WO2021142660A1 - 一种光学模组、屏下指纹识别装置及终端 - Google Patents

一种光学模组、屏下指纹识别装置及终端 Download PDF

Info

Publication number
WO2021142660A1
WO2021142660A1 PCT/CN2020/072234 CN2020072234W WO2021142660A1 WO 2021142660 A1 WO2021142660 A1 WO 2021142660A1 CN 2020072234 W CN2020072234 W CN 2020072234W WO 2021142660 A1 WO2021142660 A1 WO 2021142660A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical module
optical sensor
microlens
microlenses
Prior art date
Application number
PCT/CN2020/072234
Other languages
English (en)
French (fr)
Inventor
李宗政
吴木源
沈培逸
丁细超
Original Assignee
南昌欧菲生物识别技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲生物识别技术有限公司 filed Critical 南昌欧菲生物识别技术有限公司
Priority to PCT/CN2020/072234 priority Critical patent/WO2021142660A1/zh
Publication of WO2021142660A1 publication Critical patent/WO2021142660A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • This application relates to the field of optical technology, and in particular to an optical module, an under-screen fingerprint identification device and a terminal.
  • the embodiments of the present application provide an optical module, an under-screen fingerprint identification device, and a terminal, which can solve the problem of poor imaging quality of the optical module in the prior art.
  • the technical solution is as follows;
  • an optical module including:
  • the substrate is arranged on one side of the photosensitive surface of the optical sensor; the substrate has a first surface facing away from the optical sensor and a second surface facing the optical sensor.
  • the first surface has a plurality of microlenses; the second surface has a light-shielding layer to shield light
  • the layer has a plurality of light-passing holes, and the light-passing holes correspond to the microlenses in a one-to-one correspondence, so that the light condensed by each microlens can pass through a corresponding light-passing hole to reach the photosensitive surface;
  • the maximum diameter of the orthographic projection of each microlens on the first surface is less than 20 ⁇ m, and the aperture of each light-passing hole is less than 10 ⁇ m.
  • a plurality of microlenses are arranged in an array on the first surface.
  • the beneficial effect of the above-mentioned further solution is that by arranging a plurality of microlenses arranged in an array on the first surface of the substrate, compared with randomly arranging a plurality of microlenses on the first surface, it can ensure that the photosensitive surface of the optical sensor receives The beams are distributed regularly.
  • each microlens is formed by enclosing the edges of a plurality of adjacent microlenses.
  • the beneficial effect of the above further solution is that by setting the edges of each microlens to be surrounded by the edges of a plurality of adjacent microlenses, the adjacent microlenses can be closely connected without gaps, so that More light can be collected by the micro lens to ensure the image quality.
  • the first surface is covered with micro lenses.
  • the beneficial effect of the above-mentioned further solution is that by covering the first surface with microlenses, all light passing through the first surface can be condensed by the microlenses, and the effective area of the optical module can be increased.
  • the orthographic projection of each microlens on the first surface is a regular hexagon.
  • the maximum thickness dimension of each microlens in the direction perpendicular to the first surface is less than 5 ⁇ m.
  • the beneficial effect of the above-mentioned further solution is: by controlling the maximum thickness dimension of each microlens in the direction perpendicular to the first surface to be less than 5 ⁇ m, on the one hand, the microlens can be directly generated by nanoimprint technology, which is convenient for processing; On the one hand, it has a good effect on the convergence of light.
  • each light-passing hole in the direction perpendicular to the first surface is 1 ⁇ m to 20 ⁇ m.
  • each light-passing hole in the direction perpendicular to the first surface can be directly generated by photolithography. Convenient, on the other hand, it can filter out stray light well.
  • the filter is connected to one side of the photosensitive surface of the optical sensor.
  • the beneficial effect of the above-mentioned further solution is that by arranging a filter on one side of the photosensitive surface of the optical sensor, the light in the non-working band can be filtered to ensure the imaging quality.
  • an embodiment of the present application provides an under-screen fingerprint identification device, including any of the above-mentioned optical modules and a display screen.
  • the display screen is located on the side of the substrate facing away from the optical sensor; , And conduct the light to the micro lens.
  • an embodiment of the present application provides a terminal including the above-mentioned under-screen fingerprint identification device.
  • the beneficial effects of the embodiments of the present application are: by providing a microlens on the first surface of the substrate, a light shielding layer is provided on the second surface of the substrate opposite to the first surface, and a light shielding layer is provided on the light shielding layer with the same size as each microlens.
  • a corresponding light-through hole so that the light condensed by each microlens can pass through a corresponding light-through hole, so as to reach the photosensitive surface.
  • the light that reaches the optical sensor is condensed by the microlens, which can improve the imaging quality;
  • the light condensed by the microlens passes through the light hole, which can filter out stray light.
  • the maximum diameter of the orthographic projection of each microlens on the first surface is controlled to be less than 20 ⁇ m.
  • the microlens can be generated by nanoimprint technology, which is convenient for processing; on the other hand, it can make the optical sensor
  • Each pixel unit corresponds to multiple microlenses to improve imaging quality.
  • the aperture of each light-passing hole is controlled to be less than 10 ⁇ m, so that the light beam passing through a light-passing hole can only reach the corresponding pixel unit on the optical sensor, and will not reach other pixel units. Can avoid the occurrence of crosstalk phenomenon.
  • the total thickness of the optical module in the embodiments of the present application can reach 0.1 mm, and the lighter and thinner optical module can be achieved under the premise of ensuring the imaging quality.
  • FIG. 1 is a schematic structural diagram of an optical module provided by an embodiment of the present application.
  • Fig. 2 is an enlarged schematic diagram of the structure at A in Fig. 1;
  • FIG. 3 is a schematic structural diagram of another optical module provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a three-dimensional structure of a substrate in an optical module provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an off-screen fingerprint identification device provided by an embodiment of the present application.
  • Fig. 6 is a structural block diagram of a terminal provided by an embodiment of the present application.
  • an embodiment of the present application provides an optical module 100 including an optical sensor 110 and a substrate 120.
  • the optical sensor 110 has a photosensitive surface 111.
  • the optical sensor 110 can be a Charge Coupled Device (CCD) or a Complementary Metal-Oxide Sensor (CMOS), which can convert the light signal reflected by an object into digital information and store it in the memory after being compressed.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal-Oxide Sensor
  • RAM bulk chip
  • PC card Portable PC card
  • the substrate 120 is disposed on one side of the photosensitive surface 111 of the optical sensor 110.
  • the preparation material of the substrate 120 may be any material with a light-transmitting function.
  • the preparation material of the substrate 120 may be plastic.
  • the preparation material of the substrate 120 may be glass.
  • the shape of the substrate 120 may be arbitrary.
  • the substrate 120 may have two oppositely arranged surfaces, and the two surfaces are parallel to each other.
  • the surface facing away from the optical sensor 110 is defined as the first surface 121
  • the surface facing the optical sensor 110 is defined as the second surface 122.
  • the first surface 121 may have a plurality of microlenses 1211, so that the light reaching the optical sensor 110 can be condensed through the microlenses 1211.
  • the second surface 122 may have a light-shielding layer 1221, and the light-shielding layer 1221 has a plurality of light-passing holes 1222, and the light-passing holes 1222 correspond to the microlenses 1211 in a one-to-one correspondence, so as to converge through each microlens 1211 All the light rays can pass through a corresponding light-passing hole 1222 to reach the photosensitive surface 111.
  • each microlens 1211 may be arbitrary.
  • the shape of the orthographic projection of each microlens 1211 on the first surface 121 may be a regular geometric figure. Regular geometric figures include circles, polygons, etc.
  • the shape of each light-passing hole 1222 can be arbitrary.
  • the hole axis of each light-passing hole 1222 can be perpendicular to the second surface 122, and the cross-section of each light-passing hole 1222 can be a regular geometric figure.
  • Each microlens 1211 and each light-passing hole 1222 may correspond to a pixel unit of the optical sensor 110.
  • each pixel unit of the optical sensor 110 may correspond to a plurality of microlenses 1211 and a plurality of light-passing holes 1222.
  • the size of the microlens 1211 can be made into a micron level, so that the pixel unit of each optical sensor 110 corresponds to a plurality of microlenses 1211 and a plurality of light-passing holes 1222.
  • the microlens 1211 By making the size of the microlens 1211 into a micron level, the microlens 1211 can be directly generated by nanoimprint technology, so that the processing of the microlens 1211 is more convenient.
  • the micron level refers to the size range of a few microns to tens of microns.
  • the maximum diameter h1 of the orthographic projection of each microlens 1211 on the first surface 121 can be controlled to be less than 20 ⁇ m, so that the microlens 1211 can be generated by nanoimprinting technology or
  • Each pixel unit of the optical sensor 110 corresponds to a plurality of microlenses 1211, and at the same time, the maximum diameter h1 of the orthographic projection of each microlens 1211 on the first surface 121 is controlled to be less than 20 ⁇ m, which has better imaging quality.
  • the maximum diameter size h1 of the orthographic projection of each microlens 1211 on the first surface 121 may be 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, or the like.
  • the contour line of the orthographic projection of the microlens 1211 on the first surface 121 is the first pattern, and the maximum diameter h1 of the orthographic projection of the microlens 1211 on the first surface 121 may refer to: passing through the centroid of the first pattern and at both ends The size of the longest line segment among all the line segments intersecting with the first pattern.
  • the maximum diameter h1 of the orthographic projection of the microlens 1211 on the first surface 121 may be a circular diameter.
  • the maximum diameter size h1 of the orthographic projection of the microlens 1211 on the first surface 121 may be the size of the diagonal of the square.
  • the aperture h2 can be as small as possible. Specifically, the aperture h2 of each light-passing hole 1222 can be controlled to be less than 10 ⁇ m. At this time, the light beam passing through one light-passing hole 1222 will only reach the corresponding pixel unit on the optical sensor 110, which can avoid crosstalk. The occurrence of the phenomenon. Specifically, the aperture h2 of each light-passing hole 1222 may be 2 ⁇ m, 4 ⁇ m, 6 ⁇ m, 8 ⁇ m, or the like. When the aperture h2 of each light-passing hole 1222 is 2 ⁇ m, the imaging effect is the best.
  • the plurality of microlenses 1211 may be randomly distributed on the first surface 121.
  • the plurality of microlenses 1211 may be randomly distributed on the first surface 121, whether the light beam received on the photosensitive surface 111 of the optical sensor 110 is converged by the microlenses 1211 will also be randomly distributed, which will result in clear imaging of some areas. The imaging of some areas is blurred, which affects the imaging quality.
  • the plurality of microlenses 1211 may be arranged in an array on the first surface 121 to ensure that the light beams received by the photosensitive surface 111 of the optical sensor 110 are regularly distributed.
  • the array arrangement of the plurality of microlenses 1211 on the first surface 121 may be a circular array arrangement or a rectangular array arrangement.
  • the microlenses 1211 may be protrusions that extend away from the first surface 121. To ensure that the two adjacent microlenses 1211 are independent of each other, each microlens 1211 extends from an end close to the first surface 121 to a distance away from the first surface 121. The cross section of one end of 121 may be reduced in order. There may or may not be a gap between each microlens 1211 and the plurality of microlenses 1211 adjacent to it. When there is a gap between the microlens 1211 and the multiple adjacent microlenses 1211, it may happen that part of the light beam reaches the pixel unit of the optical sensor 110 without being converged by the microlens 1211, but is not converged by the microlens 1211.
  • each microlens 1211 and the plurality of microlenses 1211 adjacent thereto there is preferably no gap between each microlens 1211 and the plurality of microlenses 1211 adjacent thereto.
  • the absence of a gap between each microlens 1211 and the plurality of microlenses 1211 adjacent to it may mean that: the orthographic projection of each microlens 1211 on the first surface 121 and the plurality of microlenses 1211 adjacent to it are on the first surface 121 There is no gap between the orthographic projections of the surface 121.
  • each microlens 1211 When the cross-section of each microlens 1211 is reduced from an end close to the first surface 121 to an end far away from the first surface 121, there is no gap between each microlens 1211 and a plurality of adjacent microlenses 1211. It means that there is no gap between the contour line of each microlens 1211 in contact with the first surface 121 and the contour line of the adjacent plurality of microlenses 1211 in contact with the first surface 121, that is, each The edges of the microlens 1211 may all be formed by surrounding the edges of a plurality of adjacent microlenses 1211.
  • each microlens 1211 By setting the edges of each microlens 1211 to be surrounded by the edges of a plurality of adjacent microlenses 1211, the adjacent microlenses 1211 can be closely connected without gaps, and more light can be Converged by the micro lens 1211 to ensure the image quality.
  • the first surface 121 may be covered with the microlens 1211.
  • the microlens 1211 In order to reduce the processing cost, it is also possible to cover only the orthographic projection area of the photosensitive surface 111 on the first surface 121 with the microlenses 1211.
  • the shapes of the plurality of microlenses 1211 may not be exactly the same.
  • the plurality of microlenses 1211 may be arranged in a rectangular array on the first surface 121, and each The shape of the row microlenses 1211 may be the same.
  • the orthographic projection of the first row of microlenses 1211 on the first surface 121 may be a circle
  • the orthographic projection of the second row of microlenses 1211 on the first surface 121 may be a square or the like.
  • the shapes of the multiple microlenses 1211 may be completely the same.
  • the shape of the orthographic projection of each microlens 1211 on the first surface 121 may be a circle.
  • the shape of the orthographic projection of the microlens 1211 on the first surface 121 is a circle, there will be a gap between each microlens 1211 and the adjacent microlens 1211.
  • each microlens 1211 In order to ensure that the shape of each microlens 1211 is exactly the same, there is no gap between each microlens 1211 and the adjacent microlens 1211, and the shape of the orthographic projection of each microlens 1211 on the first surface 121 may be a square Or regular hexagon and so on.
  • the shape of the orthographic projection of each microlens 1211 on the first surface 121 is a regular hexagon, the processing is convenient and the light convergence effect is good, as shown in FIG. 4.
  • the maximum thickness dimension h3 of each microlens 1211 along the direction perpendicular to the first surface 121 is less than 5 m.
  • the maximum thickness h3 of each microlens 1211 along the direction perpendicular to the first surface 121 is controlled to be less than 5 ⁇ m.
  • the microlens 1211 can be directly generated by nanoimprint technology, which is convenient for processing; The convergence effect is good, and the image quality can be improved.
  • the maximum thickness dimension h3 of each microlens 1211 in the direction perpendicular to the first surface 121 may be 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, or the like.
  • the depth dimension h4 of each light-passing hole 1222 along the direction perpendicular to the first surface 121 is 1 ⁇ m to 20 ⁇ m.
  • the depth dimension h4 of each light-passing hole 1222 along the direction perpendicular to the first surface 121 may be 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, or the like.
  • the optical module 100 may further include a filter 130.
  • the filter 130 is connected to one side of the photosensitive surface 111 of the optical sensor 110. By disposing the filter 130 on one side of the photosensitive surface 111 of the optical sensor 110, the light in the non-operating wavelength band can be filtered to ensure the imaging quality.
  • an embodiment of the present application provides an under-screen fingerprint identification device 10, which includes any of the above-mentioned optical modules 100 and a display screen 200.
  • the display screen 200 is located on a side of the substrate 120 away from the optical sensor 110. Side; the display screen 200 can receive the light reflected by the fingerprint and conduct the light to the microlens 1211.
  • the display screen 200 may be a display screen 200 having a self-luminous display unit.
  • the display screen is an Organic Light-Emitting Diode (OLED) or a Micro-LED display.
  • the under-screen fingerprint identification device 10 can use the display unit (ie, the OLED light source) of the display screen 200 corresponding to the optical module 100 as the excitation light source for fingerprint identification.
  • the display unit ie, the OLED light source
  • the display screen 200 emits light to the target finger above the display area. The light is reflected on the surface of the finger to form reflected light or is scattered inside the finger. The scattered light is formed.
  • the reflected light and the scattered light are collectively referred to as the reflected light. Since the ridge and valley of the fingerprint have different reflection capabilities for light, the reflected light from the fingerprint ridge and the reflected light from the fingerprint ridge have different light intensities.
  • the optical sensor 110 receives and converts it into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, thereby implementing a fingerprint identification function in the terminal 1.
  • the display screen 200 may also be a non-self-luminous display screen.
  • the display 200 is a liquid crystal display.
  • a protective glass 300 may be provided on the surface of the display screen 200 away from the optical module 100.
  • an embodiment of the present application provides a terminal 1 including the above-mentioned under-screen fingerprint identification device 10.
  • the terminal 1 may be any device having an image display function.
  • the terminal 1 may be a smart phone, a wearable device, a computer device, a television, a vehicle, a camera, a monitoring device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种光学模组(100)、屏下指纹识别装置(10)及终端(1),属于光学技术领域;所述光学模组(100)包括光学传感器(110);及基材(120),设置于光学传感器(110)的感光面(111)的一侧;基材(120)具有背离光学传感器(110)的第一表面(121)及面向光学传感器(110)的第二表面(122),第一表面(121)具有多个微透镜(1211);第二表面(122)具有遮光层(1221),遮光层(1221)具有多个通光孔(1222),通光孔(1222)与微透镜(1211)一一对应;其中,每个微透镜(1211)在第一表面(121)的正投影的最大直径尺寸均小于20μm,每个通光孔(1222)的孔径均小于10μm。该设计能够使到达光学传感器(110)的光线经过微透镜(1211)汇聚且能够滤除掉杂散光,成像质量好。光学模组(100)的总厚度可以达到0.1mm,在保证成像质量的前提下还能够实现光学模组(100)的轻薄化。

Description

一种光学模组、屏下指纹识别装置及终端 技术领域
本申请涉及光学技术领域,尤其涉及一种光学模组、屏下指纹识别装置及终端。
背景技术
随着消费类终端的不断发展,用户对终端的要求也随之升高。如,用户对终端内用于将光信号转化为电信号的光学模组的要求越来越高。现有技术中的光学模组因结构设计不够合理,一般存在成像质量较差的问题。
发明内容
本申请实施例提供了一种光学模组、屏下指纹识别装置及终端,可以解决现有技术中的光学模组成像质量差的问题。所述技术方案如下;
第一方面,本申请实施例提供了一种光学模组,包括:
光学传感器;及
基材,设置于光学传感器的感光面的一侧;基材具有背离光学传感器的第一表面及面向光学传感器的第二表面,第一表面具有多个微透镜;第二表面具有遮光层,遮光层具有多个通光孔,通光孔与微透镜一一对应,以使经每个微透镜汇聚的光线均能够通过对应的一个通光孔,从而到达感光面;
其中,每个微透镜在第一表面的正投影的最大直径尺寸均小于20μm,每个通光孔的孔径均小于10μm。
进一步,多个微透镜在第一表面呈阵列设置。
上述进一步方案的有益效果是:通过在基材的第一表面设置呈阵列布置的多个微透镜,相较于在第一表面随机设置多个微透镜而言,能够保证光学传感器的感光面接收的光束规则分布。
进一步,每个微透镜的边缘均由相邻的多个微透镜的边缘围合形成。
上述进一步方案的有益效果是:通过将每个微透镜的边缘均设置为由相邻的多个微透镜的边缘围合形成,能够使相邻的微透镜紧密连接而不会有间隙,以使更多的光线能够经 微透镜汇聚,以保证成像质量。
进一步,第一表面布满微透镜。
上述进一步方案的有益效果是:通过使第一表面布满微透镜,能够使所有经过第一表面的光线均能够经微透镜汇聚,能够增大光学模组的作用面积。
进一步,每个微透镜在第一表面的正投影均呈正六边形。
上述进一步方案的有益效果是:通过将微透镜在第一表面的正投影设置为正六边形,加工方便且对光线的汇聚作用好。
进一步,每个微透镜沿垂直于第一表面的方向的最大厚度尺寸均小于5μm。
上述进一步方案的有益效果是:通过将每个微透镜沿垂直于第一表面的方向的最大厚度尺寸控制在小于5μm,一方面使得该微透镜可直接通过纳米压印技术生成,加工方便;另一方面对光线的汇聚作用好。
进一步,每个通光孔沿垂直于第一表面的方向的深度尺寸均为1μm至20μm。
上述进一步方案的有益效果是:通过将每个通光孔沿垂直于第一表面的方向的深度尺寸控制在1μm至20μm之间,一方面使得该通光孔可直接通过光刻技术生成,加工方便,另一方面能够很好的滤除杂散光。
进一步,还包括:
滤光片,连接于光学传感器的感光面的一侧。
上述进一步方案的有益效果是:通过在光学传感器的感光面的一侧设置滤光片,能够滤除非工作波段的光线,以保证成像质量。
第二方面,本申请实施例提供了一种屏下指纹识别装置,包括上述任意的光学模组和显示屏,显示屏位于基材的背离光学传感器的一侧;显示屏能够接收经过指纹后反射的光线,并将光线传导至微透镜。
第三方面,本申请实施例提供了一种终端,包括上述的屏下指纹识别装置。
本申请实施例的有益效果是:通过在基材的第一表面设置微透镜,在基材的与第一表面相对的第二表面设置遮光层,且在遮光层上设置与每个微透镜一一对应的通光孔,以使经每个微透镜汇聚的光线均能够通过对应的一个通光孔,从而到达感光面,一方面使到达光学传感器的光线经过微透镜汇聚,能够改善成像质量;另一方面使经微透镜汇聚的光线 经过通光孔,能够滤除掉杂散光。本申请实施例通过将每个微透镜在第一表面的正投影的最大直径尺寸控制在小于20μm,一方面使得该微透镜可通过纳米压印技术生成,加工方便;另一方面可使得光学传感器的每个像素单元对应多个微透镜,以提高成像质量。本申请实施例通过将每个通光孔的孔径控制在小于10μm,能够使经过一个通光孔的光束仅能够到达光学传感器上的与之相对应的像素单元,而不会到达其他像素单元,能够避免crosstalk现象的发生。本申请实施例的光学模组的总厚度可以达到0.1mm,在保证成像质量的前提下还能够实现光学模组的轻薄化。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的一种光学模组的结构示意图;
图2是图1中A处结构的放大示意图;
图3是本申请实施例提供的又一种光学模组的结构示意图;
图4是本申请实施例提供的光学模组中基材的立体结构示意图;
图5是本申请实施例提供的屏下指纹识别装置的结构示意图;
图6是本申请实施例提供的终端的结构框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例方式作进一步地详细描述。
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
第一方面,参见图1和图2,本申请实施例提供了一种光学模组100,包括光学传感器110和基材120。
光学传感器110具有感光面111。光学传感器110可以是电荷耦合元件(Charge Coupled Device,CCD)或补充性氧化金属半导体(Complmmentary Metal-Oxide Seniconductor,CMOS),能够将物体所反射的光信号转换成数码信息并经压缩后储存在记忆体晶片(RAM)或可携式PC卡上。光学传感器110在使用时接收光线的表面为感光面111。
基材120设置于光学传感器110的感光面111的一侧。基材120的制备材料可以是具有透光功能的任意材料。如,基材120的制备材料可以是塑料。当然,为提高成像质量,基材120的制备材料可以为玻璃。
基材120的形状可以是任意的。当然,为减小甚至消除所有的光束经过基材120的光程差异,基材120可以具有相对设置的两个表面,且两个表面相互平行。其中,将背离光学传感器110的表面定义为第一表面121,将面向光学传感器110的表面定义为第二表面122。为改善光学模组100的成像质量,第一表面121可以具有多个微透镜1211,以使到达光学传感器110的光线能够经过微透镜1211汇聚。为滤除掉杂散光,第二表面122可以具有遮光层1221,且遮光层1221具有多个通光孔1222,通光孔1222与微透镜1211一一对应,以使经每个微透镜1211汇聚的光线均能够通过对应的一个通光孔1222,从而到达感光面111。
每个微透镜1211的形状可以是任意的。以下针对每个微透镜1211在第一表面121的正投影的形状进行说明:为便于加工,每个微透镜1211在第一表面121的正投影的形状可以是规则的几何图形。规则的几何图形包括圆形、多边形等。每个通光孔1222的形状可以是任意的。当然,为便于加工,每个通光孔1222的孔轴线可以是垂直于第二表面122,且每个通光孔1222的横截面可以呈规则的几何图形。
每个微透镜1211和每个通光孔1222均可以对应光学传感器110的一个像素单元。当然,为提高成像质量,每个光学传感器110的像素单元可以对应多个微透镜1211和多个通光孔1222。本申请实施例中,可通过将微透镜1211的尺寸做成微米级,以使每个光学传感器110的像素单元对应多个微透镜1211和多个通光孔1222。通过将微透镜1211的尺寸做成微米级还可以使微透镜1211直接通过纳米压印技术生成,以使微透镜1211的加工更加 方便。微米级是指尺寸范围在几个微米到几十个微米之间。具体地,为提升成像质量,每个微透镜1211在第一表面121的正投影的最大直径尺寸h1均可以控制在小于20μm,以使该微透镜1211既可以通过纳米压印技术生成,也可以使得光学传感器110的每个像素单元对应多个微透镜1211,同时将每个微透镜1211在第一表面121的正投影的最大直径尺寸h1控制在小于20μm,具备更好的成像质量。具体地,每个微透镜1211在第一表面121的正投影的最大直径尺寸h1可以为5μm、10μm、15μm等。
微透镜1211在第一表面121的正投影的轮廓线为第一图案,微透镜1211在第一表面121的正投影的最大直径尺寸h1可以指:在经过第一图案的形心、且两端与第一图案相交的所有线段中,最长的一条线段的尺寸。如,当第一图案为圆形时,微透镜1211在第一表面121的正投影的最大直径尺寸h1可以为圆形的直径尺寸。当第一图案为正方形时,微透镜1211在第一表面121的正投影的最大直径尺寸h1可以为正方形的对角线的尺寸。
为避免经过一个通光孔1222的光束除了会到达光学传感器110上的与之对应的像素单元外,还会到达光学传感器110上的其他像素单元,进而造成crosstalk现象,每个通光孔1222的孔径h2可以尽可能的小。具体地,每个通光孔1222的孔径h2均可以控制在小于10μm,此时,经过一个通光孔1222的光束只会到达光学传感器110上的与之相对应的像素单元上,能够避免crosstalk现象的发生。具体地,每个通光孔1222的孔径h2可以为2μm、4μm、6μm、8μm等。当每个通光孔1222的孔径h2为2μm时,成像效果最佳。
多个微透镜1211在第一表面121可以是随机分布的。当多个微透镜1211在第一表面121为随机分布时,光学传感器110的感光面111上接收到的光束是否经过微透镜1211的汇聚也将是随机分布的,这样会造成部分区域成像清晰,部分区域成像模糊,影响成像质量。为此,多个微透镜1211在第一表面121可以是呈阵列设置的,以保证光学传感器110的感光面111接收的光束规则分布。多个微透镜1211在第一表面121的阵列设置可以是圆周阵列设置,也可以是矩形阵列设置。
微透镜1211可以是朝远离第一表面121的方向延伸的凸起,为确保相邻两个微透镜1211之间相互独立,每个微透镜1211从靠近第一表面121的一端至远离第一表面121的一端的横截面可以是依次缩小。每个微透镜1211和与其相邻的多个微透镜1211之间可以存在间隙,也可以不存在间隙。当微透镜1211和与其相邻的多个微透镜1211之间存在间隙 时,可能会出现部分光束没有经过微透镜1211的汇聚就到达了光学传感器110的像素单元上,而没有经过微透镜1211汇聚的光束在到达像素单元后,该像素单元处的成型质量会比较差。为此,每个微透镜1211和与其相邻的多个微透镜1211之间优选为不存在间隙。每个微透镜1211和与其相邻的多个微透镜1211之间不存在间隙可以是指:每个微透镜1211在第一表面121的正投影和与其相邻的多个微透镜1211在第一表面121的正投影之间不存在间隙。当每个微透镜1211从靠近第一表面121的一端至远离第一表面121的一端的横截面依次缩小时,每个微透镜1211和与其相邻的多个微透镜1211之间不存在间隙可以是指:每个微透镜1211的与第一表面121相接触的轮廓线和与其相邻的多个微透镜1211的与第一表面121相接触的轮廓线之间不存在间隙,即,每个微透镜1211的边缘均可以是由相邻的多个微透镜1211的边缘围合形成。通过将每个微透镜1211的边缘均设置为由相邻的多个微透镜1211的边缘围合形成,能够使相邻的微透镜1211紧密连接而不会有间隙,能够使更多的光线能够经微透镜1211汇聚,以保证成像质量。
为使所有经过第一表面121的光线均能够经微透镜1211汇聚,以增大光学模组100的作用面积,第一表面121可以布满微透镜1211。当然,为降低加工成本,也可以是只将感光面111在第一表面121的正投影区域布满微透镜1211。
多个微透镜1211的形状可以不完全相同,此时,为使光学传感器110的感光面111接收到的光束规则分布,多个微透镜1211在第一表面121可以是呈矩形阵列设置,且每行微透镜1211的形状可以是相同的。如,第一行微透镜1211在第一表面121的正投影可以为圆形,第二行微透镜1211在第一表面121的正投影可以为正方形等。为使光学传感器110的感光面111接收到的光束所经过的汇聚作用相同,多个微透镜1211的形状可以是完全相同的。当多个微透镜1211的形状完全相同时,每个微透镜1211在第一表面121的正投影的形状可以为圆形。当微透镜1211在第一表面121的正投影的形状为圆形时,每个微透镜1211和与其相邻的微透镜1211之间会存在间隙。为使每个微透镜1211的形状完全相同时,每个微透镜1211和与其相邻的微透镜1211之间不存在间隙,每个微透镜1211在第一表面121的正投影的形状可以是正方形或正六边形等。当每个微透镜1211在第一表面121的正投影的形状为正六边形时,加工方便且对光线的汇聚效果好,可参见图4。
为提升微透镜1211对光线的汇聚效果,每个微透镜1211沿垂直于第一表面121的方 向的最大厚度尺寸h3均小于5μm。将每个微透镜1211沿垂直于第一表面121的方向的最大厚度尺寸h3控制在小于5μm,一方面使得该微透镜1211可直接通过纳米压印技术生成,加工方便;另一方面对光线的汇聚作用好,能够提升成像质量。具体地,每个微透镜1211沿垂直于第一表面121的方向的最大厚度尺寸h3可以为1μm、2μm、3μm、4μm等。
为更好的滤除杂散光,每个通光孔1222沿垂直于第一表面121的方向的深度尺寸h4均为1μm至20μm。通过将每个通光孔1222沿垂直于第一表面121的方向的深度尺寸h4控制在1μm至20μm以内,除了能够更好的滤除杂散光外,还能够使得该通光孔1222可直接通过光刻技术生成,加工方便。具体地,每个通光孔1222沿垂直于第一表面121的方向的深度尺寸h4可以为5μm、10μm、15μm等。
参见图3,为实现非工作波段光线的过滤,光学模组100还可以包括滤光片130。滤光片130连接于光学传感器110的感光面111的一侧。通过在光学传感器110的感光面111的一侧设置滤光片130,能够滤除非工作波段的光线,以保证成像质量。
第二方面,参见图5,本申请实施例提供了一种屏下指纹识别装置10,包括上述任意的光学模组100和显示屏200,显示屏200位于基材120的背离光学传感器110的一侧;显示屏200能够接收经指纹反射的光线,并将光线传导至微透镜1211。
显示屏200可以是具有自发光显示单元的显示屏200。如,显示屏为有机发光二极管显示屏(Organic Light-Emitting Diode,OLED)或者微型发光二极管显示屏(Micro-LED)。以采用OLED显示屏为例,屏下指纹识别装置10可以利用显示屏200的与光学模组100相对应的显示单元(即OLED光源)来作为指纹识别的激励光源。当手指按压在显示屏200的与光学模组100相对应的显示区域时,显示屏200向显示区域上方的目标手指发出光线,该光线在手指的表面发生反射形成反射光线或者经过手指内部散射而形成散射光线,为便于描述,本申请实施例中,反射光线和散射光线统称为反射光线。由于指纹的嵴(ridge)与峪(vally)对于光线的反射能力不同,因此,来自指纹嵴的反射光线和来自指纹峪的反射光线具有不同的光强,反射光线经过光学模组100后,被光学传感器110所接收并转换为相应的电信号,即指纹检测信号;基于指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在终端1实现指纹识别功能。显示屏200也可以是非自发光显示屏。如,显示屏200为液晶显示屏。
为避免显示屏200受到外力的撞击,显示屏200背离光学模组100的表面可以设置保护玻璃300。
第三方面,参见图6,本申请实施例提供了一种终端1,包括上述的屏下指纹识别装置10。终端1可以是具有图像显示功能的任意设备。如,终端1可以是智能手机、可穿戴设备、电脑设备、电视机、交通工具、照相机、监控装置等。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。此外,在本申请的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (10)

  1. 一种光学模组,其特征在于,包括:
    光学传感器;及
    基材,设置于所述光学传感器的感光面的一侧;所述基材具有背离所述光学传感器的第一表面及面向所述光学传感器的第二表面,所述第一表面具有多个微透镜;所述第二表面具有遮光层,所述遮光层具有多个通光孔,所述通光孔与所述微透镜一一对应,以使经每个所述微透镜汇聚的光线均能够通过对应的一个所述通光孔,从而到达所述感光面;
    其中,每个所述微透镜在所述第一表面的正投影最大直径尺寸均小于20μm,每个所述通光孔的孔径均小于10μm。
  2. 如权利要求1所述的光学模组,其特征在于,多个所述微透镜在所述第一表面呈阵列设置。
  3. 如权利要求2所述的光学模组,其特征在于,每个所述微透镜的边缘均由相邻的多个所述微透镜的边缘围合形成。
  4. 如权利要求3所述的光学模组,其特征在于,所述第一表面布满所述微透镜。
  5. 如权利要求3所述的光学模组,其特征在于,每个所述微透镜在所述第一表面的正投影均呈正六边形。
  6. 如权利要求1所述的光学模组,其特征在于,每个所述微透镜沿垂直于所述第一表面的方向的最大厚度尺寸均小于5μm。
  7. 如权利要求1所述的光学模组,其特征在于,每个所述通光孔沿垂直于所述第一表面的方向的深度尺寸为1μm至20μm。
  8. 如权利要求1所述的光学模组,其特征在于,还包括:
    滤光片,连接于所述光学传感器的所述感光面的一侧。
  9. 一种屏下指纹识别装置,其特征在于,包括权利要求1至8中任一项所述的光学模组和显示屏,所述显示屏位于所述基材的背离所述光学传感器的一侧;所述显示屏能够接收经过指纹后反射的所述光线,并将所述光线传导至所述微透镜。
  10. 一种终端,其特征在于,包括权利要求9所述的屏下指纹识别装置。
PCT/CN2020/072234 2020-01-15 2020-01-15 一种光学模组、屏下指纹识别装置及终端 WO2021142660A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072234 WO2021142660A1 (zh) 2020-01-15 2020-01-15 一种光学模组、屏下指纹识别装置及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072234 WO2021142660A1 (zh) 2020-01-15 2020-01-15 一种光学模组、屏下指纹识别装置及终端

Publications (1)

Publication Number Publication Date
WO2021142660A1 true WO2021142660A1 (zh) 2021-07-22

Family

ID=76863448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072234 WO2021142660A1 (zh) 2020-01-15 2020-01-15 一种光学模组、屏下指纹识别装置及终端

Country Status (1)

Country Link
WO (1) WO2021142660A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200783A (ja) * 2015-04-14 2016-12-01 リコーインダストリアルソリューションズ株式会社 スクリーン及び表示装置
CN107480579A (zh) * 2016-06-08 2017-12-15 联咏科技股份有限公司 光学传感器元件及指纹传感器装置
CN109389023A (zh) * 2017-08-11 2019-02-26 财团法人工业技术研究院 生物辨识装置
CN110473887A (zh) * 2018-08-21 2019-11-19 神盾股份有限公司 光学传感器、光学传感系统及其制造方法
CN110674798A (zh) * 2019-11-11 2020-01-10 北京迈格威科技有限公司 光学指纹识别装置及触控终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200783A (ja) * 2015-04-14 2016-12-01 リコーインダストリアルソリューションズ株式会社 スクリーン及び表示装置
CN107480579A (zh) * 2016-06-08 2017-12-15 联咏科技股份有限公司 光学传感器元件及指纹传感器装置
CN109389023A (zh) * 2017-08-11 2019-02-26 财团法人工业技术研究院 生物辨识装置
CN110473887A (zh) * 2018-08-21 2019-11-19 神盾股份有限公司 光学传感器、光学传感系统及其制造方法
CN110674798A (zh) * 2019-11-11 2020-01-10 北京迈格威科技有限公司 光学指纹识别装置及触控终端

Similar Documents

Publication Publication Date Title
US11403869B2 (en) Optical fingerprint identification apparatus and electronic device
CN210721493U (zh) 屏下指纹认证用的传感器模块及屏下指纹认证装置
WO2020220305A1 (zh) 屏下指纹识别装置和电子设备
WO2020172876A1 (zh) 光学图像采集单元、光学图像采集系统和电子设备
WO2021072753A1 (zh) 指纹检测装置和电子设备
CN211236934U (zh) 一种光学模组、屏下指纹识别装置及终端
CN111095289B (zh) 屏下指纹识别装置以及终端设备
WO2021042806A1 (zh) 指纹感测模块与电子装置
WO2021077406A1 (zh) 指纹识别装置和电子设备
CN111095279B (zh) 指纹检测装置和电子设备
WO2020113396A1 (zh) 光学镜头及其制作方法、指纹识别模组、移动终端
WO2018233598A1 (zh) 一种晶圆级图像采集装置
WO2017118030A1 (zh) 光学指纹传感器模组
JP5312155B2 (ja) 屈折率分布型光学素子及び該屈折率分布型光学素子を有する撮像素子
WO2023246640A1 (zh) 电子设备
TWM595262U (zh) 屏下指紋辨識裝置
CN111164611B (zh) 屏下生物特征识别装置和电子设备
WO2021042395A1 (zh) 指纹检测装置和电子设备
TWM605463U (zh) 螢幕下光學指紋識別元件及電子設備
CN113128319A (zh) 一种光学模组、屏下指纹识别装置及终端
CN213659463U (zh) 指纹识别装置和电子设备
WO2020233601A1 (zh) 成像层、成像装置、电子设备、波带片结构及感光像元
WO2021142660A1 (zh) 一种光学模组、屏下指纹识别装置及终端
KR20220073835A (ko) 이미지 수집 광학 구조 및 생체 특징의 진위를 감별하는 방법과 전자 장치
CN210052170U (zh) 屏下生物特征识别装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913700

Country of ref document: EP

Kind code of ref document: A1