WO2021149655A1 - Fuel cell cartridge and fuel cell module - Google Patents

Fuel cell cartridge and fuel cell module Download PDF

Info

Publication number
WO2021149655A1
WO2021149655A1 PCT/JP2021/001576 JP2021001576W WO2021149655A1 WO 2021149655 A1 WO2021149655 A1 WO 2021149655A1 JP 2021001576 W JP2021001576 W JP 2021001576W WO 2021149655 A1 WO2021149655 A1 WO 2021149655A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
fuel cell
insulating body
insulating member
fuel
Prior art date
Application number
PCT/JP2021/001576
Other languages
French (fr)
Japanese (ja)
Inventor
竹内 良昭
重徳 末森
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2021149655A1 publication Critical patent/WO2021149655A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to a fuel cell cartridge and a fuel cell module.
  • a fuel cell that generates electricity by chemically reacting a fuel gas with an oxidizing gas has characteristics such as excellent power generation efficiency and environmental friendliness.
  • solid oxide fuel cells SOFC
  • SOFC solid oxide fuel cells
  • ceramics such as zirconia ceramics as the electrolyte, and gasify hydrogen, city gas, natural gas, petroleum, methanol, and carbon-containing raw materials.
  • Gas such as gasification gas produced in the above is supplied as fuel gas and reacted in a high temperature atmosphere of about 700 ° C. to 1000 ° C. to generate power.
  • Patent Document 1 discloses an example of a solid oxide fuel cell.
  • a power generation chamber having a high temperature atmosphere inside is defined so as to be surrounded by a heat insulating member, and the outside thereof is surrounded by a casing made of a conductive material such as metal.
  • a casing containing a conductive material is arranged outside the heat insulating member that defines the power generation chamber, and the heat insulating member and the casing are in contact with each other.
  • the heat insulating member is composed of an insulating material such as silica (SiO 2 ) or alumina (Al 2 O 3 ), and such a heat insulating member is good at room temperature (for example, in a temperature range of about 0 ° C. to 40 ° C.). Although it exhibits insulating properties, the insulating properties may decrease as the temperature rises.
  • the lead portion of the cell stack including the fuel cell extends from the power generation chamber to the outside of the heat insulating member.
  • the lead part is designed so that the lead part does not come into contact with the heat insulating member in the normal temperature range by inserting the lead part into a hole provided in the heat insulating member with a diameter larger than that of the lead part.
  • the lead portion may come into contact with the heat insulating member due to the influence of thermal deformation or the like.
  • a ground fault current may be generated between the lead portion and the casing due to the potential difference between the two. In order to prevent the occurrence of such a ground fault current, it is necessary to suppress the output voltage from the cell stack, and it has been difficult to realize a high output fuel cell cartridge.
  • At least one embodiment of the present disclosure has been made in view of the above circumstances, and provides a high-output fuel cell cartridge and a fuel cell module by suppressing the generation of a ground fault current in a high temperature region. The purpose.
  • the fuel cell cartridge according to at least one embodiment of the present disclosure is used to solve the above problems.
  • a power generation room containing fuel cell cells that make up the cell stack With a heat insulating member that at least partially defines the power generation chamber, A conductive member provided outside the heat insulating member when viewed from the power generation chamber, and It has higher insulating properties than the heat insulating member in a temperature range higher than normal temperature, and at least a conductive path formed between the lead portion and the conductive member when the lead portion of the cell stack comes into contact with the heat insulating member. Insulation members configured to partially block, To be equipped.
  • a high output fuel cell cartridge and a fuel cell module can be provided by suppressing the generation of a ground fault current in a high temperature region.
  • FIG. 1 It shows one aspect of the cell stack which concerns on embodiment. It shows one aspect of the fuel cell module which concerns on this embodiment. It shows the cross-sectional view of one aspect of the fuel cell cartridge which concerns on this embodiment. This is a first modification of FIG. This is a second modification of FIG. This is a third modification of FIG. This is a fourth modification of FIG.
  • the positional relationship of each component described using the expressions "upper” and “lower” with respect to the paper surface indicates the vertically upper side and the vertically lower side, respectively.
  • the one that can obtain the same effect in the vertical direction and the horizontal direction is not necessarily limited to the vertical vertical direction on the paper surface, but may correspond to the horizontal direction orthogonal to the vertical direction, for example. good.
  • a cylindrical (cylindrical) cell stack will be described as an example of the solid oxide fuel cell (SOFC) cell stack, but this is not necessarily the case, and for example, a flat cell stack. May be good.
  • the fuel cell is formed on the substrate, but the electrode (fuel electrode or air electrode) is formed thicker instead of the substrate, and the substrate may also be used.
  • the fuel electrode may be formed thick and the base tube may also be used, and the use of the base tube is not limited.
  • the substrate tube in the present embodiment will be described using a cylindrical shape, the substrate tube may be tubular, and the cross section is not necessarily limited to a circular shape, and may be, for example, an elliptical shape.
  • a cell stack such as a flat cylinder in which the peripheral side surface of the cylinder is vertically crushed may be used.
  • FIG. 1 shows one aspect of the cell stack according to the embodiment.
  • the cell stack 101 includes a cylindrical base tube 103, a plurality of fuel cell 105 formed on the outer peripheral surface of the base tube 103, and an interconnector 107 formed between adjacent fuel cell 105. ..
  • the fuel cell 105 is formed by laminating a fuel electrode 109, a solid electrolyte membrane 111, and an air electrode 113. Further, the cell stack 101 is attached to the air electrode 113 of the fuel cell 105 formed at one end of the plurality of fuel cell 105 formed on the outer peripheral surface of the base tube 103 in the axial direction of the base tube 103.
  • the lead portion 252 of the stack 101 includes the lead film 115).
  • Substrate tube 103 is made of a porous material, for example, CaO-stabilized ZrO 2 (CSZ), a mixture of CSZ and nickel oxide (NiO) (CSZ + NiO) , or Y2O3-stabilized ZrO 2 (YSZ), or MgAl 2 O 4 and the like are the main components.
  • the base tube 103 supports the fuel cell 105, the interconnector 107, and the lead film 115, and the fuel gas supplied to the inner peripheral surface of the base tube 103 is supplied to the inner peripheral surface of the base tube 103 through the pores of the base tube 103. It is diffused in the fuel electrode 109 formed on the outer peripheral surface of the above.
  • the fuel electrode 109 is composed of an oxide of a composite material of Ni and a zirconia-based electrolyte material, and for example, Ni / YSZ is used.
  • the thickness of the fuel electrode 109 is 50 ⁇ m to 250 ⁇ m, and the fuel electrode 109 may be formed by screen printing the slurry.
  • Ni which is a component of the fuel electrode 109, has a catalytic action on the fuel gas. This catalytic action reacts a fuel gas supplied via the substrate tube 103, for example, a mixed gas of methane (CH 4 ) and water vapor, and reforms it into hydrogen (H 2 ) and carbon monoxide (CO). It is a thing.
  • the fuel electrode 109 the hydrogen obtained by reforming (H 2) and carbon monoxide (CO), oxygen ions supplied through the solid electrolyte membrane 111 (O 2 -) and the solid electrolyte membrane 111 Water (H 2 O) and carbon dioxide (CO 2 ) are produced by electrochemical reaction in the vicinity of the interface between the two. At this time, the fuel cell 105 generates electricity by the electrons emitted from the oxygen ions.
  • the fuel gases that can be supplied and used for the fuel electrode 109 of the solid oxide fuel cell include hydrocarbon gases such as hydrogen (H 2 ), carbon monoxide (CO), and methane (CH 4 ), city gas, and natural gas.
  • gasification gas produced from carbon-containing raw materials such as petroleum, methanol, and coal by a gasification facility can be mentioned.
  • the solid electrolyte membrane 111 As the solid electrolyte membrane 111, YSZ having airtightness that makes it difficult for gas to pass through and high oxygen ion conductivity at high temperature is mainly used.
  • the solid electrolyte membrane 111, the oxygen ions produced at the cathode - is to move to the fuel electrode (O 2).
  • the film thickness of the solid electrolyte film 111 located on the surface of the fuel electrode 109 is 10 ⁇ m to 100 ⁇ m, and the solid electrolyte film 111 may be formed by screen printing the slurry.
  • the air electrode 113 is composed of, for example, a LaSrMnO 3- based oxide or a LaCoO 3- based oxide, and the air electrode 113 is coated with a slurry by screen printing or using a dispenser.
  • the air electrode 113 in the vicinity of the interface between the solid electrolyte membrane 111, the oxygen in the oxidizing gas such as air supplied by dissociating oxygen ion - and generates an (O 2).
  • the air electrode 113 may have a two-layer structure.
  • the air electrode layer (air electrode intermediate layer) on the solid electrolyte membrane 111 side is made of a material showing high ionic conductivity and excellent catalytic activity.
  • the air electrode layer (air electrode conductive layer) on the air electrode intermediate layer may be composed of a perovskite-type oxide represented by Sr and Ca-doped LaMnO 3. By doing so, the power generation performance can be further improved.
  • the oxidizing gas is a gas containing approximately 15% to 30% of oxygen, and air is typically preferable. However, in addition to air, a mixed gas of combustion exhaust gas and air, a mixed gas of oxygen and air, etc. Can be used.
  • the interconnector 107 is composed of a conductive perovskite-type oxide represented by M1-xLxTiO 3 (M is an alkaline earth metal element and L is a lanthanoid element) such as SrTiO 3 system, and screen prints a slurry.
  • M is an alkaline earth metal element and L is a lanthanoid element
  • the interconnector 107 has a dense film so that the fuel gas and the oxidizing gas do not mix with each other. Further, the interconnector 107 has stable durability and electrical conductivity in both an oxidizing atmosphere and a reducing atmosphere.
  • the interconnector 107 electrically connects the air electrode 113 of one fuel cell 105 and the fuel electrode 109 of the other fuel cell 105, and the adjacent fuel cell 105 are connected to each other. Are connected in series.
  • the lead film 115 needs to have electron conductivity and a coefficient of thermal expansion close to that of other materials constituting the cell stack 101.
  • Ni such as Ni / YSZ and a zirconia-based electrolyte material are used. It is composed of M1-xLxTiO 3 (M is an alkaline earth metal element and L is a lanthanoid element) such as a composite material and SrTiO 3 system.
  • M is an alkaline earth metal element and L is a lanthanoid element
  • the lead film 115 derives the DC power generated by the plurality of fuel cell 105s connected in series by the interconnector 107 to the lead portion 252 (see FIG. 3 and the like) near the end of the cell stack 101. It is a thing.
  • FIG. 2 shows one aspect of the fuel cell module according to the present embodiment.
  • FIG. 3 shows a cross-sectional view of one aspect of the fuel cell cartridge according to the present embodiment.
  • FIG. 2 in order to show the internal configuration of the fuel cell module in an easy-to-understand manner, a part of the heat insulating member shown in FIG. 3 is partially omitted.
  • the fuel cell module 201 includes, for example, a plurality of fuel cell cartridges 203 and a pressure vessel 205 for accommodating the plurality of fuel cell cartridges 203.
  • the cell stack 101 of the cylindrical fuel cell is illustrated in FIG. 2, this is not necessarily the case, and for example, a flat cell stack may be used.
  • the fuel cell module 201 includes a fuel gas supply pipe 207, a plurality of fuel gas supply branch pipes 207a, a fuel gas discharge pipe 209, and a plurality of fuel gas discharge branch pipes 209a.
  • the fuel cell module 201 includes an oxidizing gas supply pipe (not shown), an oxidizing gas supply branch pipe 211a (see FIG. 3), an oxidizing gas discharge pipe (not shown), and a plurality of oxidizing gas discharge branches. It includes 211b (see FIG. 3).
  • a plurality of fuel gas supply pipes 207 are provided outside the pressure vessel 205 and are connected to a fuel gas supply unit that supplies fuel gas having a predetermined gas composition and a predetermined flow rate according to the amount of power generated by the fuel cell module 201. It is connected to the fuel gas supply branch pipe 207a of.
  • the fuel gas supply pipe 207 branches and guides a predetermined flow rate of fuel gas supplied from the above-mentioned fuel gas supply unit to a plurality of fuel gas supply branch pipes 207a. Further, the fuel gas supply branch pipe 207a is connected to the fuel gas supply pipe 207 and is also connected to a plurality of SOFC fuel cell cartridges 203.
  • the fuel gas supply branch pipe 207a guides the fuel gas supplied from the fuel gas supply pipe 207 to the plurality of fuel cell cartridges 203 at a substantially equal flow rate, and substantially equalizes the power generation performance of the plurality of fuel cell cartridges 203. Is.
  • the fuel gas discharge branch pipe 209a is connected to a plurality of fuel cell cartridges 203 and is also connected to the fuel gas discharge pipe 209.
  • the fuel gas discharge branch pipe 209a guides the exhaust fuel gas discharged from the fuel cell cartridge 203 to the fuel gas discharge pipe 209. Further, the fuel gas discharge pipe 209 is connected to a plurality of fuel gas discharge branch pipes 209a, and a part of the fuel gas discharge pipe 209 is arranged outside the pressure vessel 205.
  • the fuel gas discharge pipe 209 guides the exhaust fuel gas led out from the fuel gas discharge branch pipe 209a at a substantially equal flow rate to the outside of the pressure vessel 205.
  • the pressure vessel 205 Since the pressure vessel 205 is operated at an internal pressure of 0.1 MPa to about 3 MPa and an internal temperature of atmospheric temperature to about 550 ° C., it has a proof stress and corrosion resistance against an oxidizing agent such as oxygen contained in the oxidizing gas.
  • the material you have is used.
  • a stainless steel material such as SUS304 is suitable.
  • the present invention is not limited to this, and for example, the fuel cell cartridge 203 is not assembled. It can also be stored in the pressure vessel 205.
  • the fuel cell cartridge 203 includes a plurality of cell stacks 101, a power generation chamber 215, a fuel gas supply header 217, a fuel gas discharge header 219, an oxidizing gas (air) supply header 221 and oxidation. It is provided with a sex gas discharge header 223.
  • the fuel gas supply header 217, the fuel gas discharge header 219, the oxidizing gas supply header 221 and the oxidizing gas discharge header 223 are arranged as shown in FIG.
  • the structure is such that the fuel gas and the oxidizing gas flow so as to face the inside and the outside of the cell stack 101, but this is not always necessary.
  • the inside and the outside of the cell stack 101 are parallel to each other.
  • the flowing or oxidizing gas may be allowed to flow in a direction orthogonal to the longitudinal direction of the cell stack 101.
  • the power generation chamber 215 is an area in which the fuel cell 105 of the cell stack 101 is arranged, and is an area in which the fuel gas and the oxidizing gas are electrochemically reacted to generate electricity. Further, the temperature near the central portion of the cell stack 101 in the longitudinal direction of the power generation chamber 215 is monitored by a temperature measuring unit (temperature sensor, thermocouple, etc.) (not shown), and is approximately 700 during steady operation of the fuel cell module 201. It becomes a high temperature atmosphere of °C to 1000 °C.
  • a temperature measuring unit temperature sensor, thermocouple, etc.
  • the fuel gas supply header 217 is a region defined by the hollow upper casing 229a, and is communicated with the fuel gas supply branch pipe 207a in the fuel gas supply hole 231a provided in the upper part of the upper casing 229a.
  • the upper casing 229a has a hole on the lower surface through which the end portion of the cell stack 101 is inserted, and is tightly joined to the end portion of the cell stack 101 via a seal member 237a.
  • the holes have a plurality of holes corresponding to the number of cell stacks 101 provided in the fuel cell cartridge 203, and the cell stacks 101 are inserted into the holes, respectively.
  • the fuel gas supply header 217 guides the fuel gas supplied from the fuel gas supply branch pipe 207a through the fuel gas supply hole 231a from the ends of the plurality of cell stacks 101 into the base pipe 103 at a substantially uniform flow rate.
  • the power generation performance of the plurality of cell stacks 101 is made substantially uniform.
  • the fuel gas discharge header 219 is a region defined by the hollow lower casing 229b, and is communicated with the fuel gas discharge branch pipe 209a in the fuel gas discharge hole 231b provided in the lower part of the lower casing 229b.
  • the lower casing 229 has a hole on the upper surface through which the end portion of the cell stack 101 is inserted, and is tightly joined to the end portion of the cell stack 101 via a seal member 237b.
  • the holes have a plurality of holes corresponding to the number of cell stacks 101 provided in the fuel cell cartridge 203, and the cell stacks 101 are inserted into the holes, respectively.
  • the fuel gas discharge header 219 passes through the inside of the base pipe 103 of the plurality of cell stacks 101, aggregates the exhaust fuel gas supplied from the end to the fuel gas discharge header 219, and passes through the fuel gas discharge hole 231b. It leads to the fuel gas discharge branch pipe 209a.
  • Oxidizing gas having a predetermined gas composition and a predetermined flow rate is branched into the oxidizing gas supply branch pipe 211a according to the amount of power generated by the fuel cell module 201, and supplied to the plurality of fuel cell cartridges 203.
  • the oxidizing gas supply header 221 is a region surrounded by the upper surface of the lower casing 229b and the first lower heat insulating body 227c that defines the lower side of the power generation chamber 215, and the oxidizing gas supply hole 233a provided on the side surface thereof. Is communicated with the oxidizing gas supply branch pipe 211a.
  • the oxidizing gas supply header 221 transfers the oxidizing gas of a predetermined flow rate supplied from the oxidizing gas supply branch pipe 211a through the oxidizing gas supply hole 233a to the power generation chamber via the oxidizing gas supply gap 235a described later. It leads to 215.
  • the oxidizing gas discharge header 223 is a region surrounded by the lower surface of the upper casing 229a and the first upper heat insulating body 227a defining the upper side of the power generation chamber 215, and the oxidizing gas discharge hole 233b provided on the side surface thereof. Is communicated with the oxidizing gas discharge branch pipe 211b.
  • the oxidizing gas discharge header 223 transfers the oxidative gas supplied from the power generation chamber 215 to the oxidative gas discharge header 223 via the oxidative gas discharge gap 235b, which will be described later, through the oxidative gas discharge hole 233b. It leads to the oxidizing gas discharge branch pipe 211b.
  • the heat insulating member defines the power generation chamber 215 at least partially, and the first upper heat insulating body 227a, the second upper heat insulating body 227b, the first lower heat insulating body 227c, the second lower heat insulating body 227d, and the first side. Includes a square insulation 227e and a second lateral insulation 227f. Note that FIG. 3 shows an example of the layout of each heat insulating body constituting the heat insulating member 227, but this is not necessarily the case.
  • the first upper heat insulating body 227a, the second upper heat insulating body 227b, the first lower heat insulating body 227c, the second lower heat insulating body 227d, the first side heat insulating body 227e and the second side heat insulating body 227f are collectively referred to as "insulation member 227".
  • the first upper heat insulating body 227a is arranged on the lower side of the upper casing 229a and is fixed to the first side heat insulating body 227e fixed to the side plate of the upper casing 229a. Further, the first upper heat insulating body 227a is provided with a plurality of holes corresponding to the number of cell stacks 101 provided in the fuel cell cartridge 203. The diameter of this hole is set to be larger than the outer diameter of the cell stack 101.
  • the first upper heat insulating body 227a includes an oxidizing gas discharge gap 235b formed between the inner surface of the hole and the outer surface of the cell stack 101 inserted through the first upper heat insulating body 227a.
  • first upper heat insulating body 227a is arranged so as to partition the power generation chamber 215 and the oxidizing gas discharge header 223. Further, the first upper heat insulating body 227a guides the oxidative gas that has passed through the power generation chamber 215 and exposed to high temperature to the oxidative gas discharge header 223 by passing through the oxidative gas discharge gap 235b.
  • the fuel gas and the oxidizing gas flow toward the inside and the outside of the cell stack 101.
  • the oxidative gas exchanges heat with the fuel gas supplied to the power generation chamber 215 through the inside of the base tube 103, and the upper casing 229a and the like made of a metal material are deformed such as buckling. It is cooled to a temperature that does not allow it to be supplied to the oxidizing gas discharge header 223. Further, the fuel gas is heated by heat exchange with the oxidative gas discharged from the power generation chamber 215 and supplied to the power generation chamber 215. As a result, the fuel gas preheated to a temperature suitable for power generation can be supplied to the power generation chamber 215 without using a heater or the like.
  • the second upper heat insulating body 227b is arranged on the upper side of the upper casing 229a so as to be substantially parallel to the top plate of the upper casing 229a, and is fixed to the first side heat insulating body 227e fixed to the side plate of the upper casing 229a. Has been done. Further, the second upper heat insulating body 227b is provided with an opening for communicating the fuel gas supply branch pipe 207a connected to the fuel gas supply hole 231a provided in the upper part of the upper casing 229a.
  • the first lower heat insulating body 227c is arranged on the upper side of the lower casing 229b, is arranged so as to be substantially parallel to the bottom plate of the lower casing 229b, and is attached to the first side heat insulating body 227e fixed to the side plate of the lower casing 229b. It is fixed. Further, the first lower heat insulating body 227c is provided with a plurality of holes corresponding to the number of cell stacks 101 provided in the fuel cell cartridge 203. The diameter of this hole is set to be larger than the outer diameter of the cell stack 101.
  • the first lower heat insulating body 227c includes an oxidizing gas supply gap 235a formed between the inner surface of the hole and the outer surface of the cell stack 101 inserted through the first lower heat insulating body 227c.
  • first lower heat insulating body 227c is arranged so as to partition the power generation chamber 215 and the oxidizing gas supply header 221. Further, the first lower heat insulating body 227c guides the oxidizing gas supplied to the oxidizing gas supply header 221 to the power generation chamber 215 through the oxidizing gas supply gap 235a.
  • the second lower heat insulating body 227d is arranged below the lower casing 229b so as to be substantially parallel to the bottom plate of the lower casing 229b, and is fixed to the first lateral heat insulating body 227e fixed to the side plate of the lower casing 229b. ing. Further, the second lower heat insulating body 227d is provided with an opening for communicating the fuel gas discharge branch pipe 209a connected to the fuel gas discharge hole 231b provided in the lower part of the lower casing 229b.
  • the first lateral heat insulating body 227e is provided on the side of the power generation chamber 215 with respect to the extending direction of the cell stack 101. Further, the first side heat insulating body 227e is provided between the upper casing 229a and the lower casing 229b, and both ends thereof are fixed to the first upper heat insulating body 227a and the first lower heat insulating body 227c, respectively, and the upper casing 229a and the upper casing 229a It is fixed to the side plate of the lower casing 229b. Further, the first lateral heat insulating body 227e has a closed cross-sectional shape in a plane perpendicular to the extending direction of the cell stack 101 so as to surround the power generation chamber 215 over the entire circumference.
  • the second side heat insulating body 227f is provided outside the first side heat insulating body 227e when viewed from the power generation chamber 215. Further, the second side heat insulating body 227f is provided between the second upper heat insulating body 227b and the second lower heat insulating body 227d, and both ends thereof are fixed to the second upper heat insulating body 227b and the second lower heat insulating body 227d, respectively. There is. Further, the second side heat insulating body 227f has a closed cross-sectional shape in a plane perpendicular to the extending direction of the cell stack 101 so as to surround the first side heat insulating body 227e over the entire circumference.
  • an outer shell casing 250 for defining the outer shell of the fuel cell cartridge 203 is provided.
  • the outer shell casing 250 is configured to include a conductive material such as metal.
  • the outer shell casing 250 has a lower surface 251 located outside the second lower heat insulating body 227d and arranged so as to face the pedestal 270 when installed on the grounded pedestal 270.
  • the outer shell casing 250 of the present embodiment has a bottomed shape in which the outside of the second upper heat insulating body 227b opens upward, but the fuel cell extends to the outside of the second upper heat insulating body 227b. It may be configured to surround the entire cartridge 203.
  • the fuel gas and the oxidizing gas flow toward the inside and the outside of the cell stack 101.
  • the exhaust fuel gas that has passed through the inside of the base pipe 103 and passed through the power generation chamber 215 undergoes heat exchange with the oxidizing gas supplied to the power generation chamber 215 and is supplied to the fuel gas discharge header 219.
  • the oxidizing gas is heated by heat exchange with the exhaust fuel gas and supplied to the power generation chamber 215.
  • the oxidizing gas heated to the temperature required for power generation can be supplied to the power generation chamber 215 without using a heater or the like.
  • the DC power generated in the power generation chamber 215 is led out to the lead portion 252 near the end of the cell stack 101 by the lead film 115 made of Ni / YSZ or the like provided in the plurality of fuel cell 105, and then the fuel cell cartridge.
  • the electric power is collected on the current collecting rod (not shown) of 203 via the current collecting plate (not shown), and is taken out to the outside of each fuel cell cartridge 203.
  • the DC power led out to the outside of the fuel cell cartridge 203 by the current collector rod connects the generated power of each fuel cell cartridge 203 to a predetermined number of series and parallel numbers, and is led out to the outside of the fuel cell module 201. Then, it is converted into a predetermined AC power by a power conversion device (inverter or the like) such as a power conditioner (not shown), and is supplied to a power supply destination (for example, a load facility or a power system).
  • a power conversion device inverter or the like
  • a power conditioner not shown
  • an outer shell casing 250 is arranged outside each heat insulating member 227 that defines the power generation chamber 215 at least partially, and the heat insulating member 227 and the outer shell casing 250 are in contact with each other.
  • the heat insulating member 227 is made of an insulating material such as silica (SiO 2 ) or alumina (Al 2 O 3 ), and such a heat insulating member 227 is at room temperature (for example, in a temperature range of about 0 ° C. to 40 ° C.). Although it shows good insulation, it may decrease as the temperature rises.
  • the lead portion 252 including the lead film 115 of the cell stack 101 is moved from the power generation chamber 215 to the outside of the first upper heat insulating body 227a and the first lower heat insulating body 227c. It extends all the way.
  • the lead portion 252 is inserted into the oxidizing gas discharge gap 235b provided in the first upper heat insulating body 227a and the oxidizing gas supply gap 235a provided in the first lower heat insulating body 227c, so that the lead portion 252 is inserted in the oxidizing gas supply gap 235a provided in the first lower heat insulating body 227c.
  • the lead portion 252 is designed so as not to come into contact with the first upper heat insulating body 227a and the first lower heat insulating body 227c, but when the temperature rises and reaches a high temperature range, the lead portion 252 becomes the first due to the influence of thermal deformation or the like. 1 It may come into contact with the upper heat insulating body 227a and the first lower heat insulating body 227c. At this time, if the insulating property of the heat insulating member 227 is deteriorated, a ground fault current may be generated between the lead portion 252 and the outer shell casing 250 due to the potential difference between the two.
  • the conductive path formed between the lead portion 252 and the outer shell casing 250 can be blocked at least partially.
  • the insulating member 260 configured in the above is provided.
  • the insulating member 260 is composed of an insulating material having a higher insulating property than the heat insulating member 227 in a temperature range higher than normal temperature, for example, high-purity alumina (Al 2 O 3 ), mica, and the like.
  • the insulating member when the lead portion 252 comes into contact with the heat insulating member 227, the insulating member is configured so as to be able to at least partially block the conductive path formed between the lead portion 252 and the outer shell casing 250.
  • the insulating member 260 may be configured to at least partially block any conductive path formed between the lead portion 252 and the other conductive member.
  • the insulating member 260 is provided so as to at least partially block the conductive path formed between these conductive members and the lead portion 252. It may be provided.
  • the insulating member 260 is provided between the lead portion 252 and the outer shell casing 250 (in other words, at least the insulating member 260 on a straight line connecting the lead portion 252 and the outer shell casing 250). Some are arranged so that they intersect). By arranging the insulating member 260 in this way, the conductive path can be effectively blocked.
  • the insulating member 260 is provided between the outer shell casing 250 and the heat insulating member. More specifically, the insulating member 260 is provided along the boundary between the inner wall surface of the outer shell casing 250 and the second lateral heat insulating body 227f. By arranging the insulating member 260 between the outer shell casing 250 adjacent to each other and the second side heat insulating body 227f in this way, the conductive path can be effectively blocked.
  • the insulating member 260 of FIG. 3 covers the corner portions C1 and C2 in the vicinity of the opening through which the oxidizing gas supply branch pipe 221a and the oxidizing gas discharge branch pipe 221b of the second side heat insulating body 227f are inserted. May be formed in.
  • the insulating member 260 can be interposed up to the surface where the second side heat insulating body 227f comes into contact with the oxidizing gas supply branch pipe 221a and the oxidizing gas discharging branch pipe 221b, and the conductive path can be more effectively performed. Can be blocked.
  • FIG. 4 is a first modification of FIG.
  • FIG. 5 is a second modification of FIG.
  • FIG. 6 is a third modification of FIG.
  • the insulating member 260 is provided between a plurality of heat insulating bodies constituting the heat insulating member 227.
  • the insulating member 260 is provided between the first side heat insulating body 227e and the second side heat insulating body 227f. As described above, in the first modification, the insulating member 260 is interposed between the plurality of heat insulating bodies laminated along the inner and outer directions when viewed from the power generation chamber 215, so that the lead portion 252 and the outer shell casing 250 are separated from each other. The conductive path formed in the can be effectively blocked.
  • the insulating member 260 of FIG. 4 may be formed so as to cover the corner portions C3 and C4 of the first side heat insulating body 227e at the upper end portion and the lower end portion of the first side heat insulating body 227e.
  • the insulating member 260 can be interposed on the surface where the first lateral heat insulating body 227e comes into contact with the constituent members of the oxidizing gas supply hole 233a and the oxidizing gas discharge hole 233b, and the conductive path can be more effectively provided. It can be blocked.
  • the insulating member 260 is between the first upper heat insulating body 227a and the first side heat insulating body 227e, and the first lower heat insulating body 227c and the first side heat insulating body 227e. It is provided between each. That is, the upper connecting portion 272a in which the first upper heat insulating body 227a and the first side heat insulating body 227e are fixed to each other, and the lower connecting portion 227c in which the first lower heat insulating body 227c and the first side heat insulating body 227e are fixed to each other. In the portion 272b, the insulating member 260 is arranged so as to intervene. As described above, in the second modification, by arranging the insulating member 260 in the upper connecting portion 272a and the lower connecting portion 272b, the conductive path formed between the lead portion 252 and the outer shell casing 250 is effectively provided. Can be blocked.
  • the insulating member 260 is arranged in the upper connecting portion 272a and the lower connecting portion 272b as in FIG.
  • the upper connecting portion 272a has a substantially L-shape in a cross section passing through the central axis of the power generation chamber 215 along the axial direction of the cell stack 101, and the insulating member 260 has such an upper connecting portion 272a. It is provided along.
  • the upper connecting portion 272a in a substantially L shape in this way, the facing area between the first upper heat insulating body 227a and the first lateral heat insulating body 227e in the upper connecting portion 272a increases.
  • the insulating member 260 along the upper connecting portion 272a in which the facing area is increased in this way, the conductive path formed between the lead portion 252 and the outer shell casing 250 can be effectively blocked.
  • the lower connecting portion 272b has a substantially L-shape in a cross section passing through the central axis of the power generation chamber 215 along the axial direction of the cell stack 101, and the insulating member 260 is provided along such a lower connecting portion 272b.
  • the insulating member 260 is provided along such a lower connecting portion 272b.
  • FIG. 7 is a fourth modification of FIG.
  • the insulating member 260 is formed so as to cover the lower surface 251 of the outer shell casing 250.
  • an insulating member 260a is provided in the middle of the fuel gas supply branch pipe 207a connected to the fuel gas supply hole 231a. Further, an insulating member 260b is provided in the middle of the fuel gas discharge branch pipe 209a connected to the fuel gas discharge hole 231b. Further, an insulating member 260c is provided in the middle of the oxidizing gas supply branch pipe 211a connected to the oxidizing gas supply hole 233a. Further, an insulating member 260d is provided in the middle of the oxidizing gas discharge branch pipe 211b connected to the oxidizing gas discharge hole 233b.
  • the lead portion 252 electrically connected to the fuel cell in a temperature range higher than normal temperature comes into contact with the heat insulating member 227, the lead portion 252 and the conductive member are separated from each other.
  • the conductive path formed in is at least partially blocked by the insulating member 260.
  • the ground fault current flowing through the conductive path formed between the lead portion 252 and the heat insulating member 227 is suppressed, so that the output voltage of the fuel cell cartridge can be improved.
  • a high output fuel cell module can be realized.
  • the fuel cell cartridge according to at least one embodiment of the present disclosure is A power generation chamber (for example, a power generation chamber 215 of the above embodiment) including a fuel cell constituting a cell stack (for example, the cell stack 101 of the above embodiment) and A heat insulating member that at least partially defines the power generation chamber (for example, the heat insulating member 227 of the above embodiment) and A conductive member (for example, the outer shell casing 250 of the above embodiment) provided outside the heat insulating member when viewed from the power generation chamber, and It has higher insulating properties than the heat insulating member in a temperature range higher than normal temperature, and when the lead portion of the cell stack (for example, the lead portion 252 of the above embodiment) comes into contact with the heat insulating member when it is in the high temperature range, the lead portion An insulating member (for example, the insulating member 260 of the above embodiment) configured to at least partially block the conductive path formed between the conductive member and the conductive member. To be equipped.
  • a power generation chamber for example
  • the conductive path formed between the lead portion and the conductive member when the lead portion electrically connected to the fuel cell in a temperature range higher than normal temperature comes into contact with the heat insulating member, the conductive path formed between the lead portion and the conductive member. Is at least partially blocked by the insulating member. As a result, the ground fault current flowing through the conductive path formed between the reed portion and the heat insulating member is suppressed, so that the output voltage of the fuel cell cartridge can be improved.
  • the insulating member is provided between the lead portion and the conductive member when the lead portion comes into contact with the heat insulating member.
  • the conductive path formed between the lead portion and the conductive member can be effectively blocked.
  • the insulating member is provided between the conductive member and the heat insulating member.
  • the conductive path formed between the lead portion and the conductive member can be effectively blocked. ..
  • the conductive member is an outer shell casing that defines the outer shell of the fuel cell cartridge.
  • the insulating member is formed along the inner wall surface of the outer shell casing.
  • the conductive path formed between the lead portion and the outer shell casing can be effectively blocked.
  • the insulating member is provided between a plurality of heat insulating bodies constituting the heat insulating member.
  • the conductive path formed between the lead portion and the conductive member can be effectively blocked. ..
  • the plurality of heat insulators A first side heat insulating body (for example, the first side heat insulating body 227e of the above embodiment) provided on the side of the power generation chamber with respect to the extending direction of the cell stack.
  • a second side heat insulating body (for example, the second side heat insulating body 227f of the above embodiment) arranged outside the first side heat insulating body when viewed from the power generation chamber, and Including The insulating member is provided between the first side heat insulating body and the second side heat insulating body.
  • the lead portion and the lead portion are formed by interposing an insulating member between the first side heat insulating body and the second side heat insulating body which are laminated along the inner and outer directions when viewed from the power generation chamber.
  • the conductive path formed between the conductive member and the conductive member can be effectively blocked.
  • the plurality of heat insulators A first side heat insulating body (for example, the first side heat insulating body 227e of the above embodiment) provided on the side of the power generation chamber with respect to the extending direction of the cell stack.
  • a first upper heat insulating body (for example, the first upper heat insulating body 227a of the above embodiment) provided above the power generation chamber so as to intersect in the extending direction of the cell stack, and
  • a first lower heat insulating body for example, the first lower heat insulating body 227c of the above embodiment provided below the power generation chamber so as to intersect in the extending direction of the cell stack.
  • the insulating member is provided between the first lateral heat insulating body and the first upper heat insulating body or the first lower heat insulating body.
  • the connecting portion between the first lateral heat insulating body and the first upper heat insulating body or the first lower heat insulating body is in the extending direction of the cell stack. It has a substantially L-shape in a cross section passing through the central axis of the power generation chamber along the above.
  • the insulating member is provided along the connecting portion.
  • the connecting portion between the first lateral heat insulating body and the first upper heat insulating body or the first lower heat insulating body is formed in a substantially L shape, and the insulating member is formed along the connecting portion.
  • the connecting portion is formed in a substantially L shape in this way, the contact area between the two at the connecting portion increases. Then, by providing the insulating member along the connecting portion having an increased area in this way, the conductive path formed between the lead portion and the conductive member can be effectively blocked.
  • the conductive member is a casing (for example, the outer shell casing 250 of the above embodiment) that defines the outer shell of the fuel cell cartridge.
  • the insulating member is formed so as to cover the lower surface of the casing (for example, the lower surface 251 of the above embodiment).
  • an insulating member is provided so as to cover the lower surface of the outer shell casing that defines the outer shell of the fuel cell cartridge.
  • the insulating member includes a fuel gas supply branch pipe (for example, the fuel gas supply branch pipe 207a of the above embodiment) connected to a fuel gas supply hole for supplying fuel gas to the cell stack, and the fuel gas from the cell stack.
  • a fuel gas discharge branch pipe for example, the fuel gas discharge branch pipe 209a of the above embodiment connected to a fuel gas discharge hole for discharging the celstac, and an oxidizing gas supply hole for supplying the oxidative gas to the cell stac.
  • Oxidizing gas supply branch pipe for example, the oxidizing gas supply branch pipe 211a of the above embodiment
  • the insulating member in at least one of the fuel gas supply branch pipe, the fuel gas discharge branch pipe, the oxidizing gas supply branch pipe, or the oxidizing gas discharge branch pipe, The conductive path formed between the lead portion and the conductive member can be effectively blocked.
  • the fuel cell module according to at least one embodiment of the present disclosure is At least one fuel cell cartridge according to any one of the above (1) to (10) is provided.
  • a fuel cell module having a high output can be realized by providing a fuel cell cartridge having a high output voltage.
  • Fuel cell stack 103 Base tube 105
  • Fuel cell cell 107 Interconnector 109
  • Fuel pole 111 Solid electrolyte membrane 113
  • Air pole 115 Lead membrane 201
  • Fuel cell module 203 Fuel cell cartridge 205 Pressure vessel 207
  • Fuel gas supply pipe 207a Fuel gas supply branch pipe 209
  • Fuel gas discharge pipe 209a Fuel gas discharge branch pipe 211a Oxidizing gas supply branch pipe 211b Oxidizing gas discharge branch pipe 215 Power generation room 217 Fuel gas supply header 219 Fuel gas discharge header 221 Oxidizing gas supply header 221 Supply header 223 Oxidizing gas discharge Header 227 Insulation member 227a First upper insulation 227b Second upper insulation 227c First lower insulation 227d Second lower insulation 227e First side insulation 227f Second side insulation 229b Lower casing 229a Upper casing 231a Fuel Gas supply hole 231b Fuel gas discharge hole 233a Oxidizing gas supply hole 233b Oxidizing gas discharge hole 235a Oxidizing gas supply gap 235b Ox

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

This fuel cell cartridge comprises: a thermal insulation member that at least partially demarcates a power generation chamber that contains fuel cells; a conductive member that is provided to an outer side; and an insulation member that has higher insulating properties than the thermal insulation member in temperature ranges higher than an ordinary temperature. The insulation member is configured such that, when a lead portion of a cell stack is in contact with the thermal insulation member, a conductive channel formed between the lead portion and the conductive member is at least partially blocked.

Description

燃料電池カートリッジ、及び、燃料電池モジュールFuel cell cartridge and fuel cell module
 本開示は、燃料電池カートリッジ、及び、燃料電池モジュールに関する。 This disclosure relates to a fuel cell cartridge and a fuel cell module.
 燃料ガスと酸化性ガスとを化学反応させることにより発電する燃料電池は、優れた発電効率及び環境対応等の特性を有している。このうち、固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)は、電解質としてジルコニアセラミックスなどのセラミックスが用いられ、水素、都市ガス、天然ガス、石油、メタノール、及び炭素含有原料をガス化設備により製造したガス化ガス等のガスなどを燃料ガスとして供給して、およそ700℃~1000℃の高温雰囲気で反応させて発電を行っている。 A fuel cell that generates electricity by chemically reacting a fuel gas with an oxidizing gas has characteristics such as excellent power generation efficiency and environmental friendliness. Of these, solid oxide fuel cells (SOFC) use ceramics such as zirconia ceramics as the electrolyte, and gasify hydrogen, city gas, natural gas, petroleum, methanol, and carbon-containing raw materials. Gas such as gasification gas produced in the above is supplied as fuel gas and reacted in a high temperature atmosphere of about 700 ° C. to 1000 ° C. to generate power.
 例えば特許文献1には、固体酸化物形燃料電池の一例が開示されている。この文献では、内部が高温雰囲気となる発電室が断熱部材によって囲まれるように画定されており、その外側を金属などの導電性材料からなるケーシングによって囲まれた構成が示されている。 For example, Patent Document 1 discloses an example of a solid oxide fuel cell. In this document, a power generation chamber having a high temperature atmosphere inside is defined so as to be surrounded by a heat insulating member, and the outside thereof is surrounded by a casing made of a conductive material such as metal.
特開2018-139193号公報Japanese Unexamined Patent Publication No. 2018-139193
 上記特許文献1では、発電室を画定する断熱部材の外側に導電性材料を含むケーシングが配置されており、断熱部材とケーシングとが互いに接触する構成を有している。断熱部材は例えばシリカ(SiO)やアルミナ(Al)などの絶縁性材料から構成されるが、このような断熱部材は常温(例えば0℃~40℃程度の温度域)では良好な絶縁性を示すものの、温度が上昇すると絶縁性が低下することがある。 In Patent Document 1, a casing containing a conductive material is arranged outside the heat insulating member that defines the power generation chamber, and the heat insulating member and the casing are in contact with each other. The heat insulating member is composed of an insulating material such as silica (SiO 2 ) or alumina (Al 2 O 3 ), and such a heat insulating member is good at room temperature (for example, in a temperature range of about 0 ° C. to 40 ° C.). Although it exhibits insulating properties, the insulating properties may decrease as the temperature rises.
 ここで特許文献1では、発電室で発電した電力を外部に取り出すために、燃料電池セルを含むセルスタックのリード部が発電室から断熱部材の外側に至るまで延在している。リード部は断熱部材にリード部より大径に設けられた孔に挿通されることで、常温域では、リード部が断熱部材に接触しないように設計されるが、温度が上昇して高温域に達すると、熱変形等の影響によってリード部が断熱部材に接触することがある。このとき、断熱部材の絶縁性が低下していると、リード部とケーシングとの電位差によって、両者間に地絡電流が発生してしまうことがある。このような地絡電流の発生を防止するためにはセルスタックからの出力電圧を抑える必要があり、高出力の燃料電池カートリッジを実現することが難しかった。 Here, in Patent Document 1, in order to take out the electric power generated in the power generation chamber to the outside, the lead portion of the cell stack including the fuel cell extends from the power generation chamber to the outside of the heat insulating member. The lead part is designed so that the lead part does not come into contact with the heat insulating member in the normal temperature range by inserting the lead part into a hole provided in the heat insulating member with a diameter larger than that of the lead part. When it reaches, the lead portion may come into contact with the heat insulating member due to the influence of thermal deformation or the like. At this time, if the insulating property of the heat insulating member is deteriorated, a ground fault current may be generated between the lead portion and the casing due to the potential difference between the two. In order to prevent the occurrence of such a ground fault current, it is necessary to suppress the output voltage from the cell stack, and it has been difficult to realize a high output fuel cell cartridge.
 本開示の少なくとも一実施形態は上述の事情に鑑みなされたものであり、高温域における地絡電流の発生を抑制することにより、高出力な燃料電池カートリッジ、及び、燃料電池モジュールを提供することを目的とする。 At least one embodiment of the present disclosure has been made in view of the above circumstances, and provides a high-output fuel cell cartridge and a fuel cell module by suppressing the generation of a ground fault current in a high temperature region. The purpose.
 本開示の少なくとも一実施形態に係る燃料電池カートリッジは上記課題を解決するために、
 セルスタックを構成する燃料電池セルを含む発電室と、
 前記発電室を少なくとも部分的に画定する断熱部材と、
 前記発電室から見て前記断熱部材の外側に設けられる導電部材と、
 常温より高温域において前記断熱部材より高い絶縁性を有し、前記セルスタックのリード部が前記断熱部材に接触した際に、前記リード部と前記導電部材との間に形成される導電経路を少なくとも部分的に遮断するように構成された絶縁部材と、
を備える。
The fuel cell cartridge according to at least one embodiment of the present disclosure is used to solve the above problems.
A power generation room containing fuel cell cells that make up the cell stack,
With a heat insulating member that at least partially defines the power generation chamber,
A conductive member provided outside the heat insulating member when viewed from the power generation chamber, and
It has higher insulating properties than the heat insulating member in a temperature range higher than normal temperature, and at least a conductive path formed between the lead portion and the conductive member when the lead portion of the cell stack comes into contact with the heat insulating member. Insulation members configured to partially block,
To be equipped.
 本開示の少なくとも一実施形態によれば、高温域における地絡電流の発生を抑制することにより、高出力な燃料電池カートリッジ、及び、燃料電池モジュールを提供できる。 According to at least one embodiment of the present disclosure, a high output fuel cell cartridge and a fuel cell module can be provided by suppressing the generation of a ground fault current in a high temperature region.
実施形態に係るセルスタックの一態様を示すものである。It shows one aspect of the cell stack which concerns on embodiment. 本実施形態に係る燃料電池モジュールの一態様を示すものである。It shows one aspect of the fuel cell module which concerns on this embodiment. 本実施形態に係る燃料電池カートリッジの一態様の断面図を示すものである。It shows the cross-sectional view of one aspect of the fuel cell cartridge which concerns on this embodiment. 図3の第1変形例である。This is a first modification of FIG. 図3の第2変形例である。This is a second modification of FIG. 図3の第3変形例である。This is a third modification of FIG. 図3の第4変形例である。This is a fourth modification of FIG.
 以下に、本開示に係る燃料電池カートリッジ及び燃料電池モジュールの一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the fuel cell cartridge and the fuel cell module according to the present disclosure will be described with reference to the drawings.
 以下においては、説明の便宜上、紙面を基準として「上」及び「下」の表現を用いて説明した各構成要素の位置関係は、各々鉛直上方側、鉛直下方側を示すものである。また、本実施形態では、上下方向と水平方向で同様な効果を得られるものは、紙面における上下方向が必ずしも鉛直上下方向に限定することなく、例えば鉛直方向に直交する水平方向に対応してもよい。 In the following, for convenience of explanation, the positional relationship of each component described using the expressions "upper" and "lower" with respect to the paper surface indicates the vertically upper side and the vertically lower side, respectively. Further, in the present embodiment, the one that can obtain the same effect in the vertical direction and the horizontal direction is not necessarily limited to the vertical vertical direction on the paper surface, but may correspond to the horizontal direction orthogonal to the vertical direction, for example. good.
 また、以下においては、固体酸化物形燃料電池(SOFC)のセルスタックとして円筒形(筒状)を例として説明するが、必ずしもこの限りである必要はなく、例えば平板形のセルスタックであってもよい。基体上に燃料電池セルを形成するが、基体ではなく電極(燃料極もしくは空気極)が厚く形成されて、基体を兼用したものでも良い。 Further, in the following, a cylindrical (cylindrical) cell stack will be described as an example of the solid oxide fuel cell (SOFC) cell stack, but this is not necessarily the case, and for example, a flat cell stack. May be good. The fuel cell is formed on the substrate, but the electrode (fuel electrode or air electrode) is formed thicker instead of the substrate, and the substrate may also be used.
 まず、図1を参照して本実施形態に係る一例として、基体管を用いる円筒形セルスタックについて説明する。基体管を用いない場合は、例えば燃料極を厚く形成して基体管を兼用してもよく、基体管の使用に限定されることはない。また、本実施形態での基体管は円筒形状を用いたもので説明するが、基体管は筒状であればよく、必ずしも断面が円形に限定されなく、例えば楕円形状でもよい。円筒の周側面を垂直に押し潰した扁平円筒(Flat tubular)等のセルスタックでもよい。ここで、図1は、実施形態に係るセルスタックの一態様を示すものである。セルスタック101は、一例として円筒形状の基体管103と、基体管103の外周面に複数形成された燃料電池セル105と、隣り合う燃料電池セル105の間に形成されたインターコネクタ107とを備える。燃料電池セル105は、燃料極109と固体電解質膜111と空気極113とが積層して形成されている。また、セルスタック101は、基体管103の外周面に形成された複数の燃料電池セル105の内、基体管103の軸方向において最も端の一端に形成された燃料電池セル105の空気極113に、インターコネクタ107を介して電気的に接続されたリード膜115を備え、最も端の他端に形成された燃料電池セル105の燃料極109に電気的に接続されたリード膜115を備える(セルスタック101のリード部252(図3等を参照)は、リード膜115を含んで構成される)。 First, a cylindrical cell stack using a substrate tube will be described as an example of the present embodiment with reference to FIG. When the base tube is not used, for example, the fuel electrode may be formed thick and the base tube may also be used, and the use of the base tube is not limited. Further, although the substrate tube in the present embodiment will be described using a cylindrical shape, the substrate tube may be tubular, and the cross section is not necessarily limited to a circular shape, and may be, for example, an elliptical shape. A cell stack such as a flat cylinder in which the peripheral side surface of the cylinder is vertically crushed may be used. Here, FIG. 1 shows one aspect of the cell stack according to the embodiment. As an example, the cell stack 101 includes a cylindrical base tube 103, a plurality of fuel cell 105 formed on the outer peripheral surface of the base tube 103, and an interconnector 107 formed between adjacent fuel cell 105. .. The fuel cell 105 is formed by laminating a fuel electrode 109, a solid electrolyte membrane 111, and an air electrode 113. Further, the cell stack 101 is attached to the air electrode 113 of the fuel cell 105 formed at one end of the plurality of fuel cell 105 formed on the outer peripheral surface of the base tube 103 in the axial direction of the base tube 103. , A lead film 115 electrically connected via an interconnector 107, and a lead film 115 electrically connected to a fuel electrode 109 of a fuel cell 105 formed at the other end of the end (cell). The lead portion 252 of the stack 101 (see FIG. 3 and the like) includes the lead film 115).
 基体管103は、多孔質材料からなり、例えば、CaO安定化ZrO(CSZ)、CSZと酸化ニッケル(NiO)との混合物(CSZ+NiO)、又はY2O3安定化ZrO(YSZ)、又はMgAlなどを主成分とされる。この基体管103は、燃料電池セル105とインターコネクタ107とリード膜115とを支持すると共に、基体管103の内周面に供給される燃料ガスを基体管103の細孔を介して基体管103の外周面に形成される燃料極109に拡散させるものである。 Substrate tube 103 is made of a porous material, for example, CaO-stabilized ZrO 2 (CSZ), a mixture of CSZ and nickel oxide (NiO) (CSZ + NiO) , or Y2O3-stabilized ZrO 2 (YSZ), or MgAl 2 O 4 and the like are the main components. The base tube 103 supports the fuel cell 105, the interconnector 107, and the lead film 115, and the fuel gas supplied to the inner peripheral surface of the base tube 103 is supplied to the inner peripheral surface of the base tube 103 through the pores of the base tube 103. It is diffused in the fuel electrode 109 formed on the outer peripheral surface of the above.
 燃料極109は、Niとジルコニア系電解質材料との複合材の酸化物で構成され、例えば、Ni/YSZが用いられる。燃料極109の厚さは50μm~250μmであり、燃料極109はスラリーをスクリーン印刷して形成されてもよい。この場合、燃料極109は、燃料極109の成分であるNiが燃料ガスに対して触媒作用を備える。この触媒作用は、基体管103を介して供給された燃料ガス、例えば、メタン(CH)と水蒸気との混合ガスを反応させ、水素(H)と一酸化炭素(CO)に改質するものである。また、燃料極109は、改質により得られる水素(H)及び一酸化炭素(CO)と、固体電解質膜111を介して供給される酸素イオン(O )とを固体電解質膜111との界面付近において電気化学的に反応させて水(HO)及び二酸化炭素(CO)を生成するものである。なお、燃料電池セル105は、この時、酸素イオンから放出される電子によって発電する。
 固体酸化物形燃料電池の燃料極109に供給し利用できる燃料ガスとしては、水素(H)および一酸化炭素(CO)、メタン(CH)などの炭化水素系ガス、都市ガス、天然ガスのほか、石油、メタノール、及び石炭などの炭素含有原料をガス化設備により製造したガス化ガスなどが挙げられる。
The fuel electrode 109 is composed of an oxide of a composite material of Ni and a zirconia-based electrolyte material, and for example, Ni / YSZ is used. The thickness of the fuel electrode 109 is 50 μm to 250 μm, and the fuel electrode 109 may be formed by screen printing the slurry. In this case, in the fuel electrode 109, Ni, which is a component of the fuel electrode 109, has a catalytic action on the fuel gas. This catalytic action reacts a fuel gas supplied via the substrate tube 103, for example, a mixed gas of methane (CH 4 ) and water vapor, and reforms it into hydrogen (H 2 ) and carbon monoxide (CO). It is a thing. The fuel electrode 109, the hydrogen obtained by reforming (H 2) and carbon monoxide (CO), oxygen ions supplied through the solid electrolyte membrane 111 (O 2 -) and the solid electrolyte membrane 111 Water (H 2 O) and carbon dioxide (CO 2 ) are produced by electrochemical reaction in the vicinity of the interface between the two. At this time, the fuel cell 105 generates electricity by the electrons emitted from the oxygen ions.
The fuel gases that can be supplied and used for the fuel electrode 109 of the solid oxide fuel cell include hydrocarbon gases such as hydrogen (H 2 ), carbon monoxide (CO), and methane (CH 4 ), city gas, and natural gas. In addition, gasification gas produced from carbon-containing raw materials such as petroleum, methanol, and coal by a gasification facility can be mentioned.
 固体電解質膜111は、ガスを通しにくい気密性と、高温で高い酸素イオン導電性とを備えるYSZが主として用いられる。この固体電解質膜111は、空気極で生成される酸素イオン(O )を燃料極に移動させるものである。燃料極109の表面上に位置する固体電解質膜111の膜厚は10μm~100μmであり固体電解質膜111はスラリーをスクリーン印刷して形成されてもよい。 As the solid electrolyte membrane 111, YSZ having airtightness that makes it difficult for gas to pass through and high oxygen ion conductivity at high temperature is mainly used. The solid electrolyte membrane 111, the oxygen ions produced at the cathode - is to move to the fuel electrode (O 2). The film thickness of the solid electrolyte film 111 located on the surface of the fuel electrode 109 is 10 μm to 100 μm, and the solid electrolyte film 111 may be formed by screen printing the slurry.
 空気極113は、例えば、LaSrMnO系酸化物、又はLaCoO系酸化物で構成され、空気極113はスラリーをスクリーン印刷またはディスペンサを用いて塗布される。この空気極113は、固体電解質膜111との界面付近において、供給される空気等の酸化性ガス中の酸素を解離させて酸素イオン(O )を生成するものである。
 空気極113は2層構成とすることもできる。この場合、固体電解質膜111側の空気極層(空気極中間層)は高いイオン導電性を示し、触媒活性に優れる材料で構成される。空気極中間層上の空気極層(空気極導電層)は、Sr及びCaドープLaMnOで表されるペロブスカイト型酸化物で構成されても良い。こうすることにより、発電性能をより向上させることができる。
 酸化性ガスとは,酸素を略15%~30%含むガスであり、代表的には空気が好適であるが、空気以外にも燃焼排ガスと空気の混合ガスや、酸素と空気の混合ガスなどが使用可能である。
The air electrode 113 is composed of, for example, a LaSrMnO 3- based oxide or a LaCoO 3- based oxide, and the air electrode 113 is coated with a slurry by screen printing or using a dispenser. The air electrode 113 in the vicinity of the interface between the solid electrolyte membrane 111, the oxygen in the oxidizing gas such as air supplied by dissociating oxygen ion - and generates an (O 2).
The air electrode 113 may have a two-layer structure. In this case, the air electrode layer (air electrode intermediate layer) on the solid electrolyte membrane 111 side is made of a material showing high ionic conductivity and excellent catalytic activity. The air electrode layer (air electrode conductive layer) on the air electrode intermediate layer may be composed of a perovskite-type oxide represented by Sr and Ca-doped LaMnO 3. By doing so, the power generation performance can be further improved.
The oxidizing gas is a gas containing approximately 15% to 30% of oxygen, and air is typically preferable. However, in addition to air, a mixed gas of combustion exhaust gas and air, a mixed gas of oxygen and air, etc. Can be used.
 インターコネクタ107は、SrTiO系などのM1-xLxTiO(Mはアルカリ土類金属元素、Lはランタノイド元素)で表される導電性ペロブスカイト型酸化物から構成され、スラリーをスクリーン印刷する。インターコネクタ107は、燃料ガスと酸化性ガスとが混合しないように緻密な膜となっている。また、インターコネクタ107は、酸化雰囲気と還元雰囲気との両雰囲気下で安定した耐久性と電気導電性を備える。このインターコネクタ107は、隣り合う燃料電池セル105において、一方の燃料電池セル105の空気極113と他方の燃料電池セル105の燃料極109とを電気的に接続し、隣り合う燃料電池セル105同士を直列に接続するものである。 The interconnector 107 is composed of a conductive perovskite-type oxide represented by M1-xLxTiO 3 (M is an alkaline earth metal element and L is a lanthanoid element) such as SrTiO 3 system, and screen prints a slurry. The interconnector 107 has a dense film so that the fuel gas and the oxidizing gas do not mix with each other. Further, the interconnector 107 has stable durability and electrical conductivity in both an oxidizing atmosphere and a reducing atmosphere. In the adjacent fuel cell 105, the interconnector 107 electrically connects the air electrode 113 of one fuel cell 105 and the fuel electrode 109 of the other fuel cell 105, and the adjacent fuel cell 105 are connected to each other. Are connected in series.
 リード膜115は、電子伝導性を備えること、及びセルスタック101を構成する他の材料との熱膨張係数が近いことが必要であることから、Ni/YSZ等のNiとジルコニア系電解質材料との複合材やSrTiO系などのM1-xLxTiO(Mはアルカリ土類金属元素、Lはランタノイド元素)で構成されている。このリード膜115は、インターコネクタ107により直列に接続される複数の燃料電池セル105で発電された直流電力をセルスタック101の端部付近にあるリード部252(図3等を参照)まで導出するものである。 Since the lead film 115 needs to have electron conductivity and a coefficient of thermal expansion close to that of other materials constituting the cell stack 101, Ni such as Ni / YSZ and a zirconia-based electrolyte material are used. It is composed of M1-xLxTiO 3 (M is an alkaline earth metal element and L is a lanthanoid element) such as a composite material and SrTiO 3 system. The lead film 115 derives the DC power generated by the plurality of fuel cell 105s connected in series by the interconnector 107 to the lead portion 252 (see FIG. 3 and the like) near the end of the cell stack 101. It is a thing.
 次に、図2と図3とを参照して本実施形態に係る燃料電池モジュール及び燃料電池カートリッジについて説明する。ここで、図2は、本実施形態に係る燃料電池モジュールの一態様を示すものである。また、図3は、本実施形態に係る燃料電池カートリッジの一態様の断面図を示すものである。
 尚、図2では燃料電池モジュールの内部構成をわかりやすく示すために、図3に示す断熱部材の一部が部分的に省略して示されている。
Next, the fuel cell module and the fuel cell cartridge according to the present embodiment will be described with reference to FIGS. 2 and 3. Here, FIG. 2 shows one aspect of the fuel cell module according to the present embodiment. Further, FIG. 3 shows a cross-sectional view of one aspect of the fuel cell cartridge according to the present embodiment.
In FIG. 2, in order to show the internal configuration of the fuel cell module in an easy-to-understand manner, a part of the heat insulating member shown in FIG. 3 is partially omitted.
 燃料電池モジュール201は、図2に示すように、例えば、複数の燃料電池カートリッジ203と、これら複数の燃料電池カートリッジ203を収納する圧力容器205とを備える。なお、図2には円筒形の燃料電池のセルスタック101を例示しているが、必ずしもこの限りである必要はなく、例えば平板形のセルスタックであってもよい。また、燃料電池モジュール201は、燃料ガス供給管207と複数の燃料ガス供給枝管207a及び燃料ガス排出管209と複数の燃料ガス排出枝管209aとを備える。また、燃料電池モジュール201は、酸化性ガス供給管(不図示)と酸化性ガス供給枝管211a(図3を参照)及び酸化性ガス排出管(不図示)と複数の酸化性ガス排出枝管211b(図3を参照)とを備える。 As shown in FIG. 2, the fuel cell module 201 includes, for example, a plurality of fuel cell cartridges 203 and a pressure vessel 205 for accommodating the plurality of fuel cell cartridges 203. Although the cell stack 101 of the cylindrical fuel cell is illustrated in FIG. 2, this is not necessarily the case, and for example, a flat cell stack may be used. Further, the fuel cell module 201 includes a fuel gas supply pipe 207, a plurality of fuel gas supply branch pipes 207a, a fuel gas discharge pipe 209, and a plurality of fuel gas discharge branch pipes 209a. Further, the fuel cell module 201 includes an oxidizing gas supply pipe (not shown), an oxidizing gas supply branch pipe 211a (see FIG. 3), an oxidizing gas discharge pipe (not shown), and a plurality of oxidizing gas discharge branches. It includes 211b (see FIG. 3).
 燃料ガス供給管207は、圧力容器205の外部に設けられ、燃料電池モジュール201の発電量に対応して所定ガス組成と所定流量の燃料ガスを供給する燃料ガス供給部に接続されると共に、複数の燃料ガス供給枝管207aに接続されている。この燃料ガス供給管207は、上述の燃料ガス供給部から供給される所定流量の燃料ガスを、複数の燃料ガス供給枝管207aに分岐して導くものである。また、燃料ガス供給枝管207aは、燃料ガス供給管207に接続されると共に、複数のSOFC燃料電池カートリッジ203に接続されている。この燃料ガス供給枝管207aは、燃料ガス供給管207から供給される燃料ガスを複数の燃料電池カートリッジ203に略均等の流量で導き、複数の燃料電池カートリッジ203の発電性能を略均一化させるものである。 A plurality of fuel gas supply pipes 207 are provided outside the pressure vessel 205 and are connected to a fuel gas supply unit that supplies fuel gas having a predetermined gas composition and a predetermined flow rate according to the amount of power generated by the fuel cell module 201. It is connected to the fuel gas supply branch pipe 207a of. The fuel gas supply pipe 207 branches and guides a predetermined flow rate of fuel gas supplied from the above-mentioned fuel gas supply unit to a plurality of fuel gas supply branch pipes 207a. Further, the fuel gas supply branch pipe 207a is connected to the fuel gas supply pipe 207 and is also connected to a plurality of SOFC fuel cell cartridges 203. The fuel gas supply branch pipe 207a guides the fuel gas supplied from the fuel gas supply pipe 207 to the plurality of fuel cell cartridges 203 at a substantially equal flow rate, and substantially equalizes the power generation performance of the plurality of fuel cell cartridges 203. Is.
 燃料ガス排出枝管209aは、複数の燃料電池カートリッジ203に接続されると共に、燃料ガス排出管209に接続されている。この燃料ガス排出枝管209aは、燃料電池カートリッジ203から排出される排燃料ガスを燃料ガス排出管209に導くものである。また、燃料ガス排出管209は、複数の燃料ガス排出枝管209aに接続されると共に、一部が圧力容器205の外部に配置されている。この燃料ガス排出管209は、燃料ガス排出枝管209aから略均等の流量で導出される排燃料ガスを圧力容器205の外部に導くものである。 The fuel gas discharge branch pipe 209a is connected to a plurality of fuel cell cartridges 203 and is also connected to the fuel gas discharge pipe 209. The fuel gas discharge branch pipe 209a guides the exhaust fuel gas discharged from the fuel cell cartridge 203 to the fuel gas discharge pipe 209. Further, the fuel gas discharge pipe 209 is connected to a plurality of fuel gas discharge branch pipes 209a, and a part of the fuel gas discharge pipe 209 is arranged outside the pressure vessel 205. The fuel gas discharge pipe 209 guides the exhaust fuel gas led out from the fuel gas discharge branch pipe 209a at a substantially equal flow rate to the outside of the pressure vessel 205.
 圧力容器205は、内部の圧力が0.1MPa~約3MPa、内部の温度が大気温度~約550℃で運用されるので、耐力性と酸化性ガス中に含まれる酸素などの酸化剤に対する耐食性を保有する材質が利用される。例えばSUS304などのステンレス系材が好適である。 Since the pressure vessel 205 is operated at an internal pressure of 0.1 MPa to about 3 MPa and an internal temperature of atmospheric temperature to about 550 ° C., it has a proof stress and corrosion resistance against an oxidizing agent such as oxygen contained in the oxidizing gas. The material you have is used. For example, a stainless steel material such as SUS304 is suitable.
 ここで、本実施形態においては、複数の燃料電池カートリッジ203が集合化されて圧力容器205に収納される態様について説明しているが、これに限られず例えば、燃料電池カートリッジ203が集合化されずに圧力容器205内に収納される態様とすることもできる。 Here, in the present embodiment, a mode in which a plurality of fuel cell cartridges 203 are assembled and stored in the pressure vessel 205 will be described, but the present invention is not limited to this, and for example, the fuel cell cartridge 203 is not assembled. It can also be stored in the pressure vessel 205.
 燃料電池カートリッジ203は、図3に示す通り、複数のセルスタック101と、発電室215と、燃料ガス供給ヘッダ217と、燃料ガス排出ヘッダ219と、酸化性ガス(空気)供給ヘッダ221と、酸化性ガス排出ヘッダ223とを備える。 As shown in FIG. 3, the fuel cell cartridge 203 includes a plurality of cell stacks 101, a power generation chamber 215, a fuel gas supply header 217, a fuel gas discharge header 219, an oxidizing gas (air) supply header 221 and oxidation. It is provided with a sex gas discharge header 223.
 尚、本実施形態においては、燃料電池カートリッジ203は、燃料ガス供給ヘッダ217と燃料ガス排出ヘッダ219と酸化性ガス供給ヘッダ221と酸化性ガス排出ヘッダ223とが図3のように配置されることで、燃料ガスと酸化性ガスとがセルスタック101の内側と外側とを対向して流れる構造となっているが、必ずしもこの必要はなく、例えば、セルスタック101の内側と外側とを平行して流れる、または酸化性ガスがセルスタック101の長手方向と直交する方向へ流れるようにしても良い。 In the present embodiment, in the fuel cell cartridge 203, the fuel gas supply header 217, the fuel gas discharge header 219, the oxidizing gas supply header 221 and the oxidizing gas discharge header 223 are arranged as shown in FIG. The structure is such that the fuel gas and the oxidizing gas flow so as to face the inside and the outside of the cell stack 101, but this is not always necessary. For example, the inside and the outside of the cell stack 101 are parallel to each other. The flowing or oxidizing gas may be allowed to flow in a direction orthogonal to the longitudinal direction of the cell stack 101.
 発電室215は、セルスタック101の燃料電池セル105が配置された領域であり、燃料ガスと酸化性ガスとを電気化学的に反応させて発電を行う領域である。また、この発電室215のセルスタック101長手方向の中央部付近での温度は、不図示の温度計測部(温度センサや熱電対など)で監視され、燃料電池モジュール201の定常運転時に、およそ700℃~1000℃の高温雰囲気となる。 The power generation chamber 215 is an area in which the fuel cell 105 of the cell stack 101 is arranged, and is an area in which the fuel gas and the oxidizing gas are electrochemically reacted to generate electricity. Further, the temperature near the central portion of the cell stack 101 in the longitudinal direction of the power generation chamber 215 is monitored by a temperature measuring unit (temperature sensor, thermocouple, etc.) (not shown), and is approximately 700 during steady operation of the fuel cell module 201. It becomes a high temperature atmosphere of ℃ to 1000 ℃.
 燃料ガス供給ヘッダ217は、中空状の上部ケーシング229aによって規定される領域であり、上部ケーシング229aの上部に設けられた燃料ガス供給孔231aにおいて、燃料ガス供給枝管207aに連通されている。また、上部ケーシング229aは、下方面にセルスタック101の端部が挿通する孔部を有しており、セルスタック101の端部との間がシール部材237aを介して密に接合されている。当該孔部は、燃料電池カートリッジ203に備えられるセルスタック101の本数に対応した複数の孔を有し、該孔にはセルスタック101が夫々挿入されている。燃料ガス供給ヘッダ217は、燃料ガス供給枝管207aから燃料ガス供給孔231aを介して供給される燃料ガスを、複数のセルスタック101の端部から基体管103の内部に略均一流量で導き、複数のセルスタック101の発電性能を略均一化させるものである。 The fuel gas supply header 217 is a region defined by the hollow upper casing 229a, and is communicated with the fuel gas supply branch pipe 207a in the fuel gas supply hole 231a provided in the upper part of the upper casing 229a. Further, the upper casing 229a has a hole on the lower surface through which the end portion of the cell stack 101 is inserted, and is tightly joined to the end portion of the cell stack 101 via a seal member 237a. The holes have a plurality of holes corresponding to the number of cell stacks 101 provided in the fuel cell cartridge 203, and the cell stacks 101 are inserted into the holes, respectively. The fuel gas supply header 217 guides the fuel gas supplied from the fuel gas supply branch pipe 207a through the fuel gas supply hole 231a from the ends of the plurality of cell stacks 101 into the base pipe 103 at a substantially uniform flow rate. The power generation performance of the plurality of cell stacks 101 is made substantially uniform.
 燃料ガス排出ヘッダ219は、中空状の下部ケーシング229bによって規定される領域であり、下部ケーシング229bの下部に設けられた燃料ガス排出孔231bにおいて、燃料ガス排出枝管209aに連通されている。また下部ケーシング229は、上方面にセルスタック101の端部が挿通する孔部を有しており、セルスタック101の端部との間がシール部材237bを介して密に接合されている。当該孔部は燃料電池カートリッジ203に備えられるセルスタック101の本数に対応した複数の孔を有し、該孔にはセルスタック101が夫々挿入されている。燃料ガス排出ヘッダ219は、複数のセルスタック101の基体管103の内部を通過して端部から燃料ガス排出ヘッダ219に供給される排燃料ガスを集約して、燃料ガス排出孔231bを介して燃料ガス排出枝管209aに導くものである。 The fuel gas discharge header 219 is a region defined by the hollow lower casing 229b, and is communicated with the fuel gas discharge branch pipe 209a in the fuel gas discharge hole 231b provided in the lower part of the lower casing 229b. Further, the lower casing 229 has a hole on the upper surface through which the end portion of the cell stack 101 is inserted, and is tightly joined to the end portion of the cell stack 101 via a seal member 237b. The holes have a plurality of holes corresponding to the number of cell stacks 101 provided in the fuel cell cartridge 203, and the cell stacks 101 are inserted into the holes, respectively. The fuel gas discharge header 219 passes through the inside of the base pipe 103 of the plurality of cell stacks 101, aggregates the exhaust fuel gas supplied from the end to the fuel gas discharge header 219, and passes through the fuel gas discharge hole 231b. It leads to the fuel gas discharge branch pipe 209a.
 燃料電池モジュール201の発電量に対応して所定ガス組成と所定流量の酸化性ガスを酸化性ガス供給枝管211aへと分岐して、複数の燃料電池カートリッジ203へ供給する。酸化性ガス供給ヘッダ221は、下部ケーシング229bの上方面と発電室215の下方側を規定する第1下部断熱体227cとに囲まれた領域であり、側面に設けられた酸化性ガス供給孔233aにおいて酸化性ガス供給枝管211aに連通されている。この酸化性ガス供給ヘッダ221は、酸化性ガス供給枝管211aから酸化性ガス供給孔233aを介して供給される所定流量の酸化性ガスを、後述する酸化性ガス供給隙間235aを介して発電室215に導くものである。 Oxidizing gas having a predetermined gas composition and a predetermined flow rate is branched into the oxidizing gas supply branch pipe 211a according to the amount of power generated by the fuel cell module 201, and supplied to the plurality of fuel cell cartridges 203. The oxidizing gas supply header 221 is a region surrounded by the upper surface of the lower casing 229b and the first lower heat insulating body 227c that defines the lower side of the power generation chamber 215, and the oxidizing gas supply hole 233a provided on the side surface thereof. Is communicated with the oxidizing gas supply branch pipe 211a. The oxidizing gas supply header 221 transfers the oxidizing gas of a predetermined flow rate supplied from the oxidizing gas supply branch pipe 211a through the oxidizing gas supply hole 233a to the power generation chamber via the oxidizing gas supply gap 235a described later. It leads to 215.
 酸化性ガス排出ヘッダ223は、上部ケーシング229aの下方面と発電室215の上方側を規定する第1上部断熱体227aとに囲まれた領域であり、側面に設けられた酸化性ガス排出孔233bにおいて酸化性ガス排出枝管211bに連通されている。この酸化性ガス排出ヘッダ223は、発電室215から、後述する酸化性ガス排出隙間235bを介して酸化性ガス排出ヘッダ223に供給される排酸化性ガスを、酸化性ガス排出孔233bを介して酸化性ガス排出枝管211bに導くものである。 The oxidizing gas discharge header 223 is a region surrounded by the lower surface of the upper casing 229a and the first upper heat insulating body 227a defining the upper side of the power generation chamber 215, and the oxidizing gas discharge hole 233b provided on the side surface thereof. Is communicated with the oxidizing gas discharge branch pipe 211b. The oxidizing gas discharge header 223 transfers the oxidative gas supplied from the power generation chamber 215 to the oxidative gas discharge header 223 via the oxidative gas discharge gap 235b, which will be described later, through the oxidative gas discharge hole 233b. It leads to the oxidizing gas discharge branch pipe 211b.
 断熱部材は、発電室215を少なくとも部分的に画定し、第1上部断熱体227aと、第2上部断熱体227bと、第1下部断熱体227cと、第2下部断熱体227dと、第1側方断熱体227eと、第2側方断熱体227fと、を含む。尚、図3では断熱部材227を構成する各断熱体のレイアウトの一例を示しているが、必ずしもこの限りである必要はない。また、以下の説明では、第1上部断熱体227a、第2上部断熱体227b、第1下部断熱体227c、第2下部断熱体227d、第1側方断熱体227e及び第2側方断熱体227fを総称する場合には、「断熱部材227」と示すこととする。 The heat insulating member defines the power generation chamber 215 at least partially, and the first upper heat insulating body 227a, the second upper heat insulating body 227b, the first lower heat insulating body 227c, the second lower heat insulating body 227d, and the first side. Includes a square insulation 227e and a second lateral insulation 227f. Note that FIG. 3 shows an example of the layout of each heat insulating body constituting the heat insulating member 227, but this is not necessarily the case. Further, in the following description, the first upper heat insulating body 227a, the second upper heat insulating body 227b, the first lower heat insulating body 227c, the second lower heat insulating body 227d, the first side heat insulating body 227e and the second side heat insulating body 227f Are collectively referred to as "insulation member 227".
 第1上部断熱体227aは、上部ケーシング229aの下方側に配置され、上部ケーシング229aの側板に固定された第1側方断熱体227eに固定されている。また、第1上部断熱体227aには、燃料電池カートリッジ203に備えられるセルスタック101の本数に対応して、複数の孔が設けられている。この孔の直径はセルスタック101の外径よりも大きく設定されている。第1上部断熱体227aは、この孔の内面と、第1上部断熱体227aに挿通されたセルスタック101の外面との間に形成された酸化性ガス排出隙間235bを備える。 The first upper heat insulating body 227a is arranged on the lower side of the upper casing 229a and is fixed to the first side heat insulating body 227e fixed to the side plate of the upper casing 229a. Further, the first upper heat insulating body 227a is provided with a plurality of holes corresponding to the number of cell stacks 101 provided in the fuel cell cartridge 203. The diameter of this hole is set to be larger than the outer diameter of the cell stack 101. The first upper heat insulating body 227a includes an oxidizing gas discharge gap 235b formed between the inner surface of the hole and the outer surface of the cell stack 101 inserted through the first upper heat insulating body 227a.
 また第1上部断熱体227aは、発電室215と酸化性ガス排出ヘッダ223とを仕切るように配置される。また、第1上部断熱体227aは、発電室215を通過して高温に晒された排酸化性ガスを、酸化性ガス排出隙間235bを通過させて酸化性ガス排出ヘッダ223に導くものである。 Further, the first upper heat insulating body 227a is arranged so as to partition the power generation chamber 215 and the oxidizing gas discharge header 223. Further, the first upper heat insulating body 227a guides the oxidative gas that has passed through the power generation chamber 215 and exposed to high temperature to the oxidative gas discharge header 223 by passing through the oxidative gas discharge gap 235b.
 本実施形態によれば、上述した燃料電池カートリッジ203の構造により、燃料ガスと酸化性ガスとがセルスタック101の内側と外側とを対向して流れるものとなっている。このことにより、排酸化性ガスは、基体管103の内部を通って発電室215に供給される燃料ガスとの間で熱交換がなされ、金属材料から成る上部ケーシング229a等が座屈などの変形をしない温度に冷却されて酸化性ガス排出ヘッダ223に供給される。また、燃料ガスは、発電室215から排出される排酸化性ガスとの熱交換により昇温され、発電室215に供給される。その結果、ヒーター等を用いることなく発電に適した温度に予熱昇温された燃料ガスを発電室215に供給することができる。 According to the present embodiment, due to the structure of the fuel cell cartridge 203 described above, the fuel gas and the oxidizing gas flow toward the inside and the outside of the cell stack 101. As a result, the oxidative gas exchanges heat with the fuel gas supplied to the power generation chamber 215 through the inside of the base tube 103, and the upper casing 229a and the like made of a metal material are deformed such as buckling. It is cooled to a temperature that does not allow it to be supplied to the oxidizing gas discharge header 223. Further, the fuel gas is heated by heat exchange with the oxidative gas discharged from the power generation chamber 215 and supplied to the power generation chamber 215. As a result, the fuel gas preheated to a temperature suitable for power generation can be supplied to the power generation chamber 215 without using a heater or the like.
 第2上部断熱体227bは、上部ケーシング229aの上方側に、上部ケーシング229aの天板と略平行になるように配置され、上部ケーシング229aの側板に固定された第1側方断熱体227eに固定されている。また、第2上部断熱体227bには、上部ケーシング229aの上部に設けられた燃料ガス供給孔231aに接続される燃料ガス供給枝管207aが連通するための開口が設けられている。 The second upper heat insulating body 227b is arranged on the upper side of the upper casing 229a so as to be substantially parallel to the top plate of the upper casing 229a, and is fixed to the first side heat insulating body 227e fixed to the side plate of the upper casing 229a. Has been done. Further, the second upper heat insulating body 227b is provided with an opening for communicating the fuel gas supply branch pipe 207a connected to the fuel gas supply hole 231a provided in the upper part of the upper casing 229a.
 第1下部断熱体227cは、下部ケーシング229bの上方側に配置され、下部ケーシング229bの底板と略平行になるように配置され、下部ケーシング229bの側板に固定された第1側方断熱体227eに固定されている。また、第1下部断熱体227cには、燃料電池カートリッジ203に備えられるセルスタック101の本数に対応して、複数の孔が設けられている。この孔の直径はセルスタック101の外径よりも大きく設定されている。第1下部断熱体227cは、この孔の内面と、第1下部断熱体227cに挿通されたセルスタック101の外面との間に形成された酸化性ガス供給隙間235aを備える。 The first lower heat insulating body 227c is arranged on the upper side of the lower casing 229b, is arranged so as to be substantially parallel to the bottom plate of the lower casing 229b, and is attached to the first side heat insulating body 227e fixed to the side plate of the lower casing 229b. It is fixed. Further, the first lower heat insulating body 227c is provided with a plurality of holes corresponding to the number of cell stacks 101 provided in the fuel cell cartridge 203. The diameter of this hole is set to be larger than the outer diameter of the cell stack 101. The first lower heat insulating body 227c includes an oxidizing gas supply gap 235a formed between the inner surface of the hole and the outer surface of the cell stack 101 inserted through the first lower heat insulating body 227c.
 また第1下部断熱体227cは、発電室215と酸化性ガス供給ヘッダ221とを仕切るように配置されている。また、第1下部断熱体227cは、酸化性ガス供給ヘッダ221に供給される酸化性ガスを、酸化性ガス供給隙間235aを通過させて発電室215に導くものである。 Further, the first lower heat insulating body 227c is arranged so as to partition the power generation chamber 215 and the oxidizing gas supply header 221. Further, the first lower heat insulating body 227c guides the oxidizing gas supplied to the oxidizing gas supply header 221 to the power generation chamber 215 through the oxidizing gas supply gap 235a.
 第2下部断熱体227dは、下部ケーシング229bの下方側に、下部ケーシング229bの底板と略平行になるように配置され、下部ケーシング229bの側板に固定された第1側方断熱体227eに固定されている。また、第2下部断熱体227dには、下部ケーシング229bの下部に設けられた燃料ガス排出孔231bに接続される燃料ガス排出枝管209aが連通するための開口が設けられている。 The second lower heat insulating body 227d is arranged below the lower casing 229b so as to be substantially parallel to the bottom plate of the lower casing 229b, and is fixed to the first lateral heat insulating body 227e fixed to the side plate of the lower casing 229b. ing. Further, the second lower heat insulating body 227d is provided with an opening for communicating the fuel gas discharge branch pipe 209a connected to the fuel gas discharge hole 231b provided in the lower part of the lower casing 229b.
 第1側方断熱体227eは、セルスタック101の延在方向に対して発電室215の側方に設けられる。また第1側方断熱体227eは、上部ケーシング229a及び下部ケーシング229bの間に設けられ、その両端はそれぞれ第1上部断熱体227a及び第1下部断熱体227cに固定されるとともに、上部ケーシング229a及び下部ケーシング229bの側板に固定されている。また第1側方断熱体227eは発電室215を全周にわたって囲むように、セルスタック101の延在方向に対する垂直面において閉断面形状を有する。 The first lateral heat insulating body 227e is provided on the side of the power generation chamber 215 with respect to the extending direction of the cell stack 101. Further, the first side heat insulating body 227e is provided between the upper casing 229a and the lower casing 229b, and both ends thereof are fixed to the first upper heat insulating body 227a and the first lower heat insulating body 227c, respectively, and the upper casing 229a and the upper casing 229a It is fixed to the side plate of the lower casing 229b. Further, the first lateral heat insulating body 227e has a closed cross-sectional shape in a plane perpendicular to the extending direction of the cell stack 101 so as to surround the power generation chamber 215 over the entire circumference.
 第2側方断熱体227fは、発電室215から見て第1側方断熱体227eより外側に設けられる。また第2側方断熱体227fは、第2上部断熱体227b及び第2下部断熱体227dの間に設けられ、その両端はそれぞれ第2上部断熱体227b及び第2下部断熱体227dに固定されている。また第2側方断熱体227fは第1側方断熱体227eを全周にわたって囲むように、セルスタック101の延在方向に対する垂直面において閉断面形状を有する。 The second side heat insulating body 227f is provided outside the first side heat insulating body 227e when viewed from the power generation chamber 215. Further, the second side heat insulating body 227f is provided between the second upper heat insulating body 227b and the second lower heat insulating body 227d, and both ends thereof are fixed to the second upper heat insulating body 227b and the second lower heat insulating body 227d, respectively. There is. Further, the second side heat insulating body 227f has a closed cross-sectional shape in a plane perpendicular to the extending direction of the cell stack 101 so as to surround the first side heat insulating body 227e over the entire circumference.
 また第2下部断熱体227d及び第2側方断熱体227fの外側には、燃料電池カートリッジ203の外殻を規定するための外殻ケーシング250が設けられている。外殻ケーシング250は、金属などの導電性材料を含んで構成されている。また外殻ケーシング250は、第2下部断熱体227dの外側に位置し、接地された架台270に設置された際に、架台270に対向するように配置される下面251を有する。 Further, on the outside of the second lower heat insulating body 227d and the second side heat insulating body 227f, an outer shell casing 250 for defining the outer shell of the fuel cell cartridge 203 is provided. The outer shell casing 250 is configured to include a conductive material such as metal. Further, the outer shell casing 250 has a lower surface 251 located outside the second lower heat insulating body 227d and arranged so as to face the pedestal 270 when installed on the grounded pedestal 270.
 尚、本実施形態の外殻ケーシング250は第2上部断熱体227bの外側が上方に向けて開口した有底形状を有するが、第2上部断熱体227bの外側に至るまで延びることで、燃料電池カートリッジ203の全体を囲むように構成されていてもよい。 The outer shell casing 250 of the present embodiment has a bottomed shape in which the outside of the second upper heat insulating body 227b opens upward, but the fuel cell extends to the outside of the second upper heat insulating body 227b. It may be configured to surround the entire cartridge 203.
 本実施形態によれば、上述した燃料電池カートリッジ203の構造により、燃料ガスと酸化性ガスとがセルスタック101の内側と外側とを対向して流れるものとなっている。このことにより、基体管103の内部を通って発電室215を通過した排燃料ガスは、発電室215に供給される酸化性ガスとの間で熱交換がなされ、燃料ガス排出ヘッダ219に供給される。また、酸化性ガスは排燃料ガスとの熱交換により昇温され、発電室215に供給される。その結果、ヒーター等を用いることなく発電に必要な温度に昇温された酸化性ガスを発電室215に供給することができる。 According to the present embodiment, due to the structure of the fuel cell cartridge 203 described above, the fuel gas and the oxidizing gas flow toward the inside and the outside of the cell stack 101. As a result, the exhaust fuel gas that has passed through the inside of the base pipe 103 and passed through the power generation chamber 215 undergoes heat exchange with the oxidizing gas supplied to the power generation chamber 215 and is supplied to the fuel gas discharge header 219. NS. Further, the oxidizing gas is heated by heat exchange with the exhaust fuel gas and supplied to the power generation chamber 215. As a result, the oxidizing gas heated to the temperature required for power generation can be supplied to the power generation chamber 215 without using a heater or the like.
 発電室215で発電された直流電力は、複数の燃料電池セル105に設けたNi/YSZ等からなるリード膜115によりセルスタック101の端部付近にあるリード部252まで導出した後に、燃料電池カートリッジ203の集電棒(不図示)に集電板(不図示)を介して集電して、各燃料電池カートリッジ203の外部へと取り出される。集電棒によって燃料電池カートリッジ203の外部に導出された直流電力は、各燃料電池カートリッジ203の発電電力を所定の直列数および並列数へと相互に接続され、燃料電池モジュール201の外部へと導出されて、図示しないパワーコンディショナ等の電力変換装置(インバータなど)により所定の交流電力へと変換されて、電力供給先(例えば、負荷設備や電力系統)へと供給される。 The DC power generated in the power generation chamber 215 is led out to the lead portion 252 near the end of the cell stack 101 by the lead film 115 made of Ni / YSZ or the like provided in the plurality of fuel cell 105, and then the fuel cell cartridge. The electric power is collected on the current collecting rod (not shown) of 203 via the current collecting plate (not shown), and is taken out to the outside of each fuel cell cartridge 203. The DC power led out to the outside of the fuel cell cartridge 203 by the current collector rod connects the generated power of each fuel cell cartridge 203 to a predetermined number of series and parallel numbers, and is led out to the outside of the fuel cell module 201. Then, it is converted into a predetermined AC power by a power conversion device (inverter or the like) such as a power conditioner (not shown), and is supplied to a power supply destination (for example, a load facility or a power system).
 ここで発電室215を少なくとも部分的に画定する各断熱部材227の外側には外殻ケーシング250が配置されており、断熱部材227と外殻ケーシング250とが互いに接触する構成を有している。断熱部材227は例えばシリカ(SiO)やアルミナ(Al)などの絶縁性材料から構成されるが、このような断熱部材227は常温(例えば0℃~40℃程度の温度域)では良好な絶縁性を示すものの、温度が上昇すると絶縁性が低下することがある。 Here, an outer shell casing 250 is arranged outside each heat insulating member 227 that defines the power generation chamber 215 at least partially, and the heat insulating member 227 and the outer shell casing 250 are in contact with each other. The heat insulating member 227 is made of an insulating material such as silica (SiO 2 ) or alumina (Al 2 O 3 ), and such a heat insulating member 227 is at room temperature (for example, in a temperature range of about 0 ° C. to 40 ° C.). Although it shows good insulation, it may decrease as the temperature rises.
 一方で、発電室215で発電した電力を外部に取り出すために、セルスタック101のリード膜115を含むリード部252が発電室215から第1上部断熱体227a及び第1下部断熱体227cの外側に至るまで延在している。リード部252は、第1上部断熱体227aに設けられた酸化性ガス排出隙間235b、及び、第1下部断熱体227cに設けられた酸化性ガス供給隙間235aに挿通されることで、常温域では、リード部252が第1上部断熱体227a及び第1下部断熱体227cに接触しないように設計されるが、温度が上昇して高温域に達すると、熱変形等の影響によってリード部252が第1上部断熱体227a及び第1下部断熱体227cに接触することがある。このとき、断熱部材227の絶縁性が低下していると、リード部252と外殻ケーシング250との電位差によって、両者間に地絡電流が発生してしまうことがある。 On the other hand, in order to take out the electric power generated in the power generation chamber 215 to the outside, the lead portion 252 including the lead film 115 of the cell stack 101 is moved from the power generation chamber 215 to the outside of the first upper heat insulating body 227a and the first lower heat insulating body 227c. It extends all the way. The lead portion 252 is inserted into the oxidizing gas discharge gap 235b provided in the first upper heat insulating body 227a and the oxidizing gas supply gap 235a provided in the first lower heat insulating body 227c, so that the lead portion 252 is inserted in the oxidizing gas supply gap 235a provided in the first lower heat insulating body 227c. The lead portion 252 is designed so as not to come into contact with the first upper heat insulating body 227a and the first lower heat insulating body 227c, but when the temperature rises and reaches a high temperature range, the lead portion 252 becomes the first due to the influence of thermal deformation or the like. 1 It may come into contact with the upper heat insulating body 227a and the first lower heat insulating body 227c. At this time, if the insulating property of the heat insulating member 227 is deteriorated, a ground fault current may be generated between the lead portion 252 and the outer shell casing 250 due to the potential difference between the two.
 このような課題を解決するために本実施形態では、リード部252が断熱部材227に接触した際にリード部252と外殻ケーシング250との間に形成される導電経路を少なくとも部分的に遮断可能に構成された絶縁部材260を備える。絶縁部材260は、常温より高温域において断熱部材227より高い絶縁性を有する絶縁性材料、例えば高純度のアルミナ(Al)やマイカなどを含んで構成される。このような絶縁部材260によって、導電経路254が少なくとも部分的に遮断されることで、地絡電流を効果的に抑制することができる。 In order to solve such a problem, in the present embodiment, when the lead portion 252 comes into contact with the heat insulating member 227, the conductive path formed between the lead portion 252 and the outer shell casing 250 can be blocked at least partially. The insulating member 260 configured in the above is provided. The insulating member 260 is composed of an insulating material having a higher insulating property than the heat insulating member 227 in a temperature range higher than normal temperature, for example, high-purity alumina (Al 2 O 3 ), mica, and the like. By blocking the conductive path 254 at least partially by such an insulating member 260, the ground fault current can be effectively suppressed.
 尚、以下の説明では、リード部252が断熱部材227に接触した際に、リード部252と外殻ケーシング250との間に形成される導電経路を少なくとも部分的に遮断可能に構成された絶縁部材260について説明するが、絶縁部材260は、リード部252と他の導電部材との間に形成される任意の導電経路を少なくとも部分的に遮断可能に構成してもよい。例えば、上部ケーシング229aや下部ケーシング229bもまた導電性材料から構成されるため、これらの導電部材とリード部252との間に形成される導電経路を少なくとも部分的に遮断するように絶縁部材260を設けてもよい。 In the following description, when the lead portion 252 comes into contact with the heat insulating member 227, the insulating member is configured so as to be able to at least partially block the conductive path formed between the lead portion 252 and the outer shell casing 250. Although 260 will be described, the insulating member 260 may be configured to at least partially block any conductive path formed between the lead portion 252 and the other conductive member. For example, since the upper casing 229a and the lower casing 229b are also made of a conductive material, the insulating member 260 is provided so as to at least partially block the conductive path formed between these conductive members and the lead portion 252. It may be provided.
 幾つかの実施形態では、絶縁部材260は、リード部252と外殻ケーシング250との間に設けられる(言い換えると、少なくともリード部252と外殻ケーシング250とを結ぶ直線上に絶縁部材260の少なくとも一部が交差するように配置される)。このように絶縁部材260を配置することで導電経路を効果的に遮断できる。 In some embodiments, the insulating member 260 is provided between the lead portion 252 and the outer shell casing 250 (in other words, at least the insulating member 260 on a straight line connecting the lead portion 252 and the outer shell casing 250). Some are arranged so that they intersect). By arranging the insulating member 260 in this way, the conductive path can be effectively blocked.
 図3に示す実施形態では、絶縁部材260は、外殻ケーシング250と断熱部材との間に設けられる。より具体的には、外殻ケーシング250の内壁面と第2側方断熱体227fとの境界に沿って絶縁部材260が設けられる。このように互いに隣接する外殻ケーシング250と第2側方断熱体227fとの間に絶縁部材260を配置することで導電経路を効果的に遮断できる。 In the embodiment shown in FIG. 3, the insulating member 260 is provided between the outer shell casing 250 and the heat insulating member. More specifically, the insulating member 260 is provided along the boundary between the inner wall surface of the outer shell casing 250 and the second lateral heat insulating body 227f. By arranging the insulating member 260 between the outer shell casing 250 adjacent to each other and the second side heat insulating body 227f in this way, the conductive path can be effectively blocked.
 また図3の絶縁部材260は、第2側方断熱体227fのうち酸化性ガス供給枝管221a及び酸化性ガス排出枝管221bが挿通するための開口部近傍におけるコーナー部C1及びC2を覆うように形成されてもよい。これにより、第2側方断熱体227fが酸化性ガス供給枝管221a及び酸化性ガス排出枝管221bと接触する面上に至るまで絶縁部材260を介在させることができ、より効果的に導電経路を遮断することができる。 Further, the insulating member 260 of FIG. 3 covers the corner portions C1 and C2 in the vicinity of the opening through which the oxidizing gas supply branch pipe 221a and the oxidizing gas discharge branch pipe 221b of the second side heat insulating body 227f are inserted. May be formed in. As a result, the insulating member 260 can be interposed up to the surface where the second side heat insulating body 227f comes into contact with the oxidizing gas supply branch pipe 221a and the oxidizing gas discharging branch pipe 221b, and the conductive path can be more effectively performed. Can be blocked.
 図4は図3の第1変形例である。図5は図3の第2変形例である。図6は図3の第3変形例である。第1変形例乃至第3変形例では、絶縁部材260は、断熱部材227を構成する複数の断熱体の間に設けられる。このように断熱部材227を構成する複数の断熱体の間に絶縁部材260を介在させることで、リード部252と外殻ケーシング250との間に形成される導電経路を効果的に遮断できる。 FIG. 4 is a first modification of FIG. FIG. 5 is a second modification of FIG. FIG. 6 is a third modification of FIG. In the first modification to the third modification, the insulating member 260 is provided between a plurality of heat insulating bodies constituting the heat insulating member 227. By interposing the insulating member 260 between the plurality of heat insulating bodies constituting the heat insulating member 227 in this way, the conductive path formed between the lead portion 252 and the outer shell casing 250 can be effectively blocked.
 図4に示す第1変形例では、絶縁部材260は、第1側方断熱体227eと第2側方断熱体227fとの間に設けられている。このように第1変形例では、発電室215から見て内外方向に沿って積層される複数の断熱体の間に絶縁部材260を介在させることで、リード部252と外殻ケーシング250との間に形成される導電経路を効果的に遮断できる。 In the first modification shown in FIG. 4, the insulating member 260 is provided between the first side heat insulating body 227e and the second side heat insulating body 227f. As described above, in the first modification, the insulating member 260 is interposed between the plurality of heat insulating bodies laminated along the inner and outer directions when viewed from the power generation chamber 215, so that the lead portion 252 and the outer shell casing 250 are separated from each other. The conductive path formed in the can be effectively blocked.
 また図4の絶縁部材260は、第1側方断熱体227eの上端部及び下端部において、第1側方断熱体227eのコーナー部C3及びC4を覆うように形成されてもよい。これにより、第1側方断熱体227eが酸化性ガス供給孔233a及び酸化性ガス排出孔233bの構成部材と接触する面上に絶縁部材260を介在させることができ、より効果的に導電経路を遮断することができる。 Further, the insulating member 260 of FIG. 4 may be formed so as to cover the corner portions C3 and C4 of the first side heat insulating body 227e at the upper end portion and the lower end portion of the first side heat insulating body 227e. As a result, the insulating member 260 can be interposed on the surface where the first lateral heat insulating body 227e comes into contact with the constituent members of the oxidizing gas supply hole 233a and the oxidizing gas discharge hole 233b, and the conductive path can be more effectively provided. It can be blocked.
 図5に示す第2変形例では、絶縁部材260は、第1上部断熱体227aと第1側方断熱体227eとの間、及び、第1下部断熱体227cと第1側方断熱体227eとの間にそれぞれ設けられている。すなわち第1上部断熱体227aと第1側方断熱体227eとが互いに固定される上部連結部272a、及び、第1下部断熱体227cと第1側方断熱体227eとが互いに固定される下部連結部272bにおいて、それぞれ絶縁部材260が介在するように配置される。このように第2変形例では、上部連結部272a及び下部連結部272bに絶縁部材260が配置されることで、リード部252と外殻ケーシング250との間に形成される導電経路を効果的に遮断できる。 In the second modification shown in FIG. 5, the insulating member 260 is between the first upper heat insulating body 227a and the first side heat insulating body 227e, and the first lower heat insulating body 227c and the first side heat insulating body 227e. It is provided between each. That is, the upper connecting portion 272a in which the first upper heat insulating body 227a and the first side heat insulating body 227e are fixed to each other, and the lower connecting portion 227c in which the first lower heat insulating body 227c and the first side heat insulating body 227e are fixed to each other. In the portion 272b, the insulating member 260 is arranged so as to intervene. As described above, in the second modification, by arranging the insulating member 260 in the upper connecting portion 272a and the lower connecting portion 272b, the conductive path formed between the lead portion 252 and the outer shell casing 250 is effectively provided. Can be blocked.
 図6に示す第3変形例では、図5と同様に、上部連結部272a及び下部連結部272bに絶縁部材260が配置される。その一方で図6では、上部連結部272aはセルスタック101の軸方向に沿った発電室215の中心軸を通る断面において略L字形状を有し、絶縁部材260はこのような上部連結部272aに沿って設けられる。このように上部連結部272aは略L字形状に形成されることで、上部連結部272aにおける第1上部断熱体227aと第1側方断熱体227eとの間の対向面積が増える。このように対向面積が増えた上部連結部272aに沿って絶縁部材260を設けることで、リード部252と外殻ケーシング250との間に形成される導電経路を効果的に遮断できる。 In the third modification shown in FIG. 6, the insulating member 260 is arranged in the upper connecting portion 272a and the lower connecting portion 272b as in FIG. On the other hand, in FIG. 6, the upper connecting portion 272a has a substantially L-shape in a cross section passing through the central axis of the power generation chamber 215 along the axial direction of the cell stack 101, and the insulating member 260 has such an upper connecting portion 272a. It is provided along. By forming the upper connecting portion 272a in a substantially L shape in this way, the facing area between the first upper heat insulating body 227a and the first lateral heat insulating body 227e in the upper connecting portion 272a increases. By providing the insulating member 260 along the upper connecting portion 272a in which the facing area is increased in this way, the conductive path formed between the lead portion 252 and the outer shell casing 250 can be effectively blocked.
 また下部連結部272bはセルスタック101の軸方向に沿った発電室215の中心軸を通る断面において略L字形状を有し、絶縁部材260はこのような下部連結部272bに沿って設けられる。このように下部連結部272bは略L字形状に形成されることで、下部連結部272bにおける第1下部断熱体227cと第1側方断熱体227eとの間の対向面積が増える。このように対向面積が増えた下部連結部272bに沿って絶縁部材260を設けることで、リード部252と外殻ケーシング250との間に形成される導電経路を効果的に遮断できる。 Further, the lower connecting portion 272b has a substantially L-shape in a cross section passing through the central axis of the power generation chamber 215 along the axial direction of the cell stack 101, and the insulating member 260 is provided along such a lower connecting portion 272b. By forming the lower connecting portion 272b in a substantially L shape in this way, the facing area between the first lower heat insulating body 227c and the first lateral heat insulating body 227e in the lower connecting portion 272b increases. By providing the insulating member 260 along the lower connecting portion 272b in which the facing area is increased in this way, the conductive path formed between the lead portion 252 and the outer shell casing 250 can be effectively blocked.
 図7は図3の第4変形例である。第4変形例では、絶縁部材260は外殻ケーシング250の下面251を覆うように形成される。これにより、燃料電池カートリッジが架台270上に設置された際に、外殻ケーシング250の下面251と架台270との間に絶縁部材260を介在させることで、リード部252と外殻ケーシング250との間に形成される導電経路を効果的に遮断できる。 FIG. 7 is a fourth modification of FIG. In the fourth modification, the insulating member 260 is formed so as to cover the lower surface 251 of the outer shell casing 250. As a result, when the fuel cell cartridge is installed on the gantry 270, the lead portion 252 and the outer shell casing 250 are connected by interposing the insulating member 260 between the lower surface 251 of the outer shell casing 250 and the gantry 270. The conductive path formed between them can be effectively blocked.
 また図7では、燃料ガス供給孔231aに接続される燃料ガス供給枝管207aの途中に、絶縁部材260aが介在するように設けられる。また燃料ガス排出孔231bに接続される燃料ガス排出枝管209aの途中に、絶縁部材260bが介在するように設けられる。また酸化性ガス供給孔233aに接続される酸化性ガス供給枝管211aの途中に、絶縁部材260cが介在するように設けられる。また酸化性ガス排出孔233bに接続される酸化性ガス排出枝管211bの途中に、絶縁部材260dが介在するように設けられる。このように絶縁部材260a~260dを配置することで、リード部252と外殻ケーシング250との間に形成される導電経路を効果的に遮断できる。 Further, in FIG. 7, an insulating member 260a is provided in the middle of the fuel gas supply branch pipe 207a connected to the fuel gas supply hole 231a. Further, an insulating member 260b is provided in the middle of the fuel gas discharge branch pipe 209a connected to the fuel gas discharge hole 231b. Further, an insulating member 260c is provided in the middle of the oxidizing gas supply branch pipe 211a connected to the oxidizing gas supply hole 233a. Further, an insulating member 260d is provided in the middle of the oxidizing gas discharge branch pipe 211b connected to the oxidizing gas discharge hole 233b. By arranging the insulating members 260a to 260d in this way, the conductive path formed between the lead portion 252 and the outer shell casing 250 can be effectively blocked.
 以上説明したように上述の実施形態によれば、常温より高温域において燃料電池セルに電気的に接続されるリード部252が断熱部材227に接触した際に、リード部252と導電部材との間に形成される導電経路が、絶縁部材260によって少なくとも部分的に遮断される。これにより、リード部252と断熱部材227との間に形成される導電経路を流れる地絡電流が抑制されるため、燃料電池カートリッジの出力電圧を向上させることができる。その結果、高出力な燃料電池モジュールを実現することができる。 As described above, according to the above-described embodiment, when the lead portion 252 electrically connected to the fuel cell in a temperature range higher than normal temperature comes into contact with the heat insulating member 227, the lead portion 252 and the conductive member are separated from each other. The conductive path formed in is at least partially blocked by the insulating member 260. As a result, the ground fault current flowing through the conductive path formed between the lead portion 252 and the heat insulating member 227 is suppressed, so that the output voltage of the fuel cell cartridge can be improved. As a result, a high output fuel cell module can be realized.
 その他、本開示の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。 In addition, it is possible to replace the components in the above-described embodiment with well-known components as appropriate without departing from the gist of the present disclosure, and the above-described embodiments may be combined as appropriate.
 上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments are grasped as follows, for example.
(1)本開示の少なくとも一実施形態に係る燃料電池カートリッジは、
 セルスタック(例えば上記実施形態のセルスタック101)を構成する燃料電池セルを含む発電室(例えば上記実施形態の発電室215)と、
 前記発電室を少なくとも部分的に画定する断熱部材(例えば上記実施形態の断熱部材227)と、
 前記発電室から見て前記断熱部材の外側に設けられる導電部材(例えば上記実施形態の外殻ケーシング250)と、
 常温より高温域において前記断熱部材より高い絶縁性を有し、前記セルスタックのリード部(例えば上記実施形態のリード部252)が該高温域にあるときに前記断熱部材に接触すると、前記リード部と前記導電部材との間に形成される導電経路を少なくとも部分的に遮断するように構成された絶縁部材(例えば上記実施形態の絶縁部材260)と、
を備える。
(1) The fuel cell cartridge according to at least one embodiment of the present disclosure is
A power generation chamber (for example, a power generation chamber 215 of the above embodiment) including a fuel cell constituting a cell stack (for example, the cell stack 101 of the above embodiment) and
A heat insulating member that at least partially defines the power generation chamber (for example, the heat insulating member 227 of the above embodiment) and
A conductive member (for example, the outer shell casing 250 of the above embodiment) provided outside the heat insulating member when viewed from the power generation chamber, and
It has higher insulating properties than the heat insulating member in a temperature range higher than normal temperature, and when the lead portion of the cell stack (for example, the lead portion 252 of the above embodiment) comes into contact with the heat insulating member when it is in the high temperature range, the lead portion An insulating member (for example, the insulating member 260 of the above embodiment) configured to at least partially block the conductive path formed between the conductive member and the conductive member.
To be equipped.
 上記(1)の態様によれば、常温より高温域において燃料電池セルに電気的に接続されるリード部が断熱部材に接触した際に、リード部と導電部材との間に形成される導電経路が、絶縁部材によって少なくとも部分的に遮断される。これにより、リード部と断熱部材との間に形成される導電経路を流れる地絡電流が抑制されるため、燃料電池カートリッジの出力電圧を向上させることができる。 According to the aspect (1) above, when the lead portion electrically connected to the fuel cell in a temperature range higher than normal temperature comes into contact with the heat insulating member, the conductive path formed between the lead portion and the conductive member. Is at least partially blocked by the insulating member. As a result, the ground fault current flowing through the conductive path formed between the reed portion and the heat insulating member is suppressed, so that the output voltage of the fuel cell cartridge can be improved.
(2)一態様では上記(1)の態様において、
 前記絶縁部材は、前記リード部が前記断熱部材に接触した際に、前記リード部と前記導電部材との間に設けられる。
(2) In one aspect, in the above aspect (1),
The insulating member is provided between the lead portion and the conductive member when the lead portion comes into contact with the heat insulating member.
 上記(2)の態様によれば、断熱部材と導電部材との間に絶縁部材を配置することで、リード部と導電部材との間に形成される導電経路を効果的に遮断できる。 According to the aspect (2) above, by arranging the insulating member between the heat insulating member and the conductive member, the conductive path formed between the lead portion and the conductive member can be effectively blocked.
(3)一態様では上記(1)又は(2)の態様において、
 前記絶縁部材は、前記導電部材と前記断熱部材との間に設けられる。
(3) In one aspect, in the above aspect (1) or (2),
The insulating member is provided between the conductive member and the heat insulating member.
 上記(3)の態様によれば、互いに隣接する導電部材と断熱部材との間に絶縁部材を配置することで、リード部と導電部材との間に形成される導電経路を効果的に遮断できる。 According to the aspect (3) above, by arranging the insulating member between the conductive member and the heat insulating member adjacent to each other, the conductive path formed between the lead portion and the conductive member can be effectively blocked. ..
(4)一態様では上記(3)の態様において、
 前記導電部材は、前記燃料電池カートリッジの外殻を規定する外殻ケーシングであり、
 前記絶縁部材は前記外殻ケーシングの内壁面に沿って形成される。
(4) In one aspect, in the above aspect (3),
The conductive member is an outer shell casing that defines the outer shell of the fuel cell cartridge.
The insulating member is formed along the inner wall surface of the outer shell casing.
 上記(4)の態様によれば、外殻ケーシングの内壁面に沿って絶縁部材を設けることで、リード部と外殻ケーシングとの間に形成される導電経路を効果的に遮断できる。 According to the aspect (4) above, by providing the insulating member along the inner wall surface of the outer shell casing, the conductive path formed between the lead portion and the outer shell casing can be effectively blocked.
(5)一態様では上記(1)又は(2)の態様において、
 前記絶縁部材は、前記断熱部材を構成する複数の断熱体の間に設けられる。
(5) In one aspect, in the above aspect (1) or (2),
The insulating member is provided between a plurality of heat insulating bodies constituting the heat insulating member.
 上記(5)の態様によれば、断熱部材を構成する複数の断熱体の間に絶縁部材を介在させることで、リード部と導電部材との間に形成される導電経路を効果的に遮断できる。 According to the aspect (5) above, by interposing the insulating member between the plurality of heat insulating bodies constituting the heat insulating member, the conductive path formed between the lead portion and the conductive member can be effectively blocked. ..
(6)一態様では上記(5)の態様において、
 前記複数の断熱体は、
 前記セルスタックの延在方向に対して前記発電室の側方に設けられる第1側方断熱体(例えば上記実施形態の第1側方断熱体227e)と、
 前記発電室から見て前記第1側方断熱体より外側に配置された第2側方断熱体(例えば上記実施形態の第2側方断熱体227f)と、
を含み、
 前記絶縁部材は、前記第1側方断熱体と前記第2側方断熱体との間に設けられる。
(6) In one aspect, in the above aspect (5),
The plurality of heat insulators
A first side heat insulating body (for example, the first side heat insulating body 227e of the above embodiment) provided on the side of the power generation chamber with respect to the extending direction of the cell stack.
A second side heat insulating body (for example, the second side heat insulating body 227f of the above embodiment) arranged outside the first side heat insulating body when viewed from the power generation chamber, and
Including
The insulating member is provided between the first side heat insulating body and the second side heat insulating body.
 上記(6)の態様によれば、発電室から見て内外方向に沿って積層される第1側方断熱体及び第2側方断熱体の間に絶縁部材を介在させることで、リード部と導電部材との間に形成される導電経路を効果的に遮断できる。 According to the aspect (6) above, the lead portion and the lead portion are formed by interposing an insulating member between the first side heat insulating body and the second side heat insulating body which are laminated along the inner and outer directions when viewed from the power generation chamber. The conductive path formed between the conductive member and the conductive member can be effectively blocked.
(7)一態様では上記(5)の態様において、
 前記複数の断熱体は、
 前記セルスタックの延在方向に対して前記発電室の側方に設けられる第1側方断熱体(例えば上記実施形態の第1側方断熱体227e)と、
 前記セルスタックの延在方向に交差するように前記発電室の上方に設けられる第1上部断熱体(例えば上記実施形態の第1上部断熱体227a)と、
 前記セルスタックの延在方向に交差するように前記発電室の下方に設けられる第1下部断熱体(例えば上記実施形態の第1下部断熱体227c)と、
を含み、
 前記絶縁部材は、前記第1側方断熱体と前記第1上部断熱体又は前記第1下部断熱体との間に設けられる。
(7) In one aspect, in the above aspect (5),
The plurality of heat insulators
A first side heat insulating body (for example, the first side heat insulating body 227e of the above embodiment) provided on the side of the power generation chamber with respect to the extending direction of the cell stack.
A first upper heat insulating body (for example, the first upper heat insulating body 227a of the above embodiment) provided above the power generation chamber so as to intersect in the extending direction of the cell stack, and
A first lower heat insulating body (for example, the first lower heat insulating body 227c of the above embodiment) provided below the power generation chamber so as to intersect in the extending direction of the cell stack.
Including
The insulating member is provided between the first lateral heat insulating body and the first upper heat insulating body or the first lower heat insulating body.
 上記(7)の態様によれば、第1側方断熱体と第1上部断熱体又は第1下部断熱体との間に絶縁部材を設けることにより、リード部と導電部材との間に形成される導電経路を効果的に遮断できる。 According to the aspect (7) above, by providing an insulating member between the first lateral heat insulating body and the first upper heat insulating body or the first lower heat insulating body, it is formed between the lead portion and the conductive member. Can effectively block the conductive path.
(8)一態様では上記(7)の態様において、
 前記第1側方断熱体と前記第1上部断熱体又は前記第1下部断熱体との連結部(例えば上記実施形態の上部連結部272a又は下部連結部272b)は、前記セルスタックの延在方向に沿った前記発電室の中心軸を通る断面において略L字形状を有し、
 前記絶縁部材は前記連結部に沿って設けられる。
(8) In one aspect, in the above aspect (7),
The connecting portion between the first lateral heat insulating body and the first upper heat insulating body or the first lower heat insulating body (for example, the upper connecting portion 272a or the lower connecting portion 272b of the above embodiment) is in the extending direction of the cell stack. It has a substantially L-shape in a cross section passing through the central axis of the power generation chamber along the above.
The insulating member is provided along the connecting portion.
 上記(8)の態様によれば、第1側方断熱体と第1上部断熱体又は第1下部断熱体との連結部を略L字形状に形成し、当該連結部に沿って絶縁部材が設けられる。このように連結部を略L字形状に構成することで連結部における両者の接触面積が増える。そして、このように面積が増えた連結部に沿って絶縁部材を設けることで、リード部と導電部材との間に形成される導電経路を効果的に遮断できる。 According to the aspect (8) above, the connecting portion between the first lateral heat insulating body and the first upper heat insulating body or the first lower heat insulating body is formed in a substantially L shape, and the insulating member is formed along the connecting portion. Provided. By forming the connecting portion in a substantially L shape in this way, the contact area between the two at the connecting portion increases. Then, by providing the insulating member along the connecting portion having an increased area in this way, the conductive path formed between the lead portion and the conductive member can be effectively blocked.
(9)一態様では上記(1)から(8)のいずれか一態様において、
 前記導電部材は、前記燃料電池カートリッジの外殻を規定するケーシング(例えば上記実施形態の外殻ケーシング250)であり、
 前記絶縁部材は、前記ケーシングの下面(例えば上記実施形態の下面251)を覆うように形成される。
(9) In one aspect, in any one of the above (1) to (8),
The conductive member is a casing (for example, the outer shell casing 250 of the above embodiment) that defines the outer shell of the fuel cell cartridge.
The insulating member is formed so as to cover the lower surface of the casing (for example, the lower surface 251 of the above embodiment).
 上記(9)の態様によれば、燃料電池カートリッジの外殻を規定する外殻ケーシングの下面を覆うように絶縁部材が設けられる。これにより、燃料電池カートリッジが架台上に設置された際に、ケーシングの下面と架台との間に絶縁部材を介在させることで、リード部と導電部材との間に形成される導電経路を効果的に遮断できる。 According to the aspect (9) above, an insulating member is provided so as to cover the lower surface of the outer shell casing that defines the outer shell of the fuel cell cartridge. As a result, when the fuel cell cartridge is installed on the gantry, an insulating member is interposed between the lower surface of the casing and the gantry, so that the conductive path formed between the lead portion and the conductive member is effective. Can be blocked.
(10)一態様では上記(1)から(9)のいずれか一態様において、
 前記絶縁部材は、前記セルスタックに燃料ガスを供給するための燃料ガス供給孔に接続される燃料ガス供給枝管(例えば上記実施形態の燃料ガス供給枝管207a)、前記セルスタックから前記燃料ガスを排出するための燃料ガス排出孔に接続される燃料ガス排出枝管(例えば上記実施形態の燃料ガス排出枝管209a)、前記セルスタクに酸化性ガスを供給するための酸化性ガス供給孔に接続される酸化性ガス供給枝管(例えば上記実施形態の酸化性ガス供給枝管211a)、又は、前記セルスタックから前記酸化性ガスを排出するための酸化性ガス排出孔に接続される酸化性ガス排出枝管(例えば上記実施形態の酸化性ガス排出枝管211b)の少なくとも一つに設けられる。
(10) In one aspect, in any one of the above (1) to (9),
The insulating member includes a fuel gas supply branch pipe (for example, the fuel gas supply branch pipe 207a of the above embodiment) connected to a fuel gas supply hole for supplying fuel gas to the cell stack, and the fuel gas from the cell stack. Connected to a fuel gas discharge branch pipe (for example, the fuel gas discharge branch pipe 209a of the above embodiment) connected to a fuel gas discharge hole for discharging the celstac, and an oxidizing gas supply hole for supplying the oxidative gas to the cell stac. Oxidizing gas supply branch pipe (for example, the oxidizing gas supply branch pipe 211a of the above embodiment) or an oxidizing gas connected to the oxidizing gas discharge hole for discharging the oxidizing gas from the cell stack. It is provided in at least one of the discharge branch pipes (for example, the oxidizing gas discharge branch pipe 211b of the above embodiment).
 上記(10)の態様によれば、燃料ガス供給枝管、燃料ガス排出枝管、酸化性ガス供給枝管、又は、酸化性ガス排出枝管の少なくとも一つに絶縁部材を配置することで、リード部と導電部材との間に形成される導電経路を効果的に遮断できる。 According to the aspect (10) above, by arranging the insulating member in at least one of the fuel gas supply branch pipe, the fuel gas discharge branch pipe, the oxidizing gas supply branch pipe, or the oxidizing gas discharge branch pipe, The conductive path formed between the lead portion and the conductive member can be effectively blocked.
(11)本開示の少なくとも一実施形態に係る燃料電池モジュールは、
 上記(1)から(10)のいずれか一態様の燃料電池カートリッジを少なくとも一つ備える。
(11) The fuel cell module according to at least one embodiment of the present disclosure is
At least one fuel cell cartridge according to any one of the above (1) to (10) is provided.
 上記(11)の態様によれば、高い出力電圧の燃料電池カートリッジを備えることで、高出力な燃料電池モジュールを実現できる。 According to the aspect (11) above, a fuel cell module having a high output can be realized by providing a fuel cell cartridge having a high output voltage.
101 セルスタック
103 基体管
105 燃料電池セル
107 インターコネクタ
109 燃料極
111 固体電解質膜
113 空気極
115 リード膜
201 燃料電池モジュール
203 燃料電池カートリッジ
205 圧力容器
207 燃料ガス供給管
207a 燃料ガス供給枝管
209 燃料ガス排出管
209a 燃料ガス排出枝管
211a 酸化性ガス供給枝管
211b 酸化性ガス排出枝管
215 発電室
217 燃料ガス供給ヘッダ
219 燃料ガス排出ヘッダ
221 酸化性ガス供給ヘッダ
221 供給ヘッダ
223 酸化性ガス排出ヘッダ
227 断熱部材
227a 第1上部断熱体
227b 第2上部断熱体
227c 第1下部断熱体
227d 第2下部断熱体
227e 第1側方断熱体
227f 第2側方断熱体
229b 下部ケーシング
229a 上部ケーシング
231a 燃料ガス供給孔
231b 燃料ガス排出孔
233a 酸化性ガス供給孔
233b 酸化性ガス排出孔
235a 酸化性ガス供給隙間
235b 酸化性ガス排出隙間
237a,237b シール部材
250 外殻ケーシング
251 下面
252 リード部
254 導電経路
260 絶縁部材
270 架台
272a 上部連結部
272b 下部連結部
101 Cell stack 103 Base tube 105 Fuel cell cell 107 Interconnector 109 Fuel pole 111 Solid electrolyte membrane 113 Air pole 115 Lead membrane 201 Fuel cell module 203 Fuel cell cartridge 205 Pressure vessel 207 Fuel gas supply pipe 207a Fuel gas supply branch pipe 209 Fuel Gas discharge pipe 209a Fuel gas discharge branch pipe 211a Oxidizing gas supply branch pipe 211b Oxidizing gas discharge branch pipe 215 Power generation room 217 Fuel gas supply header 219 Fuel gas discharge header 221 Oxidizing gas supply header 221 Supply header 223 Oxidizing gas discharge Header 227 Insulation member 227a First upper insulation 227b Second upper insulation 227c First lower insulation 227d Second lower insulation 227e First side insulation 227f Second side insulation 229b Lower casing 229a Upper casing 231a Fuel Gas supply hole 231b Fuel gas discharge hole 233a Oxidizing gas supply hole 233b Oxidizing gas discharge hole 235a Oxidizing gas supply gap 235b Oxidizing gas discharge gap 237a, 237b Seal member 250 Outer shell casing 251 Bottom surface 252 Lead part 254 Conductive path 260 Insulating member 270 Stand 272a Upper connecting part 272b Lower connecting part

Claims (11)

  1.  セルスタックを構成する燃料電池セルを含む発電室と、
     前記発電室を少なくとも部分的に画定する断熱部材と、
     前記発電室から見て前記断熱部材の外側に設けられる導電部材と、
     常温より高温域において前記断熱部材より高い絶縁性を有し、前記セルスタックのリード部が該高温域にあるときに前記断熱部材に接触すると、前記リード部と前記導電部材との間に形成される導電経路を少なくとも部分的に遮断するように構成された絶縁部材と、
    を備える、燃料電池カートリッジ。
    A power generation room containing fuel cell cells that make up the cell stack,
    With a heat insulating member that at least partially defines the power generation chamber,
    A conductive member provided outside the heat insulating member when viewed from the power generation chamber, and
    It has higher insulating properties than the heat insulating member in a temperature range higher than normal temperature, and when the lead portion of the cell stack comes into contact with the heat insulating member when it is in the high temperature range, it is formed between the lead portion and the conductive member. An insulating member configured to at least partially block the conductive path
    A fuel cell cartridge.
  2.  前記絶縁部材は、前記リード部が前記断熱部材に接触した際に、前記リード部と前記導電部材との間に設けられる、請求項1に記載の燃料電池カートリッジ。 The fuel cell cartridge according to claim 1, wherein the insulating member is provided between the lead portion and the conductive member when the lead portion comes into contact with the heat insulating member.
  3.  前記絶縁部材は、前記導電部材と前記断熱部材との間に設けられる、請求項1又は2に記載の燃料電池カートリッジ。 The fuel cell cartridge according to claim 1 or 2, wherein the insulating member is provided between the conductive member and the heat insulating member.
  4.  前記導電部材は、前記燃料電池カートリッジの外殻を規定する外殻ケーシングであり、
     前記絶縁部材は前記外殻ケーシングの内壁面に沿って形成される、請求項3に記載の燃料電池カートリッジ。
    The conductive member is an outer shell casing that defines the outer shell of the fuel cell cartridge.
    The fuel cell cartridge according to claim 3, wherein the insulating member is formed along the inner wall surface of the outer shell casing.
  5.  前記絶縁部材は、前記断熱部材を構成する複数の断熱体の間に設けられる、請求項1又は2に記載の燃料電池カートリッジ。 The fuel cell cartridge according to claim 1 or 2, wherein the insulating member is provided between a plurality of heat insulating bodies constituting the heat insulating member.
  6.  前記複数の断熱体は、
     前記セルスタックの延在方向に対して前記発電室の側方に設けられる第1側方断熱体と、
     前記発電室から見て前記第1側方断熱体より外側に配置された第2側方断熱体と、
    を含み、
     前記絶縁部材は、前記第1側方断熱体と前記第2側方断熱体との間に設けられる、請求項5に記載の燃料電池カートリッジ。
    The plurality of heat insulators
    A first lateral heat insulating body provided on the side of the power generation chamber with respect to the extending direction of the cell stack,
    A second side heat insulating body arranged outside the first side heat insulating body when viewed from the power generation chamber, and a second side heat insulating body.
    Including
    The fuel cell cartridge according to claim 5, wherein the insulating member is provided between the first side heat insulating body and the second side heat insulating body.
  7.  前記複数の断熱体は、
     前記セルスタックの延在方向に対して前記発電室の側方に設けられる第1側方断熱体と、
     前記セルスタックの延在方向に交差するように前記発電室の上方に設けられる第1上部断熱体と、
     前記セルスタックの延在方向に交差するように前記発電室の下方に設けられる第1下部断熱体と、
    を含み、
     前記絶縁部材は、前記第1側方断熱体と前記第1上部断熱体又は前記第1下部断熱体との間に設けられる、請求項5に記載の燃料電池カートリッジ。
    The plurality of heat insulators
    A first lateral heat insulating body provided on the side of the power generation chamber with respect to the extending direction of the cell stack,
    A first upper heat insulating body provided above the power generation chamber so as to intersect in the extending direction of the cell stack,
    A first lower heat insulating body provided below the power generation chamber so as to intersect in the extending direction of the cell stack,
    Including
    The fuel cell cartridge according to claim 5, wherein the insulating member is provided between the first lateral heat insulating body and the first upper heat insulating body or the first lower heat insulating body.
  8.  前記第1側方断熱体と前記第1上部断熱体又は前記第1下部断熱体との連結部は、前記セルスタックの延在方向に沿った前記発電室の中心軸を通る断面において略L字形状を有し、
     前記絶縁部材は前記連結部に沿って設けられる、請求項7に記載の燃料電池カートリッジ。
    The connecting portion between the first lateral heat insulating body and the first upper heat insulating body or the first lower heat insulating body has a substantially L shape in a cross section passing through the central axis of the power generation chamber along the extending direction of the cell stack. Has a shape,
    The fuel cell cartridge according to claim 7, wherein the insulating member is provided along the connecting portion.
  9.  前記導電部材は、前記燃料電池カートリッジの外殻を規定するケーシングであり、
     前記絶縁部材は、前記ケーシングの下面を覆うように形成される、請求項1から8のいずれか一項に記載の燃料電池カートリッジ。
    The conductive member is a casing that defines the outer shell of the fuel cell cartridge.
    The fuel cell cartridge according to any one of claims 1 to 8, wherein the insulating member is formed so as to cover the lower surface of the casing.
  10.  前記絶縁部材は、前記セルスタックに燃料ガスを供給するための燃料ガス供給孔に接続される燃料ガス供給枝管、前記セルスタックから前記燃料ガスを排出するための燃料ガス排出孔に接続される燃料ガス排出枝管、前記セルスタクに酸化性ガスを供給するための酸化性ガス供給孔に接続される酸化性ガス供給枝管、又は、前記セルスタックから前記酸化性ガスを排出するための酸化性ガス排出孔に接続される酸化性ガス排出枝管の少なくとも一つに設けられる、請求項1から9のいずれか一項に記載の燃料電池カートリッジ。 The insulating member is connected to a fuel gas supply branch pipe connected to a fuel gas supply hole for supplying fuel gas to the cell stack, and a fuel gas discharge hole for discharging the fuel gas from the cell stack. A fuel gas discharge branch pipe, an oxidizing gas supply branch pipe connected to an oxidizing gas supply hole for supplying the oxidizing gas to the cell stack, or an oxidizing for discharging the oxidizing gas from the cell stack. The fuel cell cartridge according to any one of claims 1 to 9, which is provided in at least one of the oxidizing gas discharge branch pipes connected to the gas discharge hole.
  11.  請求項1から10のいずれか一項に記載の燃料電池カートリッジを少なくとも一つ備える、燃料電池モジュール。 A fuel cell module including at least one fuel cell cartridge according to any one of claims 1 to 10.
PCT/JP2021/001576 2020-01-24 2021-01-19 Fuel cell cartridge and fuel cell module WO2021149655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020009670A JP7382842B2 (en) 2020-01-24 2020-01-24 Fuel cell cartridge and fuel cell module
JP2020-009670 2020-01-24

Publications (1)

Publication Number Publication Date
WO2021149655A1 true WO2021149655A1 (en) 2021-07-29

Family

ID=76992381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001576 WO2021149655A1 (en) 2020-01-24 2021-01-19 Fuel cell cartridge and fuel cell module

Country Status (2)

Country Link
JP (1) JP7382842B2 (en)
WO (1) WO2021149655A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086206A (en) * 2001-09-12 2003-03-20 Mitsubishi Heavy Ind Ltd Fuel cell system
JP2003288913A (en) * 2002-03-27 2003-10-10 Toto Ltd Solid oxide fuel cell
JP2015064980A (en) * 2013-09-24 2015-04-09 三菱重工業株式会社 Monitoring device for fuel cell cartridge, fuel cell system having the same, and monitoring method for fuel cell cartridge
US20180115008A1 (en) * 2016-10-21 2018-04-26 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Portable flame electric generation device, metal-supported solid oxide fuel cell and manufacturing methods thereof
JP2018139193A (en) * 2017-02-24 2018-09-06 三菱日立パワーシステムズ株式会社 Fuel cell module and hybrid power system having the same, and assembly method for submodule
US20200020964A1 (en) * 2018-07-11 2020-01-16 Bloom Energy Corporation Fuel cell stack grounding through an impedance creating element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086206A (en) * 2001-09-12 2003-03-20 Mitsubishi Heavy Ind Ltd Fuel cell system
JP2003288913A (en) * 2002-03-27 2003-10-10 Toto Ltd Solid oxide fuel cell
JP2015064980A (en) * 2013-09-24 2015-04-09 三菱重工業株式会社 Monitoring device for fuel cell cartridge, fuel cell system having the same, and monitoring method for fuel cell cartridge
US20180115008A1 (en) * 2016-10-21 2018-04-26 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Portable flame electric generation device, metal-supported solid oxide fuel cell and manufacturing methods thereof
JP2018139193A (en) * 2017-02-24 2018-09-06 三菱日立パワーシステムズ株式会社 Fuel cell module and hybrid power system having the same, and assembly method for submodule
US20200020964A1 (en) * 2018-07-11 2020-01-16 Bloom Energy Corporation Fuel cell stack grounding through an impedance creating element

Also Published As

Publication number Publication date
JP7382842B2 (en) 2023-11-17
JP2021118067A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
KR20200135287A (en) Fuel cell single cell unit, fuel cell module and fuel cell device
WO2019189843A1 (en) Metal-supported fuel cell, and fuel cell module
JP6037749B2 (en) Fuel cell module
JP4537292B2 (en) Cylindrical fuel cell
JP4897273B2 (en) Fuel cell
JP5470966B2 (en) Stack structure of solid oxide fuel cell
WO2021149655A1 (en) Fuel cell cartridge and fuel cell module
JP5331252B2 (en) Flat tube type solid oxide cell stack
US9876250B2 (en) Cell stack device, module, and module housing device
WO2021205758A1 (en) Fuel cell electricity generating system
WO2021153627A1 (en) Fuel battery power generating system
JP2008251277A (en) Single chamber type solid oxide fuel cell system
JP4942064B2 (en) Current collector and solid oxide fuel cell stack including the same
JP7051292B2 (en) Fuel cell manufacturing method and fuel cell
WO2022145279A1 (en) Fuel cell, fuel cell cartridge, and method for manufacturing fuel cell
JPH0562701A (en) Solid electrolyte type fuel cell
JP6982586B2 (en) Fuel cell cartridges, fuel cell modules and combined cycle systems
JP7446113B2 (en) Fuel cell power generation system
JP7013605B1 (en) Fuel cell system and how to operate the fuel cell system
WO2021186916A1 (en) Fuel cell module and fuel cell system equipped with same
WO2022092052A1 (en) Fuel cell power generation system and method for controlling fuel cell power generation system
JP2016122545A (en) Solid oxide type fuel battery and manufacturing method for the same
KR101116281B1 (en) apparatus for sealing of flat-tubular solid oxide unit cell
JP2023180284A (en) electrochemical device
JP5573813B2 (en) Power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744615

Country of ref document: EP

Kind code of ref document: A1