and terminal device
US20220116916A1 (en) Sidelink data transmission method, terminal device and network device
US20210345396A1 (en) Method and apparatus for scheduling a sidelink resource
EP4080964A1 (en) Resource selection method, terminal device and storage medium
TWI718240B (zh) 用於傳輸業務的方法、移動台和網絡設備
US11910226B2 (en) Method and apparatus for configuring sidelink data bearer in wireless communication system
US20220322421A1 (en) Method for determining hybrid automatic repeat request process information, device, and storage medium
US20220239416A1 (en) Sidelink feedback method, device, and storage medium
WO2021012167A1 (zh) 一种资源处理方法、设备及存储介质
WO2020056696A1 (zh) 一种资源分配方法及装置、终端
WO2021062866A1 (zh) 无线通信方法和终端设备
JP2023058691A (ja) 情報伝送方法、装置及び記憶媒体
WO2021062605A1 (zh) 一种确定资源选择窗的方法、终端设备及存储介质
WO2021026841A1 (zh) 调度请求传输的方法和设备
WO2021134619A1 (zh) 上行控制信息的传输方法、装置、设备及存储介质
WO2021087955A1 (zh) 功率分配方法以及装置
US20220368505A1 (en) Data feedback method and apparatus
US20210376968A1 (en) Feedback method and apparatus
WO2020029558A1 (zh) 反馈信息的方法、终端、芯片和存储介质
WO2022151162A1 (zh) 反馈信息的发送方法、装置、设备及存储介质
US20230345495A1 (en) Uplink control information sending method and receiving method, apparatuses, device, and medium
WO2021062734A1 (zh) 一种上行信息传输方法及其装置
JPWO2021073032A5 (zh)
JP2024510280A (ja) 情報伝送方法、装置、デバイス及び記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020913278

Country of ref document: EP

Effective date: 20220624

NENP Non-entry into the national phase

Ref country code: DE