WO2021142596A1 - 电池控制方法、设备及存储介质 - Google Patents

电池控制方法、设备及存储介质 Download PDF

Info

Publication number
WO2021142596A1
WO2021142596A1 PCT/CN2020/071859 CN2020071859W WO2021142596A1 WO 2021142596 A1 WO2021142596 A1 WO 2021142596A1 CN 2020071859 W CN2020071859 W CN 2020071859W WO 2021142596 A1 WO2021142596 A1 WO 2021142596A1
Authority
WO
WIPO (PCT)
Prior art keywords
output power
movable platform
battery
target
weight
Prior art date
Application number
PCT/CN2020/071859
Other languages
English (en)
French (fr)
Inventor
许柏皋
刘强
陆芷静
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/071859 priority Critical patent/WO2021142596A1/zh
Priority to CN202080005664.0A priority patent/CN112956102A/zh
Publication of WO2021142596A1 publication Critical patent/WO2021142596A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a battery control method, a smart battery, a movable platform, a mobile component, and a storage medium.
  • the battery output power (State Of Power, SOP) is used to indicate the battery's ability to withstand the discharge power.
  • SOP State Of Power
  • the reasonable setting of the output power SOP can improve the utilization efficiency of the battery and increase the service life of the battery.
  • the battery of the drone generally only has a fixed output power SOP, regardless of whether the weight of the drone changes, for example, the weight of an industrial drone is not fixed, if you still set a fixed output power SOP , Will make the flight of industrial drones restricted, and even the problem of falling bombers.
  • this application provides a battery control method, a smart battery, a movable platform, a mobile component, and a storage medium to automatically adjust the output power of the battery according to the weight, improve the utilization efficiency of the battery, and ensure the safe operation of the mobile platform sex.
  • the present application provides a battery control method, where the battery is used to supply power to a movable platform, and the method includes:
  • the battery is controlled to supply power to the movable platform according to the target output power.
  • this application also provides another battery control method, which is applied to a mobile platform, and the method includes:
  • the target output power is sent to the battery, so that the battery supplies power to the movable platform according to the target output power.
  • the present application also provides a smart battery, the smart battery including a processor, a memory, a battery, and a battery circuit connected to the battery;
  • the battery circuit is connected to the processor, and is used to control battery charging or discharging;
  • the memory is used to store a computer program
  • the processor is used to execute the computer program and when executing the computer program, implement the following steps:
  • the battery is controlled to supply power to the movable platform according to the target output power.
  • the present application also provides a movable platform, the movable platform is powered by a battery, and the movable platform includes a processor and a memory;
  • the memory is used to store a computer program
  • the processor is used to execute the computer program and when executing the computer program, implement the following steps:
  • the target output power is sent to the battery, so that the battery supplies power to the movable platform according to the target output power.
  • the present application also provides a mobile component that includes a movable platform and a smart battery as described above; the smart battery is used to be installed on the movable platform to provide power to the movable platform .
  • this application also provides another mobile component, which includes the above-mentioned movable platform and a smart battery; the smart battery is used to be installed on the movable platform to provide power to the movable platform.
  • the present application also provides a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the processor implements the above-mentioned battery control method.
  • the battery control method, equipment, and storage medium proposed in the present application obtain the weight of the load carried by the movable platform and/or the movable platform; according to the movable platform and/or the load carried by the movable platform
  • the weight of the load determines the target output power of the battery; the battery is controlled to supply power to the movable platform according to the target output power.
  • the output power of the battery can be adjusted according to the weight of the movable platform, and the flexibility and safety of the movable platform are improved.
  • Fig. 1 is a schematic block diagram of a mobile component provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of steps of a battery control method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of steps of another battery control method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an application scenario of a battery control method provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a smart battery provided by an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a movable platform provided by an embodiment of the present application.
  • the embodiments of the present application provide a battery control method, a smart battery, a movable platform, a mobile component, and a storage medium.
  • the battery control method realizes automatic adjustment of the output power of the battery according to the weight, and can flexibly use the output power of the battery to improve This improves the efficiency and service life of the battery, and at the same time ensures the safety of the mobile platform.
  • FIG. 1 is a schematic block diagram of a mobile component provided by an embodiment of the present application.
  • the mobile component 100 includes a battery 10 and a movable platform 20, and the battery 10 is used to supply power to the movable platform 20 and the load carried on the movable platform 20.
  • the battery 10 can be fixedly installed on the movable platform 20 or detachably installed on the movable platform 20.
  • the battery 10 includes a micro-controller unit (MCU), which can also be referred to as a smart battery, and can communicate with a movable platform through the micro-controller unit, so as to realize information interaction with the movable platform. For example, receiving a control instruction from a movable platform, according to the control instruction, controls the battery to output a voltage with a preset voltage amplitude, a current with a preset current amplitude, or output an output power with a preset power amplitude, or obtain a mobile platform's power Operating power and so on.
  • MCU micro-controller unit
  • the movable platform 20 includes an aircraft, a robot, an electric vehicle or an autonomous unmanned vehicle, etc.
  • the battery 10 supplies power to a motor without an aircraft to control the rotation of the propeller connected to the motor, thereby achieving take-off or hovering of the aircraft; for another example, the battery 10 supplies power to a camera mounted on the aircraft to achieve aerial photography and so on.
  • the aircraft includes drones, which include rotary-wing drones, such as quad-rotor drones, hexa-rotor drones, and octo-rotor drones. It can also be a fixed-wing drone or The combination of rotary wing and fixed-wing UAV is not limited here.
  • the robots include educational robots, which use a Mecanum wheel omnidirectional chassis, and are equipped with multiple pieces of intelligent armor.
  • Each intelligent armor has a built-in impact detection module that can quickly detect physical strikes.
  • it also includes a two-axis pan/tilt, which can be flexibly rotated, matched with the transmitter to accurately, stably and continuously fire crystal bombs or infrared beams, and matched with ballistic light effects, giving users a more realistic shooting experience.
  • each battery will be equipped with an output power capability meter (SOP capability meter), which can be provided by the battery manufacturer and records the output power of the battery at different temperature values and different state of charge values Ability value.
  • SOP capability meter output power capability meter
  • the output power capability table may be stored in a battery or a movable platform for use in a battery control method.
  • Table 1 records the output power capability value of the battery at different temperature values and different state-of-charge values.
  • the first column represents different temperature values, such as 0°C, 5°C, 10°C, and 25°C.
  • Table 1 records the output power capability value of the battery at different temperature values and different state-of-charge values.
  • the corresponding SOP is 2795, which means that when the state of charge is 100% and the battery temperature is 25°C, the maximum SOP that can be output is 2795; for another example, charge
  • the corresponding SOP is 1762, which means that the maximum SOP that the battery can output is 1762 when the battery is 60% charged and the battery temperature is 25°C.
  • the load it carries is not fixed, and the weight of different loads is also different, which causes the same industrial drone to have a different weight every time it operates.
  • the weight is not the same, if a fixed SOP is used to control the power of the drone, the limited power of the battery will not be able to be used, and even a crash will occur.
  • the take-off power of the drone is 800W when it is unloaded, the full-load take-off power of the drone may reach 1800W, and the take-off power varies greatly under different load conditions. If the fixed SOP is still used, such as setting the battery SOP according to 1800W, the aircraft may be too restricted. If the battery SOP is set according to 800W, the aircraft may crash.
  • the embodiments of the present application provide a battery control method, a smart battery, a movable platform, a mobile component, and a storage medium.
  • the battery control method can be applied to the smart battery or the movable platform to implement the
  • the weight dynamically adjusts the output power of the battery, which can not only improve the utilization efficiency of the battery, but also ensure the safety of the mobile platform.
  • FIG. 2 is a schematic flowchart of steps of a battery control method provided by an embodiment of the present application.
  • the battery control method is applied to the battery to supply power to the movable platform.
  • the battery control method includes steps S101 to S103.
  • the weight includes a specific weight value or weight range, the specific weight value is, for example, 7Kg, and the weight range is, for example, 6.9Kg-7.1Kg.
  • the mobile platform may include when it is started up and in the process of being already running. Specifically, the weight of the movable platform, the weight of the load carried by the movable platform, or the weight of the movable platform and the load carried by the movable platform can be obtained.
  • the weight of the drone's fuselage is 5Kg, and it is equipped with a spraying device, which weighs 3Kg. Then the weight of the drone is 5Kg, the weight of the drone's load is 3Kg, and the weight of the drone and its load is 8Kg. The weight of the load carried by the drone is 3Kg, or the weight of the drone and its load is 8Kg.
  • the weight of the same type of drones will also vary, but the weight of the load may be fixed. Therefore, the weight of the drone is obtained as a basis for adjusting the output power of the battery.
  • the operating power of the movable platform may be specifically obtained; the movable platform and/or the load carried by the movable platform can be determined according to the operating power the weight of.
  • the operating power includes the corresponding power when the movable platform is operating.
  • the movable platform is an unmanned aerial vehicle, and the operating power includes take-off power and/or hovering power.
  • the operating power also includes the operating power preset for the movable platform, for example, the preset take-off power and/or hovering power.
  • the take-off power can ensure the normal take-off of the UAV.
  • the size of the take-off power is related to the weight of the UAV, that is, it is in a positive correlation. Therefore, the weight of the UAV can be determined according to the take-off power.
  • the hovering power can ensure that the drone hovering stably in the air.
  • the size of the hovering power is related to the weight of the drone, and is positively correlated with the take-off power. Therefore, the drone’s power can be determined according to the take-off power. Weight, and the influence of other factors can be excluded, and the weight of the drone can be determined more accurately.
  • the weight of the movable platform and/or the load carried by the movable platform can be determined according to the corresponding relationship or fitting relationship between the operating power and the weight.
  • determining the weight of the movable platform and/or the load carried by the movable platform according to the operating power of the movable platform is specifically obtaining a preset mapping relationship table between the operating power and the weight; according to the preset mapping The relationship table determines the weight corresponding to the operating power of the movable platform as the weight of the movable platform and/or the load carried by the movable platform.
  • the weight of the movable platform can be obtained quickly and accurately through the mapping relationship table.
  • the preset mapping relationship table between the operating power and the weight is stored in the smart battery, so that the corresponding weight can be obtained by querying the operating power.
  • the preset mapping relationship table between operating power and weight records the correspondence between different operating power ranges and different weights. Therefore, the operating power range corresponding to the operating power of the movable platform can be determined first, and the weight corresponding to the determined operating power range can be used as the weight of the movable platform and/or the load carried by the movable platform.
  • the operating power range of 400W-420W corresponds to a weight of 7Kg
  • the operating power range of 645W-655W corresponds to a weight of 8Kg
  • the operating power range of 895W-905W corresponds to a weight of 9Kg
  • the operating power of the movable platform is 650W.
  • the weight of the movable platform is 8Kg.
  • the above-mentioned determined weight of the movable platform includes the total weight of the movable platform and its carrying load, of course, it can also be the weight of the movable platform (without load), or just the weight of the load (the weight of the movable platform is basically unchanged). It should be noted that the weight is determined in the same way.
  • the different weights of the movable platform corresponding to the different output power of the battery are experimentally tested to ensure the safety of the movable platform, and then the target output power of the battery corresponding to the different weight is obtained.
  • the target output power can improve the utilization of the battery. Efficiency, and can ensure the safe operation of the movable platform.
  • the target output power of the power supply battery of the movable platform and/or the weight of the load carried by the movable platform can be determined.
  • a preset mapping relationship table between weight and output power may be specifically obtained; according to the preset mapping relationship table, the movable platform and/or the The output power corresponding to the weight of the load on the mobile platform is used to obtain the target output power of the battery.
  • the preset mapping relationship table is obtained by pre-testing, and the corresponding relationship between different weights and different output powers is recorded.
  • the output power obtained by querying the mapping relationship table is used as the target output power, so that the target output power of the battery can be quickly and accurately obtained, so as to control the battery according to the target output power.
  • the target output power of the battery can be directly determined according to the weight of the mobile platform and/or the load carried by the mobile platform, and the target output power can also be obtained by querying the output power capability table of the battery.
  • the output power capability table of the battery to obtain the target output power, specifically to determine the preset output power corresponding to the weight of the movable platform and/or the load carried by the movable platform; obtain the output power capability table of the battery, and the output power capability table records There are the output power capability values of the battery at different temperature values and different state-of-charge values; the output power capability value matching the preset output power is queried from the output power capability table to obtain the target output power of the battery.
  • the preset output power is the power that can ensure the operation of the movable platform, and can be understood as the minimum output power that can ensure the normal operation of the movable platform.
  • the weight of the movable platform and/or the load carried by the movable platform has a positive correlation with the preset output power. That is, the weight of the movable platform increases, and the corresponding preset output power is also larger.
  • the output power capacity table as shown in Table 1, the output power capacity table records the output power capacity values of the battery at different temperature values and different state-of-charge values.
  • the weight of the drone is 7KG, 8KG, and 9KG, and the corresponding preset output power is 400W, 650W, and 900W, respectively.
  • the output power capability value matching the preset output power from the output power capability table For example, select an output power capability value greater than the preset output power from the output power capability table as the target output power of the battery; or Multiple output power capability values of output power are preset, and the smallest output power capability value is selected as the target output power of the battery.
  • the weight of the drone is 7Kg
  • the preset output power corresponding to the drone is determined to be 400W
  • the output power capability value greater than 400W can be determined from Table 1.
  • the output power capability value greater than 400W is, for example, 589, 493 , 411, 572, 476, 466, 422, 578, 521, 442, 643, 496, 575, and 576.
  • the output power capability value with the smallest difference from the preset output power may be included in the output power capability table.
  • the output power capability value greater than 400W is, for example, 589, 493, 411, 572, 476, 466, 422, 578, 521, 442, 643, 496, 575, and 576, and the output power capability value is selected as 411 as the target output power .
  • the current state of charge SOC of the battery may also be considered.
  • obtain the state of charge of the battery determine the target state of charge value from the multiple state of charge values in the output power capability table according to the state of charge of the battery; determine the multiple output power capabilities corresponding to the target state of charge value Value; select an output power capability value from multiple output power capability values corresponding to the target state-of-charge value as the target output power of the battery.
  • the target state of charge value is less than or equal to the state of charge value of the battery.
  • multiple state of charge values such as 70%, 60%, 50%, 40%, 30%, 20%, and 15% can be determined in the output power capacity table as the target State of charge value.
  • Determining multiple output power capability values corresponding to the target state of charge value refers to an output power capability value that is greater than the preset output power.
  • the preset output power is 400W.
  • the determined target state of charge value is 70%, and its corresponding output power capability values are 476 and 616, respectively; the determined target state of charge value is 50%, and its corresponding output power capability value is 466 and 633, respectively.
  • an output power capability value can be selected from the output power capability values 476 and 616 corresponding to the state of charge value of 70% as the target output power of the battery; or, the output power capability corresponding to the state of charge value of 50% Select an output power capability value among the values 466 and 633 as the target output power of the battery.
  • the smallest output power capability value can be selected from the multiple output power capability values corresponding to the target state of charge value as the battery target Output Power.
  • the smallest output power capability value 466 is selected as the target output power of the battery.
  • the current temperature of the battery in order to more accurately query the output power capability table of the battery according to the preset output power to obtain the target output power, the current temperature of the battery may also be considered.
  • obtain the current temperature of the battery determine the target temperature value from the multiple temperature values in the output power capability table according to the current temperature of the battery; determine the multiple output power capability values corresponding to the target temperature value; One output power capability value among the multiple output power capability values is selected as the target output power of the battery.
  • the target temperature value is the temperature value greater than or equal to the current temperature among the multiple temperature values in the output power capability table; or, the target temperature value is the temperature with the smallest difference between the multiple temperature values in the output power capability table and the target temperature value. value.
  • the current temperature of the battery is 9°C
  • the temperature values greater than or equal to the current temperature in the output power capacity table are 10°C, 25°C, and 40°C, respectively.
  • 10°C, 25°C, and 40°C can all be The target temperature value.
  • the current temperature of the battery is 4°C
  • the temperature value with the smallest difference from the target temperature value among the multiple temperature values of the output power capability table is 5°C, then this 5°C is the target temperature value.
  • Determining multiple output power capability values corresponding to the target temperature value refers to an output power capability value greater than the preset output power.
  • the preset output power is 400W
  • the target temperature value is determined to be 5°C
  • the multiple output power capability values corresponding to the target temperature value of 5°C are 442, 672, 753, 819, and 940 respectively.
  • an output power capability value is selected from multiple output power capability values corresponding to the target temperature value as the target output power of the battery, which can be specifically selected from multiple output power capability values corresponding to the target temperature value.
  • the smallest output power capacity value is selected as the target output power of the battery.
  • the target temperature value is determined to be 5°C
  • the multiple output power capability values corresponding to the target temperature value of 5°C are 442, 672, 753, 819, and 940, etc., then 442 can be selected as the battery target Output Power.
  • the current state of charge and battery temperature of the battery can also be considered.
  • the target output power is determined in the same way. I will not introduce it in detail here.
  • S103 Control the battery to supply power to the movable platform according to the target output power.
  • the battery is controlled to supply power to the movable platform according to the target output power, so that the movable platform can run or work. Since the output power of the battery is adjusted according to the weight of the movable platform, the output power of the battery is greatly utilized, the utilization efficiency of the battery is improved, and the safety of the operation of the movable platform is ensured.
  • an early warning is given according to the real-time parameters of the battery and the target output power, thereby improving the safety of the operation of the movable platform.
  • Detect the battery's state of charge and current temperature determine the output power capability value of the battery's state of charge and current temperature in the output power capability table; if the battery's state of charge and current temperature correspond to the output in the output power capability table If the power capability value is less than the target output power, an alarm message will be output.
  • the state of charge of the battery and the current temperature correspond to the output power capability value of 356 in the output power capability table.
  • the output power capability value of 356 is less than the target output power 411, indicating that the battery has no ability to provide the target output power. Therefore, an alarm message is output to remind the user that there may be risks, thereby improving the safety of battery use.
  • FIG. 3 is a schematic flowchart of the steps of another battery control method provided by an embodiment of the present application.
  • the battery control method is applied to a movable platform.
  • the battery control method includes steps S201 to S203.
  • S202 Determine the target output power of the battery according to the weight of the movable platform and/or the load carried by the movable platform;
  • the operating power of the movable platform can be specifically obtained, and the weight of the movable platform and/or the load carried by the movable platform can be determined according to the operating power of the movable platform.
  • weight includes a specific weight value or weight range.
  • the operating power includes the starting power of the movable platform or the power in a certain state, such as constant speed operation, accelerated operation, and so on.
  • the operating power includes take-off power and/or hovering power.
  • determining the weight of the movable platform and/or the load carried by the movable platform according to the operating power of the movable platform is specifically: obtaining a preset mapping relationship table between operating power and weight;
  • the preset mapping relationship table determines the weight corresponding to the operating power of the movable platform as the weight of the movable platform and/or the load carried by the movable platform.
  • the preset mapping relationship table between the operating power and the weight records the correspondence between different operating power ranges and different weights.
  • determining the weight corresponding to the operating power of the movable platform as the weight of the movable platform and/or the load carried by the movable platform is specifically: determining the operating power range corresponding to the operating power of the movable platform.
  • the weight corresponding to the operating power range is used as the weight of the movable platform and/or the load carried by the movable platform. Therefore, the corresponding weight can be determined more quickly, and the utilization efficiency of the battery can be improved.
  • determining the target output power of the battery according to the weight of the movable platform and/or the load carried by the movable platform is specifically: obtaining a preset mapping relationship table between weight and output power; according to the preset mapping The relationship table determines the output power corresponding to the weight of the movable platform and/or the load carried by the movable platform, and obtains the target output power of the battery.
  • determining the target output power of the battery according to the weight of the load carried by the movable platform and/or the movable platform is specifically: determining the preset output power corresponding to the weight of the load carried by the movable platform and/or the movable platform ; Obtain the output power capability table of the battery; query the output power capability value matching the preset output power from the output power capability table to obtain the target output power of the battery. Therefore, a more accurate and suitable target output power can be obtained. Therefore, the target output power of the battery can be obtained quickly and accurately.
  • the output power capability table records the output power capability value of the battery at different temperature values and different state-of-charge values.
  • the weight of the movable platform and/or the load carried by the movable platform is positively correlated with the preset output power.
  • the preset output power is the power that can ensure the operation of the movable platform.
  • the output power capability value matching the preset output power is: the output power capability value with the smallest difference from the preset output power in the output power capability table.
  • the current state of charge SOC of the battery may also be considered.
  • the state of charge of the battery is acquired; according to the state of charge of the battery, a target state of charge value is determined from a plurality of state of charge values in the output power capability table, and the target state of charge value is less than or equal to that of the battery
  • the state of charge value of the state of charge determine the multiple output power capability values corresponding to the target state of charge value; select one output power capability value from the multiple output power capability values corresponding to the target state of charge value as the target output of the battery power.
  • selecting an output power capability value from multiple output power capability values corresponding to the target state of charge value as the target output power of the battery is specifically: from the multiple output power capability values corresponding to the target state of charge value Select the minimum output power capability value as the target output power of the battery.
  • the current temperature of the battery in order to more accurately query the output power capability table of the battery according to the preset output power to obtain the target output power, the current temperature of the battery may also be considered.
  • obtain the current temperature of the battery determine the target temperature value from the multiple temperature values in the output power capability table according to the current temperature of the battery; determine the multiple output power capability values corresponding to the target temperature value; One output power capability value among the multiple output power capability values is selected as the target output power of the battery.
  • the target temperature value is the temperature value greater than or equal to the current temperature among the multiple temperature values in the output power capability table; or, the target temperature value is the temperature with the smallest difference between the multiple temperature values in the output power capability table and the target temperature value value.
  • selecting one output power capability value from the multiple output power capability values corresponding to the target temperature value as the target output power of the battery is specifically: selecting the smallest output from the multiple output power capability values corresponding to the target temperature value The power capability value is used as the target output power of the battery.
  • the output power capability table is pre-stored in the movable platform.
  • the target output power is sent to the battery, so that the battery supplies power to the movable platform according to the target output power, so that the movable platform can run and work. Since the output power of the battery is adjusted according to the weight of the movable platform, the output power of the battery is greatly utilized, thereby improving the safety of the operation of the movable platform.
  • the battery control method further includes: detecting the state of charge and the current temperature of the battery; if the state of charge and the current temperature of the battery in the output power capability table, the corresponding output power capability value is less than the target output power, Output warning information to remind users that there may be risks.
  • determining the target output power of the battery according to the weight of the movable platform and/or the load carried by the movable platform includes: obtaining environmental information of the battery and/or the charge of the battery Electricity status; determining the target output power of the battery according to the current environmental information of the battery and/or the state of charge of the battery, and the preset output power.
  • the environmental information includes at least one of altitude information, climate information, temperature information, and humidity information.
  • smart batteries are used to power mobile platforms. Because mobile platforms have different requirements for the load capacity of the mobile platform under different policies and environments, the SOPs required for mobile platforms with different loads in different natural environments are also different. different. The SOP output value of the battery can also be adjusted according to environmental factors.
  • the environmental information includes at least one of altitude information, climate information, temperature information, and humidity information.
  • the output power of the battery of the movable platform is adjusted in real time according to the altitude in the altitude information.
  • the flying altitude of the aircraft increases with the altitude, and the output power of the battery adjusted according to the altitude is further increased on the basis of the output power determined according to the weight.
  • the output power of the battery is increased.
  • the specific adjustment size is related to the altitude change, that is, the difference between the altitude H2 and the altitude H1.
  • the output power of the battery can also be appropriately adjusted according to climate information, temperature information, and/or humidity information.
  • climate information climate information, temperature information, and/or humidity information.
  • the utilization efficiency of the battery is improved, and the flight safety of the aircraft is ensured at the same time.
  • the target output power of the battery may also be displayed. It can be displayed in the form of voice, display on the display interface, vibration, etc., so that the user can easily know the target output power.
  • the target output power exceeding the preset value may indicate that the target output power may have a certain risk of use for the battery. For example, it may include at least one of the following situations: the battery may be difficult to output the target output power for a long time, and the battery When the target output power is output, severe heat may be generated/may cause battery short circuit.
  • the alarm information can be output through voice, display on the display interface, vibration, etc., so that the user can easily know the target output power, so as to make timely judgments, and improve the safety of the battery.
  • FIG. 5 is a schematic block diagram of a smart battery provided by an embodiment of the present application.
  • the smart battery includes a processor 301, a memory 302, a battery cell 303, and a battery circuit 304.
  • the battery circuit 304 is connected to the battery cell 303, and the battery circuit 304 is also connected to the processor 301 for controlling battery charging or discharging.
  • the processor 301 may be a micro-controller unit (MCU), a central processing unit (CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
  • MCU micro-controller unit
  • CPU central processing unit
  • DSP Digital Signal Processor
  • the memory 302 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
  • the processor is configured to run a computer program stored in a memory, and when executing the computer program, implement any battery control method as provided in the embodiments of the present application.
  • the processor is configured to run a computer program stored in a memory, and implement the following steps when the computer program is executed:
  • the processor obtains the weight of the movable platform and/or the load carried by the movable platform when the movable platform is running;
  • the determination by the processor of the weight of the movable platform and/or the load carried by the movable platform includes:
  • the processor implementing the determination of the weight of the movable platform and/or the load carried by the movable platform according to the operating power of the movable platform includes:
  • the preset mapping relationship table between the operating power and the weight records the correspondence between different operating power ranges and different weights.
  • the processor implementing the determination of the weight corresponding to the operating power of the movable platform as the weight of the movable platform and/or the load carried by the movable platform includes:
  • the operating power range corresponding to the operating power of the movable platform is determined, and the weight corresponding to the determined operating power range is used as the weight of the movable platform and/or the load carried by the movable platform.
  • the movable platform includes an aircraft, a robot, or an electric vehicle.
  • the operating power includes take-off power and/or hovering power.
  • implementing the processor to determine the target output power of the battery according to the weight of the movable platform and/or the load carried by the movable platform includes:
  • implementing the processor to determine the target output power of the battery according to the weight of the movable platform and/or the load carried by the movable platform includes:
  • the weight of the movable platform and/or the load carried by the movable platform has a positive correlation with the preset output power.
  • the preset output power is a power that can ensure the operation of the movable platform.
  • the output power capability value matching the preset output power is: the output power capability value with the smallest difference from the preset output power in the output power capability table.
  • the processor further implements the following steps:
  • the processor implementing the query of the output power capability value matching the preset output power from the output power capability table to obtain the target output power of the battery includes:
  • a target state of charge value is determined from a plurality of state of charge values in the output power capability table, and the target state of charge value is less than or equal to the state of charge of the battery State-of-charge value; determine multiple output power capability values corresponding to the target state-of-charge value; and select one output power capability value from the multiple output power capability values corresponding to the target state-of-charge value as the battery The target output power.
  • the processor implementing the selection of an output power capability value from a plurality of output power capability values corresponding to the target state of charge value as the target output power of the battery includes:
  • the smallest output power capability value is selected from the multiple output power capability values corresponding to the target state of charge value as the target output power of the battery.
  • the processor further implements:
  • the processor implementing the query of the output power capability value matching the preset output power from the output power capability table to obtain the target output power of the battery includes:
  • the current temperature of the battery determine a target temperature value from a plurality of temperature values in the output power capability table; determine a plurality of output power capability values corresponding to the target temperature value; and determine a target temperature value corresponding to the target temperature value
  • One output power capability value among the multiple output power capability values is selected as the target output power of the battery.
  • the target temperature value is a temperature value greater than or equal to the current temperature among a plurality of temperature values in the output power capability table; or, the target temperature value is a value of the output power capability table The temperature value with the smallest difference from the target temperature value among the plurality of temperature values.
  • that the processor realizes that the selection of an output power capability value from a plurality of output power capability values corresponding to the target temperature value as the target output power of the battery includes:
  • the smallest output power capability value is selected from the multiple output power capability values corresponding to the target temperature value as the target output power of the battery.
  • the processor further implements:
  • FIG. 6 is a schematic block diagram of a movable platform according to an embodiment of the present application.
  • the mobile platform 400 includes a processor 401 and a memory 402, and the processor 401 and the memory 402 are connected by a bus, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 401 may be a micro-controller unit (MCU), a central processing unit (CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
  • MCU micro-controller unit
  • CPU central processing unit
  • DSP Digital Signal Processor
  • the memory 402 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
  • the processor is configured to run a computer program stored in a memory, and when executing the computer program, implement any battery control method as provided in the embodiments of the present application.
  • the processor is configured to run a computer program stored in a memory, and implement the following steps when the computer program is executed:
  • the processor obtains the weight of the movable platform and/or the load carried by the movable platform when the movable platform is running;
  • the determination of the weight of the movable platform and/or the load carried by the movable platform by the processor includes:
  • the operating power of the movable platform is obtained, and the weight of the movable platform and/or the load carried by the movable platform is determined according to the operating power of the movable platform.
  • the processor implementing the determination of the weight of the movable platform and/or the load carried by the movable platform according to the operating power of the movable platform includes:
  • the preset mapping relationship table between the operating power and the weight records the correspondence between different operating power ranges and different weights.
  • the processor implementing the determination of the weight corresponding to the operating power of the movable platform as the weight of the movable platform and/or the load carried by the movable platform includes:
  • the operating power range corresponding to the operating power of the movable platform is determined, and the weight corresponding to the determined operating power range is used as the weight of the movable platform and/or the load carried by the movable platform.
  • the movable platform includes an aircraft, a robot, or an electric vehicle.
  • the operating power includes take-off power and/or hovering power.
  • implementing the processor to determine the target output power of the battery according to the weight of the movable platform and/or the load carried by the movable platform includes:
  • implementing the processor to determine the target output power of the battery according to the weight of the movable platform and/or the load carried by the movable platform includes:
  • the weight of the movable platform and/or the load carried by the movable platform has a positive correlation with the preset output power.
  • the preset output power is a power that can ensure the operation of the movable platform.
  • the output power capability value matching the preset output power is: the output power capability value with the smallest difference from the preset output power in the output power capability table.
  • the processor further implements the following steps:
  • the querying the output power capability value matching the preset output power from the output power capability table to obtain the target output power of the battery includes:
  • a target state of charge value is determined from a plurality of state of charge values in the output power capability table, and the target state of charge value is less than or equal to the state of charge of the battery State-of-charge value; determine multiple output power capability values corresponding to the target state-of-charge value; and select one output power capability value from the multiple output power capability values corresponding to the target state-of-charge value as the battery The target output power.
  • the processor implementing the selection of an output power capability value from a plurality of output power capability values corresponding to the target state of charge value as the target output power of the battery includes:
  • the smallest output power capability value is selected from the multiple output power capability values corresponding to the target state of charge value as the target output power of the battery.
  • the processor further implements:
  • the querying the output power capability value matching the preset output power from the output power capability table to obtain the target output power of the battery includes:
  • the current temperature of the battery determine a target temperature value from a plurality of temperature values in the output power capability table; determine a plurality of output power capability values corresponding to the target temperature value; and determine a target temperature value corresponding to the target temperature value
  • One output power capability value among the multiple output power capability values is selected as the target output power of the battery.
  • the target temperature value is a temperature value greater than or equal to the current temperature among a plurality of temperature values in the output power capability table; or, the target temperature value is a value of the output power capability table The temperature value with the smallest difference from the target temperature value among the plurality of temperature values.
  • that the processor realizes that the selection of an output power capability value from a plurality of output power capability values corresponding to the target temperature value as the target output power of the battery includes:
  • the smallest output power capability value is selected from the multiple output power capability values corresponding to the target temperature value as the target output power of the battery.
  • the processor further implements:
  • the embodiments of the present application also provide a mobile component, the mobile component includes a movable platform and the smart battery as described in any one of the above; the smart battery is used to install on the movable platform, so that the Movable platform power supply.
  • the embodiment of the present application also provides another mobile component.
  • the mobile component includes the movable platform and a smart battery as described in any one of the above; the smart battery is used to be installed on the movable platform for the purpose of Said movable platform power supply.
  • Both of the above two mobile components can set the output power of the smart battery according to the weight of the movable platform, thereby achieving a great use of the output power of the battery, thereby improving the safety of the operation of the movable platform.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the foregoing implementation The steps of the battery control method provided in the example.
  • the computer-readable storage medium may be an internal storage unit of the device described in any of the foregoing embodiments, such as a hard disk or memory of the removable platform.
  • the computer-readable storage medium may also be an external storage device of the removable platform, such as a plug-in hard disk equipped on the removable platform, a smart memory card (Smart Media Card, SMC), and Secure Digital (Secure Digital). , SD) card, flash card (Flash Card), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池控制方法、设备及存储介质,该方法包括:获取所述可移动平台和/或所述可移动平台搭载负载的重量(S101);根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率(S102);控制所述电池按照所述目标输出功率给所述可移动平台供电(S103)。

Description

电池控制方法、设备及存储介质 技术领域
本申请涉及电池技术领域,尤其涉及一种电池控制方法、智能电池、可移动平台、移动组件及存储介质。
背景技术
电池的输出功率(State OfPower,SOP)用于表示电池对放电功率的承受能力,输出功率SOP的合理设置可以提高电池的利用效率,以及提高电池的使用寿命等。传统技术中,无人机的电池一般只设置一个固定的输出功率SOP,无论无人机的重量是否发生变化,比如工业无人机的重量是不固定的,如果仍然设置一个固定的输出功率SOP,会使得工业无人机飞行受限,甚至出现坠落炸机的问题。
发明内容
基于此,本申请提供了一种电池控制方法、智能电池、可移动平台、移动组件及存储介质,以实现根据重量自动调节电池的输出功率,提高电池的利用效率,确保可移动平台运行的安全性。
第一方面,本申请提供了一种电池控制方法,所述电池用于给可移动平台供电,所述方法包括:
获取所述可移动平台和/或所述可移动平台搭载负载的重量;
根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率;
控制所述电池按照所述目标输出功率给所述可移动平台供电。
此外,本申请还提供了另一种电池控制方法,应用于可移动平台,所述方法包括:
确定所述可移动平台和/或所述可移动平台搭载负载的重量;
根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率;
将所述目标输出功率发送至所述电池,以使所述电池按照所述目标输出功率给所述可移动平台供电。
第二方面,本申请还提供了一种智能电池,所述智能电池包括处理器、存储器、电池及与所述电池连接的电池电路;
所述电池电路与所述处理器连接,用于控制电池充电或放电;
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取所述可移动平台和/或所述可移动平台搭载负载的重量;
根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率;
控制所述电池按照所述目标输出功率给所述可移动平台供电。
第三方面,本申请还提供了一种可移动平台,所述可移动平台通过电池供电,所述可移动平台包括处理器和存储器;
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
确定所述可移动平台和/或所述可移动平台搭载负载的重量;
根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率;
将所述目标输出功率发送至所述电池,以使所述电池按照所述目标输出功率给所述可移动平台供电。
第四方面,本申请还提供了一种移动组件,所述移动组件包括可移动平台以及如上述的智能电池;所述智能电池用于安装于所述可移动平台,以为所述可移动平台供电。
此外,本申请还提供了另一种移动组件,所述移动组件包括如上述的可移动平台以及智能电池;所述智能电池用于安装于所述可移动平台,以为所述可移动平台供电。
第五方面,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述的电池控制方法。
本申请提出的一种电池控制方法、设备及存储介质,通过获取所述可移动平台和/或所述可移动平台搭载负载的重量;根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率;控制所述电池按照所述目标输出功率给所述可移动平台供电。由此实现了根据可移动平台的重量调整其电池的输出功率,提高了可移动平台的灵活性以及安全性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请的实施例提供的一种移动组件的示意性框图;
图2是本申请的实施例提供的一种电池控制方法的步骤示意流程图;
图3是本申请的实施例提供的另一种电池控制方法的步骤示意流程图;
图4是本申请的实施例提供的一种电池控制方法的应用场景示意图;
图5是本申请的实施例提供的一种智能电池的示意性框图;
图6是本申请的实施例提供的一种可移动平台的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤, 也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
本申请的实施例提供了一种电池控制方法、智能电池、可移动平台、移动组件及存储介质,该电池控制方法实现根据重量自动调节电池的输出功率,可以灵活地利用电池的输出功率,提高了电池的利用效率以及使用寿命,同时又可确保可移动平台运行的安全性。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本申请的实施例提供的一种移动组件的示意性框图。该移动组件100包括电池10和可移动平台20,电池10用于给可移动平台20及搭载在可移动平台20上的负载供电。其中,电池10可以固定安装在可移动平台20上,或者可拆卸地安装在可移动平台20上。
电池10包括微控制单元(Micro-controller Unit,MCU),也可以称为智能电池,通过微控制单元可与可移动平台通信连接,以实现与可移动平台的信息交互。比如,接收可移动平台的控制指令根据控制指令控制电池输出具有预设电压幅值的电压、具有预设电流幅值的电流或输出具有预设功率幅值的输出功率,或者获取可移动平台的运行功率等等。
可移动平台20包括飞行器、机器人、电动车或自动无人驾驶车辆等。
比如,电池10给无飞行器的电机供电控制连接在该电机的螺旋桨转动,进而实现飞行器的起飞或悬停等;再比如,电池10给搭载在飞行器的拍摄装置供电,实现航拍等等。
其中,飞行器包括无人机,该无人机包括旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机,还可以是旋翼型与固定翼无人机的组合,在此不作限定。
其中,机器人包括教育机器人,使用了麦克纳姆轮全向底盘,且全身设有多块智能装甲,每个智能装甲内置击打检测模块,可迅速检测物理打击。同时还包括两轴云台,可以灵活转动,配合发射器准确、稳定、连续地发射水晶弹或红外光束,配合弹道光效,给用户更为真实的射击体验。
需要说明的是,每种电池都会配置有输出功率能力表(SOP能力表),该输出功率能力表可由电池厂商提供,记录有所述电池在不同温度值和不同荷电 状态值下的输出功率能力值。在本申请的实施例中,可以将该输出功率能力表保存在电池中或者可移动平台中,以便在电池控制方法中使用。
示例性的,电池的输出功率能力值,如表1所示,在表1中记录有所述电池在不同温度值和不同荷电状态值下的输出功率能力值。
表1
SOC/% -20℃ -15℃ -10℃ -5℃ 0℃ 5℃ 10℃ 25℃ 40℃
100 318 589 787 1013 1320 1743 1756 2795 3798
90 292 493 674 875 1165 1650 1447 2396 3460
80 258 411 572 734 998 1334 1242 2113 3146
70 215 336 476 616 812 1080 1075 1876 2799
60 176 272 396 538 722 940 980 1762 2604
50 141 220 332 466 633 819 874 1573 2391
40 122 189 292 422 578 753 802 1403 2233
30 107 165 260 374 521 672 750 1190 2078
20 70 108 171 310 366 442 643 938 1198
15 53 81 129 232 274 356 496 768 898
10 34 52 82 149 176 260 335 575 576
在表1中SOC表示荷电状态,用来反映电池的剩余容量,其数值上定义为剩余容量占电池容量的比值,常用百分数表示。其取值范围为0~1,当SOC=0时表示电池放电完全,当SOC=1时表示电池完全充满。第一横栏表示不同的温度值,比如0℃、5℃、10℃和25℃等。
其中,表1中记录有电池在不同温度值和不同荷电状态值下的输出功率能力值。比如,荷电状态为100%,电池温度为25℃时,对应的SOP为2795,表示电池在荷电状态为100%且电池温度为25℃时,能输出最大SOP为2795;再比如,荷电状态为60%,电池温度为25℃时,对应的SOP为1762,表示电池在荷电状态为60%且电池温度为25℃时,能输出最大SOP为1762。
现有的可移动平台的电池,比如飞行器的电池均是采用一个固定的输出功率(State Of Power,SOP)。然而,在实际应用中,飞行器的重量不是固定不变的,比如搭载不同重量的负载。对重量不确定的飞行器,如果仍然采用固定的SOP会导致飞行器的飞行受限制较多,严重时可能会导致坠机炸机的情况出现。
比如,工业无人机因为情况比较特殊,其搭载的负载是不固定的,不同负 载的重量也各不相同,进而导致同一个工业无人机在每次作业时,其重量也不相同。在重量不一样时,如果用固定的SOP去控制无人机的功率,会导致电池的有限功率不能够发挥出来,甚至出现坠机炸机现象。
比如,假如无人机空载时的起飞功率是800W,无人机满载的起飞功率可能达到1800W,在不同负载情况下起飞功率相差较大。如果仍然采用固定的SOP,比如按照1800W来设置电池SOP,则飞机可能受限制太多,如果按照800W来设置电池SOP,则飞机有可能坠机炸机。
为此,本申请的实施例提供了一种电池控制方法、智能电池、可移动平台、移动组件及存储介质,该电池控制方法可以应用在智能电池或者可移动平台中,实现根据可移动平台的重量动态调节电池的输出功率,不仅可以提高电池的利用效率,还可以确保可移动平台运行的安全性。
请参阅图2,图2是本申请实施例提供的一种电池控制方法的步骤示意流程图。该电池控制方法应用于电池中,用于给可移动平台供电。
如图2所示,该电池控制方法包括步骤S101至步骤S103。
S101、获取所述可移动平台和/或所述可移动平台搭载负载的重量。
在可移动平台运行时,获取该可移动平台和/或可移动平台搭载负载的重量。其中,该重量包括具体的重量值或重量范围,具体的重量值比如为7Kg,重量范围比如为6.9Kg-7.1Kg。该可移动平台运行时,可以包括启动运行时、已经运行过程中。具体地,可以获取可移动平台的重量、可移动平台搭载负载的重量、或者可移动平台及其搭载负载的重量。
比如,无人机的机身的重量为5Kg,搭载了喷洒装置,该喷洒装置的重量为3Kg。则获取无人机的重量为5Kg、无人机搭载负载的重量为3Kg、无人机及其搭载负载的重量为8Kg。使用无人机搭载负载的重量为3Kg、或者无人机及其搭载负载的重量为8Kg均可。
某些情况下,由于同一类型的无人机的重量也会存在一定差异,但是负载的重量可能是固定不变的,因此在获取无人机的重量,作为调整电池输出功率的依据。
在一个实施例中,为了快速方便地得到可移动平台和/或可移动平台搭载负载的重量,具体可以获取可移动平台的运行功率;根据运行功率确定可移动平台和/或可移动平台搭载负载的重量。
运行功率包括可移动平台运行时对应的功率,比如可移动平台为无人机,运行功率包括起飞功率和/或悬停功率。运行功率还包括为可移动平台预设的运行功率,例如,预设的起飞功率和/或悬停功率。
起飞功率可以确保无人机正常起飞,该起飞功率的大小与无人机的重量有关,即呈正相关关系,由此可以根据该起飞功率确定无人机的重量。
悬停功率可以确保无人机稳定地悬停在空中,该悬停功率的大小与无人机的重量有关,和起飞功率相同也是呈正相关关系,由此可以根据该起飞功率确定无人机的重量,并且可以排除其他因素的影响,可以更为准确地确定无人机的重量。
具体地,可以根据运行功率与重量的对应关系或者拟合关系,确定可移动平台和/或可移动平台搭载负载的重量。
在一些实施例中,根据可移动平台的运行功率确定可移动平台和/或可移动平台搭载负载的重量,具体为获取运行功率与重量之间预设的映射关系表;根据该预设的映射关系表,确定可移动平台的运行功率对应的重量作为可移动平台和/或可移动平台搭载负载的重量。通过映射关系表可以快速准确地得到可移动平台的重量。
在本实施例中,运行功率与重量之间预设的映射关系表,保存在智能电池中,以便查询根据运行功率得到对应的重量。
在一些实施例中,运行功率与重量之间预设的映射关系表,记录有不同运行功率范围与不同重量的对应关系。由此,可以先确定可移动平台的运行功率对应的运行功率范围,将确定的运行功率范围对应的重量作为可移动平台和/或可移动平台搭载负载的重量。
比如,运行功率范围为400W-420W对应的重量为7Kg、运行功率范围为645W-655W对应的重量为8Kg、运行功率范围为895W-905W对应的重量为9Kg,而可移动平台的运行功率650W,对对应的运行功率范围为645W-655W,则可以确定该可移动平台的重量为8Kg。
上述确定可移动平台的重量包括可移动平台和其搭载负载的总重量,当然也可以是可移动平台(没有负载)的重量,或者只是负载(可移动平台的重量基本不变)的重量。需要说明的是,重量的确定方式相同。
S102、根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所 述电池的目标输出功率。
具体地,将可移动平台的不同重量对应电池的不同输出功率进行实验测试,以确保可移动平台的安全性,进而得到不同重量对应电池的目标输出功率,该目标输出功率即可以提高电池的利用效率,又可以确保可移动平台的安全运行。
由此可以根据可移动平台和/或可移动平台搭载负载的重量,确定其供电电池的目标输出功率。
在一些实施例中,为了快速准确地确定电池的目标输出功率,具体可以获取重量与输出功率之间预设的映射关系表;根据该预设的映射关系表,确定可移动平台和/或可移动平台搭载负载的重量对应的输出功率,得到电池的目标输出功率。
其中,该预设的映射关系表是预先测试得到的,并记录有不同重量与不同输出功率的对应关系。将根据该映射关系表查询得到的输出功率作为目标输出功率,由此可以快速准确地得到电池的目标输出功率,以便根据该目标输出功率控制电池。
在一些实施例中,可以根据可移动平台和/或可移动平台搭载负载的重量直接确定电池的目标输出功率,还可以查询电池的输出功率能力表得到该目标输出功率。
查询电池的输出功率能力表得到该目标输出功率,具体为确定可移动平台和/或可移动平台搭载负载的重量对应的预设输出功率;获取电池的输出功率能力表,该输出功率能力表记录有电池在不同温度值和不同荷电状态值下的输出功率能力值;从输出功率能力表中查询与预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率。
其中,预设输出功率为能够确保可移动平台运行的功率,可以理解为能保证可移动平台正常运行的最小输出功率。可移动平台和/或可移动平台搭载负载的重量与预设输出功率呈正相关关系,即可移动平台的重量增加,对应的预设输出功率也较大。
输出功率能力表,如表1所示,该输出功率能力表记录有电池在不同温度值和不同荷电状态值下的输出功率能力值。
比如,无人机的重量为7KG、8KG和9KG,对应的预设输出功率分别为400W、650W和900W。
从输出功率能力表中查询与预设输出功率相匹配的输出功率能力值,比如从输出功率能力表选择一个大于预设输出功率的输出功率能力值,作为电池的目标输出功率;或者,在大于预设输出功率的多个输出功率能力值,选择最小的输出功率能力值,作为电池的目标输出功率。
比如,无人机的重量为7Kg,确定该无人机对应的预设输出功率400W,则可以从表1中确定大于400W的输出功率能力值,大于400W的输出功率能力值例如为589、493、411、572、476、466、422、578、521、442、643、496、575和576。
在一些实施例中,为了得到更为合适的目标输出功率,可以在输出功率能力表中与预设输出功率差值最小的输出功率能力值。
比如,大于400W的输出功率能力值例如为589、493、411、572、476、466、422、578、521、442、643、496、575和576,选择输出功率能力值为411作为目标输出功率。
在一些实施例中,为了更为准确合理地根据预设输出功率查询电池的输出功率能力表得到该目标输出功率,还可以考虑电池当前的荷电状态SOC。
具体地,获取电池的荷电状态;根据电池的荷电状态,从输出功率能力表的多个荷电状态值中确定目标荷电状态值;确定目标荷电状态值对应的多个输出功率能力值;从目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为电池的目标输出功率。
其中,目标荷电状态值为小于或等于电池的荷电状态的荷电状态值。
比如,电池的荷电状态为75%,则可以在输出功率能力表中确定70%、60%、50%、40%、30%、20%和15%等多个荷电状态值,作为目标荷电状态值。
确定目标荷电状态值对应的多个输出功率能力值,是指大于预设输出功率的输出功率能力值。
比如,预设输出功率为400W。确定的目标荷电状态值为70%,其对应的输出功率能力值分别为476和616;确定的目标荷电状态值为50%,其对应的输出功率能力值分别为466和633。
具体地,可以从荷电状态值为70%对应的输出功率能力值476和616中选择一个输出功率能力值作为电池的目标输出功率;或者,从荷电状态值为50%对应的输出功率能力值466和633中选择一个输出功率能力值作为电池的目标 输出功率。
在一些实施例中,为了确定更为合适的目标输出功率,提高电池的利用效率,具体可以从目标荷电状态值对应的多个输出功率能力值中选择最小的输出功率能力值作为电池的目标输出功率。
比如,从荷电状态值为50%对应的输出功率能力值466和633中,选择最小的输出功率能力值466作为电池的目标输出功率。
在一些实施例中,为了更为准确地根据预设输出功率查询电池的输出功率能力表得到该目标输出功率,还可以考虑电池的当前温度。
具体地,获取电池的当前温度;根据电池的当前温度,从输出功率能力表的多个温度值中确定目标温度值;确定目标温度值对应的多个输出功率能力值;从目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为电池的目标输出功率。
其中,目标温度值为输出功率能力表的多个温度值中大于或等于当前温度的温度值;或者,目标温度值为输出功率能力表的多个温度值中与目标温度值差值最小的温度值。
比如,电池的当前温度为9℃,输出功率能力表的多个温度值中大于或等于当前温度的温度值分别为10℃、25℃和40℃,10℃、25℃和40℃均可以为目标温度值。再比如,电池的当前温度为4℃,输出功率能力表的多个温度值中与目标温度值差值最小的温度值为5℃,则该5℃为目标温度值。
确定目标温度值对应的多个输出功率能力值,是指大于预设输出功率的输出功率能力值。
比如,预设输出功率400W,确定目标温度值为5℃,目标温度值5℃对应的多个输出功率能力值分别为442、672、753、819和940等。
相应地,为了确定更为合适的目标输出功率,从目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为电池的目标输出功率,具体可以从目标温度值对应的多个输出功率能力值中选择最小的输出功率能力值作为电池的目标输出功率。
比如,预设输出功率400W,确定目标温度值为5℃,目标温度值5℃对应的多个输出功率能力值分别为442、672、753、819和940等,则可以选择442作为电池的目标输出功率。
可以理解的是,为了更为准确地根据预设输出功率查询电池的输出功率能力表得到该目标输出功率,还可以考虑电池当前的荷电状态和电池温度,目标输出功率的确定方式同理,在此不做详细介绍。
S103、控制所述电池按照所述目标输出功率给所述可移动平台供电。
具体地,在确定目标输出功率后,控制电池按照目标输出功率给可移动平台供电,以便可移动平台运行或作业。由于是根据可移动平台的重量调整电池的输出功率,极大的利用了电池的输出功率,提高了电池的利用效率,同时又确保了可移动平台运行的安全性。
在一些实施例中,根据电池的实时参数以及目标输出功率进行预警,进而提高可移动平台运行的安全性。检测电池的荷电状态和当前温度;确定电池的荷电状态和当前温度在输出功率能力表中对应的输出功率能力值;若电池的荷电状态和当前温度在输出功率能力表中对应的输出功率能力值小于目标输出功率,输出告警提示信息。
比如,检测电池的荷电状态和当前温度分别16%和6℃,则可以确定电池的荷电状态和当前温度在输出功率能力表中对应的输出功率能力值为356。输出功率能力值为356小于目标输出功率411,说明电池已经没有提供目标输出功率的能力,由此输出告警提示信息,以提示用户可能存在风险,进而提高了电池使用的安全性。
请参阅图3,图3是本申请实施例提供的另一种电池控制方法的步骤示意流程图。该电池控制方法应用于可移动平台中。
如图3所示,该电池控制方法包括步骤S201至步骤S203。
S201、确定所述可移动平台和/或所述可移动平台搭载负载的重量;
S202、根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率;
S203、将所述目标输出功率发送至所述电池,以使所述电池按照所述目标输出功率给所述可移动平台供电。
其中,确定可移动平台和/或可移动平台搭载负载的重量,具体可以获取可移动平台的运行功率,根据可移动平台的运行功率确定可移动平台和/或可移动平台搭载负载的重量。
需要说明的是,该重量包括具体的重量值或重量范围。
需要说明的是,运行功率包括可移动平台的启动功率或者处于某一状态下的功率,比如匀速运行、加速运行等等。
比如,若可移动平台为飞行器,相应地,运行功率包括起飞功率和/或悬停功率。
在一些实施例中,根据可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量,具体为:获取运行功率与重量之间预设的映射关系表;根据该预设的映射关系表,确定可移动平台的运行功率对应的重量作为可移动平台和/或可移动平台搭载负载的重量。由此可以快速准确地确定可移动平台和/或可移动平台搭载负载的重量。
其中,运行功率与重量之间预设的映射关系表记录有不同运行功率范围与不同重量的对应关系。
在一些实施例中,确定可移动平台的运行功率对应的重量作为可移动平台和/或可移动平台搭载负载的重量,具体为:确定可移动平台的运行功率对应的运行功率范围,将确定的运行功率范围对应的重量作为可移动平台和/或可移动平台搭载负载的重量。由此可以更为快速确定相应的重量,又可以提高电池的利用效率。
在一些实施例中,根据可移动平台和/或可移动平台搭载负载的重量确定电池的目标输出功率,具体为:获取重量与输出功率之间预设的映射关系表;根据该预设的映射关系表,确定可移动平台和/或可移动平台搭载负载的重量对应的输出功率,得到电池的目标输出功率。
在一些实施例中,根据可移动平台和/或可移动平台搭载负载的重量确定电池的目标输出功率,具体为:确定可移动平台和/或可移动平台搭载负载的重量对应的预设输出功率;获取电池的输出功率能力表;从输出功率能力表中查询与预设输出功率相匹配的输出功率能力值,得到电池的目标输出功率。由此可以得到更为准确合适的目标输出功率。由此可以快速准确地得到电池的目标输出功率。
其中,输出功率能力表记录有所述电池在不同温度值和不同荷电状态值下的输出功率能力值。
需要说明的是,可移动平台和/或可移动平台搭载负载的重量与预设输出功率呈正相关关系。预设输出功率为能够确保可移动平台运行的功率。
在本申请的实施例中,与所述预设输出功率相匹配的输出功率能力值为:在输出功率能力表中与预设输出功率差值最小的输出功率能力值。由此可以充分提高电池的利用效率。
在一些实施例中,为了更为准确地根据预设输出功率查询电池的输出功率能力表得到该目标输出功率,还可以考虑电池当前的荷电状态SOC。
具体地,获取所述电池的荷电状态;根据电池的荷电状态,从输出功率能力表的多个荷电状态值中确定目标荷电状态值,目标荷电状态值为小于或等于电池的荷电状态的荷电状态值;确定目标荷电状态值对应的多个输出功率能力值;从目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为电池的目标输出功率。
示例性的,从目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为电池的目标输出功率,具体为:从目标荷电状态值对应的多个输出功率能力值中选择最小的输出功率能力值作为电池的目标输出功率。
在一些实施例中,为了更为准确地根据预设输出功率查询电池的输出功率能力表得到该目标输出功率,还可以考虑电池的当前温度。
具体地,获取电池的当前温度;根据电池的当前温度,从输出功率能力表的多个温度值中确定目标温度值;确定目标温度值对应的多个输出功率能力值;从目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率。
其中,目标温度值为输出功率能力表的多个温度值中大于或等于当前温度的温度值;或,目标温度值为输出功率能力表的多个温度值中与目标温度值差值最小的温度值。
示例性的,从目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为电池的目标输出功率,具体为:从目标温度值对应的多个输出功率能力值中选择最小的输出功率能力值作为电池的目标输出功率。
需要说明的是,输出功率能力表预先保存在可移动平台中。
在确定目标输出功率后,将目标输出功率发送至电池,以使该电池按照目标输出功率给可移动平台供电,以便该可移动平台运行和作业。由于是根据可移动平台的重量调整电池的输出功率,极大的利用了电池的输出功率,进而提高了可移动平台运行的安全性。
在一些实施例中,所述电池控制方法还包括:检测电池的荷电状态和当前温度;若电池的荷电状态和当前温度在输出功率能力表中对应的输出功率能力值小于目标输出功率,输出告警提示信息,以提示用户可能存在风险。
在一些实施例中,根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:获取所述电池的环境信息和/或所述电池的荷电状态;根据所述电池当前的环境信息和/或所述电池的荷电状态、以及所述预设输出功率,确定所述电池的目标输出功率。环境信息包括海拔信息、气候信息、温度信息和湿度信息中的至少一个。
例如,智能电池用于给可移动平台供电,由于可移动平台在不同的政策、环境下,对于可移动平台的载重的要求不同,不同载重的可移动平台在不同的自然环境下需要的SOP也不同。还可以根据环境因素调整电池的SOP输出值。
具体地,获取可移动平台所处的环境信息,所述环境信息用于描述所述可移动平台所处的环境;根据所述环境信息确定所述可移动平台的电池的输出功率。
其中,所述环境信息包括海拔信息、气候信息、温度信息和湿度信息中的至少一个。
示例性的,根据海拔信息中的海拔高低实时调整所述可移动平台的电池的输出功率。比如,飞行器的飞行高度随着海拔增加,在根据重量确定的输出功率的基础上,进一步地增加根据海拔高度调整电池的输出功率。
比如,如图4所示,将检测到飞行器的飞行高度从海拔高度H1飞至海拔高度H2时,增加电池的输出功率。具体调整大小与海拔高度变化大小相关,即和海拔高度H2和海拔高度H1的差值相关。
示例性的,还可以根据气候信息、温度信息和/或湿度信息适当调整电池的输出功率。以确保飞行器的电池具有合适的SOP值,提高了电池的利用效率,同时又确保了飞行器的飞行安全。
在一些实施例中,根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率后,还可以对所述目标输出功率进行显示。可以通过语音、在显示界面显示、震动等形式进行显示,以使用户能够方便得知目标输出功率。
在一些实施例中,若所述目标输出功率超过预设值,则输出告警信息。所 述目标输出功率超过预设值,可以表示该目标输出功率对于该电池可能有一定的使用风险,例如,可以包括如下至少一种情况:该电池可能难以长时间输出该目标输出功率、该电池输出该目标输出功率时,可能会严重发热/可能造成电池短路。可以通过语音、在显示界面显示、震动等形式进行输出告警信息,以使用户能够方便得知目标输出功率,以便于及时作出裁断,以提高电池的使用安全性。
请参阅图5,图5是本申请的实施例提供的一种智能电池的示意性框图。该智能电池包括处理器301、存储器302、电池电芯303及电池电路304,电池电路304与电池电芯303连接,电池电路304还与处理器301连接,用于控制电池充电或放电。
具体地,处理器301可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器302可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现如本申请实施例提供的任意一种电池控制方法。
示例性的,所述处理器用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取所述可移动平台和/或所述可移动平台搭载负载的重量;根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率;控制所述电池按照所述目标输出功率给所述可移动平台供电。
在一些实施例中,所述处理器在所述可移动平台运行时,获取所述可移动平台和/或所述可移动平台搭载负载的重量;
处理器在实现所述确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
获取所述可移动平台的运行功率;根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量。
在一些实施例中,所述处理器实现所述根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
获取运行功率与重量之间预设的映射关系表;根据运行功率与重量之间预设的映射关系表,确定所述可移动平台的运行功率对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量。
在一些实施例中,所述运行功率与重量之间预设的映射关系表记录有不同运行功率范围与不同重量的对应关系。
在一些实施例中,所述处理器实现所述确定所述可移动平台的运行功率对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
确定所述可移动平台的运行功率对应的运行功率范围,将确定的运行功率范围对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量。
在一些实施例中,所述可移动平台包括飞行器、机器人或电动车。
在一些实施例中,若所述可移动平台为飞行器,所述运行功率包括起飞功率和/或悬停功率。
在一些实施例中,所述处理器实现所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
获取重量与输出功率之间预设的映射关系表;根据重量与输出功率之间预设的映射关系表,确定所述可移动平台和/或所述可移动平台搭载负载的重量对应的输出功率,得到所述电池的目标输出功率。
在一些实施例中,所述处理器实现所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
确定所述可移动平台和/或所述可移动平台搭载负载的重量对应的预设输出功率;获取所述电池的输出功率能力表,所述输出功率能力表记录有所述电池在不同温度值和不同荷电状态值下的输出功率能力值;从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率。
在一些实施例中,所述可移动平台和/或所述可移动平台搭载负载的重量与所述预设输出功率呈正相关关系。
在一些实施例中,所述预设输出功率为能够确保所述可移动平台运行的功率。
在一些实施例中,所述与所述预设输出功率相匹配的输出功率能力值为:在所述输出功率能力表中与所述预设输出功率差值最小的输出功率能力值。
在一些实施例中,所述处理器还实现以下步骤:
获取所述电池的荷电状态;
相应地,所述处理器实现所述从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率,包括:
根据所述电池的荷电状态,从所述输出功率能力表的多个荷电状态值中确定目标荷电状态值,所述目标荷电状态值为小于或等于所述电池的荷电状态的荷电状态值;确定所述目标荷电状态值对应的多个输出功率能力值;以及从所述目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率。
在一些实施例中,所述处理器实现所述从所述目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率,包括:
从所述目标荷电状态值对应的多个输出功率能力值中选择最小的输出功率能力值作为所述电池的目标输出功率。
在一些实施例中,所述处理器还实现:
获取所述电池的当前温度;
相应地,所述处理器实现所述从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率,包括:
根据所述电池的当前温度,从所述输出功率能力表的多个温度值中确定目标温度值;确定所述目标温度值对应的多个输出功率能力值;以及从所述目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率。
在一些实施例中,所述目标温度值为所述输出功率能力表的多个温度值中大于或等于所述当前温度的温度值;或,所述目标温度值为所述输出功率能力表的多个温度值中与所述目标温度值差值最小的温度值。
在一些实施例中,所述处理器实现所述从所述目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率,包括:
从所述目标温度值对应的多个输出功率能力值中选择最小的输出功率能力值作为所述电池的目标输出功率。
在一些实施例中,所述处理器还实现:
检测所述电池的荷电状态和当前温度;若所述电池的荷电状态和当前温度在所述输出功率能力表中对应的输出功率能力值小于所述目标输出功率,输出告警提示信息。
请参阅图6,图6是本申请一实施例提供的一种可移动平台的示意性框图。该可移动平台400包括处理器401和存储器402,处理器401和存储器402通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器401可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器402可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现如本申请实施例提供的任意一种电池控制方法。
示例性的,所述处理器用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现如下步骤:
确定所述可移动平台和/或所述可移动平台搭载负载的重量;根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率;将所述目标输出功率发送至所述电池,以使所述电池按照所述目标输出功率给所述可移动平台供电。
在一些实施例中,所述处理器在所述可移动平台运行时,获取所述可移动平台和/或所述可移动平台搭载负载的重量;
所述处理器在实现所述确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
获取所述可移动平台的运行功率,根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量。
在一些实施例中,所述处理器实现所述根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
获取运行功率与重量之间预设的映射关系表;根据运行功率与重量之间预设的映射关系表,确定所述可移动平台的运行功率对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量。
在一些实施例中,所述运行功率与重量之间预设的映射关系表记录有不同运行功率范围与不同重量的对应关系。
在一些实施例中,所述处理器实现所述确定所述可移动平台的运行功率对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
确定所述可移动平台的运行功率对应的运行功率范围,将确定的运行功率范围对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量。
在一些实施例中,所述可移动平台包括飞行器、机器人或电动车。
在一些实施例中,若所述可移动平台为飞行器,所述运行功率包括起飞功率和/或悬停功率。
在一些实施例中,所述处理器实现所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
获取重量与输出功率之间预设的映射关系表;根据重量与输出功率之间预设的映射关系表,确定所述可移动平台和/或所述可移动平台搭载负载的重量对应的输出功率,得到所述电池的目标输出功率。
在一些实施例中,所述处理器实现所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
确定所述可移动平台和/或所述可移动平台搭载负载的重量对应的预设输出功率;获取所述电池的输出功率能力表,所述输出功率能力表记录有所述电池在不同温度值和不同荷电状态值下的输出功率能力值;从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率。
在一些实施例中,所述可移动平台和/或所述可移动平台搭载负载的重量与所述预设输出功率呈正相关关系。
在一些实施例中,所述预设输出功率为能够确保所述可移动平台运行的功率。
在一些实施例中,所述与所述预设输出功率相匹配的输出功率能力值为:在所述输出功率能力表中与所述预设输出功率差值最小的输出功率能力值。
在一些实施例中,所述处理器还实现以下步骤:
获取所述电池的荷电状态;
相应地,所述从所述输出功率能力表中查询与所述预设输出功率相匹配的 输出功率能力值,得到所述电池的目标输出功率,包括:
根据所述电池的荷电状态,从所述输出功率能力表的多个荷电状态值中确定目标荷电状态值,所述目标荷电状态值为小于或等于所述电池的荷电状态的荷电状态值;确定所述目标荷电状态值对应的多个输出功率能力值;以及从所述目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率。
在一些实施例中,所述处理器实现所述从所述目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率,包括:
从所述目标荷电状态值对应的多个输出功率能力值中选择最小的输出功率能力值作为所述电池的目标输出功率。
在一些实施例中,所述处理器还实现:
获取所述电池的当前温度;
相应地,所述从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率,包括:
根据所述电池的当前温度,从所述输出功率能力表的多个温度值中确定目标温度值;确定所述目标温度值对应的多个输出功率能力值;以及从所述目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率。
在一些实施例中,所述目标温度值为所述输出功率能力表的多个温度值中大于或等于所述当前温度的温度值;或,所述目标温度值为所述输出功率能力表的多个温度值中与所述目标温度值差值最小的温度值。
在一些实施例中,所述处理器实现所述从所述目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率,包括:
从所述目标温度值对应的多个输出功率能力值中选择最小的输出功率能力值作为所述电池的目标输出功率。
在一些实施例中,所述处理器还实现:
检测所述电池的荷电状态和当前温度;若所述电池的荷电状态和当前温度在所述输出功率能力表中对应的输出功率能力值小于所述目标输出功率,输出告警提示信息。
本申请的实施例中还提供一种移动组件,所述移动组件包括可移动平台以及如上述任一项所述的智能电池;所述智能电池用于安装于所述可移动平台,以为所述可移动平台供电。
本申请的实施例中还提供另一种移动组件,所述移动组件包括如上述任一项所述的可移动平台以及智能电池;所述智能电池用于安装于所述可移动平台,以为所述可移动平台供电。
上述两种移动组件,均可以实现根据可移动平台的重量,设置智能电池的输出功率,由此实现了极大的利用了电池的输出功率,进而提高了可移动平台运行的安全性。
本申请的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的电池控制方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的设备的内部存储单元,例如所述可移动平台的硬盘或内存。所述计算机可读存储介质也可以是所述可移动平台的外部存储设备,例如所述可移动平台上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (76)

  1. 一种电池控制方法,其特征在于,所述电池用于给可移动平台供电,所述方法包括:
    获取所述可移动平台和/或所述可移动平台搭载负载的重量;
    根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率;
    控制所述电池按照所述目标输出功率给所述可移动平台供电。
  2. 根据权利要求1所述的方法,其特征在于,在所述可移动平台运行时,获取所述可移动平台和/或所述可移动平台搭载负载的重量;
    所述确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
    获取所述可移动平台的运行功率;
    根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
    获取运行功率与重量之间预设的映射关系表;
    根据运行功率与重量之间预设的映射关系表,确定所述可移动平台的运行功率对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量。
  4. 根据权利要求2所述的方法,其特征在于,所述运行功率与重量之间包括如下对应关系:不同运行功率范围与不同重量的对应关系。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
    确定所述可移动平台的运行功率对应的运行功率范围,将确定的运行功率范围对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量。
  6. 根据权利要求1所述的方法,其特征在于,所述可移动平台包括飞行器、机器人或电动车。
  7. 根据权利要求6所述的方法,其特征在于,若所述可移动平台为飞行器,所述运行功率包括起飞功率和/或悬停功率。
  8. 根据权利要求1所述的方法,其特征在于,所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
    获取所述电池的环境信息和/或所述电池的荷电状态;
    根据所述电池当前的环境信息和/或所述电池的荷电状态、以及所述预设输出功率,确定所述电池的目标输出功率。
  9. 根据权利要求1所述的方法,其特征在于,
    所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率后,对所述目标输出功率进行显示;和/或,
    若所述目标输出功率超过预设值,则输出告警信息。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
    获取重量与输出功率之间预设的映射关系表;
    根据重量与输出功率之间预设的映射关系表,确定所述可移动平台和/或所述可移动平台搭载负载的重量对应的输出功率,得到所述电池的目标输出功率。
  11. 根据权利要求1至9任一项所述的方法,其特征在于,所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
    确定所述可移动平台和/或所述可移动平台搭载负载的重量对应的预设输出功率;
    获取所述电池的输出功率能力表,所述输出功率能力表记录有所述电池在不同温度值和/或不同荷电状态值下的输出功率能力值;
    从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率。
  12. 根据权利要求11所述的方法,其特征在于,所述可移动平台和/或所述可移动平台搭载负载的重量与所述预设输出功率呈正相关关系;和/或,
    所述预设输出功率包括能够确保所述可移动平台运行的功率;和/或,
    所述与所述预设输出功率相匹配的输出功率能力值包括:在所述输出功率能力表中与所述预设输出功率差值最小的输出功率能力值。
  13. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    获取所述电池的荷电状态;
    所述从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率,包括:
    根据所述电池的荷电状态,从所述输出功率能力表的多个荷电状态值中确定目标荷电状态值,所述目标荷电状态值为小于或等于所述电池的荷电状态的荷电状态值;
    确定所述目标荷电状态值对应的多个输出功率能力值;以及
    从所述目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率。
  14. 根据权利要求13所述的方法,其特征在于,所述从所述目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率,包括:
    从所述目标荷电状态值对应的多个输出功率能力值中选择最小的输出功率能力值作为所述电池的目标输出功率。
  15. 根据权利要求11所述的方法,其特征在于,所述方法包括:
    获取所述电池的当前温度;
    所述从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率,包括:
    根据所述电池的当前温度,从所述输出功率能力表的多个温度值中确定目标温度值;
    确定所述目标温度值对应的多个输出功率能力值;以及
    从所述目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率。
  16. 根据权利要求15所述的方法,其特征在于,所述目标温度值为所述输出功率能力表的多个温度值中大于或等于所述当前温度的温度值;或,所述目标温度值为所述输出功率能力表的多个温度值中与所述目标温度值差值最小的温度值。
  17. 根据权利要求15或16所述的方法,其特征在于,所述从所述目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率,包括:
    从所述目标温度值对应的多个输出功率能力值中选择最小的输出功率能力值作为所述电池的目标输出功率。
  18. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    检测所述电池的荷电状态和当前温度;
    若所述电池的荷电状态和当前温度在所述输出功率能力表中对应的输出功率能力值小于所述目标输出功率,输出告警提示信息。
  19. 一种电池控制方法,应用于可移动平台,其特征在于,所述方法包括:
    确定所述可移动平台和/或所述可移动平台搭载负载的重量;
    根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率;
    将所述目标输出功率发送至所述电池,以使所述电池按照所述目标输出功率给所述可移动平台供电。
  20. 根据权利要求19所述的方法,其特征在于,在所述可移动平台运行时,确定所述可移动平台和/或所述可移动平台搭载负载的重量;
    所述确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
    获取所述可移动平台的运行功率;
    根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量。
  21. 根据权利要求20所述的方法,其特征在于,所述根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
    获取运行功率与重量之间预设的映射关系表;
    根据运行功率与重量之间预设的映射关系表,确定所述可移动平台的运行功率对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量。
  22. 根据权利要求20所述的方法,其特征在于,所述运行功率与重量之间包括如下对应关系:不同运行功率范围与不同重量的对应关系。
  23. 根据权利要求20所述的方法,其特征在于,所述根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
    确定所述可移动平台的运行功率对应的运行功率范围,将确定的运行功率范围对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量。
  24. 根据权利要求19所述的方法,其特征在于,所述可移动平台包括飞行 器、机器人或电动车。
  25. 根据权利要求24所述的方法,其特征在于,若所述可移动平台为飞行器,所述运行功率包括起飞功率和/或悬停功率。
  26. 根据权利要求19所述的方法,其特征在于,所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
    获取所述电池的环境信息和/或所述电池的荷电状态;
    根据所述电池当前的环境信息和/或所述电池的荷电状态、以及所述预设输出功率,确定所述电池的目标输出功率。
  27. 根据权利要求19所述的方法,其特征在于,
    所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率后,对所述目标输出功率进行显示;和/或,
    若所述目标输出功率超过预设值,则输出告警信息。
  28. 根据权利要求19至27任一项所述的方法,其特征在于,所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
    获取重量与输出功率之间预设的映射关系表;
    根据重量与输出功率之间预设的映射关系表,确定所述可移动平台和/或所述可移动平台搭载负载的重量对应的输出功率,得到所述电池的目标输出功率。
  29. 根据权利要求19至27任一项所述的方法,其特征在于,所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
    确定所述可移动平台和/或所述可移动平台搭载负载的重量对应的预设输出功率;
    获取所述电池的输出功率能力表,所述输出功率能力表记录有所述电池在不同温度值和不同荷电状态值下的输出功率能力值;
    从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率。
  30. 根据权利要求27所述的方法,其特征在于,所述可移动平台和/或所述可移动平台搭载负载的重量与所述预设输出功率呈正相关关系;和/或,
    所述预设输出功率为能够确保所述可移动平台运行的功率;和/或,
    所述与所述预设输出功率相匹配的输出功率能力值为:在所述输出功率能力表中与所述预设输出功率差值最小的输出功率能力值。
  31. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    获取所述电池的荷电状态;
    所述从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率,包括:
    根据所述电池的荷电状态,从所述输出功率能力表的多个荷电状态值中确定目标荷电状态值,所述目标荷电状态值为小于或等于所述电池的荷电状态的荷电状态值;
    确定所述目标荷电状态值对应的多个输出功率能力值;以及
    从所述目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率。
  32. 根据权利要求31所述的方法,其特征在于,所述从所述目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率,包括:
    从所述目标荷电状态值对应的多个输出功率能力值中选择最小的输出功率能力值作为所述电池的目标输出功率。
  33. 根据权利要求29所述的方法,其特征在于,所述方法包括:
    获取所述电池的当前温度;
    所述从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率,包括:
    根据所述电池的当前温度,从所述输出功率能力表的多个温度值中确定目标温度值;
    确定所述目标温度值对应的多个输出功率能力值;以及
    从所述目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率。
  34. 根据权利要求33所述的方法,其特征在于,所述目标温度值为所述输出功率能力表的多个温度值中大于或等于所述当前温度的温度值;或,所述目标温度值为所述输出功率能力表的多个温度值中与所述目标温度值差值最小的温度值。
  35. 根据权利要求33或34所述的方法,其特征在于,所述从所述目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率,包括:
    从所述目标温度值对应的多个输出功率能力值中选择最小的输出功率能力值作为所述电池的目标输出功率。
  36. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    检测所述电池的荷电状态和当前温度;
    若所述电池的荷电状态和当前温度在所述输出功率能力表中对应的输出功率能力值小于所述目标输出功率,输出告警提示信息。
  37. 一种智能电池,其特征在于,所述智能电池包括处理器、存储器、电池电芯及与所述电池电芯连接的电池电路;
    所述电池电路与所述处理器连接,用于控制电池充电或放电;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    获取所述可移动平台和/或所述可移动平台搭载负载的重量;
    根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率;
    控制所述电池按照所述目标输出功率给所述可移动平台供电。
  38. 根据权利要求37所述的智能电池,其特征在于,所述处理器包括微控制单元。
  39. 根据权利要求37所述的智能电池,其特征在于,所述处理器在所述可移动平台运行时,获取所述可移动平台和/或所述可移动平台搭载负载的重量;
    所述处理器在实现所述确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
    获取所述可移动平台的运行功率;
    根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量。
  40. 根据权利要求39所述的智能电池,其特征在于,所述处理器实现所述根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭 载负载的重量,包括:
    获取运行功率与重量之间预设的映射关系表;
    根据运行功率与重量之间预设的映射关系表,确定所述可移动平台的运行功率对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量。
  41. 根据权利要求39所述的智能电池,其特征在于,所述运行功率与重量之间包括如下对应关系:不同运行功率范围与不同重量的对应关系。
  42. 根据权利要求39所述的智能电池,其特征在于,所述处理器根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
    确定所述可移动平台的运行功率对应的运行功率范围,将确定的运行功率范围对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量。
  43. 根据权利要求38所述的智能电池,其特征在于,所述可移动平台包括飞行器、机器人或电动车。
  44. 根据权利要求43所述的智能电池,其特征在于,若所述可移动平台为飞行器,所述运行功率包括起飞功率和/或悬停功率。
  45. 根据权利要求38所述的方法,其特征在于,所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
    获取所述电池的环境信息和/或所述电池的荷电状态;
    根据所述电池当前的环境信息和/或所述电池的荷电状态、以及所述预设输出功率,确定所述电池的目标输出功率。
  46. 根据权利要求38所述的方法,其特征在于,
    所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率后,对所述目标输出功率进行显示;和/或,
    若所述目标输出功率超过预设值,则输出告警信息。
  47. 根据权利要求37至46任一项所述的智能电池,其特征在于,所述处理器实现所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
    获取重量与输出功率之间预设的映射关系表;
    根据重量与输出功率之间预设的映射关系表,确定所述可移动平台和/或所述可移动平台搭载负载的重量对应的输出功率,得到所述电池的目标输出功率。
  48. 根据权利要求37至46任一项所述的智能电池,其特征在于,所述处理器实现所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
    确定所述可移动平台和/或所述可移动平台搭载负载的重量对应的预设输出功率;
    获取所述电池的输出功率能力表,所述输出功率能力表记录有所述电池在不同温度值和不同荷电状态值下的输出功率能力值;
    从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率。
  49. 根据权利要求46所述的智能电池,其特征在于,所述可移动平台和/或所述可移动平台搭载负载的重量与所述预设输出功率呈正相关关系;和/或,
    所述预设输出功率为能够确保所述可移动平台运行的功率;和/或,
    所述与所述预设输出功率相匹配的输出功率能力值为:在所述输出功率能力表中与所述预设输出功率差值最小的输出功率能力值。
  50. 根据权利要求48所述的智能电池,其特征在于,所述处理器还实现以下步骤:
    获取所述电池的荷电状态;
    所述从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率,包括:
    根据所述电池的荷电状态,从所述输出功率能力表的多个荷电状态值中确定目标荷电状态值,所述目标荷电状态值为小于或等于所述电池的荷电状态的荷电状态值;
    确定所述目标荷电状态值对应的多个输出功率能力值;以及
    从所述目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率。
  51. 根据权利要求50所述的智能电池,其特征在于,所述处理器实现所述从所述目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率,包括:
    从所述目标荷电状态值对应的多个输出功率能力值中选择最小的输出功率能力值作为所述电池的目标输出功率。
  52. 根据权利要求48所述的智能电池,其特征在于,所述处理器还实现:
    获取所述电池的当前温度;
    所述从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率,包括:
    根据所述电池的当前温度,从所述输出功率能力表的多个温度值中确定目标温度值;
    确定所述目标温度值对应的多个输出功率能力值;以及
    从所述目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率。
  53. 根据权利要求52所述的智能电池,其特征在于,所述目标温度值为所述输出功率能力表的多个温度值中大于或等于所述当前温度的温度值;或,所述目标温度值为所述输出功率能力表的多个温度值中与所述目标温度值差值最小的温度值。
  54. 根据权利要求52或53所述的智能电池,其特征在于,所述处理器实现所述从所述目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率,包括:
    从所述目标温度值对应的多个输出功率能力值中选择最小的输出功率能力值作为所述电池的目标输出功率。
  55. 根据权利要求48所述智能电池,其特征在于,所述处理器还实现:
    检测所述电池的荷电状态和当前温度;
    若所述电池的荷电状态和当前温度在所述输出功率能力表中对应的输出功率能力值小于所述目标输出功率,输出告警提示信息。
  56. 一种可移动平台,其特征在于,所述可移动平台通过电池供电,所述可移动平台包括处理器和存储器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    确定所述可移动平台和/或所述可移动平台搭载负载的重量;
    根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率;
    将所述目标输出功率发送至所述电池,以使所述电池按照所述目标输出功率给所述可移动平台供电。
  57. 根据权利要求56所述的可移动平台,其特征在于,所述处理器在所述可移动平台运行时,获取所述可移动平台和/或所述可移动平台搭载负载的重量;
    所述处理器在实现所述确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
    获取所述可移动平台的运行功率;
    根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量。
  58. 根据权利要求57所述的可移动平台,其特征在于,所述处理器实现所述根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
    获取运行功率与重量之间预设的映射关系表;
    根据运行功率与重量之间预设的映射关系表,确定所述可移动平台的运行功率对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量。
  59. 根据权利要求57所述的可移动平台,其特征在于,所述运行功率与重量之间包括如下对应关系:不同运行功率范围与不同重量的对应关系。
  60. 根据权利要求57所述的可移动平台,其特征在于,所述处理器根据所述可移动平台的运行功率确定所述可移动平台和/或所述可移动平台搭载负载的重量,包括:
    确定所述可移动平台的运行功率对应的运行功率范围,将确定的运行功率范围对应的重量作为所述可移动平台和/或所述可移动平台搭载负载的重量。
  61. 根据权利要求56所述的可移动平台,其特征在于,所述可移动平台包括飞行器、机器人或电动车。
  62. 根据权利要求61所述的可移动平台,其特征在于,若所述可移动平台为飞行器,所述运行功率包括起飞功率和/或悬停功率。
  63. 根据权利要求56所述的方法,其特征在于,所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
    获取所述电池的环境信息和/或所述电池的荷电状态;
    根据所述电池当前的环境信息和/或所述电池的荷电状态、以及所述预设输 出功率,确定所述电池的目标输出功率。
  64. 根据权利要求56所述的方法,其特征在于,
    所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率后,对所述目标输出功率进行显示;和/或,
    若所述目标输出功率超过预设值,则输出告警信息。
  65. 根据权利要求56至64任一项所述的可移动平台,其特征在于,所述处理器实现所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
    获取重量与输出功率之间预设的映射关系表;
    根据重量与输出功率之间预设的映射关系表,确定所述可移动平台和/或所述可移动平台搭载负载的重量对应的输出功率,得到所述电池的目标输出功率。
  66. 根据权利要求56至64任一项所述的可移动平台,其特征在于,所述处理器实现所述根据所述可移动平台和/或所述可移动平台搭载负载的重量确定所述电池的目标输出功率,包括:
    确定所述可移动平台和/或所述可移动平台搭载负载的重量对应的预设输出功率;
    获取所述电池的输出功率能力表,所述输出功率能力表记录有所述电池在不同温度值和不同荷电状态值下的输出功率能力值;
    从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率。
  67. 根据权利要求64所述的可移动平台,其特征在于,所述可移动平台和/或所述可移动平台搭载负载的重量与所述预设输出功率呈正相关关系;和/或,
    所述预设输出功率为能够确保所述可移动平台运行的功率;和/或,
    所述与所述预设输出功率相匹配的输出功率能力值为:在所述输出功率能力表中与所述预设输出功率差值最小的输出功率能力值。
  68. 根据权利要求66所述的可移动平台,其特征在于,所述处理器还实现以下步骤:
    获取所述电池的荷电状态;
    所述从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率,包括:
    根据所述电池的荷电状态,从所述输出功率能力表的多个荷电状态值中确定目标荷电状态值,所述目标荷电状态值为小于或等于所述电池的荷电状态的荷电状态值;
    确定所述目标荷电状态值对应的多个输出功率能力值;以及
    从所述目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率。
  69. 根据权利要求68所述的可移动平台,其特征在于,所述处理器实现所述从所述目标荷电状态值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率,包括:
    从所述目标荷电状态值对应的多个输出功率能力值中选择最小的输出功率能力值作为所述电池的目标输出功率。
  70. 根据权利要求66所述的可移动平台,其特征在于,所述处理器还实现:
    获取所述电池的当前温度;
    所述从所述输出功率能力表中查询与所述预设输出功率相匹配的输出功率能力值,得到所述电池的目标输出功率,包括:
    根据所述电池的当前温度,从所述输出功率能力表的多个温度值中确定目标温度值;
    确定所述目标温度值对应的多个输出功率能力值;以及
    从所述目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率。
  71. 根据权利要求70所述的可移动平台,其特征在于,所述目标温度值为所述输出功率能力表的多个温度值中大于或等于所述当前温度的温度值;或,所述目标温度值为所述输出功率能力表的多个温度值中与所述目标温度值差值最小的温度值。
  72. 根据权利要求70或71所述的可移动平台,其特征在于,所述处理器实现所述从所述目标温度值对应的多个输出功率能力值中选择一个输出功率能力值作为所述电池的目标输出功率,包括:
    从所述目标温度值对应的多个输出功率能力值中选择最小的输出功率能力值作为所述电池的目标输出功率。
  73. 根据权利要求66所述可移动平台,其特征在于,所述处理器还实现:
    检测所述电池的荷电状态和当前温度;
    若所述电池的荷电状态和当前温度在所述输出功率能力表中对应的输出功率能力值小于所述目标输出功率,输出告警提示信息。
  74. 一种移动组件,其特征在于,包括可移动平台以及如权利要求37至55任一项所述的智能电池;所述智能电池用于安装于所述可移动平台,以为所述可移动平台供电。
  75. 一种移动组件,其特征在于,包括如权利要求56至73任一项所述的可移动平台以及智能电池;所述智能电池用于安装于所述可移动平台,以为所述可移动平台供电。
  76. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现:如权利要求1至18任一项所述的方法,或者如权利要求19至35任一项所述的方法。
PCT/CN2020/071859 2020-01-13 2020-01-13 电池控制方法、设备及存储介质 WO2021142596A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/071859 WO2021142596A1 (zh) 2020-01-13 2020-01-13 电池控制方法、设备及存储介质
CN202080005664.0A CN112956102A (zh) 2020-01-13 2020-01-13 电池控制方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071859 WO2021142596A1 (zh) 2020-01-13 2020-01-13 电池控制方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021142596A1 true WO2021142596A1 (zh) 2021-07-22

Family

ID=76236230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071859 WO2021142596A1 (zh) 2020-01-13 2020-01-13 电池控制方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN112956102A (zh)
WO (1) WO2021142596A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114265907A (zh) * 2021-11-29 2022-04-01 三一汽车制造有限公司 一种搅拌车车重预估方法、装置及搅拌车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107128189A (zh) * 2017-04-26 2017-09-05 纳恩博(北京)科技有限公司 电池控制方法、装置及电动车辆
US20170279113A1 (en) * 2014-08-25 2017-09-28 Nissan Motor Co., Ltd. Laminate type battery and method for producing the same
CN107380339A (zh) * 2017-07-25 2017-11-24 江苏立央科技有限公司 电动助力自行车控制器
CN107416116A (zh) * 2017-07-25 2017-12-01 江苏立央科技有限公司 电动助力自行车系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108227817B (zh) * 2018-01-23 2020-11-10 北京新能源汽车股份有限公司 动力电池功率状态控制方法、装置及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170279113A1 (en) * 2014-08-25 2017-09-28 Nissan Motor Co., Ltd. Laminate type battery and method for producing the same
CN107128189A (zh) * 2017-04-26 2017-09-05 纳恩博(北京)科技有限公司 电池控制方法、装置及电动车辆
CN107380339A (zh) * 2017-07-25 2017-11-24 江苏立央科技有限公司 电动助力自行车控制器
CN107416116A (zh) * 2017-07-25 2017-12-01 江苏立央科技有限公司 电动助力自行车系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114265907A (zh) * 2021-11-29 2022-04-01 三一汽车制造有限公司 一种搅拌车车重预估方法、装置及搅拌车

Also Published As

Publication number Publication date
CN112956102A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2020156079A1 (zh) 一种飞行器电池监控方法、装置、电池及飞行器
WO2021217314A1 (zh) 电池的均衡方法、智能电池、充电系统及存储介质
US10948545B2 (en) Residual quantity measuring device, battery pack, electric power tool, electric aircraft, electric vehicle, and power supply device
US9778660B2 (en) Unmanned aerial vehicle low-power operation
JP2019071787A (ja) バッテリー及びバッテリー付き無人機
WO2021217315A1 (zh) 充电控制方法、充电器、充电系统及存储介质
CN107074347B (zh) 飞行控制方法、系统和无人飞行器
US20190152597A1 (en) Anomalous payload detection for multirotor unmanned aerial systems
WO2017185363A1 (zh) 无人飞行器的控制方法、装置及系统
WO2021142597A1 (zh) 电池控制方法、设备及存储介质
WO2019140617A1 (zh) 电池控制方法、电池控制系统、无人机及电池
WO2021142596A1 (zh) 电池控制方法、设备及存储介质
WO2021142591A1 (zh) 电池控制方法、可移动平台、系统及计算机可读存储介质
CN109625293B (zh) 飞行控制方法、系统和无人飞行器
WO2021142850A1 (zh) 部件维护提醒方法、设备、系统及计算机可读存储介质
KR102100606B1 (ko) 드론 착륙 시스템 및 그의 동작 방법
WO2020035042A1 (zh) 飞行器的供电方法、装置、飞行控制系统及飞行器
CN111132870A (zh) 可移动平台的控制方法、可移动平台及存储介质
WO2021102907A1 (zh) 电池寿命检测方法、电池、电子设备和存储介质
WO2021142595A1 (zh) 充电控制方法、充电器、充电系统及存储介质
WO2021203362A1 (zh) 电池保养方法、电子设备、电池保养系统及计算机可读存储介质
CN108473196B (zh) 动力系统配置方法、装置、无人机、服务器及用户终端
WO2021142593A1 (zh) 功率输出能力的估算方法、电池组件、可移动平台和存储介质
US9199181B2 (en) Controlling communication system
WO2021217464A1 (zh) 电池自放电控制方法、电池、充电装置、系统及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913788

Country of ref document: EP

Kind code of ref document: A1