WO2021142715A1 - 显示面板及其制作方法、以及有机发光二极管显示装置 - Google Patents

显示面板及其制作方法、以及有机发光二极管显示装置 Download PDF

Info

Publication number
WO2021142715A1
WO2021142715A1 PCT/CN2020/072488 CN2020072488W WO2021142715A1 WO 2021142715 A1 WO2021142715 A1 WO 2021142715A1 CN 2020072488 W CN2020072488 W CN 2020072488W WO 2021142715 A1 WO2021142715 A1 WO 2021142715A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting
electrode
emitting layer
Prior art date
Application number
PCT/CN2020/072488
Other languages
English (en)
French (fr)
Inventor
张晓晋
李昌浩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2020/072488 priority Critical patent/WO2021142715A1/zh
Priority to CN202080000017.0A priority patent/CN113412546A/zh
Publication of WO2021142715A1 publication Critical patent/WO2021142715A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers

Definitions

  • At least one embodiment of the present disclosure relates to a display panel, a manufacturing method thereof, and an organic light emitting diode display device.
  • An organic light emitting diode (OLED) display may be a display including a color filter film, a display using a microcavity resonance effect, or the like.
  • the display adopting the microcavity resonance effect includes a semi-transparent and semi-reflective electrode and a reflective electrode.
  • the high color gamut requirement of the display can be met by adjusting the optical thickness of the dielectric layer between the semi-transparent and semi-reflective electrode and the reflective electrode.
  • the embodiments of the present disclosure provide a display panel and a manufacturing method thereof, and an organic light emitting diode display device.
  • At least one embodiment of the present disclosure provides a display panel including: a first light emitting unit and a second light emitting unit arranged in an array.
  • the first light-emitting unit includes a first light-emitting layer
  • the display panel includes a continuous film layer
  • a first part of the continuous film layer is located in the second light-emitting unit to serve as a second light-emitting layer of the second light-emitting unit ,
  • the second part of the continuous film layer overlaps the first light-emitting layer.
  • the display panel further includes: a third light emitting unit, and the third light emitting unit includes a third light emitting layer.
  • the first light-emitting unit, the second light-emitting unit, and the third light-emitting unit are arranged in an array, and the third portion of the continuous film layer overlaps the third light-emitting layer.
  • the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer are light-emitting layers emitting light of different colors.
  • the first light-emitting unit includes a first electrode and a second electrode located on both sides of the first light-emitting layer and the continuous film layer; the second light-emitting unit includes two electrodes located on the continuous film layer.
  • the third light-emitting unit includes a fifth electrode and a sixth electrode on both sides of the third light-emitting layer and the continuous film layer, the first electrode, the second electrode
  • the three electrodes and the fifth electrode are a common electrode layer so that the first light-emitting unit, the second light-emitting unit, and the third light-emitting unit share the common electrode layer.
  • the four electrodes and the sixth electrode are separated from each other, and one of the two electrodes included in each light-emitting unit is a reflective electrode, and the other is a semi-transmissive and semi-reverse electrode.
  • the common electrode layer is a cathode and a transflective electrode; the second electrode, the fourth electrode, and the sixth electrode are anodes that are separate from each other, and the anode is a reflective electrode. electrode.
  • the third light-emitting layer and the first light-emitting layer are located on the same side of the continuous film layer.
  • the first light-emitting layer and the third light-emitting layer are located on the side of the continuous film layer away from the common electrode layer, and the electron mobility of the material of the continuous film layer is not less than 1 *10 -7 cm 2 /Vs.
  • the second portion and the third portion of the continuous film layer are in contact with the surfaces of the first light-emitting layer and the third light-emitting layer, and the continuous film layer
  • the second part and the third part are configured to transmit electrons to the first light-emitting layer and the third light-emitting layer, respectively.
  • the display panel includes: a connection layer located on a side of the continuous film layer away from the common electrode layer.
  • the first part of the connection layer is located between the second light-emitting layer and the fourth electrode, and is in contact with the surface of the second light-emitting layer to transport holes to the second light-emitting layer;
  • the second part of the connection layer Part is located between the first light-emitting layer and the common electrode layer, and is in contact with the surface of the first light-emitting layer to transport electrons to the first light-emitting layer;
  • the third part of the connecting layer is located in the first light-emitting layer The three light-emitting layers are in contact with the common electrode layer and the surface of the third light-emitting layer to transport electrons to the third light-emitting layer.
  • the difference between the lowest unoccupied orbital energy level of the molecules of the light-emitting host material of the first light-emitting layer and the lowest unoccupied orbital energy level of the molecules of the connection layer is less than 0.5 eV; the third The difference between the lowest unoccupied orbital energy level of the molecules of the light-emitting host material of the light-emitting layer and the lowest unoccupied orbital energy level of the molecules of the material of the connecting layer is less than 0.5 eV.
  • the film layer located between the first electrode and the second electrode is formed as a first cavity adjustment structure, and the first cavity adjustment structure is configured to adjust the cavity length to emit red light;
  • the film layer between the third electrode and the fourth electrode forms a second cavity adjustment structure, and the second cavity adjustment structure is configured to adjust the cavity length to emit blue light;
  • the film layer between the electrodes is formed as a third cavity adjustment structure configured to adjust the cavity length to emit green light.
  • the display panel includes: a first electron blocking layer located between the first light-emitting layer and the second electrode; a second electron blocking layer located between the third light-emitting layer and the sixth electrode between.
  • the difference between the cavity length of the first cavity adjustment structure and the cavity length of the second cavity adjustment structure is the sum of the optical thicknesses of the first light-emitting layer and the first electron blocking layer, and the third cavity adjustment
  • the difference between the cavity length of the structure and the cavity length of the second cavity adjustment structure is the sum of the optical thicknesses of the third light-emitting layer and the second electron blocking layer.
  • the display panel includes: an electron injection layer located between the continuous film layer and the common electrode layer; a hole injection layer located far from the first light-emitting layer and the third light-emitting layer One side of the common electrode.
  • the first cavity adjustment structure includes the hole injection layer, the first electron blocking layer, the first light-emitting layer, the connection layer, the continuous film layer, and the electron injection layer;
  • the second cavity adjustment structure includes the hole injection layer, the connection layer, the continuous film layer, and the electron injection layer;
  • the third cavity adjustment structure includes the hole injection layer and the second electron blocking layer Layer, the third light-emitting layer, the connection layer, the continuous film layer, and the electron injection layer.
  • the display panel includes: a transport layer including at least one of an electron transport layer, a first hole transport layer, and a second hole transport layer; the electron transport layer is located on the continuous film layer And the common electrode layer; the first hole transport layer is located on the side of the first light-emitting layer, the third light-emitting layer, and the second light-emitting layer away from the common electrode, and the connection The first part of the layer is in contact with the first hole transport layer; the second hole transport layer is located on the side of the first hole transport layer away from the continuous film layer.
  • the first cavity adjustment structure further includes the transmission layer, and the transmission layer is a common film layer of the first cavity adjustment structure, the second cavity adjustment structure, and the third cavity adjustment structure.
  • the display panel includes: a hole blocking layer located between the electron injection layer and the continuous film layer and in contact with the continuous film layer.
  • the first cavity adjustment structure, the second cavity adjustment structure, and the third cavity adjustment structure all include the hole blocking layer.
  • the first light-emitting layer is a red light-emitting layer
  • the second light-emitting layer is a blue light-emitting layer
  • the third light-emitting layer is a green light-emitting layer.
  • the proportion of the light-emitting guest material in the green light-emitting layer is less than 10%.
  • At least one embodiment of the present disclosure provides an organic light emitting diode display device including the above-mentioned display panel.
  • At least one embodiment of the present disclosure provides a manufacturing method for manufacturing the above-mentioned display panel, including: using a fine metal mask as a mask to form a patterned first light-emitting material layer to form the first light-emitting unit in the first light-emitting unit.
  • a light-emitting layer; and an opening mask is used to form a second light-emitting material layer to form the second light-emitting layer.
  • the second light-emitting material layer is the continuous film layer, and the first part of the continuous film layer is the second light-emitting layer in the second light-emitting unit.
  • FIG. 1 is a schematic diagram of a partial structure of a display panel provided according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a partial structure of a display panel according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a partial structure of a display panel provided according to another embodiment of the present disclosure.
  • the high color gamut requirement of organic light-emitting diode displays can be achieved through the microcavity resonance effect, that is, by adjusting the optical thickness of the dielectric layer between the reflective electrode and the transflective electrode, the photons emitted from the light-emitting layer can be reflected
  • the electrode and the transflective electrode interfere with each other, causing constructive or destructive interference.
  • the light that produces constructive interference will be enhanced and transmitted from the transflective electrode to achieve the emission of specific wavelengths of light, thereby satisfying high Color gamut requirements.
  • the inventor of the present application found that the organic light-emitting diode display includes red sub-pixels, green sub-pixels, and blue sub-pixels.
  • a fine metal mask FMM
  • the alignment accuracy is relatively high, the manufacturing cost is relatively high, and various defects are prone to occur.
  • Embodiments of the present disclosure provide a display panel and a manufacturing method thereof, and an organic light emitting diode display device.
  • the display panel includes a first light emitting unit and a second light emitting unit arranged in an array.
  • the first light-emitting unit includes a first light-emitting layer
  • the display panel includes a continuous film layer. The first part of the continuous film layer is located in the second light-emitting unit as the second light-emitting layer of the second light-emitting unit.
  • One light-emitting layer overlaps.
  • the continuous film layer overlaps the first light-emitting layer, and the second light-emitting layer of the second light-emitting unit is a part of the continuous film layer, which can save the production of a fine metal mask for the second light-emitting layer.
  • FIG. 1 is a schematic diagram of a partial structure of a display panel provided according to an embodiment of the present disclosure.
  • the display panel includes first light emitting units 100 and second light emitting units 200 arranged in an array.
  • the first light-emitting unit 100 includes a first light-emitting layer 110
  • the display panel includes a continuous film layer 400.
  • the first portion 410 of the continuous film layer 400 is located in the second light-emitting unit 200 as the second light-emitting layer 210 of the second light-emitting unit 200.
  • the second portion 420 of the film layer 400 overlaps the first light-emitting layer 110.
  • the second light-emitting layer of the second light-emitting unit is a part of a continuous film layer
  • the continuous film layer is a film layer that overlaps the first light-emitting layer, which can save the cost of making the second light-emitting layer.
  • the fine metal mask can not only save costs, but also save the precise alignment process and avoid other defects, thereby increasing productivity.
  • the above-mentioned continuous film layer 400 is a whole film layer, and the thickness and material of each part of the film layer 400 may be the same.
  • the first part of the continuous film layer 400 located in the second light-emitting unit 200 is a part of the film layer for light emission, that is, the second light-emitting layer 210, and the portion of the continuous film layer 400 that overlaps the first light-emitting layer 110 does not emit light That is, the portion of the continuous film layer 400 outside the second light-emitting unit 200 is not used for light emission.
  • the above continuous film layer can also be called the second light-emitting layer, but only the part of the second light-emitting layer located in the second light-emitting unit is used for light emission, and the part of the second light-emitting layer located outside the second light-emitting unit is not used for light emission .
  • the embodiments of the present disclosure are described by taking the second light-emitting layer as a part of the continuous film layer. In the embodiments of the present disclosure, by fabricating the entire continuous film layer including the second light-emitting layer, a step of using a fine metal mask can be saved, cost is saved, and productivity is improved.
  • first light-emitting layer 110 overlaps the second portion 420 of the continuous film layer 400.
  • a fine metal mask can be used to form a plurality of first light-emitting layers separated from each other, and the continuous film layer where the second light-emitting layer is located is a whole continuous film layer made of an aperture mask, not multiple The film layers are separated from each other, so the continuous film layer including the second light-emitting layer will overlap with a plurality of first light-emitting layers separated from each other, and the continuous film layer will also overlap with the interval between adjacent first light-emitting layers .
  • the number of the above-mentioned first light-emitting unit and the second light-emitting unit are both multiple, and they can be arranged in an array in a plane perpendicular to the Y direction shown in FIG. 1.
  • the first light emitting unit 100 and the second light emitting unit 200 are configured to emit light of different colors.
  • the first light-emitting unit 100 may be a red light-emitting unit or a green light-emitting unit
  • the second light-emitting unit 200 may be a blue light-emitting unit.
  • the blue light-emitting layer in the blue light-emitting unit is prepared into a continuous film layer, such as a whole layer. The film layer helps to increase the life span of the blue light-emitting unit.
  • the first light emitting unit 100 may be a yellow light emitting unit
  • the second light emitting unit 200 may be a blue light emitting unit.
  • the first light emitting unit 100 may be a red light emitting unit, a green light emitting unit or a blue light emitting unit
  • the second light emitting unit 200 may be one of the other two of a red light emitting unit, a green light emitting unit and a blue light emitting unit.
  • the display panel further includes a third light emitting unit 300, and the first light emitting unit 100, the second light emitting unit 200 and the third light emitting unit 300 are arranged in an array.
  • the number of the first light-emitting unit 100, the second light-emitting unit 200, and the third light-emitting unit 300 are multiple, and they may be arranged in an array in a plane perpendicular to the Y direction shown in FIG. 1.
  • FIG. 1 schematically shows that the first light emitting unit 100, the third light emitting unit 300, and the second light emitting unit 200 are arranged along the X direction.
  • the third light-emitting unit 300 includes a third light-emitting layer 310, the third portion 430 of the continuous film layer 400 overlaps the third light-emitting layer 310, and the third portion 430 of the continuous film layer 400 is not used for Glow.
  • the embodiment of the present disclosure schematically shows that the first light-emitting layer 110 may not overlap with the third light-emitting layer 310.
  • a pixel defining layer (not shown in the figure) with an opening may be provided between the adjacent first light emitting unit 100 and the third light emitting unit 300, and the first light emitting layer 110 and the third light emitting layer 310 are both located in the pixel defining layer.
  • the pixel defining layer is used to separate the first light-emitting layer 110 and the third light-emitting layer 310.
  • the above-mentioned continuous film layer 400 covers both the opening defined by the pixel defining layer and the pixel defining layer between adjacent openings, so that the continuous film layer 400 overlaps the first light-emitting layer 110 and the third light-emitting layer 310.
  • the aforementioned "adjacent first light-emitting unit 100 and third light-emitting unit 300" means that there is no other light-emitting unit between the first light-emitting unit 100 and the third light-emitting unit 300.
  • the first light-emitting layer and the third light-emitting layer may also partially overlap, that is, the edge of the first light-emitting layer may overlap the edge of the third light-emitting layer.
  • the overlapping portion of the first light-emitting layer and the third light-emitting layer may be located on the pixel defining layer, but the above-mentioned overlapping portion does not affect the light emission of each light-emitting layer.
  • the first light-emitting layer 110, the second light-emitting layer 210, and the third light-emitting layer 310 are light-emitting layers emitting light of different colors.
  • the first light-emitting layer 110 is a red light-emitting layer
  • the second light-emitting layer 210 is a blue light-emitting layer
  • the third light-emitting layer 310 is a green light-emitting layer as an example.
  • Forming the blue light-emitting layer as a part of a continuous film layer, for example, a part of an entire film layer, can increase the service life of the blue light-emitting layer.
  • the first light-emitting layer may also be a green light-emitting layer
  • the third light-emitting layer may be a red light-emitting layer; as long as one of the first light-emitting layer, the second light-emitting layer, and the third light-emitting layer It only needs to be a red light-emitting layer, the other one is a blue light-emitting layer, and the other one is a green light-emitting layer.
  • the first light-emitting unit 100 includes a first electrode 120 and a second electrode 130 located on both sides of the first light-emitting layer 110 and the continuous film layer 400, and the first electrode 120 and the second electrode 130 are configured as A voltage is applied to the first light-emitting layer 110 to make the first light-emitting layer 110 emit light.
  • the second light emitting unit 200 includes a third electrode 220 and a fourth electrode 230 located on both sides of the second light emitting layer 210, and the third electrode 220 and the fourth electrode 230 are configured to apply a voltage to the second light emitting layer 210 to cause the second light emitting layer 210 to emit light.
  • the layer 210 emits light.
  • the third light-emitting unit 300 includes a fifth electrode 320 and a sixth electrode 330 located on both sides of the third light-emitting layer 310 and the continuous film layer 400, and the fifth electrode 320 and the sixth electrode 330 are configured to apply a voltage to the third light-emitting layer 310 So that the third light-emitting layer 310 emits light.
  • the first light-emitting layer 110 emits red light
  • the second light-emitting layer 210 emits blue light
  • the third light-emitting layer 310 emits green light.
  • the embodiment of the present disclosure uses the first electrode 120, the third electrode 220, and the fifth electrode 320 as a common electrode layer 123 to make the first light-emitting unit 100, the second light-emitting unit 200, and the third light-emitting
  • the unit 300 shares the common electrode layer 123 as an example. That is, the common electrode layer 123 is a continuous film layer, and the part of the common electrode layer 123 located in the first light-emitting unit 100 is the first electrode 120, and the part of the common electrode layer 123 located in the second light-emitting unit 200 is the third electrode 220.
  • the portion of the electrode layer 123 located in the third light-emitting unit 300 is the fifth electrode 320.
  • the first electrode 120, the third electrode 220, and the fifth electrode 320 When a voltage is applied to the common electrode layer 123, the first electrode 120, the third electrode 220, and the fifth electrode 320 receive the same voltage, and the common electrode layer 123 is shared by each light-emitting unit.
  • the embodiments of the present disclosure are not limited to this.
  • the second electrode, the fourth electrode, and the sixth electrode may be a common electrode layer shared by each light-emitting unit, and the first electrode 120, the third electrode 220, and the fifth electrode 320 may be separated from each other. electrode.
  • one of the two electrodes included in each light-emitting unit is a reflective electrode and the other is a transflective electrode, and the relative positional relationship of the reflective electrode, the light-emitting layer, and the transflective electrode in each light-emitting unit is the same.
  • the first electrode 120 is a transflective electrode
  • the second electrode 130 is a reflective electrode
  • the third electrode 220 is a transflective electrode
  • the fourth electrode 230 is a reflective electrode
  • the fifth electrode 320 is a transflective electrode
  • the sixth electrode 330 is a reflective electrode. That is, along the direction indicated by the arrow in the Y direction, the order of the film layers in each light-emitting unit is a reflective electrode, a light-emitting layer, and a transflective electrode.
  • the embodiments of the present disclosure are not limited to this.
  • the order of the film layers in each light-emitting unit may also be a transflective electrode, a light-emitting layer, and a reflective electrode in sequence.
  • the second electrode 130, the fourth electrode 230, and the sixth electrode 330 are independent electrodes, and each electrode is applied with a different voltage to adjust the gray scale.
  • the second electrode 130 overlaps the red light emitting layer 110 and the continuous film layer 400, it is only used to enable the light emitted by the red light emitting layer 110 to be emitted from the display panel.
  • the sixth electrode 330 overlaps the green light emitting layer 310 and the continuous film layer 400, it is only used to enable the light emitted by the green light emitting layer 310 to be emitted from the display panel.
  • the fourth electrode 230 only overlaps the blue light emitting layer 210 and is only used to make the blue light emitting layer 210 emit light.
  • the film layer between the first electrode 120 and the second electrode 130 included in the first light-emitting unit 100 is formed as a first cavity structure 140, and the first cavity structure 140 is configured to adjust it.
  • the cavity is long to emit red light.
  • the first cavity adjustment structure 140 can constitute a microcavity effect structure.
  • the light emitted by the first light-emitting layer 110 located between the two electrodes will be reflected between the first electrode 120 and the second electrode 130.
  • the light directly emitted by the layer 110 interferes in the first cavity structure 140.
  • light of a specific wavelength such as red light
  • light of other wavelengths can be weakened, so as to emit light of a specific wavelength, such as red light.
  • the refractive index of the i-th organic layer is n i
  • the geometric thickness of the i-th organic layer is r i
  • the wavelength of light of a specific wavelength is ⁇
  • the cavity length D and the wavelength ⁇ satisfy the relationship k is a natural number.
  • k can be 1, which represents the first interference period.
  • the above-mentioned cavity length refers to the sum of the geometric thickness of each film layer and the optical thickness after the refractive index product. Since the refractive index of each film layer does not change, the cavity length can be adjusted by adjusting the geometric thickness of at least one film layer.
  • the specific wavelength light is red light
  • the value of ⁇ is 620 nm.
  • the second light emitting unit 200 includes a second cavity structure 240 located between the third electrode 220 and the fourth electrode 230, and the second cavity structure 240 is configured to adjust its cavity length to emit blue light.
  • the second cavity adjustment structure 240 can constitute a microcavity effect structure. By adjusting the geometric thickness of at least one film layer between the third electrode 220 and the fourth electrode 230, blue light emission can be achieved, and the blue light wavelength can be 460nm, The wavelength and the cavity length of the second cavity adjustment structure satisfy the above-mentioned relationship.
  • the third light emitting unit 300 includes a third cavity adjustment structure 340 located between the fifth electrode 320 and the sixth electrode 330, and the third cavity adjustment structure 340 is configured to adjust the cavity length to emit green light.
  • the third cavity adjustment structure 340 can constitute a microcavity effect structure.
  • a top-emitting device with high efficiency and high color purity can be obtained.
  • the green light emitting layer 310 and the red light emitting layer 110 are located on the same side of the blue light emitting layer 210.
  • the embodiments of the present disclosure are not limited thereto, and the green light emitting layer and the red light emitting layer may also be located on both sides of the blue light emitting layer.
  • the continuous film layer 400 where the blue light emitting layer 210 is located is located between the green light emitting layer 310 and the fifth electrode 320, and the continuous film layer 400 is located between the red light emitting layer 110 and the first electrode 120 as an example.
  • the continuous film layer 400 where the blue light emitting layer 210 is located is located between the light emitting layers of other colors and the common electrode layer 123, but it is not limited thereto.
  • the continuous film layer where the blue light emitting layer is located may also be located between the red light emitting layer and the second electrode, and the continuous film layer described above is located between the green light emitting layer and the sixth electrode.
  • the display panel further includes an electron transport layer 510 located between the continuous film layer 400 and the common electrode layer 123.
  • an electron transport layer 510 located between the continuous film layer 400 and the common electrode layer 123.
  • a continuous electron transport layer 510 may be provided between the common cathode and the light-emitting layers of each color, that is, the electron transport layer 510 is a whole film layer, and Each light-emitting unit shares the electron transport layer 510.
  • the material of the common electrode layer 123 may be a metal material such as magnesium (Mg), silver (Ag), aluminum (Al), or an alloy of magnesium aluminum (Mg:Al), or the like.
  • the ratio of magnesium to aluminum may range from (3:7) to (1:9).
  • the transmittance of the common electrode layer 123 to light with a wavelength of 530 nm may range from 50% to 60%.
  • a light coupling layer (CPL) 910 is further provided on the side of the common electrode layer 123 away from each light-emitting layer to increase light output.
  • the thickness of the light outcoupling layer 910 may be 50 to 80 nm.
  • the material of the light outcoupling layer 901 may be an organic small molecule material.
  • the refractive index of the light outcoupling layer 910 for light with a wavelength of 460 nm is greater than 1.8.
  • the side of the light outcoupling layer 910 away from the common electrode layer 123 is provided with a thin film encapsulation layer 920 to protect each light emitting unit.
  • the reflective electrode in each light-emitting unit may be a composite structure including a metal with high reflectivity and a transparent oxide layer with high work function, such as "silver/indium tin oxide (Ag/ITO)" or “silver/indium”. Zinc oxide (Ag/IZO)" and so on.
  • the thickness of the metal included in the reflective electrode may be in the range of 80-100 nm, and the thickness of the metal oxide may be in the range of 5-10 nm.
  • the average reflectance of the reflective electrode to light in the wavelength band located in the visible light region may be 85%-95%.
  • the material of the electron transport layer 510 may include thiophenes, imidazoles, or azine derivatives, or the material of the electron transport layer 510 may include thiophenes, imidazoles, or azine derivatives, etc. and lithium quinolate.
  • the ratio of lithium quinolate may range from 30% to 70%.
  • the thickness of the electron transport layer 510 may be 20-40 nm.
  • the red light emitting layer 110 and the green light emitting layer 310 are located on the side of the continuous film layer 400 away from the common electrode layer 123.
  • the continuous film layer 400 is located between the electron transport layer 510 and the red light emitting layer 110 and the green light emitting layer 310, the portion of the continuous film layer 400 located in the first light emitting unit 100 and the third light emitting unit 300 is configured as red.
  • the light emitting layer 110 and the green light emitting layer 310 transmit electrons, that is, the part of the continuous film layer 400 except the second light emitting unit 200 is used to transmit electrons. Therefore, the material of the continuous film layer 400, that is, the material of the blue light emitting layer 210 requires It has strong electron transmission characteristics.
  • the material of the blue light-emitting layer 210 is not less than 1*10 -7 cm 2 /Vs, that is, the range of movement of electrons per volt per second is not less than 1*10 -7 cm 2 .
  • the light-emitting host material of the blue light-emitting layer 210 may include anthracene-based derivatives, fluorene-based derivatives, or pyrene-based derivatives to have strong electron transport characteristics.
  • the light-emitting guest material of the blue light-emitting layer 210 may include pyrene derivatives, and the doping concentration of the light-emitting guest material may range from 0.5% to 5%.
  • the thickness of the blue light emitting layer 210 may be in the range of 15-25 nm.
  • the second portion 420 and the third portion 430 of the continuous film layer 400 may be in contact with the surfaces of the red light emitting layer 110 and the green light emitting layer 310, and the second portion of the continuous film layer 400
  • the second part 420 and the third part 430 are respectively configured as the red light emitting layer 110 and the green light emitting layer 310 to transmit electrons. That is, the blue light-emitting layer in this embodiment is formed as a part of the entire film layer (ie, the continuous film layer 400), and the blue light-emitting layer 210 located in the second light-emitting unit 200 is used to emit light and is located in the first light-emitting unit 100. And the other part of the continuous film layer in the third light-emitting unit 300 is used to transport electrons to the red light-emitting layer 110 and the green light-emitting layer 310.
  • this embodiment is described by taking the electron transport layer 510 in contact with the blue light emitting layer 210 as an example, and the molecules of the light emitting host material of the blue light emitting layer 210 have the lowest unoccupied orbital level (LUMO) and electrons.
  • the difference between the lowest unoccupied orbital energy levels of the molecules of the material of the transport layer 510 is less than 0.3 eV.
  • the difference between the lowest unoccupied orbital energy level of the molecules of the light-emitting host material of the blue light-emitting layer 210 and the lowest unoccupied orbital energy level of any material of the electron transport layer 510 Less than 0.3eV.
  • the display panel further includes a continuous electron injection layer 520 located between the electron transport layer 510 and the common electrode layer 123, that is, the electron injection layer 520 is an entire film layer, and each light-emitting unit shares the electrons. Injection layer 520.
  • the material of the electron injection layer 520 may include lithium fluoride (LiF), lithium quinolate (LiQ), ytterbium (Yb), calcium (Ca), and the like.
  • the thickness of the electron injection layer 520 may be 0.5-2 nm.
  • the display panel further includes an entire hole injection layer 730 located between the light-emitting layer and the reflective electrode of each light-emitting unit, that is, the light-emitting layer located on each light-emitting unit is away from the common electrode layer 123.
  • the hole injection layer 730 on the side may be a film layer shared by each light-emitting unit.
  • the hole injection layer 730 is configured to reduce the hole injection barrier and improve hole injection efficiency.
  • the material of the hole injection layer 730 may include 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HATCN), phthalene Copper (CuPc) and so on.
  • the hole injection layer 730 may be a single-layer film made of the above-mentioned materials. But not limited to this.
  • the hole injection layer 730 may also be prepared by p-type doping.
  • the material of the hole injection layer 730 may include N,N'-bis(1-naphthyl)-N, 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanoquinone doped with N'-diphenyl-1,1'-diphenyl-4,4'-diamine -Dimethane (NPB:F4TCNQ) or 4,4'-cyclohexylbis[N,N-bis(4-methylphenyl)aniline] doped with molybdenum trioxide (APC:MoO 3 ), etc.
  • the concentration of the hole injection layer 730 for p-type doping may be 0.5%-10%.
  • the thickness of the hole injection layer 730 may be 5-20 nm.
  • the display panel further includes an entire first hole transport layer 710 located between the blue light emitting layer 210 and the fourth electrode 230, that is, each light emitting unit shares the first hole transport layer 710.
  • the hole injection layer 730 is located on the side of the first hole transport layer 710 away from the common electrode layer 123.
  • the material of the first hole transport layer 710 may include a carbazole-based material.
  • the highest occupied orbital (HOMO) energy level of the molecules of the first hole transport layer 710 ranges from -5.5 eV to -5.9 eV.
  • the thickness of the first hole transport layer 710 may be 0-10 nm. When the thickness of the first hole transport layer 710 is 0, it means that the film layer is not provided.
  • a second hole transport layer 720 may be provided between the first hole transport layer 710 and the hole injection layer 730.
  • the embodiments of the present disclosure are not limited to this, and the second hole transport layer may not be provided between the first hole transport layer and the hole injection layer, that is, the first hole transport layer may be in contact with the hole injection layer.
  • the material of the second hole transport layer 720 may include a carbazole-based material having a higher hole mobility.
  • the thickness of the second hole transport layer 720 may be 100 ⁇ 140 nm.
  • the highest occupied orbital (HOMO) energy level of the molecules of the second hole transport layer 720 ranges from -5.2 eV to -5.6 eV.
  • the difference between the highest occupied molecular orbital energy level of the molecules of the material of the first hole transport layer 710 and the highest occupied molecular orbital energy level of the molecules of the material of the second hole transport layer is less than 0.3 eV to reduce the hole transport potential Therefore, the life span of each light-emitting unit can be increased, and the value of the voltage applied to each light-emitting unit can be reduced, thereby reducing power consumption.
  • the first light emitting unit 100 further includes a first electron blocking layer 150 located between the red light emitting layer 110 and the first hole transport layer 710, for blocking the first hole transport layer 710 and The electrons between the red light emitting layers 110 enter the red light emitting layer 110.
  • a first electron blocking layer 150 located between the red light emitting layer 110 and the first hole transport layer 710, for blocking the first hole transport layer 710 and The electrons between the red light emitting layers 110 enter the red light emitting layer 110.
  • the thickness of the first electron blocking layer 150 may be 40-60 nm.
  • the difference between the highest occupied molecular orbital energy level of the material of the hole injection layer 730 and the highest occupied molecular orbital energy of the material of the first electron blocking layer 150 is less than 0.3 eV to reduce the hole injection barrier.
  • the third light emitting unit 300 further includes a second electron blocking layer 350 located between the green light emitting layer 310 and the first hole transport layer 710, for blocking the first hole transport layer 710 from The electrons between the green light emitting layer 310 enter the green light emitting layer 310.
  • a second electron blocking layer 350 located between the green light emitting layer 310 and the first hole transport layer 710, for blocking the first hole transport layer 710 from The electrons between the green light emitting layer 310 enter the green light emitting layer 310.
  • the thickness of the second electron blocking layer 350 may be 15-30 nm.
  • the difference between the highest occupied molecular orbital energy level of the material of the hole injection layer 730 and the highest occupied molecular orbital energy of the material of the second electron blocking layer 350 is less than 0.3 eV to reduce the hole injection barrier.
  • the first hole transport layer 710 may be in contact with the first electron blocking layer 150 and the second electron blocking layer 350 to reduce holes from the second hole transport layer 720 to the first electron blocking layer 150 and the second electron blocking layer. 350 injection barrier.
  • each film layer included in the second cavity structure 240 of the second light-emitting unit 200 is an entire film layer, while the first cavity structure 140 and the third light-emitting unit 100 of the first light-emitting unit 100
  • the third cavity adjustment structure 340 of the unit 300 includes each film layer included in the second cavity adjustment structure 240, and each film layer included in the second cavity adjustment structure 240 may be a common layer of each light-emitting unit.
  • the second cavity adjustment structure 240 may include a hole injection layer 730, a second hole transport layer 720, a first hole transport layer 710, a second light emitting layer 210, an electron transport layer 510, and an electron injection layer 520.
  • the optical thickness of each film layer included in the second cavity adjustment structure 240 should be determined first.
  • the thickness of the first hole transport layer 710 and the second hole transport layer 720 can be adjusted to adjust the cavity length of the second cavity structure 240.
  • the sum of the optical thicknesses of the electron injection layer 520, the electron transport layer 510, the blue light emitting layer 210, the first hole transport layer 710, the second hole transport layer 720, and the hole injection layer 730 in the second light emitting unit 200 Is the cavity length of the second cavity adjustment structure 240.
  • the first cavity adjustment structure 140 also includes the red light emitting layer 110 and the first electron blocking layer 150.
  • the cavity length of the first cavity adjustment structure 140 and the second The cavity length difference of the cavity adjustment structure 240 is the sum of the optical thicknesses of the red light emitting layer 110 and the first electron blocking layer 150. Therefore, after the cavity length of the second cavity adjustment structure 240 is determined, the geometric thickness of at least one of the red light emitting layer 110 and the first electron blocking layer 150 is adjusted to adjust the cavity length satisfied by the first cavity adjustment structure 140 .
  • the third cavity adjustment structure 340 includes the green light emitting layer 310 and the second electron blocking layer 350 in addition to the film layers in the second cavity adjustment structure 240.
  • the cavity length of the third cavity adjustment structure 340 is The difference between the cavity length and the cavity length of the second cavity adjustment structure 240 is the sum of the optical thicknesses of the green light emitting layer 310 and the second electron blocking layer 350. Therefore, after the cavity length of the second cavity adjustment structure 240 is determined, the geometric thickness of at least one of the green light emitting layer 310 and the second electron blocking layer 350 is adjusted to adjust the cavity length satisfied by the third cavity adjustment structure 340 .
  • the red light emitting layer 110, the first electron blocking layer 150, the green light emitting layer 310, and the second electron blocking layer 350 may be formed first, and then the continuous film layer 400 may be formed.
  • the formed continuous film layer 400 is conformal formed on the red light emitting layer 110 and the green light emitting layer 310 with different thicknesses.
  • the thickness of the continuous film layer 400 in each light-emitting unit is the same, because the red light-emitting layer 110 and the red light-emitting layer 110 included between the continuous film layer 400 and the first hole transport layer 710 in the first light-emitting unit
  • the thickness of the first electron blocking layer 150 is different from the thickness of the green light emitting layer 310 and the second electron blocking layer 350 included between the continuous film layer 400 and the first hole transport layer 710 in the third light emitting unit, and There is no other film layer between the blue light emitting layer 210 and the first hole transport layer 710 in the second light emitting unit 200, so that the distances between the continuous film layer 400 included in different light emitting units and the respective reflective electrodes are different.
  • the other entire layers of the continuous film layer 400 on the side away from the fourth electrode 230 are also formed conformally.
  • the red light emitting layer 110 may include a red light emitting host material and a red light emitting guest material.
  • the red light emitting host material may include aromatic polyamine materials or aromatic compounds and other materials, such as NPB ("N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1 '-Diphenyl-4,4'-diamine), aluminum quinolinol, etc.
  • the red light emitting host material may include a single host, or a double host formed by blending a hole-type host and an electron-type host.
  • the red light emitting guest material may include various iridium (Ir) or platinum (Pt) complexes, and the doping ratio of the guest material may be in the range of 2% to 5%.
  • the thickness of the red light emitting layer 110 may be 25-40 nm.
  • the green light emitting layer 310 may include a green light emitting host material and a green light emitting guest material.
  • the green light emitting host material may include a single host, or may include a double host formed by a blend of a hole-type host and an electron-type host.
  • the green light-emitting guest material may include various iridium (Ir) or platinum (Pt)-based complexes, and the doping ratio of the guest material may be in the range of 2% to 5%.
  • the ratio of the light-emitting guest material in the green light-emitting layer 310 is less than 10%.
  • Table 1 shows a schematic diagram of the relationship between the ratio of the light-emitting guest material in the green light-emitting layer and the voltage, luminous efficiency, and lifetime required by the third light-emitting unit.
  • Table 1 shows a schematic diagram of the relationship between the ratio of the light-emitting guest material in the green light-emitting layer and the voltage, luminous efficiency, and lifetime required by the third light-emitting unit.
  • Table 1 shows a schematic diagram of the relationship between the ratio of the light-emitting guest material in the green light-emitting layer and the voltage, luminous efficiency, and lifetime required by the third light-emitting unit.
  • the proportion of the light-emitting guest material doped in the light-emitting host material the more the carriers in the light-emitting layer tend to be balanced, and the longer the lifetime of the green light-emitting unit.
  • the proportion of its doped guest material should be less than 10%.
  • FIG. 2 is a schematic diagram of a partial structure of a display panel provided according to another embodiment of the present disclosure. As shown in FIG. 2, the difference between this embodiment and the embodiment shown in FIG. 1 is that the display panel further includes a connection layer 600 located on the side of the continuous film layer 400 away from the common electrode layer 123, and the first part of the connection layer 600 Located between the blue light emitting layer 210 and the fourth electrode 230, the blue light emitting layer 210 blocks electrons.
  • the first part of the connection layer 600 may be in contact with the surface of the blue light emitting layer 210.
  • connection layer 600 is located between the continuous film layer 400 and the first hole transport layer 710, and both sides of the connection layer 600 are connected to the continuous film layer 400 and the first hole transport layer 710, respectively.
  • Surface contact Since the connection layer 600 is located between the blue light emitting layer 210 and the first hole transport layer 710, for the blue light emitting layer 210, the connection layer 600 can have both hole transport and electron blocking effects.
  • the material of the connection layer 600 may include anthracene derivatives or fluorene derivatives.
  • the light-emitting host material of the blue light-emitting layer 210 may be the same as or different from the material of the connection layer 600.
  • the difference between the highest occupied molecular orbital level (HOMO) of the material of the connection layer 600 and the highest occupied molecular orbital level of the material of the first hole transport layer 710 is not more than 0.3 eV .
  • Table 2 shows the relationship between the difference in the highest occupied molecular orbital level (HOMO) of molecules between the connection layer and the first hole transport layer and the voltage, luminous efficiency, and lifetime required by the second light-emitting unit.
  • the energy level difference between the highest occupied molecular orbital between the connecting layer and the first hole transport layer is small (for example, not greater than 0.3 eV)
  • the potential barrier at the interface between the two can be reduced to reduce the accumulation of carriers, thereby Improve the life of the blue light emitting unit. Therefore, in order to ensure the lifetime of the blue light emitting unit, the difference between the highest occupied molecular orbital energy levels of the connection layer and the first hole transport layer is set to be not more than 0.3 eV.
  • the second part of the connection layer 600 is located between the red light emitting layer 110 and the common electrode layer 123 to transmit electrons to the red light emitting layer 110.
  • the second part of the connection layer 600 may be in contact with the surface of the red light emitting layer 110.
  • connection layer 600 Since the connection layer 600 is located between the electron transport layer 510 and the red light emitting layer 110, the connection layer 600 needs to play a better role in transporting electrons to the red light emitting layer 110.
  • connection layer 600 can not only transport electrons to the red light emitting layer 110, but also block holes.
  • connection layer 600 may be located between the red light emitting layer 110 and the continuous film layer 400, and both sides of the connection layer 600 are in contact with the red light emitting layer 110 and the continuous film layer 400, respectively.
  • connection layer 600 is located between the green light emitting layer 310 and the common electrode layer 123 to transmit electrons to the green light emitting layer 310.
  • connection layer 600 may be in contact with the surface of the green light emitting layer 310.
  • connection layer 600 Since the connection layer 600 is located between the electron transport layer 510 and the green light emitting layer 310, the connection layer 600 needs to play a better role in transporting electrons to the green light emitting layer 310.
  • connection layer 600 may not only transport electrons to the green light emitting layer 310, but also block holes.
  • connection layer 600 may be located between the green light emitting layer 310 and the continuous film layer 400, and both sides of the connection layer 600 are in contact with the green light emitting layer 310 and the continuous film layer 400, respectively.
  • connection layer provided by the embodiments of the present disclosure is to improve the characteristics of the blue light emitting unit, but the characteristics of the red light emitting unit and the green light emitting unit must also be taken into consideration. Therefore, while the material of the connection layer functions to block electrons and transport holes for the blue light-emitting layer, it also needs to function for the red light-emitting layer and the green light-emitting layer to transport electrons.
  • the thickness of the connection layer 600 is not more than 4 nm.
  • Table 3 shows a schematic diagram of the relationship between the thickness of the connecting layer and the voltage, luminous efficiency, and lifetime required by the red light emitting unit and the green light emitting unit.
  • Table 3 taking the thickness of the connecting layer as a reference of 4nm, when the current density remains unchanged, as the thickness of the connecting layer decreases, the lifetimes of both the red light emitting unit and the green light emitting unit increase, and It has little effect on the required voltage and efficiency of each light-emitting unit.
  • the thickness of the connection layer is not greater than 4 nm, the carrier transmission between the connection layer and the light-emitting layer is more efficient, which can reduce the impact on the life of the red light-emitting unit and the green light-emitting unit.
  • the difference between the lowest unoccupied orbital energy level of the molecules of the luminescent host material of the red light emitting layer 110 and the lowest unoccupied orbital energy level of the molecules of the connection layer 600 is less than 0.5 eV, so that The electrons are more efficiently transferred to the red light emitting layer to improve the efficiency of the red light emitting unit and reduce its power consumption.
  • the energy level of the material of the connection layer needs to be matched with the energy level of the material of the red light emitting layer to ensure that the efficiency of the red light emitting unit is not affected.
  • the difference between the lowest unoccupied orbital energy level of the molecules of the luminescent host material of the red light emitting layer and the lowest unoccupied orbital energy level of the molecules of the connecting layer is less than 0.5 eV, It can be ensured that the efficiency of the red light emitting unit is not affected.
  • the difference between the lowest unoccupied orbital energy level of the molecules of the luminescent host material of the red light emitting layer and the lowest unoccupied orbital energy level of the molecules of the material of the connection layer may be no more than 0.3 eV.
  • the lowest unoccupied orbital energy level of the molecules of the light emitting host material of the red light emitting layer 110 is the lowest unoccupied orbital energy level of the molecules of the single host material .
  • the lowest unoccupied orbital energy level of the molecules of the light emitting host material of the red light emitting layer 110 is the lowest unoccupied molecule of the electronic host material in the dual host Orbital energy level.
  • the difference between the lowest unoccupied orbital energy level of the molecules of the luminescent host material of the green light emitting layer 310 and the lowest unoccupied orbital energy level of the molecules of the connection layer 600 is less than 0.5 eV, so that The electrons are more efficiently transferred to the green light emitting layer to improve the efficiency of the green light emitting unit and reduce its power consumption.
  • the energy level of the material of the connection layer needs to be matched with the energy level of the material of the green light emitting layer to ensure that the efficiency of the green light emitting unit is not affected.
  • the difference between the lowest unoccupied orbital energy level of the molecules of the luminescent host material of the green light-emitting layer and the lowest unoccupied orbital energy level of the molecules of the connecting layer is less than 0.5 eV, It can be ensured that the efficiency of the green light emitting unit is not affected.
  • the difference between the lowest unoccupied orbital energy level of the molecules of the light-emitting host material of the green light emitting layer and the lowest unoccupied orbital energy level of the molecules of the material of the connection layer may not be more than 0.3 eV.
  • the lowest unoccupied orbital energy level of the molecules of the light emitting host material of the green light emitting layer 310 is the lowest unoccupied orbital energy level of the molecules of the single host material.
  • the lowest unoccupied orbital energy level of the molecules of the light emitting host material of the green light emitting layer 310 is the lowest unoccupied molecule of the electronic host material in the double host. Orbital energy level.
  • each film layer included in the second cavity structure 240 of the second light-emitting unit 200 is an entire film layer, and the first cavity structure 140 and the third light-emitting unit 100 of the first light-emitting unit 100
  • the third cavity adjustment structure 340 of the unit 300 includes each film layer included in the second cavity adjustment structure 240, and each film layer included in the second cavity adjustment structure 240 may be a common layer of each light-emitting unit.
  • the second cavity adjustment structure 240 may include a hole injection layer 730, a second hole transport layer 720, a first hole transport layer 710, a connection layer 600, a second light emitting layer 210, an electron transport layer 510, and an electron injection layer 520.
  • the optical thickness of each film layer included in the second cavity adjustment structure 240 should be determined first.
  • the thickness of the first hole transport layer 710 and the second hole transport layer 720 can be adjusted to adjust the cavity length of the second cavity structure 240.
  • the sum of the optical thicknesses of the electron injection layer 520, the electron transport layer 510, the blue light emitting layer 210, the first hole transport layer 710, the second hole transport layer 720, and the hole injection layer 730 in the second light emitting unit 200 Is the cavity length of the second cavity adjustment structure 240.
  • the first cavity adjustment structure 140 also includes the red light emitting layer 110 and the first electron blocking layer 150.
  • the cavity length of the first cavity adjustment structure 140 and the second The cavity length difference of the cavity adjustment structure 240 is the sum of the optical thicknesses of the red light emitting layer 110 and the first electron blocking layer 150. Therefore, after the cavity length of the second cavity adjustment structure 240 is determined, the geometric thickness of at least one of the red light emitting layer 110 and the first electron blocking layer 150 is adjusted to adjust the cavity length satisfied by the first cavity adjustment structure 140 .
  • the third cavity adjustment structure 340 includes the green light emitting layer 310 and the second electron blocking layer 350 in addition to the film layers in the second cavity adjustment structure 240.
  • the cavity length of the third cavity adjustment structure 340 is The difference between the cavity length and the cavity length of the second cavity adjustment structure 240 is the sum of the optical thicknesses of the green light emitting layer 310 and the second electron blocking layer 350. Therefore, after the cavity length of the second cavity adjustment structure 240 is determined, the geometric thickness of at least one of the green light emitting layer 310 and the second electron blocking layer 350 is adjusted to adjust the cavity length satisfied by the third cavity adjustment structure 340 .
  • FIG. 3 is a schematic diagram of a partial structure of a display panel provided according to another embodiment of the present disclosure.
  • the difference between this embodiment and the embodiment shown in FIG. 1 is that the display panel further includes a hole blocking layer 800, which is located between the electron transport layer 510 and the continuous film layer 400 and interacts with electrons.
  • the transmission layer 510 is in contact.
  • This embodiment takes the connection layer 600 in the embodiment shown in FIG. 2 as an example, and the connection layer 600 has the same material, position, and function as the connection layer in the embodiment shown in FIG. Go into details.
  • the embodiment of the present disclosure is not limited to this, and this implementation may not include the connection layer in the embodiment shown in FIG. 2.
  • the difference between the highest occupied molecular orbital energy level of the molecules of the hole blocking layer 800 and the highest occupied molecular orbital energy level of the molecules of the light-emitting host material of the blue light emitting layer 210 is not less than 0.3 eV.
  • the difference between the lowest unoccupied orbital energy level of the molecule of the hole blocking layer 800 and the lowest unoccupied orbital energy level of the material of the blue light emitting layer 210 is less than 0.3 eV to improve electron injection.
  • the efficiency of the red light emitting layer 110 and the green light emitting layer 310 the efficiency of the red light emitting unit and the green light emitting unit are further improved, and the power consumption of the two color light emitting units is reduced.
  • Table 4 shows the comparison of the voltage, efficiency, and lifetime of each light-emitting unit when a hole blocking layer is provided in the display panel and when the hole blocking layer is not provided.
  • Table 4 based on the voltage, efficiency, and lifetime required by each light-emitting unit when the display panel is not provided with a hole-blocking layer, the display panel is provided with a hole-blocking layer when the current density remains unchanged. Later, the efficiency of each light-emitting unit can be improved, and the power consumption of each light-emitting unit can be reduced, but the service life of the red light-emitting unit and the green light-emitting unit will be affected. Therefore, in actual products, it is possible to determine whether to provide a hole blocking layer according to the power consumption, efficiency, and lifetime requirements of each light-emitting unit.
  • the continuous film layer where the blue light-emitting layer in the display panel provided by the embodiment of the present disclosure is located can be a film layer that overlaps at least one of the green light-emitting layer and the red light-emitting layer, thereby saving a step of using a fine metal mask.
  • the process saves material costs and can increase the production capacity of products.
  • the equipment used for mass production of display panels and the mass production process of the display panels are compatible with the equipment and processes for making general display panels (using fine metal masks to make blue light emitting layers), thereby Can save process cost.
  • each film layer included in the second cavity structure 240 of the second light-emitting unit 200 is an entire film layer, while the first cavity structure 140 and the third light-emitting unit 100 of the first light-emitting unit 100
  • the third cavity adjustment structure 340 of the unit 300 includes each film layer included in the second cavity adjustment structure 240, and each film layer included in the second cavity adjustment structure 240 may be a common layer of each light-emitting unit.
  • the second cavity adjustment structure 240 may include a hole injection layer 730, a second hole transport layer 720, a first hole transport layer 710, a connection layer 600, a second light-emitting layer 210, a hole blocking layer 800, and an electron transport layer.
  • the optical thickness of each film layer included in the second cavity adjustment structure 240 should be determined first.
  • the thickness of the first hole transport layer 710 and the second hole transport layer 720 can be adjusted to adjust the cavity length of the second cavity structure 240.
  • the sum of the optical thicknesses of the electron injection layer 520, the electron transport layer 510, the blue light emitting layer 210, the first hole transport layer 710, the second hole transport layer 720, and the hole injection layer 730 in the second light emitting unit 200 Is the cavity length of the second cavity adjustment structure 240.
  • the first cavity adjustment structure 140 also includes the red light emitting layer 110 and the first electron blocking layer 150.
  • the cavity length of the first cavity adjustment structure 140 and the second The cavity length difference of the cavity adjustment structure 240 is the sum of the optical thicknesses of the red light emitting layer 110 and the first electron blocking layer 150. Therefore, after the cavity length of the second cavity adjustment structure 240 is determined, the geometric thickness of at least one of the red light emitting layer 110 and the first electron blocking layer 150 is adjusted to adjust the cavity length satisfied by the first cavity adjustment structure 140 .
  • the third cavity adjustment structure 340 includes the green light emitting layer 310 and the second electron blocking layer 350 in addition to the film layers in the second cavity adjustment structure 240.
  • the cavity length of the third cavity adjustment structure 340 is The difference between the cavity length and the cavity length of the second cavity adjustment structure 240 is the sum of the optical thicknesses of the green light emitting layer 310 and the second electron blocking layer 350. Therefore, after the cavity length of the second cavity adjustment structure 240 is determined, the geometric thickness of at least one of the green light emitting layer 310 and the second electron blocking layer 350 is adjusted to adjust the cavity length satisfied by the third cavity adjustment structure 340 .
  • the connection layer 600 may not be included, and the second cavity-adjusting structure 240 may include a hole injection layer 730, a second hole transport layer 720, and a first hole.
  • the second cavity adjustment structure may also only include at least one of the above-mentioned second hole transport layer 720, the first hole transport layer 710, and the electron transport layer 510.
  • Another embodiment of the present disclosure provides an organic light emitting diode display device, including the display panel provided in any of the above embodiments.
  • the second light-emitting layer of the second light-emitting unit is a part of the continuous film layer, which can save the fine metal mask for making the second light-emitting layer, which can save cost and To accurately align the process and avoid other defects, improve productivity.
  • the thickness of the film layer (such as the thickness of the connection layer) in each light-emitting unit in the organic light-emitting diode display device, the lifespan of the red light-emitting unit and the green light-emitting unit can be increased, and the work can be reduced. Consumption.
  • the difference between the highest occupied molecular orbital energy levels of the molecules between some film layers in the organic light emitting diode display device is adjusted, for example, the highest occupied molecules of the molecules in the connection layer and the first hole transport layer are adjusted. Adjusting the difference in orbital energy levels can improve the efficiency and lifetime of the blue light emitting unit; for example, adjusting the difference in the highest occupied molecular orbital energy levels of the molecules in the hole injection layer, the first electron blocking layer and the second electron blocking layer , Can improve the life of the red light emitting unit and the green light emitting unit.
  • the difference between the lowest unoccupied orbital energy levels of the molecules between some film layers in the organic light emitting diode display device is adjusted, for example, the lowest unoccupied molecules of the blue light emitting layer and the hole blocking layer are adjusted.
  • the efficiency of the light-emitting unit and the green light-emitting unit, and the reduction of power consumption; for example, the light-emitting host material of the red light-emitting layer and the light-emitting host material of the green light-emitting layer and the material of the connecting layer are less than the lowest unoccupied orbital energy level.
  • the poor adjustment can make the concentration of electrons transferred to the red light emitting layer and the green light emitting layer higher, so as to improve the efficiency of the red light emitting unit and the green light emitting unit, and reduce the power consumption of both.
  • the life span of the green light emitting unit can be increased.
  • Another embodiment of the present disclosure provides a manufacturing method of a display panel.
  • the manufacturing method provided by the embodiment of the present disclosure is a manufacturing method of the display panel provided in any of the embodiments shown in FIGS. 1-3, and the manufacturing method provided in this embodiment
  • the shape, position, and material of each film layer produced by the manufacturing method are the same as the shape, position, and material of each film layer in the display panel provided by the embodiment shown in FIGS.
  • the manufacturing method of the display panel includes the following steps.
  • S1 Use a fine metal mask as a mask to form a patterned first light-emitting material layer to form the first light-emitting layer in the first light-emitting unit.
  • the display panel shown in FIG. 1 before forming the first luminescent material layer, it further includes sequentially forming a second electrode 130, a hole injection layer 730, a second hole transport layer 720, and a first hole transport layer. Layer 710 and the first electron blocking layer 150.
  • the fourth electrode 230 and the sixth electrode 330 may be formed at the same time as the second electrode 130 is formed.
  • the material and thickness of the second electrode 130, the fourth electrode 230, and the sixth electrode 330 may all be the same, that is, the second electrode 130, the fourth electrode 230, and the sixth electrode 330 may be formed by a one-step patterning process.
  • the second electron blocking layer 350 may also be formed at the same time as the first electron blocking layer 150 is formed.
  • a half-tone mask process may be used to form the first electron blocking layer 150 and the second electron blocking layer 350 having different thicknesses.
  • the first luminescent material layer may be vapor-deposited on the side of the first electron blocking layer 150 away from the first hole transport layer 710 using a fine metal mask as a mask. Since the fine metal mask includes a plurality of small-sized openings, the vapor-deposited first light-emitting material layer is formed into a plurality of first light-emitting layers 110 separated from each other.
  • S2 forming a second luminescent material layer using an open mask to form a second luminescent layer, wherein the second luminescent material layer is a continuous film layer, and the first part of the continuous film layer is the second luminescent layer in the second light-emitting unit.
  • the second light-emitting material layer may further include forming a third light-emitting layer 310 on the side of the second electron blocking layer 350 away from the first hole transport layer 710.
  • a fine metal mask can be used as a mask to vaporize and form the third light-emitting layer 310 of the third light-emitting unit 300.
  • forming the second luminescent material layer may include forming the second luminescent material layer using an open mask to form a continuous film layer 400.
  • the opening mask here refers to only one opening, and the film layer formed by vapor deposition using the opening mask is a whole continuous film layer, rather than a plurality of separated film layers.
  • the blue light-emitting layer is directly formed by using an opening mask instead of a fine metal mask, thereby saving a step of using a fine metal mask, which can save cost, and can save precise alignment process and avoid other Bad, increase production capacity.
  • an electron transport layer 510, an electron injection layer 520, and a common electrode layer 123 may be sequentially formed on the side of the blue light emitting layer 210 away from the first hole transport layer 710.
  • the light outcoupling layer 910 and the thin film encapsulation layer 920 may be sequentially formed on the side of the blue light emitting layer 210 away from the first hole transport layer 710.
  • the connecting layer 600 may also be formed on the side of the red light emitting layer 110 and the green light emitting layer 310 away from the first hole transport layer 710.
  • the blue light emitting layer 210 is formed on the side of the connecting layer 600 away from the first hole transport layer 710.
  • a hole blocking layer 800 may be formed on the side of the blue light emitting layer 210 away from the first hole transport layer 710.
  • the above-mentioned electron transport layer 510 may be formed on the side of the hole blocking layer 800 away from the blue light emitting layer 210.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板及其制作方法、以及有机发光二极管显示装置。显示面板包括阵列排布的第一发光单元(100)和第二发光单元(200)。第一发光单元(100)包括第一发光层(110),显示面板包括连续膜层(400),连续膜层(400)的第一部分(410)位于第二发光单元(200)内以作为第二发光单元(200)的第二发光层(210),连续膜层(400)的第二部分(420)与第一发光层(110)交叠。本公开实施例提供的显示面板中,第二发光单元的第二发光层为连续膜层中的一部分,可以节省制作第二发光层的精细金属掩模板。

Description

显示面板及其制作方法、以及有机发光二极管显示装置 技术领域
本公开至少一个实施例涉及一种显示面板及其制作方法、以及有机发光二极管显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示器可以为包括具有彩色滤光薄膜的显示器或者采用微腔共振效应的显示器等。采用微腔共振效应的显示器包括半透明半反射的电极以及反射电极,通过调节半透明半反射的电极与反射电极之间的介质层的光学厚度可以满足显示器的高色域需求。
发明内容
本公开实施例提供一种显示面板及其制作方法、以及有机发光二极管显示装置。
本公开至少一实施例提供一种显示面板,包括:阵列排布的第一发光单元和第二发光单元。所述第一发光单元包括第一发光层,所述显示面板包括连续膜层,所述连续膜层的第一部分位于所述第二发光单元内以作为所述第二发光单元的第二发光层,所述连续膜层的第二部分与所述第一发光层交叠。
在一些示例中,显示面板还包括:第三发光单元,所述第三发光单元包括第三发光层。所述第一发光单元、所述第二发光单元与所述第三发光单元阵列排布,且所述连续膜层的第三部分与所述第三发光层交叠。
在一些示例中,所述第一发光层、所述第二发光层以及所述第三发光层分别为发射不同颜色光的发光层。
在一些示例中,所述第一发光单元包括位于所述第一发光层和所述连续膜层两侧的第一电极和第二电极;所述第二发光单元包括位于所述连续膜层两侧的第三电极和第四电极;所述第三发光单元包括位于所述第三发光层和所述连续膜层两侧的第五电极和第六电极,所述第一电极、所述第三电极以及所述第五电极为一公共电极层以使所述第一发光单元、所述第二发光单元以及所述第三发光单元共用该公共电极层,所述第二电极、所述第四电极和所述第六电极彼此分隔设置,且各所述发光单元包括的两个所述电极之一为反射电极,另一 个为半透半反电极。
在一些示例中,所述公共电极层为阴极,且为半透半反电极;所述第二电极、所述第四电极和所述第六电极为彼此分立的阳极,且所述阳极为反射电极。
在一些示例中,所述第三发光层和所述第一发光层位于所述连续膜层的同侧。
在一些示例中,所述第一发光层和所述第三发光层位于所述连续膜层远离所述公共电极层的一侧,且所述连续膜层的材料的电子迁移率不低于1*10 -7cm 2/Vs。
在一些示例中,所述连续膜层的所述第二部分和所述第三部分分别与所述第一发光层和所述第三发光层的表面接触,且所述连续膜层的所述第二部分和所述第三部分分别被配置为所述第一发光层和所述第三发光层传输电子。
在一些示例中,显示面板包括:连接层,位于所述连续膜层远离所述公共电极层的一侧。所述连接层的第一部分位于所述第二发光层与第四电极之间,且与所述第二发光层的表面接触以为所述第二发光层传输空穴;所述连接层的第二部分位于所述第一发光层与所述公共电极层之间,且与所述第一发光层的表面接触以为所述第一发光层传输电子;所述连接层的第三部分位于所述第三发光层与所述公共电极层之间,且与所述第三发光层的表面接触以为所述第三发光层传输电子。
在一些示例中,所述第一发光层的发光主体材料的分子最低未被占据轨道能级与所述连接层的材料的分子最低未被占据轨道能级之差小于0.5eV;所述第三发光层的发光主体材料的分子最低未被占据轨道能级与所述连接层的材料的分子最低未被占据轨道能级之差小于0.5eV。
在一些示例中,位于所述第一电极和所述第二电极之间的膜层形成为第一调腔结构,所述第一调腔结构被配置为调节腔长以发射红光;位于所述第三电极与所述第四电极之间的膜层形成第二调腔结构,所述第二调腔结构被配置为调节腔长以发射蓝光;位于所述第五电极与所述第六电极之间的膜层形成为第三调腔结构,所述第三调腔结构被配置为调节腔长以发射绿光。
在一些示例中,显示面板包括:第一电子阻挡层,位于所述第一发光层与所述第二电极之间;第二电子阻挡层,位于所述第三发光层与所述第六电极之间。所述第一调腔结构的腔长与所述第二调腔结构的腔长之差为所述第一发光层与所述第一电子阻挡层的光学厚度之和,所述第三调腔结构的腔长与所述第 二调腔结构的腔长之差为所述第三发光层与所述第二电子阻挡层的光学厚度之和。
在一些示例中,显示面板包括:电子注入层,位于所述连续膜层与所述公共电极层之间;空穴注入层,位于所述第一发光层和所述第三发光层远离所述公共电极的一侧。所述第一调腔结构包括所述空穴注入层、所述第一电子阻挡层、所述第一发光层、所述连接层、所述连续膜层以及所述电子注入层;所述第二调腔结构包括所述空穴注入层、所述连接层、所述连续膜层以及所述电子注入层;所述第三调腔结构包括所述空穴注入层、所述第二电子阻挡层、所述第三发光层、所述连接层、所述连续膜层以及所述电子注入层。
在一些示例中,显示面板包括:传输层,所述传输层包括电子传输层、第一空穴传输层以及第二空穴传输层的至少之一;所述电子传输层位于所述连续膜层与所述公共电极层之间;所述第一空穴传输层位于所述第一发光层、所述第三发光层和所述第二发光层远离所述公共电极的一侧,所述连接层的所述第一部分与所述第一空穴传输层接触;所述第二空穴传输层位于所述第一空穴传输层远离所述连续膜层的一侧。所述第一调腔结构还包括所述传输层,且所述传输层为所述第一调腔结构、所述第二调腔结构和所述第三调腔结构的共用膜层。
在一些示例中,显示面板包括:空穴阻挡层,位于所述电子注入层与所述连续膜层之间,且与所述连续膜层接触。所述第一调腔结构、所述第二调腔结构以及所述第三调腔结构均包括所述空穴阻挡层。
在一些示例中,所述第一发光层为红光发光层,所述第二发光层为蓝光发光层,所述第三发光层为绿光发光层。
在一些示例中,所述绿光发光层中的发光客体材料的比例低于10%。
本公开至少一实施例提供一种有机发光二极管显示装置,包括上述显示面板。
本公开至少一实施例提供一种制作上述显示面板的制作方法,包括:采用精细金属掩模板为掩模形成图案化的第一发光材料层以形成所述第一发光单元中的所述第一发光层;以及采用开口掩模板形成第二发光材料层以形成所述第二发光层。所述第二发光材料层为所述连续膜层,且所述连续膜层的所述第一部分为所述第二发光单元中的所述第二发光层。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开一实施例提供的显示面板的局部结构示意图;
图2为根据本公开另一实施例提供的显示面板的局部结构示意图;以及
图3为根据本公开另一实施例提供的显示面板的局部结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
一般,可以通过微腔共振效应实现有机发光二极管显示器的高色域需求,也就是,通过调整反射电极与半透半反电极之间的介质层光学厚度,可以使从发光层发出的光子在反射电极和半透半反电极之间互相干扰,造成建设性或是破坏性干涉,产生建设性干涉的光受到增强后会从半透半反电极透射出去以实现特定波长光的出射,进而满足高色域需求。
在研究中,本申请的发明人发现:有机发光二极管显示器包括红色子像素、绿色子像素以及蓝色子像素,在分别制备各颜色子像素的发光层的过程中需要使用精细金属掩模板(FMM)。采用精细金属掩模板制备各颜色子像素发光层时,对位精度要求较高,制备成本较高,且容易出现各种不良。
本公开的实施例提供一种显示面板及其制作方法、以及有机发光二极管显示装置。显示面板包括阵列排布的第一发光单元和第二发光单元。第一发光单 元包括第一发光层,显示面板包括连续膜层,连续膜层的第一部分位于第二发光单元内以作为第二发光单元的第二发光层,连续膜层的第二部分与第一发光层交叠。本公开实施例提供的显示面板中,连续膜层与第一发光层交叠,第二发光单元的第二发光层为连续膜层的一部分,可以节省制作第二发光层的精细金属掩模板。
下面结合附图对本公开实施例提供的显示面板及其制作方法、以及有机发光二极管显示装置进行描述。
图1为根据本公开一实施例提供的显示面板的局部结构示意图。如图1所示,显示面板包括阵列排布的第一发光单元100和第二发光单元200。第一发光单元100包括第一发光层110,显示面板包括连续膜层400,连续膜层400的第一部分410位于第二发光单元200内以作为第二发光单元200的第二发光层210,连续膜层400的第二部分420与第一发光层110交叠。本公开实施例提供的显示面板中,第二发光单元的第二发光层为连续膜层的一部分,该连续膜层为与第一发光层交叠的膜层,可以节省制作第二发光层的精细金属掩模板,既可以节省成本,又可以省去精确对位过程以及避免其他不良,提高产能。
上述连续膜层400为一整层膜层,该膜层400的各部分的厚度以及材料可以均相同。连续膜层400中位于第二发光单元200内的第一部分为用于发光的部分膜层,即第二发光层210,而连续膜层400的与第一发光层110交叠的部分并不发光,即连续膜层400的位于第二发光单元200以外的部分不用于发光。也可以称上述连续膜层为第二发光层,但该第二发光层中仅位于第二发光单元内的部分用于发光,该第二发光层中位于第二发光单元以外的部分不用于发光。本公开实施例以第二发光层为连续膜层的一部分进行描述。本公开实施例通过制作包括第二发光层的整层的连续膜层,可以节省一步采用精细金属掩模板的工艺,节省成本,提高产能。
例如,第一发光层110的全部与连续膜层400的第二部分420交叠。本实施例中,例如可以采用精细金属掩模板形成彼此分隔的多个第一发光层,而第二发光层所在的连续膜层为由开口掩模板制作的整层的连续膜层,不是多个彼此分隔的膜层,所以包括第二发光层的连续膜层会与彼此分隔的多个第一发光层均交叠,且连续膜层也会与相邻第一发光层之间的间隔交叠。
上述第一发光单元和第二发光单元的数量均为多个,且可以在垂直于图1所示的Y方向的平面内阵列排布。
例如,第一发光单元100与第二发光单元200被配置为发射不同颜色的光。
例如,第一发光单元100可以为红色发光单元或者绿色发光单元,第二发光单元200可以为蓝色发光单元,通过将蓝色发光单元中的蓝色发光层制备成连续膜层,例如整层膜层,有利于提高蓝色发光单元的寿命。
例如,第一发光单元100可以为黄色发光单元,第二发光单元200可以为蓝色发光单元。
例如,第一发光单元100可以为红色发光单元、绿色发光单元或者蓝色发光单元,第二发光单元200可以为红色发光单元、绿色发光单元和蓝色发光单元中的另外两个之一。
例如,如图1所示,显示面板还包括第三发光单元300,第一发光单元100、第二发光单元200与第三发光单元300阵列排布。
例如,第一发光单元100、第二发光单元200以及第三发光单元300的数量均为多个,且可以在垂直于图1所示的Y方向的平面内阵列排布。图1示意性的示出第一发光单元100、第三发光单元300以及第二发光单元200沿X方向排布。
例如,如图1所示,第三发光单元300包括第三发光层310,连续膜层400的第三部分430与第三发光层310交叠,且连续膜层400的第三部分430不用于发光。
例如,如图1所示,本公开实施例示意性的示出第一发光层110可以与第三发光层310没有交叠。
例如,相邻的第一发光单元100与第三发光单元300之间可以设置有具有开口的像素限定层(图中未示出),第一发光层110与第三发光层310均位于像素限定层的开口内,像素限定层用于分隔第一发光层110和第三发光层310。上述连续膜层400既覆盖像素限定层限定的开口,也覆盖相邻开口之间的像素限定层,从而连续膜层400与第一发光层110和第三发光层310均有交叠。上述“相邻的第一发光单元100与第三发光单元300”指第一发光单元100与第三发光单元300之间没有其他发光单元。
例如,第一发光层与第三发光层也可以部分交叠,即第一发光层的边缘可以与第三发光层的边缘交叠。例如,第一发光层与第三发光层交叠的部分可以位于像素限定层上,但上述交叠部分不会影响各发光层发光。
例如,如图1所示,第一发光层110、第二发光层210以及第三发光层310 分别为发射不同颜色光的发光层。
例如,本公开实施例示例性的以第一发光层110为红光发光层,第二发光层210为蓝光发光层,第三发光层310为绿光发光层为例。将蓝光发光层形成为连续膜层的一部分,例如整层膜层的一部分,可以增加蓝光发光层的使用寿命。
例如,本公开实施例不限于此,第一发光层也可以为绿光发光层,第三发光层可以为红光发光层;只要第一发光层、第二发光层以及第三发光层之一为红光发光层、另一个为蓝光发光层、再一个为绿光发光层即可。
例如,如图1所示,第一发光单元100包括位于第一发光层110和连续膜层400两侧的第一电极120和第二电极130,第一电极120和第二电极130被配置为对第一发光层110施加电压以使第一发光层110发光。第二发光单元200包括位于第二发光层210两侧的第三电极220和第四电极230,第三电极220和第四电极230被配置为对第二发光层210施加电压以使第二发光层210发光。第三发光单元300包括位于第三发光层310和连续膜层400两侧的第五电极320和第六电极330,第五电极320和第六电极330被配置为对第三发光层310施加电压以使第三发光层310发光。
例如,第一发光层110发射红光、第二发光层210发射蓝光、第三发光层310发射绿光。
例如,如图1所示,本公开实施例以第一电极120、第三电极220以及第五电极320为一公共电极层123以使第一发光单元100、第二发光单元200以及第三发光单元300共用该公共电极层123为例。也就是,公共电极层123为连续膜层,且公共电极层123位于第一发光单元100的部分为第一电极120,公共电极层123位于第二发光单元200的部分为第三电极220,公共电极层123位于第三发光单元300的部分为第五电极320。当为公共电极层123施加电压时,第一电极120、第三电极220以及第五电极320接收到相同的电压,该公共电极层123被各发光单元共用。本公开实施例不限于此,还可以是第二电极、第四电极以及第六电极为各发光单元共用的公共电极层,第一电极120、第三电极220以及第五电极320为彼此分离的电极。
例如,各发光单元包括的两个电极之一为反射电极,另一个为半透半反电极,且各发光单元中的反射电极、发光层以及半透半反电极的相对位置关系相同。
例如,如图1所示,第一发光单元100中,第一电极120为半透半反电极,第二电极130为反射电极;第二发光单元200中,第三电极220为半透半反电极,第四电极230为反射电极;第三发光单元300中,第五电极320为半透半反电极,第六电极330为反射电极。也就是,沿Y方向的箭头所指的方向,各发光单元中的膜层顺序依次为反射电极、发光层以及半透半反电极。本公开实施例不限于此,例如,沿Y方向的箭头所指的方向,各发光单元中的膜层顺序也可以依次为半透半反电极、发光层以及反射电极。
例如,如图1所示,第二电极130、第四电极230以及第六电极330为独立的电极,各电极通过施加不同电压以实现灰度的调节。
例如,如图1所示,第二电极130虽然与红光发光层110以及连续膜层400均有交叠,但是仅用于使红光发光层110发射的光能够从显示面板出射。同理,第六电极330虽然与绿光发光层310以及连续膜层400均有交叠,但是仅用于使绿光发光层310发射的光能够从显示面板出射。第四电极230仅与蓝光发光层210交叠,且仅用于使蓝光发光层210发光。
例如,如图1所示,第一发光单元100包括的位于第一电极120和第二电极130之间的膜层形成为第一调腔结构140,第一调腔结构140被配置为调节其腔长以发射红光。第一调腔结构140可构成微腔效应结构,位于两电极之间的第一发光层110发射的光会在第一电极120和第二电极130之间发生反射,该反射光与第一发光层110直接发射的光在第一调腔结构140中发生干涉。通过调节第一电极120与第二电极130之间的距离,可使得特定波长的光增强,例如红光增强,而其他波长的光衰弱,以发射特定波长的光,例如红光。
例如,构成微腔效应的两个电极之间包括m层有机层,第i层有机层的折射率为n i,第i层有机层的几何厚度为r i,特定波长的光的波长为λ,则构成微腔效应的两个电极之间的腔长D满足D=n 1*r 1+n 2*r 2+…n m*r m,腔长D与波长λ满足关系式
Figure PCTCN2020072488-appb-000001
k为自然数。上述
Figure PCTCN2020072488-appb-000002
表示反射电极以及半透半反电极引起的相移,k可以取1,表示第一干涉周期。上述腔长指各膜层的几何厚度与折射率乘积后的光学厚度之和,由于各膜层的折射率不变,可以通过调节至少一个膜层的几何厚度来调节腔长。当特定波长光为红光时,λ取值为620nm。
例如,如图1所示,第二发光单元200包括位于第三电极220与第四电极230之间的第二调腔结构240,第二调腔结构240被配置为调节其腔长以发射 蓝光。第二调腔结构240可构成微腔效应结构,通过调节第三电极220与第四电极230之间的至少一个膜层的几何厚度,可以实现发射蓝光,且蓝光波长可取值为460nm,蓝光波长与第二调腔结构的腔长满足上述关系式。
例如,如图1所示,第三发光单元300包括位于第五电极320与第六电极330之间的第三调腔结构340,第三调腔结构340被配置为调节腔长以发射绿光。第三调腔结构340可构成微腔效应结构,通过调节第五电极320与第六电极330之间的至少一个膜层的几何厚度,可以实现发射绿光,且绿光波长可取值为530nm,绿光波长与第三调腔结构的腔长满足上述关系式。
通过上述第一调腔结构、第二调腔结构以及第三调腔结构的腔长的调节可以获得高效率高色纯度的顶发射器件。
例如,如图1所示,绿光发光层310和红光发光层110位于蓝光发光层210的同侧。本公开实施例不限于此,绿光发光层和红光发光层还可以位于蓝光发光层的两侧。本公开实施例以蓝光发光层210所在的连续膜层400位于绿光发光层310与第五电极320之间,且连续膜层400位于红光发光层110与第一电极120之间为例,即,蓝光发光层210所在的连续膜层400位于其他颜色发光层与公共电极层123之间,但不限于此。例如,蓝光发光层所在的连续膜层还可以位于红光发光层与第二电极之间,且上述连续膜层位于绿光发光层与第六电极之间。
例如,如图1所示,显示面板还包括位于连续膜层400与公共电极层123之间的电子传输层510。本公开实施例以公共电极层123为半透半反的阴极为例,则公共阴极与各颜色发光层之间可以设置连续的电子传输层510,即电子传输层510为整层膜层,且各发光单元共用该电子传输层510。
例如,公共电极层123的材料可以为镁(Mg)、银(Ag)、铝(Al)等金属材料,或者镁铝(Mg:Al)的合金等。例如,公共电极层123的材料为镁铝合金时,镁:铝的比例范围可以为(3:7)~(1:9)。
例如,公共电极层123对波长为530nm的光的透过率范围可以为50%~60%。
例如,如图1所示,公共电极层123远离各发光层的一侧还设置有光耦合输出层(coupling layer,CPL)910以增加光输出。
例如,光耦合输出层910的厚度可以为50~80nm。例如,光耦合输出层901的材料可以为有机小分子材料。
例如,光耦合输出层910对波长为460nm的光的折射率大于1.8。
例如,光耦合输出层910远离公共电极层123的一侧设置有薄膜封装层920以保护各个发光单元。
例如,各发光单元中的反射电极可以为包括具有高反射率的金属和具有高功函数的透明氧化物层的复合结构,如“银/氧化铟锡(Ag/ITO)”或“银/铟锌氧化物(Ag/IZO)”等。
例如,反射电极包括的金属的厚度可以在80~100nm的范围,金属氧化物的厚度可以在5~10nm的范围。
例如,反射电极的对位于可见光区内的波段的光的平均反射率可以为85%~95%。
例如,电子传输层510的材料可以包括噻吩类、咪唑类、或吖嗪类衍生物等,或者电子传输层510的材料可以由噻吩类、咪唑类、或吖嗪类衍生物等与喹啉锂共混的方式制备。例如,喹啉锂的比例范围可以为30%~70%。
例如,电子传输层510的厚度可以为20~40nm。
例如,如图1所示,红光发光层110和绿光发光层310位于连续膜层400远离公共电极层123的一侧。例如,连续膜层400位于电子传输层510与红光发光层110以及绿光发光层310之间,则连续膜层400位于第一发光单元100与第三发光单元300内的部分被配置为红光发光层110和绿光发光层310传输电子,即连续膜层400除了位于第二发光单元200以外的部分用于传输电子,由此连续膜层400的材料,即蓝光发光层210的材料需要具有较强的电子传输特性。
例如,利用空间电荷受限电流(Space-Charge-Limited-Current,SCLC)法测试,在对蓝光发光层210的材料施加偏压为2.5*10 7V/m时,蓝光发光层210的材料的电子迁移率不低于1*10 -7cm 2/Vs,即每秒每伏特电压下电子的运动范围不低于1*10 -7cm 2
例如,蓝光发光层210的发光主体材料可以包括蒽类衍生物、芴类衍生物或芘类衍生物,以具有较强的电子传输特性。
例如,蓝光发光层210的发光客体材料可以包括芘类衍生物,且发光客体材料的掺杂浓度的范围可以为0.5%~5%。
例如,蓝光发光层210的厚度的范围可以为15~25nm。
例如,图1所示的实施例中,连续膜层400的第二部分420和第三部分430 可以分别与红光发光层110和绿光发光层310的表面接触,且连续膜层400的第二部分420和第三部分430分别被配置为红光发光层110和绿光发光层310传输电子。也就是,本实施例中的蓝光发光层形成为整层的膜层(即连续膜层400)的一部分,位于第二发光单元200中的蓝光发光层210用于发光,位于第一发光单元100和第三发光单元300中的连续膜层的另外部分用于为红光发光层110和绿光发光层310传输电子。
例如,如图1所示,本实施例以电子传输层510与蓝光发光层210接触为例进行描述,且蓝光发光层210的发光主体材料的分子最低未被占据轨道能级(LUMO)与电子传输层510的材料的分子最低未被占据轨道能级之差小于0.3eV。
例如,电子传输层510包括多种材料时,蓝光发光层210的发光主体材料的分子最低未被占据轨道能级与电子传输层510的任一种材料的分子最低未被占据轨道能级之差小于0.3eV。
例如,如图1所示,显示面板还包括位于电子传输层510与公共电极层123之间的连续的电子注入层520,即电子注入层520为整层膜层,且各发光单元公用该电子注入层520。
例如,电子注入层520的材料可以包括氟化锂(LiF)、喹啉锂(LiQ)、镱(Yb)、钙(Ca)等。
例如,电子注入层520的厚度可以为0.5~2nm。
例如,如图1所示,显示面板还包括位于各发光单元的发光层与反射电极之间的整层的空穴注入层730,即,位于各发光单元的发光层远离公共电极层123的一侧的空穴注入层730可以为各发光单元共用的膜层。
例如,空穴注入层730被配置为降低空穴注入势垒,提高空穴注入效率。
例如,空穴注入层730的材料可以包括2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HATCN)、酞菁铜(CuPc)等。空穴注入层730可以是上述材料制备的单层膜。但不限于此,例如,空穴注入层730也可以采用p型掺杂的方式制备,例如,空穴注入层730的材料可以包括在N,N'-双(1-萘基)-N,N’-二苯基-1,1'-二苯基-4,4'-二胺中掺杂2,3,5,6-四氟-7,7',8,8'-四氰醌-二甲烷(NPB:F4TCNQ)或者在4,4'-环己基二[N,N-二(4-甲基苯基)苯胺]中掺杂三氧化钼(APC:MoO 3)等。例如,空穴注入层730进行p型掺杂的浓度可以为0.5%~10%。
例如,空穴注入层730的厚度可以为5~20nm。
例如,如图1所示,显示面板还包括位于蓝光发光层210与第四电极230之间的整层的第一空穴传输层710,即,各发光单元共用该第一空穴传输层710。例如,空穴注入层730位于第一空穴传输层710远离公共电极层123的一侧。
例如,第一空穴传输层710的材料可以包括咔唑类材料。
例如,第一空穴传输层710的分子最高被占据轨道(HOMO)能级的范围为-5.5eV~-5.9eV。
例如,第一空穴传输层710的厚度可以为0~10nm。第一空穴传输层710的厚度为0时表示没有设置该膜层。
例如,第一空穴传输层710与空穴注入层730之间还可以设置第二空穴传输层720。当然,本公开实施例不限于此,第一空穴传输层与空穴注入层之间也可以不设置第二空穴传输层,即第一空穴传输层可以与空穴注入层接触。
例如,如图1所示,第二空穴传输层720的材料可以包括具有较高的空穴迁移率的咔唑类材料。
例如,第二空穴传输层720的厚度可以为100~140nm。
例如,第二空穴传输层720的分子最高被占据轨道(HOMO)能级的范围为-5.2eV~-5.6eV。
例如,第一空穴传输层710的材料的分子最高被占据分子轨道能级与第二空穴传输层的材料的分子最高被占据分子轨道能级之差小于0.3eV,以降低空穴的传输势垒,从而可以提高各发光单元的寿命,且降低各发光单元被施加的电压的值,进而降低功耗。
例如,如图1所示,第一发光单元100还包括位于红光发光层110与第一空穴传输层710之间的第一电子阻挡层150,用于阻挡第一空穴传输层710与红光发光层110之间的电子进入到红光发光层110中。
例如,第一电子阻挡层150的厚度可以为40~60nm。
例如,空穴注入层730的材料的分子最高被占据分子轨道能级与第一电子阻挡层150的材料的分子最高被占据分子轨道能级之差小于0.3eV,以降低空穴的注入势垒。
例如,如图1所示,第三发光单元300还包括位于绿光发光层310与第一空穴传输层710之间的第二电子阻挡层350,用于阻挡第一空穴传输层710与绿光发光层310之间的电子进入到绿光发光层310中。
例如,第二电子阻挡层350的厚度可以为15~30nm。
例如,空穴注入层730的材料的分子最高被占据分子轨道能级与第二电子阻挡层350的材料的分子最高被占据分子轨道能级之差小于0.3eV,以降低空穴的注入势垒。
例如,第一空穴传输层710可以与第一电子阻挡层150和第二电子阻挡层350接触,以降低空穴从第二空穴传输层720到第一电子阻挡层150、第二电子阻挡层350的注入势垒。
例如,如图1所示,第二发光单元200的第二调腔结构240中包括的各膜层均为整层膜层,而第一发光单元100的第一调腔结构140和第三发光单元300的第三调腔结构340均包括第二调腔结构240中所包括的各膜层,则第二调腔结构240包括的各膜层均可以为各个发光单元的共用层。例如,第二调腔结构240可以包括空穴注入层730、第二空穴传输层720、第一空穴传输层710、第二发光层210、电子传输层510和电子注入层520。在对各调腔结构的腔长进行调节时应先确定第二调腔结构240中包括的各膜层的光学厚度。例如,可以调节第一空穴传输层710和第二空穴传输层720的厚度来调节第二调腔结构240的腔长。例如,第二发光单元200中的电子注入层520、电子传输层510、蓝光发光层210、第一空穴传输层710、第二空穴传输层720以及空穴注入层730的光学厚度之和为第二调腔结构240的腔长。第一调腔结构140除了包括第二调腔结构240中的各膜层外,还包括了红光发光层110以及第一电子阻挡层150,则第一调腔结构140的腔长与第二调腔结构240的腔长之差为红光发光层110与第一电子阻挡层150的光学厚度之和。由此,在确定了第二调腔结构240的腔长以后,通过调节红光发光层110和第一电子阻挡层150的至少之一的几何厚度以调节第一调腔结构140满足的腔长。同理,第三调腔结构340除了包括第二调腔结构240中的各膜层外,还包括了绿光发光层310以及第二电子阻挡层350,则第三调腔结构340的腔长与第二调腔结构240的腔长之差为绿光发光层310与第二电子阻挡层350的光学厚度之和。由此,在确定了第二调腔结构240的腔长以后,通过调节绿光发光层310和第二电子阻挡层350的至少之一的几何厚度以调节第三调腔结构340满足的腔长。
例如,本公开实施例中可以先形成红光发光层110、第一电子阻挡层150、绿光发光层310和第二电子阻挡层350,然后再形成连续膜层400。形成的连续膜层400为共形(conformal)形成在厚度不同的红光发光层110和绿光发光层310上。在形成连续膜层400时,各发光单元中的连续膜层400的厚度相同, 由于第一发光单元中的连续膜层400与第一空穴传输层710之间包括的红光发光层110与第一电子阻挡层150的厚度和与第三发光单元中的连续膜层400与第一空穴传输层710之间包括的绿光发光层310和第二电子阻挡层350的厚度和不同,且第二发光单元200中蓝光发光层210与第一空穴传输层710之间没有其他膜层,从而,不同发光单元包括的连续膜层400与各自的反射电极之间的距离不同。同理,位于连续膜层400远离第四电极230一侧的其他整层的膜层也是共形形成。
例如,红光发光层110可以包括红光发光主体材料和红光发光客体材料。
例如,红光发光主体材料可以包括芳香多胺类材料或芳香族化合物等材料,例如NPB(“N,N'-双(1-萘基)-N,N’-二苯基-1,1'-二苯基-4,4'-二胺)、羟基喹啉铝等。红光发光主体材料可以包括单主体,也可以包括由空穴型主体和电子型主体共混形成的双主体。
例如,红光发光客体材料可以包括各种铱(Ir)或者铂(Pt)系配合物,且客体材料的掺杂比例可以在2%~5%的范围内。
例如,红光发光层110的厚度可以在25~40nm。
例如,绿光发光层310可以包括绿光发光主体材料和绿光发光客体材料。
例如,绿光发光主体材料可以包括单主体,也可以包括由空穴型主体和电子型主体共混形成的双主体。
例如,绿光发光客体材料可以包括各种铱(Ir)或者铂(Pt)系配合物,且客体材料的掺杂比例可以在2%~5%的范围内。
例如,绿光发光层310中的发光客体材料的比例低于10%。
例如,表1示出了绿光发光层中发光客体材料的比例与第三发光单元所需的电压、发光效率以及寿命的关系示意图。如表1所示,以第三发光单元中的绿光发光层的发光客体材料的比例为6%为基准,则在电流密度不变的情况下,随着绿光客体材料的比例的增大,绿光发光层的寿命变短。当发光客体材料的比例不高于8%时,绿光发光层的寿命不低于97%。掺杂在发光主体材料中的发光客体材料的比例越低,发光层中载流子越趋于平衡,从而绿光发光单元的寿命越长。为了保证绿光发光单元的寿命,其掺杂的客体材料的比例应低于10%。
表1
Figure PCTCN2020072488-appb-000003
图2为根据本公开另一实施例提供的显示面板的局部结构示意图。如图2所示,本实施例与图1所示的实施例的不同之处在于:显示面板还包括位于连续膜层400远离公共电极层123一侧的连接层600,连接层600的第一部分位于蓝光发光层210与第四电极230之间,以为蓝光发光层210阻挡电子。
例如,连接层600的第一部分可以与蓝光发光层210的表面接触。
例如,如图2所示,连接层600位于连续膜层400与第一空穴传输层710之间,且连接层600的两侧表面分别与连续膜层400和第一空穴传输层710的表面接触。由于连接层600位于蓝光发光层210与第一空穴传输层710之间,对于蓝光发光层210而言,连接层600可以兼具空穴传输和电子阻挡的效果。
例如,连接层600的材料可以包括蒽类衍生物或芴类衍生物。
例如,蓝光发光层210的发光主体材料可以与连接层600的材料相同,也可以不同。
例如,如图2所示,连接层600的材料的分子最高被占据分子轨道能级(HOMO)与第一空穴传输层710的材料的分子最高被占据分子轨道能级之差不大于0.3eV。表2示出了连接层与第一空穴传输层之间的分子最高被占据分子轨道能级(HOMO)之差与第二发光单元所需的电压、发光效率以及寿命的关系示意图。如表2所示,在以第二发光单元中的连接层与第一空穴传输层之间的分子最高被占据分子轨道能级(HOMO)之差为0.4eV为基准,则在电流密度不变的情况下,随着连接层与第一空穴传输层之间的分子最高被占据分子轨道能级(HOMO)之差的减小,蓝光发光单元的寿命增加,且效率较高。当连接层600的材料的分子最高被占据分子轨道能级(HOMO)与第一空穴传输层710的材料的分子最高被占据分子轨道能级之差不大于0.3eV时,蓝光发光单元的寿命不低于190%。连接层与第一空穴传输层的最高被占据分子轨道能级差较小(例如不大于0.3eV)时,可以减小两者之间的界面的势垒,以减少载流子的堆积,从而提高蓝光发光单元的寿命。由此,为了保证蓝光发光单元的寿命,连接层与第一空穴传输层的最高被占据分子轨道能级之差设置为不大 于0.3eV。
表2
Figure PCTCN2020072488-appb-000004
例如,如图2所示,连接层600的第二部分位于红光发光层110与公共电极层123之间,以为红光发光层110传输电子。
例如,连接层600的第二部分可以与红光发光层110的表面接触。
由于连接层600位于电子传输层510与红光发光层110之间,则连接层600需要对红光发光层110起到较好的传输电子的作用。
例如,该连接层600可以在对红光发光层110起到传输电子的作用的同时,还起到阻挡空穴的作用。
例如,连接层600可以位于红光发光层110与连续膜层400之间,且连接层600的两侧表面分别与红光发光层110与连续膜层400接触。
例如,连接层600的第三部分位于绿光发光层310与公共电极层123之间,以为绿光发光层310传输电子。
例如,连接层600的第三部分可以与绿光发光层310的表面接触。
由于连接层600位于电子传输层510与绿光发光层310之间,则连接层600需要对绿光发光层310起到较好的传输电子的作用。
例如,该连接层600可以在对绿光发光层310起到传输电子的作用的同时,还起到阻挡空穴的作用。
例如,连接层600可以位于绿光发光层310与连续膜层400之间,且连接层600的两侧表面分别与绿光发光层310与连续膜层400接触。
本公开实施例提供的连接层的主要作用为提高蓝光发光单元的特性,但也要兼顾红光发光单元以及绿光发光单元的特性。由此,连接层的材料对蓝光发光层起到阻挡电子且传输空穴的同时,还需要对红光发光层以及绿光发光层起到传输电子的作用。
例如,连接层600的厚度不大于4nm。
例如,表3示出了连接层的厚度与红光发光单元以及绿光发光单元所需的电压、发光效率以及寿命的关系示意图。如表3所示,以连接层的厚度为4nm 为基准,则在电流密度不变的情况下,随着连接层厚度的减小,红光发光单元与绿光发光单元的寿命均增加,且对各发光单元所需电压以及效率影响不大。当连接层的厚度不大于4nm时,连接层与发光层之间的载流子传输更高效,可以降低对红光发光单元以及绿光发光单元的寿命的影响。
表3
Figure PCTCN2020072488-appb-000005
例如,如图2所示,红光发光层110的发光主体材料的分子最低未被占据轨道能级与连接层600的材料的分子最低未被占据轨道能级之差小于0.5eV,从而可以使得电子更高效的传输到红光发光层,以提高红光发光单元的效率,并降低其功耗。
在考虑到目前现有材料的基础上,连接层的材料的能级需要与红光发光层的材料的能级进行匹配以保证红光发光单元的效率不受到影响。经过将两个膜层的材料进行匹配分析,红光发光层的发光主体材料的分子最低未被占据轨道能级与连接层的材料的分子最低未被占据轨道能级之差小于0.5eV时,可以保证红光发光单元的效率不受到影响。例如,红光发光层的发光主体材料的分子最低未被占据轨道能级与连接层的材料的分子最低未被占据轨道能级之差可以不大于0.3eV。
例如,红光发光层110的发光主体为单主体时,上述红光发光层110的发光主体材料的分子最低未被占据轨道能级即为该单主体的材料的分子最低未被占据轨道能级。
例如,红光发光层110的发光主体为双主体时,上述红光发光层110的发光主体材料的分子最低未被占据轨道能级为该双主体中的电子型主体材料的分子最低未被占据轨道能级。
例如,如图2所示,绿光发光层310的发光主体材料的分子最低未被占据轨道能级与连接层600的材料的分子最低未被占据轨道能级之差小于0.5eV,从而可以使得电子更高效的传输到绿光发光层,以提高绿光发光单元的效率, 并降低其功耗。
在考虑到目前现有材料的基础上,连接层的材料的能级需要与绿光发光层的材料的能级进行匹配以保证绿光发光单元的效率不受到影响。经过将两个膜层的材料进行匹配分析,绿光发光层的发光主体材料的分子最低未被占据轨道能级与连接层的材料的分子最低未被占据轨道能级之差小于0.5eV时,可以保证绿光发光单元的效率不受到影响。例如,绿光发光层的发光主体材料的分子最低未被占据轨道能级与连接层的材料的分子最低未被占据轨道能级之差可以不大于0.3eV。
例如,绿光发光层310的发光主体为单主体时,上述绿光发光层310的发光主体材料的分子最低未被占据轨道能级即为该单主体的材料的分子最低未被占据轨道能级。
例如,绿光发光层310的发光主体为双主体时,上述绿光发光层310的发光主体材料的分子最低未被占据轨道能级为该双主体中的电子型主体材料的分子最低未被占据轨道能级。
例如,如图2所示,第二发光单元200的第二调腔结构240中包括的各膜层均为整层膜层,而第一发光单元100的第一调腔结构140和第三发光单元300的第三调腔结构340均包括第二调腔结构240中所包括的各膜层,则第二调腔结构240包括的各膜层均可以为各个发光单元的共用层。例如,第二调腔结构240可以包括空穴注入层730、第二空穴传输层720、第一空穴传输层710、连接层600、第二发光层210、电子传输层510和电子注入层520。在对各调腔结构的腔长进行调节时应先确定第二调腔结构240中包括的各膜层的光学厚度。例如,可以调节第一空穴传输层710和第二空穴传输层720的厚度来调节第二调腔结构240的腔长。例如,第二发光单元200中的电子注入层520、电子传输层510、蓝光发光层210、第一空穴传输层710、第二空穴传输层720以及空穴注入层730的光学厚度之和为第二调腔结构240的腔长。第一调腔结构140除了包括第二调腔结构240中的各膜层外,还包括了红光发光层110以及第一电子阻挡层150,则第一调腔结构140的腔长与第二调腔结构240的腔长之差为红光发光层110与第一电子阻挡层150的光学厚度之和。由此,在确定了第二调腔结构240的腔长以后,通过调节红光发光层110和第一电子阻挡层150的至少之一的几何厚度以调节第一调腔结构140满足的腔长。同理,第三调腔结构340除了包括第二调腔结构240中的各膜层外,还包括了绿光发光层310 以及第二电子阻挡层350,则第三调腔结构340的腔长与第二调腔结构240的腔长之差为绿光发光层310与第二电子阻挡层350的光学厚度之和。由此,在确定了第二调腔结构240的腔长以后,通过调节绿光发光层310和第二电子阻挡层350的至少之一的几何厚度以调节第三调腔结构340满足的腔长。
图3为根据本公开另一实施例提供的显示面板的局部结构示意图。如图3所示,本实施例中与图1所示的实施例的不同之处在于:显示面板还包括空穴阻挡层800,位于电子传输层510与连续膜层400之间,且与电子传输层510接触。本实施例以包括图2所示的实施例中的连接层600为例,且该连接层600与图2所示的实施例中的连接层的材料、位置以及作用均相同,在此不再赘述。本公开实施例不限于此,本实施也可以不包括图2所示的实施例中的连接层。
例如,如图3所示,空穴阻挡层800的材料的分子最高被占据分子轨道能级与蓝光发光层210的发光主体材料的分子最高被占据分子轨道能级之差不小于0.3eV。
例如,如图3所示,空穴阻挡层800的材料的分子最低未被占据轨道能级与蓝光发光层210的材料的分子最低未被占据轨道能级之差小于0.3eV,以提高电子注入到红光发光层110以及绿光发光层310的效率,进而提高红光发光单元和绿光发光单元的效率,且降低两种颜色发光单元的功耗。
例如,表4示出了显示面板中设置空穴阻挡层以及不设置空穴阻挡层的情况下,各发光单元所需电压、效率以及寿命的对比情况。如表4所示,以显示面板不设置空穴阻挡层的情况下各发光单元所需电压、效率以及寿命为基准,则在电流密度不变的情况下,显示面板中设置了空穴阻挡层后,可以提高各发光单元的效率,且降低各发光单元的功耗,但是会影响红光发光单元以及绿光发光单元的寿命。由此,实际产品中,可以根据对各发光单元的功耗、效率以及寿命的需求而决定是否设置空穴阻挡层。
表4
Figure PCTCN2020072488-appb-000006
本公开实施例提供的显示面板中的蓝光发光层所在的连续膜层可为与绿光发光层和红光发光层的至少之一交叠的膜层,从而节省了一步采用精细金属掩模板的工艺,节省了物料成本,并且可以提高产品的产能。此外,本公开实施例中,用于量产显示面板的设备以及该显示面板的量产工艺均可与制作一般的显示面板(采用精细金属掩模板制作蓝光发光层)的设备以及工艺兼容,从而可以节省工艺成本。
例如,如图3所示,第二发光单元200的第二调腔结构240中包括的各膜层均为整层膜层,而第一发光单元100的第一调腔结构140和第三发光单元300的第三调腔结构340均包括第二调腔结构240中所包括的各膜层,则第二调腔结构240包括的各膜层均可以为各个发光单元的共用层。例如,第二调腔结构240可以包括空穴注入层730、第二空穴传输层720、第一空穴传输层710、连接层600、第二发光层210、空穴阻挡层800、电子传输层510和电子注入层520。在对各调腔结构的腔长进行调节时应先确定第二调腔结构240中包括的各膜层的光学厚度。例如,可以调节第一空穴传输层710和第二空穴传输层720的厚度来调节第二调腔结构240的腔长。例如,第二发光单元200中的电子注入层520、电子传输层510、蓝光发光层210、第一空穴传输层710、第二空穴传输层720以及空穴注入层730的光学厚度之和为第二调腔结构240的腔长。第一调腔结构140除了包括第二调腔结构240中的各膜层外,还包括了红光发光层110以及第一电子阻挡层150,则第一调腔结构140的腔长与第二调腔结构240的腔长之差为红光发光层110与第一电子阻挡层150的光学厚度之和。由此,在确定了第二调腔结构240的腔长以后,通过调节红光发光层110和第一电子阻挡层150的至少之一的几何厚度以调节第一调腔结构140满足的腔长。同理,第三调腔结构340除了包括第二调腔结构240中的各膜层外,还包括了绿光发光层310以及第二电子阻挡层350,则第三调腔结构340的腔长与第二调腔结构240的腔长之差为绿光发光层310与第二电子阻挡层350的光学厚度之和。由此,在确定了第二调腔结构240的腔长以后,通过调节绿光发光层310和第二电子阻挡层350的至少之一的几何厚度以调节第三调腔结构340满足的腔长。
需要说明的是,在显示面板中包括空穴阻挡层800时,也可以不包括上述连接层600,则第二调腔结构240可以包括空穴注入层730、第二空穴传输层720、第一空穴传输层710、第二发光层210、空穴阻挡层800、电子传输层510 和电子注入层520。
当然,本公开另一实施例中,第二调腔结构也可以仅包括上述第二空穴传输层720、第一空穴传输层710以及电子传输层510中的至少之一。
本公开另一实施例提供一种有机发光二极管显示装置,包括上述任一实施例提供的显示面板。本公开实施例提供的有机发光二极管显示装置中,第二发光单元的第二发光层为连续膜层的一部分,可以节省制作第二发光层的精细金属掩模板,既可以节省成本,又可以省去精确对位过程以及避免其他不良,提高产能。
本公开实施例中,通过对有机发光二极管显示装置中的各发光单元中的膜层厚度(例如连接层的厚度)的调节,可以提高红光发光单元以及绿光发光单元的寿命,并降低功耗。
本公开实施例中,通过对有机发光二极管显示装置中的一些膜层间的分子最高被占据分子轨道能级之差进行调节,例如对连接层与第一空穴传输层的分子最高被占据分子轨道能级之差进行调节,可以提高蓝光发光单元的效率以及寿命;例如,对空穴注入层与第一电子阻挡层以及第二电子阻挡层的分子最高被占据分子轨道能级之差进行调节,可以提高红光发光单元以及绿光发光单元的寿命。
本公开实施例中,通过对有机发光二极管显示装置中的一些膜层间的分子最低未被占据轨道能级之差进行调节,例如,对蓝光发光层与空穴阻挡层的分子最低未被占据轨道能级之差进行调节,或者对蓝光发光层与电子传输层的分子最低未被占据轨道能级之差进行调节,可以提高电子注入红光发光层以及绿光发光层的浓度以提高红光发光单元以及绿光发光单元的效率,并降低功耗;例如,对红光发光层的发光主体材料以及绿光发光层的发光主体材料与连接层的材料的分子最低未被占据轨道能级之差的调节,可以使得电子传输到红光发光层以及绿光发光层的浓度更高,以提高红光发光单元以及绿光发光单元的效率,并降低两者的功耗。
本公开实施例中,通过对有机发光二极管显示装置中的绿光发光层中的客体材料的比例的调节,可以提高绿光发光单元的寿命。
本公开另一实施例提供一种显示面板的制作方法,本公开实施例提供的制作方法为制作图1-3所示的任一实施例提供的显示面板的制作方法,且本实施例提供的制作方法制作的各膜层的形状、位置以及材料均与图1-3所示的实施 例提供的显示面板中的各膜层的形状、位置以及材料相同,在此不完全赘述。该显示面板的制作方法包括如下步骤。
S1:采用精细金属掩模板为掩模形成图案化的第一发光材料层以形成第一发光单元中的第一发光层。
例如,以图1所述的显示面板为例,在形成第一发光材料层之前,还包括依次形成第二电极130、空穴注入层730、第二空穴传输层720、第一空穴传输层710以及第一电子阻挡层150。
例如,如图1所示,在形成第二电极130的同时还可以形成第四电极230以及第六电极330。例如,第二电极130、第四电极230以及第六电极330的材料以及厚度均可以相同,即第二电极130、第四电极230以及第六电极330可以采用一步图案化工艺形成。
例如,如图1所示,在形成第一电子阻挡层150的同时还可以形成第二电子阻挡层350。例如,可以采用半色调掩模工艺形成具有不同厚度的第一电子阻挡层150和第二电子阻挡层350。
例如,如图1所示,可以在第一电子阻挡层150远离第一空穴传输层710的一侧以精细金属掩模板为掩模蒸镀第一发光材料层。由于精细金属掩模板包括多个小尺寸的开口,所以蒸镀后的第一发光材料层形成为多个彼此分隔的第一发光层110。
S2:采用开口掩模板形成第二发光材料层以形成第二发光层,其中,第二发光材料层为连续膜层,且连续膜层的第一部分为第二发光单元中的第二发光层。
例如,如图1所示,在形成第二发光材料层之前,还可以包括在第二电子阻挡层350远离第一空穴传输层710的一侧形成第三发光层310。
例如,如图1所示,可以采用精细金属掩模板为掩模蒸镀形成多个第三发光单元300的第三发光层310。
例如,如图1所示,形成第二发光材料层可以包括采用开口掩模板形成第二发光材料层以形成连续膜层400。这里的开口掩模板指仅包括一个开口,采用该开口掩模板蒸镀形成的膜层为整层连续的膜层,而不是多个彼此分隔的膜层。
本公开实施例中,采用开口掩模板而非精细金属掩模板直接形成蓝光发光层,从而节省了一步采用精细金属掩模板的工艺,既可以节省成本,又可以省 去精确对位过程以及避免其他不良,提高产能。
例如,如图1所示,在形成蓝光发光层210以后,可以在蓝光发光层210远离第一空穴传输层710的一侧依次形成电子传输层510、电子注入层520、公共电极层123、光耦合输出层910以及薄膜封装层920。
例如,如图2所示,在形成蓝光发光层210之前,还可以在红光发光层110和绿光发光层310远离第一空穴传输层710的一侧形成连接层600。形成连接层600以后,在连接层600远离第一空穴传输层710的一侧形成上述蓝光发光层210。
例如,如图3所示,在形成蓝光发光层210以后,且在形成电子传输层510之前,可以在蓝光发光层210远离第一空穴传输层710的一侧形成空穴阻挡层800。在形成空穴阻挡层800以后,可以在空穴阻挡层800远离蓝光发光层210的一侧形成上述电子传输层510。
有以下几点需要说明:
(1)本公开的实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (19)

  1. 一种显示面板,包括:
    阵列排布的第一发光单元和第二发光单元,所述第一发光单元包括第一发光层,
    其中,所述显示面板包括连续膜层,所述连续膜层的第一部分位于所述第二发光单元内以作为所述第二发光单元的第二发光层,所述连续膜层的第二部分与所述第一发光层交叠。
  2. 根据权利要求1所述的显示面板,还包括:
    第三发光单元,所述第三发光单元包括第三发光层,
    其中,所述第一发光单元、所述第二发光单元与所述第三发光单元阵列排布,且所述连续膜层的第三部分与所述第三发光层交叠。
  3. 根据权利要求2所述的显示面板,其中,所述第一发光层、所述第二发光层以及所述第三发光层分别为发射不同颜色光的发光层。
  4. 根据权利要求2或3所述的显示面板,其中,所述第三发光层和所述第一发光层位于所述连续膜层的同侧。
  5. 根据权利要求2-4任一项所述的显示面板,其中,所述第一发光单元包括位于所述第一发光层和所述连续膜层两侧的第一电极和第二电极;所述第二发光单元包括位于所述连续膜层两侧的第三电极和第四电极;所述第三发光单元包括位于所述第三发光层和所述连续膜层两侧的第五电极和第六电极,
    所述第一电极、所述第三电极以及所述第五电极为一公共电极层以使所述第一发光单元、所述第二发光单元以及所述第三发光单元共用该公共电极层,所述第二电极、所述第四电极和所述第六电极彼此分隔设置,且各所述发光单元包括的两个所述电极之一为反射电极,另一个为半透半反电极。
  6. 根据权利要求5所述的显示面板,其中,所述公共电极层为阴极,且为半透半反电极;所述第二电极、所述第四电极和所述第六电极为彼此分立的阳极,且所述阳极为反射电极。
  7. 根据权利要求6所述的显示面板,其中,所述第一发光层和所述第三发光层位于所述连续膜层远离所述公共电极层的一侧,且所述连续膜层的材料的电子迁移率不低于1*10 -7cm 2/Vs。
  8. 根据权利要求7所述的显示面板,其中,所述连续膜层的所述第二部 分和所述第三部分分别与所述第一发光层和所述第三发光层的表面接触,且所述连续膜层的所述第二部分和所述第三部分分别被配置为所述第一发光层和所述第三发光层传输电子。
  9. 根据权利要求7所述的显示面板,包括:
    连接层,位于所述连续膜层远离所述公共电极层的一侧,
    其中,所述连接层的第一部分位于所述第二发光层与第四电极之间,且与所述第二发光层的表面接触以为所述第二发光层传输空穴;所述连接层的第二部分位于所述第一发光层与所述公共电极层之间,且与所述第一发光层的表面接触以为所述第一发光层传输电子;所述连接层的第三部分位于所述第三发光层与所述公共电极层之间,且与所述第三发光层的表面接触以为所述第三发光层传输电子。
  10. 根据权利要求9所述的显示面板,其中,所述第一发光层的发光主体材料的分子最低未被占据轨道能级与所述连接层的材料的分子最低未被占据轨道能级之差小于0.5eV;所述第三发光层的发光主体材料的分子最低未被占据轨道能级与所述连接层的材料的分子最低未被占据轨道能级之差小于0.5eV。
  11. 根据权利要求9或10所述的显示面板,其中,位于所述第一电极和所述第二电极之间的膜层形成为第一调腔结构,所述第一调腔结构被配置为调节腔长以发射红光;位于所述第三电极与所述第四电极之间的膜层形成第二调腔结构,所述第二调腔结构被配置为调节腔长以发射蓝光;位于所述第五电极与所述第六电极之间的膜层形成为第三调腔结构,所述第三调腔结构被配置为调节腔长以发射绿光。
  12. 根据权利要求11所述的显示面板,包括:
    第一电子阻挡层,位于所述第一发光层与所述第二电极之间;
    第二电子阻挡层,位于所述第三发光层与所述第六电极之间,
    其中,所述第一调腔结构的腔长与所述第二调腔结构的腔长之差为所述第一发光层与所述第一电子阻挡层的光学厚度之和,所述第三调腔结构的腔长与所述第二调腔结构的腔长之差为所述第三发光层与所述第二电子阻挡层的光学厚度之和。
  13. 根据权利要求12所述的显示面板,包括:
    电子注入层,位于所述连续膜层与所述公共电极层之间;
    空穴注入层,位于所述第一发光层和所述第三发光层远离所述公共电极的一侧,
    其中,所述第一调腔结构包括所述空穴注入层、所述第一电子阻挡层、所述第一发光层、所述连接层、所述连续膜层以及所述电子注入层;所述第二调腔结构包括所述空穴注入层、所述连接层、所述连续膜层以及所述电子注入层;所述第三调腔结构包括所述空穴注入层、所述第二电子阻挡层、所述第三发光层、所述连接层、所述连续膜层以及所述电子注入层。
  14. 根据权利要求13所述的显示面板,包括:传输层,所述传输层包括电子传输层、第一空穴传输层以及第二空穴传输层的至少之一;
    所述电子传输层位于所述连续膜层与所述公共电极层之间;
    所述第一空穴传输层位于所述第一发光层、所述第三发光层和所述第二发光层远离所述公共电极的一侧,所述连接层的所述第一部分与所述第一空穴传输层接触;
    所述第二空穴传输层位于所述第一空穴传输层远离所述连续膜层的一侧;
    其中,所述第一调腔结构还包括所述传输层,且所述传输层为所述第一调腔结构、所述第二调腔结构和所述第三调腔结构的共用膜层。
  15. 根据权利要求13或14所述的显示面板,包括:
    空穴阻挡层,位于所述电子注入层与所述连续膜层之间,且与所述连续膜层接触,
    其中,所述第一调腔结构、所述第二调腔结构以及所述第三调腔结构均包括所述空穴阻挡层。
  16. 根据权利要求2-15任一项所述的显示面板,其中,所述第一发光层为红光发光层,所述第二发光层为蓝光发光层,所述第三发光层为绿光发光层。
  17. 根据权利要求16所述的显示面板,其中,所述绿光发光层中的发光客体材料的比例低于10%。
  18. 一种有机发光二极管显示装置,包括权利要求1-17任一项所述的显示面板。
  19. 一种根据权利要求1-17任一项所述的显示面板的制作方法,包括:
    采用精细金属掩模板为掩模形成图案化的第一发光材料层以形成所述第一发光单元中的所述第一发光层;以及
    采用开口掩模板形成第二发光材料层以形成所述第二发光层,
    其中,所述第二发光材料层为所述连续膜层,且所述连续膜层的所述第一部分为所述第二发光单元中的所述第二发光层。
PCT/CN2020/072488 2020-01-16 2020-01-16 显示面板及其制作方法、以及有机发光二极管显示装置 WO2021142715A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/072488 WO2021142715A1 (zh) 2020-01-16 2020-01-16 显示面板及其制作方法、以及有机发光二极管显示装置
CN202080000017.0A CN113412546A (zh) 2020-01-16 2020-01-16 显示面板及其制作方法、以及有机发光二极管显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072488 WO2021142715A1 (zh) 2020-01-16 2020-01-16 显示面板及其制作方法、以及有机发光二极管显示装置

Publications (1)

Publication Number Publication Date
WO2021142715A1 true WO2021142715A1 (zh) 2021-07-22

Family

ID=76863489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072488 WO2021142715A1 (zh) 2020-01-16 2020-01-16 显示面板及其制作方法、以及有机发光二极管显示装置

Country Status (2)

Country Link
CN (1) CN113412546A (zh)
WO (1) WO2021142715A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725921A (zh) * 2004-07-22 2006-01-25 三星Sdi株式会社 有机电致发光显示器及其制造方法
CN1802048A (zh) * 2004-11-16 2006-07-12 京瓷株式会社 发光装置
US20070024186A1 (en) * 2005-07-28 2007-02-01 Univision Technology, Inc Color Filter Conversion Apparatus and an Organic Electroluminescent Display Apparatus Thereof
US20090200544A1 (en) * 2008-02-12 2009-08-13 Samsung Electronics Co., Ltd. Organic light emitting device and method of manufacturing the same
US20100283385A1 (en) * 2009-05-11 2010-11-11 Toshiba Mobile Display Co., Ltd. Organic el device
CN102163615A (zh) * 2010-01-27 2011-08-24 三星移动显示器株式会社 有机发光器件显示器及其制造方法
US20110229994A1 (en) * 2010-03-20 2011-09-22 Jung In-Young Method of manufacturing organic light emitting display device
US20130001532A1 (en) * 2011-06-30 2013-01-03 Samsung Mobile Display Co., Ltd. Organic light emitting diode
CN108231857A (zh) * 2018-01-19 2018-06-29 京东方科技集团股份有限公司 Oled微腔结构及其制备方法、显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725921A (zh) * 2004-07-22 2006-01-25 三星Sdi株式会社 有机电致发光显示器及其制造方法
CN1802048A (zh) * 2004-11-16 2006-07-12 京瓷株式会社 发光装置
US20070024186A1 (en) * 2005-07-28 2007-02-01 Univision Technology, Inc Color Filter Conversion Apparatus and an Organic Electroluminescent Display Apparatus Thereof
US20090200544A1 (en) * 2008-02-12 2009-08-13 Samsung Electronics Co., Ltd. Organic light emitting device and method of manufacturing the same
US20100283385A1 (en) * 2009-05-11 2010-11-11 Toshiba Mobile Display Co., Ltd. Organic el device
CN102163615A (zh) * 2010-01-27 2011-08-24 三星移动显示器株式会社 有机发光器件显示器及其制造方法
US20110229994A1 (en) * 2010-03-20 2011-09-22 Jung In-Young Method of manufacturing organic light emitting display device
US20130001532A1 (en) * 2011-06-30 2013-01-03 Samsung Mobile Display Co., Ltd. Organic light emitting diode
CN108231857A (zh) * 2018-01-19 2018-06-29 京东方科技集团股份有限公司 Oled微腔结构及其制备方法、显示装置

Also Published As

Publication number Publication date
CN113412546A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
US9640591B2 (en) Method of manufacturing organic light emitting display device
US9570517B2 (en) Organic light emitting display device and method of manufacturing the same
US9166204B2 (en) Organic light-emitting diode and method of fabricating the same
US20070286944A1 (en) Fabrication of full-color oled panel using micro-cavity structure
US20080023724A1 (en) Light emitting element, light emitting device having the same and method for manufacturing the same
CN107170786B (zh) 阵列基板、显示面板、显示装置及阵列基板的制备方法
US8183564B2 (en) Multicolor display apparatus
TW202000653A (zh) 有機發光二極體、有機發光二極體顯示裝置及使用該有機發光二極體顯示裝置的車輛用顯示裝置
US8063558B2 (en) Multi-color display apparatus
CN115064647A (zh) 一种显示面板及显示装置
WO2020194411A1 (ja) 発光素子、発光デバイス
WO2022110113A1 (zh) 有机发光二极管及其制备方法和显示面板
US20220344607A1 (en) OLED Device and Preparation Method Thereof, Display Substrate and Display Apparatus
CN101361206B (zh) 发光元件
WO2021142715A1 (zh) 显示面板及其制作方法、以及有机发光二极管显示装置
CN114864839B (zh) 显示基板及显示装置
WO2024007449A1 (zh) 显示基板及显示装置
CN113785409B (zh) Oled显示基板及显示装置
CN113826231B (zh) 显示基板与显示装置
WO2024040464A1 (zh) 一种显示基板、其制作方法及显示装置
WO2023092571A1 (zh) 混合发光单元、显示面板及其制备方法
CN115458695A (zh) 一种发光基板及其制备方法、显示装置
CN115633529A (zh) 显示面板及其制备方法、显示装置
CN117479590A (zh) 有机电致发光器件及显示面板
KR20130057204A (ko) 유기발광다이오드 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913720

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20913720

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20913720

Country of ref document: EP

Kind code of ref document: A1