WO2021186916A1 - Fuel cell module and fuel cell system equipped with same - Google Patents

Fuel cell module and fuel cell system equipped with same Download PDF

Info

Publication number
WO2021186916A1
WO2021186916A1 PCT/JP2021/003518 JP2021003518W WO2021186916A1 WO 2021186916 A1 WO2021186916 A1 WO 2021186916A1 JP 2021003518 W JP2021003518 W JP 2021003518W WO 2021186916 A1 WO2021186916 A1 WO 2021186916A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
fuel
fuel cell
power generation
cell module
Prior art date
Application number
PCT/JP2021/003518
Other languages
French (fr)
Japanese (ja)
Inventor
重徳 末森
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2021186916A1 publication Critical patent/WO2021186916A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a fuel cell module having a cell stack and a fuel cell system having the cell stack.
  • the fuel cell module mounted on the fuel cell system has a plurality of cell stacks, which are an aggregate of fuel cell cells. By arranging a large number of fuel cell cells in one cell stack and connecting them in series, the output voltage can be increased.
  • a cell having a fuel electrode, a solid electrolyte membrane, and an air electrode is formed on the substrate tube in the circumferential direction of the substrate tube, and a plurality of cells are arranged along the axial direction of the substrate tube. Solid oxide fuel cells with stacks are described. Further, Patent Document 1 describes that the material of the air electrode is made of a different material depending on the temperature at the position of the cell.
  • the fuel cell module of the present disclosure includes a container, a cell stack arranged inside the container, extending in a first direction, and having a plurality of fuel cell cells arranged in the first direction, and the cell stack.
  • the cell stack includes a laminated fuel electrode, an electrolyte, an air electrode, and an interconnector connected to an adjacent fuel cell, and the cell stack includes a first unit in which the fuel cell is arranged and the first unit.
  • the second unit includes, in the second unit, at least one element of the fuel electrode, electrolyte and interconnector of the fuel cell, the first unit. It is made of a material different from the corresponding element of the fuel cell.
  • the fuel cell system of the present disclosure includes the above-mentioned fuel cell module, an oxidation gas supply means for supplying the oxidation gas to the pressure vessel, and a fuel gas supply means for supplying the fuel gas inside the cell stack.
  • the cell stack at each position of the fuel cell module can be formed of an appropriate material, the deterioration of power generation performance can be suppressed, and power generation can be performed with high efficiency. As a result, the amount of power generation per unit volume can be further increased.
  • FIG. 1 is a schematic configuration diagram schematically showing the fuel cell system of the present embodiment.
  • FIG. 2 is a schematic configuration diagram schematically showing a fuel cell module.
  • FIG. 3 is a schematic configuration diagram schematically showing a cell stack.
  • FIG. 4 is a cross-sectional view schematically showing a part of the cell stack.
  • FIG. 5 is a cross-sectional view showing an example of the arrangement of cell stacks inside the pressure vessel.
  • FIG. 6 is an enlarged cross-sectional view showing the vicinity of the connection mechanism in an enlarged manner.
  • FIG. 7 is a schematic configuration diagram schematically showing a cell stack of another embodiment.
  • FIG. 8 is a schematic configuration diagram schematically showing a fuel cell module of another embodiment.
  • FIG. 1 is a schematic configuration diagram schematically showing the fuel cell system of the present embodiment.
  • FIG. 2 is a schematic configuration diagram schematically showing a fuel cell module.
  • FIG. 3 is a schematic configuration diagram schematically showing a cell stack.
  • FIG. 4 is a
  • FIG. 9 is a perspective view schematically showing the cell stack of the fuel cell module shown in FIG.
  • FIG. 10 is a schematic configuration diagram schematically showing a fuel cell module of another embodiment.
  • FIG. 11 is a perspective view schematically showing the cell stack of the fuel cell module shown in FIG.
  • FIG. 12 is a schematic configuration diagram schematically showing a fuel cell module of another embodiment.
  • FIG. 13 is a perspective view schematically showing the cell stack of the fuel cell module shown in FIG.
  • FIG. 1 is a schematic configuration diagram schematically showing the fuel cell system of the present embodiment.
  • the fuel cell system 10 of the present embodiment includes a solid oxide fuel cell module, a so-called SOFC (Solid Oxide Fuel Cell), and operates while controlling the fuel cell module.
  • the fuel cell system may supply a part of the fuel gas and air (oxidant gas) that have passed through the fuel cell module to the combustor of the gas turbine. That is, the fuel cell system 10 may be a part of a combined system connected to another power generation device.
  • SOFC Solid Oxide Fuel Cell
  • the fuel cell system 10 includes a fuel cell module 12, an air supply device (oxidizer gas supply unit) 14 for supplying air (oxidant gas), and air (exhaust) that has passed through the fuel cell module 12.
  • a control device 18 for controlling the operation of each unit, a voltmeter 19, a current meter 20, and a thermometer 21 are provided.
  • air is used as the oxidant gas
  • any oxidant that oxidizes a fuel gas such as an oxygen-containing gas may be used.
  • the fuel cell module 12 generates electricity by reacting the supplied air with the fuel gas.
  • the fuel cell module will be described later.
  • the air supply device (oxidizing gas supply means) 14 supplies air to the fuel cell module 12.
  • the air supply device 14 has an air supply source 22 and an air supply pipe 24.
  • the air supply source 22 is a device that sends air, such as a scavenging fan or a pump.
  • the air supply pipe 24 connects the air supply source 22 and the fuel cell module 12. The air supply pipe 24 supplies the air sent by the air supply source 22 to the fuel cell module 12.
  • the fuel supply device (fuel supply means) 16 supplies fuel gas to the fuel supply chamber 84.
  • the fuel supply device 16 has a fuel supply source 26 and a fuel supply pipe 28.
  • the fuel supply source 26 includes a tank for storing the fuel gas, a control valve for controlling the flow rate of the fuel gas supplied from the tank, and the like.
  • the fuel supply pipe 28 connects the fuel supply source 26 and the fuel cell module 12. The fuel supply pipe 28 supplies the fuel gas sent by the fuel supply source 26 to the fuel cell module 12.
  • the fuel cell system 10 is provided in the voltmeter 19 for measuring the voltage value output from the fuel cell module 12, the ammeter 20 for measuring the current value output from the fuel cell module 12, and the fuel cell module 12. It is equipped with a voltmeter 21.
  • the ammeter 20 measures the current obtained by the power generation of the fuel cell module 12.
  • the thermometer 21 measures the temperature of the power generation chamber 82, which will be described later, of the fuel cell module 12.
  • the control device 18 controls the fuel cell module 12 during the start-up operation and controls the fuel cell module 12 during the power generation operation.
  • the control device 18 determines the amount of air supplied from the air supply device 14 and the fuel gas supplied from the fuel supply device 16 based on the measurement results of the voltmeter 19, the ammeter 20, and the thermometer 21 and the input instructions. The amount and the electric power taken out from the fuel cell module 12 are controlled.
  • FIG. 2 is a perspective view schematically showing the fuel cell module.
  • FIG. 2 is a schematic configuration diagram schematically showing a fuel cell module.
  • FIG. 3 is a schematic configuration diagram schematically showing a cell stack.
  • FIG. 4 is a cross-sectional view schematically showing a part of the cell stack.
  • FIG. 5 is a cross-sectional view showing an example of the arrangement of cell stacks inside the pressure vessel.
  • FIG. 6 is an enlarged cross-sectional view showing the vicinity of the connection mechanism in an enlarged manner.
  • the fuel cell module 12 includes a container 40, a cell assembly 42, a pipe support plate (upper pipe support plate) 44, a pipe support plate (lower pipe support plate) 46, and a heat insulating body. It has a (upper heat insulating body) 48, a heat insulating body (lower heat insulating body) 50, a circumferential heat insulating body 52, and a partition plate 54.
  • the container 40 has, for example, a cylindrical portion 60, and an upper hemisphere portion 62 and a lower hemisphere portion 64 provided at both ends of the cylindrical portion 60.
  • the structure is a combination of a cylinder and a hemisphere, but the structure is not limited to this.
  • the container 40 is installed in a direction in which the Z-axis direction (first direction), which is a direction parallel to the vertical direction, is the longitudinal direction. That is, the upper hemisphere portion 62 is arranged on the upper side of the lower hemisphere portion 64 in the vertical direction, and the central axis of the cylindrical portion 60 is oriented parallel to the Z-axis direction.
  • the fuel cell module 12 is preferably arranged so that the central axis of the cylindrical portion 60 is parallel to the Z-axis direction, but the fuel cell module 12 is not limited to this.
  • the container 40 is formed with two air inflow pipes 66, two air discharge pipes 68, a fuel gas inflow pipe, and a fuel gas discharge pipe.
  • the two air inflow pipes 66 are formed on the near side of the lower hemisphere portion 64 of the cylindrical portion 60.
  • the air inflow pipe 66 is connected to the air supply pipe 24, and the air supplied from the air supply pipe 24 flows into the inside of the container 40.
  • the two air discharge pipes 68 are formed on the vicinity side of the upper hemisphere portion 62 of the cylindrical portion 60.
  • the air discharge pipe 68 is connected to the air discharge pipe 15 and discharges the air inside the container 40 to the air discharge pipe 15.
  • the fuel gas inflow pipe 70 is formed in the upper hemisphere portion 62.
  • the fuel gas inflow pipe is connected to the fuel supply pipe 28, and the fuel gas supplied from the fuel supply pipe 28 flows into the inside of the container 40.
  • the fuel gas discharge pipe is formed in the lower hemisphere portion 64.
  • the fuel gas discharge pipe is connected to the fuel discharge pipe 17, and the fuel gas inside the container 40 is discharged to the fuel discharge pipe 17.
  • the container 40 is a sealed container except for the portion where the two air inflow pipes 66, the two air discharge pipes 68, the fuel gas inflow pipe, and the fuel gas discharge pipe are provided.
  • the container 40 includes a cell assembly 42, a pipe support plate (upper pipe support plate) 44, a pipe support plate (lower pipe support plate) 46, a heat insulating body (upper heat insulating body) 48, and a heat insulating body (lower side).
  • the heat insulating body) 50, the circumferential heat insulating body 52, and the partition plate 54 are housed inside.
  • a large number of cell stacks 56 are arranged in parallel.
  • the plurality of cell stacks 56 have a cylindrical shape in space inside, and are arranged in a direction in which the central axis is in the Z-axis direction, that is, in a direction in which the central axis is parallel to the central axis of the cylindrical portion 60.
  • the cell stack 56 has a plurality of fuel cell 100s arranged in a row in the Z-axis direction. The cell stack 56 will be described later.
  • the pipe support plate 44 and the pipe support plate 46 support both ends of the cell stack 56.
  • the pipe support plate 44 is a plate-shaped member arranged on one side (upper side) of the container 40 in the axial direction.
  • the pipe support plate 46 is a plate-shaped member arranged on the other side (lower side) of the container 40 in the axial direction.
  • the tube support plate 46 is inserted with the other end of the cell stack 56 arranged in the container 40.
  • One end of the cell stack 56 arranged in the container 40 is inserted into the pipe support plate 44.
  • All the cell stacks 56 arranged in the container 40 are inserted into the pipe support plates 44 and 46, respectively.
  • the pipe support plates 44 and 46 are sealed at the connection portion with the cell stack 56. Further, the outer edges of the pipe support plates 44 and 46 are in contact with the container 40 or the circumferential heat insulating body 52, and the contact portions are sealed. As a result, the pipe support plate 44 partitions the internal space of the container 40.
  • the space (divided space) surrounded by the upper hemisphere portion 62 of the container 40 and the pipe support plate 44 is connected to the fuel gas inflow pipe, and the fuel supply chamber to which the fuel gas is supplied from the fuel gas inflow pipe. It becomes 74.
  • a space partitioned by the lower hemisphere portion 64 of the container 40 and the pipe support plate 46 is connected to a fuel gas discharge pipe, and serves as a fuel discharge chamber 76 for discharging fuel gas from the fuel gas discharge pipe.
  • the fuel supply chamber 74 is connected to one open end of the cell stack 56 inserted into the pipe support plate 44.
  • the fuel discharge chamber 76 is connected to the other open end of the cell stack 56 inserted into the pipe support plate 44.
  • the heat insulating body 48 and the heat insulating body 50 are arranged between the pipe support plate 44 and the pipe support plate 46.
  • the heat insulating body 48 is arranged on one side (upper side) of the container 40 in the axial direction, and is formed in a blanket shape or a board shape by using a heat insulating material.
  • the heat insulating body 50 is arranged on the other side (lower side) of the container 40 in the axial direction, and is formed in a blanket shape or a board shape by using a heat insulating material.
  • Holes 51a and 51b through which the cell stack 56 is inserted are formed in the heat insulating bodies 48 and 50, respectively. The diameters of the holes 51a and 51b are larger than the diameter of the cell stack 56.
  • the space sandwiched between the heat insulating body 48 and the heat insulating body 50 becomes the power generation chamber 72. Further, the space between the pipe support plate 46 and the lower heat insulating body 50 is connected to the air inflow pipe 66 and becomes an air supply chamber 78. The space between the pipe support plate 44 and the upper heat insulating body 48 is connected to the air discharge pipe 78 and becomes the air discharge chamber 79. As a result, air is supplied to the outer peripheral surface of the cell stack 56, which is a space between the pipe support plate 46 and the lower heat insulating body 50 and is arranged in the power generation chamber 72.
  • the circumferential heat insulating body 52 is attached to the inner circumference of the cylindrical portion 60 of the container 40.
  • the circumferential heat insulating body 52 suppresses heat transfer between the inside and the outside of the container 40.
  • the partition plate 54 is a plate member arranged inside the cylindrical portion 60 of the container 40 and extending in the extending direction of the cell stack 56. The partition plate 54 is inserted between the cell stacks 56 of the cell assembly 42 to divide the cell assembly 42 into a plurality of regions.
  • the fuel cell 100 is arranged only in the power generation chamber 72.
  • the cell stack 56 includes a lead unit 80, a power generation unit 82, a power generation unit 84, a power generation unit 86, and a lead unit 88.
  • the fuel gas 90 flows inside the reed unit 80, the power generation unit 82, the power generation unit 84, the power generation unit 86, and the lead unit 88, and the reed unit 80, the power generation unit 82, the power generation unit 84, and the cell stack 56.
  • Air 92 flows around the power generation unit 86 and the lead unit 88.
  • the power generation unit 82 and the power generation unit 84 are connected by a connection unit 89. Further, the power generation unit 86 and the power generation unit 86 are connected by a connection unit 89.
  • the cell stack 56 is a cylindrical member in which each part is connected, and the lead part 80, the power generation part 82, the connection part 89, the power generation part 84, the connection part 89, and the power generation part 86 from the fuel supply position to the fuel discharge position. ,
  • the lead portion 88 is connected in this order.
  • the lead portions 80 and 88 are portions where the fuel cell 100 is not arranged.
  • the power generation units 82, 84, and 86 are areas in which the fuel cell 100 is arranged.
  • the lead portion 80 is a portion where the fuel cell 100 on the upper side in the Z-axis direction of the power generation unit 82 is not arranged.
  • the lead portion 88 is a portion where the fuel cell 100 below the power generation unit 86 in the Z-axis direction is not arranged.
  • the lead portion 80 includes a portion in contact with the pipe support plate 44 and a portion facing the heat insulating body 48.
  • the lead portion 88 includes a portion in contact with the pipe support plate 46 and a portion facing the heat insulating body 50.
  • the power generation units 82, 84, and 86 are arranged in the power generation chamber 72.
  • a plurality of fuel cell cells 100 are arranged in each of the power generation units 82, 84, and 86 in the Z-axis direction.
  • the power generation unit 84 is made of a material different from that of the power generation units 82 and 86.
  • the power generation unit 84 is the first unit, and the power generation unit 82 and the power generation unit 86 are the second units.
  • the power generation units 82, 84, and 86 include a tubular base tube 101 and a fuel cell 100 serving as a power generation element provided on the outer peripheral surface of the base tube 101.
  • the base tube 101 is a cylindrical ceramic tube that becomes porous, and fuel gas flows inside the base tube 101, that is, in a region surrounded by a cylindrical inner peripheral surface. Since the base pipe 101 is porous, the fuel gas flowing inside is guided to the outer peripheral surface side of the base pipe 101.
  • the lead portions 80 and 88 are not provided with the fuel cell 100, and are formed only of the substrate pipe 101.
  • the fuel cell 100 is configured by laminating a fuel electrode 103, a solid electrolyte 104, and an air electrode 105, and the fuel electrode 103 and the air electrode 105 are provided on both sides of the solid electrolyte 104.
  • the air electrode 105 contains an active metal, and the air electrode 105 has a function of contributing to a combustion reaction by the contained active metal (combustion by catalysis).
  • the fuel poles 103 are in contact with the outer peripheral surface of the base pipe 101, and a plurality of fuel cells 103 are arranged in the axial direction of the base pipe 101.
  • the fuel pole 103 of one adjacent fuel cell 100 and the air pole 105 of the other adjacent fuel cell 100 are connected by an interconnector 106.
  • the fuel cell 100 configured in this way generates power at a high temperature of, for example, 800 ° C. to 950 ° C. in the region where the power generation unit 84 is arranged during the power generation operation of the fuel cell system 10.
  • a protective film 118 is formed at the end where the connection portion 89 is installed.
  • the protective film 118 is formed on the axially outer end surface (outer peripheral surface) of the base tube 101, the end face of the base tube 101, and the end face on the adjacent battery cell unit 60 side.
  • the protective film 118 of the present embodiment is made of the same material as the interconnector (dense film having electrical conductivity).
  • the surface portion of the base tube 101 of the protective film 118 is integrally formed with the interconnector (dense film having electrical conductivity) 106.
  • the end face portion of the protective film 118 is formed by applying a material using an interconnector.
  • the fuel pole 103 is formed of Ni-zirconia electrolyte, and in the power generation units (second unit) 82 and 86, the fuel pole 103 is from the fuel pole 103 of the first unit.
  • the heat resistance refers to the stability (sinterability) of the material in a temperature environment, the durability due to the reactivity, and the change in the movement characteristics of ions and electrons required for the power generation of the SOFC cell (transport number). It also includes the characteristics and durability of catalytic activity such as adsorption and reaction of electrodes.
  • ceria-based electrolytes SDC, GDC
  • zirconia electrolyte examples include YSZ, ScSZ, and CaSZ.
  • YSZ is Y 2 O 3 doped ZrO 2 .
  • ScSZ is Sc 2 O 3 doped ZrO 2 .
  • CaSZ is Ca 2 O 3 doped ZrO 2 .
  • the solid electrolyte 104 is formed of zirconia electrolyte, and in the power generation units (second unit) 82 and 86, the solid electrolyte 104 is more heat resistant than the fuel electrode 103 of the first unit. It is formed of a low-grade zirconia electrolyte.
  • Power generating unit of the present embodiment (first unit) 84, the interconnector 106 is formed in one of LaCrO 3, LaSrCrO 3, LaSrTiO 3 , the power generation unit (second unit) 82 and 86, interconnector 106 is a It is formed of LaCrO 3 , LaSrCrO 3 , and LaSrTIO 3, which have lower heat resistance than the fuel electrode 103 of one unit.
  • the air electrode 105 is formed of any of LSM, LCM, and LSCM, and in the power generation units (second unit) 82 and 86, the interconnector 106 is the first unit. It is made of LSCF, LSF, LNF, and BSCF, which have lower heat resistance than the fuel electrode 103.
  • the LSM is (La, Sr) MnO 3 .
  • the LCM is Ca-toppedLaMnO 3 .
  • the LSCM is (La, Sr, Ca) MnO 3 .
  • LSCF is (La, Sr) (Co, Fe) O 3.
  • the LSF is (La, Sr) FeO 3 .
  • LNF is LaNi (Fe) O 3.
  • BSCF is Ba (Sr) Co (Fe) O 3.
  • the connecting portion 89 has a connecting jig 112, an adhesive layer 114, and a connecting portion air electrode 115.
  • the connecting jig 112 is arranged between the two battery cell units 60 to be connected, and is adhered to the two battery cell units 60 by the adhesive layer 114.
  • the connecting jig 112 is formed of a dense material having a thermal expansion similar to that of the solid electrolyte 104, for example, zirconia-based ceramic, specifically, zirconia (ZrO2), yttria-stabilized zirconia (YSZ), or the like.
  • the connecting jig 112 is preferably made of a material having a coefficient of thermal expansion similar to that of the substrate tube 101.
  • the connecting jig 112 has a cylindrical portion 122 and a convex portion 124.
  • the cylindrical portion 122 and the convex portion 124 are integrally formed.
  • the cylindrical portion 122 is a cylindrical member, and has a shape in which the inner peripheral diameter is larger than the outer peripheral diameter of the battery cell unit 60.
  • the convex portion 124 has a ring shape that is arranged on the inner peripheral surface of the cylindrical portion 122 and is convex inward in the radial direction. That is, the convex portion 124 is formed on the entire circumference of the cylindrical portion 122 in the circumferential direction.
  • the convex portion 124 is arranged near the center of the cylindrical portion 122 in the axial direction of the cylindrical portion 122.
  • the boundary 126 between the cylindrical portion 122 and the convex portion 124 has an R shape. That is, the boundary 126 between the cylindrical portion 122 and the convex portion 124 is a curved surface.
  • connection jig 112 is inserted at the end of the two power generation units 82, 84, 86 to be connected on the connected side. That is, the connecting jig 112 is a pipeline having a diameter larger than that of the power generation units 82, 84, 86, and one power generation unit is inserted into one end and the other power generation unit is inserted into the other end. There is.
  • the power generation units 82, 84, and 86 are inserted inside the cylinder of the connecting jig 112, and the outer peripheral surface is in contact with the inner peripheral surface of the connecting jig 112 via the adhesive layer 114. Further, in the battery cell unit 60, the end portion in the axial direction is in contact with the protrusion 124 of the connecting jig 112 via the adhesive layer 114.
  • the adhesive layer 114 is formed between the connecting jig 112 and the power generation unit, more specifically, the inner peripheral surface and the convex portion 124 of the cylindrical portion 122 of the connecting jig 112, the interconnector 106 of the power generation unit, and the protective layer 118. Is formed between.
  • the adhesive layer 114 uses a material that is dense and has a thermal expansion similar to that of the solid electrolyte 104.
  • As the adhesive layer 114 for example, a material obtained by adding fine alumina powder to coarse zirconia powder can be used.
  • the adhesive layer 114 can be formed by applying it in a slurry state and then firing it.
  • the connecting portion air pole 115 is formed on the outer circumference of the connecting jig 112 and the outer circumference of the two power generation portions.
  • the connecting air electrode 115 is made of the same material as the air electrode 105, and can be formed at the same time as the air electrode 105.
  • one end of the connecting air electrode 115 is in contact with the interconnector 106 of one power generation unit, and the other end is of the other power generation unit. It contacts the interconnector 106. Both ends of the connecting air electrode 115 are in contact with the interconnector 106 of the power generation unit, so that the interconnector 106 at the end of the power generation unit is made conductive.
  • the fuel cell module 12 performs a start-up operation for raising the fuel cell 100 to a predetermined temperature, and then performs a power generation operation for generating power in the fuel cell 100.
  • air flows into the air supply chamber 88 of the fuel cell module 12.
  • the air is supplied into the power generation chamber 82 through the gap between the hole 51b of the heat insulating body 50 and the cell stack 56.
  • fuel gas flows into the fuel supply chamber 84.
  • the fuel gas is supplied into the power generation chamber 82 through the inside of the base pipe 101 of the cell stack 56. At this time, the air and the fuel gas flow in opposite directions on the inner peripheral surface and the outer peripheral surface of the cell stack 56.
  • the fuel gas flowing inside the base pipe 101 passes through the pores of the base pipe 101 and reaches the fuel electrode 103.
  • This fuel gas is steam reformed using the active metal contained in the fuel electrode 103 as a catalyst.
  • Hydrogen produced by steam reforming passes through the pores of the fuel electrode 103 and reaches the solid electrolyte 104.
  • air flows outside the substrate tube 101 (air electrode 105).
  • Oxygen in the air receives electrons and is ionized while passing through the pores of the air electrode 105 or reaching the solid electrolyte 104.
  • the ionized oxygen passes through the solid electrolyte 104 and reaches the fuel electrode 103.
  • the oxygen ions that have passed through the solid electrolyte 104 react with the fuel gas, and the fuel gas emits electrons, which move from the fuel electrode to the air electrode via an external circuit.
  • the fuel cell module 12 generates electricity by such a battery reaction.
  • the fuel gas that has become hot and used for power generation is heat-exchanged with the air before being used for power generation in the air supply chamber 78 via the cell stack 56.
  • the high temperature air used for power generation is heat-exchanged with the fuel gas before being used for power generation in the air discharge chamber 79 via the cell stack 56.
  • the fuel gas flows into the fuel discharge chamber 86 and is discharged from the fuel discharge chamber 86 to the outside of the fuel cell module 12, and the air is discharged from the air discharge chamber 89 to the fuel cell module 12 It is discharged to the outside of.
  • the material of the fuel cell 100 of the power generation unit 84 which is the first unit of the cell stack 56, has higher heat resistance than the material of the fuel cell 100 of the power generation units 82, 86, which is the second unit. Formed from material.
  • the fuel cell module 12 can form the fuel cell 100 with a material suitable for each temperature range.
  • each of the power generation units 82, 84, and 86 can generate power with high efficiency.
  • the selectivity of the material can be increased. Further, since the range in which a highly durable material is used can be reduced, it can be easily manufactured.
  • the fuel electrode 103, the solid electrolyte 104, the air electrode 105, and the interconnector 106 are formed of different materials in the power generation unit 84 and the power generation units 82 and 86, but the present invention is limited to this. Not done.
  • the fuel cell module 12 may be made of a material in which at least one element of the fuel electrode 103, the solid electrolyte 104, and the interconnector 106 is different between the power generation unit 84 and the power generation units 82 and 86.
  • At least one element of the fuel electrode 103, the solid electrolyte 104, and the interconnector 106 of the power generation unit 84 may be a material different from the corresponding elements of the power generation units 82 and 86. It is more preferable that the power generation unit 84 and the power generation units 82 and 86 use materials corresponding to each of the fuel electrode 103, the solid electrolyte 104, the air electrode 105, and the interconnector 106.
  • the cell stack 56 is the length in the flow direction of the fuel gas of the power generation unit (second unit) 82 on the inlet side of the fuel gas, assuming that the total length of the power generation units 82, 84, 86 is 100%. Is preferably 5% to 12.5%. Assuming that the total length of the power generation units 82, 84, and 86 is 100%, the cell stack 56 has a length of the power generation unit (first unit) 84 in the flow direction of the fuel gas from 65.0% to 80. It is preferably 0%. When the total length of the power generation units 82, 84, and 86 is 100%, the cell stack 56 has a length of the fuel gas flow direction of the power generation unit (second unit) 86 on the fuel gas outlet side. It is preferably 0.0% to 22.5%.
  • the power generation units 82, 84, and 86 are arranged so as to be in the above range, and in particular, the length of the power generation unit 84 of the first unit is set in the above range to efficiently generate power. Can be done.
  • the fuel cell module 12 of the present embodiment is a cylindrical cell stack in which the fuel having fuel internal reforming and air are countercurrent, and the vicinity of the fuel gas inlet is a region where heat is exchanged to reform the fuel gas. Become. Therefore, the length of the power generation unit 82 is made shorter than that of the power generation unit 86, and the fuel gas can reach the arrangement region of the power generation unit 84 earlier, so that the cell temperature on the fuel inlet side is made higher than the fuel outlet cell temperature. Therefore, the reforming of the fuel can be preferably performed.
  • the first unit and the second unit are connected by using the connection unit 89, but the connection method is not limited to this.
  • the first unit and the second unit may be manufactured continuously by switching the material at the time of manufacturing.
  • the fuel cell module 12 of the present embodiment has a structure in which the fuel gas 90 and the air 92 flow in correspondence with each other, and in the fuel gas flow, the temperature on the outlet side of the fuel gas is lower than that in the central portion. 86 was used as the second unit.
  • the fuel cell 100 corresponding to the temperature can be arranged, and the performance can be improved.
  • the present invention is not limited to this, and the outlet side of the fuel gas does not have to have a second unit. That is, in the flow direction of the fuel gas, the upstream side may be the second unit and the downstream side may be the first unit.
  • the reaction temperature in the first unit is assumed to be 800 ° C. or higher and 950 ° C. or lower (high temperature specification), but the reaction temperature in the first unit is 600 ° C. or higher and lower than 800 ° C. (medium temperature specification). In the case of, each of them may be used as the following materials. Specifically, the reaction temperature of the first unit is 600 ° C. or higher and lower than 800 ° C. (medium temperature specification), and the reaction temperature of the second unit is 400 ° C. or higher and lower than 600 ° C. (low temperature specification).
  • the fuel electrode 103 is formed of a Ni-lanthanum-based electrolyte, and in the power generation units (second unit) 82 and 86, the fuel electrode 103 is more heat resistant than the fuel electrode 103 of the first unit. It is formed of a Ni-ceria electrolyte with low properties.
  • the lanthanum-based electrolyte is, for example, LSGM (La (Sr) Ga (Mg) O 3 ).
  • Examples of the ceria-based electrolyte include GDC (Gd-doped CeO 2 ) and SDC (Sm-doped CeO 2 ).
  • the solid electrolyte 104 is formed of lanthanum electrolyte, and in the power generation units (second unit) 82 and 86, the solid electrolyte 104 has lower heat resistance than the fuel electrode 103 of the first unit. Formed of electrolyte.
  • the interconnector 106 is formed in one of LaCrO 3, LaSrCrO 3, LaSrTiO 3 , the power generation unit (second unit) 82 and 86, the fuel of the interconnector 106 is the first unit It is made of ferritic stainless steel or stainless alloy, which has lower heat resistance than pole 103.
  • the air electrode 105 is formed of any of LSCF, LSF, LNF, and BSCF, and in the power generation units (second unit) 82 and 86, the interconnector 106 is the fuel electrode of the first unit. It is formed of LSCF, LSF, LNF, and BSCF, which have lower heat resistance than 103.
  • the fuel cell module 12 can be used in order to combine a plurality of units according to the temperature distribution.
  • the second unit of the medium temperature specification may be further arranged on the downstream side in the fuel gas flow direction of the second unit of the high temperature specification. That is, the second unit of the medium temperature specification is arranged downstream of the first unit of the high temperature specification described above, and the second unit of the low temperature specification (which may be the third unit) is arranged downstream of the second unit of the medium temperature specification. You may.
  • the second unit of the medium temperature specification may be arranged on the downstream side in the fuel gas flow direction of the first unit of the high temperature specification.
  • the cell stack is arranged in a region where the temperature of the first unit is higher than that of the second unit during power generation. As a result, the power generation performance of the cell stack can be further improved.
  • FIG. 7 is a schematic configuration diagram schematically showing a cell stack of another embodiment.
  • the cell stack 56 of the fuel cell module 12 of the above embodiment is a case where the fuel gas is reformed inside the cell stack 56, but the present invention is not limited to this.
  • the cell stack 56a shown in FIG. 7 includes a lead unit 80a, a power generation unit 82a, a power generation unit 84a, a power generation unit 86a, and a lead unit 88a.
  • the fuel gas 90 flows inside the reed unit 80a, the power generation unit 82a, the power generation unit 84a, the power generation unit 86a, and the lead unit 88a, and the reed unit 80a, the power generation unit 82a, the power generation unit 84a, and the cell stack 56a.
  • Air 92 flows around the power generation unit 86a and the lead unit 88a.
  • the power generation unit 82a and the power generation unit 84a are connected by a connection unit 89. Further, the power generation unit 86a and the power generation unit 86a are connected by a connection unit 89.
  • the cell stack 56a is a cylindrical member in which each part is connected, and is a lead part 80a, a power generation part 82a, a connection part 89, a power generation part 84a, a connection part 89, and a power generation part 86a from a fuel supply position to a fuel discharge position.
  • the lead portion 88a is connected in this order.
  • the cell stack 56a is the length in the flow direction of the fuel gas of the power generation unit (second unit) 82 on the inlet side of the fuel gas, assuming that the total length of the power generation units 82a, 84a, 86a is 100%. Is preferably 7.5% to 15.0%.
  • the cell stack 56 has a length of the fuel gas flow direction of the power generation unit (first unit) 84 from 70.0% to 85. It is preferably 0%.
  • the cell stack 56 has a length of 7 in the fuel gas flow direction of the power generation unit (second unit) 86 on the fuel gas outlet side. It is preferably 5.5% to 15.0%.
  • the cell stack 56a is a mechanism that does not internally reform the fuel gas, it is possible to efficiently generate power by setting the lengths of the power generation unit 82a and the power generation unit 86a to be the same. Further, in this case as well, by making the length of the first unit 84a longer than that of the other parts, it is possible to efficiently generate power.
  • the fuel cell module of the above embodiment has a structure in which the cell stack has a cylindrical shape and the fuel cell cells are arranged in a row, but the present invention is not limited to this, and can be used for various cell structures.
  • FIG. 8 is a schematic configuration diagram schematically showing a fuel cell module of another embodiment.
  • FIG. 9 is a perspective view schematically showing the cell stack of the fuel cell module shown in FIG.
  • a plurality of fuel cell cells 210 have a flat plate shape and are laminated in a direction orthogonal to the plane having the largest plate area.
  • the fuel cell 210 includes a fuel electrode 203, a solid electrolyte 204, and an air electrode 205.
  • the fuel cell module 200 is provided with separators 212 and 214 between the stacked fuel cell cells 210.
  • a flat fuel electrode 203, a solid electrolyte 204, and an air electrode 205 are laminated in this order.
  • the fuel electrode 203 faces the separator 212.
  • the air electrode 205 faces the separator 214.
  • the fuel 90 flows between the fuel electrode 203 and the separator 312, and the air 92 flows between the air electrode 205 and the separator 214.
  • the fuel cell module 200 is supplied in a direction in which the fuel gas 90 and the air 92 are orthogonal to each other. As shown in FIG.
  • the fuel cell module 200 divides the plane region of the fuel cell into the first unit 282 and the second unit 284, and uses different materials for the fuel cell.
  • the first unit 282 is a region downstream of the second unit 284 in the flow direction of the fuel gas 90 and downstream in the flow direction of the air 92.
  • the diagonal line of the rectangular fuel cell 210 is the boundary line. The position of the boundary line is not particularly limited, and may be on the upstream side in the fuel gas flow direction.
  • FIG. 10 is a schematic configuration diagram schematically showing a fuel cell module of another embodiment.
  • FIG. 11 is a perspective view schematically showing the cell stack of the fuel cell module shown in FIG.
  • the fuel cell 310 includes a fuel electrode 303, a solid electrolyte 304, an air electrode 305, and an interconnector 306.
  • a cylindrical fuel electrode 303, a solid electrolyte 304, and an air electrode 305 are laminated in this order from the outside to the inside.
  • the interconnector 306 is laminated on the surface of the fuel electrode 303 arranged on the outer periphery.
  • the fuel cell module 300 divides the power generation unit into a first unit 382 and a second unit 384 in the flow direction of the fuel gas of the fuel cell, and uses different materials for the fuel cell. It is supposed to be.
  • the first unit 382 is a region downstream of the second unit 384 in the flow direction of the fuel gas 90 and downstream in the flow direction of the air 92.
  • the efficiency can be achieved by using different materials for the fuel cell depending on the position in the flow direction of the fuel gas. It can generate electricity well.
  • FIG. 12 is a schematic configuration diagram schematically showing a fuel cell module of another embodiment.
  • FIG. 13 is a perspective view schematically showing the cell stack of the fuel cell module shown in FIG.
  • the fuel cell 410 includes a base 202, a fuel electrode 403, a solid electrolyte 404, an air electrode 405, and an interconnector 406.
  • the base 402 has an oval shape, and a plurality of passages through which fuel passes are formed in parallel inside the fuel cell cell 410.
  • the fuel electrode 403, the solid electrolyte 404, and the air electrode 405 are laminated in this order on the surface of the substrate 402.
  • the interconnector 406 is connected to an air electrode 405 arranged on the outer periphery.
  • the fuel cell module 400 of the present embodiment the fuel gas 90 flows inside the substrate 402, and the air 92 flows outside the cylinder. Further, the fuel gas 90 and the air 92 are parallel flows flowing in the same direction.
  • the fuel cell module 400 divides the power generation unit into a first unit 482 and a second unit 484 in the flow direction of the fuel gas of the fuel cell, and uses different materials for the fuel cell. It is supposed to be.
  • the first unit 482 is a region downstream of the second unit 384 in the flow direction of the fuel gas 90 and downstream in the flow direction of the air 92.
  • the efficiency can be achieved by using different materials for the fuel cell depending on the position in the flow direction of the fuel gas. It can generate electricity well.
  • Fuel cell system 12 Fuel cell module 14 Air supply device 15 Air discharge pipe 16 Fuel supply device 17 Fuel discharge pipe 18 Control device 20 Current meter 21 Thermometer 22 Air supply source 24 Air supply pipe 26 Fuel supply source 28 Fuel supply pipe 40 , 40a Pressure vessel 42 Cell assembly 44, 46 Pipe support plate 48, 50 Insulation body 51a, 51b Hole 52 Circumferential insulation 54 Partition plate 56 Cell stack 60 Cylindrical part 62 Upper hemisphere part 64 Lower hemisphere part 66 Air inflow pipe 68 Air discharge pipe 72 Power generation room 74 Fuel supply room 76 Fuel discharge room 78 Air supply room 79 Air discharge room 80, 88 Leads 82, 86 Second unit 84 First unit 89 Connection 90 Fuel gas 92 Air 100 Fuel cell 101 Base tube 103 Fuel pole 104 Solid electrolyte 105 Air pole 106 Interconnector 112 Connection jig 114 Adhesive layer 115 Connection part Air pole 118 Protective film 122 Cylindrical part 124 Convex part 132, 140 Arrow

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)

Abstract

The present invention comprises: a container; a cell stack which is arranged within the container, and in which a plurality of fuel cells are arranged; an oxidizing gas supply unit which supplies an oxidizing gas to the cell stack in a first direction; and a fuel supply unit which supplies a fuel to the cell stack. Each of the fuel cells comprises: a substrate; a fuel electrode that is superposed on the substrate; an electrolyte; an air electrode; and an interconnector that is connected to an adjacent fuel cell. The cell stack comprises: a first unit in which a fuel cell is arranged; and a second unit which is connected to the first unit, and in which a fuel cell is arranged. With respect to the second unit, at least one element among the fuel electrode, the electrolyte and the interconnector of the fuel cell is formed of a material that is different from the material of the corresponding element of the fuel cell in the first unit.

Description

燃料電池モジュール及びこれを有する燃料電池システムFuel cell module and fuel cell system with it
 本開示は、セルスタックを有する燃料電池モジュール及びこれを有する燃料電池システムに関する。 The present disclosure relates to a fuel cell module having a cell stack and a fuel cell system having the cell stack.
 燃料電池システムに搭載された燃料電池モジュールは、燃料電池セルの集合体であるセルスタックを複数備えている。セルスタックは、1本に多数の燃料電池セルを配置し、直列で接続することで、出力する電圧を高くすることができる。特許文献1には、基体管上に燃料極と固体電解質膜と空気極とを備えるセルが基体管の円周方向に形成され、複数のセルが基体管の軸方向に沿って配列されたセルスタックを備える個体酸化物形燃料電池が記載されている。また、特許文献1には、セルの位置の温度に応じて、空気極の材料を異なる材料とすることが記載されている。 The fuel cell module mounted on the fuel cell system has a plurality of cell stacks, which are an aggregate of fuel cell cells. By arranging a large number of fuel cell cells in one cell stack and connecting them in series, the output voltage can be increased. In Patent Document 1, a cell having a fuel electrode, a solid electrolyte membrane, and an air electrode is formed on the substrate tube in the circumferential direction of the substrate tube, and a plurality of cells are arranged along the axial direction of the substrate tube. Solid oxide fuel cells with stacks are described. Further, Patent Document 1 describes that the material of the air electrode is made of a different material depending on the temperature at the position of the cell.
特開2013-175306号公報Japanese Unexamined Patent Publication No. 2013-175306
 特許文献1に記載の燃料電池モジュールは、空気極の材料を変更しているが、セルとしての発電性能が不十分な場合がある。 In the fuel cell module described in Patent Document 1, the material of the air electrode is changed, but the power generation performance as a cell may be insufficient.
 そこで、本開示は、燃料電池モジュールの各位置のセルスタックでの発電性能の低下を抑制し、高い効率で発電を行うことができる燃料電池モジュール及びこれを有する燃料電池システムを提供することを課題とする。 Therefore, it is an object of the present disclosure to provide a fuel cell module capable of suppressing deterioration of power generation performance in a cell stack at each position of the fuel cell module and generating power with high efficiency, and a fuel cell system having the same. And.
 本開示の燃料電池モジュールは、容器と、前記容器の内部に配置され、第1の方向に延在し、前記第1の方向に複数の燃料電池セルが配置されたセルスタックと、前記セルスタックに前記第1の方向に沿って酸化性ガスを供給する酸化性ガス供給部と、前記セルスタックに燃料を供給する燃料供給部と、を含み、前記燃料電池セルは、基体と、前記基体に積層された燃料極と、電解質と、空気極と、隣接する燃料電池セルと接続するインターコネクタとを含み、前記セルスタックは、前記燃料電池セルが配置された第1ユニットと、前記第1ユニットに連結し、前記燃料電池セルが配置された第2ユニットと、を含み、前記第2ユニットは、前記燃料電池セルの燃料極、電解質及びインターコネクタの少なくとも1つの要素が、前記第1ユニットの燃料電池セルの対応する前記要素とは異なる材料で形成される。 The fuel cell module of the present disclosure includes a container, a cell stack arranged inside the container, extending in a first direction, and having a plurality of fuel cell cells arranged in the first direction, and the cell stack. Includes an oxidizing gas supply unit that supplies an oxidizing gas along the first direction, and a fuel supply unit that supplies fuel to the cell stack. The cell stack includes a laminated fuel electrode, an electrolyte, an air electrode, and an interconnector connected to an adjacent fuel cell, and the cell stack includes a first unit in which the fuel cell is arranged and the first unit. The second unit includes, in the second unit, at least one element of the fuel electrode, electrolyte and interconnector of the fuel cell, the first unit. It is made of a material different from the corresponding element of the fuel cell.
 本開示の燃料電池システムは、上記の燃料電池モジュールと、前記圧力容器に酸化ガスを供給する酸化ガス供給手段と、前記セルスタックの内部に燃料ガスを供給する燃料ガス供給手段と、を有する。 The fuel cell system of the present disclosure includes the above-mentioned fuel cell module, an oxidation gas supply means for supplying the oxidation gas to the pressure vessel, and a fuel gas supply means for supplying the fuel gas inside the cell stack.
 本開示によれば、燃料電池モジュールの各位置のセルスタックを適切な材料で形成することができ、発電性能の低下を抑制し、高い効率で発電を行うことができる。これにより、単位体積当たりの発電量をより増加させることができる。 According to the present disclosure, the cell stack at each position of the fuel cell module can be formed of an appropriate material, the deterioration of power generation performance can be suppressed, and power generation can be performed with high efficiency. As a result, the amount of power generation per unit volume can be further increased.
図1は、本実施形態の燃料電池システムを模式的に表した概略構成図である。FIG. 1 is a schematic configuration diagram schematically showing the fuel cell system of the present embodiment. 図2は、燃料電池モジュールを模式的に表した概略構成図である。FIG. 2 is a schematic configuration diagram schematically showing a fuel cell module. 図3は、セルスタックを模式的に表した概略構成図である。FIG. 3 is a schematic configuration diagram schematically showing a cell stack. 図4は、セルスタックの一部を模式的に表した断面図である。FIG. 4 is a cross-sectional view schematically showing a part of the cell stack. 図5は、圧力容器の内部におけるセルスタックの配置の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of the arrangement of cell stacks inside the pressure vessel. 図6は、接続機構の近傍を拡大して示す拡大断面図である。FIG. 6 is an enlarged cross-sectional view showing the vicinity of the connection mechanism in an enlarged manner. 図7は、他の実施形態のセルスタックを模式的に表した概略構成図である。FIG. 7 is a schematic configuration diagram schematically showing a cell stack of another embodiment. 図8は、他の実施形態の燃料電池モジュールを模式的に示した概略構成図である。FIG. 8 is a schematic configuration diagram schematically showing a fuel cell module of another embodiment. 図9は、図8に示す燃料電池モジュールのセルスタックを模式的に示した斜視図である。FIG. 9 is a perspective view schematically showing the cell stack of the fuel cell module shown in FIG. 図10は、他の実施形態の燃料電池モジュールを模式的に示した概略構成図である。FIG. 10 is a schematic configuration diagram schematically showing a fuel cell module of another embodiment. 図11は、図10に示す燃料電池モジュールのセルスタックを模式的に示した斜視図である。FIG. 11 is a perspective view schematically showing the cell stack of the fuel cell module shown in FIG. 図12は、他の実施形態の燃料電池モジュールを模式的に示した概略構成図である。FIG. 12 is a schematic configuration diagram schematically showing a fuel cell module of another embodiment. 図13は、図12に示す燃料電池モジュールのセルスタックを模式的に示した斜視図である。FIG. 13 is a perspective view schematically showing the cell stack of the fuel cell module shown in FIG.
 以下、添付した図面を参照して、本発明に係る燃料電池システムについて説明する。なお、以下の実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Hereinafter, the fuel cell system according to the present invention will be described with reference to the attached drawings. The present invention is not limited to the following embodiments. In addition, the components in the following embodiments include those that can be easily replaced by those skilled in the art, or those that are substantially the same.
 図1は、本実施形態の燃料電池システムを模式的に表した概略構成図である。本実施形態の燃料電池システム10は、固体酸化物型の燃料電池モジュール、いわゆる、SOFC(Solid Oxide Fuel Cell)を備えており、燃料電池モジュールを制御しながら、運転を行っている。燃料電池システムは、燃料電池モジュールを通過した燃料ガスと空気(酸化剤ガス)の一部をガスタービンの燃焼器に供給してもよい。つまり、燃料電池システム10は、他の発電装置と連結したコンバインドシステムの一部としてもよい。 FIG. 1 is a schematic configuration diagram schematically showing the fuel cell system of the present embodiment. The fuel cell system 10 of the present embodiment includes a solid oxide fuel cell module, a so-called SOFC (Solid Oxide Fuel Cell), and operates while controlling the fuel cell module. The fuel cell system may supply a part of the fuel gas and air (oxidant gas) that have passed through the fuel cell module to the combustor of the gas turbine. That is, the fuel cell system 10 may be a part of a combined system connected to another power generation device.
 図1に示すように、燃料電池システム10は、燃料電池モジュール12と、空気(酸化剤ガス)を供給する空気供給装置(酸化ガス供給部)14と、燃料電池モジュール12を通過した空気(排空気、排酸化剤ガス)が排出される空気排出管15と、燃料ガスを供給する燃料供給装置16と、燃料電池モジュール12を通過した燃料ガス(排燃料ガス)が排出される燃料排出管17と、各部の動作を制御する制御装置18と、電圧計19と、電流計20と、温度計21と、を備えている。なお、本実施形態では、酸化剤ガスとして空気を用いる例で説明するが酸素含有ガスなどの燃料ガスを酸化させる酸化剤であればよい。 As shown in FIG. 1, the fuel cell system 10 includes a fuel cell module 12, an air supply device (oxidizer gas supply unit) 14 for supplying air (oxidant gas), and air (exhaust) that has passed through the fuel cell module 12. An air discharge pipe 15 for discharging air (exhaust fuel gas), a fuel supply device 16 for supplying fuel gas, and a fuel discharge pipe 17 for discharging fuel gas (exhaust fuel gas) that has passed through the fuel cell module 12. A control device 18 for controlling the operation of each unit, a voltmeter 19, a current meter 20, and a thermometer 21 are provided. In this embodiment, an example in which air is used as the oxidant gas will be described, but any oxidant that oxidizes a fuel gas such as an oxygen-containing gas may be used.
 燃料電池モジュール12は、供給される空気と燃料ガスとを反応させ発電する。燃料電池モジュールについては、後述する。 The fuel cell module 12 generates electricity by reacting the supplied air with the fuel gas. The fuel cell module will be described later.
 空気供給装置(酸化性ガス供給手段)14は、燃料電池モジュール12に空気を供給する。空気供給装置14は、空気供給源22と空気供給配管24とを有する。空気供給源22は、掃気ファン、ポンプ等の空気を送る装置である。空気供給配管24は、空気供給源22と燃料電池モジュール12とを接続している。空気供給配管24は、空気供給源22により送られる空気を燃料電池モジュール12に供給する。 The air supply device (oxidizing gas supply means) 14 supplies air to the fuel cell module 12. The air supply device 14 has an air supply source 22 and an air supply pipe 24. The air supply source 22 is a device that sends air, such as a scavenging fan or a pump. The air supply pipe 24 connects the air supply source 22 and the fuel cell module 12. The air supply pipe 24 supplies the air sent by the air supply source 22 to the fuel cell module 12.
 燃料供給装置(燃料供給手段)16は、燃料供給室84へ向けて燃料ガスを供給する。燃料供給装置16は、燃料供給源26と燃料供給配管28とを有する。燃料供給源26は、燃料ガスを貯留するタンクと、タンクから供給する燃料ガスの流量を制御する制御弁等を備えている。燃料供給配管28は、燃料供給源26と燃料電池モジュール12とを接続している。燃料供給配管28は、燃料供給源26により送られる燃料ガスを燃料電池モジュール12に供給する。 The fuel supply device (fuel supply means) 16 supplies fuel gas to the fuel supply chamber 84. The fuel supply device 16 has a fuel supply source 26 and a fuel supply pipe 28. The fuel supply source 26 includes a tank for storing the fuel gas, a control valve for controlling the flow rate of the fuel gas supplied from the tank, and the like. The fuel supply pipe 28 connects the fuel supply source 26 and the fuel cell module 12. The fuel supply pipe 28 supplies the fuel gas sent by the fuel supply source 26 to the fuel cell module 12.
 また、燃料電池システム10は、燃料電池モジュール12から出力する電圧値を計測する電圧計19と、燃料電池モジュール12から出力する電流値を計測する電流計20と、燃料電池モジュール12に設けられた温度計21とを備えている。電流計20は、燃料電池モジュール12の発電によって得られた電流を計測している。温度計21は、燃料電池モジュール12の後述する発電室82の温度を計測する。 Further, the fuel cell system 10 is provided in the voltmeter 19 for measuring the voltage value output from the fuel cell module 12, the ammeter 20 for measuring the current value output from the fuel cell module 12, and the fuel cell module 12. It is equipped with a voltmeter 21. The ammeter 20 measures the current obtained by the power generation of the fuel cell module 12. The thermometer 21 measures the temperature of the power generation chamber 82, which will be described later, of the fuel cell module 12.
 制御装置18は、燃料電池モジュール12の起動運転時における制御を行ったり、燃料電池モジュール12の発電運転時における制御を行ったりしている。制御装置18は、電圧計19、電流計20や温度計21の計測結果や、入力された指示に基づいて、空気供給装置14から供給する空気の量や燃料供給装置16から供給する燃料ガスの量、燃料電池モジュール12から取り出す電力を制御する。 The control device 18 controls the fuel cell module 12 during the start-up operation and controls the fuel cell module 12 during the power generation operation. The control device 18 determines the amount of air supplied from the air supply device 14 and the fuel gas supplied from the fuel supply device 16 based on the measurement results of the voltmeter 19, the ammeter 20, and the thermometer 21 and the input instructions. The amount and the electric power taken out from the fuel cell module 12 are controlled.
 次に、図2から図6を用いて、燃料電池モジュール12について説明する。図2は、燃料電池モジュールを模式的に表した斜視図である。図2は、燃料電池モジュールを模式的に表した概略構成図である。図3は、セルスタックを模式的に表した概略構成図である。図4は、セルスタックの一部を模式的に表した断面図である。図5は、圧力容器の内部におけるセルスタックの配置の一例を示す断面図である。図6は、接続機構の近傍を拡大して示す拡大断面図である。 Next, the fuel cell module 12 will be described with reference to FIGS. 2 to 6. FIG. 2 is a perspective view schematically showing the fuel cell module. FIG. 2 is a schematic configuration diagram schematically showing a fuel cell module. FIG. 3 is a schematic configuration diagram schematically showing a cell stack. FIG. 4 is a cross-sectional view schematically showing a part of the cell stack. FIG. 5 is a cross-sectional view showing an example of the arrangement of cell stacks inside the pressure vessel. FIG. 6 is an enlarged cross-sectional view showing the vicinity of the connection mechanism in an enlarged manner.
 図1に示すように、燃料電池モジュール12は、容器40と、セル集合体42と、管支持板(上側管支持板)44と、管支持板(下側管支持板)46と、断熱体(上側断熱体)48と、断熱体(下側断熱体)50と、周方向断熱体52と、仕切り板54と、を有する。 As shown in FIG. 1, the fuel cell module 12 includes a container 40, a cell assembly 42, a pipe support plate (upper pipe support plate) 44, a pipe support plate (lower pipe support plate) 46, and a heat insulating body. It has a (upper heat insulating body) 48, a heat insulating body (lower heat insulating body) 50, a circumferential heat insulating body 52, and a partition plate 54.
 容器40は、例えば、円筒部60と、円筒部60の両端に設けられた上半球部62および下半球部64と、を有する。なお、本実施形態では、円筒と半円球とを組み合わせた構造としたが、構造はこれに限定されない。ここで、容器40は、鉛直方向に平行な方向であるZ軸方向(第1の方向)が長手方向となる向きで設置されている。つまり、上半球部62が下半球部64の鉛直方向上側に配置され、円筒部60の中心軸がZ軸方向と平行な向きとなる。燃料電池モジュール12は、円筒部60の中心軸がZ軸方向と平行な向きとなる向きで配置することが好ましいが、これに限定されない。 The container 40 has, for example, a cylindrical portion 60, and an upper hemisphere portion 62 and a lower hemisphere portion 64 provided at both ends of the cylindrical portion 60. In the present embodiment, the structure is a combination of a cylinder and a hemisphere, but the structure is not limited to this. Here, the container 40 is installed in a direction in which the Z-axis direction (first direction), which is a direction parallel to the vertical direction, is the longitudinal direction. That is, the upper hemisphere portion 62 is arranged on the upper side of the lower hemisphere portion 64 in the vertical direction, and the central axis of the cylindrical portion 60 is oriented parallel to the Z-axis direction. The fuel cell module 12 is preferably arranged so that the central axis of the cylindrical portion 60 is parallel to the Z-axis direction, but the fuel cell module 12 is not limited to this.
 容器40は、2つの空気流入管66と、2つの空気排出管68と、燃料ガス流入管と、燃料ガス排出管と、が形成されている。2つの空気流入管66は、円筒部60の下半球部64の近傍側に形成されている。空気流入管66は、空気供給配管24と接続され、空気供給配管24から供給される空気を容器40の内部に流入させる。2つの空気排出管68は、円筒部60の上半球部62の近傍側に形成されている。空気排出管68は、空気排出管15と接続され、容器40の内部の空気を空気排出管15に排出させる。燃料ガス流入管70は、上半球部62に形成されている。燃料ガス流入管は、燃料供給配管28と接続され、燃料供給配管28から供給される燃料ガスを容器40の内部に流入させる。燃料ガス排出管は、下半球部64に形成されている。燃料ガス排出管は、燃料排出管17と接続され、容器40の内部の燃料ガスを燃料排出管17に排出させる。 The container 40 is formed with two air inflow pipes 66, two air discharge pipes 68, a fuel gas inflow pipe, and a fuel gas discharge pipe. The two air inflow pipes 66 are formed on the near side of the lower hemisphere portion 64 of the cylindrical portion 60. The air inflow pipe 66 is connected to the air supply pipe 24, and the air supplied from the air supply pipe 24 flows into the inside of the container 40. The two air discharge pipes 68 are formed on the vicinity side of the upper hemisphere portion 62 of the cylindrical portion 60. The air discharge pipe 68 is connected to the air discharge pipe 15 and discharges the air inside the container 40 to the air discharge pipe 15. The fuel gas inflow pipe 70 is formed in the upper hemisphere portion 62. The fuel gas inflow pipe is connected to the fuel supply pipe 28, and the fuel gas supplied from the fuel supply pipe 28 flows into the inside of the container 40. The fuel gas discharge pipe is formed in the lower hemisphere portion 64. The fuel gas discharge pipe is connected to the fuel discharge pipe 17, and the fuel gas inside the container 40 is discharged to the fuel discharge pipe 17.
 ここで、容器40は、2つの空気流入管66、2つの空気排出管68、燃料ガス流入管、燃料ガス排出管が設けられている部分以外は密閉された容器となる。容器40は、セル集合体42と、管支持板(上側管支持板)44と、管支持板(下側管支持板)46と、断熱体(上側断熱体)48と、断熱体(下側断熱体)50と、周方向断熱体52と、仕切り板54と、が内部に収容されている。 Here, the container 40 is a sealed container except for the portion where the two air inflow pipes 66, the two air discharge pipes 68, the fuel gas inflow pipe, and the fuel gas discharge pipe are provided. The container 40 includes a cell assembly 42, a pipe support plate (upper pipe support plate) 44, a pipe support plate (lower pipe support plate) 46, a heat insulating body (upper heat insulating body) 48, and a heat insulating body (lower side). The heat insulating body) 50, the circumferential heat insulating body 52, and the partition plate 54 are housed inside.
 セル集合体42は、多数のセルスタック56が並列で配置されている。複数のセルスタック56は、内部が空間の円筒形状であり、中心軸がZ軸方向となる向き、つまり、中心軸が円筒部60の中心軸と平行となる向きで配置されている。セルスタック56は、図2に示すように、Z軸方向に複数の燃料電池セル100が列状に配置されている。セルスタック56については後述する。 In the cell assembly 42, a large number of cell stacks 56 are arranged in parallel. The plurality of cell stacks 56 have a cylindrical shape in space inside, and are arranged in a direction in which the central axis is in the Z-axis direction, that is, in a direction in which the central axis is parallel to the central axis of the cylindrical portion 60. As shown in FIG. 2, the cell stack 56 has a plurality of fuel cell 100s arranged in a row in the Z-axis direction. The cell stack 56 will be described later.
 管支持板44および管支持板46とは、セルスタック56の両端を支持する。管支持板44は、容器40の軸方向の一方(上側)に配置された板状の部材である。 The pipe support plate 44 and the pipe support plate 46 support both ends of the cell stack 56. The pipe support plate 44 is a plate-shaped member arranged on one side (upper side) of the container 40 in the axial direction.
 管支持板46は、容器40の軸方向の他方(下側)に配置された板状の部材である。管支持板46は、容器40内に配置されたセルスタック56の他方の端部が挿入されている。管支持板44は、容器40内に配置されたセルスタック56の一方の端部が挿入されている。管支持板44、46は、それぞれ容器40内に配置された全てのセルスタック56が挿入されている。管支持板44、46は、セルスタック56との接続部が密閉されている。また、管支持板44、46は、外縁が容器40または周方向断熱体52と接しており接触部が密閉されている。これにより、管支持板44は、容器40の内部空間を区画している。 The pipe support plate 46 is a plate-shaped member arranged on the other side (lower side) of the container 40 in the axial direction. The tube support plate 46 is inserted with the other end of the cell stack 56 arranged in the container 40. One end of the cell stack 56 arranged in the container 40 is inserted into the pipe support plate 44. All the cell stacks 56 arranged in the container 40 are inserted into the pipe support plates 44 and 46, respectively. The pipe support plates 44 and 46 are sealed at the connection portion with the cell stack 56. Further, the outer edges of the pipe support plates 44 and 46 are in contact with the container 40 or the circumferential heat insulating body 52, and the contact portions are sealed. As a result, the pipe support plate 44 partitions the internal space of the container 40.
 容器40の上半球部62と管支持板44とで囲われた空間(区画された空間)は、燃料ガス流入管と接続されており、燃料ガス流入管から燃料ガスが供給される燃料供給室74となる。また、容器40の下半球部64と管支持板46とで区画された空間は、燃料ガス排出管が接続されており、燃料ガスを燃料ガス排出管から排出する燃料排出室76となる。また、燃料供給室74は、管支持板44に挿入されたセルスタック56の一方の開口端が接続されている。燃料排出室76は、管支持板44に挿入されたセルスタック56の他方の開口端が接続されている。これにより、燃料供給室74に供給された燃料ガスは、セルスタック56の内部つまり円筒形状の内周面で囲われた領域を通過して燃料排出室76に排出される。 The space (divided space) surrounded by the upper hemisphere portion 62 of the container 40 and the pipe support plate 44 is connected to the fuel gas inflow pipe, and the fuel supply chamber to which the fuel gas is supplied from the fuel gas inflow pipe. It becomes 74. Further, a space partitioned by the lower hemisphere portion 64 of the container 40 and the pipe support plate 46 is connected to a fuel gas discharge pipe, and serves as a fuel discharge chamber 76 for discharging fuel gas from the fuel gas discharge pipe. Further, the fuel supply chamber 74 is connected to one open end of the cell stack 56 inserted into the pipe support plate 44. The fuel discharge chamber 76 is connected to the other open end of the cell stack 56 inserted into the pipe support plate 44. As a result, the fuel gas supplied to the fuel supply chamber 74 passes through the inside of the cell stack 56, that is, the region surrounded by the cylindrical inner peripheral surface, and is discharged to the fuel discharge chamber 76.
 断熱体48および断熱体50は、管支持板44と管支持板46との間に配置されている。断熱体48は、容器40の軸方向の一方(上側)に配置され、断熱材料を用いてブランケット状あるいはボード状に形成されている。断熱体50は、容器40の軸方向の他方(下側)に配置され、断熱材料を用いてブランケット状あるいはボード状などに形成されている。各断熱体48,50には、セルスタック56が挿通される孔51a,51bがそれぞれ形成されている。孔51a,51bは、直径がセルスタック56の直径よりも大きい。 The heat insulating body 48 and the heat insulating body 50 are arranged between the pipe support plate 44 and the pipe support plate 46. The heat insulating body 48 is arranged on one side (upper side) of the container 40 in the axial direction, and is formed in a blanket shape or a board shape by using a heat insulating material. The heat insulating body 50 is arranged on the other side (lower side) of the container 40 in the axial direction, and is formed in a blanket shape or a board shape by using a heat insulating material. Holes 51a and 51b through which the cell stack 56 is inserted are formed in the heat insulating bodies 48 and 50, respectively. The diameters of the holes 51a and 51b are larger than the diameter of the cell stack 56.
 断熱体48および断熱体50に挟まれた空間は、発電室72となる。また、管支持板46と下側断熱体50との間の空間は、空気流入管66と接続されており空気供給室78となる。管支持板44と上側断熱体48との間の空間は、空気排出管78と接続されており、空気排出室79となる。これにより、セルスタック56の、管支持板46と下側断熱体50との間の空間である発電室72に配置されている部分は、円筒形状の外周面に空気が供給される。 The space sandwiched between the heat insulating body 48 and the heat insulating body 50 becomes the power generation chamber 72. Further, the space between the pipe support plate 46 and the lower heat insulating body 50 is connected to the air inflow pipe 66 and becomes an air supply chamber 78. The space between the pipe support plate 44 and the upper heat insulating body 48 is connected to the air discharge pipe 78 and becomes the air discharge chamber 79. As a result, air is supplied to the outer peripheral surface of the cell stack 56, which is a space between the pipe support plate 46 and the lower heat insulating body 50 and is arranged in the power generation chamber 72.
 周方向断熱体52は、容器40の円筒部60の内周に張り付けられている。周方向断熱体52は、容器40の内部と外部との熱の移動を抑制する。仕切り板54は、容器40の円筒部60の内部に配置され、セルスタック56の延在方向に延びた板部材である。仕切り板54は、セル集合体42のセルスタック56の間に挿入され、セル集合体42を複数の領域に分けている。 The circumferential heat insulating body 52 is attached to the inner circumference of the cylindrical portion 60 of the container 40. The circumferential heat insulating body 52 suppresses heat transfer between the inside and the outside of the container 40. The partition plate 54 is a plate member arranged inside the cylindrical portion 60 of the container 40 and extending in the extending direction of the cell stack 56. The partition plate 54 is inserted between the cell stacks 56 of the cell assembly 42 to divide the cell assembly 42 into a plurality of regions.
 次に、図2に加え、図3から図6を用いて、セルスタック56の構造について説明する。燃料電池モジュール12のセルスタック56は、発電室72内にのみに燃料電池セル100が配置されている。図3に示すように、セルスタック56は、リード部80、発電部82と、発電部84と、発電部86と、リード部88と、を含む。セルスタック56は、リード部80、発電部82と、発電部84と、発電部86と、リード部88の内部を燃料ガス90が流れ、リード部80、発電部82と、発電部84と、発電部86と、リード部88の外周に空気92が流れる。発電部82と発電部84とは、接続部89で接続される。また、発電部86と、発電部86とは、接続部89で接続される。セルスタック56は、各部が連結した筒状の部材であり、燃料供給位置から燃料排出位置に向けて、リード部80、発電部82、接続部89、発電部84、接続部89、発電部86、リード部88の順で接続される。リード部80、88は、燃料電池セル100が配置されていない部分である。発電部82、84、86は、燃料電池セル100が配置されている領域である。リード部80は、発電部82よりもZ軸方向の上側の燃料電池セル100が配置されていない部分である。リード部88は、発電部86よりもZ軸方向の下側の燃料電池セル100が配置されていない部分である。リード部80は、管支持板44と接する部分及び断熱体48と対面する部分を含む。リード部88は、管支持板46と接する部分及び断熱体50と対面する部分を含む。発電部82、84、86は、発電室72に配置される。発電部82、84、86は、それぞれ、Z軸方向に複数の燃料電池セル100が配置される。発電部84は、発電部82、86と異なる材料で形成される。本実施形態のセルスタック56は、発電部84が、第1ユニットとなり、発電部82と発電部86が第2ユニットとなる。 Next, the structure of the cell stack 56 will be described with reference to FIGS. 3 to 6 in addition to FIG. In the cell stack 56 of the fuel cell module 12, the fuel cell 100 is arranged only in the power generation chamber 72. As shown in FIG. 3, the cell stack 56 includes a lead unit 80, a power generation unit 82, a power generation unit 84, a power generation unit 86, and a lead unit 88. In the cell stack 56, the fuel gas 90 flows inside the reed unit 80, the power generation unit 82, the power generation unit 84, the power generation unit 86, and the lead unit 88, and the reed unit 80, the power generation unit 82, the power generation unit 84, and the cell stack 56. Air 92 flows around the power generation unit 86 and the lead unit 88. The power generation unit 82 and the power generation unit 84 are connected by a connection unit 89. Further, the power generation unit 86 and the power generation unit 86 are connected by a connection unit 89. The cell stack 56 is a cylindrical member in which each part is connected, and the lead part 80, the power generation part 82, the connection part 89, the power generation part 84, the connection part 89, and the power generation part 86 from the fuel supply position to the fuel discharge position. , The lead portion 88 is connected in this order. The lead portions 80 and 88 are portions where the fuel cell 100 is not arranged. The power generation units 82, 84, and 86 are areas in which the fuel cell 100 is arranged. The lead portion 80 is a portion where the fuel cell 100 on the upper side in the Z-axis direction of the power generation unit 82 is not arranged. The lead portion 88 is a portion where the fuel cell 100 below the power generation unit 86 in the Z-axis direction is not arranged. The lead portion 80 includes a portion in contact with the pipe support plate 44 and a portion facing the heat insulating body 48. The lead portion 88 includes a portion in contact with the pipe support plate 46 and a portion facing the heat insulating body 50. The power generation units 82, 84, and 86 are arranged in the power generation chamber 72. A plurality of fuel cell cells 100 are arranged in each of the power generation units 82, 84, and 86 in the Z-axis direction. The power generation unit 84 is made of a material different from that of the power generation units 82 and 86. In the cell stack 56 of the present embodiment, the power generation unit 84 is the first unit, and the power generation unit 82 and the power generation unit 86 are the second units.
 図4及び図5に示すように、発電部82、84、86は、筒形状をなす基体管101と、基体管101の外周面に設けられた発電素子となる燃料電池セル100と、を有する。基体管101は、多孔質となるセラミックス製の円筒管であり、その内部、つまり円筒形状の内周面で囲われた領域を燃料ガスが流れる。そして、基体管101は、多孔質となっているため、内部に流れる燃料ガスを、基体管101の外周面側に導いている。リード部80、88は、燃料電池セル100が設けられておらず、基体管101のみで形成される。 As shown in FIGS. 4 and 5, the power generation units 82, 84, and 86 include a tubular base tube 101 and a fuel cell 100 serving as a power generation element provided on the outer peripheral surface of the base tube 101. .. The base tube 101 is a cylindrical ceramic tube that becomes porous, and fuel gas flows inside the base tube 101, that is, in a region surrounded by a cylindrical inner peripheral surface. Since the base pipe 101 is porous, the fuel gas flowing inside is guided to the outer peripheral surface side of the base pipe 101. The lead portions 80 and 88 are not provided with the fuel cell 100, and are formed only of the substrate pipe 101.
 燃料電池セル100は、燃料極103と、固体電解質104と、空気極105とを積層して構成され、固体電解質104の両側に燃料極103および空気極105が設けられている。この空気極105には、活性金属が含まれており、空気極105は、含有する活性金属により燃焼反応に寄与する機能(触媒作用による燃焼)を有している。また、燃料電池セル100は、燃料極103が基体管101の外周面に接しており、基体管101の軸方向に複数配置されている。複数の燃料電池セル100は、隣接する一方の燃料電池セル100の燃料極103と、隣接する他方の燃料電池セル100の空気極105とが、インターコネクタ106により接続されている。このように構成された燃料電池セル100は、燃料電池システム10の発電運転時において、発電部84が配置されている領域で例えば800℃から950℃の高温下で発電を行う。 The fuel cell 100 is configured by laminating a fuel electrode 103, a solid electrolyte 104, and an air electrode 105, and the fuel electrode 103 and the air electrode 105 are provided on both sides of the solid electrolyte 104. The air electrode 105 contains an active metal, and the air electrode 105 has a function of contributing to a combustion reaction by the contained active metal (combustion by catalysis). Further, in the fuel cell 100, the fuel poles 103 are in contact with the outer peripheral surface of the base pipe 101, and a plurality of fuel cells 103 are arranged in the axial direction of the base pipe 101. In the plurality of fuel cell 100s, the fuel pole 103 of one adjacent fuel cell 100 and the air pole 105 of the other adjacent fuel cell 100 are connected by an interconnector 106. The fuel cell 100 configured in this way generates power at a high temperature of, for example, 800 ° C. to 950 ° C. in the region where the power generation unit 84 is arranged during the power generation operation of the fuel cell system 10.
 また、発電部82、84、86は、接続部89が設置されている端部に保護膜118が形成されている。保護膜118は、基体管101の径方向外側の表面(外周面)の軸方向の端部及び基体管101の端面、隣接する電池セルユニット60側の端面に形成されている。本実施形態の保護膜118は、インターコネクタ(電気伝導性を有する緻密膜)と同じ材料で形成されている。保護膜118の基体管101の表面の部分は、インターコネクタ(電気伝導性を有する緻密膜)106と一体で成膜される。保護膜118の端面の部分は、インターコネクタを用いる材料を塗布することで成膜される。 Further, in the power generation units 82, 84, 86, a protective film 118 is formed at the end where the connection portion 89 is installed. The protective film 118 is formed on the axially outer end surface (outer peripheral surface) of the base tube 101, the end face of the base tube 101, and the end face on the adjacent battery cell unit 60 side. The protective film 118 of the present embodiment is made of the same material as the interconnector (dense film having electrical conductivity). The surface portion of the base tube 101 of the protective film 118 is integrally formed with the interconnector (dense film having electrical conductivity) 106. The end face portion of the protective film 118 is formed by applying a material using an interconnector.
 本実施形態の発電部(第1ユニット)84は、燃料極103がNi-ジルコニア電解質で形成され、発電部(第2ユニット)82、86は、燃料極103が第1ユニットの燃料極103よりも耐熱性が低いNi-ジルコニア電解質で形成される。ここで、耐熱性とは、温度環境下での材料の安定性(焼結性)や反応性による耐久性の他、SOFCのセルの発電に必要なイオンや電子の移動特性の変化(輸率の変化など)や電極の吸着や反応などの触媒活性の特性、耐久性も含む。例えば、セリア系の電解質(SDC、GDC)は高温では、電子導電が発現するため、固体電解質としては耐熱性がなく利用できない。ジルコニア電解質とは、YSZ,ScSZ,CaSZが例示される。YSZは、Y doped ZrOである。ScSZは、Sc doped ZrOである。CaSZは、Ca doped ZrOである。 In the power generation unit (first unit) 84 of the present embodiment, the fuel pole 103 is formed of Ni-zirconia electrolyte, and in the power generation units (second unit) 82 and 86, the fuel pole 103 is from the fuel pole 103 of the first unit. Is formed of Ni-zirconia electrolyte, which has low heat resistance. Here, the heat resistance refers to the stability (sinterability) of the material in a temperature environment, the durability due to the reactivity, and the change in the movement characteristics of ions and electrons required for the power generation of the SOFC cell (transport number). It also includes the characteristics and durability of catalytic activity such as adsorption and reaction of electrodes. For example, ceria-based electrolytes (SDC, GDC) cannot be used as solid electrolytes because they do not have heat resistance because they exhibit electron conductivity at high temperatures. Examples of the zirconia electrolyte include YSZ, ScSZ, and CaSZ. YSZ is Y 2 O 3 doped ZrO 2 . ScSZ is Sc 2 O 3 doped ZrO 2 . CaSZ is Ca 2 O 3 doped ZrO 2 .
 本実施形態の発電部(第1ユニット)84は、固体電解質104がジルコニア電解質で形成され、発電部(第2ユニット)82、86は、固体電解質104が第1ユニットの燃料極103よりも耐熱性が低いジルコニア電解質で形成される。 In the power generation unit (first unit) 84 of the present embodiment, the solid electrolyte 104 is formed of zirconia electrolyte, and in the power generation units (second unit) 82 and 86, the solid electrolyte 104 is more heat resistant than the fuel electrode 103 of the first unit. It is formed of a low-grade zirconia electrolyte.
 本実施形態の発電部(第1ユニット)84は、インターコネクタ106がLaCrO,LaSrCrO,LaSrTiOのいずれかで形成され、発電部(第2ユニット)82、86は、インターコネクタ106が第1ユニットの燃料極103よりも耐熱性が低いLaCrO,LaSrCrO,LaSrTiOで形成される。 Power generating unit of the present embodiment (first unit) 84, the interconnector 106 is formed in one of LaCrO 3, LaSrCrO 3, LaSrTiO 3 , the power generation unit (second unit) 82 and 86, interconnector 106 is a It is formed of LaCrO 3 , LaSrCrO 3 , and LaSrTIO 3, which have lower heat resistance than the fuel electrode 103 of one unit.
 本実施形態の発電部(第1ユニット)84は、空気極105がLSM,LCM,LSCMのいずれかで形成され、発電部(第2ユニット)82、86は、インターコネクタ106が第1ユニットの燃料極103よりも耐熱性が低いLSCF,LSF,LNF,BSCFで形成される。ここで、LSMは、(La,Sr)MnOである。LCMは、Ca-dopedLaMnOである。LSCMは、(La,Sr,Ca)MnOである。LSCFは、(La,Sr)(Co,Fe)Oである。LSFは、(La,Sr)FeOである。LNFは、LaNi(Fe)Oである。BSCFは、Ba(Sr)Co(Fe)Oである。 In the power generation unit (first unit) 84 of the present embodiment, the air electrode 105 is formed of any of LSM, LCM, and LSCM, and in the power generation units (second unit) 82 and 86, the interconnector 106 is the first unit. It is made of LSCF, LSF, LNF, and BSCF, which have lower heat resistance than the fuel electrode 103. Here, the LSM is (La, Sr) MnO 3 . The LCM is Ca-toppedLaMnO 3 . The LSCM is (La, Sr, Ca) MnO 3 . LSCF is (La, Sr) (Co, Fe) O 3. The LSF is (La, Sr) FeO 3 . LNF is LaNi (Fe) O 3. BSCF is Ba (Sr) Co (Fe) O 3.
 次に、接続部89は、図4及び図6に示すように、接続冶具112と、接着層114と、接続部空気極115と、を有する。接続冶具112は、接続する2つの電池セルユニット60の間に配置され、接着層114により2つの電池セルユニット60と接着されている。接続冶具112は、固体電解質104と同程度の熱膨張を有する緻密な材料、例えばジルコニア系セラミック、具体的には、ジルコニア(ZrO2)、イットリア安定化ジルコニア(YSZ)などで形成される。接続冶具112は、基体管101とも熱膨張係数が同程度の材料で形成されていることが好ましい。 Next, as shown in FIGS. 4 and 6, the connecting portion 89 has a connecting jig 112, an adhesive layer 114, and a connecting portion air electrode 115. The connecting jig 112 is arranged between the two battery cell units 60 to be connected, and is adhered to the two battery cell units 60 by the adhesive layer 114. The connecting jig 112 is formed of a dense material having a thermal expansion similar to that of the solid electrolyte 104, for example, zirconia-based ceramic, specifically, zirconia (ZrO2), yttria-stabilized zirconia (YSZ), or the like. The connecting jig 112 is preferably made of a material having a coefficient of thermal expansion similar to that of the substrate tube 101.
 接続冶具112は、円筒部122と凸部124とを有する。円筒部122と凸部124とは一体で形成されている。円筒部122は、円筒状の部材であり、内周径が、電池セルユニット60の外周径よりも大きい形状である。凸部124は、円筒部122の内周面に配置され、径方向内側に凸となるリング形状である。つまり、凸部124は、円筒部122の周方向の全周に形成されている。凸部124は、円筒部122の軸方向において、円筒部122の中央近傍に配置されている。また、接続冶具112は、円筒部122と凸部124との境界126がR形状となっている。つまり円筒部122と凸部124との境界126が、曲面となっている。 The connecting jig 112 has a cylindrical portion 122 and a convex portion 124. The cylindrical portion 122 and the convex portion 124 are integrally formed. The cylindrical portion 122 is a cylindrical member, and has a shape in which the inner peripheral diameter is larger than the outer peripheral diameter of the battery cell unit 60. The convex portion 124 has a ring shape that is arranged on the inner peripheral surface of the cylindrical portion 122 and is convex inward in the radial direction. That is, the convex portion 124 is formed on the entire circumference of the cylindrical portion 122 in the circumferential direction. The convex portion 124 is arranged near the center of the cylindrical portion 122 in the axial direction of the cylindrical portion 122. Further, in the connecting jig 112, the boundary 126 between the cylindrical portion 122 and the convex portion 124 has an R shape. That is, the boundary 126 between the cylindrical portion 122 and the convex portion 124 is a curved surface.
 接続冶具112は、接続する2つの発電部82、84、86の接続される側の端部に挿入されている。つまり、接続冶具112は、発電部82、84、86よりも径が大きい管路であり、一方の端部に一方の発電部が挿入され、他方の端部に他方の発電部が挿入されている。ここで、発電部82、84、86は、接続冶具112の円筒の内側に挿入され、外周面が接着層114を介して接続冶具112の内周面と接する。また、電池セルユニット60は、軸方向の端部が、接続冶具112の突起部124と接着層114を介して接する。 The connection jig 112 is inserted at the end of the two power generation units 82, 84, 86 to be connected on the connected side. That is, the connecting jig 112 is a pipeline having a diameter larger than that of the power generation units 82, 84, 86, and one power generation unit is inserted into one end and the other power generation unit is inserted into the other end. There is. Here, the power generation units 82, 84, and 86 are inserted inside the cylinder of the connecting jig 112, and the outer peripheral surface is in contact with the inner peripheral surface of the connecting jig 112 via the adhesive layer 114. Further, in the battery cell unit 60, the end portion in the axial direction is in contact with the protrusion 124 of the connecting jig 112 via the adhesive layer 114.
 接着層114は、接続冶具112と発電部との間、より具体的には、接続冶具112の円筒部122の内周面及び凸部124と、発電部のインターコネクタ106及び保護層118と、の間に形成されている。接着層114は、緻密で熱膨脹が固体電解質104と近似する材料を用いる。接着層114は、例えば、粗粒のジルコニア粉に微粒のアルミナ粉を添加した材料を用いることができる。接着層114は、スラリー化した状態で塗布し、その後焼成することで、形成することができる。 The adhesive layer 114 is formed between the connecting jig 112 and the power generation unit, more specifically, the inner peripheral surface and the convex portion 124 of the cylindrical portion 122 of the connecting jig 112, the interconnector 106 of the power generation unit, and the protective layer 118. Is formed between. The adhesive layer 114 uses a material that is dense and has a thermal expansion similar to that of the solid electrolyte 104. As the adhesive layer 114, for example, a material obtained by adding fine alumina powder to coarse zirconia powder can be used. The adhesive layer 114 can be formed by applying it in a slurry state and then firing it.
 接続部空気極115は、接続冶具112の外周と2つの発電部の外周に形成されている。接続部空気極115は、空気極105と同様の材料で形成され、空気極105と同時に形成することができる。接続部空気極115は、軸方向(電池セルユニット60及び円筒部122の軸方向)において、一方の端部が一方の発電部のインターコネクタ106と接し、他方の端部が他方の発電部のインターコネクタ106と接する。接続部空気極115は、両端が発電部のインターコネクタ106と接することで、発電部の端部のインターコネクタ106間を導通させる。 The connecting portion air pole 115 is formed on the outer circumference of the connecting jig 112 and the outer circumference of the two power generation portions. The connecting air electrode 115 is made of the same material as the air electrode 105, and can be formed at the same time as the air electrode 105. In the axial direction (axial direction of the battery cell unit 60 and the cylindrical portion 122), one end of the connecting air electrode 115 is in contact with the interconnector 106 of one power generation unit, and the other end is of the other power generation unit. It contacts the interconnector 106. Both ends of the connecting air electrode 115 are in contact with the interconnector 106 of the power generation unit, so that the interconnector 106 at the end of the power generation unit is made conductive.
 ここで、上記構成からなる燃料電池モジュール12の動作について説明する。燃料電池モジュール12は、燃料電池セル100を所定の温度まで上昇させる起動運転を行った後、燃料電池セル100において発電を行う発電運転を行っている。燃料電池モジュール12が発電運転を行うと、燃料電池モジュール12の空気供給室88には空気が流入する。該空気は断熱体50の孔51bとセルスタック56との隙間を通って、発電室82内に供給される。一方、燃料供給室84には燃料ガスが流入する。該燃料ガスはセルスタック56の基体管101の内部を通って発電室82内に供給される。このとき、空気と燃料ガスとは、セルスタック56の内周面および外周面において、互いに逆向きに流れている。 Here, the operation of the fuel cell module 12 having the above configuration will be described. The fuel cell module 12 performs a start-up operation for raising the fuel cell 100 to a predetermined temperature, and then performs a power generation operation for generating power in the fuel cell 100. When the fuel cell module 12 performs power generation operation, air flows into the air supply chamber 88 of the fuel cell module 12. The air is supplied into the power generation chamber 82 through the gap between the hole 51b of the heat insulating body 50 and the cell stack 56. On the other hand, fuel gas flows into the fuel supply chamber 84. The fuel gas is supplied into the power generation chamber 82 through the inside of the base pipe 101 of the cell stack 56. At this time, the air and the fuel gas flow in opposite directions on the inner peripheral surface and the outer peripheral surface of the cell stack 56.
 基体管101の内部を流れる燃料ガスは、基体管101の細孔を通過して燃料極103に達する。この燃料ガスは、燃料極103に含まれる活性金属を触媒にして水蒸気改質される。水蒸気改質により生成された水素は、燃料極103の細孔を通過して固体電解質104まで到達する。一方、空気は、基体管101(空気極105)の外側を流れる。空気中の酸素は、空気極105の細孔を通過する途中または固体電解質104まで到達して電子を受け取りイオン化する。イオン化した酸素は固体電解質104を通過し、燃料極103に到達する。固体電解質104を通過した酸素イオンは燃料ガスと反応し、燃料ガスは電子を放出し、この電子が燃料極から外部回路を経由して空気極へと移動する。このような電池反応により、燃料電池モジュール12は発電を行う。 The fuel gas flowing inside the base pipe 101 passes through the pores of the base pipe 101 and reaches the fuel electrode 103. This fuel gas is steam reformed using the active metal contained in the fuel electrode 103 as a catalyst. Hydrogen produced by steam reforming passes through the pores of the fuel electrode 103 and reaches the solid electrolyte 104. On the other hand, air flows outside the substrate tube 101 (air electrode 105). Oxygen in the air receives electrons and is ionized while passing through the pores of the air electrode 105 or reaching the solid electrolyte 104. The ionized oxygen passes through the solid electrolyte 104 and reaches the fuel electrode 103. The oxygen ions that have passed through the solid electrolyte 104 react with the fuel gas, and the fuel gas emits electrons, which move from the fuel electrode to the air electrode via an external circuit. The fuel cell module 12 generates electricity by such a battery reaction.
 そして、発電室72において、発電に利用され高温となった燃料ガスは、空気供給室78において、セルスタック56を介して、発電に利用される前の空気との間で熱交換される。また、発電室72において、発電に利用され高温となった空気は、空気排出室79において、セルスタック56を介して、発電に利用される前の燃料ガスとの間で熱交換される。 Then, in the power generation chamber 72, the fuel gas that has become hot and used for power generation is heat-exchanged with the air before being used for power generation in the air supply chamber 78 via the cell stack 56. Further, in the power generation chamber 72, the high temperature air used for power generation is heat-exchanged with the fuel gas before being used for power generation in the air discharge chamber 79 via the cell stack 56.
 上記熱交換により、冷却された後、燃料ガスは、燃料排出室86に流入して、燃料排出室86から燃料電池モジュール12の外部に排出され、空気は、空気排出室89から燃料電池モジュール12の外部に排出される。 After being cooled by the heat exchange, the fuel gas flows into the fuel discharge chamber 86 and is discharged from the fuel discharge chamber 86 to the outside of the fuel cell module 12, and the air is discharged from the air discharge chamber 89 to the fuel cell module 12 It is discharged to the outside of.
 燃料電池モジュール12は、セルスタック56の第1ユニットとなる発電部84の燃料電池セル100の材料を、第2ユニットとなる発電部82、86の燃料電池セル100の材料よりも耐熱性の高い材料で形成する。これにより、発電時に温度が高くなる発電部84と、発電部84よりも温度が低い発電部82、86のそれぞれの領域で効率よく発電を行うことができる。つまり燃料電池モジュール12は、それぞれの温度領域に適した材料で燃料電池セル100を構成できる。これにより、発電部82、84、86のそれぞれで高い効率で発電を行うことができる。また、材料の選択性を高くすることができる。また、耐久性の高い材料を用いる範囲を小さくできるため、製造しやすくできる。 In the fuel cell module 12, the material of the fuel cell 100 of the power generation unit 84, which is the first unit of the cell stack 56, has higher heat resistance than the material of the fuel cell 100 of the power generation units 82, 86, which is the second unit. Formed from material. As a result, it is possible to efficiently generate power in each region of the power generation unit 84, which has a high temperature during power generation, and the power generation units 82, 86, which have a temperature lower than that of the power generation unit 84. That is, the fuel cell module 12 can form the fuel cell 100 with a material suitable for each temperature range. As a result, each of the power generation units 82, 84, and 86 can generate power with high efficiency. In addition, the selectivity of the material can be increased. Further, since the range in which a highly durable material is used can be reduced, it can be easily manufactured.
 本実施形態では、燃料電池モジュール12は、燃料極103、固体電解質104、空気極105、インターコネクタ106を発電部84と、発電部82、86とで、異なる材料で形成したが、これに限定されない。燃料電池モジュール12は、発電部84と、発電部82、86とで、燃料極103、固体電解質104、インターコネクタ106のうち少なくとも1つ要素が異なる材料であればよい。つまり、発電部84の燃料極103、固体電解質104、インターコネクタ106のうち少なくとも1つ要素が発電部82、86の対応する要素と異なる材料であればよい。なお、発電部84と、発電部82、86とで燃料極103、固体電解質104、空気極105、インターコネクタ106のすべてでそれぞれに対応した材料とすることがより好ましい。 In the present embodiment, in the fuel cell module 12, the fuel electrode 103, the solid electrolyte 104, the air electrode 105, and the interconnector 106 are formed of different materials in the power generation unit 84 and the power generation units 82 and 86, but the present invention is limited to this. Not done. The fuel cell module 12 may be made of a material in which at least one element of the fuel electrode 103, the solid electrolyte 104, and the interconnector 106 is different between the power generation unit 84 and the power generation units 82 and 86. That is, at least one element of the fuel electrode 103, the solid electrolyte 104, and the interconnector 106 of the power generation unit 84 may be a material different from the corresponding elements of the power generation units 82 and 86. It is more preferable that the power generation unit 84 and the power generation units 82 and 86 use materials corresponding to each of the fuel electrode 103, the solid electrolyte 104, the air electrode 105, and the interconnector 106.
 ここで、セルスタック56は、発電部82、84、86の全体の長さを100%とした場合、燃料ガスの入口側の発電部(第2ユニット)82の燃料ガスの流れ方向の長さを、5%から12.5%とすることが好ましい。セルスタック56は、発電部82、84、86の全体の長さを100%とした場合、発電部(第1ユニット)84の燃料ガスの流れ方向の長さを、65.0%から80.0%とすることが好ましい。セルスタック56は、発電部82、84、86の全体の長さを100%とした場合、燃料ガスの出口側の発電部(第2ユニット)86の燃料ガスの流れ方向の長さを、15.0%から22.5%とすることが好ましい。 Here, the cell stack 56 is the length in the flow direction of the fuel gas of the power generation unit (second unit) 82 on the inlet side of the fuel gas, assuming that the total length of the power generation units 82, 84, 86 is 100%. Is preferably 5% to 12.5%. Assuming that the total length of the power generation units 82, 84, and 86 is 100%, the cell stack 56 has a length of the power generation unit (first unit) 84 in the flow direction of the fuel gas from 65.0% to 80. It is preferably 0%. When the total length of the power generation units 82, 84, and 86 is 100%, the cell stack 56 has a length of the fuel gas flow direction of the power generation unit (second unit) 86 on the fuel gas outlet side. It is preferably 0.0% to 22.5%.
 燃料電池モジュール12は、発電部82、84、86が、上記範囲となる配置とすることで、特に第1ユニットの発電部84の長さを上記範囲とすることで、効率よく発電を行うことができる。本実施形態の燃料電池モジュール12は、燃料内部改質を有する燃料と空気を対向流とする円筒形セルスタックであり、燃料ガスの入口の近傍が熱交換し、燃料ガスを改質する領域となる。このため、発電部82の長さを、発電部86よりも短くし、燃料ガスが発電部84の配置領域に早く到達できることで、燃料入口側のセル温度を、燃料出口セル温度よりも高くすることができ、燃料の改質を好適に行うことができる。 In the fuel cell module 12, the power generation units 82, 84, and 86 are arranged so as to be in the above range, and in particular, the length of the power generation unit 84 of the first unit is set in the above range to efficiently generate power. Can be done. The fuel cell module 12 of the present embodiment is a cylindrical cell stack in which the fuel having fuel internal reforming and air are countercurrent, and the vicinity of the fuel gas inlet is a region where heat is exchanged to reform the fuel gas. Become. Therefore, the length of the power generation unit 82 is made shorter than that of the power generation unit 86, and the fuel gas can reach the arrangement region of the power generation unit 84 earlier, so that the cell temperature on the fuel inlet side is made higher than the fuel outlet cell temperature. Therefore, the reforming of the fuel can be preferably performed.
 また、本実施形態では、接続部89を用いて、第1ユニットと第2ユニットを接続したが、接続方法はこれに限定されない。例えば、三次元積層装置で製造する場合、製造時に材料を切り替えることで、第1ユニットと第2ユニットを連続して製造してもよい。 Further, in the present embodiment, the first unit and the second unit are connected by using the connection unit 89, but the connection method is not limited to this. For example, in the case of manufacturing with a three-dimensional laminating apparatus, the first unit and the second unit may be manufactured continuously by switching the material at the time of manufacturing.
 また、本実施形態の燃料電池モジュール12は、燃料ガス90と空気92が対応して流れる構造であり、燃料ガス流れにおいて、燃料ガスの出口側の温度が中央部よりも低下するため、発電部86を第2ユニットとした。これにより、温度に対応した燃料電池セル100を配置でき、性能を高くすることができる。しかしながら、これに限定されず、燃料ガスの出口側は、第2ユニットをもうけなくてもよい。つまり、燃料ガスの流れ方向において、上流側を第2ユニット、下流側を第1ユニットしてもよい。 Further, the fuel cell module 12 of the present embodiment has a structure in which the fuel gas 90 and the air 92 flow in correspondence with each other, and in the fuel gas flow, the temperature on the outlet side of the fuel gas is lower than that in the central portion. 86 was used as the second unit. As a result, the fuel cell 100 corresponding to the temperature can be arranged, and the performance can be improved. However, the present invention is not limited to this, and the outlet side of the fuel gas does not have to have a second unit. That is, in the flow direction of the fuel gas, the upstream side may be the second unit and the downstream side may be the first unit.
 また、上記実施形態は、第1ユニットでの反応温度が800℃以上950℃以下(高温仕様)を想定した場合としたが、第1ユニットの反応温度が600℃以上800℃未満(中温仕様)の場合は、それぞれを下記の材料としてもよい。具体的には、第1ユニットの反応温度が600℃以上800℃未満(中温仕様)で、第2ユニットの反応温度が400以上600℃未満(低温仕様)の場合である。 Further, in the above embodiment, the reaction temperature in the first unit is assumed to be 800 ° C. or higher and 950 ° C. or lower (high temperature specification), but the reaction temperature in the first unit is 600 ° C. or higher and lower than 800 ° C. (medium temperature specification). In the case of, each of them may be used as the following materials. Specifically, the reaction temperature of the first unit is 600 ° C. or higher and lower than 800 ° C. (medium temperature specification), and the reaction temperature of the second unit is 400 ° C. or higher and lower than 600 ° C. (low temperature specification).
 本発電部(第1ユニット)84は、燃料極103がNi-ランタン系電解質で形成され、発電部(第2ユニット)82、86は、燃料極103が第1ユニットの燃料極103よりも耐熱性が低いNi-セリア系電解質で形成される。ランタン系電解質は、例えば、LSGM(La(Sr)Ga(Mg)O)である。セリア系電解質は、例えば、GDC(Gd-doped CeO)、SDC(Sm-doped CeO)がある。 In the main power generation unit (first unit) 84, the fuel electrode 103 is formed of a Ni-lanthanum-based electrolyte, and in the power generation units (second unit) 82 and 86, the fuel electrode 103 is more heat resistant than the fuel electrode 103 of the first unit. It is formed of a Ni-ceria electrolyte with low properties. The lanthanum-based electrolyte is, for example, LSGM (La (Sr) Ga (Mg) O 3 ). Examples of the ceria-based electrolyte include GDC (Gd-doped CeO 2 ) and SDC (Sm-doped CeO 2 ).
 発電部(第1ユニット)84は、固体電解質104がランタン電解質で形成され、発電部(第2ユニット)82、86は、固体電解質104が第1ユニットの燃料極103よりも耐熱性が低いセリア電解質で形成される。 In the power generation unit (first unit) 84, the solid electrolyte 104 is formed of lanthanum electrolyte, and in the power generation units (second unit) 82 and 86, the solid electrolyte 104 has lower heat resistance than the fuel electrode 103 of the first unit. Formed of electrolyte.
 発電部(第1ユニット)84は、インターコネクタ106がLaCrO,LaSrCrO,LaSrTiOのいずれかで形成され、発電部(第2ユニット)82、86は、インターコネクタ106が第1ユニットの燃料極103よりも耐熱性が低いフェライト系ステンレスまたはステンレス合金で形成される。 Power unit (first unit) 84, the interconnector 106 is formed in one of LaCrO 3, LaSrCrO 3, LaSrTiO 3 , the power generation unit (second unit) 82 and 86, the fuel of the interconnector 106 is the first unit It is made of ferritic stainless steel or stainless alloy, which has lower heat resistance than pole 103.
 発電部(第1ユニット)84は、空気極105がLSCF,LSF,LNF,BSCFのいずれかで形成され、発電部(第2ユニット)82、86は、インターコネクタ106が第1ユニットの燃料極103よりも耐熱性が低いLSCF,LSF,LNF,BSCFで形成される。 In the power generation unit (first unit) 84, the air electrode 105 is formed of any of LSCF, LSF, LNF, and BSCF, and in the power generation units (second unit) 82 and 86, the interconnector 106 is the fuel electrode of the first unit. It is formed of LSCF, LSF, LNF, and BSCF, which have lower heat resistance than 103.
 また、モジュール内の温度分布に応じて、温度に応じた適切な材料を選定することで性能向上が得られることから、温度分布に応じて複数のユニットを組み合わせるために、燃料電池モジュール12は、高温仕様の第2ユニットの燃料ガス流れ方向下流側に、中温仕様の第2ユニットをさらに配置してもよい。つまり、上述した高温仕様の第1ユニットの下流に中温仕様の第2ユニットを配置し、中温仕様の第2ユニットの下流側に低温仕様の第2ユニット(第3ユニットとしてもよい)を配置してもよい。また、燃料電池モジュール12の位置による温度差が大きい場合、高温仕様の第1ユニットの燃料ガス流れ方向下流側に、中温仕様の第2ユニットを配置してもよい。セルスタックは、第1ユニットが発電時に第2ユニットよりも温度が高くなる領域に配置する。これにより、セルスタックの発電性能をより高くすることができる。 Further, since performance improvement can be obtained by selecting an appropriate material according to the temperature according to the temperature distribution in the module, the fuel cell module 12 can be used in order to combine a plurality of units according to the temperature distribution. The second unit of the medium temperature specification may be further arranged on the downstream side in the fuel gas flow direction of the second unit of the high temperature specification. That is, the second unit of the medium temperature specification is arranged downstream of the first unit of the high temperature specification described above, and the second unit of the low temperature specification (which may be the third unit) is arranged downstream of the second unit of the medium temperature specification. You may. Further, when the temperature difference depending on the position of the fuel cell module 12 is large, the second unit of the medium temperature specification may be arranged on the downstream side in the fuel gas flow direction of the first unit of the high temperature specification. The cell stack is arranged in a region where the temperature of the first unit is higher than that of the second unit during power generation. As a result, the power generation performance of the cell stack can be further improved.
 図7は、他の実施形態のセルスタックを模式的に表した概略構成図である。上記実施形態の燃料電池モジュール12のセルスタック56は、燃料ガスをセルスタック56の内部で改質する場合としたが、これに限定されない。図7に示すセルスタック56aは、リード部80a、発電部82aと、発電部84aと、発電部86aと、リード部88aと、を含む。セルスタック56aは、リード部80a、発電部82aと、発電部84aと、発電部86aと、リード部88aの内部を燃料ガス90が流れ、リード部80a、発電部82aと、発電部84aと、発電部86aと、リード部88aの外周に空気92が流れる。発電部82aと発電部84aとは、接続部89で接続される。また、発電部86aと、発電部86aとは、接続部89で接続される。セルスタック56aは、各部が連結した筒状の部材であり、燃料供給位置から燃料排出位置に向けて、リード部80a、発電部82a、接続部89、発電部84a、接続部89、発電部86a、リード部88aの順で接続される。 FIG. 7 is a schematic configuration diagram schematically showing a cell stack of another embodiment. The cell stack 56 of the fuel cell module 12 of the above embodiment is a case where the fuel gas is reformed inside the cell stack 56, but the present invention is not limited to this. The cell stack 56a shown in FIG. 7 includes a lead unit 80a, a power generation unit 82a, a power generation unit 84a, a power generation unit 86a, and a lead unit 88a. In the cell stack 56a, the fuel gas 90 flows inside the reed unit 80a, the power generation unit 82a, the power generation unit 84a, the power generation unit 86a, and the lead unit 88a, and the reed unit 80a, the power generation unit 82a, the power generation unit 84a, and the cell stack 56a. Air 92 flows around the power generation unit 86a and the lead unit 88a. The power generation unit 82a and the power generation unit 84a are connected by a connection unit 89. Further, the power generation unit 86a and the power generation unit 86a are connected by a connection unit 89. The cell stack 56a is a cylindrical member in which each part is connected, and is a lead part 80a, a power generation part 82a, a connection part 89, a power generation part 84a, a connection part 89, and a power generation part 86a from a fuel supply position to a fuel discharge position. , The lead portion 88a is connected in this order.
 ここで、セルスタック56aは、発電部82a、84a、86aの全体の長さを100%とした場合、燃料ガスの入口側の発電部(第2ユニット)82の燃料ガスの流れ方向の長さを、7.5%から15.0%とすることが好ましい。セルスタック56は、発電部82、84、86の全体の長さを100%とした場合、発電部(第1ユニット)84の燃料ガスの流れ方向の長さを、70.0%から85.0%とすることが好ましい。セルスタック56は、発電部82、84、86の全体の長さを100%とした場合、燃料ガスの出口側の発電部(第2ユニット)86の燃料ガスの流れ方向の長さを、7.5%から15.0%とすることが好ましい。 Here, the cell stack 56a is the length in the flow direction of the fuel gas of the power generation unit (second unit) 82 on the inlet side of the fuel gas, assuming that the total length of the power generation units 82a, 84a, 86a is 100%. Is preferably 7.5% to 15.0%. When the total length of the power generation units 82, 84, and 86 is 100%, the cell stack 56 has a length of the fuel gas flow direction of the power generation unit (first unit) 84 from 70.0% to 85. It is preferably 0%. Assuming that the total length of the power generation units 82, 84, and 86 is 100%, the cell stack 56 has a length of 7 in the fuel gas flow direction of the power generation unit (second unit) 86 on the fuel gas outlet side. It is preferably 5.5% to 15.0%.
 セルスタック56aは、燃料ガスの内部改質を行わない機構であるため、発電部82aと発電部86aとの長さを同様の長さとすることで、効率よく発電を行うことができる。また、この場合も、第1ユニット84aの長さを他の部分より長くすることで、効率よく発電を行うことができる。 Since the cell stack 56a is a mechanism that does not internally reform the fuel gas, it is possible to efficiently generate power by setting the lengths of the power generation unit 82a and the power generation unit 86a to be the same. Further, in this case as well, by making the length of the first unit 84a longer than that of the other parts, it is possible to efficiently generate power.
 上記実施形態の燃料電池モジュールは、セルスタックを円筒形状とし、燃料電池セルを列状に並べた構造としたが、これに限定されず、種々のセル構造に用いることができる。図8は、他の実施形態の燃料電池モジュールを模式的に示した概略構成図である。図9は、図8に示す燃料電池モジュールのセルスタックを模式的に示した斜視図である。図8に示す燃料電池モジュール200は、複数の燃料電池セル210が平板形状で、板の面積が最も大きい面に直交する方向に積層されている。図9に示すように、燃料電池セル210は、燃料極203と固体電解質204と空気極205と、を含む。また、燃料電池モジュール200は、積層された燃料電池セル210の間にセパレータ212、214を設けている。燃料電池セル210は、平板状の燃料極203と固体電解質204と空気極205とがこの順で積層される。燃料極203は、セパレータ212と対面している。空気極205は、セパレータ214と対面している。燃料電池モジュール200は、燃料極203とセパレータ312との間に燃料90が流れ、空気極205とセパレータ214との間に空気92が流れる。燃料電池モジュール200は、燃料ガス90と空気92とが直交する方向に供給される。燃料電池モジュール200は、図8に示すように、燃料電池セルの平面上の領域を第1ユニット282と、第2ユニット284とに分け、燃料電池セルの材料を異なる材料としている。ここで、第1ユニット282は、第2ユニット284よりも燃料ガス90の流れ方向下流側で、かつ、空気92の流れ方向下流側の領域である。本実施形態では、矩形の燃料電池セル210の対角線が境界線となる。なお、境界線の位置は特に限定されず、より燃料ガス流れ方向上流側としてもよい。 The fuel cell module of the above embodiment has a structure in which the cell stack has a cylindrical shape and the fuel cell cells are arranged in a row, but the present invention is not limited to this, and can be used for various cell structures. FIG. 8 is a schematic configuration diagram schematically showing a fuel cell module of another embodiment. FIG. 9 is a perspective view schematically showing the cell stack of the fuel cell module shown in FIG. In the fuel cell module 200 shown in FIG. 8, a plurality of fuel cell cells 210 have a flat plate shape and are laminated in a direction orthogonal to the plane having the largest plate area. As shown in FIG. 9, the fuel cell 210 includes a fuel electrode 203, a solid electrolyte 204, and an air electrode 205. Further, the fuel cell module 200 is provided with separators 212 and 214 between the stacked fuel cell cells 210. In the fuel cell 210, a flat fuel electrode 203, a solid electrolyte 204, and an air electrode 205 are laminated in this order. The fuel electrode 203 faces the separator 212. The air electrode 205 faces the separator 214. In the fuel cell module 200, the fuel 90 flows between the fuel electrode 203 and the separator 312, and the air 92 flows between the air electrode 205 and the separator 214. The fuel cell module 200 is supplied in a direction in which the fuel gas 90 and the air 92 are orthogonal to each other. As shown in FIG. 8, the fuel cell module 200 divides the plane region of the fuel cell into the first unit 282 and the second unit 284, and uses different materials for the fuel cell. Here, the first unit 282 is a region downstream of the second unit 284 in the flow direction of the fuel gas 90 and downstream in the flow direction of the air 92. In the present embodiment, the diagonal line of the rectangular fuel cell 210 is the boundary line. The position of the boundary line is not particularly limited, and may be on the upstream side in the fuel gas flow direction.
 このように、燃料電池セルが平板形状の場合も、燃料ガスの流れ方向の位置に応じて、燃料電池セルの材料を異なる材料とすることで、効率よく発電を行うことができる。 In this way, even when the fuel cell has a flat plate shape, power can be efficiently generated by using different materials for the fuel cell depending on the position in the flow direction of the fuel gas.
 図10は、他の実施形態の燃料電池モジュールを模式的に示した概略構成図である。図11は、図10に示す燃料電池モジュールのセルスタックを模式的に示した斜視図である。図10に示す燃料電池モジュール300は、複数の燃料電池セル310が円筒形状で並列に配置される。図11に示すように、燃料電池セル310は、燃料極303と固体電解質304と空気極305と、インターコネクタ306を含む。燃料電池セル310は、円筒形状の燃料極303と固体電解質304と空気極305とが外側から内側にこの順で積層される。インターコネクタ306は、外周に配置された燃料極303の表面に積層される。本実施形態の燃料電池モジュール300は、円筒の内側に空気92が流れ、円筒の外側に燃料ガス90が流れる。また、燃料ガス90と空気92は、同じ方向に流れる並行流である。燃料電池モジュール300は、図11に示すように、燃料電池セルの燃料ガスの流れ方向において、発電部を、第1ユニット382と、第2ユニット384とに分け、燃料電池セルの材料を異なる材料としている。ここで、第1ユニット382は、第2ユニット384よりも燃料ガス90の流れ方向下流側で、かつ、空気92の流れ方向下流側の領域である。 FIG. 10 is a schematic configuration diagram schematically showing a fuel cell module of another embodiment. FIG. 11 is a perspective view schematically showing the cell stack of the fuel cell module shown in FIG. In the fuel cell module 300 shown in FIG. 10, a plurality of fuel cell cells 310 are arranged in parallel in a cylindrical shape. As shown in FIG. 11, the fuel cell 310 includes a fuel electrode 303, a solid electrolyte 304, an air electrode 305, and an interconnector 306. In the fuel cell 310, a cylindrical fuel electrode 303, a solid electrolyte 304, and an air electrode 305 are laminated in this order from the outside to the inside. The interconnector 306 is laminated on the surface of the fuel electrode 303 arranged on the outer periphery. In the fuel cell module 300 of the present embodiment, air 92 flows inside the cylinder, and fuel gas 90 flows outside the cylinder. Further, the fuel gas 90 and the air 92 are parallel flows flowing in the same direction. As shown in FIG. 11, the fuel cell module 300 divides the power generation unit into a first unit 382 and a second unit 384 in the flow direction of the fuel gas of the fuel cell, and uses different materials for the fuel cell. It is supposed to be. Here, the first unit 382 is a region downstream of the second unit 384 in the flow direction of the fuel gas 90 and downstream in the flow direction of the air 92.
 このように、燃料電池セルが円筒形状で、燃料ガス90と空気92が並行流の場合も、燃料ガスの流れ方向の位置に応じて、燃料電池セルの材料を異なる材料とすることで、効率よく発電を行うことができる。 In this way, even when the fuel cell has a cylindrical shape and the fuel gas 90 and the air 92 flow in parallel, the efficiency can be achieved by using different materials for the fuel cell depending on the position in the flow direction of the fuel gas. It can generate electricity well.
 図12は、他の実施形態の燃料電池モジュールを模式的に示した概略構成図である。図13は、図12に示す燃料電池モジュールのセルスタックを模式的に示した斜視図である。図12に示す燃料電池モジュール400は、複数の燃料電池セル410がオーバル形状(角丸長方形)形状で並列に配置される。図13に示すように、燃料電池セル410は、基体202と、燃料極403と固体電解質404と空気極405と、インターコネクタ406を含む。燃料電池セル410は、基体402が、オーバル形状で、内部に燃料が通過する通路が並列に複数形成される。基体の402の表面には、燃料極403と固体電解質404と空気極405とがこの順で積層される。インターコネクタ406は、外周に配置された空気極405と接続する。本実施形態の燃料電池モジュール400は、基体402の内部に燃料ガス90が流れ、円筒の外側に空気92が流れる。また、燃料ガス90と空気92は、同じ方向に流れる並行流である。燃料電池モジュール400は、図13に示すように、燃料電池セルの燃料ガスの流れ方向において、発電部を、第1ユニット482と、第2ユニット484とに分け、燃料電池セルの材料を異なる材料としている。ここで、第1ユニット482は、第2ユニット384よりも燃料ガス90の流れ方向下流側で、かつ、空気92の流れ方向下流側の領域である。 FIG. 12 is a schematic configuration diagram schematically showing a fuel cell module of another embodiment. FIG. 13 is a perspective view schematically showing the cell stack of the fuel cell module shown in FIG. In the fuel cell module 400 shown in FIG. 12, a plurality of fuel cell cells 410 are arranged in parallel in an oval shape (rounded rectangle). As shown in FIG. 13, the fuel cell 410 includes a base 202, a fuel electrode 403, a solid electrolyte 404, an air electrode 405, and an interconnector 406. In the fuel cell 410, the base 402 has an oval shape, and a plurality of passages through which fuel passes are formed in parallel inside the fuel cell cell 410. The fuel electrode 403, the solid electrolyte 404, and the air electrode 405 are laminated in this order on the surface of the substrate 402. The interconnector 406 is connected to an air electrode 405 arranged on the outer periphery. In the fuel cell module 400 of the present embodiment, the fuel gas 90 flows inside the substrate 402, and the air 92 flows outside the cylinder. Further, the fuel gas 90 and the air 92 are parallel flows flowing in the same direction. As shown in FIG. 13, the fuel cell module 400 divides the power generation unit into a first unit 482 and a second unit 484 in the flow direction of the fuel gas of the fuel cell, and uses different materials for the fuel cell. It is supposed to be. Here, the first unit 482 is a region downstream of the second unit 384 in the flow direction of the fuel gas 90 and downstream in the flow direction of the air 92.
 このように、燃料電池セルが円筒形状で、燃料ガス90と空気92が並行流の場合も、燃料ガスの流れ方向の位置に応じて、燃料電池セルの材料を異なる材料とすることで、効率よく発電を行うことができる。 In this way, even when the fuel cell has a cylindrical shape and the fuel gas 90 and the air 92 flow in parallel, the efficiency can be achieved by using different materials for the fuel cell depending on the position in the flow direction of the fuel gas. It can generate electricity well.
 実施形態及び変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。実施形態及び変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態及び変形例は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。 The embodiments and modifications are presented as examples and are not intended to limit the scope of the invention. The embodiments and modifications can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. The embodiments and modifications are included in the scope and gist of the invention as well as in the scope of the invention described in the claims and the equivalent scope thereof.
10 燃料電池システム
12 燃料電池モジュール
14 空気供給装置
15 空気排出管
16 燃料供給装置
17 燃料排出管
18 制御装置
20 電流計
21 温度計
22 空気供給源
24 空気供給配管
26 燃料供給源
28 燃料供給配管
40、40a 圧力容器
42 セル集合体
44、46 管支持板
48、50 断熱体
51a、51b 孔
52 周方向断熱体
54 仕切り板
56 セルスタック
60 円筒部
62 上半球部
64 下半球部
66 空気流入管
68 空気排出管
72 発電室
74 燃料供給室
76 燃料排出室
78 空気供給室
79 空気排出室
80、88 リード部
82、86 第2ユニット
84 第1ユニット
89 接続部
90 燃料ガス
92 空気
100 燃料電池セル
101 基体管
103 燃料極
104 固体電解質
105 空気極
106 インターコネクタ
112 接続冶具
114 接着層
115 接続部空気極
118 保護膜
122 円筒部
124 凸部
132、140 矢印
10 Fuel cell system 12 Fuel cell module 14 Air supply device 15 Air discharge pipe 16 Fuel supply device 17 Fuel discharge pipe 18 Control device 20 Current meter 21 Thermometer 22 Air supply source 24 Air supply pipe 26 Fuel supply source 28 Fuel supply pipe 40 , 40a Pressure vessel 42 Cell assembly 44, 46 Pipe support plate 48, 50 Insulation body 51a, 51b Hole 52 Circumferential insulation 54 Partition plate 56 Cell stack 60 Cylindrical part 62 Upper hemisphere part 64 Lower hemisphere part 66 Air inflow pipe 68 Air discharge pipe 72 Power generation room 74 Fuel supply room 76 Fuel discharge room 78 Air supply room 79 Air discharge room 80, 88 Leads 82, 86 Second unit 84 First unit 89 Connection 90 Fuel gas 92 Air 100 Fuel cell 101 Base tube 103 Fuel pole 104 Solid electrolyte 105 Air pole 106 Interconnector 112 Connection jig 114 Adhesive layer 115 Connection part Air pole 118 Protective film 122 Cylindrical part 124 Convex part 132, 140 Arrow

Claims (14)

  1.  容器と、
     前記容器の内部に配置され、第1の方向に延在し、前記第1の方向に複数の燃料電池セルが配置されたセルスタックと、
     前記セルスタックに前記第1の方向に沿って酸化性ガスを供給する酸化性ガス供給部と、
     前記セルスタックに燃料を供給する燃料供給部と、を含み、
     前記燃料電池セルは、基体と、前記基体に積層された燃料極と、電解質と、空気極と、隣接する燃料電池セルと接続するインターコネクタとを含み、
     前記セルスタックは、前記燃料電池セルが配置された第1ユニットと、前記第1ユニットに連結し、前記燃料電池セルが配置された第2ユニットと、を含み、
     前記第2ユニットは、前記燃料電池セルの燃料極、電解質及びインターコネクタの少なくとも1つの要素が、前記第1ユニットの燃料電池セルの対応する前記要素とは異なる材料で形成される燃料電池モジュール。
    With the container
    A cell stack arranged inside the container, extending in the first direction, and having a plurality of fuel cell cells arranged in the first direction.
    An oxidizing gas supply unit that supplies an oxidizing gas to the cell stack along the first direction,
    Includes a fuel supply unit that supplies fuel to the cell stack.
    The fuel cell includes a substrate, a fuel electrode laminated on the substrate, an electrolyte, an air electrode, and an interconnector connected to an adjacent fuel cell.
    The cell stack includes a first unit in which the fuel cell is arranged and a second unit connected to the first unit in which the fuel cell is arranged.
    The second unit is a fuel cell module in which at least one element of a fuel electrode, an electrolyte, and an interconnector of the fuel cell is made of a material different from the corresponding element of the fuel cell of the first unit.
  2.  前記第1ユニットは、前記第2ユニットよりも耐熱性が高い材料で形成される請求項1に記載の燃料電池モジュール。 The fuel cell module according to claim 1, wherein the first unit is made of a material having higher heat resistance than the second unit.
  3.  前記第1ユニットは、前記燃料極がNi-ジルコニア電解質で形成され、
     前記第2ユニットは、前記燃料極が前記第1ユニットよりも耐熱性が低いNi-ジルコニア電解質で形成される請求項2に記載の燃料電池モジュール。
    In the first unit, the fuel electrode is formed of a Ni-zirconia electrolyte.
    The fuel cell module according to claim 2, wherein the second unit is a fuel cell module in which the fuel electrode is made of a Ni-zirconia electrolyte having a lower heat resistance than the first unit.
  4.  前記第1ユニットは、前記電解質がジルコニア電解質で形成され、
     前記第2ユニットは、前記電解質が前記第1ユニットよりも耐熱性が低いジルコニア電解質で形成される請求項2または請求項3に記載の燃料電池モジュール。
    In the first unit, the electrolyte is formed of a zirconia electrolyte.
    The fuel cell module according to claim 2 or 3, wherein the second unit is formed of a zirconia electrolyte in which the electrolyte has a lower heat resistance than that of the first unit.
  5.  前記第1ユニットは、前記インターコネクタがLaCrO,LaSrCrO,LaSrTiOのいずれかで形成され、
     前記第2ユニットは、前記インターコネクタが前記第1ユニットよりも耐熱性が低いLaCrO,LaSrCrO,LaSrTiOで形成される請求項2または請求項3に記載の燃料電池モジュール。
    In the first unit, the interconnector is formed of any of LaCrO 3 , LaSrCrO 3 , and LaSrTIO 3.
    The fuel cell module according to claim 2 or 3 , wherein the second unit is formed of LaCrO 3 , LaSrCrO 3, and LaSrTiO 3 in which the interconnector has a lower heat resistance than that of the first unit.
  6.  前記第2ユニットは、前記燃料電池セルの前記空気極が、前記第1ユニットの燃料電池セルの空気極と異なる材料で形成され、
     前記第1ユニットは、前記空気極がLSM,LCM,LSCMのいずれかで形成され、
     前記第2ユニットは、前記空気極が前記第1ユニットよりも耐熱性が低いLSCF,LSF,LNF,BSCFのいずれかで形成される請求項2から請求項5のいずれか一項に記載の燃料電池モジュール。
    In the second unit, the air electrode of the fuel cell is formed of a material different from the air electrode of the fuel cell of the first unit.
    In the first unit, the air electrode is formed of any of LSM, LCM, and LSCM.
    The fuel according to any one of claims 2 to 5, wherein the second unit is formed of any one of LSCF, LSF, LNF, and BSCF whose air electrode has a lower heat resistance than that of the first unit. Battery module.
  7.  前記第1ユニットは、前記燃料極がNi-ランタン系電解質で形成され、
     前記第2ユニットは、前記燃料極が前記第1ユニットよりも耐熱性が低いNi-セリア系電解質で形成される請求項2に記載の燃料電池モジュール。
    In the first unit, the fuel electrode is formed of a Ni-lanthanum-based electrolyte.
    The fuel cell module according to claim 2, wherein the second unit is made of a Ni-ceria electrolyte having a fuel electrode having a lower heat resistance than that of the first unit.
  8.  前記第1ユニットは、前記電解質がランタン電解質で形成され、
     前記第2ユニットは、前記電解質が前記第1ユニットよりも耐熱性が低いセリア電解質で形成される請求項7に記載の燃料電池モジュール。
    In the first unit, the electrolyte is formed of a lanthanum electrolyte.
    The fuel cell module according to claim 7, wherein the second unit is formed of a ceria electrolyte in which the electrolyte has a lower heat resistance than that of the first unit.
  9.  前記第1ユニットは、前記インターコネクタがLaCrO,LaSrCrO,LaSrTiOのいずれかで形成され、
     前記第2ユニットは、前記インターコネクタが前記第1ユニットよりも耐熱性が低いフェライト系ステンレスまたはステンレス合金で形成される請求項7または請求項8に記載の燃料電池モジュール。
    In the first unit, the interconnector is formed of any of LaCrO 3 , LaSrCrO 3 , and LaSrTIO 3.
    The fuel cell module according to claim 7 or 8, wherein the second unit is made of a ferritic stainless steel or a stainless alloy whose heat resistance is lower than that of the first unit.
  10.  前記第2ユニットは、前記燃料電池セルの前記空気極が、前記第1ユニットの燃料電池セルの空気極と異なる材料で形成され、
     前記第1ユニットは、前記空気極がLSCF,LSF,LNF,BSCFのいずれかで形成され、
     前記第2ユニットは、前記空気極が前記第1ユニットよりも耐熱性が低いLSCF,LSF,LNF,BSCFのいずれかで形成される請求項7から請求項9のいずれか一項に記載の燃料電池モジュール。
    In the second unit, the air electrode of the fuel cell is formed of a material different from the air electrode of the fuel cell of the first unit.
    In the first unit, the air electrode is formed of any of LSCF, LSF, LNF, and BSCF.
    The fuel according to any one of claims 7 to 9, wherein the second unit is formed of any one of LSCF, LSF, LNF, and BSCF whose air electrode has a lower heat resistance than that of the first unit. Battery module.
  11.  前記第1ユニットは、発電時に前記第2ユニットよりも温度が高くなる領域に配置される請求項1から請求項10のいずれか一項に記載の燃料電池モジュール。 The fuel cell module according to any one of claims 1 to 10, wherein the first unit is arranged in a region where the temperature is higher than that of the second unit during power generation.
  12.  前記燃料電池セルは、前記燃料極を流れる燃料ガスと、前記空気極を流れる酸化性ガスとが対向する向きで流れる請求項1から請求項11のいずれか一項に記載の燃料電池モジュール。 The fuel cell module according to any one of claims 1 to 11, wherein the fuel cell is a fuel gas flowing through the fuel electrode and an oxidizing gas flowing through the air electrode flowing in a direction opposite to each other.
  13.  前記燃料電池セルは、前記基体が円筒形状であり、内部に燃料ガスが流れ、円筒の前記基体の周囲に酸化性ガスが流れる請求項1から請求項12のいずれか一項に記載の燃料電池モジュール。 The fuel cell according to any one of claims 1 to 12, wherein the base of the fuel cell has a cylindrical shape, fuel gas flows inside, and an oxidizing gas flows around the cylindrical base. module.
  14.  請求項1から請求項13のいずれか一項に記載の燃料電池モジュールと、
     前記酸化性ガス供給部に酸化性ガスを供給する酸化ガス供給手段と、
     前記燃料供給部に燃料ガスを供給する燃料ガス供給手段と、を有することを特徴とする燃料電池システム。
    The fuel cell module according to any one of claims 1 to 13.
    An oxidizing gas supply means for supplying an oxidizing gas to the oxidizing gas supply unit,
    A fuel cell system comprising: a fuel gas supply means for supplying a fuel gas to the fuel supply unit.
PCT/JP2021/003518 2020-03-16 2021-02-01 Fuel cell module and fuel cell system equipped with same WO2021186916A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020045341A JP7386111B2 (en) 2020-03-16 2020-03-16 Fuel cell module and fuel cell system including the same
JP2020-045341 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021186916A1 true WO2021186916A1 (en) 2021-09-23

Family

ID=77768286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003518 WO2021186916A1 (en) 2020-03-16 2021-02-01 Fuel cell module and fuel cell system equipped with same

Country Status (2)

Country Link
JP (1) JP7386111B2 (en)
WO (1) WO2021186916A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030972A (en) * 2002-06-21 2004-01-29 Aisin Seiki Co Ltd Solid oxide fuel cell system
JP2010086830A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Single chamber type solid oxide fuel cell
JP2012003934A (en) * 2010-06-16 2012-01-05 Honda Motor Co Ltd Solid oxide type fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004030972A (en) * 2002-06-21 2004-01-29 Aisin Seiki Co Ltd Solid oxide fuel cell system
JP2010086830A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Single chamber type solid oxide fuel cell
JP2012003934A (en) * 2010-06-16 2012-01-05 Honda Motor Co Ltd Solid oxide type fuel cell

Also Published As

Publication number Publication date
JP2021150025A (en) 2021-09-27
JP7386111B2 (en) 2023-11-24

Similar Documents

Publication Publication Date Title
JP6616054B1 (en) Fuel cell system, combined power generation system, and control method for fuel cell system
JP6463203B2 (en) Electrochemical element, electrochemical module including the same, electrochemical device and energy system
US7157169B2 (en) Fuel cell
CN110447136B (en) Electrochemical element
KR102701091B1 (en) Fuel cell single cell unit, fuel cell module and fuel cell device
JP2012124134A (en) Structure of fuel cell
US8304136B2 (en) Solid oxide fuel cell and solid oxide fuel cell bundle
KR102697272B1 (en) Metal-supported fuel cells and fuel cell modules
JP2014207120A (en) Solid oxide electrochemical cell stack structure and hydrogen power storage system
JP5377271B2 (en) Cell stack device, fuel cell module and fuel cell device
JP6993489B1 (en) Fuel cell power generation system
JP2005166529A (en) Cell stack and fuel cell
JP2004172062A (en) Fuel cell system and multilayer cell for the same
WO2021186916A1 (en) Fuel cell module and fuel cell system equipped with same
JP5501882B2 (en) Solid oxide fuel cell and method for producing the same
JP4418196B2 (en) Fuel cell module
US20140178799A1 (en) Solid oxide fuel cell and manufacturing method thereof
JP5611030B2 (en) Starting method of solid oxide fuel cell
JP6982586B2 (en) Fuel cell cartridges, fuel cell modules and combined cycle systems
KR102713604B1 (en) Fuel cell device and method of operating fuel cell device
JP2013257973A (en) Solid oxide fuel cell stack
US11749821B2 (en) Fuel cell device and method for operating fuel cell device
JP6552708B2 (en) Electrochemical device
JP2016122545A (en) Solid oxide type fuel battery and manufacturing method for the same
KR101055464B1 (en) Solid Oxide Fuel Cells and Solid Oxide Fuel Cell Bundles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771418

Country of ref document: EP

Kind code of ref document: A1