WO2021141436A1 - Electric power steering system - Google Patents

Electric power steering system Download PDF

Info

Publication number
WO2021141436A1
WO2021141436A1 PCT/KR2021/000241 KR2021000241W WO2021141436A1 WO 2021141436 A1 WO2021141436 A1 WO 2021141436A1 KR 2021000241 W KR2021000241 W KR 2021000241W WO 2021141436 A1 WO2021141436 A1 WO 2021141436A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
steering
friction
vehicle speed
basic
Prior art date
Application number
PCT/KR2021/000241
Other languages
French (fr)
Korean (ko)
Inventor
이정일
손중락
방희성
Original Assignee
이래에이엠에스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이래에이엠에스 주식회사 filed Critical 이래에이엠에스 주식회사
Publication of WO2021141436A1 publication Critical patent/WO2021141436A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures

Definitions

  • the present invention relates to an electric power steering system for a vehicle.
  • An electric power steering (EPS) system is a steering system that uses electric power to steer auxiliary power
  • FIG. 1 shows the structure of a general EPS system.
  • Torsion of the torsion bar 2 is formed through the steering angle applied to the steering wheel 1 by the driver, and the torque and angle sensor (TAS) 3 measures this to steer the driver desired.
  • a steering torque is generated to
  • the steering angle and steering torque together with the vehicle speed are the main inputs to the EPS logic 4 for determining the optimal steering assistance force.
  • the optimal steering assistance force should be generated based on inputs such as steering angle, steering angular speed, and steering torque applied by the driver at the corresponding vehicle speed.
  • the determined steering assist force is transmitted to the motor driver 5 and converted into an actually required steering current.
  • the motor 6 is driven by this steering current, it is converted into a required force through a power transmission medium such as a worm wheel or a worm gear, and by driving the steering mechanism 7, the steering wheel 8 is driven to perform steering.
  • the EPS control system uses the control logic to create a light and comfortable steering feel during low-speed driving and a heavy and stable steering feel for high-speed driving.
  • the EPS system controls the motor to achieve quick steering in an emergency or a situation requiring sudden steering.
  • EPS control includes friction logic. Due to the effect of friction generated when each steering part is operated, a situation may arise where the motor cannot generate the necessary amount of auxiliary torque/steering force, and also a situation where the responsiveness is insufficient due to the disturbance caused by the friction of the tire, resulting in a steering feel. and a decrease in steering performance, a friction logic is required. For example, when such friction and disturbance occur in a situation where urgent steering is required at high speed driving, the motor may not be able to generate the necessary steering assistance power. Steering may be difficult as it does not operate.
  • the problem of reduced responsiveness due to internal mechanical friction or external disturbance is not limited to sudden steering, etc., but also affects general cornering and steering operations.
  • Mechanical friction and disturbance during driving vary depending on the vehicle condition and various driving situations, but since they have a slight effect on creating an appropriate auxiliary steering force, it can lead to a decrease in steering feel and major fine performance degradation.
  • Mechanical friction and disturbance during driving also affect on-center operation during straight-line driving and affect other overall steering performance.
  • Several types of logic have been developed that can compensate for the appropriate auxiliary steering force by overcoming the problems caused by such internal and external friction.
  • a basic way to find out whether the driver has made a sudden steering or how fast the responsiveness is steering is to sense and use the frequency change of the steering torque input by the driver.
  • the frequency change range that the driver can give is inevitably limited, and steering at a frequency of 10 Hz or higher generally does not occur no matter how fast the steering is.
  • Most drivers' steering is observed around 4 to 5 Hz.
  • it is not desirable to control the frequency band reflecting the driver's will to be absolutely limited to the corresponding band, and it is desirable to control the frequency band to be limited within an appropriate range in consideration of the tunable range and steering stability and responsiveness.
  • the steering assistance torque suitable for this in the EPS system should be output at an appropriate time and with an appropriate size.
  • Friction compensation torque is generated only above or below the specific speed (RPM) value of the steering motor, so that in the build-up section where a large initial torque is required or in emergency steering operation, step waveform, trapezoidal waveform, etc.
  • a form of compensating for insufficient auxiliary power by outputting a compensation torque of the waveform of This auxiliary force is controlled so that the torque felt during the initial start does not change abruptly.
  • the driver can steer without difficulty by compensating for the problem of lack of responsiveness when steering.
  • the value of a specific steering angular speed can be used as an upper and lower limit value for outputting the compensation torque.
  • This compensation torque which is output only above or below a certain speed, inevitably brings about a sudden change in torque, and this characteristic may basically cause vibration or a sense of steering heterogeneity.
  • a method of turning the output on/off based on a value of a specific steering angular speed or motor speed has a basic limitation that it may cause a sudden change in torque.
  • the effect of such a sudden torque change may be amplified or deteriorated by ambient disturbance caused by a change in vehicle speed.
  • This method has greater limitations in terms of steering stability.
  • the friction compensation torque basically has a form in which it is output as a specific value based on the upper and lower limits of a specific motor or steering angular velocity value.
  • this type of operation results in a decrease in the performance of the damping logic operating for yaw stability and steering stability of the vehicle.
  • the friction compensation logic is operated to reduce insufficient responsiveness in the steering direction or to reduce the starting torque that varies greatly in the initial stage, while the damping logic is operated to control abrupt steering in the opposite direction and to provide a stable steering feel. . Due to the reasons of such operation direction and characteristics, the previously developed friction compensation logic takes an action to quickly or slowly accumulate the accumulated values in a specific frequency band section, or if the damping logic is above a specific value, it is associated with the friction compensation logic. The output value is set to be small or large according to this damping value. 3 and 4 show an example thereof.
  • Patent Document 1 Patent Publication No. 10-2010-0114995 (Published date: October 27, 2010)
  • the problem to be solved by the present invention is an electric power steering that has a flexible structure that can satisfy various steering performance and responsiveness while preventing performance degradation due to a relationship or trade-off relationship with damping control logic and can be operated flexibly It is to provide the friction compensation torque logic of the system.
  • a friction compensation torque control method of an electric power steering system includes performing variable bandpass filtering on a differentiated input steering torque, integrating the variable bandpass filtered steering torque, and the integrated generating a basic friction torque by performing amplification on the steering torque using a basic amplified gain, calculating a phase controlled friction torque by applying a phase lead to the basic friction torque obtained by the amplification, and the phase controlled friction and performing low-pass filtering on the torque using a cutoff frequency for each vehicle speed.
  • the bandpass filtering may variably operate according to a value of F2 at a given vehicle speed.
  • the phase leading may be variably performed through a combination of poles and zeros tuned for each vehicle speed.
  • a limit value given for each vehicle speed is applied to the phase control friction torque on which the low-pass filtering is performed, and a gain value for the torque increase for each vehicle speed is applied to further adjust the size. It may further include the step of
  • the basic amplification gain may be set differently depending on whether the operation is returning to the steering wheel center or moving away from the steering wheel center.
  • the basic amplification gain may be a value tuned according to a steering angular velocity.
  • a friction compensation torque control system of an electric power steering system is a variable band-pass filter for performing band-pass filtering on a differentiated input steering torque, and integrating the steering torque that has passed through the variable band-pass filter.
  • An integrator an amplifier for generating a basic friction torque that amplifies the integrated steering torque using a basic amplification gain, and a variable for calculating a phase control friction torque by applying a phase lead to the basic friction torque obtained by the amplifier a phase lead controller, and a low-pass filter for performing low-pass filtering on the phase control friction torque by using a cutoff frequency for each vehicle speed.
  • variable bandpass filter may variably operate according to a value of F2 at a given vehicle speed.
  • variable phase lead controller may variably apply the phase lead through a combination of a pole and a zero point tuned for each vehicle speed.
  • a limit value given for each vehicle speed is applied to the phase control friction compensation torque that has passed through the low-pass filter, and a gain value for the torque increase for each vehicle speed is applied to further increase the size. It may further include a size adjuster to adjust.
  • the basic amplification gain may be set differently depending on whether the operation is returning to the steering wheel center or moving away from the steering wheel center.
  • the basic amplification gain may be a value tuned according to a steering angular velocity.
  • the friction compensation torque can be flexibly created while overcoming problems such as deterioration of damping performance and steering resistance. It can provide a natural steering feel to the driver in situations such as general steering and sudden steering.
  • FIG. 1 is a view showing the structure of a general EPS system.
  • FIG. 2 is a diagram illustrating a configuration and an operation flow of a control logic in an existing EPS system.
  • FIG. 3 is a view showing a basic form of a friction compensation torque output of a conventional friction compensation logic.
  • FIG. 4 is a view showing a modified form of a conventional friction compensation logic.
  • FIG. 5 shows an example of an ideal operation form according to damping performance attenuation by friction logic during a release operation of a steering wheel in friction compensation logic.
  • 6 and 7 are block diagrams illustrating a friction compensation torque control method according to an embodiment of the present invention.
  • FIG 8 shows various examples of a phase leading operation according to a pole and a zero point in the friction compensation torque control method according to an embodiment of the present invention.
  • FIG. 10 is a view showing an operation form of a friction compensation torque to which phase control is not applied and an operation form of a friction compensation torque to which a phase control concept according to an embodiment of the present invention is applied.
  • FIG. 11 is a view showing a frequency region of interest among the phase leading operation types in the friction compensation torque control method according to an embodiment of the present invention.
  • FIG. 12 is a view showing a compensation torque by applying a phase lead in a friction compensation torque control method according to an embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a change in friction compensation torque according to a frequency change of a bandpass filter in a friction compensation torque control method according to an embodiment of the present invention.
  • FIG. 14 is a diagram illustrating an operation form according to frequency selection of a bandpass filter in a friction compensation torque control method according to an embodiment of the present invention.
  • 15 is a diagram illustrating an operation form according to frequency selection of a bandpass filter in a band of interest in a friction compensation torque control method according to an embodiment of the present invention.
  • 16 is a view showing a change in the friction compensation torque according to a change in the F2 value of the bandpass filter in the friction compensation torque control method according to an embodiment of the present invention.
  • FIG 17 shows an example of an interpolation table based on a steering angular velocity and a steering wheel center in a friction compensation torque control method according to an embodiment of the present invention.
  • FIG. 18 is a view showing the operation forms of the damping torque and the friction compensation torque when the phase control is not applied, and the operation forms of the damping torque and the friction compensation torque to which the phase control concept according to the embodiment of the present invention is applied.
  • 19 is a diagram comparatively showing an operation at the time of restoration to the center when the phase lead is applied according to an embodiment of the present invention.
  • 20 is a view comparatively showing steering torque according to the presence or absence of friction logic during sudden steering.
  • 21 is a view comparatively showing steering torque according to the presence or absence of friction logic during on-center driving.
  • phase control method it is characterized by applying the phase control method to the compensation torque control logic based on the basic steering angular speed or the motor speed.
  • the addition of the phase control method can solve the problem of performance degradation of the damping logic.
  • an example for explaining such a situation in an actual vehicle will be described, and a problem in the case where the damping performance is deteriorated through an operation when the steering wheel is released at a specific speed will be described.
  • 'YDT_monitor' denotes a damping torque
  • 'inputSWA' denotes a steering angle
  • 'limit_Friction-tq_monitor' denotes a friction compensation torque. 5 shows that the friction compensation torque is not output only above and below a specific motor speed or steering angular velocity value, and the reason for using this type is because it responds more flexibly in terms of the sense of heterogeneity of steering, including vibration. to be. It shows relatively better characteristics in terms of steering feel.
  • limit_Friction_tq_monitor By using a signal (limit_Friction_tq_monitor) whose size changes naturally, the shape that causes vibration or a sense of heterogeneity in steering torque can be relatively reduced, but the characteristic output in proportion to the speed is maintained.
  • the damping magnitude YDT_monitor When the damping magnitude YDT_monitor is output large during the release operation in which the steering angle inputSWA is released, the friction compensation magnitude is also output large in the vicinity of the corresponding operation section. This is because the motor and steering angular velocities increased in the corresponding section.
  • the damping torque (YDT_monitor) was activated to naturally and slowly return the steering wheel, but the friction torque works and offsets this part, thereby reducing the performance of yaw damping and causing the steering wheel to become unnatural (car does not follow the behavior of , and returns rapidly and quickly (as tuned). These operating characteristics make the driver feel the instability of the vehicle during restoration. Even if this friction torque value is momentarily reduced in the maximum section or a specific section of the damping torque as in the past, as in this example, it is simply applying a small size that causes performance degradation in the damping operation section that is controlled to be restored naturally as in this example. There is still a point that degrades the performance of the damping logic in .
  • Steering restoration has intrinsic limitations that make it difficult to achieve stable damping control. That is, in an important section in which the damping logic operates and controls to have the most stable restoration or stability, the influence of the friction logic may be minimized or may not be necessary.
  • the initial torque section requiring high steering torque occurs in the initial torque generation section in both the general steering and sudden steering situations, and then moves away from the effective operating section of the friction logic in the operation. That is, it can be said that the time point at which the damping torque logic operates as the maximum size and the main effective operation period of the friction compensation logic are different from each other.
  • the friction torque logic has as a basic criterion that the necessary compensation torque is output while minimizing the delay so that the compensation-response is not insufficient at the timing when the responsiveness is required.
  • the friction torque disappears quickly after output, and it is necessary to limit and minimize the operation of the friction logic in the section with the maximum damping magnitude.
  • the operation section of the friction logic is developed in the form of phase control to secure such operation characteristics.
  • the embodiment of the present invention shows a structure and an output form of a friction compensation torque having characteristics of a natural compensation torque change in consideration of various main input and control situations.
  • the actual vehicle performance test results for demonstrating these methods are presented below to prove the effectiveness of the method of the present invention.
  • FIG. 6 and 7 are block diagrams illustrating a friction compensation torque control method and system according to an embodiment of the present invention.
  • the steering torque is differentiated by the differentiator 11 , and the variable BPF 10 performs variable bandpass filtering on the differentiated input steering torque.
  • the variable bandpass filter 10 changes the differentiated input steering torque according to the f2 value using the f2 frequency table 20 at a given vehicle speed. Thereby, the steering torque component required at a given vehicle speed can be flexibly adjusted and selected according to the intended purpose.
  • the integrator 30 integrates the steering torque band that has passed through the variable bandpass filter 10 .
  • the variable bandpass filter 10 is a filter that passes a band between the lower limit frequency f1 and the upper limit frequency f2, and when f1 is fixed and f2 is increased, a bandpass result having a relatively high frequency component is obtained.
  • the high frequency component is related to the responsiveness, and the responsiveness is improved by increasing f2. That is, the upper limit frequency becomes a tuning parameter that can increase or decrease the responsiveness by raising or lowering the frequency in relation to the vehicle speed.
  • the responsiveness is improved by slightly increasing f2.
  • the determiner 40 determines whether the operation is returning to the steering wheel center or moving away from the steering wheel center with respect to the integrated steering torque component. For example, this determination may be made using a steering angle and a steering torque. When the steering angle is divided into an on-center area, a transition area, and an off-center area, whether the steering angle is moving away from or closer to the center can be known as an angle. In this case, the steering torque may also be considered, and the above determination may be made using the steering angle and the steering torque.
  • the amplifier 50 generates basic friction torque by amplifying the integrated steering torque using the basic amplification gain.
  • the amplifier 50 generates a necessary basic friction compensation torque by amplifying the steering torque by the values tuned in the interpolation gain tables 61 and 62 according to the steering angular velocity according to the determination result of the determiner 40 .
  • the first interpolation gain table 61 includes gain data according to the steering angular velocity when the steering wheel is restored to the center
  • the second interpolation gain table 62 includes the gain data according to the steering angular velocity when the steering wheel moves away from the center. Includes gain data.
  • the steering angle is differentiated by the differentiator 12 to obtain the steering angular velocity, and the first and second interpolation tables use the obtained steering angular velocity.
  • the amplifier 50 performs basic amplification by selectively using the gains of the first or second interpolation gain tables 61 and 62 according to the determination result of the determiner 40 .
  • a variable phase lead controller 80 calculates a phase-controlled friction compensation torque by applying a phase lead to the basic friction compensation torque obtained by the amplifier 50 .
  • the variable phase lead controller 80 is a phase lead through the combination of poles and zeros of the pole / zero table 70 tuned for each vehicle speed with respect to the basic friction compensation torque obtained by the amplifier 50 . make it happen
  • the phase lead controller itself is a known control equation.
  • the variable phase lead controller 80 may use such a previously known control equation, and applies an application applied to each vehicle speed of steering. For example, at P20, that is, pole 20, Z0.3, that is, a response with zero point 0.3 and a response zero point with P30, the phase of P30 appears larger in the same frequency band, for example, a band below 10 Hz. That is, P30 appears first at the same frequency because the phase is ahead. In a physical sense, it means appearing first in a larger size.
  • This combination of poles and zeros is used in the form of an interpolation table for each vehicle speed.
  • variable low-pass filter (LPF) 100 performs low-pass filtering with respect to the phase control friction compensation torque by using a cutoff frequency given for each vehicle speed. Since the component passing through the variable phase lead controller 80 may include a vibration component and the like, a variable low-pass filter (LPF) using the cut-off frequency of the cut-off frequency table 90 including the cut-off frequency given for each vehicle speed as a torque component. ) (100).
  • the size adjuster 120 additionally adjusts the size by applying a limit value given for each vehicle speed to the phase control friction compensation torque that has passed through the variable low-pass filter 100 and applying a gain value for the torque increase for each vehicle speed.
  • the size adjuster 120 applies the torque limit value given for each vehicle speed of the torque limit value table 121 to the torque component made after filtering, and adjusts the torque increase amount for the torque increase until the limit value is given for each vehicle speed of the gain table 122 .
  • the increment control gain the torque magnitude is adjusted and limited for each vehicle speed. It is to set a limit value at the corresponding vehicle speed, and also to set the slope for each vehicle speed, so that when the vehicle reaches the limit value, the shifting slope is different.
  • the gain tables 121 and 122 may be used to simply change the final amplification for each vehicle speed, or may be used to adjust the torque increase speed reaching a limit value.
  • the summer 130 adds up the friction compensation torque component determined as above with the existing steering logic torque components, for example, assist torque, return torque, damping torque, and other logic-based torque components.
  • the final torque signal output from the summer 130 is processed as a stable final torque through a notch filter 140 and is output as a torque command to the motor 200 accordingly.
  • variable bandpass filter 10, integrator 30, determiner 40, amplifier 50, variable phase lead controller 80, variable low-pass filter 100, magnitude adjuster 120, summer 130 and notch filter 140 may be implemented in a microprocessor, memory, and related hardware and software, as is known in the art.
  • the operation form of the friction compensation torque may be various.
  • the purpose may be that the friction compensation torque is output quickly and cancelled quickly, and a performance in the form of relatively slow and slow offsetting may be preferred. Furthermore, a form that outputs a little later and decreases rapidly may be preferred. What is important is whether it can be tuned and operated according to changes caused by various factors and intended operation.
  • Friction compensation torque having various phase control characteristics using differences in frequency response and various characteristics according to combinations of poles and zeros as shown in FIGS. 8 and 9 in consideration of the characteristics of vehicle speed and input steering torque can create Through this, it is possible to minimize factors that degrade performance such as damping while securing the intended operation or to have a relationship with the intended operation.
  • Equation 1 shows a transfer function for phase leading. The combination of the pole and zero points of the transfer function designed in this way is changed according to the situation according to the characteristics of the vehicle speed and the input steering torque, thereby outputting a friction compensation torque having a phase control characteristic.
  • y is the output
  • is the input
  • ⁇ d is the zero-phase gain characteristic
  • T d is the pole-center frequency
  • phase and gain in the frequency domain of interest can be controlled in various ways through the combination of the pole and the zero point.
  • desired responsiveness can be tuned in various forms.
  • an interpolation table of poles and zeros according to vehicle speed needs to be implemented.
  • FIG. 10 shows the operation form of the friction compensation torque based on the phase control according to the embodiment of the present invention, and shows the results measured in a real vehicle running at 60 kph on an asphalt road.
  • Fig. 10 (a) shows the operation form of the friction compensation torque to which the phase control concept is not applied
  • Fig. 10 (b) shows the operation form of the friction compensation torque to which the phase control concept is applied.
  • 'YDT_Monitor' indicates damping torque logic
  • 'RealControl_inputSWA' indicates a steering angle
  • 'limit_friction_tq_monitor' indicates friction compensation torque.
  • FIG. 10 shows the interrelated action with damping.
  • the friction compensation torque is large above a specific value according to the steering angular speed or the motor speed.
  • the friction compensation torque is also maximized within the maximizing operation section of the damping torque to cancel it.
  • the initial starting torque is reduced due to the effect of the friction compensation torque, so that the driver obtains a smooth steering feel during steering.
  • the damping performance is greatly reduced, so that the driver does not feel a stable steering feeling and receives an unstable steering feeling.
  • FIG. 11 shows the frequency response characteristics at various pole/zero combinations in a relatively low/high frequency band based on a band of about 10 Hz, which is a pole during operation for a relatively low frequency input and a high frequency input. It indicates that various properties can be obtained through various combinations of and zero. That is, for example, it is possible not to operate sensitively in steering at a relatively normal speed, and to react quickly when a more abrupt steering speed occurs to prevent a lack of responsiveness from occurring and then to decrease rapidly. Of course, even when steering in a low frequency band, it is possible to finely adjust the compensation torque through fine adjustment to achieve smoother steering.
  • This fine adjustment is not a form in which the driver holds the wheel and steers, but as in the example described above, even in the release operation of the steering wheel, the friction compensation torque with this phase control induces a more natural restoration and operates according to the intended purpose. Tuning can also be made more flexible.
  • this phase control concept is not a friction compensation torque that operates only above/below a specific motor speed or steering angular speed.
  • compensation torque to which this phase control concept is applied responds less during low-frequency steering, which means that it does not create unnecessary damping inhibitory components. That is, the higher the frequency, the faster the steering response and the less response when steering in a relatively low frequency band, thereby significantly reducing the problem caused by deterioration of damping performance.
  • this is a more efficient and flexible operation form in that it does not create vibrations or other steering differences because it does not make sudden changes while reflecting the intention to operate only during sudden steering in a basically step-shaped waveform such as a square or trapezoid, as described above.
  • the compensation torque is much smaller in the method in which the phase lead of the 'B' part is applied compared to the 'A' part of FIG. 12 .
  • This is less responsive to steering at relatively low frequencies.
  • the phase characteristics are different depending on the frequency characteristics, so it is possible to operate in a section different from the maximum damping operation section, and the gain characteristics for low and high frequencies can also be applied differently.
  • This operation characteristic can create various types of friction compensation torque desired while minimizing the degradation of damping performance, and thus the response characteristic can be made more flexible.
  • the size of the friction compensation torque is reduced only by changing the value of the second frequency F2 (band frequency of the bandpass filter, F1 ⁇ F2) of the bandpass filter for the steering torque.
  • F2 band frequency of the bandpass filter
  • F1 ⁇ F2 band frequency of the bandpass filter
  • the band-pass filter By adjusting the F2 value, this subtle difference can be overcome.
  • the combination of the phase leading pole and zero point at a specific vehicle speed and the various gain values determined according to the vehicle speed in the interpolation table at this time approximate the desired performance value or operating characteristic, but increase or decrease the gain or increase or decrease the gain or increase or decrease the pole and It is conceivable that changing the zero combination will produce a larger change. In this case, it is possible to fine-tune the friction compensation torque by changing the F2 value of the bandpass filter without changing the combination of the pole and the zero point or various gain values.
  • the frequency selection that determines the passband of the bandpass filter and the pole and zero values that determine the frequency characteristic of the phase lead controller at the same vehicle speed For example, if the F2 value of the bandpass filter is reduced from '4' to '3', the processing for the bands above 4 Hz in the phase leading frequency characteristic of the combined pole and zero combination is eliminated or minimized, so different steering and operating characteristics this can be obtained.
  • the frequency bands targeted by the phase leading controller of the bandpass filter may be matched with each other, or the band of the bandpass filter may be overlapped with the main effective band of the phase leading controller. Alternatively, operating characteristics such as ignoring a specific band or making it more amplified may be correlated.
  • the initial starting torque and sudden steering It is possible to create a basic amount of auxiliary torque to satisfy the required responsiveness.
  • a separate interpolation table for the shape of returning to the center and moving away from the center based on the zero center of the steering wheel the steering feel and motion when moving away from the sensor and returning to the center can be made more flexible. It can be implemented in the intended form.
  • Such an interpolation table may take various forms with the steering angular velocity and the steering torque or the steering torque change value as an axis for the steering torque after passing through the bandpass filter. 17 shows one form of such an interpolation table. This operation can be called a more flexible structure because the gain can be varied in a specific section or value for a specific steering torque, a steering torque change (differential), or a steering angular velocity.
  • the example shown in FIG. 17 is a structure having a separate gain table different from the steering torque and the steering angular velocity.
  • FIG. 18 shows the results of comparing the damping torque and the friction compensation torque obtained from the data measured in the actual vehicle as an area ratio.
  • Fig. 18 (a) shows the result when the phase control is not applied
  • Fig. 18 (b) shows the result when the phase control concept according to the present invention is applied.
  • the output form of the damping torque is similar, other tuning values are the same, and there is only a difference in the presence or absence of the phase lead controller.
  • the friction compensation torque is output faster than in (a) of FIG. 18 , and after rapidly rising, it also decreases rapidly on the contrary. It can be seen as a form that operates quickly only in the section where responsiveness is required and then disappears quickly to minimize deterioration of damping performance.
  • the area that can degrade the damping performance is minimized.
  • the section to create the initial starting torque or the auxiliary torque required for sudden steering it is quickly supported and then attenuated according to the tuned value, so that the steering response is not impaired.
  • the friction compensation torque logic to which the phase control concept is applied is configured in a very flexible and dynamic form. As in the example described above, it can rise rapidly and then disappear quickly, operating to minimize the impact on other logic such as damping.
  • the control method used is variable phase lead, which is closely related to and paired with the variable bandpass filter (10).
  • the desired characteristic is achieved by the combination of the pole value and the zero value that are set to change according to the vehicle speed of the phase lead designed to advance the phase and various input conditions. That is, through the combination of the pole value and the zero value, the friction compensation torque can be outputted and reacted more quickly and attenuated more quickly. Conversely, it can also be made to output and respond more slowly and decay more slowly. You can also make it decay a little slower when it reacts faster but decays.
  • FIG. 20 comparatively shows waveforms of steering torque measured in the actual vehicle when the friction torque compensation logic according to the embodiment of the present invention is turned on/off during sudden steering, and all other conditions are the same.
  • the initial starting torque and the steering torque required within a specific section are formed smaller than the off state in the on state of the friction logic.
  • 21 shows a comparison of driving data during on-center steering in the actual vehicle waveform at 60 kph, and even in this case, the steering required in the on state compared to the off state both when moving away from the center and returning to the center. It can be seen that the torque naturally rises and moves to the target torque as it is formed low rather than rapidly rising.
  • the present invention relates to an electric power steering system that can be applied as a steering device for a vehicle, and thus has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

A method for controlling friction compensation torque of an electric power steering system comprises the steps of: performing variable band-pass filtering with respect to differentiated input steering torque; integrating the variable band-pass filtered steering torque; performing amplification with respect to the integrated steering torque by using a basic amplification gain, so as to generate basic friction torque; calculating phase control friction torque by applying a phase lead to the basic friction torque obtained by the amplification; and performing low-pass filtering with respect to the phase control friction torque by using a cutoff frequency for each vehicle speed.

Description

전동 파워 스티어링 시스템electric power steering system
본 발명은 차량의 전동 파워 스티어링 시스템에 관한 것이다.The present invention relates to an electric power steering system for a vehicle.
전동 파워 스티어링(EPS, electric power steering) 시스템은 전동 파워를 조향 보조력을 사용하는 스티어링 시스템이며, 도 1은 일반적인 EPS 시스템의 구조를 보여준다. 운전자가 스티어링 휠(1)에 인가한 조향각을 통해 토션바(torsion bar)(2)의 비틀림이 형성되고, 이를 토크 앵글 센서(TAS, torque and angle sensor)(3)가 측정하여 운전자가 원하는 조향을 하기 위한 조향 토크(steering torque)가 생성된다. 조향 각과 조향 토크는 차속과 더불어 최적의 조향 보조력을 결정하기 위한 EPS 로직(4)의 주요한 입력이 된다. 최적의 조향 보조력은 해당 차속에서 운전자가 인가한 조향각, 조향각속도, 조향토크 등의 입력을 기초로 생성되어야 한다. 이렇게 결정된 조향 보조력은 모터 드라이버(motor driver)(5)에 전달되어 실제 필요한 조향 전류(assist current)로 전환된다. 이러한 조향 전류에 모터(6)가 구동됨으로써 웜휠, 웜기어와 같은 동력 전달 매체를 통해 필요한 힘으로 전환되어 조향 메커니즘(7)을 구동함으로써 조향 휠(8)이 구동되어 조향이 이루어진다.An electric power steering (EPS) system is a steering system that uses electric power to steer auxiliary power, and FIG. 1 shows the structure of a general EPS system. Torsion of the torsion bar 2 is formed through the steering angle applied to the steering wheel 1 by the driver, and the torque and angle sensor (TAS) 3 measures this to steer the driver desired. A steering torque is generated to The steering angle and steering torque together with the vehicle speed are the main inputs to the EPS logic 4 for determining the optimal steering assistance force. The optimal steering assistance force should be generated based on inputs such as steering angle, steering angular speed, and steering torque applied by the driver at the corresponding vehicle speed. The determined steering assist force is transmitted to the motor driver 5 and converted into an actually required steering current. When the motor 6 is driven by this steering current, it is converted into a required force through a power transmission medium such as a worm wheel or a worm gear, and by driving the steering mechanism 7, the steering wheel 8 is driven to perform steering.
조향 보조력은 여러 출력이 합쳐진 것으로 이루어진다. EPS 제어 시스템은 제어 로직을 통해 저속 운행 시에는 가볍고 편안한 조향 조작감이 만들어지도록 하고 고속 운행 시에는 무겁고 안정적인 조향 조작감이 만들어지도록 한다. 또한 EPS 시스템은 비상 상황 시나 급조타가 필요한 상황에서는 신속한 조향이 이루어지도록 모터를 제어한다.Steering assistance is the sum of several outputs. The EPS control system uses the control logic to create a light and comfortable steering feel during low-speed driving and a heavy and stable steering feel for high-speed driving. In addition, the EPS system controls the motor to achieve quick steering in an emergency or a situation requiring sudden steering.
도 2는 일반적인 EPS 시스템 내의 제어 로직의 구성 및 동작 플로우를 보여주는 도면이다. EPS 제어는 마찰 로직(friction logic)을 포함한다. 각 조향 부품들이 작동할 때 발생되는 마찰에 의한 효과로 인해 모터가 필요한 만큼의 보조 토크/조향력을 발생시키지 못하는 상황이 발생할 수 있고 또한 타이어 마찰에 따른 외란으로 인해 응답성이 부족한 상황을 만들어 조향감 및 조향성능의 저하가 야기될 수 있기 때문에, 마찰 로직이 요구된다. 예를 들어, 고속 주행 시 긴급한 조타가 필요한 상황에서 이러한 마찰 및 외란이 발생하면 모터가 필요한 적정의 조향 보조력을 발생하지 못할 수 있으며, 이러한 상황에서 운전자는 급조타 시 조향 시스템이 필요한 응답성 만큼 동작되지 못함에 따라 조향에 어려움을 겪을 수 있다.2 is a diagram showing the configuration and operation flow of control logic in a general EPS system. EPS control includes friction logic. Due to the effect of friction generated when each steering part is operated, a situation may arise where the motor cannot generate the necessary amount of auxiliary torque/steering force, and also a situation where the responsiveness is insufficient due to the disturbance caused by the friction of the tire, resulting in a steering feel. and a decrease in steering performance, a friction logic is required. For example, when such friction and disturbance occur in a situation where urgent steering is required at high speed driving, the motor may not be able to generate the necessary steering assistance power. Steering may be difficult as it does not operate.
이러한 내부의 기계적 마찰이나 외부의 외란 등으로 인한 응답성 저하 문제는 급조타 상황 등에만 국한되지 않으며, 일반적인 코너링이나 조향 동작에도 영향을 미친다. 기계적 마찰 및 주행 중 외란은 차량 상태나 여러 주행 상황에 따라 달라지나 적절한 보조 조향력을 만드는 것에 미세하게라도 영향을 주기 때문에 조향감 저하 및 주요 미세 성능 저하를 가져올 수 있다. 기계적 마찰 및 주행 중 외란은 직진 주행 시의 온센터(on center) 동작에도 영향을 주고 기타 전체적인 조향 성능에 영향을 끼친다. 이러한 내부 및 외부 마찰에 의해 발생하는 문제를 극복하여 적절한 보조 조향력을 보상할 수 있는 여러 형태의 로직이 개발되었다.The problem of reduced responsiveness due to internal mechanical friction or external disturbance is not limited to sudden steering, etc., but also affects general cornering and steering operations. Mechanical friction and disturbance during driving vary depending on the vehicle condition and various driving situations, but since they have a slight effect on creating an appropriate auxiliary steering force, it can lead to a decrease in steering feel and major fine performance degradation. Mechanical friction and disturbance during driving also affect on-center operation during straight-line driving and affect other overall steering performance. Several types of logic have been developed that can compensate for the appropriate auxiliary steering force by overcoming the problems caused by such internal and external friction.
급조타 혹은 운전자가 얼마나 빠른 응답성을 요구하는 조향을 하였는지를 알 수 있는 기본적인 방법은 운전자가 입력한 조향 토크의 주파수 변화를 감지하여 이용하는 것이다. 내부 및 외부 마찰력에 의해 필요한 추가적인 조향 보조력을 결정하기 위해서는 운전자가 입력한 조향 토크 성분을 분석하는 것이 필요하다. 이러한 운전자가 입력하는 조향 토크의 주파수 변화에 운전자가 조향하고자 한 방향성 등을 감안하면 어느 방향으로 어느 정도의 응답성을 요구하면서 운전자가 조향하려 했는가를 알 수 있다. 운전자가 줄 수 있는 주파수 변화 영역은 한정될 수밖에 없으며, 아무리 빠른 속도로 조향을 한다고 해도 일반적으로 10 Hz 이상의 주파수로 조향하는 것은 일어나지 않는다. 대부분의 운전자의 조향은 4 내지 5 Hz 내외에서 관측된다. 그러나 운전자의 의지가 반영된 주파수 대역은 해당 대역으로 절대적으로 제한되도록 제어되는 것은 바람직하지 않으며, 튜닝 가능한 범위 그리고 조향 안정성 및 응답성 등을 고려하여 적절한 범위 내에서 제한되도록 제어하는 것이 바람직한 방법이다.A basic way to find out whether the driver has made a sudden steering or how fast the responsiveness is steering is to sense and use the frequency change of the steering torque input by the driver. In order to determine the additional steering assistance force required by the internal and external friction forces, it is necessary to analyze the steering torque component input by the driver. Considering the direction in which the driver intends to steer in the frequency change of the steering torque input by the driver, it can be seen in which direction the driver attempted to steer while demanding a certain degree of responsiveness. The frequency change range that the driver can give is inevitably limited, and steering at a frequency of 10 Hz or higher generally does not occur no matter how fast the steering is. Most drivers' steering is observed around 4 to 5 Hz. However, it is not desirable to control the frequency band reflecting the driver's will to be absolutely limited to the corresponding band, and it is desirable to control the frequency band to be limited within an appropriate range in consideration of the tunable range and steering stability and responsiveness.
조향 토크의 주파수 변화 시 특정 주파수 대역을 관측하면 운전자의 조향 의지가 어떠한 형태였는지를 알 수 있다. 일반적으로 운전자가 입력 가능한 주파수 대역 내의 각 주파수에서의 크기 정보를 누적한 값이 크다면, 급조타나 높은 응답성을 요구하는 형태로 운전자의 입력이 진행되었다고 판단한다. 누적 값이 작아졌다면, 높은 응답성이 요구되는 형태의 조향 동작이 아니라고 판단할 수 있다. 이러한 주파수 특성은 운전자가 급격한 조향을 시도할수록 상대적 고주파에서 높은 크기의 성분이 확인되기 때문이다. 이 성분의 크기가 클수록 더 큰 조향 응답성이 필요한 상황이라 볼 수 있다. 이때 EPS 시스템에서 이에 맞는 조향 보조 토크가 적절한 타이밍에 적절한 크기로 출력되어야 한다.By observing a specific frequency band when the frequency of the steering torque is changed, it is possible to know what type of steering intention the driver has. In general, if the accumulated value of magnitude information at each frequency within a frequency band that can be input by the driver is large, it is determined that the driver's input has proceeded in a form requiring sudden steering or high responsiveness. If the accumulated value is decreased, it may be determined that the steering operation is not a type of steering operation requiring high responsiveness. This frequency characteristic is because the higher the driver's attempt to steer, the higher the magnitude of the component at the relatively high frequency. It can be seen that the larger the size of this component, the greater the steering response is required. At this time, the steering assistance torque suitable for this in the EPS system should be output at an appropriate time and with an appropriate size.
하지만 이러한 마찰 토크 보상 로직을 개발함에 있어 가장 큰 문제는 기존 EPS 시스템의 댐핑(damping) 제어 로직과의 관련성 내지 트레이드오프(trade off) 관계로 인한 성능 저하 부분이다. 실제 기존에 개발된 마찰 제어 로직들은 이러한 한계를 가지고 있거나 부분적인 방법으로 이 한계를 보상하거나 극복하려 한다.However, the biggest problem in developing such a friction torque compensation logic is the relationship with the damping control logic of the existing EPS system or the performance degradation part due to a trade-off relationship. In fact, existing friction control logics have this limitation or try to compensate or overcome this limitation in a partial way.
조향 모터의 특정 속도(RPM) 값 이상 또는 이하에서만 마찰 보상 토크가 발생하게 하여 초기 토크가 크게 요구되는 빌드업(build-up) 구간에서 혹은 긴급 조타 시 동작에서 스텝(step) 파형, 사다리꼴 파형 등의 파형의 보상 토크를 출력함으로써 부족한 보조력을 보상하는 형태가 주로 사용되고 있다. 이러한 보조력은 초기 기동 시 느끼는 토크가 급격하게 변화하지 않도록 제어된다. 또 초기 기동 토크가 보상 로직이 없을 때보다는 작기 때문에 운전자에게 조향 시 응답성 부족에 따른 문제를 보상하여 운전자가 무리 없이 조향을 할 수 있다. 이때 모터 속도는 조향각 속도와 감속비를 고려하면 선형 관계에 있기 때문에 특정 조향 각속도의 값을 보상 토크가 출력되기 위한 상하의 한계값으로도 활용할 수 있다. 특정 속도 이상 또는 이하에서만 출력되는 이러한 보상 토크는 필연적으로 급격한 토크 변화를 가져오게 되고 이러한 특성은 기본적으로 진동이나 조향 이질감을 야기할 수 있다.Friction compensation torque is generated only above or below the specific speed (RPM) value of the steering motor, so that in the build-up section where a large initial torque is required or in emergency steering operation, step waveform, trapezoidal waveform, etc. A form of compensating for insufficient auxiliary power by outputting a compensation torque of the waveform of This auxiliary force is controlled so that the torque felt during the initial start does not change abruptly. In addition, since the initial starting torque is smaller than when there is no compensation logic, the driver can steer without difficulty by compensating for the problem of lack of responsiveness when steering. At this time, since the motor speed has a linear relationship when the steering angular speed and the reduction ratio are considered, the value of a specific steering angular speed can be used as an upper and lower limit value for outputting the compensation torque. This compensation torque, which is output only above or below a certain speed, inevitably brings about a sudden change in torque, and this characteristic may basically cause vibration or a sense of steering heterogeneity.
특정 조향 각속도 또는 모터 속도의 값을 기준으로 출력을 온/오프 하는 방법은 급격한 토크 변화를 가져올 수 있다는 기본적인 한계가 있다. 또한 차속 변화에 따른 주변 외란 등에 의해 이러한 급격한 토크 변화 효과는 증폭되거나 악화될 수 있다. 이러한 방법은 조향 안정성 측면에 있어서는 더 큰 한계를 가진다. 이러한 마찰 보상 토크는 특정 모터나 조향 각속도 값의 상한치 및 하한치에 기초하여 특정 값으로 출력되는 형태를 기본적으로 가지고 있다. 그러나 이러한 동작 형태는 차량의 수방 안정성(yaw stability) 및 조향 안정성을 위해 동작하는 댐핑 로직의 성능을 감쇄하는 결과를 초래한다. 이는 마찰 보상 로직은 조향 방향으로 부족한 응답성 내지 초기에 크게 변화하는 기동 토크를 줄이기 위해서 동작되는 반면 댐핑 로직은 이와 반대 방향으로 급격한 조향을 제어하고 안정적인 조향감을 부여하기 위해 동작되는 특성을 가지기 때문이다. 이러한 동작 방향 및 특성의 이유 등으로 인해 기존에 개발된 마찰 보상 로직은 특정 주파수 대역의 구간의 누적 값을 빠르게 혹은 느리게 쌓는 액션을 취하거나 댐핑 로직이 어떤 특정 값 이상일 경우 이를 연관시켜 마찰 보상 로직의 출력 값이 이러한 댐핑 값에 따라 작아지거나 커지도록 설정된다. 도 3 및 도 4는 그 한 예를 보여준다.A method of turning the output on/off based on a value of a specific steering angular speed or motor speed has a basic limitation that it may cause a sudden change in torque. In addition, the effect of such a sudden torque change may be amplified or deteriorated by ambient disturbance caused by a change in vehicle speed. This method has greater limitations in terms of steering stability. The friction compensation torque basically has a form in which it is output as a specific value based on the upper and lower limits of a specific motor or steering angular velocity value. However, this type of operation results in a decrease in the performance of the damping logic operating for yaw stability and steering stability of the vehicle. This is because the friction compensation logic is operated to reduce insufficient responsiveness in the steering direction or to reduce the starting torque that varies greatly in the initial stage, while the damping logic is operated to control abrupt steering in the opposite direction and to provide a stable steering feel. . Due to the reasons of such operation direction and characteristics, the previously developed friction compensation logic takes an action to quickly or slowly accumulate the accumulated values in a specific frequency band section, or if the damping logic is above a specific value, it is associated with the friction compensation logic. The output value is set to be small or large according to this damping value. 3 and 4 show an example thereof.
도 3 및 도 4에는 기본적으로 급격한 마찰 보상 토크 변화가 나타나는데 이는 앞서 언급한 것처럼 진동이나 조향 이질감을 초래할 가능성을 내포한다. 또한 이 마찰 로직의 보상 토크가 댐핑 등의 로직의 토크 방향과 다르고 서로 상쇄하는 형태이고 중복되어 동작되는 영역이 크다는 것을 알 수 있다. 특정 댐핑 토크 값 이상과 이하에서 자신의 보상 토크를 연관시켜 줄여주는 형태로 동작시켜도 근본적인 성능 저하 요인이 해결되는 것은 아니다. 역시 댐핑이 최대로 필요한 시점, 즉 댐핑 토크가 최대인 구간 내지 영역에 대한 감쇄는 여전히 존재하므로, 댐핑 성능의 저하 역시 존재한다. 그리고 마찰의 보상 토크도 줄어든 것을 뿐 서로 설정된 값에 따라서 서로 성능 치를 양보하는 형태로 트레이드오프 상황을 보완하려는 시도에 해당한다고 이해할 수 있다.3 and 4 basically show a sudden change in the friction compensation torque, which implies the possibility of causing vibration or a sense of difference in steering, as mentioned above. In addition, it can be seen that the compensation torque of the friction logic is different from the torque direction of the logic such as damping and cancels each other, and the overlapping operation area is large. Even if it operates in the form of correlating its compensation torque above and below a specific damping torque value and reducing it, the underlying performance degradation factor is not solved. Also, since damping still exists at a time point when damping is most required, that is, a section or region in which the damping torque is maximum, a decrease in damping performance also exists. And it can be understood that this corresponds to an attempt to compensate for the trade-off situation in the form of yielding performance values according to mutually set values as well as reducing the friction compensation torque.
<선행기술문헌><Prior art literature>
(특허문헌 1) 공개특허공보 제10-2010-0114995 (공개일자: 2010년10월27일)(Patent Document 1) Patent Publication No. 10-2010-0114995 (Published date: October 27, 2010)
본 발명이 해결하고자 하는 과제는 댐핑 제어 로직과의 관련성 내지 트레이드오프 관계로 인한 성능 저하를 방지할 수 있으면서도 다양한 조향 성능 및 응답성을 만족시킬 수 있는 유연한 구조를 가지고 또한 유연하게 동작 가능한 전동 파워 스티어링 시스템의 마찰 보상 토크 로직을 제공하는 것이다.The problem to be solved by the present invention is an electric power steering that has a flexible structure that can satisfy various steering performance and responsiveness while preventing performance degradation due to a relationship or trade-off relationship with damping control logic and can be operated flexibly It is to provide the friction compensation torque logic of the system.
본 발명의 실시예에 따른 전동 파워 스티어링 시스템의 마찰 보상 토크 제어 방법은 미분된 입력 조향 토크에 대해 가변 대역통과 필터링을 수행하는 단계, 상기 가변 대역통과 필터링된 조향 토크를 적분하는 단계, 상기 적분된 조향 토크에 대해 기본 증폭 게인을 이용하여 증폭을 수행하여 기본 마찰 토크를 생성하는 단계, 상기 증폭에 의해 얻어진 기본 마찰 토크에 위상앞섬을 적용하여 위상 제어 마찰 토크를 산출하는 단계, 그리고 상기 위상 제어 마찰 토크에 대해 차속별 차단주파수를 이용하여 저역통과 필터링을 수행하는 단계를 포함한다.A friction compensation torque control method of an electric power steering system according to an embodiment of the present invention includes performing variable bandpass filtering on a differentiated input steering torque, integrating the variable bandpass filtered steering torque, and the integrated generating a basic friction torque by performing amplification on the steering torque using a basic amplified gain, calculating a phase controlled friction torque by applying a phase lead to the basic friction torque obtained by the amplification, and the phase controlled friction and performing low-pass filtering on the torque using a cutoff frequency for each vehicle speed.
상기 대역통과 필터링은 주어진 차속에서의 F2 값에 따라 가변적으로 동작할 수 있다.The bandpass filtering may variably operate according to a value of F2 at a given vehicle speed.
상기 위상앞섬은 차속별로 튜닝된 극점과 영점의 조합을 통해 가변적으로 수행될 수 있다.The phase leading may be variably performed through a combination of poles and zeros tuned for each vehicle speed.
본 발명의 다른 실시예에 따른 마찰 보상 토크 제어 방법은 상기 저역통과 필터링이 수행된 상기 위상 제어 마찰 토크에 대해 차속별로 주어진 제한값을 적용하고 차속별 토크 증가에 대한 게인 값을 적용하여 추가적으로 크기를 조절하는 단계를 더 포함할 수 있다.In the friction compensation torque control method according to another embodiment of the present invention, a limit value given for each vehicle speed is applied to the phase control friction torque on which the low-pass filtering is performed, and a gain value for the torque increase for each vehicle speed is applied to further adjust the size. It may further include the step of
상기 기본 증폭을 수행하는 단계에서 상기 기본 증폭 게인은 스티어링 휠 센터로 복귀하는 동작인지 상기 스티어링 휠 센터에서 멀어지는 동작인지 여부에 따라 다르게 설정될 수 있다.In the step of performing the basic amplification, the basic amplification gain may be set differently depending on whether the operation is returning to the steering wheel center or moving away from the steering wheel center.
상기 기본 증폭 게인은 조향 각속도에 따라 튜닝된 값일 수 있다.The basic amplification gain may be a value tuned according to a steering angular velocity.
본 발명의 실시예에 따른 전동 파워 스티어링 시스템의 마찰 보상 토크 제어 시스템은 미분된 입력 조향 토크에 대해 대역통과 필터링을 수행하는 가변 대역통과필터, 상기 가변 대역통과필터를 통과한 상기 조향 토크를 적분하는 적분기, 상기 적분된 조향 토크에 대해 기본 증폭 게인을 이용하여 증폭을 수행하는 기본 마찰 토크를 생성하는 증폭기, 상기 증폭기에 의해 얻어진 상기 기본 마찰 토크에 위상앞섬을 적용하여 위상 제어 마찰 토크를 산출하는 가변 위상앞섬 제어기, 그리고 상기 위상 제어 마찰 토크에 대해 차속별 차단주파수를 이용하여 저역통과 필터링을 수행하는 저역통과필터를 포함한다.A friction compensation torque control system of an electric power steering system according to an embodiment of the present invention is a variable band-pass filter for performing band-pass filtering on a differentiated input steering torque, and integrating the steering torque that has passed through the variable band-pass filter. An integrator, an amplifier for generating a basic friction torque that amplifies the integrated steering torque using a basic amplification gain, and a variable for calculating a phase control friction torque by applying a phase lead to the basic friction torque obtained by the amplifier a phase lead controller, and a low-pass filter for performing low-pass filtering on the phase control friction torque by using a cutoff frequency for each vehicle speed.
상기 가변 대역통과필터는 주어진 차속에서의 F2 값에 따라 가변적으로 동작할 수 있다.The variable bandpass filter may variably operate according to a value of F2 at a given vehicle speed.
상기 가변 위상앞섬 제어기는 차속별로 튜닝된 극점과 영점의 조합을 통해 가변적으로 위상앞섬을 적용할 수 있다.The variable phase lead controller may variably apply the phase lead through a combination of a pole and a zero point tuned for each vehicle speed.
본 발명의 다른 실시예에 따른 마찰 보상 토크 제어 시스템은 상기 저역통과필터를 통과한 상기 위상 제어 마찰 보상 토크에 대해 차속별로 주어진 제한값을 적용하고 차속별 토크 증가에 대한 게인 값을 적용하여 추가적으로 크기를 조절하는 크기 조절기를 더 포함할 수 있다.In the friction compensation torque control system according to another embodiment of the present invention, a limit value given for each vehicle speed is applied to the phase control friction compensation torque that has passed through the low-pass filter, and a gain value for the torque increase for each vehicle speed is applied to further increase the size. It may further include a size adjuster to adjust.
상기 기본 증폭 게인은 스티어링 휠 센터로 복귀하는 동작인지 상기 스티어링 휠 센터에서 멀어지는 동작인지 여부에 따라 다르게 설정될 수 있다.The basic amplification gain may be set differently depending on whether the operation is returning to the steering wheel center or moving away from the steering wheel center.
상기 기본 증폭 게인은 조향 각속도에 따라 튜닝된 값일 수 있다.The basic amplification gain may be a value tuned according to a steering angular velocity.
본 발명에 의하면, 가변 대역통과필터에 의한 가변 대역통과 필터링과 위상앞섬 제어기에 의한 위상앞섬을 적용함으로써, 댐핑 성능의 저하 및 조향감 저항 등의 문제점을 극복하면서 마찰 보상 토크를 유연하게 만들어 낼 수 있으며 일반적인 조향 및 급조타 등의 상황에서 운전자에게 자연스러운 조향감을 제공할 수 있다.According to the present invention, by applying the variable bandpass filtering by the variable bandpass filter and the phase leading by the phase leading controller, the friction compensation torque can be flexibly created while overcoming problems such as deterioration of damping performance and steering resistance. It can provide a natural steering feel to the driver in situations such as general steering and sudden steering.
도 1은 일반적인 EPS 시스템의 구조를 보여는 도면이다.1 is a view showing the structure of a general EPS system.
도 2는 기존의 EPS 시스템 내의 제어 로직의 구성 및 동작 플로우를 보여주는 도면이다.2 is a diagram illustrating a configuration and an operation flow of a control logic in an existing EPS system.
도 3은 기존의 마찰 보상 로직의 마찰 보상 토크 출력의 기본 형태를 보여주는 도면이다.3 is a view showing a basic form of a friction compensation torque output of a conventional friction compensation logic.
도 4는 기존의 마찰 보상 로직의 변형 형태를 보여주는 도면이다.4 is a view showing a modified form of a conventional friction compensation logic.
도 5는 마찰 보상 로직에서 스티어링 휠의 릴리즈(release) 동작 시 마찰 로직에 의한 댐핑 성능 감쇄에 따른 이상적인 동작 형태의 한 예를 보여준다.5 shows an example of an ideal operation form according to damping performance attenuation by friction logic during a release operation of a steering wheel in friction compensation logic.
도 6 및 도 7은 본 발명의 실시예에 따른 본 발명의 실시예에 따른 마찰 보상 토크 제어 방법을 보여주는 블록도이다.6 and 7 are block diagrams illustrating a friction compensation torque control method according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 마찰 보상 토크 제어 방법에서 극점과 영점에 따른 위상앞섬 동작 형태의 다양한 예를 보여준다.8 shows various examples of a phase leading operation according to a pole and a zero point in the friction compensation torque control method according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 마찰 보상 토크 제어 방법에서 극점과 영점에 따른 위상앞섬 응답성의 비교를 보여준다.9 shows a comparison of the phase lead response according to the pole and the zero point in the friction compensation torque control method according to the embodiment of the present invention.
도 10은 위상 제어가 적용되지 않은 마찰 보상 토크의 동작 형태와 본 발명의 실시예에 따른 위상 제어 컨셉이 적용된 마찰 보상 토크의 동작 형태를 각각 보여주는 도면이다.10 is a view showing an operation form of a friction compensation torque to which phase control is not applied and an operation form of a friction compensation torque to which a phase control concept according to an embodiment of the present invention is applied.
도 11은 본 발명의 실시예에 따른 마찰 보상 토크 제어 방법에서 위상앞섬 동작 형태 중에서 관심 주파수 영역을 보여주는 도면이다.11 is a view showing a frequency region of interest among the phase leading operation types in the friction compensation torque control method according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 마찰 보상 토크 제어 방법에서 위상 앞섬 적용에 의한 보상 토크를 보여주는 도면이다.12 is a view showing a compensation torque by applying a phase lead in a friction compensation torque control method according to an embodiment of the present invention.
도 13은 본 발명의 실시예에 따른 마찰 보상 토크 제어 방법에서 대역통과필터의 주파수 변화에 따른 마찰 보상 토크의 변화를 보여주는 도면이다.13 is a diagram illustrating a change in friction compensation torque according to a frequency change of a bandpass filter in a friction compensation torque control method according to an embodiment of the present invention.
도 14는 본 발명의 실시예에 따른 마찰 보상 토크 제어 방법에서 대역통과필터의 주파수 선택에 따른 동작 형태를 보여주는 도면이다.14 is a diagram illustrating an operation form according to frequency selection of a bandpass filter in a friction compensation torque control method according to an embodiment of the present invention.
도 15는 본 발명의 실시예에 따른 마찰 보상 토크 제어 방법에서 관심 대역에서의 대역통과필터의 주파수 선택에 따른 동작 형태를 보여주는 도면이다.15 is a diagram illustrating an operation form according to frequency selection of a bandpass filter in a band of interest in a friction compensation torque control method according to an embodiment of the present invention.
도 16은 본 발명의 실시예에 따른 마찰 보상 토크 제어 방법에서 대역통과필터의 F2 값 변화에 따른 마찰 보상 토크의 변화를 보여주는 도면이다.16 is a view showing a change in the friction compensation torque according to a change in the F2 value of the bandpass filter in the friction compensation torque control method according to an embodiment of the present invention.
도 17은 본 발명의 실시예에 따른 마찰 보상 토크 제어 방법에서 조향 각속도와 스티어링 휠 센터를 기준으로 한 보간 테이블의 예를 보여준다.17 shows an example of an interpolation table based on a steering angular velocity and a steering wheel center in a friction compensation torque control method according to an embodiment of the present invention.
도 18은 위상 제어가 적용되지 않은 경우의 댐핑 토크와 마찰 보상 토크의 동작 형태와 본 발명의 실시예에 따른 위상 제어 컨셉이 적용된 댐핑 토크와 마찰 보상 토크의 동작 형태를 각각 보여주는 도면이다.18 is a view showing the operation forms of the damping torque and the friction compensation torque when the phase control is not applied, and the operation forms of the damping torque and the friction compensation torque to which the phase control concept according to the embodiment of the present invention is applied.
도 19는 본 발명의 실시예에 따른 위상앞섬 적용 시 센터로의 복원 시의 동작을 비교적으로 보여주는 도면이다.19 is a diagram comparatively showing an operation at the time of restoration to the center when the phase lead is applied according to an embodiment of the present invention.
도 20은 급조타 시 마찰 로직의 유무에 따른 조향 토크를 비교적으로 보여주는 도면이다.20 is a view comparatively showing steering torque according to the presence or absence of friction logic during sudden steering.
도 21은 온 센터(on center) 주행 시의 마찰 로직의 유무에 따른 조향 토크를 비교적으로 보여주는 도면이다.21 is a view comparatively showing steering torque according to the presence or absence of friction logic during on-center driving.
이하에서 첨부된 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
기본 조향 각속도나 모터 속도에 기반한 보상 토크 제어 로직에 위상 제어 방법을 적용하는 것을 특징으로 한다. 위상 제어 방법의 추가는 댐핑 로직의 성능 저하의 문제를 해결할 수 있다. 이하에서 실제 차량에서 이러한 상황을 설명하는 예를 기술하며 스티어링 휠을 특정 속도에서 릴리즈할 시의 동작을 통해 댐핑 성능이 저하된 경우의 문제를 설명한다.It is characterized by applying the phase control method to the compensation torque control logic based on the basic steering angular speed or the motor speed. The addition of the phase control method can solve the problem of performance degradation of the damping logic. Hereinafter, an example for explaining such a situation in an actual vehicle will be described, and a problem in the case where the damping performance is deteriorated through an operation when the steering wheel is released at a specific speed will be described.
도 5는 스티어링 휠의 릴리즈(release) 동작 시 마찰 로직에 의한 댐핑 성능 감쇄에 따른 이상적인 동작 형태의 한 예를 보여준다. 도 5에서 'YDT_monitor'는 댐핑 토크, 'inputSWA'는 조향각, 'limit_Friction-tq_monitor'은 마찰 보상 토크를 의미한다. 도 5는 마찰 보상 토크가 특정 모터 속도나 조향 각속도 값 이상과 이하에서만 출력되는 형태가 아니며, 이러한 형태를 사용하는 이유는 진동을 비롯한 조향감의 이질감의 측면에서는 보다 더 유연하게 대응하며 동작하기 때문이다. 조향감 측면에서 상대적으로 더 우수한 특성을 보인다.5 shows an example of an ideal operation form according to damping performance attenuation by friction logic during a release operation of a steering wheel. In FIG. 5 , 'YDT_monitor' denotes a damping torque, 'inputSWA' denotes a steering angle, and 'limit_Friction-tq_monitor' denotes a friction compensation torque. 5 shows that the friction compensation torque is not output only above and below a specific motor speed or steering angular velocity value, and the reason for using this type is because it responds more flexibly in terms of the sense of heterogeneity of steering, including vibration. to be. It shows relatively better characteristics in terms of steering feel.
크기가 자연스럽게 변하는 형태의 신호(limit_Friction_tq_monitor)를 사용함으로써 진동이나 조향 토크 상의 이질감을 유발하는 형태는 상대적으로 줄어들게 할 수 있으나, 속도에 비례하여 출력되는 특성이 유지된다. 조향각(inputSWA)이 스티어링 휠을 놓은 릴리즈(release) 동작 시에 댐핑 크기(YDT_monitor)가 크게 출력될 때 해당 동작 구간 주변에서 마찰 보상 크기도 크게 출력된다. 이는 해당 구간에서 모터 및 조향 각속도가 커졌기 때문이다. 댐핑 토크(YDT_monitor)가 작동하여 자연스럽게 천천히 스티어링 휠을 복귀시키도록 제어하려 하였으나, 마찰 토크가 동작하여 이 부분을 상쇄함으로써 요 댐핑(yaw damping)의 성능을 저하시키고 이로 인해 스티어링 휠이 부자연스럽게(차의 거동에 따르지 못하고 튜닝된 대로) 급격히 빨리 복귀한다. 이러한 동작 특성은 드라이버가 복원 시 차량의 불안정성을 느끼도록 만든다. 기존과 같이 댐핑 토크의 최대 구간이나 특정 구간에서 이 마찰 토크 값을 순간적으로 줄여준다고 하더라도 본 예에서처럼 자연스럽게 복원되도록 제어하는 댐핑 동작 구간에서 성능 감쇄를 일으키는 해당 크기를 작게 적용하는 것일 뿐 본질적으로 해당 구간에서 댐핑 로직의 성능을 저하시킨다는 점은 여전히 존재한다.By using a signal (limit_Friction_tq_monitor) whose size changes naturally, the shape that causes vibration or a sense of heterogeneity in steering torque can be relatively reduced, but the characteristic output in proportion to the speed is maintained. When the damping magnitude YDT_monitor is output large during the release operation in which the steering angle inputSWA is released, the friction compensation magnitude is also output large in the vicinity of the corresponding operation section. This is because the motor and steering angular velocities increased in the corresponding section. The damping torque (YDT_monitor) was activated to naturally and slowly return the steering wheel, but the friction torque works and offsets this part, thereby reducing the performance of yaw damping and causing the steering wheel to become unnatural (car does not follow the behavior of , and returns rapidly and quickly (as tuned). These operating characteristics make the driver feel the instability of the vehicle during restoration. Even if this friction torque value is momentarily reduced in the maximum section or a specific section of the damping torque as in the past, as in this example, it is simply applying a small size that causes performance degradation in the damping operation section that is controlled to be restored naturally as in this example. There is still a point that degrades the performance of the damping logic in .
스티어링 복원은 안정적인 댐핑 제어가 되기 어려운 본질적인 한계를 가지고 있다. 즉 댐핑 로직이 동작하여 최대한 안정적인 복원이나 안정성을 가지도록 제어하는 중요 구간에서 마찰 로직은 그 영향력이 최소화되거나 필요하지 않을 수 있다. 높은 조향 토크가 요구되는 초기 토크 구간은 일반적 조타 및 급조타 상황 모두에서 초기 토크 발생 구간에서 일어나고, 그 후 동작에서는 마찰 로직의 유효한 동작 구간에서 멀어진다. 즉 댐핑 토크 로직의 최대 크기로서 동작하는 시점과 마찰 보상 로직의 주요 유효 동작 구간이 서로 다르다고 할 수 있다.Steering restoration has intrinsic limitations that make it difficult to achieve stable damping control. That is, in an important section in which the damping logic operates and controls to have the most stable restoration or stability, the influence of the friction logic may be minimized or may not be necessary. The initial torque section requiring high steering torque occurs in the initial torque generation section in both the general steering and sudden steering situations, and then moves away from the effective operating section of the friction logic in the operation. That is, it can be said that the time point at which the damping torque logic operates as the maximum size and the main effective operation period of the friction compensation logic are different from each other.
마찰 토크 로직은 응답성이 요구되는 타이밍에서 빠르게 보상-응답성이 부족하지 않도록 지연(delay)을 최소화하면서 필요한 만큼의 보상 토크가 출력되도록 하는 것을 기본적 기준으로 가진다. 마찰 토크는 출력 후에는 빠르게 사라지고, 댐핑 최대 크기 구간에서의 마찰 로직의 동작을 최대한 제한하고 최소화하는 것이 필요하다. 이를 달성하기 위해, 본 발명의 실시예에서는 마찰 로직의 동작 구간을 위상 제어의 형태로 개발함으로써 이러한 동작 특성을 확보하도록 하였다. 결론적으로, 급격한 변화보다는 자연스러운 변화를 유도하고 기존의 댐핑 로직 등 다른 로직과의 연관성에 기반한 동작 시의 성능 저하를 최소화할 수 있는 동작 방법 등의 두 가지 형태가 조합될 때 마찰 보상 로직은 최선의 성능을 얻게 된다.The friction torque logic has as a basic criterion that the necessary compensation torque is output while minimizing the delay so that the compensation-response is not insufficient at the timing when the responsiveness is required. The friction torque disappears quickly after output, and it is necessary to limit and minimize the operation of the friction logic in the section with the maximum damping magnitude. In order to achieve this, in the embodiment of the present invention, the operation section of the friction logic is developed in the form of phase control to secure such operation characteristics. In conclusion, friction compensation logic is the best when two forms are combined: an operation method that induces a natural change rather than an abrupt change and minimizes performance degradation during operation based on correlation with other logic such as the existing damping logic. performance is obtained.
본 발명의 실시예는 여러 주요 입력 및 제어 상황을 고려하여 자연스러운 보상 토크 변화의 특성을 가지는 마찰 보상 토크의 구조와 출력 형태를 보여준다. 더불어 더 중요한 점으로 댐핑 등의 주요 조향 안정성 관련 제어 로직과의 트레이드오프 내지 한계성을 극복하는 새로운 접근법이자 유연한 제어 방법을 제시한다. 또한 이하에서 이러한 방법들의 실증을 위한 실차 성능 테스트 결과를 제시하여 본 발명의 방법의 효용성을 증명한다.The embodiment of the present invention shows a structure and an output form of a friction compensation torque having characteristics of a natural compensation torque change in consideration of various main input and control situations. In addition, more importantly, we present a new approach and flexible control method that overcomes tradeoffs or limitations with major steering stability-related control logic such as damping. In addition, the actual vehicle performance test results for demonstrating these methods are presented below to prove the effectiveness of the method of the present invention.
도 6 및 도 7은 본 발명의 실시예에 따른 본 발명의 실시예에 따른 마찰 보상 토크 제어 방법 및 시스템을 보여주는 블록도이다. 도 6을 참조하면, 조향 토크는 미분기(11)에 의해 미분되며, 가변 대역통과필터(variable BPF)(10)는 미분된 입력 조향 토크에 대해 가변 대역통과 필터링을 수행한다. 가변 대역통과필터(10)는 미분된 입력 조향 토크를 주어진 차속에서의 f2 주파수 테이블(20)을 이용하여 f2 값에 따라 변화시킨다. 이에 의해 주어진 차속에서 필요한 조향 토크 성분을 의도된 목적에 따라 유연하게 조정하여 선택할 수 있다. 적분기(30)는 가변 대역통과필터(10)를 통과한 조향 토크 대역을 적분한다. 가변 대역통과필터(10)는 하한 주파수(f1)과 상한 주파수(f2) 사이의 대역을 통과시키는 필터이며, f1을 고정하고 f2를 증가시키면 상대적으로 고주파 성분이 많은 대역통과 결과가 얻어진다. 조향에서 고주파 성분은 응답성과 관계되어 f2의 증가에 의해 응답성 향상이 얻어진다. 즉 상한 주파수는 차속과 연관되어 이 주파수를 올리거나 내려서 응답성을 올리거나 내릴 수 있는 튜닝 파라미터가 된다. 본 발명의 실시예에서는 f2를 조금 상승시킴으로써 응답성을 개선시킨다. 다만 f2를 무작정 올릴 수는 없으며 차속에 따라 올릴 수 있는 값이 사전에 튜닝 단계에서 정해지는 것이 바람직하다. 응답성의 상승은 안정성을 하락을 야기하므로 사전에 올릴 수 있는 f2의 최대 값과 최소 값이 차속 별로 정해진 상태에서 이를 조정하여 안정성에 문제를 일으키지 않는 범위에서 미세한 응답성 향상을 달성할 수 있는 튜닝 팩터를 확보한 것이다.6 and 7 are block diagrams illustrating a friction compensation torque control method and system according to an embodiment of the present invention. Referring to FIG. 6 , the steering torque is differentiated by the differentiator 11 , and the variable BPF 10 performs variable bandpass filtering on the differentiated input steering torque. The variable bandpass filter 10 changes the differentiated input steering torque according to the f2 value using the f2 frequency table 20 at a given vehicle speed. Thereby, the steering torque component required at a given vehicle speed can be flexibly adjusted and selected according to the intended purpose. The integrator 30 integrates the steering torque band that has passed through the variable bandpass filter 10 . The variable bandpass filter 10 is a filter that passes a band between the lower limit frequency f1 and the upper limit frequency f2, and when f1 is fixed and f2 is increased, a bandpass result having a relatively high frequency component is obtained. In steering, the high frequency component is related to the responsiveness, and the responsiveness is improved by increasing f2. That is, the upper limit frequency becomes a tuning parameter that can increase or decrease the responsiveness by raising or lowering the frequency in relation to the vehicle speed. In the embodiment of the present invention, the responsiveness is improved by slightly increasing f2. However, it is not possible to increase f2 blindly, and it is desirable that the value that can be raised according to the vehicle speed is determined in advance in the tuning stage. Since an increase in responsiveness causes a decrease in stability, a tuning factor that can achieve fine responsiveness improvement in a range that does not cause stability problems by adjusting the maximum and minimum values of f2 that can be raised in advance for each vehicle speed will secure
판단기(40)는 적분된 조향 토크 성분에 대해서 조향 휠 센터로 돌아가는 동작인지 조향 휠 센터로부터 멀어지는 동작인지를 판단한다. 예를 들어 이러한 판단은 조향각과 조향토크를 이용하여 이루어질 수 있다. 조향각을 온 센터 영역, 전이(transition) 영역, 오프 센터 영역으로 나눌 때 센터에서 멀어지고 있는지 가까워지고 있는지를 각도로서 알 수 있다. 이때 조향토크도 함께 고려될 수 있으며, 조향각과 조향토크를 이용하여 위 판단이 이루어질 수 있다.The determiner 40 determines whether the operation is returning to the steering wheel center or moving away from the steering wheel center with respect to the integrated steering torque component. For example, this determination may be made using a steering angle and a steering torque. When the steering angle is divided into an on-center area, a transition area, and an off-center area, whether the steering angle is moving away from or closer to the center can be known as an angle. In this case, the steering torque may also be considered, and the above determination may be made using the steering angle and the steering torque.
증폭기(50)는 적분된 조향 토크에 대해 기본 증폭 게인을 이용하여 증폭을 수행하여 기본 마찰 토크를 생성한다. 증폭기(50)는 판단기(40)의 판단 결과에 따라 조향 각속도에 따른 보간 게인 테이블(61, 62)에 튜닝되어 있는 값들에 의해 조향 토크를 증폭하여 필요한 기본 마찰 보상 토크를 생성한다. 제1 보간 게인 테이블(61)은 스티어링 휠이 센터로 복원될 때의 조향 각속도에 따른 게인 데이터를 포함하고, 제2 보간 게인 테이블(62)은 스티어링 휠이 센터에서 멀어질 때의 조향 각속도에 따른 게인 데이터를 포함한다. 조향각이 미분기(12)에 의해 미분되어 조향 각속도가 얻어지며, 제1 및 제2 보간 테이블은 얻어진 조향 각속도를 이용한다. 증폭기(50)는 판단기(40)의 판단 결과에 따라 제1 또는 제2 보간 게인 테이블(61, 62)의 게인을 선택적으로 이용하여 기본 증폭을 수행한다.The amplifier 50 generates basic friction torque by amplifying the integrated steering torque using the basic amplification gain. The amplifier 50 generates a necessary basic friction compensation torque by amplifying the steering torque by the values tuned in the interpolation gain tables 61 and 62 according to the steering angular velocity according to the determination result of the determiner 40 . The first interpolation gain table 61 includes gain data according to the steering angular velocity when the steering wheel is restored to the center, and the second interpolation gain table 62 includes the gain data according to the steering angular velocity when the steering wheel moves away from the center. Includes gain data. The steering angle is differentiated by the differentiator 12 to obtain the steering angular velocity, and the first and second interpolation tables use the obtained steering angular velocity. The amplifier 50 performs basic amplification by selectively using the gains of the first or second interpolation gain tables 61 and 62 according to the determination result of the determiner 40 .
가변 위상앞섬 제어기(variable phase lead controller)(80)는 증폭기(50)에 의해 얻어진 기본 마찰 보상 토크에 위상앞섬을 적용하여 위상 제어 마찰 보상 토크를 산출한다. 가변 위상앞섬 제어기(80)는 증폭기(50)에 의해 얻어진 기본 마찰 보상 토크에 대해서 차속별로 튜닝되어 있는 극점(pole)/영점(zero) 테이블(70)의 극점과 영점의 조합을 통해 위상 앞섬이 이루어지도록 한다. 위상앞섬 제어기 자체는 기존에 알려진 제어 수식이다. 가변 위상앞섬 제어기(80)는 이러한 기존에 알려진 제어 수식을 사용할 수 있으며, 조향의 차속별로 적용하는 응용을 적용한다. 예를 들어 P20, 즉 극점 20, Z0.3, 즉 영점 0.3인 응답과 P30인 응답 영점에서, 동일한 주파수 대역, 예를 들어 10 Hz 이하 대역에서 P30의 위상이 더 크게 나타난다. 즉 위상이 앞서 있어 동일 주파수에서 P30이 먼저 나타난다. 물리적인 의미에서는 더 큰 크기로 먼저 나타나는 것을 의미한다. 이와 같은 극점 및 영점 조합이 차속 별로 보간 테이블의 형태로 사용된다.A variable phase lead controller 80 calculates a phase-controlled friction compensation torque by applying a phase lead to the basic friction compensation torque obtained by the amplifier 50 . The variable phase lead controller 80 is a phase lead through the combination of poles and zeros of the pole / zero table 70 tuned for each vehicle speed with respect to the basic friction compensation torque obtained by the amplifier 50 . make it happen The phase lead controller itself is a known control equation. The variable phase lead controller 80 may use such a previously known control equation, and applies an application applied to each vehicle speed of steering. For example, at P20, that is, pole 20, Z0.3, that is, a response with zero point 0.3 and a response zero point with P30, the phase of P30 appears larger in the same frequency band, for example, a band below 10 Hz. That is, P30 appears first at the same frequency because the phase is ahead. In a physical sense, it means appearing first in a larger size. This combination of poles and zeros is used in the form of an interpolation table for each vehicle speed.
가변 저역통과필터(LPF)(100)는 위상 제어 마찰 보상 토크에 대해 차속별로 주어진 차단주파수를 이용하여 저역통과 필터링을 수행한다. 가변 위상앞섬 제어기(80)를 통과한 성분에 진동 성분 등이 포함되어 있을 수 있기 때문에 토크 성분을 차속별로 주어진 차단주파수를 포함하는 차단주파수 테이블(90)의 차단주파수를 이용하는 가변 저역통과필터(LPF)(100)로 통과시킨다.The variable low-pass filter (LPF) 100 performs low-pass filtering with respect to the phase control friction compensation torque by using a cutoff frequency given for each vehicle speed. Since the component passing through the variable phase lead controller 80 may include a vibration component and the like, a variable low-pass filter (LPF) using the cut-off frequency of the cut-off frequency table 90 including the cut-off frequency given for each vehicle speed as a torque component. ) (100).
크기 조절기(120)는 가변 저역통과필터(100)를 통과한 위상 제어 마찰 보상 토크에 대해 차속별로 주어진 제한값을 적용하고 차속별 토크 증가에 대한 게인 값을 적용하여 추가적으로 크기를 조절한다. 크기 조절기(120)는 필터링 후 만들어진 토크 성분에 대해 토크 제한값 테이블(121)의 차속별로 주어진 토크 제한값을 적용하고, 제한값에 이르기까지의 토크 증가에 대한 토크 증가량 조절 게인 테이블(122)의 차속별로 주어진 증가량 조절 게인을 적용하여 추가적으로 차속별로 토크의 크기 조절 및 제한이 이루어지도록 한다. 해당 차속에서 제한 값을 두는 것이고, 또한 차속 별로 기울기를 두어서 제한 값까지 갈 때 옮겨 가는 기울기를 달리한다는 것이다. 이렇게 하면 최종 보상 토크가 만들어지는 속도를 제어하는 하나의 튜닝 팩터가 생기게 된다. 일반적으로 제어 로직에서 출력에 제한 값을 걸고 이러한 기울기 속도 제어를 두는 것이 일반적이다. 예를 들어 저속 에서는 느리게 제한 값으로 쌓이게 하고 고속으로 갈수록 빠르게 쌓이게 할 수 있다. 이러한 게인 테이블(121, 122)은 차속별로 최종적인 증폭에 간단한 변화를 주기 위해서도 사용될 수 있고, 제한값에 이르는 토크 증가 속도를 조절하기 위한 용도로도 사용할 수 있다.The size adjuster 120 additionally adjusts the size by applying a limit value given for each vehicle speed to the phase control friction compensation torque that has passed through the variable low-pass filter 100 and applying a gain value for the torque increase for each vehicle speed. The size adjuster 120 applies the torque limit value given for each vehicle speed of the torque limit value table 121 to the torque component made after filtering, and adjusts the torque increase amount for the torque increase until the limit value is given for each vehicle speed of the gain table 122 . By applying the increment control gain, the torque magnitude is adjusted and limited for each vehicle speed. It is to set a limit value at the corresponding vehicle speed, and also to set the slope for each vehicle speed, so that when the vehicle reaches the limit value, the shifting slope is different. This results in a single tuning factor that controls the rate at which the final compensation torque is produced. It is common to put a limit on the output in the control logic and have this gradient speed control. For example, at low speed, it can be accumulated slowly to the limit value, and at high speed, it can be accumulated quickly. The gain tables 121 and 122 may be used to simply change the final amplification for each vehicle speed, or may be used to adjust the torque increase speed reaching a limit value.
합산기(130)는 위와 같이 정해진 마찰 보상 토크 성분을 기존의 조향 로직 토크 성분들, 예를 들어 어시스트 토크, 리턴 토크, 댐핑 토크 및 기타 로직에 의한 토크 성분들과 합산한다. 합산기(130)에서 출력되는 최종 토크 신호는 노치 필터(notch filter)(140)를 통해 안정된 최종 토크로 처리된 후 그에 따라 모터(200)에 토크 지령으로 출력된다.The summer 130 adds up the friction compensation torque component determined as above with the existing steering logic torque components, for example, assist torque, return torque, damping torque, and other logic-based torque components. The final torque signal output from the summer 130 is processed as a stable final torque through a notch filter 140 and is output as a torque command to the motor 200 accordingly.
위에서 설명한 가변 대역통과필터(10), 적분기(30), 판단기(40), 증폭기(50), 가변 위상앞섬 제어기(80), 가변 저역통과필터(100), 크기 조절기(120), 합산기(130) 및 노치 필터(140)는 이 기술분야에서 알려진 바와 같이 마이프로프로세서, 메모리, 관련 하드웨어 및 소프트웨어로 구현될 수 있다.The above-described variable bandpass filter 10, integrator 30, determiner 40, amplifier 50, variable phase lead controller 80, variable low-pass filter 100, magnitude adjuster 120, summer 130 and notch filter 140 may be implemented in a microprocessor, memory, and related hardware and software, as is known in the art.
다양한 요구나 의도로 인해 이와 같은 마찰 보상 토크의 동작 형태는 여러 가지일 수 있다. 마찰 보상 토크가 빠르게 출력되고 빠르게 상쇄되어 가는 것이 목적이 될 수 있고, 그 보다 상대적으로 느리고 느리게 상쇄되는 형태의 성능이 선호될 수도 있다. 더 나아가 조금 늦게 출력되게 하고 빠르게 감소되는 형태가 선호될 수도 있다. 중요한 것은 여러 요인으로 인한 변화와 의도된 동작에 맞도록 튜닝되어 동작 가능한지이다. 차속과 입력된 조향 토크의 특성을 고려하여 도 8 및 도 9와 같은 극점(pole)과 영점(zero)의 조합에 따른 주파수 응답성과 여러 특성의 차이를 이용하여 다양한 위상제어 특성을 가지는 마찰 보상 토크를 만들어낼 수 있다. 이를 통해 의도된 동작을 확보하면서도 댐핑 등의 성능을 저하시키는 요인을 최소화하거나 의도된 동작으로 관계성을 가지도록 할 수 있다. 수학식 1은 위상앞섬을 위한 전달함수를 보여준다. 이와 같이 설계된 전달함수의 극점과 영점이 차속 및 입력된 조향 토크의 특성에 맞추어 그 조합을 상황에 맞게 변함으로써 위상 제어 특성을 가지는 마찰 보상 토크를 출력한다.Due to various demands or intentions, the operation form of the friction compensation torque may be various. The purpose may be that the friction compensation torque is output quickly and cancelled quickly, and a performance in the form of relatively slow and slow offsetting may be preferred. Furthermore, a form that outputs a little later and decreases rapidly may be preferred. What is important is whether it can be tuned and operated according to changes caused by various factors and intended operation. Friction compensation torque having various phase control characteristics using differences in frequency response and various characteristics according to combinations of poles and zeros as shown in FIGS. 8 and 9 in consideration of the characteristics of vehicle speed and input steering torque can create Through this, it is possible to minimize factors that degrade performance such as damping while securing the intended operation or to have a relationship with the intended operation. Equation 1 shows a transfer function for phase leading. The combination of the pole and zero points of the transfer function designed in this way is changed according to the situation according to the characteristics of the vehicle speed and the input steering torque, thereby outputting a friction compensation torque having a phase control characteristic.
Figure PCTKR2021000241-appb-img-000001
Figure PCTKR2021000241-appb-img-000001
여기서,y는 출력이고, μ는 입력이며, α d는 영점-위상 이득 특성이고, T d는 극점-중심 주파수이다.where y is the output, μ is the input, α d is the zero-phase gain characteristic, and T d is the pole-center frequency.
도 8에서 확인할 수 있는 바와 같이, 극점과 영점의 조합을 통해 관심 주파수 영역 대역에서의 위상과 이득을 여러 형태로 제어할 수 있음을 알 수 있다. 또한 도 9에서 확인할 수 있는 바와 같이, 원하는 응답성을 여러 형태로 튜닝할 수 있음을 알 수 있다. 이와 같은 위상앞섬 제어기(80)의 극점과 영점의 조합을 활용한 제어를 위해서는 차속에 따른 극점과 영점의 보간 테이블을 구현해야 한다.As can be seen in FIG. 8 , it can be seen that the phase and gain in the frequency domain of interest can be controlled in various ways through the combination of the pole and the zero point. Also, as can be seen in FIG. 9 , it can be seen that desired responsiveness can be tuned in various forms. In order to control using the combination of poles and zeros of the phase lead controller 80, an interpolation table of poles and zeros according to vehicle speed needs to be implemented.
도 10은 본 발명의 실시예에 따른 위상 제어에 기반한 마찰 보상 토크의 동작 형태를 보여주며, 아스팔트 도로에서 60 kph로 주행하는 실차에서 측정한 결과를 보여준다. 도 10의 (a)는 위상 제어 컨셉이 적용되지 않은 마찰 보상 토크의 동작 형태를 보여주며, 도 10의 (b)는 위상 제어 컨셉이 적용된 마찰 보상 토크의 동작 형태를 보여준다. 도 10에서 'YDT_Monitor'는 댐핑 토크 로직을 나타내며, 'RealControl_inputSWA'는 조향각을 나타내고, 'limit_friction_tq_monitor'는 마찰 보상 토크를 나타낸다.10 shows the operation form of the friction compensation torque based on the phase control according to the embodiment of the present invention, and shows the results measured in a real vehicle running at 60 kph on an asphalt road. Fig. 10 (a) shows the operation form of the friction compensation torque to which the phase control concept is not applied, and Fig. 10 (b) shows the operation form of the friction compensation torque to which the phase control concept is applied. In FIG. 10 , 'YDT_Monitor' indicates damping torque logic, 'RealControl_inputSWA' indicates a steering angle, and 'limit_friction_tq_monitor' indicates friction compensation torque.
도 5에서 스티어링 휠을 놓을 때처럼 도 10은 댐핑과의 상호 연관된 동작을 보여준다. 도 10의 (a)에서는 조향 각속도나 모터 속도에 따라 특정 값 이상에서는 마찰 보상 토크가 크게 나오도록 기본 제어 컨셉만이 적용되었다. 실제 이로 인해 마찰 보상 토크는 댐핑 토크의 최대화 동작 구간 내에서 역시 최대화되어 상쇄시키는 동작을 한다. 이 때의 급조타 시에 초기 기동 토크는 이러한 마찰 보상 토크의 효과로 작아져 조타 시 운전자는 부드러운 조향감을 얻는다. 그러나 운전자는 그 다음 타이밍에서 댐핑의 성능이 많이 감쇄되어 안정적인 조향감을 느끼지 못하고 불안전한 조향감을 받게 된다. 반면 도 10의 (b)는 위상제어 컨셉이 적용된 결과를 보여주며, 마찰 보상 토크의 형태가 많이 다르다는 것을 쉽게 알 수 있다. 즉 특정 모터 속도나 조향 각속도에서 크기를 결정하는 튜닝 값들은 동일한데 위상 제어가 적용됨으로써 전혀 다른 동작 특성이 얻어진다. 마찰 보상 토크가 초기 급조타 구동 구간에서는 빠르게 상승하여 초기에 운전자에게 부담될 수 있는 초기 토크를 낮출 수 있도록 빠르게 동작한 후 마찬가지로 빠르게 떨어지는 특성을 나타낸다. 이로 인해 매우 다양하고 여러 상황에 대처 가능한 유연한 구조의 마찰 보상 토크 출력을 만들 수 있다.As when releasing the steering wheel in FIG. 5 , FIG. 10 shows the interrelated action with damping. In (a) of FIG. 10 , only the basic control concept is applied so that the friction compensation torque is large above a specific value according to the steering angular speed or the motor speed. In fact, due to this, the friction compensation torque is also maximized within the maximizing operation section of the damping torque to cancel it. At this time, during sudden steering, the initial starting torque is reduced due to the effect of the friction compensation torque, so that the driver obtains a smooth steering feel during steering. However, at the next timing, the damping performance is greatly reduced, so that the driver does not feel a stable steering feeling and receives an unstable steering feeling. On the other hand, Fig. 10 (b) shows the result of applying the phase control concept, and it can be easily seen that the shape of the friction compensation torque is much different. That is, the tuning values that determine the magnitude at a specific motor speed or steering angular speed are the same, but completely different operating characteristics are obtained by applying the phase control. The friction compensation torque rises rapidly in the initial sudden steering driving section, operates quickly to lower the initial torque that may be burdened on the driver, and then falls rapidly. Due to this, it is possible to create a friction compensation torque output with a flexible structure that can cope with a wide variety of situations.
도 11은 10 Hz 정도의 대역을 기준으로 상대적으로 저주파/고주파 대역에서의 여러 극점/영점 조합에서의 주파수 응답 특성을 보여주며, 이는 상대적으로 저주파인 입력에 대한 동작과 고주파 입력에 대한 동작 시 극점과 영점의 여러 조합을 통해 다양한 특성을 가져올 수 있음을 나타낸다. 즉 예를 들면 비교적 일반적 속도의 조향에서는 민감하게 동작하지 않도록 하고 보다 급격한 조향 속도가 발생할 때에는 빠르게 반응하여 응답성 부족 현상이 발생하지 않도록 한 후 빠르게 감소하도록 할 수 있다. 물론 저주파 대역의 조향 시에도 미세한 조정을 통해 보상 토크를 미세하게 조정하여 보다 더 부드러운 조향이 이루어지도록 할 수도 있다. 이러한 미세한 조정은 휠을 잡고 운전자가 조향을 하는 형태가 아니라 앞서 기술한 예처럼 조향 휠의 릴리즈 동작 등에서도 이러한 위상 제어가 가미된 마찰 보상 토크는 보다 더 자연스러운 복원을 유도하고 의도된 목적에 따른 동작 튜닝도 보다 더 유연하게 이루어질 수 있다.11 shows the frequency response characteristics at various pole/zero combinations in a relatively low/high frequency band based on a band of about 10 Hz, which is a pole during operation for a relatively low frequency input and a high frequency input. It indicates that various properties can be obtained through various combinations of and zero. That is, for example, it is possible not to operate sensitively in steering at a relatively normal speed, and to react quickly when a more abrupt steering speed occurs to prevent a lack of responsiveness from occurring and then to decrease rapidly. Of course, even when steering in a low frequency band, it is possible to finely adjust the compensation torque through fine adjustment to achieve smoother steering. This fine adjustment is not a form in which the driver holds the wheel and steers, but as in the example described above, even in the release operation of the steering wheel, the friction compensation torque with this phase control induces a more natural restoration and operates according to the intended purpose. Tuning can also be made more flexible.
기본적으로 특정 모터 속도 또는 조향 각속도 이상/이하에서만 동작하는 형태의 마찰 보상 토크가 아니라 이러한 위상 제어 컨셉이 적용된 보상 토크의 경우 저주파성 조타 시에는 덜 반응해서 불필요한 댐핑 저해 성분을 만들지 않는 것을 의미한다. 즉 고주파일수록 급격한 조향에서 반응하고 상대적으로 낮은 주파수 대역의 조타 시에는 덜 반응함으로써 댐핑 성능 저하를 유발하여 생기는 문제가 상당히 저감된다. 이는 앞서 기술한 것처럼 사각이나 사다리꼴 같은 기본적으로 스텝 형태 파형에서 급조타 시에만 동작하려는 의도를 반영하면서도 급격한 변화를 만들지 않기 때문에 진동이나 기타 조향 이질감을 만들지 않는다는 점에서 보다 더 효율적이며 유연한 동작 형태라 할 수 있다. 도 12의 'A' 부분에 비해 'B' 부분의 위상 앞섬이 적용된 방식에서 보상 토크가 훨씬 작게 나타나는 것을 알 수 있다. 이는 상대적 저주파의 조타에 덜 반응한 것이다. 그렇지만 보다 더 유연하게 자연스럽게 증감하는 형태의 파형을 보여주기 때문에 급격한 변화에 따른 이질감은 훨씬 없게 된다. 이는 앞서 기술한 것처럼 주파수 특성에 따라 위상 특성이 달라서 댐핑 최대 동작 구간과는 다른 구간에서 동작 가능하게 해주면서 저주파 및 고주파에 대한 이득 특성 또한 다르게 적용할 수 있는 제어 특성에 기인한다. 바로 이러한 동작 특성은 댐핑의 성능 저하를 최소화하면서 원하는 다양한 형태의 마찰 보상 토크를 만들어낼 수 있게 하고 이로 인한 응답 특성도 보다 더 유연하게 만들어낼 수 있다.Basically, it is not a friction compensation torque that operates only above/below a specific motor speed or steering angular speed. In the case of compensation torque to which this phase control concept is applied, it responds less during low-frequency steering, which means that it does not create unnecessary damping inhibitory components. That is, the higher the frequency, the faster the steering response and the less response when steering in a relatively low frequency band, thereby significantly reducing the problem caused by deterioration of damping performance. As described above, this is a more efficient and flexible operation form in that it does not create vibrations or other steering differences because it does not make sudden changes while reflecting the intention to operate only during sudden steering in a basically step-shaped waveform such as a square or trapezoid, as described above. can It can be seen that the compensation torque is much smaller in the method in which the phase lead of the 'B' part is applied compared to the 'A' part of FIG. 12 . This is less responsive to steering at relatively low frequencies. However, since it shows a waveform that naturally increases and decreases more flexibly, there is no sense of heterogeneity due to sudden change. This is because, as described above, the phase characteristics are different depending on the frequency characteristics, so it is possible to operate in a section different from the maximum damping operation section, and the gain characteristics for low and high frequencies can also be applied differently. This operation characteristic can create various types of friction compensation torque desired while minimizing the degradation of damping performance, and thus the response characteristic can be made more flexible.
도 13에 도시된 바와 같이, 모든 튜닝 값이 동일하더라도 조향 토크에 대한 대역통과필터의 두 번째 주파수 F2(대역통과필터의 대역 주파수, F1<F2) 값의 변화만으로 마찰 보상 토크의 크기가 작아짐을 알 수 있다. 이는 도 14 및 도 15에 도시된 바와 같이 F2 값이 작을 경우 조향 토크의 적분 값이 매우 크고 크게 변동하는 반면에 값이 상대적으로 작을 경우 그 차이나 크기가 작으며, 이는 F2 값이 작으면 운전자의 급조타 시 동작 주파수 성분들에 대한 연속적인 적분에서의 크기가 커지기 때문이다. 이는 대역통과필터를 통과한 토크 누적 분에 따른 여러 제어 방법을 적용함에 있어서 소스 단의 크기를 미세하게 조정함으로써 제어 특성을 유연하게 튜닝할 수 있는 방법을 제공한다.As shown in FIG. 13, even if all the tuning values are the same, the size of the friction compensation torque is reduced only by changing the value of the second frequency F2 (band frequency of the bandpass filter, F1<F2) of the bandpass filter for the steering torque. Able to know. As shown in FIGS. 14 and 15 , when the F2 value is small, the integral value of the steering torque is very large and fluctuates greatly, whereas when the value is relatively small, the difference or magnitude is small, which means that when the F2 value is small, the driver's This is because the magnitude in the continuous integration of the operating frequency components during sudden steering increases. This provides a method to flexibly tune the control characteristics by finely adjusting the size of the source stage in applying various control methods according to the accumulated torque passing through the bandpass filter.
도 16을 참조하면, 대역통과필터의 F1~F2의 주 주파수에서 F2(F2>F1) 값을 크게 하면 할수록 마찰 보상 토크의 크기가 작아지는 경향을 확인할 수 있다.Referring to FIG. 16 , it can be seen that the magnitude of the friction compensation torque decreases as the value of F2 (F2>F1) increases at the main frequencies of F1 to F2 of the bandpass filter.
앞에서 설명한 바와 같이 차속에 따른 F2 값이 변화하는 대역통과필터와 역시 차속에 따라 극점 및 영점 조합이 변화하는 위상앞섬 제어기를 조합하여 미세한 조향감이나 성능치에 도달하지 못했다고 판단되면, 대역통과필터의 F2 값을 조정함으로써 이러한 미세한 차이를 극복할 수 있다. 예를 들어, 특정 차속에서의 위상앞섬의 극점과 영점의 조합과 이 때의 보간 테이블에서 차속에 따라 결정된 여러 게인 값으로 원하는 성능치나 동작 특성에 근접했지만 미세한 성능 튜닝을 하기에는 게인을 증감하거나 극점과 영점 조합을 변경하는 것이 더 큰 변화를 만들어내는 상황을 생각할 수 있다. 이러한 경우 극점과 영점의 조합이나 여러 게인 값들은 변경하지 않고 대역통과필터의 F2 값 등을 변경하여 마찰 보상 토크의 미세한 값 조정을 할 수 있다.As described above, if it is determined that the fine steering feel or performance value is not reached by combining the band-pass filter whose F2 value changes according to the vehicle speed and the phase lead controller, which also changes the combination of poles and zeros according to the vehicle speed, the band-pass filter By adjusting the F2 value, this subtle difference can be overcome. For example, the combination of the phase leading pole and zero point at a specific vehicle speed and the various gain values determined according to the vehicle speed in the interpolation table at this time approximate the desired performance value or operating characteristic, but increase or decrease the gain or increase or decrease the gain or increase or decrease the pole and It is conceivable that changing the zero combination will produce a larger change. In this case, it is possible to fine-tune the friction compensation torque by changing the F2 value of the bandpass filter without changing the combination of the pole and the zero point or various gain values.
더욱이 대역통과필터의 통과 대역을 결정하는 주파수 선택과 동일 차속에서 위상앞섬 제어기의 주파수 특성을 결정하는 극점 및 영점 값들 사이에 구조상 연관이 있다. 예를 들어 대역통과필터의 F2 값이 '4'에서 '3'으로 감소하면 조합된 극점 및 영점 조합의 위상앞섬 주파수 특성에서 4 Hz 이상 대역에 대한 처리가 없어지거나 최소화되기 때문에 다른 조향감과 동작 특성이 얻어질 수 있다. 이와 같은 대역통과필터의 위상앞섬 제어기의 대상이 되는 주파수 대역을 서로 일치시키거나 대역통과필터의 대역이 위상앞섬 제어기의 주요 유효 대역에 중복되게 할 수 있다. 또는 특정 대역을 무시하게 하거나 더욱 증폭되기 하는 등의 동작 특성을 연관시킬 수 있다.Moreover, there is a structural relationship between the frequency selection that determines the passband of the bandpass filter and the pole and zero values that determine the frequency characteristic of the phase lead controller at the same vehicle speed. For example, if the F2 value of the bandpass filter is reduced from '4' to '3', the processing for the bands above 4 Hz in the phase leading frequency characteristic of the combined pole and zero combination is eliminated or minimized, so different steering and operating characteristics this can be obtained. The frequency bands targeted by the phase leading controller of the bandpass filter may be matched with each other, or the band of the bandpass filter may be overlapped with the main effective band of the phase leading controller. Alternatively, operating characteristics such as ignoring a specific band or making it more amplified may be correlated.
추가적인 방법으로, 앞에서 가변 대역통과필터를 통해 정해진 조향 토크 신호들에 대해 스티어링 휠이 센터로 복귀할 때와 센터에서 멀어질 때 두 가지 영역에 대한 게인 보간 테이블을 적용하여 초기 기동 토크 및 급조타 시 필요한 응답성을 만족하기 위한 보조 토크의 기본 크기를 만들어 낼 수 있다. 스티어링 휠의 영점 센터를 기준으로 센터로 복귀할 때와 센터에서 멀어질 때의 형태를 별도의 보간 테이블로 구성함으로써 센서에서 멀어질 때와 센터로 복귀할 때의 조향감이나 동작을 보다 더 유연하게 의도한 형태로 구현할 수 있다.As an additional method, by applying the gain interpolation table for two areas when the steering wheel returns to the center and when the steering wheel moves away from the center for the steering torque signals determined through the variable bandpass filter, the initial starting torque and sudden steering It is possible to create a basic amount of auxiliary torque to satisfy the required responsiveness. By configuring a separate interpolation table for the shape of returning to the center and moving away from the center based on the zero center of the steering wheel, the steering feel and motion when moving away from the sensor and returning to the center can be made more flexible. It can be implemented in the intended form.
이러한 보간 테이블은 대역통과필터 통과 후의 조향 토크를 대상으로 조향 각속도 및 조향 토크 또는 조향 토크 변화값을 축으로 하는 여러 형태가 가능하다. 도 17은 이러한 보간 테이블의 한 형태를 보여준다. 이러한 동작은 특정 조향 토크, 조향 토크 변화(차분), 또는 조향 각속도에 대해서, 특정 구간 내지 값에서 게인의 증폭을 달리할 수 있기 때문에 보다 유연한 구조라 할 수 있다. 도 17에 나타난 예는 조향 토크 및 조향 각속도 등에 다른 별도의 게인 테이블을 가지는 구조이다.Such an interpolation table may take various forms with the steering angular velocity and the steering torque or the steering torque change value as an axis for the steering torque after passing through the bandpass filter. 17 shows one form of such an interpolation table. This operation can be called a more flexible structure because the gain can be varied in a specific section or value for a specific steering torque, a steering torque change (differential), or a steering angular velocity. The example shown in FIG. 17 is a structure having a separate gain table different from the steering torque and the steering angular velocity.
도 18은 실차에서 측정된 데이터 결과에서 얻어진 댐핑 토크와 마찰 보상 토크를 면적 비율로 비교한 결과를 보여준다. 도 18의 (a)는 위상 제어가 적용되지 않은 경우의 결과를 보여주고 도 18의 (b)는 본 발명에 따른 위상 제어 컨셉이 적용된 경우의 결과를 보여준다. 두 경우에 댐핑 토크의 출력 형태는 유사하고 기타 튜닝 값들을 동일하며, 단지 위상앞섬 제어기의 유무에서 차이가 있다. 도 18의 (b)에서 마찰 보상 토크는 도 18의 (a)보다 빠르게 출력되고 빠르게 상승한 후 역시 반대로 빠르게 감소한다. 응답성이 필요한 구간에서만 빠르게 동작한 후 댐핑 성능의 저하를 최소화하기 위해서 빠르게 소멸되는 형태라고 볼 수 있다. 댐핑 최대화 구간 및 주요 구간에서 댐핑 성능을 저하시킬 수 있는 영역이 최소화되고 있다. 그러나 초기 기동 토크나 급조타 시 필요한 보조 토크를 만들기 위한 구간에서는 빠르게 이를 보조한 후 튜닝된 값에 따라 감쇄하므로 조향 응답성을 해치지 않는다.18 shows the results of comparing the damping torque and the friction compensation torque obtained from the data measured in the actual vehicle as an area ratio. Fig. 18 (a) shows the result when the phase control is not applied, and Fig. 18 (b) shows the result when the phase control concept according to the present invention is applied. In both cases, the output form of the damping torque is similar, other tuning values are the same, and there is only a difference in the presence or absence of the phase lead controller. In (b) of FIG. 18 , the friction compensation torque is output faster than in (a) of FIG. 18 , and after rapidly rising, it also decreases rapidly on the contrary. It can be seen as a form that operates quickly only in the section where responsiveness is required and then disappears quickly to minimize deterioration of damping performance. In the damping maximization section and in the main section, the area that can degrade the damping performance is minimized. However, in the section to create the initial starting torque or the auxiliary torque required for sudden steering, it is quickly supported and then attenuated according to the tuned value, so that the steering response is not impaired.
위상 제어 개념이 적용된 마찰 보상 토크 로직은 매우 유연하고 동적인 형태로 구성된다. 앞에서 기술된 예처럼 빠르게 상승한 후 빠르게 사라져서 댐핑 등의 기타 로직에 대한 영향력을 최소화하도록 동작할 수 있다. 사용된 제어 방법은 가변 위상앞섬이며, 이는 가변 대역통과필터(10)와 밀접한 관계를 가지며 짝을 이룬다. 위상을 앞당기도록 설계된 위상앞섬의 차속과 여러 입력 조건에 따라 변화하며 설정되는 극점 값과 영점 값의 조합으로 원하는 특성이 달성된다. 즉 이러한 극점 값과 영점 값의 조합을 통해 마찰 보상 토크가 보다 빠르게 출력되고 반응하도록 하고 보다 빠르게 감쇄하도록 할 수 있다. 또한 반대로 상대적으로 보다 느리게 출력되고 반응하도록 하고 보다 느리게 감쇄하도록 할 수도 있다. 또한 보다 빠르게 반응했으나 감쇄 시에는 조금 더 느리게 감쇄하도록 할 수도 있다.The friction compensation torque logic to which the phase control concept is applied is configured in a very flexible and dynamic form. As in the example described above, it can rise rapidly and then disappear quickly, operating to minimize the impact on other logic such as damping. The control method used is variable phase lead, which is closely related to and paired with the variable bandpass filter (10). The desired characteristic is achieved by the combination of the pole value and the zero value that are set to change according to the vehicle speed of the phase lead designed to advance the phase and various input conditions. That is, through the combination of the pole value and the zero value, the friction compensation torque can be outputted and reacted more quickly and attenuated more quickly. Conversely, it can also be made to output and respond more slowly and decay more slowly. You can also make it decay a little slower when it reacts faster but decays.
도 19는 도 5에서 기술한 스티어링 휠을 놓을 시의 복원 동작을 조향각을 통해 비교한 것이다. 위상앞섬이 적용되는 경우에는 비교적 조향각의 움직임이 자연스러우나 그렇지 못한 경우에는 변곡점이 발생하고 기울기의 급격한 변화가 나타나서 조향각의 움직임이 자연스럽지 못한 것을 볼 수 있다. 이는 역시 댐핑 유효 제어 구간과 마찰 동작 영역이 중복되어 서로 상쇄하면서 일어나는 현상이다.19 is a comparison of the restoration operation when the steering wheel described in FIG. 5 is released through the steering angle. When the phase lead is applied, the movement of the steering angle is relatively natural, but when it is not, an inflection point occurs and a sharp change in the inclination appears, indicating that the movement of the steering angle is not natural. This is also a phenomenon that occurs when the effective damping control section and the friction operation area overlap and cancel each other.
도 20은 급조타 시의 본 발명의 실시예에 따른 마찰 토크 보상 로직을 온/오프하여 동작할 때의 실차에서 측정된 조향 토크의 파형을 비교적으로 보여주며, 이때 다른 조건은 모두 동일하다. 스티어링 휠이 센터에서 멀어질 때나 센터로 복원할 때 모두 마찰 로직의 온 상태에서 초기 기동 토크 및 특정 구간 내에서 요구되는 조향 토크가 오프 상태보다 작게 형성되는 것을 관찰할 수 있다.FIG. 20 comparatively shows waveforms of steering torque measured in the actual vehicle when the friction torque compensation logic according to the embodiment of the present invention is turned on/off during sudden steering, and all other conditions are the same. When the steering wheel is moved away from the center or restored to the center, it can be observed that the initial starting torque and the steering torque required within a specific section are formed smaller than the off state in the on state of the friction logic.
도 21은 60 kph에서의 실차 파형에서의 온 센터 조향 시의 주행 데이터를 비교한 것을 보여주며, 이 경우에도 센터에서 멀어질 때와 센터로 복원할 때 모두 오프 상태에 비해 온 상태에서 요구되는 조향 토크가 급격하게 상승하지 않고 낮게 형성되면서 자연스럽게 목표 토크로 상승하고 이동함을 알 수 있다.21 shows a comparison of driving data during on-center steering in the actual vehicle waveform at 60 kph, and even in this case, the steering required in the on state compared to the off state both when moving away from the center and returning to the center. It can be seen that the torque naturally rises and moves to the target torque as it is formed low rather than rapidly rising.
이상에서 본 발명의 실시예를 설명하였으나, 본 발명의 권리범위는 이에 한정되지 아니하며 본 발명의 실시예로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 용이하게 변경되어 균등한 것으로 인정되는 범위의 모든 변경 및 수정을 포함한다.Although the embodiment of the present invention has been described above, the scope of the present invention is not limited thereto, and it is easily changed by a person skilled in the art from the embodiment of the present invention and recognized as equivalent. including all changes and modifications to the scope of
본 발명은 차량의 스티어링 장치로 적용될 수 있는 전동 파워 스티어링 시스템에 관한 것이므로 산업상 이용가능성이 있다.The present invention relates to an electric power steering system that can be applied as a steering device for a vehicle, and thus has industrial applicability.

Claims (12)

  1. 전동 파워 스티어링 시스템의 마찰 보상 토크 제어 방법으로서,A friction compensation torque control method for an electric power steering system, comprising:
    미분된 입력 조향 토크에 대해 가변 대역통과 필터링을 수행하는 단계,performing variable bandpass filtering on the differentiated input steering torque;
    상기 가변 대역통과 필터링된 조향 토크를 적분하는 단계,integrating the variable bandpass filtered steering torque;
    상기 적분된 조향 토크에 대해 기본 증폭 게인을 이용하여 증폭을 수행하여 기본 마찰 토크를 생성하는 단계,generating a basic friction torque by amplifying the integrated steering torque using a basic amplification gain;
    상기 증폭에 의해 얻어진 기본 마찰 토크에 위상앞섬을 적용하여 위상 제어 마찰 토크를 산출하는 단계, 그리고calculating a phase control friction torque by applying a phase lead to the basic friction torque obtained by the amplification; and
    상기 위상 제어 마찰 토크에 대해 차속별 차단주파수를 이용하여 저역통과 필터링을 수행하는 단계performing low-pass filtering on the phase control friction torque using a cutoff frequency for each vehicle speed
    를 포함하는 마찰 보상 토크 제어 방법.A friction compensation torque control method comprising a.
  2. 제1항에서,In claim 1,
    상기 대역통과 필터링은 주어진 차속에서의 F2 값에 따라 가변적으로 동작하는 마찰 보상 토크 제어 방법.The bandpass filtering is a friction compensation torque control method that variably operates according to an F2 value at a given vehicle speed.
  3. 제1항에서,In claim 1,
    상기 위상앞섬은 차속별로 튜닝된 극점과 영점의 조합을 통해 가변적으로 수행되는 마찰 보상 토크 제어 방법.The phase lead is a friction compensation torque control method that is variably performed through a combination of poles and zeros tuned for each vehicle speed.
  4. 제1항에서,In claim 1,
    상기 저역통과 필터링이 수행된 상기 위상 제어 마찰 토크에 대해 차속별로 주어진 제한값을 적용하고 차속별 토크 증가에 대한 게인 값을 적용하여 추가적으로 크기를 조절하는 단계를 더 포함하는 마찰 보상 토크 제어 방법.and applying a limit value given for each vehicle speed to the phase control friction torque on which the low-pass filtering has been performed and further adjusting the magnitude by applying a gain value for the torque increase for each vehicle speed.
  5. 제1항에서,In claim 1,
    상기 기본 증폭을 수행하는 단계에서 상기 기본 증폭 게인은 스티어링 휠 센터로 복귀하는 동작인지 상기 스티어링 휠 센터에서 멀어지는 동작인지 여부에 따라 다르게 설정되는 마찰 보상 토크 제어 방법.In the step of performing the basic amplification, the basic amplification gain is set differently depending on whether the operation is returning to the steering wheel center or moving away from the steering wheel center.
  6. 제5항에서,In claim 5,
    상기 기본 증폭 게인은 조향 각속도에 따라 튜닝된 값인 마찰 보상 토크 제어 방법.The basic amplification gain is a value tuned according to the steering angular speed.
  7. 전동 파워 스티어링 시스템의 마찰 보상 토크 제어 시스템으로서,A friction compensation torque control system for an electric power steering system, comprising:
    미분된 입력 조향 토크에 대해 대역통과 필터링을 수행하는 가변 대역통과필터,a variable bandpass filter that performs bandpass filtering on the differential input steering torque;
    상기 가변 대역통과필터를 통과한 상기 조향 토크를 적분하는 적분기,an integrator for integrating the steering torque that has passed through the variable bandpass filter;
    상기 적분된 조향 토크에 대해 기본 증폭 게인을 이용하여 증폭을 수행하는 기본 마찰 토크를 생성하는 증폭기,an amplifier for generating a basic friction torque that amplifies the integrated steering torque by using a basic amplification gain;
    상기 증폭기에 의해 얻어진 상기 기본 마찰 토크에 위상앞섬을 적용하여 위상 제어 마찰 토크를 산출하는 가변 위상앞섬 제어기, 그리고a variable phase lead controller for calculating a phase control friction torque by applying a phase lead to the basic friction torque obtained by the amplifier; and
    상기 위상 제어 마찰 토크에 대해 차속별 차단주파수를 이용하여 저역통과 필터링을 수행하는 저역통과필터A low-pass filter that performs low-pass filtering on the phase control friction torque by using a cutoff frequency for each vehicle speed
    를 포함하는 마찰 보상 토크 제어 시스템.A friction compensation torque control system comprising a.
  8. 제7항에서,In claim 7,
    상기 가변 대역통과필터는 주어진 차속에서의 F2 값에 따라 가변적으로 동작하는 마찰 보상 토크 제어 시스템.The variable bandpass filter is a friction compensation torque control system that variably operates according to a value of F2 at a given vehicle speed.
  9. 제7항에서,In claim 7,
    상기 가변 위상앞섬 제어기는 차속별로 튜닝된 극점과 영점의 조합을 통해 가변적으로 위상앞섬을 적용하는 마찰 보상 토크 제어 시스템.The variable phase lead controller is a friction compensation torque control system that variably applies a phase lead through a combination of a pole and a zero point tuned for each vehicle speed.
  10. 제7항에서,In claim 7,
    상기 저역통과필터를 통과한 상기 위상 제어 마찰 보상 토크에 대해 차속별로 주어진 제한값을 적용하고 차속별 토크 증가에 대한 게인 값을 적용하여 추가적으로 크기를 조절하는 크기 조절기를 더 포함하는 마찰 보상 토크 제어 시스템.The friction compensation torque control system further comprising a magnitude adjuster for additionally adjusting the magnitude by applying a limit value given for each vehicle speed to the phase control friction compensation torque that has passed through the low-pass filter and applying a gain value for the torque increase for each vehicle speed.
  11. 제7항에서,In claim 7,
    상기 기본 증폭 게인은 스티어링 휠 센터로 복귀하는 동작인지 상기 스티어링 휠 센터에서 멀어지는 동작인지 여부에 따라 다르게 설정되는 마찰 보상 토크 제어 시스템.The basic amplification gain is set differently depending on whether the operation is returning to the steering wheel center or moving away from the steering wheel center.
  12. 제7항에서,In claim 7,
    상기 기본 증폭 게인은 조향 각속도에 따라 튜닝된 값인 마찰 보상 토크 제어 시스템.The basic amplification gain is a value tuned according to the steering angular velocity.
PCT/KR2021/000241 2020-01-08 2021-01-08 Electric power steering system WO2021141436A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200002703A KR102156259B1 (en) 2020-01-08 2020-01-08 Electric power steering system
KR10-2020-0002703 2020-01-08

Publications (1)

Publication Number Publication Date
WO2021141436A1 true WO2021141436A1 (en) 2021-07-15

Family

ID=72469751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000241 WO2021141436A1 (en) 2020-01-08 2021-01-08 Electric power steering system

Country Status (2)

Country Link
KR (1) KR102156259B1 (en)
WO (1) WO2021141436A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102156259B1 (en) * 2020-01-08 2020-09-15 이래에이엠에스 주식회사 Electric power steering system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230537A (en) * 2007-03-23 2008-10-02 Toyota Motor Corp Electric power steering device
KR20160027663A (en) * 2014-09-02 2016-03-10 현대모비스 주식회사 Priction compenstion apparatus and method of mdps system
KR20170080424A (en) * 2015-12-31 2017-07-10 이래오토모티브시스템 주식회사 Control apparatus and method for electric power steering
KR20170079750A (en) * 2015-12-31 2017-07-10 이래오토모티브시스템 주식회사 Control apparatus and method for electric power steering
KR101780700B1 (en) * 2015-12-31 2017-09-21 이래오토모티브시스템 주식회사 Control apparatus and method for electric power steering
KR102156259B1 (en) * 2020-01-08 2020-09-15 이래에이엠에스 주식회사 Electric power steering system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3128531B2 (en) * 1997-04-03 2001-01-29 本田技研工業株式会社 Electric power steering device
EP2256019B1 (en) * 2005-01-14 2013-06-05 NSK Ltd. Control apparatus for electric power steering apparatus
JP4229929B2 (en) * 2005-06-02 2009-02-25 三菱電機株式会社 Electric power steering control device
JP4134158B2 (en) * 2005-12-12 2008-08-13 三菱電機株式会社 Electric power steering control device
JP4098807B2 (en) * 2005-12-13 2008-06-11 三菱電機株式会社 Vehicle steering control device
EP2246238B1 (en) * 2008-01-30 2014-08-13 Mitsubishi Electric Corporation Steering controller
KR101022547B1 (en) 2009-04-17 2011-03-16 현대모비스 주식회사 Steer recovering method for Motor Driven Power Steering
KR102330546B1 (en) * 2017-07-28 2021-11-25 현대모비스 주식회사 Apparatus for reducing vibration of motor driven power steering and method thereof
KR101981480B1 (en) * 2017-12-07 2019-05-23 현대모비스 주식회사 Apparatus and method for controlling of mdps system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230537A (en) * 2007-03-23 2008-10-02 Toyota Motor Corp Electric power steering device
KR20160027663A (en) * 2014-09-02 2016-03-10 현대모비스 주식회사 Priction compenstion apparatus and method of mdps system
KR20170080424A (en) * 2015-12-31 2017-07-10 이래오토모티브시스템 주식회사 Control apparatus and method for electric power steering
KR20170079750A (en) * 2015-12-31 2017-07-10 이래오토모티브시스템 주식회사 Control apparatus and method for electric power steering
KR101780700B1 (en) * 2015-12-31 2017-09-21 이래오토모티브시스템 주식회사 Control apparatus and method for electric power steering
KR102156259B1 (en) * 2020-01-08 2020-09-15 이래에이엠에스 주식회사 Electric power steering system

Also Published As

Publication number Publication date
KR102156259B1 (en) 2020-09-15

Similar Documents

Publication Publication Date Title
JP3214172B2 (en) Differential limit torque control device
KR100251805B1 (en) Vehicle suspension system control method
WO2021141436A1 (en) Electric power steering system
JP2004210024A (en) Steering device for vehicle
JPH0788132B2 (en) Method for adjusting the damping force of a motor vehicle depending on the output signal of an acceleration signal generator
JP2007084006A (en) Electric power steering device
JP4301162B2 (en) Acceleration / deceleration controller
KR970000786A (en) Method and apparatus for controlling a vehicle drive unit
JP3353653B2 (en) Vehicle suspension control device
JP2010116073A (en) Vehicle suspension device
JPH01257671A (en) Controller for power steering device of motor driven type for automobile
EP1871142B1 (en) Audio reproducing device and vehicle using the audio reproducing device
EP3705382A1 (en) Vehicle control system
JP2003502555A (en) Control of unwanted longitudinal vibration of the vehicle
JPH06219125A (en) Method and device for closed and/or open loop control of vehicle chassis
JP2567548B2 (en) Inter-vehicle distance control device
JP3447852B2 (en) Vehicle front and rear wheel steering system
JP3084968B2 (en) Travel control device for vehicles
KR100721672B1 (en) Apparatus for controlling damper of cars
JPS59119418A (en) Inter-car distance control device
JP2973713B2 (en) Total control system for traction and differential limiting torque
JPH10157486A (en) Inter-vehicle distance controller
JP2794954B2 (en) Auxiliary steering angle control device
JPH08133054A (en) Brake control device for vehicle
JPH0633982A (en) Vibration reduction device of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21738428

Country of ref document: EP

Kind code of ref document: A1