WO2021140852A1 - Fuel cell power generating system - Google Patents

Fuel cell power generating system Download PDF

Info

Publication number
WO2021140852A1
WO2021140852A1 PCT/JP2020/046872 JP2020046872W WO2021140852A1 WO 2021140852 A1 WO2021140852 A1 WO 2021140852A1 JP 2020046872 W JP2020046872 W JP 2020046872W WO 2021140852 A1 WO2021140852 A1 WO 2021140852A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
power
fuel
power generation
cell
Prior art date
Application number
PCT/JP2020/046872
Other languages
French (fr)
Japanese (ja)
Inventor
竹内 良昭
正和 久原
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2021140852A1 publication Critical patent/WO2021140852A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to a fuel cell power generation system that generates power using a fuel cell.
  • a fuel cell that generates electricity by chemically reacting a fuel gas with an oxidizing gas has characteristics such as excellent power generation efficiency and environmental friendliness.
  • solid oxide fuel cells Solid Oxide Fuel Cell: SOFC
  • SOFC Solid Oxide Fuel Cell
  • ceramics such as zirconia ceramics as the electrolyte, and gasify hydrogen, city gas, natural gas, petroleum, methanol, and carbon-containing raw materials.
  • Gas such as gasification gas produced in the above is supplied as fuel gas and reacted in a high temperature atmosphere of about 700 ° C. to 1000 ° C. to generate power.
  • a fuel cell power generation system that generates electricity from such a fuel cell is composed of a fuel cell module in which a plurality of fuel cell cartridges in which a plurality of cell stacks are assembled by a fuel supply header or the like are modularized, and a fuel cell module.
  • a power conversion device such as a power conditioner (PCS) for converting the output DC power into a predetermined AC power and supplying it to a power supply destination (for example, a load facility or a power system).
  • PCS power conditioner
  • a fuel cell power generation system is configured to obtain a predetermined output by using one or more fuel cell modules, and as a specific configuration of the fuel cell module, for example, as shown in FIG.
  • the system configuration is conceivable.
  • a plurality of fuel cell cartridges constituting the fuel cell power generation system are grouped into one or more groups (four groups in FIG. 6), and the fuel cell cartridges are connected in series within each group.
  • each cell group is a cell group of another fuel cell cartridge. It is connected in series so that it is connected to either one.
  • the PCS is composed of a plurality of choppers and inverters.
  • one PCS inverter
  • the electric system is one system. Therefore, if a trouble such as a failure occurs in the PCS or one of the plurality of fuel cell cartridges connected in series, the electric output from the fuel cell module may not be possible. Further, since a plurality of cell groups are connected in parallel in each fuel cell cartridge, the output current of the fuel cell cartridge is large, the wiring connecting the fuel cell cartridges is thickened by that amount, and the power transmission loss is also large. Further, the PCS needs to be selected or custom-made according to the output of the fuel cell module, which tends to increase the cost.
  • At least one embodiment of the present invention aims to provide a fuel cell power generation system that is highly reliable and can be constructed at low cost.
  • the fuel cell power generation system is A fuel cell power generation system having multiple fuel cell cartridges.
  • a plurality of fuel cell units composed of two or more cell groups each formed as a minimum unit of electric output by a plurality of cell stacks built in the fuel cell cartridge, and a plurality of fuel cell units.
  • a plurality of power conversion devices for converting the output power of the fuel cell unit, which are provided for each of the plurality of fuel cell units, are provided.
  • the two or more cell groups are connected in series.
  • a fuel cell power generation system that is highly reliable and can be constructed at low cost is provided.
  • FIG. 4A It is a figure which shows schematic the structure of the fuel cell power generation system which concerns on one Embodiment of this invention. It is a figure which shows schematic structure of the fuel cell cartridge which concerns on one Embodiment of this invention. It is a figure which shows typically the fuel cell unit which consists of the cell group which has two fuel cell cartridges which concerns on one Embodiment of this invention. It is a figure which shows the temperature of each fuel cell cartridge controlled by the control device which concerns on one Embodiment of this invention. It is a figure which shows the output of each fuel cell cartridge in the case of FIG. 4A. It is a figure which shows the temperature of each fuel cell cartridge when the current is controlled as shown in FIG. 5B, and is the reference figure with respect to FIG. 4A.
  • FIG. 4B is the reference figure which shows the output of each fuel cell cartridge corresponding to FIG. 5A. It is a reference figure which shows roughly the structure of the fuel cell power generation system. It shows one aspect of the cell stack which concerns on one Embodiment of this invention. It shows one aspect of the SOFC module which concerns on one Embodiment of this invention.
  • the cross section of the SOFC cartridge according to the embodiment of the present invention is shown, and the upper portion shown corresponds to FIG.
  • FIG. 1 is a diagram schematically showing a configuration of a fuel cell power generation system 1 according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the configuration of the fuel cell cartridge 203 according to the embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing a fuel cell unit 3 composed of a cell group G included in the two fuel cell cartridges 203 according to the embodiment of the present invention.
  • this fuel cell power generation system 1 is a power generation system having a plurality of fuel cell cartridges 203. These plurality of fuel cell cartridges 203 may be modularized, and the fuel cell power generation system 1 may include one or more fuel cell modules 201.
  • a plurality of cell stacks 101 are assembled by, for example, a fuel supply header such as a casing 229 (229a, 229b) described later (see FIGS. 2 and 9).
  • the fuel cell module 201 is the maximum unit of the fuel cell including the fuel cell cartridge 203 and the pressure vessel 205.
  • the fuel cell power generation system 1 includes a plurality of fuel cell units 3 each composed of cell groups G included in one or more fuel cell cartridges 203, and each of the plurality of fuel cell units 3.
  • a plurality of power conversion devices 4 (PCS, etc.) provided for the above are provided. Each of these configurations will be described. A detailed description of the fuel cell module 201 and the fuel cell cartridge 203 will be described at the end.
  • the fuel cell unit 3 is composed of two or more cell groups G formed by a part of a plurality of cell stacks 101 built in the fuel cell cartridge 203. More specifically, as shown in FIG. 2, the plurality of cell stacks 101 included in each fuel cell cartridge 203 are grouped into a plurality of cell groups G, and then connected to the current collector plate 241 for each cell group G. To. A current collector rod 242 is connected to each current collector plate 241 so that the DC power generated from each current collector rod 242 can be taken out to the outside. That is, the cell group G is the minimum unit of the electric output from the fuel cell cartridge 203.
  • each fuel cell unit 3 is composed of a cell group G included in one or more fuel cell cartridges 203. That is, as shown in FIG. 1, each fuel cell unit 3 may be composed of a plurality of cell groups G included in one fuel cell cartridge 203. Alternatively, as shown in FIG. 3, each fuel cell unit 3 may be composed of a cell group G included in each of the plurality of fuel cell cartridges 203. Further, in FIGS. 1 and 3, all cell groups G included in one fuel cell cartridge 203 belong to any fuel cell unit 3, but in some other embodiments, one fuel cell. Each of the plurality of cell groups G included in the cartridge 203 may belong to any of the plurality of fuel cell units 3 different from each other. In other words, the plurality of fuel cell units 3 may be configured to include different cell groups G of the same fuel cell cartridge 203.
  • the fuel cell module 201 includes 20 fuel cell cartridges 203. Further, each fuel cell cartridge 203 includes four cell groups G. Then, in the embodiment shown in FIG. 1, in each fuel cell unit 3, one fuel cell unit 3 is assembled in all (four in total) cell groups G included in one fuel cell cartridge 203. That is, the fuel cell unit 3 is assembled for each fuel cell cartridge 203. On the other hand, in the embodiment shown in FIG. 3, each fuel cell unit 3 is assembled by all the cell groups G each of the two fuel cell cartridges 203, and is assembled by a total of eight cell groups G. That is, the fuel cell unit 3 is assembled for each of the two fuel cell cartridges 203.
  • the power conversion device 4 is a device provided for each of the plurality of fuel cell units 3 described above to perform power conversion of the output power of the fuel cell unit 3. More specifically, each power converter 4 includes a DC / DC converter (not shown) such as a chopper connected to each fuel cell unit 3 and an inverter (not shown) connected to the DC / DC converter. For example, a power conditioner (PCS: Power Conditioning Subsystem) or the like.
  • PCS Power Conditioning Subsystem
  • the fuel cell module 201 since the fuel cell unit 3 is composed of one fuel cell cartridge 203, the fuel cell module 201 includes a total of 20 fuel cell units 3 which is the same number as the fuel cell cartridge 203. ing. Therefore, the total number of power conversion devices 4 is 20. On the other hand, in the embodiment shown in FIG. 3, since the fuel cell unit 3 is composed of two fuel cell cartridges 203, the fuel cell module 201 includes a total of 10 fuel cell units 3. Therefore, the total number of power conversion devices 4 is 10.
  • the number of DC / DC converters included in one power converter 4 is arbitrary, and may be determined in consideration of cost, controllable power range, withstand voltage, and the like. That is, in order to reduce the cost, it is better that the number of DC / DC converters is small, but there is a limit to the magnitude of the DC current that can be input to one DC / DC converter, and it is determined by the balance. Further, the number of power conversion devices 4 provided for one fuel cell unit 3 is arbitrary, and a plurality of power conversion devices 4 may be connected in parallel to one fuel cell unit 3.
  • each fuel cell unit 3 is composed of two or more cell groups G. As shown in FIGS. 1 and 3, in each fuel cell unit 3, two or more cells possessed by each fuel cell unit 3 Group G is connected in series. Specifically, in the embodiment shown in FIG. 1, adjacent cell groups G are connected in series so that a plurality of (four) cell groups G arranged in parallel with each other in one fuel cell cartridge 203 are connected in series. It is connected by wiring (first wiring 41). Further, cell groups G located at both ends of each fuel cell cartridge 203 are connected to the power conversion device 4 by wiring (third wiring 43). As a result, a total of four cell groups G serially connected to each fuel cell unit 3 and a connection between the fuel cell unit 3 and the power conversion device 4 are formed.
  • a plurality of cell groups G included in one fuel cell cartridge 203 are connected by the first wiring 41 in the order in which they are arranged, but a series connection is formed in the other order. You may have. Further, in the embodiment shown in FIG. 3, when one fuel cell unit 3 is configured by two fuel cell cartridges 203, the second wiring 42 is one, but two or more second wirings 42 A series connection may be formed by wiring such that is used.
  • the fuel cell cartridge 203 is electrically independent for each fuel cell unit 3. Therefore, the fuel cell unit 3 composed of the cell group G of the other fuel cell cartridge 203 is not affected, and the supply of the generated power can be continued. Specifically, even if any one of the fuel cell cartridges 203 fails, power can be output from the remaining 19 fuel cell cartridges 203 (fuel cell unit 3) in FIG. 1, and the remaining power can be output in FIG. Power can be output from the 18 fuel cell cartridges 203 (the remaining 9 fuel cell units 3), improving system redundancy. Further, by adjusting the number of cell groups G constituting each fuel cell unit 3 to adjust the output voltage, for example, a PCS (power conversion device 4) for a solar cell can be used.
  • a PCS power conversion device 4
  • the fuel cell power generation system 1 includes a plurality of fuel cell cartridges 203, and the plurality of cell stacks 101 incorporated in each fuel cell cartridge 203 are a plurality of units which are the minimum units of electric output. It is divided into cell groups G.
  • the fuel cell unit 3 is composed of two or more of such cell groups G, and by providing a power conversion device 4 for each fuel cell unit 3, power conversion is performed for each fuel cell unit 3. It is configured as follows. Then, all the cell groups G belonging to each fuel cell unit 3 are connected in series.
  • the fuel cell composed of the remaining power conversion device 4 and the remaining fuel cell cartridge 203 The power from the unit 3 can be output to a power supply destination 7 such as a power system, and the system can be made redundant, so that a highly reliable fuel cell power generation system 1 can be provided.
  • a power supply destination 7 such as a power system
  • the fuel cell power generation system 1 cannot output. According to the above configuration, the fuel cell power generation system 1 can continue to supply power.
  • each fuel cell unit 3 can be reduced as compared with connecting the fuel cell cartridges 203 in series (see FIG. 6). Therefore, it is possible to reduce the current collection loss by such a low current, and it is also possible to reduce the power transmission loss by using a thinner wiring.
  • the power conversion device 4 for each fuel cell unit 3 as described above, it is possible to adopt a general-purpose low-priced power conversion device 4 for solar power generation, for example. Therefore, it is not necessary to prepare a power conversion device 4 capable of power conversion of all the fuel cell cartridges 203 included in the fuel cell power generation system 1 by special order, and the fuel cell power generation system 1 can be constructed at a lower cost. it can.
  • the number of cell groups G constituting the fuel cell unit 3 described above may be an even number.
  • this number is an even number, it is possible to unify the power extraction unit (collecting rod 242) from the fuel cell unit 3 to either the upper part or the lower part of the fuel cell cartridge 203.
  • the directions of the positive terminal (+) and the negative terminal ( ⁇ ) of the four cell groups G alternate at the upper or lower part of the fuel cell cartridge 203. They are arranged side by side.
  • the directions of the terminals of the cell groups G on both ends of the fuel cell cartridge 203 are opposite to each other. That is, when the positive terminal of the cell group G on one end side is on the upper part of the fuel cell cartridge 203, the negative terminal of the cell group G on the other end side is on the same upper part.
  • the fuel cell unit 3 has eight cell groups G by being composed of the same two fuel cell cartridges 203 as those in FIG. 1, and is a power conversion device.
  • the directions of the terminals of the two cell groups G connected to 4 are reversed. Therefore, both of the two third wirings 43 connecting the power conversion device 4 and the fuel cell unit 3 are unified at the upper part.
  • the power extraction unit from the fuel cell cartridge 203 can be unified to either the upper part or the lower part of the fuel cell cartridge 203, and the construction can be facilitated.
  • At least a part of the output power output by the plurality of power conversion devices 4 described above is, for example, a power system or a load facility.
  • a power output circuit 5 for outputting to the power supply destination 7 is further provided. That is, the power output circuit 5 is provided between the plurality of power conversion devices 4 included in the fuel cell power generation system 1 and the power supply destination 7.
  • the power output circuit 5 has a plurality of switches 51 capable of switching the connection state between the plurality of power conversion devices 4 and the power supply destination 7.
  • each power conversion device 4 is connected to the power supply destination 7 via the switch 51, and when the switch 51 is turned on, the power conversion device 4 is electrically connected to the power supply destination 7 and is turned off. Then the connection is released. This makes it possible to individually disconnect the plurality of fuel cell units 3 from the fuel cell power generation system 1.
  • the power supply destination 7 is a power system.
  • the power output circuit 5 includes an AC step-up transformer 52, and the plurality of switches 51 described above are each connected to the AC step-up transformer 52. Then, the AC step-up transformer 52 boosts the output voltage of the fuel cell module 201 so as to match the voltage of the power system, so that the fuel cell power generation system 1 becomes the power system.
  • the connection between each of the plurality of power conversion devices 4 and the power supply destination 7 can be individually disconnected by a switch included in the power output circuit.
  • the fuel cell unit 3 in which the failure has occurred can be easily separated. Therefore, the remaining fuel cell unit 3 can be used to continue supplying electric power to the electric power supply destination, and maintenance work such as replacement and repair of the failed fuel cell unit 3 can be facilitated.
  • FIG. 4A is a diagram showing the temperature of each fuel cell cartridge 203 controlled by the control device 6 according to the embodiment of the present invention.
  • FIG. 4B is a diagram showing the output of each fuel cell cartridge 203 in the case of FIG. 4A.
  • FIG. 5A is a diagram showing the temperature of each fuel cell cartridge 203 when the current is controlled as in FIG. 5B, and is a reference diagram with respect to FIG. 4A.
  • FIG. 5B is a reference diagram showing the output of each fuel cell cartridge 203 corresponding to FIG. 5A, and is a reference diagram with respect to FIG. 4B.
  • the output of a single cell of a fuel cell such as an SOFC cell increases as the temperature rises, but the temperature corresponds to the current value due to self-reaction heat generation.
  • the upper limit temperature is determined from the durability of the cell, and the load (resistance value) of the power conversion device 4 to which the fuel cell cartridge 203 is connected is adjusted so that the upper limit temperature is not exceeded from the fuel cell cartridge 203. It is necessary to adjust the output current.
  • the plurality of fuel cell cartridges 203 included in the fuel cell module 201 are housed in the pressure vessel 205 described later (see FIG. 7), and the fuel cell cartridges located at the ends of the pressure vessel 205 with respect to the central portion.
  • the heat dissipation of the one is relatively large. Therefore, the temperature of the fuel cell cartridge 203 located at the end of the pressure vessel 205 is relatively lower than that at the center. Further, when there is a performance difference of the fuel cell cartridge 203 due to an assembly accuracy, a performance variation of the fuel cell 105, or the like, the temperature of the fuel cell cartridge 203 located at the center of the pressure vessel 205 also varies.
  • the fuel cell power generation system 1 includes a plurality of temperature measuring units 62 for detecting the temperature of each of the plurality of fuel cell cartridges 203, and a plurality of these temperature measuring units 62. Further, a control device 6 configured to control the output (output power) of each of the plurality of power conversion devices 4 so that each temperature of the fuel cell cartridge 203 becomes a specified temperature Tc (see FIG. 4A). You may prepare. Specifically, the control device 6 may control the output of each of the plurality of power conversion devices 4 by adjusting the load of each. With this control, the temperature of each fuel cell cartridge 203 can be brought close to the upper limit temperature to generate electricity, so that the maximum performance can be brought out.
  • the above-mentioned specified temperature Tc is, for example, a temperature equal to or less than the above-mentioned upper limit temperature.
  • control device 6 executes control for each power conversion device 4.
  • the control device 6 may be configured by a computer. That is, it includes a CPU (processor) (not shown) and a storage unit such as a ROM or RAM. Then, the CPU operates (data calculation, etc.) according to the instruction of the program loaded in the memory (main storage device) to execute the above control.
  • the temperature measuring unit 62 is a thermocouple and is installed in the center of the power generation chamber 215 of the fuel cell cartridge 203, which will be described later, to measure the temperature of each. Further, the temperature measured by each fuel cell cartridge 203 is input to the control device 6 by being connected to, for example, a plurality of temperature measuring units 62. Then, as shown in FIG. 4A, the control device 6 controls the load of each power conversion device so that the temperature of the measured temperature of each fuel cell cartridge 203 becomes the specified temperature Tc. More specifically, the control device 6 positions the load of the power conversion device 4 provided on the fuel cell cartridge 203 located on the end side of the pressure vessel 205 at the center of the pressure vessel 205. , The load is smaller than the load of the power conversion device 4 provided for the fuel cell cartridge 203.
  • the horizontal axis (No.) in FIG. 4A indicates each fuel cell cartridge 203, and the vertical axis corresponds to the temperature.
  • the temperatures of the total of 20 fuel cell cartridges 203 included in the fuel cell power generation system 1 are constant under the control of the control device 6.
  • the currents of the first (No. 1) and 20th (No. 20) fuel cell cartridges 203 located at both ends of the pressure vessel 205 are different (No. 2 to No. 2 to). It is higher than No. 19), and the current is higher by that amount, and the power generation performance is improved.
  • the output power of each power conversion device 4 is adjusted so that the temperature of each fuel cell unit 3 becomes the specified temperature Tc.
  • the positional relationship of each component described using the expressions “upper” and “lower” with respect to the paper surface indicates the vertically upper side and the vertically lower side, respectively.
  • the one that can obtain the same effect in the vertical direction and the horizontal direction is not necessarily limited to the vertical vertical direction on the paper surface, but may correspond to the horizontal direction orthogonal to the vertical direction, for example. Good.
  • a cylindrical (cylindrical) cell stack will be described as an example of the solid oxide fuel cell (SOFC) cell stack, but this is not necessarily the case, and for example, a flat cell stack. May be good.
  • SOFC solid oxide fuel cell
  • the fuel cell is formed on the substrate, but the electrode (fuel electrode or air electrode) is formed thicker instead of the substrate, and the substrate may also be used.
  • FIG. 7 shows an aspect of the cell stack 101 according to the embodiment of the present invention.
  • the cell stack 101 includes a cylindrical base tube 103, a plurality of fuel cell 105 formed on the outer peripheral surface of the base tube 103, and an interconnector 107 formed between adjacent fuel cell 105. ..
  • the fuel cell 105 is formed by laminating a fuel electrode 109, a solid electrolyte membrane 111, and an air electrode 113.
  • the cell stack 101 is attached to the air electrode 113 of the fuel cell 105 formed at one end of the plurality of fuel cell 105 formed on the outer peripheral surface of the base tube 103 in the axial direction of the base tube 103.
  • a lead film 115 electrically connected via an interconnector 107 is provided, and a lead film 115 electrically connected to a fuel pole 109 of a fuel cell 105 formed at the other end of the end is provided.
  • Substrate tube 103 is made of a porous material, for example, CaO-stabilized ZrO 2 (CSZ), a mixture of CSZ and nickel oxide (NiO) (CSZ + NiO) , or Y 2 O 3 stabilized ZrO 2 (YSZ), or The main component is MgAl 2 O 4 and the like.
  • the base tube 103 supports the fuel cell 105, the interconnector 107, and the lead film 115, and the fuel gas supplied to the inner peripheral surface of the base tube 103 is supplied to the inner peripheral surface of the base tube 103 through the pores of the base tube 103. It is diffused in the fuel electrode 109 formed on the outer peripheral surface of the above.
  • the fuel electrode 109 is composed of an oxide of a composite material of Ni and a zirconia-based electrolyte material, and for example, Ni / YSZ is used.
  • the thickness of the fuel electrode 109 is 50 ⁇ m to 250 ⁇ m, and the fuel electrode 109 may be formed by screen printing the slurry.
  • Ni which is a component of the fuel electrode 109, has a catalytic action on the fuel gas. This catalytic action reacts a fuel gas supplied via the substrate tube 103, for example, a mixed gas of methane (CH 4 ) and water vapor, and reforms it into hydrogen (H 2 ) and carbon monoxide (CO). It is a thing.
  • the fuel electrode 109 hydrogen (H 2 ) and carbon monoxide (CO) obtained by reforming and oxygen ions (O 2- ) supplied via the solid electrolyte membrane 111 are combined with the solid electrolyte membrane 111.
  • Water (H 2 O) and carbon dioxide (CO 2 ) are produced by electrochemical reaction in the vicinity of the interface between the two.
  • the fuel cell 105 generates electricity by the electrons emitted from the oxygen ions.
  • the fuel gases that can be supplied and used for the fuel electrode 109 of the solid oxide fuel cell include hydrocarbon gases such as hydrogen (H 2 ), carbon monoxide (CO), and methane (CH 4 ), city gas, and natural gas.
  • gasification gas produced by gasifying equipment for carbon-containing raw materials such as petroleum, methanol, and coal can be mentioned.
  • the solid electrolyte membrane 111 As the solid electrolyte membrane 111, YSZ having airtightness that makes it difficult for gas to pass through and high oxygen ion conductivity at high temperature is mainly used.
  • the solid electrolyte membrane 111 moves oxygen ions (O 2- ) generated at the air electrode to the fuel electrode.
  • the film thickness of the solid electrolyte film 111 located on the surface of the fuel electrode 109 is 10 ⁇ m to 100 ⁇ m, and the solid electrolyte film 111 may be formed by screen printing the slurry.
  • the air electrode 113 is composed of, for example, a LaSrMnO 3- based oxide or a LaCoO 3- based oxide, and the air electrode 113 is coated with a slurry by screen printing or using a dispenser.
  • the air electrode 113 dissociates oxygen in an oxidizing gas such as air to be supplied in the vicinity of the interface with the solid electrolyte membrane 111 to generate oxygen ions (O 2-).
  • the air electrode 113 may have a two-layer structure.
  • the air electrode layer (air electrode intermediate layer) on the solid electrolyte membrane 111 side is made of a material showing high ionic conductivity and excellent catalytic activity.
  • the air electrode layer (air electrode conductive layer) on the air electrode intermediate layer may be composed of a perovskite-type oxide represented by Sr and Ca-doped LaMnO 3. By doing so, the power generation performance can be further improved.
  • the oxidizing gas is a gas containing approximately 15% to 30% of oxygen, and air is typically preferable. However, in addition to air, a mixed gas of combustion exhaust gas and air, a mixed gas of oxygen and air, etc. Can be used.
  • the interconnector 107 is composed of a conductive perovskite-type oxide represented by M 1-x L x TiO 3 (M is an alkaline earth metal element and L is a lanthanoid element) such as SrTiO 3 system, and screen prints a slurry. To do.
  • the interconnector 107 has a dense film so that the fuel gas and the oxidizing gas do not mix with each other. Further, the interconnector 107 has stable durability and electrical conductivity in both an oxidizing atmosphere and a reducing atmosphere.
  • the interconnector 107 electrically connects the air electrode 113 of one fuel cell 105 and the fuel electrode 109 of the other fuel cell 105, and the adjacent fuel cell 105 are connected to each other. Are connected in series.
  • the lead film 115 needs to have electron conductivity and a coefficient of thermal expansion close to that of other materials constituting the cell stack 101.
  • Ni such as Ni / YSZ and a zirconia-based electrolyte material are used. It is composed of M1-xLxTiO 3 (M is an alkaline earth metal element and L is a lanthanoid element) such as a composite material and SrTiO 3 system.
  • M1-xLxTiO 3 M is an alkaline earth metal element and L is a lanthanoid element
  • the lead film 115 derives the DC power generated by the plurality of fuel cell 105s connected in series by the interconnector 107 to the vicinity of the end portion of the cell stack 101.
  • FIG. 8 shows one aspect of the SOFC module according to the embodiment of the present invention.
  • FIG. 9 shows a cross-sectional view of one aspect of the SOFC cartridge according to the embodiment of the present invention, and the upper portion shown corresponds to FIG.
  • the SOFC module (corresponding to the above fuel cell module 201) 201 accommodates, for example, a plurality of SOFC cartridges (corresponding to the above fuel cell cartridge 203) 203 and the plurality of SOFC cartridges 203.
  • a pressure vessel 205 is provided.
  • FIG. 8 illustrates a cylindrical SOFC cell stack 101, this is not necessarily the case, and a flat cell stack may be used, for example.
  • the SOFC module 201 includes a fuel gas supply pipe 207, a plurality of fuel gas supply branch pipes 207a, a fuel gas discharge pipe 209, and a plurality of fuel gas discharge branch pipes 209a.
  • the SOFC module 201 includes an oxidizing gas supply pipe (not shown), an oxidizing gas supply branch pipe (not shown), an oxidizing gas discharge pipe (not shown), and a plurality of oxidizing gas discharge branch pipes (not shown). And.
  • the fuel gas supply pipe 207 is provided outside the pressure vessel 205, is connected to a fuel gas supply unit that supplies fuel gas having a predetermined gas composition and a predetermined flow rate according to the amount of power generated by the SOFC module 201, and a plurality of fuel gas supply pipes 207. It is connected to the fuel gas supply branch pipe 207a.
  • the fuel gas supply pipe 207 branches and guides a predetermined flow rate of fuel gas supplied from the above-mentioned fuel gas supply unit to a plurality of fuel gas supply branch pipes 207a. Further, the fuel gas supply branch pipe 207a is connected to the fuel gas supply pipe 207 and is also connected to a plurality of SOFC cartridges 203.
  • the fuel gas supply branch pipe 207a guides the fuel gas supplied from the fuel gas supply pipe 207 to the plurality of SOFC cartridges 203 at a substantially equal flow rate, and substantially equalizes the power generation performance of the plurality of SOFC cartridges 203. ..
  • the fuel gas discharge branch pipe 209a is connected to a plurality of SOFC cartridges 203 and is also connected to the fuel gas discharge pipe 209.
  • the fuel gas discharge branch pipe 209a guides the exhaust fuel gas discharged from the SOFC cartridge 203 to the fuel gas discharge pipe 209. Further, the fuel gas discharge pipe 209 is connected to a plurality of fuel gas discharge branch pipes 209a, and a part of the fuel gas discharge pipe 209 is arranged outside the pressure vessel 205.
  • the fuel gas discharge pipe 209 guides the exhaust fuel gas led out from the fuel gas discharge branch pipe 209a at a substantially equal flow rate to the outside of the pressure vessel 205.
  • the pressure vessel 205 Since the pressure vessel 205 is operated at an internal pressure of 0.1 MPa to about 3 MPa and an internal temperature of atmospheric temperature to about 550 ° C., it has a proof stress and corrosion resistance against an oxidizing agent such as oxygen contained in an oxidizing gas.
  • an oxidizing agent such as oxygen contained in an oxidizing gas.
  • the material you have is used.
  • a stainless steel material such as SUS304 is suitable.
  • the present invention is not limited to this, and for example, the SOFC cartridge 203 is not assembled and the pressure is increased. It can also be stored in the container 205.
  • the SOFC cartridge 203 includes a plurality of cell stacks 101, a power generation chamber 215, a fuel gas supply header 217, a fuel gas discharge header 219, an oxidizing gas (air) supply header 221 and an oxidizing property. It includes a gas discharge header 223. Further, the SOFC cartridge 203 includes an upper tube plate 225a, a lower tube plate 225b, an upper heat insulating body 227a, and a lower heat insulating body 227b. In the present embodiment, in the SOFC cartridge 203, the fuel gas supply header 217, the fuel gas discharge header 219, the oxidizing gas supply header 221 and the oxidizing gas discharge header 223 are arranged as shown in FIG.
  • the structure is such that the fuel gas and the oxidizing gas flow opposite to the inside and the outside of the cell stack 101, but this is not always necessary, for example, the inside and the outside of the cell stack 101 flow in parallel. , Or the oxidizing gas may flow in a direction orthogonal to the longitudinal direction of the cell stack 101.
  • the power generation chamber 215 is a region formed between the upper heat insulating body 227a and the lower heat insulating body 227b.
  • the power generation chamber 215 is a region in which the fuel cell 105 of the cell stack 101 is arranged, and is a region in which the fuel gas and the oxidizing gas are electrochemically reacted to generate electricity. Further, the temperature in the vicinity of the central portion of the cell stack 101 in the longitudinal direction of the power generation chamber 215 is monitored by the temperature measuring unit 62 (temperature sensor, thermocouple, etc.), and is approximately 700 ° C. to higher during steady operation of the fuel cell module 201. It becomes a high temperature atmosphere of 1000 ° C.
  • the fuel gas supply header 217 is an area surrounded by the upper casing 229a and the upper pipe plate 225a of the SOFC cartridge 203, and the fuel gas supply branch pipe 207a is provided by the fuel gas supply hole 231a provided in the upper part of the upper casing 229a. Is communicated with. Further, the plurality of cell stacks 101 are joined by an upper pipe plate 225a and a seal member 237a (seal ring), and the fuel gas supply header 217 is supplied from the fuel gas supply branch pipe 207a through the fuel gas supply hole 231a. The fuel gas to be produced is guided into the base pipes 103 of the plurality of cell stacks 101 at a substantially uniform flow rate, and the power generation performance of the plurality of cell stacks 101 is substantially made uniform.
  • the fuel gas discharge header 219 is an area surrounded by the lower casing 229b and the lower pipe plate 225b of the SOFC cartridge 203, and the fuel gas discharge branch pipe 209a (not shown) is provided by the fuel gas discharge hole 231b provided in the lower casing 229b. Is communicated with. Further, the plurality of cell stacks 101 are joined to the lower pipe plate 225b by the seal member 237b, and the fuel gas discharge header 219 passes through the inside of the base pipe 103 of the plurality of cell stacks 101 and the fuel gas discharge header 219. The exhaust fuel gas supplied to the fuel gas is collected and guided to the fuel gas discharge branch pipe 209a through the fuel gas discharge hole 231b.
  • an oxidizing gas having a predetermined gas composition and a predetermined flow rate is branched into an oxidizing gas supply branch pipe and supplied to a plurality of SOFC cartridges 203.
  • the oxidizing gas supply header 221 is a region surrounded by the lower casing 229b, the lower tube plate 225b, and the lower heat insulating body 227b of the SOFC cartridge 203, and is provided by the oxidizing gas supply hole 233a provided on the side surface of the lower casing 229b. , It is communicated with an oxidizing gas supply branch pipe (not shown).
  • the oxidizing gas supply header 221 generates a predetermined flow rate of oxidizing gas supplied from an oxidizing gas supply branch pipe (not shown) through the oxidizing gas supply hole 233a through the oxidizing gas supply gap 235a described later. It leads to room 215.
  • the oxidizing gas discharge header 223 is a region surrounded by the upper casing 229a, the upper pipe plate 225a, and the upper heat insulating body 227a of the SOFC cartridge 203, and is provided by the oxidizing gas discharge holes 233b provided on the side surface of the upper casing 229a. , It communicates with an oxidizing gas discharge branch pipe (not shown).
  • the oxidizing gas discharge header 223 transfers the oxidative gas supplied from the power generation chamber 215 to the oxidative gas discharge header 223 via the oxidative gas discharge gap 235b, which will be described later, through the oxidative gas discharge hole 233b. It leads to an oxidizing gas discharge branch pipe (not shown).
  • the upper casing 229a is provided so that the top plate of the upper casing 229a and the top plate of the upper casing 229a and the upper heat insulating body 227a are substantially parallel to each other between the top plate of the upper casing 229a and the upper heat insulating body 227a. It is fixed to the side plate of. Further, the upper tube plate 225a has a plurality of holes corresponding to the number of cell stacks 101 provided in the SOFC cartridge 203, and the cell stacks 101 are inserted into the holes, respectively.
  • the upper tube plate 225a airtightly supports one end of the plurality of cell stacks 101 via one or both of the sealing member 237a and the adhesive member, and also provides a fuel gas supply header 217 and an oxidizing gas discharge header. It isolates from 223.
  • the upper heat insulating body 227a is arranged at the lower end of the upper casing 229a so that the upper heat insulating body 227a, the top plate of the upper casing 229a, and the upper tube plate 225a are substantially parallel to each other, and is fixed to the side plate of the upper casing 229a. There is. Further, the upper heat insulating body 227a is provided with a plurality of holes corresponding to the number of cell stacks 101 provided in the SOFC cartridge 203. The diameter of this hole is set to be larger than the outer diameter of the cell stack 101.
  • the upper heat insulating body 227a includes an oxidizing gas discharge gap 235b formed between the inner surface of the hole and the outer surface of the cell stack 101 inserted through the upper heat insulating body 227a.
  • the upper heat insulating body 227a separates the power generation chamber 215 and the oxidizing gas discharge header 223, and the atmosphere around the upper pipe plate 225a becomes high in temperature, resulting in a decrease in strength and corrosion by the oxidizing agent contained in the oxidizing gas. Suppress the increase.
  • the upper tube plate 225a and the like are made of a metal material having high temperature durability such as Inconel, but the upper tube plate 225a and the like are exposed to the high temperature in the power generation chamber 215 and the temperature difference in the upper tube plate 225a and the like becomes large. It prevents thermal deformation. Further, the upper heat insulating body 227a guides the oxidative gas that has passed through the power generation chamber 215 and exposed to high temperature to the oxidative gas discharge header 223 by passing through the oxidative gas discharge gap 235b.
  • the fuel gas and the oxidizing gas flow toward the inside and the outside of the cell stack 101.
  • the oxidative gas exchanges heat with the fuel gas supplied to the power generation chamber 215 through the inside of the base tube 103, and the upper tube plate 225a and the like made of a metal material buckle and the like. It is cooled to a temperature at which it does not deform and is supplied to the oxidizing gas discharge header 223. Further, the fuel gas is heated by heat exchange with the oxidative gas discharged from the power generation chamber 215 and supplied to the power generation chamber 215. As a result, the fuel gas preheated to a temperature suitable for power generation can be supplied to the power generation chamber 215 without using a heater or the like.
  • the lower tube plate 225b is attached to the side plate of the lower casing 229b so that the bottom plate of the lower tube plate 225b, the bottom plate of the lower casing 229b, and the lower insulation body 227b are substantially parallel to each other between the bottom plate of the lower casing 229b and the lower heat insulating body 227b. It is fixed. Further, the lower tube plate 225b has a plurality of holes corresponding to the number of cell stacks 101 provided in the SOFC cartridge 203, and the cell stacks 101 are inserted into the holes, respectively.
  • the lower tube plate 225b airtightly supports the other end of the plurality of cell stacks 101 via one or both of the sealing member 237b and the adhesive member, and also provides a fuel gas discharge header 219 and an oxidizing gas supply header. It is intended to isolate 221.
  • the lower heat insulating body 227b is arranged at the upper end of the lower casing 229b so that the bottom plate of the lower heat insulating body 227b, the bottom plate of the lower casing 229b, and the lower pipe plate 225b are substantially parallel to each other, and is fixed to the side plate of the lower casing 229b. .. Further, the lower heat insulating body 227b is provided with a plurality of holes corresponding to the number of cell stacks 101 provided in the SOFC cartridge 203. The diameter of this hole is set to be larger than the outer diameter of the cell stack 101.
  • the lower heat insulating body 227b includes an oxidizing gas supply gap 235a formed between the inner surface of the hole and the outer surface of the cell stack 101 inserted through the lower heat insulating body 227b.
  • the lower heat insulating body 227b separates the power generation chamber 215 and the oxidizing gas supply header 221, and the atmosphere around the lower tube plate 225b becomes high in temperature, resulting in a decrease in strength and corrosion by the oxidizing agent contained in the oxidizing gas. Suppress the increase.
  • the lower tube plate 225b or the like is made of a metal material having high temperature durability such as Inconel, but the lower tube plate 225b or the like is exposed to a high temperature and the temperature difference in the lower tube plate 225b or the like becomes large, so that the lower tube plate 225b or the like is thermally deformed. It is something to prevent. Further, the lower heat insulating body 227b guides the oxidizing gas supplied to the oxidizing gas supply header 221 to the power generation chamber 215 through the oxidizing gas supply gap 235a.
  • the fuel gas and the oxidizing gas flow toward the inside and the outside of the cell stack 101.
  • the exhaust fuel gas that has passed through the inside of the base pipe 103 and passed through the power generation chamber 215 is heat-exchanged with the oxidizing gas supplied to the power generation chamber 215, and the lower pipe plate 225b made of a metal material is exchanged. Etc. are cooled to a temperature at which deformation such as buckling does not occur and supplied to the fuel gas discharge header 219.
  • the oxidizing gas is heated by heat exchange with the exhaust fuel gas and supplied to the power generation chamber 215.
  • the oxidizing gas heated to the temperature required for power generation can be supplied to the power generation chamber 215 without using a heater or the like.
  • the DC power generated in the power generation chamber 215 is led out to the vicinity of the end of the cell stack 101 by a lead film 115 made of Ni / YSZ or the like provided in the plurality of fuel cell 105, and then the current collecting rod of the SOFC cartridge 203 (not). Electric power is collected through a current collecting plate (not shown) on the (shown), and is taken out to the outside of each SOFC cartridge 203.
  • the DC power derived to the outside of the SOFC cartridge 203 by the current collector rod connects the generated power of each SOFC cartridge 203 to a predetermined number of series and parallel numbers, and is led out to the outside of the SOFC module 201. It is converted into a predetermined AC power by a power conversion device (inverter or the like) such as a power conditioner (not shown), and is supplied to a power supply destination 7 (for example, a load facility or a power system).
  • a power conversion device inverter or the like
  • a power conditioner not shown
  • the present invention is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate.
  • the fuel cell power generation system (1) is A fuel cell power generation system (1) having a plurality of fuel cell cartridges (203).
  • a plurality of fuel cell units composed of two or more cell groups (G) each formed as a minimum unit of electric output by a part of a plurality of cell stacks (101) built in the fuel cell cartridge (203).
  • the two or more cell groups (G) are connected in series.
  • the fuel cell power generation system (1) includes a plurality of fuel cell cartridges (203), and a plurality of cell stacks (101) built in each fuel cell cartridge (203). Is grouped into a plurality of cell groups (G), which is the minimum unit of electric output.
  • the fuel cell unit (3) is composed of two or more of such cell groups (G), and each fuel cell unit (3) is provided with a power conversion device (4) (power conditioner, etc.). By doing so, it is configured to perform power conversion for each fuel cell unit (3). Then, all the cell groups (G) belonging to each fuel cell unit (3) are connected in series.
  • a battery power generation system (1) can be provided. For example, when one power conversion device (4) is provided for the fuel cell module (201) (when there is only one electric system), if the power conversion device (4) fails, the fuel cell power generation system (1) ) Will not be able to output, but according to the above configuration, the fuel cell power generation system (1) will be able to continue the power supply.
  • each fuel cell unit (3) can be reduced as compared with the case where each fuel cell cartridge (203) is connected in series (see FIG. 6). Therefore, it is possible to reduce the current collection loss by such a low current, and it is also possible to reduce the power transmission loss by using a thinner wiring.
  • the power conversion device (4) for each fuel cell unit (3) as described above, it is possible to adopt a general-purpose low-priced power conversion device (4) for, for example, for photovoltaic power generation. .. Therefore, it is not necessary to prepare a power conversion device (4) capable of power conversion of all the fuel cell cartridges (203) provided in the fuel cell power generation system (1) by custom-ordering, and as compared with the case of FIG.
  • the fuel cell power generation system (1) can be constructed at a lower cost.
  • the fuel cell unit (3) is composed of the cell group (G) included in one or more fuel cell cartridges (203).
  • one fuel cell unit (3) is configured by the cell group (G) of one or a plurality of fuel cell cartridges (203).
  • the cell groups (G) included in the fuel cell unit (3) can be set to a desired number.
  • the number (number of divisions) of cell groups (G) that can be provided in the fuel cell cartridge (203) is limited, fuel can be fueled by using the cell groups (G) of one or more fuel cell cartridges (203).
  • the fuel cell unit (3) can be increased in voltage within a desired range. Therefore, the number of cell groups (G) possessed by the fuel cell unit (3) can be set according to the operating point of the connected power conversion device (4), so that general-purpose low-cost power conversion can be performed.
  • the device (4) can be adopted, and the fuel cell power generation system (1) can be constructed at a lower cost.
  • the number of the cell groups (G) constituting the fuel cell unit (3) is an even number. According to the configuration of (3) above, the power extraction unit from the fuel cell cartridge (203) can be unified to either the upper part or the lower part of the fuel cell cartridge (203) to facilitate the construction. Can be done.
  • a power output circuit (5) capable of outputting at least a part of the output power output by the plurality of power converters (4) to the power supply destination (7) is further provided.
  • the power output circuit (5) has a plurality of switches (51) capable of switching the connection state between the plurality of power conversion devices (4) and the power supply destination (7).
  • the connection between each of the plurality of power converters (4) and the power supply destination (7) can be individually disconnected by the switch (51) of the power output circuit (5). It has become.
  • the fuel cell unit (3) in which the failure has occurred can be easily separated. Therefore, the remaining fuel cell unit (3) can be used to continue supplying power to the power supply destination (7), and maintenance work such as replacement and repair of the failed fuel cell unit (3) can be facilitated. Can be planned.
  • the output power of each power converter (4) is adjusted so that the temperature of each fuel cell unit (3) becomes the specified temperature (Tc).
  • the control device (6) is configured to control the output of each of the plurality of power conversion devices (4) by adjusting the load of the power conversion device (4). According to the configuration of (6) above, by adjusting the load of each power conversion device (4), the temperature of each fuel cell unit (3) can be controlled to be a specified temperature (Tc).
  • the control device (6) is a power conversion device (6) provided for the fuel cell cartridge (203) located on the end side of a pressure vessel (205) accommodating the plurality of fuel cell cartridges (203).
  • the load of 4) is configured to be smaller than that located at the center of the pressure vessel (205).
  • the load of each power conversion device is adjusted in consideration of the difference in heat dissipation in the pressure vessel (205).
  • the temperature of each of the plurality of fuel cell cartridges (203) can be controlled to be the specified temperature (Tc).
  • Fuel cell power generation system 3 Fuel cell unit 4 Power conversion device 41 1st wiring 42 2nd wiring 43 3rd wiring 5 Power output circuit 51 Switch 52 Boost transformer 6 Control device 62 Temperature measuring unit 7 Power supply destination 101 Cell stack 103 Base Pipe 105 Fuel cell cell 107 Interconnector 109 Fuel pole 111 Solid electrolyte membrane 113 Air pole 115 Lead membrane 201 Fuel cell module (SOFC module) 203 Fuel cell cartridge (SOFC cartridge) 205 Pressure vessel 207 Fuel gas supply pipe 207a Fuel gas supply branch pipe 209 Fuel gas discharge pipe 209a Fuel gas discharge branch pipe 215 Power generation room 217 Fuel gas supply header 219 Fuel gas discharge header 221 Oxidizing gas supply header 223 Oxidizing gas discharge header 225a Upper tube plate 225b Lower tube plate 227a Upper heat insulating body 227b Lower heat insulating body 229 Casing 229a Upper casing 229b Lower casing 231a Fuel gas supply hole 231b Fuel gas discharge hole 233a Oxidizing gas supply hole 233b Oxidizing gas discharge

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

This fuel cell power generating system has a plurality of fuel cell cartridges, the fuel cell power generating system comprising: a plurality of fuel cell units configured by two or more cell groups each formed as a minimum unit of electrical output by a plurality of cell stacks built into the fuel cell cartridge; and a plurality of power conversion devices that are provided for each of the plurality of fuel cell units, the power conversion devices performing power conversion of the output power of the fuel cell units, two or more cell groups being serially connected in the fuel cell unit.

Description

燃料電池発電システムFuel cell power generation system
 本開示は、燃料電池により発電を行う燃料電池発電システムに関する。 This disclosure relates to a fuel cell power generation system that generates power using a fuel cell.
 燃料ガスと酸化性ガスとを化学反応させることにより発電する燃料電池は、優れた発電効率及び環境対応等の特性を有している。このうち、固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)は、電解質としてジルコニアセラミックスなどのセラミックスが用いられ、水素、都市ガス、天然ガス、石油、メタノール、及び炭素含有原料をガス化設備により製造したガス化ガス等のガスなどを燃料ガスとして供給して、およそ700℃~1000℃の高温雰囲気で反応させて発電を行っている。 A fuel cell that generates electricity by chemically reacting a fuel gas with an oxidizing gas has characteristics such as excellent power generation efficiency and environmental friendliness. Of these, solid oxide fuel cells (Solid Oxide Fuel Cell: SOFC) use ceramics such as zirconia ceramics as the electrolyte, and gasify hydrogen, city gas, natural gas, petroleum, methanol, and carbon-containing raw materials. Gas such as gasification gas produced in the above is supplied as fuel gas and reacted in a high temperature atmosphere of about 700 ° C. to 1000 ° C. to generate power.
 このような燃料電池により発電を行う燃料電池発電システムは、各々が複数のセルスタックが燃料供給ヘッダ等によって集合化された複数の燃料電池カートリッジをモジュール化した燃料電池モジュールと、この燃料電池モジュールから出力される直流電力を所定の交流電力へと変換して電力供給先(例えば、負荷設備や電力系統)に供給するためのパワーコンディショナ(PCS)等の電力変換装置(インバータなど)と、を備える(特許文献1~3参照)。例えば特許文献1の電力システムでは、燃料電池モジュール毎にPCSが設けられていると共に、これらの複数のPCSが母線に並列に接続され、切替部を介して電力系統に連系するように構成されている。 A fuel cell power generation system that generates electricity from such a fuel cell is composed of a fuel cell module in which a plurality of fuel cell cartridges in which a plurality of cell stacks are assembled by a fuel supply header or the like are modularized, and a fuel cell module. A power conversion device (inverter, etc.) such as a power conditioner (PCS) for converting the output DC power into a predetermined AC power and supplying it to a power supply destination (for example, a load facility or a power system). (See Patent Documents 1 to 3). For example, in the electric power system of Patent Document 1, a PCS is provided for each fuel cell module, and a plurality of these PCSs are connected in parallel to the bus and connected to the electric power system via a switching unit. ing.
特開2018-50428号公報Japanese Unexamined Patent Publication No. 2018-50428 特開2005-222863号公報Japanese Unexamined Patent Publication No. 2005-222863 特開2014-71998号公報Japanese Unexamined Patent Publication No. 2014-71998
 例えば特許文献1に示すように、燃料電池発電システムは1以上の燃料電池モジュールを用いて所定出力を得るように構成されるが、具体的な燃料電池モジュールの構成として例えば図6に示すようなシステム構成が考えられる。図6では、燃料電池発電システムを構成する複数の燃料電池カートリッジを1以上のグループにグループ分けし(図6では4グループ)、各グループ内で燃料電池カートリッジを直列接続する。この際、各燃料電池カートリッジが有する複数のセルスタックを電気出力の最小単位となる複数のグループ(以下、セルグループ)にグループ分けした上で、各セルグループが他の燃料電池カートリッジのセルグループのいずれかと接続されるようにして、直列接続される。そして、上述した燃料電池カートリッジのグループ毎に設けられたチョッパー(DC/DCコンバータ)を介して1つのインバータに接続し、このインバータを介して電力系統などの電力供給先に出力する。よって、PCSは、複数のチョッパーおよびインバータで構成される。 For example, as shown in Patent Document 1, a fuel cell power generation system is configured to obtain a predetermined output by using one or more fuel cell modules, and as a specific configuration of the fuel cell module, for example, as shown in FIG. The system configuration is conceivable. In FIG. 6, a plurality of fuel cell cartridges constituting the fuel cell power generation system are grouped into one or more groups (four groups in FIG. 6), and the fuel cell cartridges are connected in series within each group. At this time, after grouping the plurality of cell stacks of each fuel cell cartridge into a plurality of groups (hereinafter referred to as cell groups) which are the minimum units of electric output, each cell group is a cell group of another fuel cell cartridge. It is connected in series so that it is connected to either one. Then, it is connected to one inverter via a chopper (DC / DC converter) provided for each group of fuel cell cartridges described above, and is output to a power supply destination such as a power system via this inverter. Therefore, the PCS is composed of a plurality of choppers and inverters.
 しかしながら、図6に示すような燃料電池発電システムでは、燃料電池モジュールを構成する全ての燃料電池カートリッジに対して1つのPCS(インバータ)を設けており、電気系統は1系統となる。よって、PCSや、直列に接続された複数の燃料電池カートリッジのうちの1つに故障などのトラブルが生じると、燃料電池モジュールからの電気出力ができなくなる可能性がある。さらに、各燃料電池カートリッジでは複数のセルグループが並列に接続されているため、燃料電池カートリッジの出力電流が大きく、燃料電池カートリッジ間を接続する配線がその分だけ太くなり、送電ロスも大きくなる。また、PCSは、燃料電池モジュールの出力に合わせて選定あるいは特注する必要があり、コストの増大を招きやすい。 However, in the fuel cell power generation system as shown in FIG. 6, one PCS (inverter) is provided for all the fuel cell cartridges constituting the fuel cell module, and the electric system is one system. Therefore, if a trouble such as a failure occurs in the PCS or one of the plurality of fuel cell cartridges connected in series, the electric output from the fuel cell module may not be possible. Further, since a plurality of cell groups are connected in parallel in each fuel cell cartridge, the output current of the fuel cell cartridge is large, the wiring connecting the fuel cell cartridges is thickened by that amount, and the power transmission loss is also large. Further, the PCS needs to be selected or custom-made according to the output of the fuel cell module, which tends to increase the cost.
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、信頼性が高く低コストで構築可能な燃料電池発電システムを提供することを目的とする。 In view of the above circumstances, at least one embodiment of the present invention aims to provide a fuel cell power generation system that is highly reliable and can be constructed at low cost.
 本発明の少なくとも一実施形態に係る燃料電池発電システムは、
 複数の燃料電池カートリッジを有する燃料電池発電システムであって、
 前記燃料電池カートリッジに内蔵されている複数のセルスタックにより電気出力の最小単位としてそれぞれ形成された2以上のセルグループで構成された複数の燃料電池ユニットと、
 前記複数の燃料電池ユニットの各々に対して設けられる、前記燃料電池ユニットの出力電力の電力変換を行う複数の電力変換装置と、を備え、
 前記燃料電池ユニットにおいて前記2以上のセルグループは直列に接続されている。
The fuel cell power generation system according to at least one embodiment of the present invention is
A fuel cell power generation system having multiple fuel cell cartridges.
A plurality of fuel cell units composed of two or more cell groups each formed as a minimum unit of electric output by a plurality of cell stacks built in the fuel cell cartridge, and a plurality of fuel cell units.
A plurality of power conversion devices for converting the output power of the fuel cell unit, which are provided for each of the plurality of fuel cell units, are provided.
In the fuel cell unit, the two or more cell groups are connected in series.
 本発明の少なくとも一実施形態によれば、信頼性が高く低コストで構築可能な燃料電池発電システムが提供される。 According to at least one embodiment of the present invention, a fuel cell power generation system that is highly reliable and can be constructed at low cost is provided.
本発明の一実施形態に係る燃料電池発電システムの構成を概略的に示す図である。It is a figure which shows schematic the structure of the fuel cell power generation system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る燃料電池カートリッジの構成を概略的に示す図である。It is a figure which shows schematic structure of the fuel cell cartridge which concerns on one Embodiment of this invention. 本発明の一実施形態に係る2つの燃料電池カートリッジが有するセルグループで構成される燃料電池ユニットを概略的に示す図である。It is a figure which shows typically the fuel cell unit which consists of the cell group which has two fuel cell cartridges which concerns on one Embodiment of this invention. 本発明の一実施形態に係る制御装置により制御される各燃料電池カートリッジの温度を示す図である。It is a figure which shows the temperature of each fuel cell cartridge controlled by the control device which concerns on one Embodiment of this invention. 図4Aの場合の各燃料電池カートリッジの出力を示す図である。It is a figure which shows the output of each fuel cell cartridge in the case of FIG. 4A. 図5Bのように電流を制御した場合の各燃料電池カートリッジの温度を示す図であり、図4Aに対する参考図である。It is a figure which shows the temperature of each fuel cell cartridge when the current is controlled as shown in FIG. 5B, and is the reference figure with respect to FIG. 4A. 図5Aに対応する各燃料電池カートリッジの出力を示す参考図である、図4Bに対する参考図である。It is a reference figure with respect to FIG. 4B which is the reference figure which shows the output of each fuel cell cartridge corresponding to FIG. 5A. 燃料電池発電システムの構成を概略的に示す参考図である。It is a reference figure which shows roughly the structure of the fuel cell power generation system. 本発明の一実施形態に係るセルスタックの一態様を示すものである。It shows one aspect of the cell stack which concerns on one Embodiment of this invention. 本発明の一実施形態に係るSOFCモジュールの一態様を示すものである。It shows one aspect of the SOFC module which concerns on one Embodiment of this invention. 本発明の一実施形態に係るSOFCカートリッジの断面の一態様を示すものであり、図示された上部分は図2に対応する。The cross section of the SOFC cartridge according to the embodiment of the present invention is shown, and the upper portion shown corresponds to FIG.
 以下に、本発明に係る燃料電池発電システム1の一実施形態について、図面を参照して説明する。図1は、本発明の一実施形態に係る燃料電池発電システム1の構成を概略的に示す図である。図2は、本発明の一実施形態に係る燃料電池カートリッジ203の構成を概略的に示す図である。また、図3は、本発明の一実施形態に係る2つの燃料電池カートリッジ203が有するセルグループGで構成される燃料電池ユニット3を概略的に示す図である。 Hereinafter, an embodiment of the fuel cell power generation system 1 according to the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a configuration of a fuel cell power generation system 1 according to an embodiment of the present invention. FIG. 2 is a diagram schematically showing the configuration of the fuel cell cartridge 203 according to the embodiment of the present invention. Further, FIG. 3 is a diagram schematically showing a fuel cell unit 3 composed of a cell group G included in the two fuel cell cartridges 203 according to the embodiment of the present invention.
 図1に示すように、この燃料電池発電システム1は、複数の燃料電池カートリッジ203を有する発電システムである。これらの複数の燃料電池カートリッジ203はモジュール化されていても良く、燃料電池発電システム1は、1以上の燃料電池モジュール201を備えていても良い。上記の燃料電池カートリッジ203は、複数のセルスタック101が、例えば後述するケーシング229(229a、229b)といった燃料供給ヘッダ等によって集合化されたものである(図2、図9参照)。また、燃料電池モジュール201は、燃料電池カートリッジ203及び圧力容器205を含む燃料電池の最大単位である。 As shown in FIG. 1, this fuel cell power generation system 1 is a power generation system having a plurality of fuel cell cartridges 203. These plurality of fuel cell cartridges 203 may be modularized, and the fuel cell power generation system 1 may include one or more fuel cell modules 201. In the fuel cell cartridge 203, a plurality of cell stacks 101 are assembled by, for example, a fuel supply header such as a casing 229 (229a, 229b) described later (see FIGS. 2 and 9). Further, the fuel cell module 201 is the maximum unit of the fuel cell including the fuel cell cartridge 203 and the pressure vessel 205.
 そして、図1に示すように、燃料電池発電システム1は、1以上の燃料電池カートリッジ203が有するセルグループGによりそれぞれ構成される複数の燃料電池ユニット3と、これら複数の燃料電池ユニット3の各々に対して設けられた複数の電力変換装置4(PCSなど)と、を備える。これらの構成について、それぞれ説明する。
 なお、燃料電池モジュール201や燃料電池カートリッジ203の詳細な説明については、最後にまとめて説明する。
Then, as shown in FIG. 1, the fuel cell power generation system 1 includes a plurality of fuel cell units 3 each composed of cell groups G included in one or more fuel cell cartridges 203, and each of the plurality of fuel cell units 3. A plurality of power conversion devices 4 (PCS, etc.) provided for the above are provided. Each of these configurations will be described.
A detailed description of the fuel cell module 201 and the fuel cell cartridge 203 will be described at the end.
 燃料電池ユニット3は、燃料電池カートリッジ203に内蔵されている複数のセルスタック101の一部により形成されたセルグループGの2以上により構成される。より詳細には、図2に示すように、各燃料電池カートリッジ203が有する複数のセルスタック101は複数のセルグループGにグループ分けされた上で、セルグループG毎に集電板241に接続される。そして、各集電板241には集電棒242が接続されており、各集電棒242から発電された直流電力を外部に取り出すことが可能となっている。つまり、セルグループGは、燃料電池カートリッジ203からの電気出力の最小単位となる。 The fuel cell unit 3 is composed of two or more cell groups G formed by a part of a plurality of cell stacks 101 built in the fuel cell cartridge 203. More specifically, as shown in FIG. 2, the plurality of cell stacks 101 included in each fuel cell cartridge 203 are grouped into a plurality of cell groups G, and then connected to the current collector plate 241 for each cell group G. To. A current collector rod 242 is connected to each current collector plate 241 so that the DC power generated from each current collector rod 242 can be taken out to the outside. That is, the cell group G is the minimum unit of the electric output from the fuel cell cartridge 203.
 例えば、図1、図3に示すように、各燃料電池ユニット3は、1以上の燃料電池カートリッジ203が有するセルグループGで構成される。すなわち、図1に示すように、各燃料電池ユニット3は、1つの燃料電池カートリッジ203が有する複数のセルグループGで構成されても良い。あるいは、図3に示すように、各燃料電池ユニット3は、複数の燃料電池カートリッジ203の各々が有するセルグループGで構成されても良い。また、図1、図3では、1つの燃料電池カートリッジ203が有する全てのセルグループGは、いずれかの燃料電池ユニット3に属しているが、他の幾つかの実施形態では、1つの燃料電池カートリッジ203が有する複数のセルグループGの各々は、互いに異なる複数の燃料電池ユニット3のいずれかに属しても良い。換言すれば、複数の燃料電池ユニット3が、同一の燃料電池カートリッジ203の有する異なるセルグループGをそれぞれ含むように構成されても良い。 For example, as shown in FIGS. 1 and 3, each fuel cell unit 3 is composed of a cell group G included in one or more fuel cell cartridges 203. That is, as shown in FIG. 1, each fuel cell unit 3 may be composed of a plurality of cell groups G included in one fuel cell cartridge 203. Alternatively, as shown in FIG. 3, each fuel cell unit 3 may be composed of a cell group G included in each of the plurality of fuel cell cartridges 203. Further, in FIGS. 1 and 3, all cell groups G included in one fuel cell cartridge 203 belong to any fuel cell unit 3, but in some other embodiments, one fuel cell. Each of the plurality of cell groups G included in the cartridge 203 may belong to any of the plurality of fuel cell units 3 different from each other. In other words, the plurality of fuel cell units 3 may be configured to include different cell groups G of the same fuel cell cartridge 203.
 これによって、燃料電池ユニット3が有するセルグループGを所望の数に設定することが可能となる。後述するように、燃料電池ユニット3において複数のセルグループGは直列に接続される。このため、燃料電池ユニット3が有するセルグループGの数を、接続される電力変換装置4の動作点に合わせて設定することで、その動作点に合わせて燃料電池ユニット3を高電圧化することが可能となる。よって、汎用的な低価格の電力変換装置4を採用することが可能となり、図6の場合と比べて、燃料電池発電システム1を低コストで構築することが可能となる。 This makes it possible to set the number of cell groups G included in the fuel cell unit 3 to a desired number. As will be described later, a plurality of cell groups G are connected in series in the fuel cell unit 3. Therefore, by setting the number of cell groups G included in the fuel cell unit 3 according to the operating point of the connected power conversion device 4, the voltage of the fuel cell unit 3 is increased according to the operating point. Is possible. Therefore, it is possible to adopt a general-purpose low-priced power conversion device 4, and it is possible to construct the fuel cell power generation system 1 at a lower cost than in the case of FIG.
 図1、図3に示す実施形態では、燃料電池モジュール201は、20個の燃料電池カートリッジ203を備えている。また、各燃料電池カートリッジ203は、4つのセルグループGを備えている。そして、図1に示す実施形態では、各燃料電池ユニット3は、1つの燃料電池カートリッジ203が有する全て(合計で4つ)のセルグループGで1つの燃料電池ユニット3が組まれている。つまり、1つの燃料電池カートリッジ203毎に燃料電池ユニット3が組まれている。他方、図3に示す実施形態では、各燃料電池ユニット3は、2つの燃料電池カートリッジ203がそれぞれ有する全てのセルグループGで組まれており、合計で8つのセルグループGで組まれている。つまり、2つの燃料電池カートリッジ203毎に燃料電池ユニット3が組まれている。 In the embodiment shown in FIGS. 1 and 3, the fuel cell module 201 includes 20 fuel cell cartridges 203. Further, each fuel cell cartridge 203 includes four cell groups G. Then, in the embodiment shown in FIG. 1, in each fuel cell unit 3, one fuel cell unit 3 is assembled in all (four in total) cell groups G included in one fuel cell cartridge 203. That is, the fuel cell unit 3 is assembled for each fuel cell cartridge 203. On the other hand, in the embodiment shown in FIG. 3, each fuel cell unit 3 is assembled by all the cell groups G each of the two fuel cell cartridges 203, and is assembled by a total of eight cell groups G. That is, the fuel cell unit 3 is assembled for each of the two fuel cell cartridges 203.
 電力変換装置4は、上述した複数の燃料電池ユニット3の各々に対して設けられる、燃料電池ユニット3の出力電力の電力変換を行う装置である。より詳細には、各電力変換装置4は、各燃料電池ユニット3に接続される例えばチョッパーなどのDC/DCコンバータ(不図示)と、このDC/DCコンバータに接続されたインバータ(不図示)とを備えた装置であり、例えばパワーコンディショナ(PCS:Power Conditioning Subsysutem)などである。 The power conversion device 4 is a device provided for each of the plurality of fuel cell units 3 described above to perform power conversion of the output power of the fuel cell unit 3. More specifically, each power converter 4 includes a DC / DC converter (not shown) such as a chopper connected to each fuel cell unit 3 and an inverter (not shown) connected to the DC / DC converter. For example, a power conditioner (PCS: Power Conditioning Subsystem) or the like.
 図1に示す実施形態では、燃料電池ユニット3は1つの燃料電池カートリッジ203で構成されているので、燃料電池モジュール201は、燃料電池カートリッジ203と同数となる合計で20の燃料電池ユニット3を備えている。よって、電力変換装置4の数も合計で20となる。一方、図3に示す実施形態では、燃料電池ユニット3は2つの燃料電池カートリッジ203で構成されているので、燃料電池モジュール201は合計で10の燃料電池ユニット3を備えている。よって、電力変換装置4の数も合計で10となる。 In the embodiment shown in FIG. 1, since the fuel cell unit 3 is composed of one fuel cell cartridge 203, the fuel cell module 201 includes a total of 20 fuel cell units 3 which is the same number as the fuel cell cartridge 203. ing. Therefore, the total number of power conversion devices 4 is 20. On the other hand, in the embodiment shown in FIG. 3, since the fuel cell unit 3 is composed of two fuel cell cartridges 203, the fuel cell module 201 includes a total of 10 fuel cell units 3. Therefore, the total number of power conversion devices 4 is 10.
 なお、1つの電力変換装置4が備えるDC/DCコンバータの数は任意であり、コストや、制御可能な電力有範囲、耐圧などを考慮して決定しても良い。つまり、コストを低減するためにはDC/DCコンバータの数が少ない方が良いが、1つのDC/DCコンバータに入力可能な直流電流の大きさには限界があり、その兼ね合いで決定される。また、1つの燃料電池ユニット3に対して設けられる電力変換装置4の数も任意であり、1つの燃料電池ユニット3に対して複数の電力変換装置4を並列に接続しても良い。 The number of DC / DC converters included in one power converter 4 is arbitrary, and may be determined in consideration of cost, controllable power range, withstand voltage, and the like. That is, in order to reduce the cost, it is better that the number of DC / DC converters is small, but there is a limit to the magnitude of the DC current that can be input to one DC / DC converter, and it is determined by the balance. Further, the number of power conversion devices 4 provided for one fuel cell unit 3 is arbitrary, and a plurality of power conversion devices 4 may be connected in parallel to one fuel cell unit 3.
 上述したように各燃料電池ユニット3は2以上のセルグループGにより構成されるが、図1、図3に示すように、各燃料電池ユニット3において、各燃料電池ユニット3が有する2以上のセルグループGは直列に接続されている。
 具体的には、図1に示す実施形態では、1つの燃料電池カートリッジ203内で互いに平行に並んだ複数(4つ)のセルグループGが直列接続となるように、隣接するセルグループG同士が配線(第1配線41)で接続されている。また、各燃料電池カートリッジ203の両端に位置するセルグループGがそれぞれ電力変換装置4に配線(第3配線43)で接続されている。これによって、各燃料電池ユニット3が有する合計で4つのセルグループGの直列接続、および、燃料電池ユニット3と電力変換装置4との接続が形成されている。
As described above, each fuel cell unit 3 is composed of two or more cell groups G. As shown in FIGS. 1 and 3, in each fuel cell unit 3, two or more cells possessed by each fuel cell unit 3 Group G is connected in series.
Specifically, in the embodiment shown in FIG. 1, adjacent cell groups G are connected in series so that a plurality of (four) cell groups G arranged in parallel with each other in one fuel cell cartridge 203 are connected in series. It is connected by wiring (first wiring 41). Further, cell groups G located at both ends of each fuel cell cartridge 203 are connected to the power conversion device 4 by wiring (third wiring 43). As a result, a total of four cell groups G serially connected to each fuel cell unit 3 and a connection between the fuel cell unit 3 and the power conversion device 4 are formed.
 他方、図3に示す実施形態では、2つの燃料電池カートリッジ203が備える合計で8つのセルグループGが直列接続となるように、各燃料電池カートリッジ203内で互いに平行に並んだ複数(4つ)のセルグループGの隣接間が第1配線41で直列に接続されると共に、2つの燃料電池カートリッジ203間の同じ側の端に位置するセルグループGが互いに配線(第2配線42)により接続されている。また、2つの燃料電池カートリッジ203における第2配線42がある側とは反対側の端に位置する2つのセルグループGがそれぞれ第3配線43により電力変換装置4に接続されている。これによって、各燃料電池ユニット3が有する合計で8つのセルグループGの直列接続、および、燃料電池ユニット3と電力変換装置4との接続が形成されている。 On the other hand, in the embodiment shown in FIG. 3, a plurality (four) arranged in parallel with each other in each fuel cell cartridge 203 so that a total of eight cell groups G included in the two fuel cell cartridges 203 are connected in series. The cell groups G adjacent to each other are connected in series by the first wiring 41, and the cell groups G located at the same side ends between the two fuel cell cartridges 203 are connected to each other by wiring (second wiring 42). ing. Further, two cell groups G located at the ends of the two fuel cell cartridges 203 on the side opposite to the side where the second wiring 42 is located are connected to the power conversion device 4 by the third wiring 43, respectively. As a result, a total of eight cell groups G serially connected to each fuel cell unit 3 and a connection between the fuel cell unit 3 and the power conversion device 4 are formed.
 なお、図1、図3に示す実施形態では、1つの燃料電池カートリッジ203が有する複数のセルグループGがその並び順に第1配線41で接続されているが、他の順番に直列接続が形成されていても良い。また、図3に示す実施形態では、2つの燃料電池カートリッジ203で1つの燃料電池ユニット3が構成されている場合において、第2配線42は1本であるが、2本以上の第2配線42が用いられるような配線により直列接続が形成されていても良い。 In the embodiment shown in FIGS. 1 and 3, a plurality of cell groups G included in one fuel cell cartridge 203 are connected by the first wiring 41 in the order in which they are arranged, but a series connection is formed in the other order. You may have. Further, in the embodiment shown in FIG. 3, when one fuel cell unit 3 is configured by two fuel cell cartridges 203, the second wiring 42 is one, but two or more second wirings 42 A series connection may be formed by wiring such that is used.
 上述した構成を備える燃料電池発電システム1において、いずれかの電力変換装置4あるいは燃料電池カートリッジ203に故障などのトラブルが生じたとしても、燃料電池ユニット3毎に燃料電池カートリッジ203が電気的に独立しているため、他の燃料電池カートリッジ203のセルグループGにより構成されている燃料電池ユニット3には影響がなく、発電電力の供給を継続することが可能となる。具体的には、いずれか1つの燃料電池カートリッジ203が故障しても、図1では残りの19の燃料電池カートリッジ203(燃料電池ユニット3)からの電力出力が可能であり、図2では残りの18の燃料電池カートリッジ203(残りの9つの燃料電池ユニット3)からの電力出力が可能であり、システムの冗長性が向上されている。また、各燃料電池ユニット3を構成するセルグループGの数を調整して出力電圧を調整することで、例えば太陽電池用のPCS(電力変換装置4)を用いることが可能となる。 In the fuel cell power generation system 1 having the above-described configuration, even if a trouble such as a failure occurs in any of the power conversion devices 4 or the fuel cell cartridge 203, the fuel cell cartridge 203 is electrically independent for each fuel cell unit 3. Therefore, the fuel cell unit 3 composed of the cell group G of the other fuel cell cartridge 203 is not affected, and the supply of the generated power can be continued. Specifically, even if any one of the fuel cell cartridges 203 fails, power can be output from the remaining 19 fuel cell cartridges 203 (fuel cell unit 3) in FIG. 1, and the remaining power can be output in FIG. Power can be output from the 18 fuel cell cartridges 203 (the remaining 9 fuel cell units 3), improving system redundancy. Further, by adjusting the number of cell groups G constituting each fuel cell unit 3 to adjust the output voltage, for example, a PCS (power conversion device 4) for a solar cell can be used.
 上記の構成によれば、燃料電池発電システム1は複数の燃料電池カートリッジ203を備えており、各燃料電池カートリッジ203に内蔵されている複数のセルスタック101は、電気出力の最小単位である複数のセルグループGにグループ分けされている。燃料電池ユニット3は、このようなセルグループGの2以上によって構成されており、各燃料電池ユニット3に対してそれぞれ電力変換装置4が設けられることで、燃料電池ユニット3毎に電力変換を行うように構成される。そして、各燃料電池ユニット3に属する全てのセルグループGは直列に接続される。 According to the above configuration, the fuel cell power generation system 1 includes a plurality of fuel cell cartridges 203, and the plurality of cell stacks 101 incorporated in each fuel cell cartridge 203 are a plurality of units which are the minimum units of electric output. It is divided into cell groups G. The fuel cell unit 3 is composed of two or more of such cell groups G, and by providing a power conversion device 4 for each fuel cell unit 3, power conversion is performed for each fuel cell unit 3. It is configured as follows. Then, all the cell groups G belonging to each fuel cell unit 3 are connected in series.
 これによって、複数の電力変換装置4や燃料電池カートリッジ203のいずれかに故障などのトラブルが発生した場合であっても、残りの電力変換装置4および残りの燃料電池カートリッジ203によって構成される燃料電池ユニット3からの電力を電力系統などの電力供給先7に出力することができると共に、システムに冗長性を持たせることができ、信頼性の高い燃料電池発電システム1を提供することができる。例えば、燃料電池モジュール201に対して1つの電力変換装置4を設ける場合(電気系統が一系統である場合)には、電力変換装置4が故障すると燃料電池発電システム1は出力ができなくなるが、上記の構成によれば燃料電池発電システム1は電力供給を継続することが可能となる。また、各燃料電池カートリッジ203を直列接続(図6参照)するのに比べて、各燃料電池ユニット3から出力される出力電流を小さくすることができる。よって、このような低電流化によって集電ロスを低減することができると共に、より細い配線を用いることによって送電ロスを低減することもできる。 As a result, even if a trouble such as a failure occurs in any of the plurality of power conversion devices 4 and the fuel cell cartridge 203, the fuel cell composed of the remaining power conversion device 4 and the remaining fuel cell cartridge 203 The power from the unit 3 can be output to a power supply destination 7 such as a power system, and the system can be made redundant, so that a highly reliable fuel cell power generation system 1 can be provided. For example, when one power conversion device 4 is provided for the fuel cell module 201 (when there is only one electric system), if the power conversion device 4 fails, the fuel cell power generation system 1 cannot output. According to the above configuration, the fuel cell power generation system 1 can continue to supply power. Further, the output current output from each fuel cell unit 3 can be reduced as compared with connecting the fuel cell cartridges 203 in series (see FIG. 6). Therefore, it is possible to reduce the current collection loss by such a low current, and it is also possible to reduce the power transmission loss by using a thinner wiring.
 また、上記のように燃料電池ユニット3毎に電力変換装置4を設けることで、例えば太陽光発電用などの汎用的な低価格の電力変換装置4を採用することができる。よって、燃料電池発電システム1が備える全ての燃料電池カートリッジ203の電力変換が可能な電力変換装置4を特注などして用意する必要がなく、燃料電池発電システム1をより低コストで構築することができる。 Further, by providing the power conversion device 4 for each fuel cell unit 3 as described above, it is possible to adopt a general-purpose low-priced power conversion device 4 for solar power generation, for example. Therefore, it is not necessary to prepare a power conversion device 4 capable of power conversion of all the fuel cell cartridges 203 included in the fuel cell power generation system 1 by special order, and the fuel cell power generation system 1 can be constructed at a lower cost. it can.
 幾つかの実施形態では、図1、図3に示すように、上述した燃料電池ユニット3を構成するセルグループGの数は偶数であっても良い。この数が偶数であることによって、燃料電池ユニット3からの電力の取出し部(集電棒242)を燃料電池カートリッジ203の上部または下部のどちらかに統一することが可能となる。 In some embodiments, as shown in FIGS. 1 and 3, the number of cell groups G constituting the fuel cell unit 3 described above may be an even number. When this number is an even number, it is possible to unify the power extraction unit (collecting rod 242) from the fuel cell unit 3 to either the upper part or the lower part of the fuel cell cartridge 203.
 図1、図3に示す実施形態では、燃料電池カートリッジ203において4つのセルグループGは、そのプラス端子(+)とマイナス端子(-)の向きが、燃料電池カートリッジ203の上部または下部において交互に並ぶように配置されている。そして、図1に示す実施形態では、燃料電池カートリッジ203が有するセルグループGの数が偶数なので、燃料電池カートリッジ203の両端側のセルグループG同士では、端子の向きが逆になっている。つまり、一端側のセルグループGのプラス端子が燃料電池カートリッジ203の上部にある場合に、他端側のセルグループGのマイナス端子が同じ上部にある。同様に、図3に示す実施形態では、燃料電池ユニット3は、図1のものと同じ燃料電池カートリッジ203の2つにより構成されることで8つのセルグループGを有しており、電力変換装置4に接続される2つのセルグループGの端子の向きが逆になっている。このため、電力変換装置4と燃料電池ユニット3とを接続する2本の第3配線43がいずれも上部に統一されている。 In the embodiment shown in FIGS. 1 and 3, in the fuel cell cartridge 203, the directions of the positive terminal (+) and the negative terminal (−) of the four cell groups G alternate at the upper or lower part of the fuel cell cartridge 203. They are arranged side by side. In the embodiment shown in FIG. 1, since the number of cell groups G included in the fuel cell cartridge 203 is an even number, the directions of the terminals of the cell groups G on both ends of the fuel cell cartridge 203 are opposite to each other. That is, when the positive terminal of the cell group G on one end side is on the upper part of the fuel cell cartridge 203, the negative terminal of the cell group G on the other end side is on the same upper part. Similarly, in the embodiment shown in FIG. 3, the fuel cell unit 3 has eight cell groups G by being composed of the same two fuel cell cartridges 203 as those in FIG. 1, and is a power conversion device. The directions of the terminals of the two cell groups G connected to 4 are reversed. Therefore, both of the two third wirings 43 connecting the power conversion device 4 and the fuel cell unit 3 are unified at the upper part.
 上記の構成によれば、燃料電池カートリッジ203からの電力取り出し部を、燃料電池カートリッジ203の上部または下部のどちらかに統一することができ、施工の容易化を図ることができる。 According to the above configuration, the power extraction unit from the fuel cell cartridge 203 can be unified to either the upper part or the lower part of the fuel cell cartridge 203, and the construction can be facilitated.
 また、幾つかの実施形態では、図1に示すように、燃料電池発電システム1は、上述した複数の電力変換装置4が出力する出力電力の少なくとも一部を、例えば電力系統や負荷設備なとどなる電力供給先7に出力するための電力出力回路5を、さらに備えている。つまり、電力出力回路5は、燃料電池発電システム1が備える複数の電力変換装置4と電力供給先7との間に設けられている。そして、この電力出力回路5は、複数の電力変換装置4と電力供給先7との接続状態をそれぞれ切り替えることが可能な複数のスイッチ51を有している。つまり、各電力変換装置4は、スイッチ51を介して電力供給先7に接続されており、スイッチ51がオン状態になると電力変換装置4が電力供給先7に電気的に接続され、オフ状態になるとその接続が解除される。これによって、燃料電池発電システム1からの複数の燃料電池ユニット3の切り離しを個別に行うことが可能となっている。 Further, in some embodiments, as shown in FIG. 1, in the fuel cell power generation system 1, at least a part of the output power output by the plurality of power conversion devices 4 described above is, for example, a power system or a load facility. A power output circuit 5 for outputting to the power supply destination 7 is further provided. That is, the power output circuit 5 is provided between the plurality of power conversion devices 4 included in the fuel cell power generation system 1 and the power supply destination 7. The power output circuit 5 has a plurality of switches 51 capable of switching the connection state between the plurality of power conversion devices 4 and the power supply destination 7. That is, each power conversion device 4 is connected to the power supply destination 7 via the switch 51, and when the switch 51 is turned on, the power conversion device 4 is electrically connected to the power supply destination 7 and is turned off. Then the connection is released. This makes it possible to individually disconnect the plurality of fuel cell units 3 from the fuel cell power generation system 1.
 図1に示す実施形態では、電力供給先7は電力系統である。また、電力出力回路5は、AC昇圧トランス52を備えており、上記の複数のスイッチ51はそれぞれAC昇圧トランス52に接続されている。そして、AC昇圧トランス52は、燃料電池モジュール201の出力電圧を電力系統の電圧に合わせるように昇圧することで、燃料電池発電システム1から電力系統とするようになっている。 In the embodiment shown in FIG. 1, the power supply destination 7 is a power system. Further, the power output circuit 5 includes an AC step-up transformer 52, and the plurality of switches 51 described above are each connected to the AC step-up transformer 52. Then, the AC step-up transformer 52 boosts the output voltage of the fuel cell module 201 so as to match the voltage of the power system, so that the fuel cell power generation system 1 becomes the power system.
 上記の構成によれば、複数の電力変換装置4の各々と電力供給先7との接続は、電力出力回路が有するスイッチにより、個別に切断可能となっている。これによって、故障が発生した燃料電池ユニット3を容易に切り離すことができる。よって、残りの燃料電池ユニット3を用いて電力供給先への電力供給を継続させることができると共に、故障した燃料電池ユニット3の交換、修理などの保守作業の容易化を図ることができる。 According to the above configuration, the connection between each of the plurality of power conversion devices 4 and the power supply destination 7 can be individually disconnected by a switch included in the power output circuit. As a result, the fuel cell unit 3 in which the failure has occurred can be easily separated. Therefore, the remaining fuel cell unit 3 can be used to continue supplying electric power to the electric power supply destination, and maintenance work such as replacement and repair of the failed fuel cell unit 3 can be facilitated.
 次に、燃料電池カートリッジ203から出力する電流値の制御に関する実施形態について、図4A~図5Bを用いて説明する。図4Aは、本発明の一実施形態に係る制御装置6により制御される各燃料電池カートリッジ203の温度を示す図である。図4Bは、図4Aの場合の各燃料電池カートリッジ203の出力を示す図である。図5Aは、図5Bのように電流を制御した場合の各燃料電池カートリッジ203の温度を示す図であり、図4Aに対する参考図である。また、図5Bは、図5Aに対応する各燃料電池カートリッジ203の出力を示す参考図であり、図4Bに対する参考図である。 Next, an embodiment relating to control of the current value output from the fuel cell cartridge 203 will be described with reference to FIGS. 4A to 5B. FIG. 4A is a diagram showing the temperature of each fuel cell cartridge 203 controlled by the control device 6 according to the embodiment of the present invention. FIG. 4B is a diagram showing the output of each fuel cell cartridge 203 in the case of FIG. 4A. FIG. 5A is a diagram showing the temperature of each fuel cell cartridge 203 when the current is controlled as in FIG. 5B, and is a reference diagram with respect to FIG. 4A. Further, FIG. 5B is a reference diagram showing the output of each fuel cell cartridge 203 corresponding to FIG. 5A, and is a reference diagram with respect to FIG. 4B.
 例えば後述するSOFCセルなどの燃料電池の単電池は温度が高いほど出力が高くなるが、自己反応発熱のためその温度は電流値に対応する。ただし、単電池の耐久性から上限温度が決まっており、それを超えないように、燃料電池カートリッジ203が接続される電力変換装置4の負荷(抵抗値)を調整することで燃料電池カートリッジ203から出力される電流を調整する必要がある。 For example, the output of a single cell of a fuel cell such as an SOFC cell, which will be described later, increases as the temperature rises, but the temperature corresponds to the current value due to self-reaction heat generation. However, the upper limit temperature is determined from the durability of the cell, and the load (resistance value) of the power conversion device 4 to which the fuel cell cartridge 203 is connected is adjusted so that the upper limit temperature is not exceeded from the fuel cell cartridge 203. It is necessary to adjust the output current.
 ここで、燃料電池モジュール201が備える複数の燃料電池カートリッジ203は、後述する圧力容器205に収容されており(図7参照)、圧力容器205の中央部よりも端部に位置する燃料電池カートリッジの方の放熱が相対的に大きい。このため、圧力容器205の端部に位置する燃料電池カートリッジ203の温度は中央部の物よりも相対的に低い状態になる。また、組立精度や燃料電池セル105の性能バラつき等による燃料電池カートリッジ203の性能差がある場合には、圧力容器205の中央部に位置する燃料電池カートリッジ203の温度にもバラツキが生じる。 Here, the plurality of fuel cell cartridges 203 included in the fuel cell module 201 are housed in the pressure vessel 205 described later (see FIG. 7), and the fuel cell cartridges located at the ends of the pressure vessel 205 with respect to the central portion. The heat dissipation of the one is relatively large. Therefore, the temperature of the fuel cell cartridge 203 located at the end of the pressure vessel 205 is relatively lower than that at the center. Further, when there is a performance difference of the fuel cell cartridge 203 due to an assembly accuracy, a performance variation of the fuel cell 105, or the like, the temperature of the fuel cell cartridge 203 located at the center of the pressure vessel 205 also varies.
 この際、例えば、図5Bに示すように、電力変換装置4(DC/DCコンバータ)において電流が例えば最大値などの一定になるように制御すると、図5Aに示すように放熱が相対的に大きい圧力容器205の端部側の燃料電池カートリッジ203の温度が低下する。また、図5Bに示すように圧力容器205の中央部に生じる温度のバラツキが生じる。この結果、上限温度に満たない温度を有する各燃料電池カートリッジ203は、最大の性能を出し切れていない状態で発電していることになる。 At this time, for example, when the power converter 4 (DC / DC converter) is controlled so that the current becomes constant, for example, the maximum value, as shown in FIG. 5B, the heat dissipation is relatively large as shown in FIG. 5A. The temperature of the fuel cell cartridge 203 on the end side of the pressure vessel 205 drops. Further, as shown in FIG. 5B, the temperature varies in the central portion of the pressure vessel 205. As a result, each fuel cell cartridge 203 having a temperature less than the upper limit temperature is generating electricity in a state where the maximum performance is not fully achieved.
 そこで、幾つかの実施形態では、図1に示すように、燃料電池発電システム1は、複数の燃料電池カートリッジ203の各々の温度を検出するための複数の温度計測部62と、これらの複数の燃料電池カートリッジ203の各々の温度が規定温度Tcになるように(図4A参照)、複数の電力変換装置4の各々の出力(出力電力)を制御するよう構成された制御装置6と、をさらに備えても良い。具体的には、制御装置6は、複数の電力変換装置4の各々の負荷をそれぞれ調整することで、その各々の出力を制御しても良い。このように制御すれば、各燃料電池カートリッジ203の温度を上限温度に近づけて発電することができるので、最大性能を引き出すことが可能となる。 Therefore, in some embodiments, as shown in FIG. 1, the fuel cell power generation system 1 includes a plurality of temperature measuring units 62 for detecting the temperature of each of the plurality of fuel cell cartridges 203, and a plurality of these temperature measuring units 62. Further, a control device 6 configured to control the output (output power) of each of the plurality of power conversion devices 4 so that each temperature of the fuel cell cartridge 203 becomes a specified temperature Tc (see FIG. 4A). You may prepare. Specifically, the control device 6 may control the output of each of the plurality of power conversion devices 4 by adjusting the load of each. With this control, the temperature of each fuel cell cartridge 203 can be brought close to the upper limit temperature to generate electricity, so that the maximum performance can be brought out.
 上記の規定温度Tcは、例えば上記の上限温度以下の温度である。規定温度Tcが上限温度に近いほど、燃料電池カートリッジ203の出力が高くなるので、規定温度Tcは上限温度や、その上限温度を超えるのを回避可能なように上限温度からα温度だけ小さい値に設定されても良い。 The above-mentioned specified temperature Tc is, for example, a temperature equal to or less than the above-mentioned upper limit temperature. The closer the specified temperature Tc is to the upper limit temperature, the higher the output of the fuel cell cartridge 203. Therefore, the specified temperature Tc is set to a value smaller than the upper limit temperature by α temperature so as to avoid exceeding the upper limit temperature or the upper limit temperature. It may be set.
 また、制御装置6は、電力変換装置4毎に制御を実行する。この制御装置6は、コンピュータで構成されても良い。すなわち、図示しないCPU(プロセッサ)や、ROMやRAMなどの記憶部を備えている。そして、メモリ(主記憶装置)にロードされたプログラムの命令に従ってCPUが動作(データの演算など)することで、上記の制御を実行する。 Further, the control device 6 executes control for each power conversion device 4. The control device 6 may be configured by a computer. That is, it includes a CPU (processor) (not shown) and a storage unit such as a ROM or RAM. Then, the CPU operates (data calculation, etc.) according to the instruction of the program loaded in the memory (main storage device) to execute the above control.
 図1に示す実施形態では、温度計測部62は熱電対であり、後述する燃料電池カートリッジ203の発電室215の中央に設置されて、各々の温度を計測するようになっている。また、制御装置6には、例えば複数の温度計測部62に接続されるなどすることで、各燃料電池カートリッジ203の計測温度が入力されるようになっている。そして、制御装置6は、図4Aに示すように、各燃料電池カートリッジ203の計測温度の温度がそれぞれ規定温度Tcになるように、各電力変換装置の負荷を制御する。より具体的には、制御装置6は、上記の圧力容器205の端部側に位置する燃料電池カートリッジ203に対して設けられた電力変換装置4の負荷を、圧力容器205の中央部に位置する、燃料電池カートリッジ203に対して設けられた電力変換装置4の負荷よりも小さくしている。 In the embodiment shown in FIG. 1, the temperature measuring unit 62 is a thermocouple and is installed in the center of the power generation chamber 215 of the fuel cell cartridge 203, which will be described later, to measure the temperature of each. Further, the temperature measured by each fuel cell cartridge 203 is input to the control device 6 by being connected to, for example, a plurality of temperature measuring units 62. Then, as shown in FIG. 4A, the control device 6 controls the load of each power conversion device so that the temperature of the measured temperature of each fuel cell cartridge 203 becomes the specified temperature Tc. More specifically, the control device 6 positions the load of the power conversion device 4 provided on the fuel cell cartridge 203 located on the end side of the pressure vessel 205 at the center of the pressure vessel 205. , The load is smaller than the load of the power conversion device 4 provided for the fuel cell cartridge 203.
 図4Aの横軸(No.)は各燃料電池カートリッジ203を示し、縦軸がその温度に対応する。図4Aに示すように、燃料電池発電システム1が備える合計で20の燃料電池カートリッジ203の温度は、制御装置6による制御によって一定になっている。その結果、図4Bに示すように、圧力容器205の両端部に位置する1番目(No.1)および20番目(No.20)の燃料電池カートリッジ203の電流が他の物(No.2~No.19)よりも高くなっており、その分だけ電流が高くなっており、発電性能が向上されている。 The horizontal axis (No.) in FIG. 4A indicates each fuel cell cartridge 203, and the vertical axis corresponds to the temperature. As shown in FIG. 4A, the temperatures of the total of 20 fuel cell cartridges 203 included in the fuel cell power generation system 1 are constant under the control of the control device 6. As a result, as shown in FIG. 4B, the currents of the first (No. 1) and 20th (No. 20) fuel cell cartridges 203 located at both ends of the pressure vessel 205 are different (No. 2 to No. 2 to). It is higher than No. 19), and the current is higher by that amount, and the power generation performance is improved.
 上記の構成によれば、各燃料電池ユニット3の温度が規定温度Tcになるように、各電力変換装置4の出力電力を調整する。これによって、燃料電池カートリッジ203の出力がその温度が高いほど高くなる場合において、燃料電池発電システム1の出力性能を向上させることができる。 According to the above configuration, the output power of each power conversion device 4 is adjusted so that the temperature of each fuel cell unit 3 becomes the specified temperature Tc. Thereby, when the output of the fuel cell cartridge 203 becomes higher as the temperature is higher, the output performance of the fuel cell power generation system 1 can be improved.
 以下、燃料電池カートリッジ203や燃料電池モジュール201の構成について、図7~図9を用いて詳細に説明する。 Hereinafter, the configurations of the fuel cell cartridge 203 and the fuel cell module 201 will be described in detail with reference to FIGS. 7 to 9.
 なお、以下においては、説明の便宜上、紙面を基準として「上」及び「下」の表現を用いて説明した各構成要素の位置関係は、各々鉛直上方側、鉛直下方側を示すものである。また、本実施形態では、上下方向と水平方向で同様な効果を得られるものは、紙面における上下方向が必ずしも鉛直上下方向に限定することなく、例えば鉛直方向に直交する水平方向に対応してもよい。
 また、以下においては、固体酸化物形燃料電池(SOFC)のセルスタックとして円筒形(筒状)を例として説明するが、必ずしもこの限りである必要はなく、例えば平板形のセルスタックであってもよい。基体上に燃料電池セルを形成するが、基体ではなく電極(燃料極もしくは空気極)が厚く形成されて、基体を兼用したものでも良い。
In the following, for convenience of explanation, the positional relationship of each component described using the expressions “upper” and “lower” with respect to the paper surface indicates the vertically upper side and the vertically lower side, respectively. Further, in the present embodiment, the one that can obtain the same effect in the vertical direction and the horizontal direction is not necessarily limited to the vertical vertical direction on the paper surface, but may correspond to the horizontal direction orthogonal to the vertical direction, for example. Good.
Further, in the following, a cylindrical (cylindrical) cell stack will be described as an example of the solid oxide fuel cell (SOFC) cell stack, but this is not necessarily the case, and for example, a flat cell stack. May be good. The fuel cell is formed on the substrate, but the electrode (fuel electrode or air electrode) is formed thicker instead of the substrate, and the substrate may also be used.
 まず、図7を参照して本実施形態に係る一例として、基体管を用いる円筒形セルスタックについて説明する。基体管を用いない場合は、例えば燃料極を厚く形成して基体管を兼用してもよく、基体管の使用に限定されることはない。また、本実施形態での基体管は円筒形状を用いたもので説明するが、基体管は筒状であればよく、必ずしも断面が円形に限定されなく、例えば楕円形状でもよい。円筒の周側面を垂直に押し潰した扁平円筒(Flat tubular)等のセルスタックでもよい。ここで、図7は、本発明の一実施形態に係るセルスタック101の一態様を示すものである。セルスタック101は、一例として円筒形状の基体管103と、基体管103の外周面に複数形成された燃料電池セル105と、隣り合う燃料電池セル105の間に形成されたインターコネクタ107とを備える。燃料電池セル105は、燃料極109と固体電解質膜111と空気極113とが積層して形成されている。また、セルスタック101は、基体管103の外周面に形成された複数の燃料電池セル105の内、基体管103の軸方向において最も端の一端に形成された燃料電池セル105の空気極113に、インターコネクタ107を介して電気的に接続されたリード膜115を備え、最も端の他端に形成された燃料電池セル105の燃料極109に電気的に接続されたリード膜115を備える。 First, a cylindrical cell stack using a substrate tube will be described as an example of the present embodiment with reference to FIG. 7. When the base tube is not used, for example, the fuel electrode may be formed thick and the base tube may also be used, and the use of the base tube is not limited. Further, although the substrate tube in the present embodiment will be described using a cylindrical shape, the substrate tube may be tubular, and the cross section is not necessarily limited to a circular shape, and may be, for example, an elliptical shape. A cell stack such as a flat cylinder in which the peripheral side surface of the cylinder is vertically crushed may be used. Here, FIG. 7 shows an aspect of the cell stack 101 according to the embodiment of the present invention. As an example, the cell stack 101 includes a cylindrical base tube 103, a plurality of fuel cell 105 formed on the outer peripheral surface of the base tube 103, and an interconnector 107 formed between adjacent fuel cell 105. .. The fuel cell 105 is formed by laminating a fuel electrode 109, a solid electrolyte membrane 111, and an air electrode 113. Further, the cell stack 101 is attached to the air electrode 113 of the fuel cell 105 formed at one end of the plurality of fuel cell 105 formed on the outer peripheral surface of the base tube 103 in the axial direction of the base tube 103. A lead film 115 electrically connected via an interconnector 107 is provided, and a lead film 115 electrically connected to a fuel pole 109 of a fuel cell 105 formed at the other end of the end is provided.
 基体管103は、多孔質材料からなり、例えば、CaO安定化ZrO(CSZ)、CSZと酸化ニッケル(NiO)との混合物(CSZ+NiO)、又はY安定化ZrO(YSZ)、又はMgAlなどを主成分とされる。この基体管103は、燃料電池セル105とインターコネクタ107とリード膜115とを支持すると共に、基体管103の内周面に供給される燃料ガスを基体管103の細孔を介して基体管103の外周面に形成される燃料極109に拡散させるものである。 Substrate tube 103 is made of a porous material, for example, CaO-stabilized ZrO 2 (CSZ), a mixture of CSZ and nickel oxide (NiO) (CSZ + NiO) , or Y 2 O 3 stabilized ZrO 2 (YSZ), or The main component is MgAl 2 O 4 and the like. The base tube 103 supports the fuel cell 105, the interconnector 107, and the lead film 115, and the fuel gas supplied to the inner peripheral surface of the base tube 103 is supplied to the inner peripheral surface of the base tube 103 through the pores of the base tube 103. It is diffused in the fuel electrode 109 formed on the outer peripheral surface of the above.
 燃料極109は、Niとジルコニア系電解質材料との複合材の酸化物で構成され、例えば、Ni/YSZが用いられる。燃料極109の厚さは50μm~250μmであり、燃料極109はスラリーをスクリーン印刷して形成されてもよい。この場合、燃料極109は、燃料極109の成分であるNiが燃料ガスに対して触媒作用を備える。この触媒作用は、基体管103を介して供給された燃料ガス、例えば、メタン(CH)と水蒸気との混合ガスを反応させ、水素(H)と一酸化炭素(CO)に改質するものである。また、燃料極109は、改質により得られる水素(H)及び一酸化炭素(CO)と、固体電解質膜111を介して供給される酸素イオン(O2-)とを固体電解質膜111との界面付近において電気化学的に反応させて水(HO)及び二酸化炭素(CO)を生成するものである。なお、燃料電池セル105は、この時、酸素イオンから放出される電子によって発電する。
 固体酸化物形燃料電池の燃料極109に供給し利用できる燃料ガスとしては、水素(H)および一酸化炭素(CO)、メタン(CH)などの炭化水素系ガス、都市ガス、天然ガスのほか、石油、メタノール、及び石炭などの炭素含有原料をガス化設備により製造したガス化ガスなどが挙げられる。
The fuel electrode 109 is composed of an oxide of a composite material of Ni and a zirconia-based electrolyte material, and for example, Ni / YSZ is used. The thickness of the fuel electrode 109 is 50 μm to 250 μm, and the fuel electrode 109 may be formed by screen printing the slurry. In this case, in the fuel electrode 109, Ni, which is a component of the fuel electrode 109, has a catalytic action on the fuel gas. This catalytic action reacts a fuel gas supplied via the substrate tube 103, for example, a mixed gas of methane (CH 4 ) and water vapor, and reforms it into hydrogen (H 2 ) and carbon monoxide (CO). It is a thing. Further, in the fuel electrode 109, hydrogen (H 2 ) and carbon monoxide (CO) obtained by reforming and oxygen ions (O 2- ) supplied via the solid electrolyte membrane 111 are combined with the solid electrolyte membrane 111. Water (H 2 O) and carbon dioxide (CO 2 ) are produced by electrochemical reaction in the vicinity of the interface between the two. At this time, the fuel cell 105 generates electricity by the electrons emitted from the oxygen ions.
The fuel gases that can be supplied and used for the fuel electrode 109 of the solid oxide fuel cell include hydrocarbon gases such as hydrogen (H 2 ), carbon monoxide (CO), and methane (CH 4 ), city gas, and natural gas. In addition, gasification gas produced by gasifying equipment for carbon-containing raw materials such as petroleum, methanol, and coal can be mentioned.
 固体電解質膜111は、ガスを通しにくい気密性と、高温で高い酸素イオン導電性とを備えるYSZが主として用いられる。この固体電解質膜111は、空気極で生成される酸素イオン(O2-)を燃料極に移動させるものである。燃料極109の表面上に位置する固体電解質膜111の膜厚は10μm~100μmであり固体電解質膜111はスラリーをスクリーン印刷して形成されてもよい。 As the solid electrolyte membrane 111, YSZ having airtightness that makes it difficult for gas to pass through and high oxygen ion conductivity at high temperature is mainly used. The solid electrolyte membrane 111 moves oxygen ions (O 2- ) generated at the air electrode to the fuel electrode. The film thickness of the solid electrolyte film 111 located on the surface of the fuel electrode 109 is 10 μm to 100 μm, and the solid electrolyte film 111 may be formed by screen printing the slurry.
 空気極113は、例えば、LaSrMnO系酸化物、又はLaCoO系酸化物で構成され、空気極113はスラリーをスクリーン印刷またはディスペンサを用いて塗布される。この空気極113は、固体電解質膜111との界面付近において、供給される空気等の酸化性ガス中の酸素を解離させて酸素イオン(O2-)を生成するものである。
 空気極113は2層構成とすることもできる。この場合、固体電解質膜111側の空気極層(空気極中間層)は高いイオン導電性を示し、触媒活性に優れる材料で構成される。空気極中間層上の空気極層(空気極導電層)は、Sr及びCaドープLaMnOで表されるペロブスカイト型酸化物で構成されても良い。こうすることにより、発電性能をより向上させることができる。
 酸化性ガスとは,酸素を略15%~30%含むガスであり、代表的には空気が好適であるが、空気以外にも燃焼排ガスと空気の混合ガスや、酸素と空気の混合ガスなどが使用可能である。
The air electrode 113 is composed of, for example, a LaSrMnO 3- based oxide or a LaCoO 3- based oxide, and the air electrode 113 is coated with a slurry by screen printing or using a dispenser. The air electrode 113 dissociates oxygen in an oxidizing gas such as air to be supplied in the vicinity of the interface with the solid electrolyte membrane 111 to generate oxygen ions (O 2-).
The air electrode 113 may have a two-layer structure. In this case, the air electrode layer (air electrode intermediate layer) on the solid electrolyte membrane 111 side is made of a material showing high ionic conductivity and excellent catalytic activity. The air electrode layer (air electrode conductive layer) on the air electrode intermediate layer may be composed of a perovskite-type oxide represented by Sr and Ca-doped LaMnO 3. By doing so, the power generation performance can be further improved.
The oxidizing gas is a gas containing approximately 15% to 30% of oxygen, and air is typically preferable. However, in addition to air, a mixed gas of combustion exhaust gas and air, a mixed gas of oxygen and air, etc. Can be used.
 インターコネクタ107は、SrTiO系などのM1-xTiO(Mはアルカリ土類金属元素、Lはランタノイド元素)で表される導電性ペロブスカイト型酸化物から構成され、スラリーをスクリーン印刷する。インターコネクタ107は、燃料ガスと酸化性ガスとが混合しないように緻密な膜となっている。また、インターコネクタ107は、酸化雰囲気と還元雰囲気との両雰囲気下で安定した耐久性と電気導電性を備える。このインターコネクタ107は、隣り合う燃料電池セル105において、一方の燃料電池セル105の空気極113と他方の燃料電池セル105の燃料極109とを電気的に接続し、隣り合う燃料電池セル105同士を直列に接続するものである。 The interconnector 107 is composed of a conductive perovskite-type oxide represented by M 1-x L x TiO 3 (M is an alkaline earth metal element and L is a lanthanoid element) such as SrTiO 3 system, and screen prints a slurry. To do. The interconnector 107 has a dense film so that the fuel gas and the oxidizing gas do not mix with each other. Further, the interconnector 107 has stable durability and electrical conductivity in both an oxidizing atmosphere and a reducing atmosphere. In the adjacent fuel cell 105, the interconnector 107 electrically connects the air electrode 113 of one fuel cell 105 and the fuel electrode 109 of the other fuel cell 105, and the adjacent fuel cell 105 are connected to each other. Are connected in series.
 リード膜115は、電子伝導性を備えること、及びセルスタック101を構成する他の材料との熱膨張係数が近いことが必要であることから、Ni/YSZ等のNiとジルコニア系電解質材料との複合材やSrTiO系などのM1-xLxTiO(Mはアルカリ土類金属元素、Lはランタノイド元素)で構成されている。このリード膜115は、インターコネクタ107により直列に接続される複数の燃料電池セル105で発電された直流電力をセルスタック101の端部付近まで導出すものである。 Since the lead film 115 needs to have electron conductivity and a coefficient of thermal expansion close to that of other materials constituting the cell stack 101, Ni such as Ni / YSZ and a zirconia-based electrolyte material are used. It is composed of M1-xLxTiO 3 (M is an alkaline earth metal element and L is a lanthanoid element) such as a composite material and SrTiO 3 system. The lead film 115 derives the DC power generated by the plurality of fuel cell 105s connected in series by the interconnector 107 to the vicinity of the end portion of the cell stack 101.
 次に、図8と図9とを参照して本実施形態に係るSOFCモジュール及びSOFCカートリッジについて説明する。ここで、図8は、本発明の一実施形態に係るSOFCモジュールの一態様を示すものである。また、図9は、本発明の一実施形態に係るSOFCカートリッジの一態様の断面図を示すものであり、図示された上部分は図2に対応する。 Next, the SOFC module and the SOFC cartridge according to the present embodiment will be described with reference to FIGS. 8 and 9. Here, FIG. 8 shows one aspect of the SOFC module according to the embodiment of the present invention. Further, FIG. 9 shows a cross-sectional view of one aspect of the SOFC cartridge according to the embodiment of the present invention, and the upper portion shown corresponds to FIG.
 SOFCモジュール(上記の燃料電池モジュール201に対応)201は、図8に示すように、例えば、複数のSOFCカートリッジ(上記の燃料電池カートリッジ203に対応)203と、これら複数のSOFCカートリッジ203を収納する圧力容器205とを備える。なお、図8には円筒形のSOFCのセルスタック101を例示しているが、必ずしもこの限りである必要はなく、例えば平板形のセルスタックであってもよい。また、SOFCモジュール201は、燃料ガス供給管207と複数の燃料ガス供給枝管207a及び燃料ガス排出管209と複数の燃料ガス排出枝管209aとを備える。また、SOFCモジュール201は、酸化性ガス供給管(不図示)と酸化性ガス供給枝管(不図示)及び酸化性ガス排出管(不図示)と複数の酸化性ガス排出枝管(不図示)とを備える。 As shown in FIG. 8, the SOFC module (corresponding to the above fuel cell module 201) 201 accommodates, for example, a plurality of SOFC cartridges (corresponding to the above fuel cell cartridge 203) 203 and the plurality of SOFC cartridges 203. A pressure vessel 205 is provided. Although FIG. 8 illustrates a cylindrical SOFC cell stack 101, this is not necessarily the case, and a flat cell stack may be used, for example. Further, the SOFC module 201 includes a fuel gas supply pipe 207, a plurality of fuel gas supply branch pipes 207a, a fuel gas discharge pipe 209, and a plurality of fuel gas discharge branch pipes 209a. Further, the SOFC module 201 includes an oxidizing gas supply pipe (not shown), an oxidizing gas supply branch pipe (not shown), an oxidizing gas discharge pipe (not shown), and a plurality of oxidizing gas discharge branch pipes (not shown). And.
 燃料ガス供給管207は、圧力容器205の外部に設けられ、SOFCモジュール201の発電量に対応して所定ガス組成と所定流量の燃料ガスを供給する燃料ガス供給部に接続されると共に、複数の燃料ガス供給枝管207aに接続されている。この燃料ガス供給管207は、上述の燃料ガス供給部から供給される所定流量の燃料ガスを、複数の燃料ガス供給枝管207aに分岐して導くものである。また、燃料ガス供給枝管207aは、燃料ガス供給管207に接続されると共に、複数のSOFCカートリッジ203に接続されている。この燃料ガス供給枝管207aは、燃料ガス供給管207から供給される燃料ガスを複数のSOFCカートリッジ203に略均等の流量で導き、複数のSOFCカートリッジ203の発電性能を略均一化させるものである。 The fuel gas supply pipe 207 is provided outside the pressure vessel 205, is connected to a fuel gas supply unit that supplies fuel gas having a predetermined gas composition and a predetermined flow rate according to the amount of power generated by the SOFC module 201, and a plurality of fuel gas supply pipes 207. It is connected to the fuel gas supply branch pipe 207a. The fuel gas supply pipe 207 branches and guides a predetermined flow rate of fuel gas supplied from the above-mentioned fuel gas supply unit to a plurality of fuel gas supply branch pipes 207a. Further, the fuel gas supply branch pipe 207a is connected to the fuel gas supply pipe 207 and is also connected to a plurality of SOFC cartridges 203. The fuel gas supply branch pipe 207a guides the fuel gas supplied from the fuel gas supply pipe 207 to the plurality of SOFC cartridges 203 at a substantially equal flow rate, and substantially equalizes the power generation performance of the plurality of SOFC cartridges 203. ..
 燃料ガス排出枝管209aは、複数のSOFCカートリッジ203に接続されると共に、燃料ガス排出管209に接続されている。この燃料ガス排出枝管209aは、SOFCカートリッジ203から排出される排燃料ガスを燃料ガス排出管209に導くものである。また、燃料ガス排出管209は、複数の燃料ガス排出枝管209aに接続されると共に、一部が圧力容器205の外部に配置されている。この燃料ガス排出管209は、燃料ガス排出枝管209aから略均等の流量で導出される排燃料ガスを圧力容器205の外部に導くものである。 The fuel gas discharge branch pipe 209a is connected to a plurality of SOFC cartridges 203 and is also connected to the fuel gas discharge pipe 209. The fuel gas discharge branch pipe 209a guides the exhaust fuel gas discharged from the SOFC cartridge 203 to the fuel gas discharge pipe 209. Further, the fuel gas discharge pipe 209 is connected to a plurality of fuel gas discharge branch pipes 209a, and a part of the fuel gas discharge pipe 209 is arranged outside the pressure vessel 205. The fuel gas discharge pipe 209 guides the exhaust fuel gas led out from the fuel gas discharge branch pipe 209a at a substantially equal flow rate to the outside of the pressure vessel 205.
 圧力容器205は、内部の圧力が0.1MPa~約3MPa、内部の温度が大気温度~約550℃で運用されるので、耐力性と酸化性ガス中に含まれる酸素などの酸化剤に対する耐食性を保有する材質が利用される。例えばSUS304などのステンレス系材が好適である。 Since the pressure vessel 205 is operated at an internal pressure of 0.1 MPa to about 3 MPa and an internal temperature of atmospheric temperature to about 550 ° C., it has a proof stress and corrosion resistance against an oxidizing agent such as oxygen contained in an oxidizing gas. The material you have is used. For example, a stainless steel material such as SUS304 is suitable.
 ここで、本実施形態においては、複数のSOFCカートリッジ203が集合化されて圧力容器205に収納される態様について説明しているが、これに限られず例えば、SOFCカートリッジ203が集合化されずに圧力容器205内に収納される態様とすることもできる。 Here, in the present embodiment, a mode in which a plurality of SOFC cartridges 203 are assembled and stored in the pressure vessel 205 will be described, but the present invention is not limited to this, and for example, the SOFC cartridge 203 is not assembled and the pressure is increased. It can also be stored in the container 205.
 SOFCカートリッジ203は、図9に示す通り、複数のセルスタック101と、発電室215と、燃料ガス供給ヘッダ217と、燃料ガス排出ヘッダ219と、酸化性ガス(空気)供給ヘッダ221と、酸化性ガス排出ヘッダ223とを備える。また、SOFCカートリッジ203は、上部管板225aと、下部管板225bと、上部断熱体227aと、下部断熱体227bとを備える。なお、本実施形態においては、SOFCカートリッジ203は、燃料ガス供給ヘッダ217と燃料ガス排出ヘッダ219と酸化性ガス供給ヘッダ221と酸化性ガス排出ヘッダ223とが図9のように配置されることで、燃料ガスと酸化性ガスとがセルスタック101の内側と外側とを対向して流れる構造となっているが、必ずしもこの必要はなく、例えば、セルスタック101の内側と外側とを平行して流れる、または酸化性ガスがセルスタック101の長手方向と直交する方向へ流れるようにしても良い。 As shown in FIG. 9, the SOFC cartridge 203 includes a plurality of cell stacks 101, a power generation chamber 215, a fuel gas supply header 217, a fuel gas discharge header 219, an oxidizing gas (air) supply header 221 and an oxidizing property. It includes a gas discharge header 223. Further, the SOFC cartridge 203 includes an upper tube plate 225a, a lower tube plate 225b, an upper heat insulating body 227a, and a lower heat insulating body 227b. In the present embodiment, in the SOFC cartridge 203, the fuel gas supply header 217, the fuel gas discharge header 219, the oxidizing gas supply header 221 and the oxidizing gas discharge header 223 are arranged as shown in FIG. The structure is such that the fuel gas and the oxidizing gas flow opposite to the inside and the outside of the cell stack 101, but this is not always necessary, for example, the inside and the outside of the cell stack 101 flow in parallel. , Or the oxidizing gas may flow in a direction orthogonal to the longitudinal direction of the cell stack 101.
 発電室215は、上部断熱体227aと下部断熱体227bとの間に形成された領域である。この発電室215は、セルスタック101の燃料電池セル105が配置された領域であり、燃料ガスと酸化性ガスとを電気化学的に反応させて発電を行う領域である。また、この発電室215のセルスタック101長手方向の中央部付近での温度は、温度計測部62(温度センサや熱電対など)で監視され、燃料電池モジュール201の定常運転時に、およそ700℃~1000℃の高温雰囲気となる。 The power generation chamber 215 is a region formed between the upper heat insulating body 227a and the lower heat insulating body 227b. The power generation chamber 215 is a region in which the fuel cell 105 of the cell stack 101 is arranged, and is a region in which the fuel gas and the oxidizing gas are electrochemically reacted to generate electricity. Further, the temperature in the vicinity of the central portion of the cell stack 101 in the longitudinal direction of the power generation chamber 215 is monitored by the temperature measuring unit 62 (temperature sensor, thermocouple, etc.), and is approximately 700 ° C. to higher during steady operation of the fuel cell module 201. It becomes a high temperature atmosphere of 1000 ° C.
 燃料ガス供給ヘッダ217は、SOFCカートリッジ203の上部ケーシング229aと上部管板225aとに囲まれた領域であり、上部ケーシング229aの上部に設けられた燃料ガス供給孔231aによって、燃料ガス供給枝管207aと連通されている。また、複数のセルスタック101は、上部管板225aとシール部材237a(シールリング)により接合されており、燃料ガス供給ヘッダ217は、燃料ガス供給枝管207aから燃料ガス供給孔231aを介して供給される燃料ガスを、複数のセルスタック101の基体管103の内部に略均一流量で導き、複数のセルスタック101の発電性能を略均一化させるものである。 The fuel gas supply header 217 is an area surrounded by the upper casing 229a and the upper pipe plate 225a of the SOFC cartridge 203, and the fuel gas supply branch pipe 207a is provided by the fuel gas supply hole 231a provided in the upper part of the upper casing 229a. Is communicated with. Further, the plurality of cell stacks 101 are joined by an upper pipe plate 225a and a seal member 237a (seal ring), and the fuel gas supply header 217 is supplied from the fuel gas supply branch pipe 207a through the fuel gas supply hole 231a. The fuel gas to be produced is guided into the base pipes 103 of the plurality of cell stacks 101 at a substantially uniform flow rate, and the power generation performance of the plurality of cell stacks 101 is substantially made uniform.
 燃料ガス排出ヘッダ219は、SOFCカートリッジ203の下部ケーシング229bと下部管板225bとに囲まれた領域であり、下部ケーシング229bに備えられた燃料ガス排出孔231bによって、図示しない燃料ガス排出枝管209aと連通されている。また、複数のセルスタック101は、下部管板225bとシール部材237bにより接合されており、燃料ガス排出ヘッダ219は、複数のセルスタック101の基体管103の内部を通過して燃料ガス排出ヘッダ219に供給される排燃料ガスを集約して、燃料ガス排出孔231bを介して燃料ガス排出枝管209aに導くものである。 The fuel gas discharge header 219 is an area surrounded by the lower casing 229b and the lower pipe plate 225b of the SOFC cartridge 203, and the fuel gas discharge branch pipe 209a (not shown) is provided by the fuel gas discharge hole 231b provided in the lower casing 229b. Is communicated with. Further, the plurality of cell stacks 101 are joined to the lower pipe plate 225b by the seal member 237b, and the fuel gas discharge header 219 passes through the inside of the base pipe 103 of the plurality of cell stacks 101 and the fuel gas discharge header 219. The exhaust fuel gas supplied to the fuel gas is collected and guided to the fuel gas discharge branch pipe 209a through the fuel gas discharge hole 231b.
 SOFCモジュール201の発電量に対応して所定ガス組成と所定流量の酸化性ガスを酸化性ガス供給枝管へと分岐して、複数のSOFCカートリッジ203へ供給する。酸化性ガス供給ヘッダ221は、SOFCカートリッジ203の下部ケーシング229bと下部管板225bと下部断熱体227bとに囲まれた領域であり、下部ケーシング229bの側面に設けられた酸化性ガス供給孔233aによって、図示しない酸化性ガス供給枝管と連通されている。この酸化性ガス供給ヘッダ221は、図示しない酸化性ガス供給枝管から酸化性ガス供給孔233aを介して供給される所定流量の酸化性ガスを、後述する酸化性ガス供給隙間235aを介して発電室215に導くものである。 Corresponding to the amount of power generated by the SOFC module 201, an oxidizing gas having a predetermined gas composition and a predetermined flow rate is branched into an oxidizing gas supply branch pipe and supplied to a plurality of SOFC cartridges 203. The oxidizing gas supply header 221 is a region surrounded by the lower casing 229b, the lower tube plate 225b, and the lower heat insulating body 227b of the SOFC cartridge 203, and is provided by the oxidizing gas supply hole 233a provided on the side surface of the lower casing 229b. , It is communicated with an oxidizing gas supply branch pipe (not shown). The oxidizing gas supply header 221 generates a predetermined flow rate of oxidizing gas supplied from an oxidizing gas supply branch pipe (not shown) through the oxidizing gas supply hole 233a through the oxidizing gas supply gap 235a described later. It leads to room 215.
 酸化性ガス排出ヘッダ223は、SOFCカートリッジ203の上部ケーシング229aと上部管板225aと上部断熱体227aとに囲まれた領域であり、上部ケーシング229aの側面に設けられた酸化性ガス排出孔233bによって、図示しない酸化性ガス排出枝管と連通されている。この酸化性ガス排出ヘッダ223は、発電室215から、後述する酸化性ガス排出隙間235bを介して酸化性ガス排出ヘッダ223に供給される排酸化性ガスを、酸化性ガス排出孔233bを介して図示しない酸化性ガス排出枝管に導くものである。 The oxidizing gas discharge header 223 is a region surrounded by the upper casing 229a, the upper pipe plate 225a, and the upper heat insulating body 227a of the SOFC cartridge 203, and is provided by the oxidizing gas discharge holes 233b provided on the side surface of the upper casing 229a. , It communicates with an oxidizing gas discharge branch pipe (not shown). The oxidizing gas discharge header 223 transfers the oxidative gas supplied from the power generation chamber 215 to the oxidative gas discharge header 223 via the oxidative gas discharge gap 235b, which will be described later, through the oxidative gas discharge hole 233b. It leads to an oxidizing gas discharge branch pipe (not shown).
 上部管板225aは、上部ケーシング229aの天板と上部断熱体227aとの間に、上部管板225aと上部ケーシング229aの天板と上部断熱体227aとが略平行になるように、上部ケーシング229aの側板に固定されている。また上部管板225aは、SOFCカートリッジ203に備えられるセルスタック101の本数に対応した複数の孔を有し、該孔にはセルスタック101が夫々挿入されている。この上部管板225aは、複数のセルスタック101の一方の端部をシール部材237a及び接着部材のいずれか一方又は両方を介して気密に支持すると共に、燃料ガス供給ヘッダ217と酸化性ガス排出ヘッダ223とを隔離するものである。 In the upper casing 225a, the upper casing 229a is provided so that the top plate of the upper casing 229a and the top plate of the upper casing 229a and the upper heat insulating body 227a are substantially parallel to each other between the top plate of the upper casing 229a and the upper heat insulating body 227a. It is fixed to the side plate of. Further, the upper tube plate 225a has a plurality of holes corresponding to the number of cell stacks 101 provided in the SOFC cartridge 203, and the cell stacks 101 are inserted into the holes, respectively. The upper tube plate 225a airtightly supports one end of the plurality of cell stacks 101 via one or both of the sealing member 237a and the adhesive member, and also provides a fuel gas supply header 217 and an oxidizing gas discharge header. It isolates from 223.
 上部断熱体227aは、上部ケーシング229aの下端部に、上部断熱体227aと上部ケーシング229aの天板と上部管板225aとが略平行になるように配置され、上部ケーシング229aの側板に固定されている。また、上部断熱体227aには、SOFCカートリッジ203に備えられるセルスタック101の本数に対応して、複数の孔が設けられている。この孔の直径はセルスタック101の外径よりも大きく設定されている。上部断熱体227aは、この孔の内面と、上部断熱体227aに挿通されたセルスタック101の外面との間に形成された酸化性ガス排出隙間235bを備える。 The upper heat insulating body 227a is arranged at the lower end of the upper casing 229a so that the upper heat insulating body 227a, the top plate of the upper casing 229a, and the upper tube plate 225a are substantially parallel to each other, and is fixed to the side plate of the upper casing 229a. There is. Further, the upper heat insulating body 227a is provided with a plurality of holes corresponding to the number of cell stacks 101 provided in the SOFC cartridge 203. The diameter of this hole is set to be larger than the outer diameter of the cell stack 101. The upper heat insulating body 227a includes an oxidizing gas discharge gap 235b formed between the inner surface of the hole and the outer surface of the cell stack 101 inserted through the upper heat insulating body 227a.
 この上部断熱体227aは、発電室215と酸化性ガス排出ヘッダ223とを仕切るものであり、上部管板225aの周囲の雰囲気が高温化し強度低下や酸化性ガス中に含まれる酸化剤による腐食が増加することを抑制する。上部管板225a等はインコネルなどの高温耐久性のある金属材料から成るが、上部管板225a等が発電室215内の高温に晒されて上部管板225a等内の温度差が大きくなることで熱変形することを防ぐものである。また、上部断熱体227aは、発電室215を通過して高温に晒された排酸化性ガスを、酸化性ガス排出隙間235bを通過させて酸化性ガス排出ヘッダ223に導くものである。 The upper heat insulating body 227a separates the power generation chamber 215 and the oxidizing gas discharge header 223, and the atmosphere around the upper pipe plate 225a becomes high in temperature, resulting in a decrease in strength and corrosion by the oxidizing agent contained in the oxidizing gas. Suppress the increase. The upper tube plate 225a and the like are made of a metal material having high temperature durability such as Inconel, but the upper tube plate 225a and the like are exposed to the high temperature in the power generation chamber 215 and the temperature difference in the upper tube plate 225a and the like becomes large. It prevents thermal deformation. Further, the upper heat insulating body 227a guides the oxidative gas that has passed through the power generation chamber 215 and exposed to high temperature to the oxidative gas discharge header 223 by passing through the oxidative gas discharge gap 235b.
 本実施形態によれば、上述したSOFCカートリッジ203の構造により、燃料ガスと酸化性ガスとがセルスタック101の内側と外側とを対向して流れるものとなっている。このことにより、排酸化性ガスは、基体管103の内部を通って発電室215に供給される燃料ガスとの間で熱交換がなされ、金属材料から成る上部管板225a等が座屈などの変形をしない温度に冷却されて酸化性ガス排出ヘッダ223に供給される。また、燃料ガスは、発電室215から排出される排酸化性ガスとの熱交換により昇温され、発電室215に供給される。その結果、ヒーター等を用いることなく発電に適した温度に予熱昇温された燃料ガスを発電室215に供給することができる。 According to the present embodiment, due to the structure of the SOFC cartridge 203 described above, the fuel gas and the oxidizing gas flow toward the inside and the outside of the cell stack 101. As a result, the oxidative gas exchanges heat with the fuel gas supplied to the power generation chamber 215 through the inside of the base tube 103, and the upper tube plate 225a and the like made of a metal material buckle and the like. It is cooled to a temperature at which it does not deform and is supplied to the oxidizing gas discharge header 223. Further, the fuel gas is heated by heat exchange with the oxidative gas discharged from the power generation chamber 215 and supplied to the power generation chamber 215. As a result, the fuel gas preheated to a temperature suitable for power generation can be supplied to the power generation chamber 215 without using a heater or the like.
 下部管板225bは、下部ケーシング229bの底板と下部断熱体227bとの間に、下部管板225bと下部ケーシング229bの底板と下部断熱体227bとが略平行になるように下部ケーシング229bの側板に固定されている。また下部管板225bは、SOFCカートリッジ203に備えられるセルスタック101の本数に対応した複数の孔を有し、該孔にはセルスタック101が夫々挿入されている。この下部管板225bは、複数のセルスタック101の他方の端部をシール部材237b及び接着部材のいずれか一方又は両方を介して気密に支持すると共に、燃料ガス排出ヘッダ219と酸化性ガス供給ヘッダ221とを隔離するものである。 The lower tube plate 225b is attached to the side plate of the lower casing 229b so that the bottom plate of the lower tube plate 225b, the bottom plate of the lower casing 229b, and the lower insulation body 227b are substantially parallel to each other between the bottom plate of the lower casing 229b and the lower heat insulating body 227b. It is fixed. Further, the lower tube plate 225b has a plurality of holes corresponding to the number of cell stacks 101 provided in the SOFC cartridge 203, and the cell stacks 101 are inserted into the holes, respectively. The lower tube plate 225b airtightly supports the other end of the plurality of cell stacks 101 via one or both of the sealing member 237b and the adhesive member, and also provides a fuel gas discharge header 219 and an oxidizing gas supply header. It is intended to isolate 221.
 下部断熱体227bは、下部ケーシング229bの上端部に、下部断熱体227bと下部ケーシング229bの底板と下部管板225bとが略平行になるように配置され、下部ケーシング229bの側板に固定されている。また、下部断熱体227bには、SOFCカートリッジ203に備えられるセルスタック101の本数に対応して、複数の孔が設けられている。この孔の直径はセルスタック101の外径よりも大きく設定されている。下部断熱体227bは、この孔の内面と、下部断熱体227bに挿通されたセルスタック101の外面との間に形成された酸化性ガス供給隙間235aを備える。 The lower heat insulating body 227b is arranged at the upper end of the lower casing 229b so that the bottom plate of the lower heat insulating body 227b, the bottom plate of the lower casing 229b, and the lower pipe plate 225b are substantially parallel to each other, and is fixed to the side plate of the lower casing 229b. .. Further, the lower heat insulating body 227b is provided with a plurality of holes corresponding to the number of cell stacks 101 provided in the SOFC cartridge 203. The diameter of this hole is set to be larger than the outer diameter of the cell stack 101. The lower heat insulating body 227b includes an oxidizing gas supply gap 235a formed between the inner surface of the hole and the outer surface of the cell stack 101 inserted through the lower heat insulating body 227b.
 この下部断熱体227bは、発電室215と酸化性ガス供給ヘッダ221とを仕切るものであり、下部管板225bの周囲の雰囲気が高温化し強度低下や酸化性ガス中に含まれる酸化剤による腐食が増加することを抑制する。下部管板225b等はインコネルなどの高温耐久性のある金属材料から成るが、下部管板225b等が高温に晒されて下部管板225b等内の温度差が大きくなることで熱変形することを防ぐものである。また、下部断熱体227bは、酸化性ガス供給ヘッダ221に供給される酸化性ガスを、酸化性ガス供給隙間235aを通過させて発電室215に導くものである。 The lower heat insulating body 227b separates the power generation chamber 215 and the oxidizing gas supply header 221, and the atmosphere around the lower tube plate 225b becomes high in temperature, resulting in a decrease in strength and corrosion by the oxidizing agent contained in the oxidizing gas. Suppress the increase. The lower tube plate 225b or the like is made of a metal material having high temperature durability such as Inconel, but the lower tube plate 225b or the like is exposed to a high temperature and the temperature difference in the lower tube plate 225b or the like becomes large, so that the lower tube plate 225b or the like is thermally deformed. It is something to prevent. Further, the lower heat insulating body 227b guides the oxidizing gas supplied to the oxidizing gas supply header 221 to the power generation chamber 215 through the oxidizing gas supply gap 235a.
 本実施形態によれば、上述したSOFCカートリッジ203の構造により、燃料ガスと酸化性ガスとがセルスタック101の内側と外側とを対向して流れるものとなっている。このことにより、基体管103の内部を通って発電室215を通過した排燃料ガスは、発電室215に供給される酸化性ガスとの間で熱交換がなされ、金属材料から成る下部管板225b等が座屈などの変形をしない温度に冷却されて燃料ガス排出ヘッダ219に供給される。また、酸化性ガスは排燃料ガスとの熱交換により昇温され、発電室215に供給される。その結果、ヒーター等を用いることなく発電に必要な温度に昇温された酸化性ガスを発電室215に供給することができる。 According to the present embodiment, due to the structure of the SOFC cartridge 203 described above, the fuel gas and the oxidizing gas flow toward the inside and the outside of the cell stack 101. As a result, the exhaust fuel gas that has passed through the inside of the base pipe 103 and passed through the power generation chamber 215 is heat-exchanged with the oxidizing gas supplied to the power generation chamber 215, and the lower pipe plate 225b made of a metal material is exchanged. Etc. are cooled to a temperature at which deformation such as buckling does not occur and supplied to the fuel gas discharge header 219. Further, the oxidizing gas is heated by heat exchange with the exhaust fuel gas and supplied to the power generation chamber 215. As a result, the oxidizing gas heated to the temperature required for power generation can be supplied to the power generation chamber 215 without using a heater or the like.
 発電室215で発電された直流電力は、複数の燃料電池セル105に設けたNi/YSZ等からなるリード膜115によりセルスタック101の端部付近まで導出した後に、SOFCカートリッジ203の集電棒(不図示)に集電板(不図示)を介して集電して、各SOFCカートリッジ203の外部へと取り出される。前記集電棒によってSOFCカートリッジ203の外部に導出された直流電力は、各SOFCカートリッジ203の発電電力を所定の直列数および並列数へと相互に接続され、SOFCモジュール201の外部へと導出されて、図示しないパワーコンディショナ等の電力変換装置(インバータなど)により所定の交流電力へと変換されて、電力供給先7(例えば、負荷設備や電力系統)へと供給される。 The DC power generated in the power generation chamber 215 is led out to the vicinity of the end of the cell stack 101 by a lead film 115 made of Ni / YSZ or the like provided in the plurality of fuel cell 105, and then the current collecting rod of the SOFC cartridge 203 (not). Electric power is collected through a current collecting plate (not shown) on the (shown), and is taken out to the outside of each SOFC cartridge 203. The DC power derived to the outside of the SOFC cartridge 203 by the current collector rod connects the generated power of each SOFC cartridge 203 to a predetermined number of series and parallel numbers, and is led out to the outside of the SOFC module 201. It is converted into a predetermined AC power by a power conversion device (inverter or the like) such as a power conditioner (not shown), and is supplied to a power supply destination 7 (for example, a load facility or a power system).
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present invention is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate.
(付記)
(1)本発明の少なくとも一実施形態に係る燃料電池発電システム(1)は、
 複数の燃料電池カートリッジ(203)を有する燃料電池発電システム(1)であって、
 前記燃料電池カートリッジ(203)に内蔵されている複数のセルスタック(101)の一部により電気出力の最小単位としてそれぞれ形成された2以上のセルグループ(G)で構成された複数の燃料電池ユニット(3)と、
 前記複数の燃料電池ユニット(3)の各々に対して設けられる、前記燃料電池ユニット(3)の出力電力の電力変換を行う複数の電力変換装置(4)と、を備え、
 前記燃料電池ユニット(3)において前記2以上のセルグループ(G)は直列に接続されている。
(Additional note)
(1) The fuel cell power generation system (1) according to at least one embodiment of the present invention is
A fuel cell power generation system (1) having a plurality of fuel cell cartridges (203).
A plurality of fuel cell units composed of two or more cell groups (G) each formed as a minimum unit of electric output by a part of a plurality of cell stacks (101) built in the fuel cell cartridge (203). (3) and
A plurality of power conversion devices (4) for converting the output power of the fuel cell unit (3), which are provided for each of the plurality of fuel cell units (3), are provided.
In the fuel cell unit (3), the two or more cell groups (G) are connected in series.
 上記(1)の構成によれば、燃料電池発電システム(1)は複数の燃料電池カートリッジ(203)を備えており、各燃料電池カートリッジ(203)に内蔵されている複数のセルスタック(101)は、電気出力の最小単位である複数のセルグループ(G)にグループ分けされている。燃料電池ユニット(3)は、このようなセルグループ(G)の2以上によって構成されており、各燃料電池ユニット(3)に対してそれぞれ電力変換装置(4)(パワーコンディショナなど)が設けられることで、燃料電池ユニット(3)毎に電力変換を行うように構成される。そして、各燃料電池ユニット(3)に属する全てのセルグループ(G)は、直列に接続される。 According to the configuration of the above (1), the fuel cell power generation system (1) includes a plurality of fuel cell cartridges (203), and a plurality of cell stacks (101) built in each fuel cell cartridge (203). Is grouped into a plurality of cell groups (G), which is the minimum unit of electric output. The fuel cell unit (3) is composed of two or more of such cell groups (G), and each fuel cell unit (3) is provided with a power conversion device (4) (power conditioner, etc.). By doing so, it is configured to perform power conversion for each fuel cell unit (3). Then, all the cell groups (G) belonging to each fuel cell unit (3) are connected in series.
 これによって、複数の電力変換装置(4)や燃料電池カートリッジ(203)のいずれかに故障などのトラブルが発生した場合であっても、残りの電力変換装置(4)および残りの燃料電池カートリッジ(203)によって構成される燃料電池ユニット(3)からの電力を電力系統などの電力供給先(7)に出力することができると共に、システムに冗長性を持たせることができ、信頼性の高い燃料電池発電システム(1)を提供することができる。例えば、燃料電池モジュール(201)に対して1つの電力変換装置(4)を設ける場合(電気系統が一系統である場合)には、電力変換装置(4)が故障すると燃料電池発電システム(1)は出力ができなくなるが、上記の構成によれば燃料電池発電システム(1)は電力供給を継続することが可能となる。また、各燃料電池カートリッジ(203)を直列接続(図6参照)するのに比べて、各燃料電池ユニット(3)から出力される出力電流を小さくすることができる。よって、このような低電流化によって集電ロスを低減することができると共に、より細い配線を用いることによって送電ロスを低減することもできる。 As a result, even if a trouble such as a failure occurs in any of the plurality of power conversion devices (4) and the fuel cell cartridge (203), the remaining power conversion device (4) and the remaining fuel cell cartridge (remaining fuel cell cartridge) ( The power from the fuel cell unit (3) configured by 203) can be output to the power supply destination (7) such as the power system, and the system can be made redundant, so that the fuel is highly reliable. A battery power generation system (1) can be provided. For example, when one power conversion device (4) is provided for the fuel cell module (201) (when there is only one electric system), if the power conversion device (4) fails, the fuel cell power generation system (1) ) Will not be able to output, but according to the above configuration, the fuel cell power generation system (1) will be able to continue the power supply. Further, the output current output from each fuel cell unit (3) can be reduced as compared with the case where each fuel cell cartridge (203) is connected in series (see FIG. 6). Therefore, it is possible to reduce the current collection loss by such a low current, and it is also possible to reduce the power transmission loss by using a thinner wiring.
 また、上記のように燃料電池ユニット(3)毎に電力変換装置(4)を設けることで、例えば太陽光発電用などの汎用的な低価格の電力変換装置(4)を採用することができる。よって、燃料電池発電システム(1)が備える全ての燃料電池カートリッジ(203)の電力変換が可能な電力変換装置(4)を特注などして用意する必要がなく、図6の場合と比べて、燃料電池発電システム(1)をより低コストで構築することができる。 Further, by providing the power conversion device (4) for each fuel cell unit (3) as described above, it is possible to adopt a general-purpose low-priced power conversion device (4) for, for example, for photovoltaic power generation. .. Therefore, it is not necessary to prepare a power conversion device (4) capable of power conversion of all the fuel cell cartridges (203) provided in the fuel cell power generation system (1) by custom-ordering, and as compared with the case of FIG. The fuel cell power generation system (1) can be constructed at a lower cost.
(2)幾つかの実施形態では、上記(1)の構成において、
 前記燃料電池ユニット(3)は、1以上の前記燃料電池カートリッジ(203)が有する前記セルグループ(G)で構成される。
(2) In some embodiments, in the configuration of (1) above,
The fuel cell unit (3) is composed of the cell group (G) included in one or more fuel cell cartridges (203).
 上記(2)の構成によれば、例えば1または複数の燃料電池カートリッジ(203)の有するセルグループ(G)により1つの燃料電池ユニット(3)が構成される。これによって、燃料電池ユニット(3)が有するセルグループ(G)を所望の数に設定することができる。燃料電池カートリッジ(203)内に設けることが可能なセルグループ(G)の数(分割数)には制限があるが、1以上の燃料電池カートリッジ(203)のセルグループ(G)を用いて燃料電池ユニット(3)を組むことで、燃料電池ユニット(3)を所望の範囲に高電圧化することができる。このため、燃料電池ユニット(3)が有するセルグループ(G)の数を、接続される電力変換装置(4)の動作点に合わせて設定することができるので、汎用的な低価格の電力変換装置(4)を採用することができ、燃料電池発電システム(1)をより低コストで構築することができる。 According to the configuration of (2) above, for example, one fuel cell unit (3) is configured by the cell group (G) of one or a plurality of fuel cell cartridges (203). Thereby, the cell groups (G) included in the fuel cell unit (3) can be set to a desired number. Although the number (number of divisions) of cell groups (G) that can be provided in the fuel cell cartridge (203) is limited, fuel can be fueled by using the cell groups (G) of one or more fuel cell cartridges (203). By assembling the battery unit (3), the fuel cell unit (3) can be increased in voltage within a desired range. Therefore, the number of cell groups (G) possessed by the fuel cell unit (3) can be set according to the operating point of the connected power conversion device (4), so that general-purpose low-cost power conversion can be performed. The device (4) can be adopted, and the fuel cell power generation system (1) can be constructed at a lower cost.
(3)幾つかの実施形態では、上記(1)~(2)の構成において、
 前記燃料電池ユニット(3)を構成する前記セルグループ(G)の数は偶数である。
 上記(3)の構成によれば、燃料電池カートリッジ(203)からの電力取り出し部を、燃料電池カートリッジ(203)の上部または下部のどちらかに統一することができ、施工の容易化を図ることができる。
(3) In some embodiments, in the above configurations (1) and (2),
The number of the cell groups (G) constituting the fuel cell unit (3) is an even number.
According to the configuration of (3) above, the power extraction unit from the fuel cell cartridge (203) can be unified to either the upper part or the lower part of the fuel cell cartridge (203) to facilitate the construction. Can be done.
(4)幾つかの実施形態では、上記(1)~(3)の構成において、
 前記複数の電力変換装置(4)が出力する出力電力の少なくとも一部を電力供給先(7)に出力可能な電力出力回路(5)を、さらに備え、
 前記電力出力回路(5)は、前記複数の電力変換装置(4)と前記電力供給先(7)との接続状態をそれぞれ切り替えることが可能な複数のスイッチ(51)を有する。
(4) In some embodiments, in the configurations (1) to (3) above,
A power output circuit (5) capable of outputting at least a part of the output power output by the plurality of power converters (4) to the power supply destination (7) is further provided.
The power output circuit (5) has a plurality of switches (51) capable of switching the connection state between the plurality of power conversion devices (4) and the power supply destination (7).
 上記(4)の構成によれば、複数の電力変換装置(4)の各々と電力供給先(7)との接続は、電力出力回路(5)が有するスイッチ(51)により、個別に切断可能となっている。これによって、故障が発生した燃料電池ユニット(3)を容易に切り離すことができる。よって、残りの燃料電池ユニット(3)を用いて電力供給先(7)への電力供給を継続させることができると共に、故障した燃料電池ユニット(3)の交換、修理などの保守作業の容易化を図ることができる。 According to the configuration of (4) above, the connection between each of the plurality of power converters (4) and the power supply destination (7) can be individually disconnected by the switch (51) of the power output circuit (5). It has become. As a result, the fuel cell unit (3) in which the failure has occurred can be easily separated. Therefore, the remaining fuel cell unit (3) can be used to continue supplying power to the power supply destination (7), and maintenance work such as replacement and repair of the failed fuel cell unit (3) can be facilitated. Can be planned.
(5)幾つかの実施形態では、上記(1)~(4)の構成において、
 前記複数の燃料電池カートリッジ(203)の各々の温度を検出するための複数の温度検出手段と、
 前記複数の燃料電池カートリッジ(203)の各々の温度が規定温度(Tc)になるように、前記複数の電力変換装置(4)の各々の出力を制御するよう構成された制御装置(6)と、をさらに備える。
(5) In some embodiments, in the configurations (1) to (4) above,
A plurality of temperature detecting means for detecting the temperature of each of the plurality of fuel cell cartridges (203), and
A control device (6) configured to control the output of each of the plurality of power conversion devices (4) so that the temperature of each of the plurality of fuel cell cartridges (203) becomes a specified temperature (Tc). , Further prepared.
 上記(5)の構成によれば、各燃料電池ユニット(3)の温度が規定温度(Tc)になるように、各電力変換装置(4)の出力電力を調整する。これによって、燃料電池カートリッジ(203)の出力がその温度が高いほど高くなる場合において、燃料電池発電システム(1)の出力性能を向上させることができる。 According to the configuration of (5) above, the output power of each power converter (4) is adjusted so that the temperature of each fuel cell unit (3) becomes the specified temperature (Tc). Thereby, when the output of the fuel cell cartridge (203) becomes higher as the temperature is higher, the output performance of the fuel cell power generation system (1) can be improved.
(6)幾つかの実施形態では、上記(5)の構成において、
 前記制御装置(6)は、前記電力変換装置(4)の負荷を調整することで、前記複数の電力変換装置(4)の各々の出力を制御するよう構成されている。
 上記(6)の構成によれば、各電力変換装置(4)の負荷を調整することで、各燃料電池ユニット(3)の温度が規定温度(Tc)になるように制御することができる。
(6) In some embodiments, in the configuration of (5) above,
The control device (6) is configured to control the output of each of the plurality of power conversion devices (4) by adjusting the load of the power conversion device (4).
According to the configuration of (6) above, by adjusting the load of each power conversion device (4), the temperature of each fuel cell unit (3) can be controlled to be a specified temperature (Tc).
(7)幾つかの実施形態では、上記(6)の構成において、
 前記制御装置(6)は、前記複数の燃料電池カートリッジ(203)を収容する圧力容器(205)の端部側に位置する前記燃料電池カートリッジ(203)に対して設けられた前記電力変換装置(4)の前記負荷を、前記圧力容器(205)の中央部に位置するものよりも小さくするよう構成されている。
(7) In some embodiments, in the configuration of (6) above,
The control device (6) is a power conversion device (6) provided for the fuel cell cartridge (203) located on the end side of a pressure vessel (205) accommodating the plurality of fuel cell cartridges (203). The load of 4) is configured to be smaller than that located at the center of the pressure vessel (205).
 上記(7)の構成によれば、圧力容器(205)における放熱の違いを考慮して、各電力変換装置の負荷を調整する。これによって、複数の燃料電池カートリッジ(203)の各々の温度が規定温度(Tc)になるように制御することができる。 According to the configuration of (7) above, the load of each power conversion device is adjusted in consideration of the difference in heat dissipation in the pressure vessel (205). Thereby, the temperature of each of the plurality of fuel cell cartridges (203) can be controlled to be the specified temperature (Tc).
1    燃料電池発電システム
3    燃料電池ユニット
4    電力変換装置
41   第1配線
42   第2配線
43   第3配線
5    電力出力回路
51   スイッチ
52   昇圧トランス
6    制御装置
62   温度計測部
7    電力供給先
101  セルスタック
103  基体管
105  燃料電池セル
107  インターコネクタ
109  燃料極
111  固体電解質膜
113  空気極
115  リード膜
201  燃料電池モジュール(SOFCモジュール)
203  燃料電池カートリッジ(SOFCカートリッジ)
205  圧力容器
207  燃料ガス供給管
207a 燃料ガス供給枝管
209  燃料ガス排出管
209a 燃料ガス排出枝管
215  発電室
217  燃料ガス供給ヘッダ
219  燃料ガス排出ヘッダ
221  酸化性ガス供給ヘッダ
223  酸化性ガス排出ヘッダ
225a 上部管板
225b 下部管板
227a 上部断熱体
227b 下部断熱体
229  ケーシング
229a 上部ケーシング
229b 下部ケーシング
231a 燃料ガス供給孔
231b 燃料ガス排出孔
233a 酸化性ガス供給孔
233b 酸化性ガス排出孔
235a 酸化性ガス供給隙間
235b 酸化性ガス排出隙間
237a シール部材
237b シール部材
241  集電板
242  集電棒
G    セルグループ
Tc   規定温度
1 Fuel cell power generation system 3 Fuel cell unit 4 Power conversion device 41 1st wiring 42 2nd wiring 43 3rd wiring 5 Power output circuit 51 Switch 52 Boost transformer 6 Control device 62 Temperature measuring unit 7 Power supply destination 101 Cell stack 103 Base Pipe 105 Fuel cell cell 107 Interconnector 109 Fuel pole 111 Solid electrolyte membrane 113 Air pole 115 Lead membrane 201 Fuel cell module (SOFC module)
203 Fuel cell cartridge (SOFC cartridge)
205 Pressure vessel 207 Fuel gas supply pipe 207a Fuel gas supply branch pipe 209 Fuel gas discharge pipe 209a Fuel gas discharge branch pipe 215 Power generation room 217 Fuel gas supply header 219 Fuel gas discharge header 221 Oxidizing gas supply header 223 Oxidizing gas discharge header 225a Upper tube plate 225b Lower tube plate 227a Upper heat insulating body 227b Lower heat insulating body 229 Casing 229a Upper casing 229b Lower casing 231a Fuel gas supply hole 231b Fuel gas discharge hole 233a Oxidizing gas supply hole 233b Oxidizing gas discharge hole 235a Oxidizing gas Supply gap 235b Oxidizing gas discharge gap 237a Seal member 237b Seal member 241 Current collector plate 242 Current collector rod G Cell group Tc Specified temperature

Claims (7)

  1.  複数の燃料電池カートリッジを有する燃料電池発電システムであって、
     前記燃料電池カートリッジに内蔵されている複数のセルスタックにより電気出力の最小単位としてそれぞれ形成された2以上のセルグループで構成された複数の燃料電池ユニットと、
     前記複数の燃料電池ユニットの各々に対して設けられる、前記燃料電池ユニットの出力電力の電力変換を行う複数の電力変換装置と、を備え、
     前記燃料電池ユニットにおいて前記2以上のセルグループは直列に接続されている燃料電池発電システム。
    A fuel cell power generation system having multiple fuel cell cartridges.
    A plurality of fuel cell units composed of two or more cell groups each formed as a minimum unit of electric output by a plurality of cell stacks built in the fuel cell cartridge, and a plurality of fuel cell units.
    A plurality of power conversion devices for converting the output power of the fuel cell unit, which are provided for each of the plurality of fuel cell units, are provided.
    A fuel cell power generation system in which the two or more cell groups are connected in series in the fuel cell unit.
  2.  前記燃料電池ユニットは、1以上の前記燃料電池カートリッジが有する前記セルグループで構成される請求項1に記載の燃料電池発電システム。 The fuel cell power generation system according to claim 1, wherein the fuel cell unit is composed of the cell group included in one or more fuel cell cartridges.
  3.  前記燃料電池ユニットを構成する前記セルグループの数は偶数である請求項1または2に記載の燃料電池発電システム。 The fuel cell power generation system according to claim 1 or 2, wherein the number of the cell groups constituting the fuel cell unit is an even number.
  4.  前記複数の電力変換装置が出力する出力電力の少なくとも一部を電力供給先に出力可能な電力出力回路を、さらに備え、
     前記電力出力回路は、前記複数の電力変換装置と前記電力供給先との接続状態をそれぞれ切り替えることが可能な複数のスイッチを有する請求項1~3のいずれか1項に記載の燃料電池発電システム。
    A power output circuit capable of outputting at least a part of the output power output by the plurality of power conversion devices to the power supply destination is further provided.
    The fuel cell power generation system according to any one of claims 1 to 3, wherein the power output circuit has a plurality of switches capable of switching the connection state between the plurality of power conversion devices and the power supply destination. ..
  5.  前記複数の燃料電池カートリッジの各々の温度を検出するための複数の温度検出手段と、
     前記複数の燃料電池カートリッジの各々の温度が規定温度になるように、前記複数の電力変換装置の各々の出力を制御するよう構成された制御装置と、をさらに備える請求項1~4のいずれか1項に記載の燃料電池発電システム。
    A plurality of temperature detecting means for detecting the temperature of each of the plurality of fuel cell cartridges, and
    Any of claims 1 to 4, further comprising a control device configured to control the output of each of the plurality of power conversion devices so that the temperature of each of the plurality of fuel cell cartridges reaches a specified temperature. The fuel cell power generation system according to item 1.
  6.  前記制御装置は、前記電力変換装置の負荷を調整することで、前記複数の電力変換装置の各々の出力を制御するよう構成されている請求項5に記載の燃料電池発電システム。 The fuel cell power generation system according to claim 5, wherein the control device is configured to control the output of each of the plurality of power conversion devices by adjusting the load of the power conversion device.
  7.  前記制御装置は、前記複数の燃料電池カートリッジを収容する圧力容器の端部側に位置する前記燃料電池カートリッジに対して設けられた前記電力変換装置の前記負荷を、前記圧力容器の中央部に位置するものよりも小さくするよう構成されている請求項6に記載の燃料電池発電システム。 The control device positions the load of the power conversion device provided for the fuel cell cartridge located on the end side of the pressure vessel accommodating the plurality of fuel cell cartridges at the center of the pressure vessel. The fuel cell power generation system according to claim 6, which is configured to be smaller than the one to be used.
PCT/JP2020/046872 2020-01-09 2020-12-16 Fuel cell power generating system WO2021140852A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-002448 2020-01-09
JP2020002448A JP7446113B2 (en) 2020-01-09 2020-01-09 Fuel cell power generation system

Publications (1)

Publication Number Publication Date
WO2021140852A1 true WO2021140852A1 (en) 2021-07-15

Family

ID=76787499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046872 WO2021140852A1 (en) 2020-01-09 2020-12-16 Fuel cell power generating system

Country Status (2)

Country Link
JP (1) JP7446113B2 (en)
WO (1) WO2021140852A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146138A (en) * 2002-10-23 2004-05-20 Mitsubishi Heavy Ind Ltd Fuel cell
JP2007059359A (en) * 2005-08-26 2007-03-08 Tokyo Gas Co Ltd Operation control method of solid oxide fuel cell system
JP2014026862A (en) * 2012-07-27 2014-02-06 Kyocera Corp Fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146138A (en) * 2002-10-23 2004-05-20 Mitsubishi Heavy Ind Ltd Fuel cell
JP2007059359A (en) * 2005-08-26 2007-03-08 Tokyo Gas Co Ltd Operation control method of solid oxide fuel cell system
JP2014026862A (en) * 2012-07-27 2014-02-06 Kyocera Corp Fuel cell system

Also Published As

Publication number Publication date
JP2021111508A (en) 2021-08-02
JP7446113B2 (en) 2024-03-08

Similar Documents

Publication Publication Date Title
Laosiripojana et al. Reviews on solid oxide fuel cell technology
US20100086824A1 (en) Assemblies of hollow electrode electrochemical devices
US12015182B2 (en) Assembly method and arrangement for a cell system
WO2013048705A1 (en) Integrated natural gas powered sofc system
JP2018088324A (en) Control device for hybrid power generation system, hybrid power generation system, control method for hybrid power generation system and control program for hybrid power generation system
JP4897273B2 (en) Fuel cell
Bove Solid oxide fuel cells: principles, designs and state-of-the-art in industries
WO2021140852A1 (en) Fuel cell power generating system
US20230130879A1 (en) Fuel cell power generation system
WO2021153627A1 (en) Fuel battery power generating system
JP6479400B2 (en) Fuel cell device and fuel cell system
US20110027685A1 (en) Fuel cell comprising multi-tubular support
JP6982586B2 (en) Fuel cell cartridges, fuel cell modules and combined cycle systems
JP6993488B1 (en) Fuel cell power generation system and control method of fuel cell power generation system
CN219419115U (en) Module structure of solid oxide cell stack
WO2021177100A1 (en) Control device, energy supply system, control method, and control program
US20230395830A1 (en) Fuel cell power generation system and control method for fuel cell power generation system
Hagen SOFCCell, Stack and System Level
WO2021149655A1 (en) Fuel cell cartridge and fuel cell module
Sammes A. Moreno, R. Bove, P. Lunghi and
KR20130060428A (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912447

Country of ref document: EP

Kind code of ref document: A1