WO2021140640A1 - Index value determination system, mitochondrial activiy evaluation system, index value determination method, and mitochondrial activity evaluation method - Google Patents

Index value determination system, mitochondrial activiy evaluation system, index value determination method, and mitochondrial activity evaluation method Download PDF

Info

Publication number
WO2021140640A1
WO2021140640A1 PCT/JP2020/000632 JP2020000632W WO2021140640A1 WO 2021140640 A1 WO2021140640 A1 WO 2021140640A1 JP 2020000632 W JP2020000632 W JP 2020000632W WO 2021140640 A1 WO2021140640 A1 WO 2021140640A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetone
index value
subject
concentration
value
Prior art date
Application number
PCT/JP2020/000632
Other languages
French (fr)
Japanese (ja)
Inventor
坪田潤
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to PCT/JP2020/000632 priority Critical patent/WO2021140640A1/en
Publication of WO2021140640A1 publication Critical patent/WO2021140640A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath

Definitions

  • the present invention relates to an index value determination system and an index value determination method for determining an index value having a correlation with the mitochondrial activity of a subject, and a mitochondrial activity evaluation system and a mitochondrial activity evaluation method for evaluating mitochondrial activity based on the index value. Regarding.
  • Mitochondria are important organs that produce energy inside cells, and have the function of converting ingested nutrients into ATP (adenosine triphosphate), which is an energy storage substance. Mitochondrial activity gradually decreases due to aging and the like. Recent studies have revealed that when mitochondrial activity decreases, more active oxygen is generated, which causes aging and various diseases. Therefore, understanding mitochondrial activity contributes to the prevention of aging and lifestyle-related diseases.
  • a method for measuring mitochondrial metabolic activity for example, a method for measuring mitochondrial metabolic activity disclosed in Patent Document 1 has been proposed.
  • this method for measuring the metabolic activity of mitochondria cells collected from a living body such as a mammal or cultured cells are used, and the cells are permeated with a solution containing streptolysin O to permeate the mitochondria of the permeabilized cells. It is a method for measuring the energy metabolic activity of. According to this method for measuring mitochondrial metabolic activity, the metabolic activity can be measured without damaging the mitochondrial membrane.
  • mitochondrial activity contributes to prevention of aging and lifestyle-related diseases
  • it can be measured as one of the test items of the health examination, or it is measured by the subject himself on a daily basis. It is important that mitochondrial activity can be easily measured and easily grasped without complicated work.
  • the present invention has been made in view of the above circumstances, and is based on an index value determination system and an index value determination method capable of determining an index value that enables easy grasping of mitochondrial activity, and mitochondria based on the index value.
  • An object of the present invention is to provide a mitochondrial activity evaluation system and a mitochondrial activity evaluation method capable of easily evaluating the activity.
  • the inventor of the present application has conducted extensive research on a method capable of easily grasping mitochondrial activity, and as a result, the correlation between the concentration value of acetone released from the body and mitochondrial activity. Focusing on sex, we found that mitochondrial activity can be grasped by determining an index value that correlates with mitochondrial activity based on the concentration value of acetone, and further, we found that mitochondrial activity can be evaluated using this index value. It was.
  • ketone bodies when sugar restriction is performed, sugar in the body is insufficient, so fat in the body is decomposed to generate ketone bodies, and these ketone bodies are used to generate energy in mitochondria. Specifically, fatty acids produced by the decomposition of fat are decomposed into 3-hydroxybutyric acid in mitochondria, which is oxidized to acetoacetic acid. Then, acetoacetic acid is taken into the TCA cycle (citric acid cycle) via acetoacetyl CoA and used as energy.
  • TCA cycle citric acid cycle
  • the mitochondrial activity is not sufficient to decompose the fat and consume the supplied acetoacetic acid, the consumption of the supplied acetoacetic acid cannot catch up, and the acetoacetic acid is decomposed into acetone and carbon dioxide, and the acetoacetic acid is decomposed from the mitochondria.
  • Acetone released into the body fluid is released with exhaled breath or evaporates from the skin, causing the body to emit an acetone odor.
  • the characteristic configuration of the index value determination system is Subjects who ingested at least one selected from 3-hydroxybutyric acid, 3-hydroxybutyrate, 3-hydroxybutyric acid ester, and acetoacetic acid, which are acetone-generating species that are finally decomposed in the body to generate acetone.
  • a concentration value acquisition means for continuously or intermittently acquiring the concentration value of the acetone released from At least the obtained concentration value of acetone is used to provide an index value determining means for determining an index value having a correlation with the mitochondrial activity of the subject.
  • the characteristic configuration of the index value determination method for determining the index value having a correlation with the mitochondrial activity of the subject using the index value determination system is as follows.
  • the characteristic configuration of the index value determination method according to the present invention for achieving the above object is as follows. Subjects who ingested at least one selected from 3-hydroxybutyric acid, 3-hydroxybutyrate, 3-hydroxybutyric acid ester, and acetoacetic acid, which are acetone-generating species that are finally decomposed in the body to generate acetone.
  • a concentration value acquisition step for continuously or intermittently acquiring the concentration value of the acetone released from At least the obtained concentration value of acetone is used to perform an index value determination step of determining an index value having a correlation with the mitochondrial activity of the subject.
  • the concentration value of acetone released from the subject who ingested at least one selected from the acetone-producing species is continuously calculated. Obtained objectively or intermittently. That is, in the present invention, in order to artificially create a state in which sugar restriction or the like is performed (a state in which fat is decomposed and ketone bodies such as 3-hydroxybutyric acid are supplied) in the body of the subject. At least one selected from 3-hydroxybutyric acid, 3-hydroxybutyrate, 3-hydroxybutyric acid ester, and acetoacetic acid, which are acetone-producing species, is ingested by the subject and released from the subject. I am trying to get the concentration value of acetone.
  • At least the obtained concentration value of acetone is used to determine an index value that correlates with the mitochondrial activity of the subject.
  • the index value having a correlation with the mitochondrial activity can be determined, and the mitochondrial activity of the subject can be easily grasped from this index value without using cells or the like.
  • a map is created in advance that defines the relationship between the intake amount of the acetone-producing species, the sex, age, lifestyle, the presence or absence of exercise, the presence or absence of illness, etc. of the subject and the index value.
  • the index values that correlate with mitochondrial activity can be used to control diabetes and develop diabetic nephropathy (DKG). It is possible to predict the onset, severity, complications, etc. of diseases such as risk evaluation and risk evaluation of patients who develop chronic obstructive pulmonary disease (COPD).
  • DKG diabetic nephropathy
  • COPD chronic obstructive pulmonary disease
  • an index value that correlates with mitochondrial activity can be a biomarker. The decision makes it possible to predict the onset of oxidative stress-related diseases.
  • foods or exercises claiming to increase mitochondrial activity were advocated, the subject ingested such foods or performed such exercises. By determining the index value based on the state, it is possible to evaluate the effect of food or exercise therapy (the effect of increasing mitochondrial activity) using the index value.
  • the concentration value of acetone released from the subject is acquired, and the mitochondrial activity is based on the acquired concentration value of acetone. Since it is possible to determine an index value that correlates with, the mitochondrial activity can be easily grasped from the determined index value without requiring complicated measurement work as compared with the conventional measurement method that requires cells or the like. be able to.
  • a further characteristic configuration of the index value determination system is that the concentration value acquisition means acquires a reference concentration value of acetone released from a subject who has not ingested the acetone-producing species.
  • the rate of increase in acetone concentration in a predetermined section from the reference concentration value to the maximum concentration value of the acetone is determined as the index value.
  • a further characteristic configuration of the index value determining method according to the present invention is to acquire a reference concentration value of acetone released from a subject who has not ingested the acetone-generating species in the concentration value acquisition step.
  • the rate of increase in acetone concentration in a predetermined section from the reference concentration value to the maximum concentration value of the acetone concentration value is determined as the index value.
  • the rate of increase in acetone concentration is determined as an index value.
  • concentration value of acetone released from the subject increases as the blood concentration of the acetone-generating species increases, but the higher the mitochondrial activity, the higher the concentration. Since the amount of acetoacetic acid processed increases, the generation of acetone due to the decomposition of acetoacetic acid is suppressed. That is, the higher the mitochondrial activity, the lower the rate of increase in acetone concentration. Therefore, the mitochondrial activity can be grasped by using the rate of increase in acetone concentration as an index value.
  • a further characteristic configuration of the index value determining system is that the index value determining means maintains the concentration value within a predetermined range for a certain period of time after the concentration value of acetone reaches the maximum concentration value. The point is that the minimum intake of the acetone-generating species is determined as the index value.
  • a further characteristic configuration of the index value determining method according to the present invention is to maintain the concentration value within a predetermined range for a certain period of time after the concentration value of acetone reaches the maximum concentration value in the index value determining step. The point is that the minimum intake of the acetone-generating species is determined as the index value.
  • the minimum intake amount of the acetone-generating species that maintains the concentration value within a predetermined range for a certain period of time is determined as the index value. I have to. According to the findings of the present inventors, if the intake of acetone-producing species ingested by the subject does not exceed the amount that mitochondria can process, the concentration value of acetone decreases after reaching the maximum value. On the other hand, when the amount of acetone exceeds the amount that can be processed by mitochondria, the concentration value of acetone reaches the maximum value and then maintains the concentration value within a predetermined range for a certain period of time.
  • the higher the mitochondrial activity the higher the minimum intake of acetone-producing species, which keeps the concentration value within a predetermined range for a certain period of time after the concentration value of acetone reaches the maximum concentration value. Therefore, the mitochondrial activity can be grasped by using the minimum intake of the acetone-generating species as an index value as described above.
  • a further characteristic configuration of the index value determination system is that the subject who ingests at least one selected from the acetone-producing species ingests nutrients together with the acetone-generating species. There is a point.
  • a further characteristic configuration of the index value determining method according to the present invention is that the subject who ingests at least one selected from the acetone-producing species ingests nutrients together with the acetone-producing species. It is in.
  • the obtained acetone concentration value is obtained when the subject is ingesting nutrients together with the acetone-producing species, as compared with the case where the subject is ingesting only the acetone-producing species.
  • the reliability of the device is improved, and the measurement can be performed with good reproducibility. This is presumed to be due to the following reasons.
  • the subject when the subject is hungry at the time of measurement, or when insulin is excessively secreted due to eating a high-sugar diet, the subject falls into a hypoglycemic state. May be present.
  • the ingested acetone-generating species When the subject is in a hypoglycemic state, the ingested acetone-generating species is used to generate energy, and the amount of acetone-generating species used to generate energy fluctuates during measurement, resulting in acetone. Since the amount of energy generated also fluctuates accordingly, the obtained acetone concentration value may fluctuate according to the amount of energy generated.
  • nutrients are ingested together with acetone-generating species, the blood glucose level rises due to the intake of nutrients, and the generation of energy using the acetone-generating species is suppressed. Therefore, the acetone-generating species used for energy generation It is presumed that this is because the acetone concentration value can be obtained in a state where the amount is less likely to fluctuate during measurement.
  • the subject since the subject is ingesting nutrients together with the acetone-producing species, the subject is hungry at the time of measurement, or insulin is excessively secreted, resulting in hypoglycemia. Even in the state, it is possible to suppress the generation of energy using the ingested acetone-generating species, and the acetone concentration in a state where the fluctuation in the amount of acetone-generating species during measurement due to the energy generation is suppressed. Since the value can be obtained, the reliability of the acquired acetone concentration value is improved, and the measurement can be performed with good reproducibility.
  • the characteristic configuration of the mitochondrial activity evaluation system is with any of the above index value determination systems.
  • An activity evaluation means for evaluating the mitochondrial activity of the subject based on the determined index value is provided.
  • the determined index value is compared with the past index value for the same subject, and the mitochondrial activity of the subject is evaluated.
  • the characteristic configuration of the mitochondrial activity evaluation method for evaluating the mitochondrial activity of the subject using the mitochondrial activity evaluation system is as follows.
  • An index value determination step for determining the index value having a correlation with the mitochondrial activity of the subject using at least the obtained concentration value of acetone. Based on the determined index value, an activity evaluation step for evaluating the mitochondrial activity of the subject is performed. In the activity evaluation step, the determined index value is compared with the past index value for the same subject to evaluate the mitochondrial activity of the subject.
  • the characteristic configuration of the mitochondrial activity evaluation method according to the present invention is After determining the index value by any of the above index value determination methods Based on the determined index value, an activity evaluation step for evaluating the mitochondrial activity of the subject is executed. In the activity evaluation step, the determined index value is compared with the past index value for the same subject to evaluate the mitochondrial activity of the subject.
  • the concentration value of acetone released from the subject who ingested at least one selected from the acetone-producing species is continuously calculated. Obtained objectively or intermittently. Then, at least the obtained concentration value of acetone is used to determine an index value that correlates with the mitochondrial activity of the subject. Then, this index value is compared with the past index value for the same subject to evaluate the mitochondrial activity of the subject. In this way, by comparing the acquired index value with the past index value for the same subject, the change in the mitochondrial activity of the subject, that is, the current mitochondrial activity is higher than that of the past mitochondrial activity. It is possible to evaluate whether it is low or low.
  • mitochondria By making it possible to evaluate mitochondria, it is possible to detect lifestyle disease prevention groups, measure aging indicators, estimate the calories that can be consumed in a day, screen foods that affect mitochondrial activity, and verify eating habits. , Verification of the relationship between various diseases and mitochondrial activity, Verification of the relationship between longevity and mitochondrial activity, verification of the effect of exercise training and setting of the optimum training amount, confirmation of mental stress based on short-term decrease in mitochondrial activity, and glycolytic system It is possible to measure the balance of the TCA cycle and grasp the state of mitochondrial disease.
  • evaluation of mitochondria can be used to control diabetes, evaluate the risk of developing diabetic nephropathy (DKG), and chronically. It enables useful evaluation for predicting the onset, severity, complications, etc. of diseases such as risk evaluation of patients who develop obstructive pulmonary disease (COPD).
  • DKG diabetic nephropathy
  • COPD obstructive pulmonary disease
  • evaluation of mitochondria can be a biomarker. The onset of oxidative stress-related diseases can be predicted.
  • foods or exercises that claim to increase mitochondrial activity are advocated, mitochondrial activity in subjects who have ingested such foods or performed such exercises. By evaluating, it is also possible to evaluate the effect of food and exercise therapy (the effect of increasing mitochondrial activity).
  • the mitochondrial activity evaluation device 1 acquires a concentration value acquisition unit 2 (concentration value acquisition means) for acquiring an acetone concentration value and a concentration value acquired by the concentration value acquisition unit 2. Based on the index value output unit 3 (index value determination means) that determines and outputs the index value that correlates with the mitochondrial activity of the subject and the index value output from the index value output unit 3, the subject is subject to use. It includes an activity evaluation unit 5 (activity evaluation means) for evaluating the mitochondrial activity of the examiner and an index value storage unit 6 for storing the index value, and the concentration value acquisition unit 2 and the index value output unit 3 are index values.
  • the determination device 4 is an activity evaluation unit 5 (activity evaluation means) for evaluating the mitochondrial activity of the examiner and an index value storage unit 6 for storing the index value, and the concentration value acquisition unit 2 and the index value output unit 3 are index values.
  • the concentration value acquisition unit 2 acquires the concentration value of acetone from the exhalation sensor 10 that detects acetone contained in the exhaled breath of the subject, and transmits the acquired concentration value to the index value output unit 3.
  • the detection result from the exhaled breath sensor 10 is transmitted to the concentration value acquisition unit 2 by wireless communication or wired communication.
  • the index value output unit 3 determines the rate of increase in acetone concentration as an index value based on the concentration value received from the index value output unit 3, and transmits it to the activity evaluation unit 5 or a display device 11 provided as appropriate. Specifically, in the present embodiment, it is selected from 3-hydroxybutyric acid, 3-hydroxybutyrate, 3-hydroxybutyric acid ester, and acetoacetic acid, which are acetone-generating species that are finally decomposed in the body to generate acetone.
  • the concentration value of acetone contained in the exhaled breath of the subject who ingested at least one of them, and the concentration value of acetone contained in the exhaled breath of the subject who did not ingest the species that generated acetone (reference concentration value).
  • the rate of increase in acetone concentration in a predetermined section from the reference concentration value to the maximum concentration value of acetone is determined as an index value.
  • the rate of increase in acetone concentration is used as an index value, the higher the mitochondrial activity, the lower the rate of increase in acetone concentration.
  • the display device 11 may be incorporated in the mitochondrial activity evaluation device 1 or the index value determination device 4, or may be separately provided outside these devices.
  • the activity evaluation unit 5 determines whether or not the rate of increase in acetone concentration received from the index value output unit 3 is equal to or higher than the predetermined speed, and if it is not higher than the predetermined speed, the activity evaluation unit 5 displays a signal for displaying that fact. Send to.
  • the rate of increase in acetone concentration is equal to or higher than a predetermined rate
  • the received rate of increase in acetone concentration is transmitted to the index value storage unit 6 for storage, and the index value storage unit 6 stores the past acetone of the same subject.
  • the reference concentration value is measured in step # 1.
  • the breath sensor 10 is used to detect acetone contained in the breath of a subject who has not ingested the acetone-generating species, and obtains an acetone concentration value (reference concentration value).
  • the detection result by the exhaled breath sensor 10 is transmitted to the concentration value acquisition unit 2 to acquire the reference concentration value of acetone, and this reference concentration value is the index value output unit 3. Will be sent to.
  • step # 2 the subject ingests the acetone-producing species.
  • the amount of acetone-generating species ingested by the subject shall be an appropriate amount determined for each subject according to the health condition, sports ability, etc., and the rate of increase in acetone concentration shall be equal to or higher than the predetermined rate in step # 6 described later.
  • the same amount of acetone-producing species is ingested in the index value determination method and the mitochondrial activity evaluation method to be performed in the future.
  • the intake of the acetone-generating species is preferably 0.5 g to 50 g, more preferably 1 g to 25 g, and most preferably 3 g to 10 g.
  • step # 3 the concentration value of acetone is measured at regular intervals (concentration value acquisition step). That is, the acetone contained in the exhaled breath of the subject in the state of ingesting the acetone-generating species is detected by using the exhaled breath sensor 10 at regular intervals, and the concentration value of acetone is acquired.
  • the mitochondrial activity evaluation device 1 the detection result by the exhaled breath sensor 10 is transmitted to the concentration value acquisition unit 2 to acquire the concentration value of acetone, and this concentration value is transmitted to the index value output unit 3. Will be done.
  • step # 4 it is determined whether or not the maximum concentration value of acetone has been acquired, and if the maximum concentration value has been acquired, the process proceeds to step # 5, and if the maximum concentration value has not been acquired. Return to step # 3. Specifically, if the acquired concentration value is higher than the concentration value measured and acquired at the timing immediately before the measurement of this concentration value, it is judged that the maximum concentration value has not been acquired, and if it is lower. It is judged that the maximum concentration value has been obtained. When the mitochondrial activity evaluation device 1 is used, the index value output unit 3 determines whether or not the maximum concentration value of acetone has been acquired.
  • step # 5 the rate of increase in acetone concentration as an index value is determined (index value determination step). Specifically, the concentration value of acetone is used as a reference based on the concentration value and elapsed time at a predetermined timing from the reference concentration value to the maximum concentration value and the reference concentration value. The rate of increase in acetone concentration from the concentration value to the concentration value at a predetermined timing is determined as an index value.
  • the index value output unit 3 calculates the acetone concentration increase rate, the acetone concentration increase rate is determined as an index value, and the determined acetone concentration increase rate is the activity evaluation unit. It is transmitted to 5 or is transmitted to the display device 11.
  • the predetermined timing is, for example, the timing at which the rate of increase in acetone concentration becomes constant, and when the mitochondrial activity evaluation device 1 is used, it is an index based on the measurement data that the rate of increase in acetone concentration becomes constant. This is the timing determined by the value output unit 3.
  • the rate of increase in acetone concentration as an index value may be calculated based on the reference concentration value and the maximum concentration value, and the time required to reach the maximum concentration value from the reference concentration value.
  • steps # 1 to # 5 correspond to the index value determination method, and by performing steps # 1 to # 5 as described above, the acetone concentration as an index value having a correlation with mitochondrial activity. Since the rate of increase can be determined, the mitochondrial activity of the subject can be easily grasped from this index value without using cells or the like. Then, the index value determined in this way defines, for example, the relationship between the intake amount of the acetone-producing species, the sex of the subject, the age, the lifestyle, the presence or absence of exercise, the presence or absence of illness, and the index value in advance.
  • step # 6 it is determined whether or not the determined rate of increase in acetone concentration is equal to or higher than the predetermined rate, and if it is determined that the rate is equal to or higher than the predetermined rate, the process proceeds to step # 7. On the other hand, if it is determined that the speed is lower than the predetermined speed, the process returns to step # 2, the intake of the acetone-producing species is increased, and the process proceeds to step # 3 again. It is possible that the rate of increase in acetone concentration did not sufficiently correlate with the mitochondrial activity of the subject because the intake of the acetone-producing species ingested by the subject was sufficient for the mitochondria to process. Is high.
  • step # 7 it is determined whether or not there is a past rate of increase in acetone concentration for the same subject, and if it exists, the process proceeds to step # 8, and if it does not exist, the process ends. Then, in step # 8, the rate of increase in acetone concentration determined this time is compared with the rate of increase in acetone concentration in the past for the same subject, and is the mitochondrial activity of the subject higher than in the past? Alternatively, it is evaluated whether it is low (activity evaluation step).
  • the activity evaluation unit 5 stores the determined acetone concentration increase rate in the index value storage unit 6, and the acetone concentration increase rate. Is determined to be above the predetermined speed (step # 6), and if it is determined to be above the predetermined speed, the past acetone concentration for the same subject is referred to with reference to the index value storage unit 6. It is determined whether the rate of increase is memorized (step # 7), and if it is memorized, the rate of increase in the acetone concentration is compared with the rate of increase in the past acetone concentration for the same subject, and the test is performed. It is evaluated whether the mitochondrial activity of the person is higher or lower than in the past, and the result is transmitted to the display device 11. On the other hand, if it is determined that the past rate of increase in acetone concentration for the same subject is not memorized, the process ends.
  • the rate of increase in acetone concentration as an index value of mitochondrial activity, it is possible to evaluate whether the mitochondrial activity of the same subject is higher or lower than the past results. For example, if the rate of increase in acetone concentration is determined as an index value for each subject in regular health examinations, how the mitochondrial activity has changed compared to the rate of increase in acetone concentration in the past can be seen. The subject can know.
  • the rate of increase in acetone concentration which is an index value having a correlation with the mitochondrial activity of the subject, can be determined, and the rate of increase in acetone concentration can be used.
  • Various tests and verifications related to mitochondrial activity can be performed.
  • by comparing the rate of increase in acetone concentration, which is an index value, with the rate of increase in acetone concentration in the past of the same subject it is possible to inform the subject of how the mitochondrial activity has changed, and it is possible to inform the subject of lifestyle-related diseases. It can give an opportunity to work on prevention of aging and prevention of aging.
  • FIG. 3 shows the relationship between the increase in blood 3HB concentration (increase with respect to 0 minutes) and the increase in acetone concentration in exhaled breath (increase with respect to 0 minutes) after 60 minutes, 90 minutes, and 120 minutes.
  • the acetone concentration value in the exhaled breath was analyzed by gas chromatography after collecting 1 L of the exhaled breath in a collection bag every hour.
  • the increase in blood 3HB concentration increased to 0.2 mM after 30 minutes and then decreased to 0 during exhalation.
  • the amount of increase in the acetone concentration in the above also decreased immediately after reaching the maximum value at a low value of 0.1 ppm after 60 minutes. If the change pattern of the increase in the concentration value of acetone becomes a pattern that decreases immediately after the increase is maximized, it is judged that it is necessary to increase the intake of 3HB salt and perform remeasurement. ..
  • FIG. 4 shows the relationship between the increase in blood 3HB concentration (increase with respect to 0 minutes) and the increase in acetone concentration in exhaled breath (increase with respect to 0 minutes) after minutes.
  • the acetone concentration value in the exhaled breath was analyzed by gas chromatography after collecting 1 L of the exhaled breath in a collection bag at each time.
  • the increase in blood 3HB concentration increased to 0.4 mM after 60 minutes and was then used in mitochondria. It gradually decreased.
  • the amount of increase in the concentration of acetone in the exhaled breath increased to 0.9 ppm after 60 minutes, and then gradually decreased while maintaining the predetermined range. If the change pattern of the amount of increase in the concentration value of acetone becomes a pattern that maintains within the predetermined range after the amount of increase is maximized, it is judged that the measurement is normal and there is no need to perform remeasurement. It shall be.
  • the index value having a correlation with the mitochondrial activity may be an intake amount (3 g in this experimental example) that keeps within a predetermined range after the increase amount of the acetone concentration value reaches the maximum.
  • the rate of increase in acetone concentration per hour from 0 minutes to 60 minutes may be set (0.798 ppm / hr). The latter is a simpler and more detailed index.
  • FIG. 5 shows the relationship between the increase in blood 3HB concentration (increase with respect to 0 minutes) and the increase in acetone concentration in exhaled breath (increase with respect to 0 minutes) after minutes.
  • the acetone concentration value in the exhaled breath was analyzed by gas chromatography after collecting 1 L of the exhaled breath in a collection bag every hour.
  • the measurement can be performed normally as in the case of Experimental Example 2 above. , Judge that there is no need to remeasure.
  • the rate of increase in acetone concentration (0.756 ppm / hr) per hour from 0 minutes to 60 minutes as an index value was almost the same value as in Experimental Example 2. From this, the amount of 3HB salt ingested by the subject is higher than the amount of intake such that the pattern of increase in the concentration value of acetone becomes a pattern of maintaining within a predetermined range after the increase is maximized. There is no particular problem at most. Further, by continuously performing the measurement using a sensor element or the like capable of detecting acetone, the rate of increase in acetone concentration as an index value can be calculated more accurately.
  • a subject ingesting at least one selected from 3-hydroxybutyric acid, 3-hydroxybutyrate, 3-hydroxybutyric acid ester, and acetoacetic acid, which are acetone-generating species, generates acetone. It differs from the first embodiment in that it is ingesting nutrients at the same time as the seeds.
  • the mitochondrial activity evaluation device 1 is in a state where the concentration value of acetone contained in the exhaled breath of the subject who has ingested the nutrients at the same time as the acetone-generating species and the acetone-generating species and the nutrients have not been ingested. Based on the concentration of acetone contained in the exhaled breath of the subject (reference concentration value), the rate of increase in acetone concentration is determined as an index value, and the subject is based on the rate of increase in acetone concentration, which is the determined index value. To assess the mitochondrial activity of.
  • the "nutrient” in the present application is not particularly limited as long as it is converted into glucose in the body, and examples thereof include sugars, carbohydrates, proteins, amino acids, lipids, and dietary fiber. , The subject may ingest only one of these together with the glucose-producing species, or may ingest a plurality of them in combination.
  • FIG. 7 is a graph showing the relationship between the elapsed time after ingestion of the sample and the amount of change in the acetone concentration value (the amount of change with respect to the amount before ingestion) in the case of ingesting sample 1
  • FIG. 8 shows the ingestion of sample 2. It is a graph which shows the relationship between the elapsed time after ingestion of a sample, and the amount of change (change amount with respect to before ingestion) of an acetone concentration value about a case.
  • two experiments in which sample 1 was ingested in the morning (“1 am” and “2 am” in FIG. 7) and two experiments in which sample 1 was ingested in the afternoon (“1 pm” in FIG. 7).
  • the minimum and maximum values of the amount of change in the acetone concentration value after the lapse of a predetermined time from the intake of sample 1 are -119 ppb (2 pm) and the maximum value of 31 ppb (2 pm) after 15 minutes.
  • the minimum value is -37 ppb (2 am) after 30 minutes
  • the maximum value is 26 ppb (1 am)
  • the minimum value is -35 ppb (1 pm) after 45 minutes.
  • the maximum value was 223 ppb (2 am), and after 60 minutes, the minimum value was 93 ppb (1 am) and the maximum value was 287 ppb (2 am).
  • the minimum and maximum values of the change in the acetone concentration value after the lapse of a predetermined time from the intake of sample 2 are 19 ppb (morning + nutrition 1) at the minimum value and 75 ppb at the maximum value at the lapse of 15 minutes.
  • the minimum value is 86 ppb (AM + Nutrition 1) after 30 minutes
  • the maximum value is 196 ppb (Afternoon + Nutrition 2)
  • the minimum value is 45 minutes.
  • the reason why the degree of variation changes between the case where sugar is ingested at the same time as 3HB and the case where sugar is not ingested is that when sugar is not ingested at the same time as 3HB, the subject C at the time of measurement. Is hungry, or is in a state of excessive insulin secretion due to eating a sugar-rich diet, resulting in a hypoglycemic state, and the ingested 3HB is used to generate energy, and energy
  • the amount of 3HB used for production fluctuates during measurement, the amount of acetone generated also fluctuates accordingly, and as a result, the obtained acetone concentration value fluctuates according to the amount of energy produced.
  • a 10% 3HB sodium solution (acetone-generating species) was administered to two rats (rat A, rat B) so as to weigh 1 g per kg of body weight, and the acetone released from the tail between 115 and 125 minutes after administration. The concentration was measured with a semiconductor gas sensor.
  • 10 mg / ml streptozotocin (STZ) was intraperitoneally administered to the same two rats A and B so as to be 50 mg / kg body weight, and the rats were bred for 2 weeks, and then a 10% 3HB sodium solution was added to 1 kg body weight.
  • the dose was 1 g per dose, and the concentration of acetone released from the tail was measured with a semiconductor gas sensor between 115 and 125 minutes after the administration.
  • FIGS. 9 and 10 show the results for rat A
  • FIGS. 11 and 12 show the results for rat B, respectively
  • FIGS. 9 and 11 show the 3HB sodium solution before and after STZ administration for each mouse. It is a graph which shows the relationship between the elapsed time after ingesting, and the acetone concentration.
  • FIGS. 10 and 12 show the area (that is, the amount of acetone ( ⁇ g)) under each line graph (before STZ administration and after STZ administration) from 0 minutes to 115 minutes in FIGS. 9 and 11, respectively. It is a graph.
  • the concentration value of acetone reaches the maximum value and then decreases, whereas the mitochondria can process it. If the amount is exceeded, the concentration value of acetone reaches the maximum value and then maintains the concentration value within a predetermined range for a certain period of time. Therefore, the higher the mitochondrial activity, the higher the minimum intake of acetone-producing species, which keeps the concentration value within a predetermined range for a certain period of time after the concentration value of acetone reaches the maximum concentration value. Therefore, the mitochondrial activity can be grasped even when the minimum intake of the acetone-producing species as described above is used as an index value.
  • acetone contained in the exhaled breath of the subject is detected at regular intervals, that is, intermittently by using the exhaled breath sensor, but the present invention is not limited to this, and is not limited to this. Acetone may be continuously detected continuously. Further, the sensor for detecting acetone is not limited to the exhalation sensor, and a skin sensor capable of detecting acetone released from the skin of the subject can be used.
  • index value is transmitted from the activity evaluation unit 5 to the index value storage unit 6 and stored, but the present invention is not limited to this, and the index value output unit stores the index value.
  • the index value may be transmitted and stored in the unit, or a storage unit may be provided as appropriate for storing the concentration value acquired by the concentration value acquisition unit.
  • the index value output unit 3 determines and outputs the rate of increase in the acetone concentration as the index value, but it is not always necessary to output the index value and the index value is stored.
  • the activity evaluation unit may access and acquire the information as appropriate.
  • the above-mentioned mitochondrial activity evaluation method and index value determination method can be executed without using the mitochondrial activity evaluation device and the index value determination device.
  • the present subject is ingesting nutrients at the same time as the acetone-generating species, but the present invention is not limited to this, and the subject is not limited to this, and is before ingesting the acetone-generating species or acetone. Nutrients may be ingested after ingesting the outbreak.
  • An index value determination system and an index value determination method capable of determining an index value that enables easy grasping of mitochondrial activity, and a mitochondrial activity evaluation system and an index value determination method that can easily evaluate mitochondrial activity based on the index value. It can be used as a method for evaluating mitochondrial activity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Medical Informatics (AREA)
  • Obesity (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Provided is an index value determination system that can determine an index value that makes it possible to easily ascertain mitochondrial activity. The present invention comprises: a concentration value acquisition unit 2 that continuously or discontinuously acquires a concentration value for the acetone released from a subject that has consumed a least one acetone producer that is ultimately degraded in the body to produce acetone selected from among 3-hydroxybutyric acid, 3-hydroxybutyrate, a 3-hydroxybutyrate ester, and acetoacetic acid; and an index value outputting unit 3 that uses at least the acquired acetone concentration value to determine an index value that is correlated with the mitochondrial activity of the subject.

Description

指標値決定システム、ミトコンドリア活性評価システム、指標値決定方法及びミトコンドリア活性評価方法Index value determination system, mitochondrial activity evaluation system, index value determination method and mitochondrial activity evaluation method
 本発明は、被検者のミトコンドリア活性と相関を有する指標値を決定する指標値決定システム及び指標値決定方法、並びに、指標値を基にミトコンドリア活性を評価するミトコンドリア活性評価システム及びミトコンドリア活性評価方法に関する。 The present invention relates to an index value determination system and an index value determination method for determining an index value having a correlation with the mitochondrial activity of a subject, and a mitochondrial activity evaluation system and a mitochondrial activity evaluation method for evaluating mitochondrial activity based on the index value. Regarding.
 ミトコンドリアは、細胞内でエネルギーを生産する重要な器官であり、摂取した栄養分をエネルギー貯蔵物質たるATP(アデノシン三リン酸)に変換する機能を有するが、変換する際に活性酸素が発生するため、老化等によってミトコンドリアの活性は徐々に低下する。そして、ミトコンドリア活性が低下した場合には、更に多くの活性酸素が発生することになり、老化や種々の病気の原因となることが近年の研究により明らかとなっている。したがって、ミトコンドリア活性を把握することは、老化防止や生活習慣病防止などに資することになる。 Mitochondria are important organs that produce energy inside cells, and have the function of converting ingested nutrients into ATP (adenosine triphosphate), which is an energy storage substance. Mitochondrial activity gradually decreases due to aging and the like. Recent studies have revealed that when mitochondrial activity decreases, more active oxygen is generated, which causes aging and various diseases. Therefore, understanding mitochondrial activity contributes to the prevention of aging and lifestyle-related diseases.
 従来、ミトコンドリアの活性を測定する方法としては、例えば、特許文献1に開示されたミトコンドリアの代謝活性測定方法が提案されている。このミトコンドリアの代謝活性測定方法は、哺乳動物等の生体から採取した細胞や培養した細胞を用い、この細胞に対してストレプトリジンO含有液を用いて透過処理を施して、透過処理した細胞のミトコンドリアのエネルギー代謝活性を測定する方法である。このミトコンドリアの代謝活性測定方法によれば、ミトコンドリア膜に損傷を与えることなく、代謝活性を測定することができる。 Conventionally, as a method for measuring mitochondrial activity, for example, a method for measuring mitochondrial metabolic activity disclosed in Patent Document 1 has been proposed. In this method for measuring the metabolic activity of mitochondria, cells collected from a living body such as a mammal or cultured cells are used, and the cells are permeated with a solution containing streptolysin O to permeate the mitochondria of the permeabilized cells. It is a method for measuring the energy metabolic activity of. According to this method for measuring mitochondrial metabolic activity, the metabolic activity can be measured without damaging the mitochondrial membrane.
特開2011-205935号公報Japanese Unexamined Patent Publication No. 2011-205935
 ここで、ミトコンドリア活性を把握することが老化防止や生活習慣病防止などに資するという観点からすれば、例えば、健康診断の検査項目の一つとして測定できたり、日常的に被検者自身が測定できたりというように、ミトコンドリア活性は、煩雑な作業を伴うことなく簡便に測定でき、容易に把握できることが肝要である。 Here, from the viewpoint that grasping mitochondrial activity contributes to prevention of aging and lifestyle-related diseases, for example, it can be measured as one of the test items of the health examination, or it is measured by the subject himself on a daily basis. It is important that mitochondrial activity can be easily measured and easily grasped without complicated work.
 しかしながら、上記特許文献1記載のミトコンドリアの代謝活性測定方法では、体から取り出した細胞を用いる必要があるため測定作業が煩雑なものにならざるを得ず、ミトコンドリア活性を簡便に測定することができないため、ミトコンドリア活性を容易に把握することができない。 However, in the method for measuring mitochondrial metabolic activity described in Patent Document 1, since it is necessary to use cells taken out from the body, the measurement work has to be complicated, and mitochondrial activity cannot be easily measured. Therefore, the mitochondrial activity cannot be easily grasped.
 本発明は以上の実情に鑑みなされたものであり、ミトコンドリア活性の容易な把握を可能にする指標値を決定することができる指標値決定システム及び指標値決定方法、並びに、指標値を基にミトコンドリア活性を容易に評価することができるミトコンドリア活性評価システム及びミトコンドリア活性評価方法の提供を、その目的とする。 The present invention has been made in view of the above circumstances, and is based on an index value determination system and an index value determination method capable of determining an index value that enables easy grasping of mitochondrial activity, and mitochondria based on the index value. An object of the present invention is to provide a mitochondrial activity evaluation system and a mitochondrial activity evaluation method capable of easily evaluating the activity.
 そこで、上記目的を達成するために本願発明者は、ミトコンドリア活性を容易に把握することができる手法について鋭意研究を重ねた結果、体外に放出されるアセトンの濃度値とミトコンドリア活性との間の相関性に着目し、アセトンの濃度値を基にしてミトコンドリア活性と相関を有する指標値を決定することで、ミトコンドリア活性を把握できることを見出し、更に、この指標値を用いてミトコンドリア活性を評価できることを見出した。 Therefore, in order to achieve the above object, the inventor of the present application has conducted extensive research on a method capable of easily grasping mitochondrial activity, and as a result, the correlation between the concentration value of acetone released from the body and mitochondrial activity. Focusing on sex, we found that mitochondrial activity can be grasped by determining an index value that correlates with mitochondrial activity based on the concentration value of acetone, and further, we found that mitochondrial activity can be evaluated using this index value. It was.
 即ち、糖質制限等を行うと体内の糖が不足するため、体内の脂肪を分解してケトン体を生成し、このケトン体を利用してミトコンドリアでエネルギーを作り出そうとする。具体的には、脂肪の分解によって生成される脂肪酸がミトコンドリア内で3-ヒドロキシ酪酸まで分解され、これがアセト酢酸に酸化される。そして、アセト酢酸がアセトアセチルCoAを経由してTCA回路(クエン酸回路)に取り込まれ、エネルギーとして利用される。 That is, when sugar restriction is performed, sugar in the body is insufficient, so fat in the body is decomposed to generate ketone bodies, and these ketone bodies are used to generate energy in mitochondria. Specifically, fatty acids produced by the decomposition of fat are decomposed into 3-hydroxybutyric acid in mitochondria, which is oxidized to acetoacetic acid. Then, acetoacetic acid is taken into the TCA cycle (citric acid cycle) via acetoacetyl CoA and used as energy.
 このとき、脂肪が分解されて供給されたアセト酢酸を消費するのに十分なミトコンドリア活性がないと、供給されたアセト酢酸の消費が追い付かず、アセト酢酸がアセトンと二酸化炭素に分解され、ミトコンドリアから体液中に放散されたアセトンが呼気とともに放出されたり、皮膚から蒸発したりすることで、体からアセトン臭が発せられる。 At this time, if the mitochondrial activity is not sufficient to decompose the fat and consume the supplied acetoacetic acid, the consumption of the supplied acetoacetic acid cannot catch up, and the acetoacetic acid is decomposed into acetone and carbon dioxide, and the acetoacetic acid is decomposed from the mitochondria. Acetone released into the body fluid is released with exhaled breath or evaporates from the skin, causing the body to emit an acetone odor.
 つまり、ミトコンドリア活性が高いと、体内のアセト酢酸の消費量が増加するため、体外に放出されるアセトンの濃度値が減少し、逆に、ミトコンドリア活性が低いと、アセト酢酸の消費量が減少するため、体外に放出されるアセトンの濃度値が増加することになる。このように、体外に放出されるアセトンの濃度値とミトコンドリア活性との間には相関性があるため、意図的に体内のケトン体の量を増加させることで、被検者から発生するアセトンを検出すれば、アセトンの濃度値を基にしてミトコンドリア活性と相関を有する指標値を決定してミトコンドリア活性を把握することができ、更に、この指標値を基にミトコンドリア活性を評価できるのである。 That is, when the mitochondrial activity is high, the consumption of acetoacetic acid in the body increases, so that the concentration value of acetone released from the body decreases, and conversely, when the mitochondrial activity is low, the consumption of acetoacetic acid decreases. Therefore, the concentration value of acetone released from the body increases. In this way, since there is a correlation between the concentration value of acetone released from the body and mitochondrial activity, by intentionally increasing the amount of ketone bodies in the body, acetone generated from the subject can be obtained. If detected, an index value having a correlation with mitochondrial activity can be determined based on the concentration value of acetone to grasp the mitochondrial activity, and further, the mitochondrial activity can be evaluated based on this index value.
 即ち、本発明に係る指標値決定システムの特徴構成は、
 最終的に体内で分解されてアセトンを発生するアセトン発生種たる3-ヒドロキシ酪酸、3-ヒドロキシ酪酸塩、3-ヒドロキシ酪酸エステル及びアセト酢酸の中から選択される少なくとも一つを摂取した被検者から放出される前記アセトンの濃度値を連続的又は断続的に取得する濃度値取得手段と、
 少なくとも前記取得したアセトンの濃度値を用いて、前記被検者のミトコンドリア活性と相関を有する指標値を決定する指標値決定手段とを備える点にある。
 また、上記指標値決定システムを用いて、前記被検者のミトコンドリア活性と相関を有する指標値を決定する指標値決定方法の特徴構成は、
 前記アセトン発生種の中から選択される少なくとも一つを摂取した前記被検者から放出される前記アセトンの濃度値を連続的又は断続的に取得する濃度値取得ステップと、
 少なくとも前記取得したアセトンの濃度値を用いて、前記被検者のミトコンドリア活性と相関を有する前記指標値を決定する指標値決定ステップとを実行する点にある。
 また、上記目的を達成するための本発明に係る指標値決定方法の特徴構成は、
 最終的に体内で分解されてアセトンを発生するアセトン発生種たる3-ヒドロキシ酪酸、3-ヒドロキシ酪酸塩、3-ヒドロキシ酪酸エステル及びアセト酢酸の中から選択される少なくとも一つを摂取した被検者から放出される前記アセトンの濃度値を連続的又は断続的に取得する濃度値取得ステップと、
 少なくとも前記取得したアセトンの濃度値を用いて、前記被検者のミトコンドリア活性と相関を有する指標値を決定する指標値決定ステップとを実行する点にある。
That is, the characteristic configuration of the index value determination system according to the present invention is
Subjects who ingested at least one selected from 3-hydroxybutyric acid, 3-hydroxybutyrate, 3-hydroxybutyric acid ester, and acetoacetic acid, which are acetone-generating species that are finally decomposed in the body to generate acetone. A concentration value acquisition means for continuously or intermittently acquiring the concentration value of the acetone released from
At least the obtained concentration value of acetone is used to provide an index value determining means for determining an index value having a correlation with the mitochondrial activity of the subject.
In addition, the characteristic configuration of the index value determination method for determining the index value having a correlation with the mitochondrial activity of the subject using the index value determination system is as follows.
A concentration value acquisition step of continuously or intermittently acquiring the concentration value of the acetone released from the subject who ingested at least one selected from the acetone-generating species.
At least the obtained concentration value of acetone is used to perform an index value determination step of determining the index value having a correlation with the mitochondrial activity of the subject.
In addition, the characteristic configuration of the index value determination method according to the present invention for achieving the above object is as follows.
Subjects who ingested at least one selected from 3-hydroxybutyric acid, 3-hydroxybutyrate, 3-hydroxybutyric acid ester, and acetoacetic acid, which are acetone-generating species that are finally decomposed in the body to generate acetone. A concentration value acquisition step for continuously or intermittently acquiring the concentration value of the acetone released from
At least the obtained concentration value of acetone is used to perform an index value determination step of determining an index value having a correlation with the mitochondrial activity of the subject.
 上記本発明に係る指標値決定システム及び指標値決定方法に係る特徴構成では、まず、アセトン発生種の中から選択される少なくとも一つを摂取した被検者から放出されるアセトンの濃度値を連続的又は断続的に取得する。即ち、本発明においては、糖質制限等を行った状態(脂肪が分解されて3-ヒドロキシ酪酸などのケトン体が供給されている状態)を被検者の体内に疑似的に作り出すために、アセトン発生種たる3-ヒドロキシ酪酸、3-ヒドロキシ酪酸塩、3-ヒドロキシ酪酸エステル及びアセト酢酸の中から選択される少なくとも一つを被検者が摂取した状態にし、この被検者から放出されるアセトンの濃度値を取得するようにしている。 In the feature configuration according to the index value determination system and the index value determination method according to the present invention, first, the concentration value of acetone released from the subject who ingested at least one selected from the acetone-producing species is continuously calculated. Obtained objectively or intermittently. That is, in the present invention, in order to artificially create a state in which sugar restriction or the like is performed (a state in which fat is decomposed and ketone bodies such as 3-hydroxybutyric acid are supplied) in the body of the subject. At least one selected from 3-hydroxybutyric acid, 3-hydroxybutyrate, 3-hydroxybutyric acid ester, and acetoacetic acid, which are acetone-producing species, is ingested by the subject and released from the subject. I am trying to get the concentration value of acetone.
 このようにすることで、例えば、健康状態やスポーツ能力などが異なる被検者が同じ量のアセトン発生種の中の少なくとも一つを摂取したときに、各被検者のミトコンドリア活性に応じて取得されるアセトンの濃度値が変化し、また、同一被検者が異なる量のアセトン発生種の中の少なくとも一つを摂取したときに、その摂取量に応じて取得されるアセトンの濃度値が変化することになる。 By doing so, for example, when subjects with different health conditions and sports abilities ingest at least one of the same amount of acetone-producing species, it is acquired according to the mitochondrial activity of each subject. The concentration value of acetone to be obtained changes, and when the same subject ingests at least one of different amounts of acetone-producing species, the concentration value of acetone obtained changes according to the ingestion amount. Will be done.
 ついで、少なくとも取得したアセトンの濃度値を用いて、被検者のミトコンドリア活性と相関を有する指標値を決定する。 Then, at least the obtained concentration value of acetone is used to determine an index value that correlates with the mitochondrial activity of the subject.
 このように、ミトコンドリア活性と相関を有する指標値を決定でき、細胞等を用いることなく、この指標値から被検者のミトコンドリア活性を容易に把握することができる。そして、この指標値は、例えば、予めアセトン発生種の摂取量や被検者の性別、年齢、生活習慣、運動の有無、疾病の有無などと指標値との関係を規定したマップを作成しておくことで、生活習慣病予防群の検知や、老化指標の測定、一日に摂取可能なカロリーの推定、ミトコンドリア活性に影響を与える食物のスクリーニング及び食生活の検証、各種疾病とミトコンドリア活性との関係検証、長寿とミトコンドリア活性の関係検証、運動トレーニングの効果検証及び最適トレーニング量の設定、短期的なミトコンドリア活性の低下を基にした精神ストレスの確認、解糖系とTCAサイクルのバランス測定、ミトコンドリア病の状態把握などにも用いることができる。 In this way, the index value having a correlation with the mitochondrial activity can be determined, and the mitochondrial activity of the subject can be easily grasped from this index value without using cells or the like. Then, for this index value, for example, a map is created in advance that defines the relationship between the intake amount of the acetone-producing species, the sex, age, lifestyle, the presence or absence of exercise, the presence or absence of illness, etc. of the subject and the index value. By setting it, detection of lifestyle-related disease prevention group, measurement of aging index, estimation of daily ingestible calories, screening of foods affecting mitochondrial activity and verification of eating habits, various diseases and mitochondrial activity Relationship verification, relationship verification between longevity and mitochondrial activity, effect verification of exercise training and setting of optimal training amount, confirmation of mental stress based on short-term decrease in mitochondrial activity, balance measurement of glycolytic system and TCA cycle, mitochondria It can also be used to grasp the state of illness.
 例えば、酸化ストレス関連の疾患とミトコンドリアの機能異常との間に相関があるような場合には、ミトコンドリア活性と相関を有する指標値を用いることで、糖尿病のコントロールや糖尿病腎症(DKG)の発症リスクの評価や、慢性閉塞性肺疾患(COPD)へ移行する患者のリスク評価などのような疾患の発症、重症度、合併症の発症等の予測が可能となる。また、酸化ストレス関連の疾患が発症する前に、ミトコンドリアの機能異常が認められるような場合には、ミトコンドリア活性と相関を有する指標値がバイオマーカーとなり得るため、健康診断時などに当該指標値を決定することで、酸化ストレス関連の疾患の発症の予測が可能となる。更に、ミトコンドリアの活性を高めることを謳った食品や運動療法が提唱された場合には、そのような食品を被検者が摂取したり、そのような運動療法を被検者が実行したりした状態で指標値を決定することで、当該指標値を用いて食品や運動療法の効果(ミトコンドリアの活性が高まるという効果)を評価することも可能となる。 For example, when there is a correlation between oxidative stress-related diseases and mitochondrial dysfunction, the index values that correlate with mitochondrial activity can be used to control diabetes and develop diabetic nephropathy (DKG). It is possible to predict the onset, severity, complications, etc. of diseases such as risk evaluation and risk evaluation of patients who develop chronic obstructive pulmonary disease (COPD). In addition, if mitochondrial dysfunction is observed before the onset of oxidative stress-related diseases, an index value that correlates with mitochondrial activity can be a biomarker. The decision makes it possible to predict the onset of oxidative stress-related diseases. In addition, if foods or exercises claiming to increase mitochondrial activity were advocated, the subject ingested such foods or performed such exercises. By determining the index value based on the state, it is possible to evaluate the effect of food or exercise therapy (the effect of increasing mitochondrial activity) using the index value.
 このように、本発明に係る指標値決定システム及び指標値決定方法によれば、被検者から放出されるアセトンの濃度値を取得し、この取得したアセトンの濃度値を基にして、ミトコンドリア活性と相関を有する指標値を決定することができるため、細胞等が必要となる従来の測定方法と比較して、煩雑な測定作業を要することなく、決定した指標値からミトコンドリア活性を容易に把握することができる。 As described above, according to the index value determination system and the index value determination method according to the present invention, the concentration value of acetone released from the subject is acquired, and the mitochondrial activity is based on the acquired concentration value of acetone. Since it is possible to determine an index value that correlates with, the mitochondrial activity can be easily grasped from the determined index value without requiring complicated measurement work as compared with the conventional measurement method that requires cells or the like. be able to.
 また、本発明に係る指標値決定システムの更なる特徴構成は、前記濃度値取得手段において、前記アセトン発生種を摂取していない被検者から放出されるアセトンの基準濃度値を取得し、
 前記指標値決定手段において、前記アセトンの濃度値が前記基準濃度値から最大濃度値に達するまでの所定区間におけるアセトン濃度増加速度を前記指標値として決定する点にある。
 本発明に係る指標値決定方法の更なる特徴構成は、前記濃度値取得ステップにおいて、前記アセトン発生種を摂取していない被検者から放出されるアセトンの基準濃度値を取得し、
 前記指標値決定ステップにおいて、前記アセトンの濃度値が前記基準濃度値から最大濃度値に達するまでの所定区間におけるアセトン濃度増加速度を前記指標値として決定する点にある。
Further, a further characteristic configuration of the index value determination system according to the present invention is that the concentration value acquisition means acquires a reference concentration value of acetone released from a subject who has not ingested the acetone-producing species.
In the index value determining means, the rate of increase in acetone concentration in a predetermined section from the reference concentration value to the maximum concentration value of the acetone is determined as the index value.
A further characteristic configuration of the index value determining method according to the present invention is to acquire a reference concentration value of acetone released from a subject who has not ingested the acetone-generating species in the concentration value acquisition step.
In the index value determination step, the rate of increase in acetone concentration in a predetermined section from the reference concentration value to the maximum concentration value of the acetone concentration value is determined as the index value.
 上記各特徴構成では、アセトン濃度増加速度を指標値として決定するようにしている。一定量のアセトン発生種を被検者が摂取した場合、アセトン発生種の血中濃度の増加とともに、被検者から放出されるアセトンの濃度値も増加することになるが、ミトコンドリア活性が高いほど、アセト酢酸の処理される量が増加するため、アセト酢酸の分解によるアセトンの発生が抑えられる。つまり、ミトコンドリア活性が高いほど、アセトン濃度増加速度は低下する。したがって、アセトン濃度増加速度を指標値とすることで、ミトコンドリア活性を把握することができる。 In each of the above feature configurations, the rate of increase in acetone concentration is determined as an index value. When a subject ingests a certain amount of acetone-producing species, the concentration value of acetone released from the subject increases as the blood concentration of the acetone-generating species increases, but the higher the mitochondrial activity, the higher the concentration. Since the amount of acetoacetic acid processed increases, the generation of acetone due to the decomposition of acetoacetic acid is suppressed. That is, the higher the mitochondrial activity, the lower the rate of increase in acetone concentration. Therefore, the mitochondrial activity can be grasped by using the rate of increase in acetone concentration as an index value.
 また、本発明に係る指標値決定システムの更なる特徴構成は、前記指標値決定手段において、前記アセトンの濃度値が最大濃度値に達した後、一定時間、所定範囲内の濃度値を維持するようになる、前記アセトン発生種の最低摂取量を前記指標値として決定する点にある。
 本発明に係る指標値決定方法の更なる特徴構成は、前記指標値決定ステップにおいて、前記アセトンの濃度値が最大濃度値に達した後、一定時間、所定範囲内の濃度値を維持するようになる、前記アセトン発生種の最低摂取量を前記指標値として決定する点にある。
Further, a further characteristic configuration of the index value determining system according to the present invention is that the index value determining means maintains the concentration value within a predetermined range for a certain period of time after the concentration value of acetone reaches the maximum concentration value. The point is that the minimum intake of the acetone-generating species is determined as the index value.
A further characteristic configuration of the index value determining method according to the present invention is to maintain the concentration value within a predetermined range for a certain period of time after the concentration value of acetone reaches the maximum concentration value in the index value determining step. The point is that the minimum intake of the acetone-generating species is determined as the index value.
 上記各特徴構成では、アセトンの濃度値が最大濃度値に達した後、一定時間、所定範囲内の濃度値を維持するようになる、アセトン発生種の最低摂取量を前記指標値として決定するようにしている。本願発明者らの知見によれば、被検者が摂取したアセトン発生種の摂取量が、ミトコンドリアが処理できる量を超えていない場合には、アセトンの濃度値は最大値に達した後に低下していくのに対し、ミトコンドリアが処理できる量を超えている場合には、アセトンの濃度値は最大値に達した後、一定時間、所定範囲内の濃度値を維持するようになる。したがって、ミトコンドリア活性が高いほど、アセトンの濃度値が最大濃度値に達した後、一定時間、所定範囲内の濃度値を維持するようになる、アセトン発生種の最低摂取量が多くなる。よって、上記のようなアセトン発生種の最低摂取量を指標値とすることで、ミトコンドリア活性を把握することができる。 In each of the above characteristic configurations, after the concentration value of acetone reaches the maximum concentration value, the minimum intake amount of the acetone-generating species that maintains the concentration value within a predetermined range for a certain period of time is determined as the index value. I have to. According to the findings of the present inventors, if the intake of acetone-producing species ingested by the subject does not exceed the amount that mitochondria can process, the concentration value of acetone decreases after reaching the maximum value. On the other hand, when the amount of acetone exceeds the amount that can be processed by mitochondria, the concentration value of acetone reaches the maximum value and then maintains the concentration value within a predetermined range for a certain period of time. Therefore, the higher the mitochondrial activity, the higher the minimum intake of acetone-producing species, which keeps the concentration value within a predetermined range for a certain period of time after the concentration value of acetone reaches the maximum concentration value. Therefore, the mitochondrial activity can be grasped by using the minimum intake of the acetone-generating species as an index value as described above.
 また、本発明に係る指標値決定システムの更なる特徴構成は、前記アセトン発生種の中から選択される少なくとも一つを摂取した前記被検者は、前記アセトン発生種とともに、栄養分を摂取している点にある。
 本発明に係る指標値決定方法の更なる特徴構成は、前記アセトン発生種の中から選択される少なくとも一つを摂取した前記被検者は、前記アセトン発生種とともに、栄養分を摂取している点にある。
Further, a further characteristic configuration of the index value determination system according to the present invention is that the subject who ingests at least one selected from the acetone-producing species ingests nutrients together with the acetone-generating species. There is a point.
A further characteristic configuration of the index value determining method according to the present invention is that the subject who ingests at least one selected from the acetone-producing species ingests nutrients together with the acetone-producing species. It is in.
 本願発明者らが新たに見出した知見によれば、被検者がアセトン発生種とともに栄養分を摂取している場合、アセトン発生種のみを摂取している場合と比較して、取得するアセトン濃度値の信頼性が高まり、再現性良く測定を行うことができる。これは、以下の理由によると推察される。 According to the newly discovered findings by the inventors of the present application, the obtained acetone concentration value is obtained when the subject is ingesting nutrients together with the acetone-producing species, as compared with the case where the subject is ingesting only the acetone-producing species. The reliability of the device is improved, and the measurement can be performed with good reproducibility. This is presumed to be due to the following reasons.
 即ち、測定時に被検者が空腹状態である場合や、糖質の多い食事を摂ったことでインスリンが過剰に分泌されている状態である場合などにおいて、被検者が低血糖状態に陥っている場合がある。そして、被検者が低血糖状態に陥っていると、摂取したアセトン発生種がエネルギーの生成に利用され、エネルギーの生成に利用されるアセトン発生種の量が測定中に変動することで、アセトンの発生量もそれに応じて変動するため、取得されるアセトン濃度値は、エネルギーの生成量に応じて変動してしまうという事態が生じ得る。しかしながら、アセトン発生種とともに栄養分を摂取している場合には、栄養分の摂取によって血糖値が上がり、アセトン発生種を利用したエネルギーの生成が抑えられるため、エネルギーの生成に利用されるアセトン発生種の量が測定中に変動し難くなっている状態で、アセトン濃度値を取得できるためであると推察される。 That is, when the subject is hungry at the time of measurement, or when insulin is excessively secreted due to eating a high-sugar diet, the subject falls into a hypoglycemic state. May be present. When the subject is in a hypoglycemic state, the ingested acetone-generating species is used to generate energy, and the amount of acetone-generating species used to generate energy fluctuates during measurement, resulting in acetone. Since the amount of energy generated also fluctuates accordingly, the obtained acetone concentration value may fluctuate according to the amount of energy generated. However, when nutrients are ingested together with acetone-generating species, the blood glucose level rises due to the intake of nutrients, and the generation of energy using the acetone-generating species is suppressed. Therefore, the acetone-generating species used for energy generation It is presumed that this is because the acetone concentration value can be obtained in a state where the amount is less likely to fluctuate during measurement.
 上記各特徴構成によれば、被検者が、アセトン発生種とともに栄養分を摂取しているため、測定時に被検者が空腹であったり、インスリンが過剰に分泌されていたりすることで低血糖の状態であった場合でも、摂取したアセトン発生種を利用したエネルギーの生成を抑えることができ、エネルギーの生成に起因する測定中でのアセトン発生種の量の変動が抑えられた状態でのアセトン濃度値を取得できるため、取得するアセトン濃度値の信頼性が高まり、再現性良く測定を行うことができる。 According to each of the above characteristic configurations, since the subject is ingesting nutrients together with the acetone-producing species, the subject is hungry at the time of measurement, or insulin is excessively secreted, resulting in hypoglycemia. Even in the state, it is possible to suppress the generation of energy using the ingested acetone-generating species, and the acetone concentration in a state where the fluctuation in the amount of acetone-generating species during measurement due to the energy generation is suppressed. Since the value can be obtained, the reliability of the acquired acetone concentration value is improved, and the measurement can be performed with good reproducibility.
 また、本発明に係るミトコンドリア活性評価システムの特徴構成は、
 前記いずれかの指標値決定システムと、
 前記決定された指標値を基に、前記被検者のミトコンドリア活性を評価する活性評価手段とを備え、
 前記活性評価手段において、前記決定された指標値を同一被検者に関する過去の指標値と比較し、前記被検者のミトコンドリア活性を評価する点にある。
 また、上記ミトコンドリア活性評価システムを用いて、前記被検者のミトコンドリア活性を評価するミトコンドリア活性評価方法の特徴構成は、
 前記アセトン発生種の中から選択される少なくとも一つを摂取した前記被検者から放出される前記アセトンの濃度値を連続的又は断続的に取得する濃度値取得ステップと、
 少なくとも前記取得したアセトンの濃度値を用いて、前記被検者のミトコンドリア活性と相関を有する前記指標値を決定する指標値決定ステップと、
 前記決定された指標値を基に、前記被検者のミトコンドリア活性を評価する活性評価ステップとを実行し、
 前記活性評価ステップにおいて、前記決定された指標値を同一被検者に関する過去の指標値と比較し、前記被検者のミトコンドリア活性を評価する点にある。
 また、本発明に係るミトコンドリア活性評価方法の特徴構成は、
 上記いずれかの指標値決定方法により、前記指標値を決定した後に、
 前記決定した指標値を基に、前記被検者のミトコンドリア活性を評価する活性評価ステップを実行し、
 前記活性評価ステップにおいて、前記決定した指標値を同一被検者に関する過去の指標値と比較し、前記被検者のミトコンドリア活性を評価する点にある。
In addition, the characteristic configuration of the mitochondrial activity evaluation system according to the present invention is
With any of the above index value determination systems,
An activity evaluation means for evaluating the mitochondrial activity of the subject based on the determined index value is provided.
In the activity evaluation means, the determined index value is compared with the past index value for the same subject, and the mitochondrial activity of the subject is evaluated.
In addition, the characteristic configuration of the mitochondrial activity evaluation method for evaluating the mitochondrial activity of the subject using the mitochondrial activity evaluation system is as follows.
A concentration value acquisition step of continuously or intermittently acquiring the concentration value of the acetone released from the subject who ingested at least one selected from the acetone-generating species.
An index value determination step for determining the index value having a correlation with the mitochondrial activity of the subject using at least the obtained concentration value of acetone.
Based on the determined index value, an activity evaluation step for evaluating the mitochondrial activity of the subject is performed.
In the activity evaluation step, the determined index value is compared with the past index value for the same subject to evaluate the mitochondrial activity of the subject.
In addition, the characteristic configuration of the mitochondrial activity evaluation method according to the present invention is
After determining the index value by any of the above index value determination methods
Based on the determined index value, an activity evaluation step for evaluating the mitochondrial activity of the subject is executed.
In the activity evaluation step, the determined index value is compared with the past index value for the same subject to evaluate the mitochondrial activity of the subject.
 上記本発明に係るミトコンドリア活性評価システム及びミトコンドリア活性評価方法に係る特徴構成では、まず、アセトン発生種の中から選択される少なくとも一つを摂取した被検者から放出されるアセトンの濃度値を連続的又は断続的に取得する。ついで、少なくとも取得したアセトンの濃度値を用いて、被検者のミトコンドリア活性と相関を有する指標値を決定する。その後、この指標値を同一被検者に関する過去の指標値と比較し、被検者のミトコンドリア活性を評価する。このように、取得した指標値を同一被検者に関する過去の指標値と比較することによって、その被検者のミトコンドリア活性の変化、即ち、過去のミトコンドリア活性と比較して現在のミトコンドリア活性が高くなっているのか或いは低くなっているのかという評価を行うことができる。そして、ミトコンドリアの評価が可能となることで、生活習慣病予防群の検知や、老化指標の測定、一日に摂取可能なカロリーの推定、ミトコンドリア活性に影響を与える食物のスクリーニング及び食生活の検証、各種疾病とミトコンドリア活性の関係検証、長寿とミトコンドリア活性の関係検証、運動トレーニングの効果検証及び最適トレーニング量の設定、短期的なミトコンドリア活性の低下を基にした精神ストレスの確認、解糖系とTCAサイクルのバランス測定、ミトコンドリア病の状態把握などが可能となる。 In the feature configuration of the mitochondrial activity evaluation system and the mitochondrial activity evaluation method according to the present invention, first, the concentration value of acetone released from the subject who ingested at least one selected from the acetone-producing species is continuously calculated. Obtained objectively or intermittently. Then, at least the obtained concentration value of acetone is used to determine an index value that correlates with the mitochondrial activity of the subject. Then, this index value is compared with the past index value for the same subject to evaluate the mitochondrial activity of the subject. In this way, by comparing the acquired index value with the past index value for the same subject, the change in the mitochondrial activity of the subject, that is, the current mitochondrial activity is higher than that of the past mitochondrial activity. It is possible to evaluate whether it is low or low. By making it possible to evaluate mitochondria, it is possible to detect lifestyle disease prevention groups, measure aging indicators, estimate the calories that can be consumed in a day, screen foods that affect mitochondrial activity, and verify eating habits. , Verification of the relationship between various diseases and mitochondrial activity, Verification of the relationship between longevity and mitochondrial activity, verification of the effect of exercise training and setting of the optimum training amount, confirmation of mental stress based on short-term decrease in mitochondrial activity, and glycolytic system It is possible to measure the balance of the TCA cycle and grasp the state of mitochondrial disease.
 例えば、酸化ストレス関連の疾患とミトコンドリアの機能異常との間に相関があるような場合には、ミトコンドリアを評価することで、糖尿病のコントロールや糖尿病腎症(DKG)の発症リスクの評価や、慢性閉塞性肺疾患(COPD)へ移行する患者のリスク評価などのような疾患の発症、重症度、合併症の発症等の予測に有用な評価が可能となる。また、酸化ストレス関連の疾患が発症する前に、ミトコンドリアの機能異常が認められるような場合には、ミトコンドリアに関する評価がバイオマーカーとなり得るため、健康診断時などにミトコンドリアの活性を評価することで、酸化ストレス関連の疾患の発症を予測できる。更に、ミトコンドリアの活性を高めることを謳った食品や運動療法が提唱された場合には、そのような食品を摂取したり、そのような運動療法を実行したりした状態の被検者についてミトコンドリア活性を評価することで、食品や運動療法の効果(ミトコンドリアの活性が高まるという効果)を評価することも可能となる。 For example, when there is a correlation between oxidative stress-related diseases and mitochondrial dysfunction, evaluation of mitochondria can be used to control diabetes, evaluate the risk of developing diabetic nephropathy (DKG), and chronically. It enables useful evaluation for predicting the onset, severity, complications, etc. of diseases such as risk evaluation of patients who develop obstructive pulmonary disease (COPD). In addition, if mitochondrial dysfunction is observed before the onset of oxidative stress-related diseases, evaluation of mitochondria can be a biomarker. The onset of oxidative stress-related diseases can be predicted. In addition, if foods or exercises that claim to increase mitochondrial activity are advocated, mitochondrial activity in subjects who have ingested such foods or performed such exercises. By evaluating, it is also possible to evaluate the effect of food and exercise therapy (the effect of increasing mitochondrial activity).
本実施形態に係る指標値決定装置及びミトコンドリア活性評価装置の概略構成を示したブロック図である。It is a block diagram which showed the schematic structure of the index value determination device and the mitochondrial activity evaluation device which concerns on this embodiment. 本実施形態に係る指標値決定方法及びミトコンドリア活性評価方法を示すフローチャートである。It is a flowchart which shows the index value determination method and mitochondria activity evaluation method which concerns on this Embodiment. アセトン発生種を摂取してからの経過時間と血中3HB濃度の増加量及びアセトン濃度の増加量との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after ingesting an acetone-producing species, the amount of increase in blood 3HB concentration, and the amount of increase in acetone concentration. アセトン発生種を摂取してからの経過時間と血中3HB濃度の増加量及びアセトン濃度の増加量との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after ingesting an acetone-producing species, the amount of increase in blood 3HB concentration, and the amount of increase in acetone concentration. アセトン発生種を摂取してからの経過時間と血中3HB濃度の増加量及びアセトン濃度の増加量との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after ingesting an acetone-producing species, the amount of increase in blood 3HB concentration, and the amount of increase in acetone concentration. アセトン発生種を摂取してからの経過時間と血中3HB濃度の増加量及びアセトン濃度の増加量との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after ingesting an acetone-producing species, the amount of increase in blood 3HB concentration, and the amount of increase in acetone concentration. アセトン発生種を摂取してからの経過時間とアセトン濃度の変化量との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after ingesting an acetone-generating species, and the amount of change of an acetone concentration. アセトン発生種及び砂糖を摂取してからの経過時間とアセトン濃度の変化量との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after ingestion of an acetone generating species and sugar, and the amount of change of an acetone concentration. アセトン発生種を摂取してからの経過時間とアセトン濃度との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after ingesting an acetone-generating species, and the acetone concentration. 図9中の各折れ線グラフの下の面積を示すグラフである。It is a graph which shows the area under each line graph in FIG. アセトン発生種を摂取してからの経過時間とアセトン濃度との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after ingesting an acetone-generating species, and the acetone concentration. 図11中の各折れ線グラフの下の面積を示すグラフである。It is a graph which shows the area under each line graph in FIG.
〔第1実施形態〕
 以下、図面を参照して第1実施形態に係る指標値決定装置及びミトコンドリア活性評価装置について説明する。
[First Embodiment]
Hereinafter, the index value determining device and the mitochondrial activity evaluation device according to the first embodiment will be described with reference to the drawings.
 図1に示すように、本実施形態に係るミトコンドリア活性評価装置1は、アセトンの濃度値を取得する濃度値取得部2(濃度値取得手段)と、濃度値取得部2が取得した濃度値を用いて、被検者のミトコンドリア活性と相関を有する指標値を決定して出力する指標値出力部3(指標値決定手段)と、指標値出力部3から出力された指標値を基に、被検者のミトコンドリア活性を評価する活性評価部5(活性評価手段)と、指標値を記憶する指標値記憶部6とを備えており、濃度値取得部2と指標値出力部3とが指標値決定装置4である。 As shown in FIG. 1, the mitochondrial activity evaluation device 1 according to the present embodiment acquires a concentration value acquisition unit 2 (concentration value acquisition means) for acquiring an acetone concentration value and a concentration value acquired by the concentration value acquisition unit 2. Based on the index value output unit 3 (index value determination means) that determines and outputs the index value that correlates with the mitochondrial activity of the subject and the index value output from the index value output unit 3, the subject is subject to use. It includes an activity evaluation unit 5 (activity evaluation means) for evaluating the mitochondrial activity of the examiner and an index value storage unit 6 for storing the index value, and the concentration value acquisition unit 2 and the index value output unit 3 are index values. The determination device 4.
 濃度値取得部2は、被検者の呼気に含まれるアセトンを検出する呼気センサー10からアセトンの濃度値を取得し、取得した濃度値を指標値出力部3に送信する。尚、呼気センサー10から検出結果は、無線通信又は有線通信によって濃度値取得部2に送信される。 The concentration value acquisition unit 2 acquires the concentration value of acetone from the exhalation sensor 10 that detects acetone contained in the exhaled breath of the subject, and transmits the acquired concentration value to the index value output unit 3. The detection result from the exhaled breath sensor 10 is transmitted to the concentration value acquisition unit 2 by wireless communication or wired communication.
 指標値出力部3は、指標値出力部3から受信した濃度値を基に、指標値としてのアセトン濃度増加速度を決定して、活性評価部5又は適宜設けられた表示装置11に送信する。具体的に、本実施形態においては、最終的に体内で分解されてアセトンを発生するアセトン発生種たる3-ヒドロキシ酪酸、3-ヒドロキシ酪酸塩、3-ヒドロキシ酪酸エステル及びアセト酢酸の中から選択される少なくとも一つを摂取した状態の被検者の呼気に含まれるアセトンの濃度値と、アセトン発生種を摂取していない状態の被検者の呼気に含まれるアセトンの濃度値(基準濃度値)とを基にして、アセトンの濃度値が基準濃度値から最大濃度値に達するまでの所定区間におけるアセトン濃度増加速度を指標値として決定する。尚、アセトン濃度増加速度を指標値とする場合、ミトコンドリア活性が高いほどアセトン濃度増加速度が低下する関係にある。尚、表示装置11は、ミトコンドリア活性評価装置1又は指標値決定装置4に組み込まれていても良いし、これらの装置の外部に別途設けられていても良い。 The index value output unit 3 determines the rate of increase in acetone concentration as an index value based on the concentration value received from the index value output unit 3, and transmits it to the activity evaluation unit 5 or a display device 11 provided as appropriate. Specifically, in the present embodiment, it is selected from 3-hydroxybutyric acid, 3-hydroxybutyrate, 3-hydroxybutyric acid ester, and acetoacetic acid, which are acetone-generating species that are finally decomposed in the body to generate acetone. The concentration value of acetone contained in the exhaled breath of the subject who ingested at least one of them, and the concentration value of acetone contained in the exhaled breath of the subject who did not ingest the species that generated acetone (reference concentration value). Based on the above, the rate of increase in acetone concentration in a predetermined section from the reference concentration value to the maximum concentration value of acetone is determined as an index value. When the rate of increase in acetone concentration is used as an index value, the higher the mitochondrial activity, the lower the rate of increase in acetone concentration. The display device 11 may be incorporated in the mitochondrial activity evaluation device 1 or the index value determination device 4, or may be separately provided outside these devices.
 活性評価部5は、指標値出力部3から受信したアセトン濃度増加速度が所定速度以上であるか否かを判断し、所定速度以上でない場合にはその旨を表示させるための信号を表示装置11に送信する。一方、アセトン濃度増加速度が所定速度以上である場合には、受信したアセトン濃度増加速度を指標値記憶部6に送信して記憶させるとともに、指標値記憶部6に同一被検者の過去のアセトン濃度増加速度が記憶されているか否かを確認し、記憶されている場合には、同一被検者に関する、受信したアセトン濃度増加速度と過去のアセトン濃度増加速度とを比較して、ミトコンドリア活性が低下しているのか或いは増加しているのかを評価して、その結果を表示装置11に送信する。 The activity evaluation unit 5 determines whether or not the rate of increase in acetone concentration received from the index value output unit 3 is equal to or higher than the predetermined speed, and if it is not higher than the predetermined speed, the activity evaluation unit 5 displays a signal for displaying that fact. Send to. On the other hand, when the rate of increase in acetone concentration is equal to or higher than a predetermined rate, the received rate of increase in acetone concentration is transmitted to the index value storage unit 6 for storage, and the index value storage unit 6 stores the past acetone of the same subject. Check whether the concentration increase rate is memorized, and if it is memorized, compare the received acetone concentration increase rate with the past acetone concentration increase rate for the same subject, and the mitochondrial activity is increased. It evaluates whether it is decreasing or increasing, and transmits the result to the display device 11.
 次に、図2を参照しつつ、指標値決定方法及びミトコンドリア活性評価方法を説明する。まず、工程#1において基準濃度値の測定を行う。具体的には、アセトン発生種を摂取していない状態の被検者の呼気に含まれるアセトンを呼気センサー10を用いて検出し、アセトンの濃度値(基準濃度値)を取得する。尚、上記ミトコンドリア活性評価装置1を用いた場合には、呼気センサー10による検出結果が濃度値取得部2に送信されてアセトンの基準濃度値が取得され、この基準濃度値が指標値出力部3に送信される。 Next, the index value determination method and the mitochondrial activity evaluation method will be described with reference to FIG. First, the reference concentration value is measured in step # 1. Specifically, the breath sensor 10 is used to detect acetone contained in the breath of a subject who has not ingested the acetone-generating species, and obtains an acetone concentration value (reference concentration value). When the mitochondrial activity evaluation device 1 is used, the detection result by the exhaled breath sensor 10 is transmitted to the concentration value acquisition unit 2 to acquire the reference concentration value of acetone, and this reference concentration value is the index value output unit 3. Will be sent to.
 ついで、工程#2において被検者がアセトン発生種を摂取する。尚、被検者が摂取するアセトン発生種の量は、健康状態やスポーツ能力などに応じて被検者ごとに決めた適切な量とし、後述する工程#6においてアセトン濃度増加速度が所定速度以上であると判断された場合、同一の被検者については、今後行う指標値決定方法及びミトコンドリア活性評価方法において、同量のアセトン発生種を摂取して行う。尚、アセトン発生種の摂取量は、0.5g~50gが好ましく、1g~25gがより好ましく、3g~10gが最も好ましい。 Then, in step # 2, the subject ingests the acetone-producing species. The amount of acetone-generating species ingested by the subject shall be an appropriate amount determined for each subject according to the health condition, sports ability, etc., and the rate of increase in acetone concentration shall be equal to or higher than the predetermined rate in step # 6 described later. In the case of the same subject, the same amount of acetone-producing species is ingested in the index value determination method and the mitochondrial activity evaluation method to be performed in the future. The intake of the acetone-generating species is preferably 0.5 g to 50 g, more preferably 1 g to 25 g, and most preferably 3 g to 10 g.
 その後、工程#3において一定時間ごとのアセトンの濃度値を測定する(濃度値取得ステップ)。即ち、アセトン発生種を摂取した状態の被検者の呼気に含まれるアセトンを、一定時間ごとに呼気センサー10を用いて検出し、アセトンの濃度値を取得する。尚、上記ミトコンドリア活性評価装置1を用いた場合には、呼気センサー10による検出結果が濃度値取得部2に送信されてアセトンの濃度値が取得され、この濃度値が指標値出力部3に送信される。 After that, in step # 3, the concentration value of acetone is measured at regular intervals (concentration value acquisition step). That is, the acetone contained in the exhaled breath of the subject in the state of ingesting the acetone-generating species is detected by using the exhaled breath sensor 10 at regular intervals, and the concentration value of acetone is acquired. When the mitochondrial activity evaluation device 1 is used, the detection result by the exhaled breath sensor 10 is transmitted to the concentration value acquisition unit 2 to acquire the concentration value of acetone, and this concentration value is transmitted to the index value output unit 3. Will be done.
 次に、工程#4において、アセトンの最大濃度値を取得したか否かを判断し、最大濃度値を取得している場合には工程#5に移行し、最大濃度値を取得していない場合には工程#3に戻る。具体的に、取得した濃度値がこの濃度値を測定したタイミングより一つ前のタイミングで測定して取得した濃度値よりも高い場合には最大濃度値を取得していないと判断し、低い場合には最大濃度値を取得したと判断する。ミトコンドリア活性評価装置1を用いる場合、指標値出力部3において、アセトンの最大濃度値が取得されたか否かが判断される。 Next, in step # 4, it is determined whether or not the maximum concentration value of acetone has been acquired, and if the maximum concentration value has been acquired, the process proceeds to step # 5, and if the maximum concentration value has not been acquired. Return to step # 3. Specifically, if the acquired concentration value is higher than the concentration value measured and acquired at the timing immediately before the measurement of this concentration value, it is judged that the maximum concentration value has not been acquired, and if it is lower. It is judged that the maximum concentration value has been obtained. When the mitochondrial activity evaluation device 1 is used, the index value output unit 3 determines whether or not the maximum concentration value of acetone has been acquired.
 工程#5として、指標値としてのアセトン濃度増加速度を決定する(指標値決定ステップ)。具体的には、アセトンの濃度値が、基準濃度値から最大濃度値に達するまでの間における所定のタイミングでの濃度値及び経過時間と、基準濃度値とを基に、アセトンの濃度値が基準濃度値から所定のタイミングでの濃度値に達するまでのアセトン濃度増加速度を指標値として決定する。ミトコンドリア活性評価装置1を用いた場合には、指標値出力部3においてアセトン濃度増加速度が算出され、当該アセトン濃度増加速度が指標値として決定され、この決定されたアセトン濃度増加速度が活性評価部5に送信されたり、表示装置11に送信されたりする。上記所定のタイミングとは、例えば、アセトン濃度増加速度が一定になったタイミングであり、ミトコンドリア活性評価装置1を用いた場合については、アセトン濃度増加速度が一定になったと、測定データを基に指標値出力部3が判断したタイミングである。尚、指標値としてのアセトン濃度増加速度は、基準濃度値及び最大濃度値と、基準濃度値から最大濃度値に達するまでに要した時間とを基に算出したものであっても良い。 As step # 5, the rate of increase in acetone concentration as an index value is determined (index value determination step). Specifically, the concentration value of acetone is used as a reference based on the concentration value and elapsed time at a predetermined timing from the reference concentration value to the maximum concentration value and the reference concentration value. The rate of increase in acetone concentration from the concentration value to the concentration value at a predetermined timing is determined as an index value. When the mitochondrial activity evaluation device 1 is used, the index value output unit 3 calculates the acetone concentration increase rate, the acetone concentration increase rate is determined as an index value, and the determined acetone concentration increase rate is the activity evaluation unit. It is transmitted to 5 or is transmitted to the display device 11. The predetermined timing is, for example, the timing at which the rate of increase in acetone concentration becomes constant, and when the mitochondrial activity evaluation device 1 is used, it is an index based on the measurement data that the rate of increase in acetone concentration becomes constant. This is the timing determined by the value output unit 3. The rate of increase in acetone concentration as an index value may be calculated based on the reference concentration value and the maximum concentration value, and the time required to reach the maximum concentration value from the reference concentration value.
 これら工程#1から工程#5は指標値決定方法に相当するものであり、上記のようにして工程#1から工程#5までを行うことによって、ミトコンドリア活性と相関を有する指標値としてのアセトン濃度増加速度を決定することができるため、細胞等を用いることなく、この指標値から被検者のミトコンドリア活性を容易に把握することができるようになる。そして、このように決定された指標値は、例えば、予めアセトン発生種の摂取量や被検者の性別、年齢、生活習慣、運動の有無、疾病の有無などと指標値との関係を規定したマップを作成しておくことで、生活習慣病予防群の検知や、老化指標の測定、一日に摂取可能なカロリーの推定、ミトコンドリア活性に影響を与える食物のスクリーニング及び食生活の検証、各種疾病とミトコンドリア活性の関係検証、長寿とミトコンドリア活性の関係検証、運動トレーニングの効果検証及び最適トレーニング量の設定、短期的なミトコンドリア活性の低下を基にした精神ストレスの確認、解糖系とTCAサイクルのバランス測定、ミトコンドリア病の状態把握などにも用いることができる。 These steps # 1 to # 5 correspond to the index value determination method, and by performing steps # 1 to # 5 as described above, the acetone concentration as an index value having a correlation with mitochondrial activity. Since the rate of increase can be determined, the mitochondrial activity of the subject can be easily grasped from this index value without using cells or the like. Then, the index value determined in this way defines, for example, the relationship between the intake amount of the acetone-producing species, the sex of the subject, the age, the lifestyle, the presence or absence of exercise, the presence or absence of illness, and the index value in advance. By creating a map, you can detect lifestyle-related disease prevention groups, measure aging indicators, estimate the calories you can consume in a day, screen foods that affect mitochondrial activity, verify your eating habits, and check various diseases. Verification of the relationship between mitochondrial activity and longevity, verification of the effect of exercise training and setting of optimal training amount, confirmation of mental stress based on short-term decrease in mitochondrial activity, glycolytic system and TCA cycle It can also be used for balance measurement and grasping the state of mitochondrial diseases.
 工程#6では、決定したアセトン濃度増加速度が所定速度以上であるか否かを判断し、所定速度以上であると判断した場合には工程#7に移行する。一方、所定速度未満であると判断した場合には、工程#2に戻ってアセトン発生種の摂取量を増やして再度工程#3に移行する。これは、被検者が摂取したアセトン発生種の摂取量がミトコンドリアが十分に処理できる量であったために、アセトン濃度増加速度が被検者のミトコンドリア活性と十分に相関を有していない可能性が高いためである。 In step # 6, it is determined whether or not the determined rate of increase in acetone concentration is equal to or higher than the predetermined rate, and if it is determined that the rate is equal to or higher than the predetermined rate, the process proceeds to step # 7. On the other hand, if it is determined that the speed is lower than the predetermined speed, the process returns to step # 2, the intake of the acetone-producing species is increased, and the process proceeds to step # 3 again. It is possible that the rate of increase in acetone concentration did not sufficiently correlate with the mitochondrial activity of the subject because the intake of the acetone-producing species ingested by the subject was sufficient for the mitochondria to process. Is high.
 工程#7では、同一被検者に関する過去のアセトン濃度増加速度が存在するか否かを判断し、存在する場合には工程#8に移行し、存在しない場合には終了する。そして、工程#8では、今回決定したアセトン濃度増加速度と、同一被検者に関する過去のアセトン濃度増加速度とを比較して、被検者のミトコンドリア活性が過去と比較して高くなっているのか或いは低くなっているのかを評価する(活性評価ステップ)。 In step # 7, it is determined whether or not there is a past rate of increase in acetone concentration for the same subject, and if it exists, the process proceeds to step # 8, and if it does not exist, the process ends. Then, in step # 8, the rate of increase in acetone concentration determined this time is compared with the rate of increase in acetone concentration in the past for the same subject, and is the mitochondrial activity of the subject higher than in the past? Alternatively, it is evaluated whether it is low (activity evaluation step).
 これら工程#6から工程#8について、ミトコンドリア活性評価装置1を用いた場合には、活性評価部5において、決定したアセトン濃度増加速度を指標値記憶部6に記憶させるとともに、当該アセトン濃度増加速度が所定速度以上であるか否かが判断され(工程#6)、所定速度以上であると判断された場合には、指標値記憶部6を参照して、同一被検者に関する過去のアセトン濃度増加速度が記憶されているかが判断され(工程#7)、記憶されている場合には、当該アセトン濃度増加速度と、同一被検者に関する過去のアセトン濃度増加速度とを比較して、被検者のミトコンドリア活性が過去と比較して高くなっているのか或いは低くなっているのかを評価して、その結果が表示装置11に送信される。一方、同一被検者に関する過去のアセトン濃度増加速度が記憶されていないと判断された場合は終了する。 When the mitochondrial activity evaluation device 1 is used for these steps # 6 to # 8, the activity evaluation unit 5 stores the determined acetone concentration increase rate in the index value storage unit 6, and the acetone concentration increase rate. Is determined to be above the predetermined speed (step # 6), and if it is determined to be above the predetermined speed, the past acetone concentration for the same subject is referred to with reference to the index value storage unit 6. It is determined whether the rate of increase is memorized (step # 7), and if it is memorized, the rate of increase in the acetone concentration is compared with the rate of increase in the past acetone concentration for the same subject, and the test is performed. It is evaluated whether the mitochondrial activity of the person is higher or lower than in the past, and the result is transmitted to the display device 11. On the other hand, if it is determined that the past rate of increase in acetone concentration for the same subject is not memorized, the process ends.
 このようにして、アセトン濃度増加速度をミトコンドリア活性の指標値として用いることで、同一被検者のミトコンドリア活性が過去の結果と比較して高くなっているのか低くなっているのかを評価することができ、例えば、定期健康診断等において各被検者ごとにアセトン濃度増加速度を指標値として決定するようにすれば、過去のアセトン濃度増加速度と比較してミトコンドリア活性がどのように変化したかを被検者が知ることができる。 In this way, by using the rate of increase in acetone concentration as an index value of mitochondrial activity, it is possible to evaluate whether the mitochondrial activity of the same subject is higher or lower than the past results. For example, if the rate of increase in acetone concentration is determined as an index value for each subject in regular health examinations, how the mitochondrial activity has changed compared to the rate of increase in acetone concentration in the past can be seen. The subject can know.
 以上のように、本実施形態に係る指標値決定方法によれば、被検者のミトコンドリア活性と相関を有する指標値たるアセトン濃度増加速度を決定することができ、このアセトン濃度増加速度を用いてミトコンドリア活性に関する種々の検査や検証などを行うことができる。また、指標値たるアセトン濃度増加速度と同一被検者の過去のアセトン濃度増加速度とを比較することによって、ミトコンドリア活性がどのように変化したかを被検者に知らせることができ、生活習慣病の予防や老化予防に取り組む契機を与えることができる。 As described above, according to the index value determining method according to the present embodiment, the rate of increase in acetone concentration, which is an index value having a correlation with the mitochondrial activity of the subject, can be determined, and the rate of increase in acetone concentration can be used. Various tests and verifications related to mitochondrial activity can be performed. In addition, by comparing the rate of increase in acetone concentration, which is an index value, with the rate of increase in acetone concentration in the past of the same subject, it is possible to inform the subject of how the mitochondrial activity has changed, and it is possible to inform the subject of lifestyle-related diseases. It can give an opportunity to work on prevention of aging and prevention of aging.
 以下、具体的な実験例1から実験例4について説明する。 Hereinafter, specific Experimental Examples 1 to 4 will be described.
(実験例1)
 3-ヒドロキシ酪酸塩(3HB塩)を1g(10%3HBをNa:Ca:Mg=70:15:15で中和したものを10ml)摂取した場合について、0分(摂取前)、30分、60分、90分、120分後の、血中3HB濃度の増加量(0分に対する増加量)及び呼気中のアセトン濃度値の増加量(0分に対する増加量)の関係を図3に示す。呼気中のアセトン濃度値は、各時間ごとに呼気1Lを捕集袋に採取し、ガスクロマトグラフで分析した。被検者A(52歳男性)のミトコンドリア活性に対し、摂取した3HB塩の量が少ないため、血中3HB濃度の増加量は30分後に0.2mMまで上昇した後に0まで低下し、呼気中のアセトン濃度の増加量も、60分後に0.1ppmと低い値で最大値となった後、すぐに減少した。アセトンの濃度値の増加量の変化パターンが増加量が最大となった後にすぐに減少するパターンとなった場合、3HB塩の摂取量を増やして再測定を行う必要があると判断するものとする。
 尚、0分から60分までの時間当たりのアセトン濃度増加速度(0.096ppm/hr)は、後述する実験例2から実験例4におけるアセトン濃度増加速度より低い値となるため、このアセトン濃度増加速度が所定速度(たとえば0.1ppm/hr)より遅い場合に、摂取する3HB塩の量を増やして再測定を行う必要があると判断することもできる。
 また、血中3HB濃度の増加量のピークより、呼気中のアセトン濃度の増加量のピークの方が遅れて現れるのは、ミトコンドリアで発生したアセトンが体液に移行し、更に呼気から放出するまでに時間を要するためだと考えられる。
 また、被検者Aの体重(64kg)から推定される体内水分量(64kg×70%=45L)と3HB塩の摂取量(1g)から、摂取した3HB塩の全量が体液に移行したときの血中3HB濃度は1g/104(3HB分子量)/45L=0.21mMであり、測定値である0.2mMとほぼ一致することから、摂取した3HB塩はほぼ全量が体液に移行し、本測定に利用されたと推察される。
(Experimental Example 1)
When 1 g of 3-hydroxybutyrate (3HB salt) (10 ml of 10% 3HB neutralized with Na: Ca: Mg = 70: 15: 15) was ingested, 0 minutes (before ingestion), 30 minutes, FIG. 3 shows the relationship between the increase in blood 3HB concentration (increase with respect to 0 minutes) and the increase in acetone concentration in exhaled breath (increase with respect to 0 minutes) after 60 minutes, 90 minutes, and 120 minutes. The acetone concentration value in the exhaled breath was analyzed by gas chromatography after collecting 1 L of the exhaled breath in a collection bag every hour. Since the amount of 3HB salt ingested was small compared to the mitochondrial activity of subject A (52-year-old man), the increase in blood 3HB concentration increased to 0.2 mM after 30 minutes and then decreased to 0 during exhalation. The amount of increase in the acetone concentration in the above also decreased immediately after reaching the maximum value at a low value of 0.1 ppm after 60 minutes. If the change pattern of the increase in the concentration value of acetone becomes a pattern that decreases immediately after the increase is maximized, it is judged that it is necessary to increase the intake of 3HB salt and perform remeasurement. ..
Since the rate of increase in acetone concentration per hour from 0 minutes to 60 minutes (0.096 ppm / hr) is lower than the rate of increase in acetone concentration in Experimental Examples 2 to 4 described later, this rate of increase in acetone concentration. It can also be determined that if is slower than the predetermined rate (eg 0.1 ppm / hr), it is necessary to increase the amount of 3HB salt ingested and perform remeasurement.
In addition, the peak of the increase in the concentration of acetone in the exhaled breath appears later than the peak of the increase in the concentration of 3HB in the blood until the acetone generated in the mitochondria is transferred to the body fluid and further released from the exhaled breath. It is thought that this is because it takes time.
In addition, when the total amount of 3HB salt ingested was transferred to body fluid from the amount of water in the body (64 kg × 70% = 45 L) estimated from the body weight (64 kg) of subject A and the intake of 3HB salt (1 g). The blood 3HB concentration is 1 g / 104 (3 HB molecular weight) / 45 L = 0.21 mM, which is almost the same as the measured value of 0.2 mM. It is presumed that it was used for.
(実験例2)
 3HB塩を3g(10%3HBをNa:Ca:Mg=70:15:15で中和したものを30ml)摂取した場合について、0分(摂取前)、30分、60分、90分、120分後の、血中3HB濃度の増加量(0分に対する増加量)と、呼気中のアセトン濃度値の増加量(0分に対する増加量)の関係を図4に示す。呼気中のアセトン濃度値は、各時間に呼気1Lを捕集袋に採取し、ガスクロマトグラフで分析した。被検者A(52歳男性)のミトコンドリア活性に対し、摂取した3HB塩の量が十分に多いため、血中3HB濃度の増加量は60分後に0.4mMまで上昇した後、ミトコンドリアで利用され徐々に低下した。呼気中のアセトン濃度の増加量は、60分後に0.9ppmまで上昇した後に、所定範囲内を維持しながらなだらかに低下した。アセトンの濃度値の増加量の変化パターンが、増加量が最大となった後に、所定範囲内を維持するパターンとなった場合、正常に測定できており、再測定を行う必要がないと判断するものとする。
 この場合のミトコンドリアの活性と相関を有する指標値としては、アセトンの濃度値の増加量が最大に達した後、所定範囲内を維持するようになる摂取量(本実験例では3g)としても良いし、0分から60分までの時間当たりのアセトン濃度増加速度(0.798ppm/hr)としてもよい。尚、後者の方が簡便詳細な指標である。
(Experimental Example 2)
When 3 g of 3HB salt (30 ml of 10% 3HB neutralized with Na: Ca: Mg = 70: 15: 15) was ingested, 0 minutes (before ingestion), 30 minutes, 60 minutes, 90 minutes, 120 minutes. FIG. 4 shows the relationship between the increase in blood 3HB concentration (increase with respect to 0 minutes) and the increase in acetone concentration in exhaled breath (increase with respect to 0 minutes) after minutes. The acetone concentration value in the exhaled breath was analyzed by gas chromatography after collecting 1 L of the exhaled breath in a collection bag at each time. Since the amount of 3HB salt ingested was sufficiently large for the mitochondrial activity of subject A (52-year-old man), the increase in blood 3HB concentration increased to 0.4 mM after 60 minutes and was then used in mitochondria. It gradually decreased. The amount of increase in the concentration of acetone in the exhaled breath increased to 0.9 ppm after 60 minutes, and then gradually decreased while maintaining the predetermined range. If the change pattern of the amount of increase in the concentration value of acetone becomes a pattern that maintains within the predetermined range after the amount of increase is maximized, it is judged that the measurement is normal and there is no need to perform remeasurement. It shall be.
In this case, the index value having a correlation with the mitochondrial activity may be an intake amount (3 g in this experimental example) that keeps within a predetermined range after the increase amount of the acetone concentration value reaches the maximum. However, the rate of increase in acetone concentration per hour from 0 minutes to 60 minutes may be set (0.798 ppm / hr). The latter is a simpler and more detailed index.
(実験例3)
 3HB塩を5g(10%3HBをNa:Ca:Mg=70:15:15で中和したものを50ml)摂取した場合について、0分(摂取前)、30分、60分、90分、120分後の、血中3HB濃度の増加量(0分に対する増加量)と、呼気中のアセトン濃度の増加量(0分に対する増加量)の関係を図5に示す。呼気中のアセトン濃度値は、各時間ごとに呼気1Lを捕集袋に採取し、ガスクロマトグラフで分析した。被検者A(52歳男性)のミトコンドリア活性に対し、摂取した3HB塩の量が十分に多いため、血中3HB濃度の増加量は60分後に0.7mMまで上昇した後、ミトコンドリアで利用され徐々に低下した。3HB塩の摂取量が実験例1の1gの5倍であるにもかかわらず、最大3HB濃度の増加量が3.5倍となっているのは、摂取した3HBの全てを消費することはできないためであると考えられる。呼気中のアセトン濃度の増加量は、90分後に1.1ppmまで上昇した後になだらかに低下した。アセトンの濃度値の増加量の変化パターンが、増加量が最大となった後に、所定範囲内を維持するパターンとなっているため、上記実験例2の場合と同様に、正常に測定できており、再測定を行う必要がないと判断する。
 指標値としての0分から60分までの時間当たりのアセトン濃度増加速度(0.756ppm/hr)は、実験例2とほぼ同じ値となった。このことから、被検者が摂取する3HB塩の量は、アセトンの濃度値の増加量のパターンが、増加量が最大となった後に、所定範囲内を維持するパターンとなるような摂取量よりも多くとも特段の問題はない。また、測定をアセトンを検出できるセンサー素子などを用いて連続して行うことにより、指標値としてのアセトン濃度増加速度をより正確に算出することができる。
(Experimental Example 3)
When 5 g of 3HB salt (50 ml of 10% 3HB neutralized with Na: Ca: Mg = 70: 15: 15) was ingested, 0 minutes (before ingestion), 30 minutes, 60 minutes, 90 minutes, 120 minutes. FIG. 5 shows the relationship between the increase in blood 3HB concentration (increase with respect to 0 minutes) and the increase in acetone concentration in exhaled breath (increase with respect to 0 minutes) after minutes. The acetone concentration value in the exhaled breath was analyzed by gas chromatography after collecting 1 L of the exhaled breath in a collection bag every hour. Since the amount of 3HB salt ingested was sufficiently large for the mitochondrial activity of subject A (52-year-old man), the increase in blood 3HB concentration increased to 0.7 mM after 60 minutes and was then used in mitochondria. It gradually decreased. Although the intake of 3HB salt is 5 times that of 1 g of Experimental Example 1, the increase in the maximum 3HB concentration is 3.5 times, which means that it is not possible to consume all of the ingested 3HB. It is thought that this is the reason. The amount of increase in acetone concentration in exhaled breath increased to 1.1 ppm after 90 minutes and then gradually decreased. Since the pattern of change in the amount of increase in the concentration value of acetone is a pattern in which the amount of increase is maintained within a predetermined range after the amount of increase is maximized, the measurement can be performed normally as in the case of Experimental Example 2 above. , Judge that there is no need to remeasure.
The rate of increase in acetone concentration (0.756 ppm / hr) per hour from 0 minutes to 60 minutes as an index value was almost the same value as in Experimental Example 2. From this, the amount of 3HB salt ingested by the subject is higher than the amount of intake such that the pattern of increase in the concentration value of acetone becomes a pattern of maintaining within a predetermined range after the increase is maximized. There is no particular problem at most. Further, by continuously performing the measurement using a sensor element or the like capable of detecting acetone, the rate of increase in acetone concentration as an index value can be calculated more accurately.
(実験例4)
 3HB塩を3g(10%3HBをNa:Ca:Mg=70:15:15で中和したものを30ml)摂取した場合について、0分(摂取前)、30分、60分、90分後の、血中3HB濃度の増加量(0分に対する増加量)と、呼気中のアセトン濃度の増加量(0分に対する増加量)の関係を図6に示す。呼気中のアセトン濃度は、各時間ごとに呼気1Lを捕集袋に採取し、ガスクロマトグラフで分析した。被検者B(59歳男性)のミトコンドリア活性に対し、摂取した3HB量が十分に多いため、血中3HB濃度の増加量は60分後に0.7mMまで上昇したのちミトコンドリアで利用され徐々に低下した。呼気中のアセトン濃度の増加量は、30分後に0.8ppmまで上昇したのちなだらかに低下した。アセトンの濃度の増加量のパターンがこのようになった場合、測定は成功と判断する。ミトコンドリアの活性としての0分から30分までの時間当たりのアセトン濃度増加速度(1.602ppm/hr)は、実験例2及び3の被検者Aのほぼ2倍の値となった。被検者Bのほうが高齢でありミトコンドリア活性が低いため、ミトコンドリアによるアセト酢酸の利用速度が遅く、より多くのアセトンが発生したためアセトン濃度速度が速くなったと考えられる。
(Experimental Example 4)
When 3 g of 3HB salt (30 ml of 10% 3HB neutralized with Na: Ca: Mg = 70: 15: 15) was ingested, 0 minutes (before ingestion), 30 minutes, 60 minutes, and 90 minutes later. The relationship between the increase in blood 3HB concentration (increase with respect to 0 minutes) and the increase in acetone concentration in exhaled breath (increase with respect to 0 minutes) is shown in FIG. The concentration of acetone in the exhaled breath was analyzed by gas chromatography after collecting 1 L of exhaled breath in a collection bag every hour. Since the amount of 3HB ingested was sufficiently large for the mitochondrial activity of subject B (59-year-old man), the amount of increase in blood 3HB concentration increased to 0.7 mM after 60 minutes and was used by mitochondria and gradually decreased. did. The amount of increase in acetone concentration in exhaled breath increased to 0.8 ppm after 30 minutes and then gradually decreased. If the pattern of increase in the concentration of acetone becomes like this, the measurement is judged to be successful. The rate of increase in acetone concentration per hour (1.602 ppm / hr) from 0 to 30 minutes as mitochondrial activity was almost twice as high as that of Subject A in Experimental Examples 2 and 3. It is probable that the subject B was older and had lower mitochondrial activity, so that the rate of use of acetoacetic acid by mitochondria was slower, and the rate of acetone concentration increased because more acetone was generated.
〔第2実施形態〕
 第2実施形態は、アセトン発生種たる3-ヒドロキシ酪酸、3-ヒドロキシ酪酸塩、3-ヒドロキシ酪酸エステル及びアセト酢酸の中から選択される少なくとも一つを摂取した状態の被検者が、アセトン発生種と同時に栄養分を摂取している状態である点が第1実施形態と異なっている。
[Second Embodiment]
In the second embodiment, a subject ingesting at least one selected from 3-hydroxybutyric acid, 3-hydroxybutyrate, 3-hydroxybutyric acid ester, and acetoacetic acid, which are acetone-generating species, generates acetone. It differs from the first embodiment in that it is ingesting nutrients at the same time as the seeds.
 即ち、第2実施形態において、ミトコンドリア活性評価装置1は、アセトン発生種と同時に栄養分を摂取した被検者の呼気に含まれるアセトンの濃度値と、アセトン発生種及び栄養分を摂取していない状態の被検者の呼気に含まれるアセトンの濃度(基準濃度値)とを基にして、アセトン濃度増加速度を指標値として決定し、この決定した指標値たるアセトン濃度増加速度を基に、被検者のミトコンドリア活性を評価する。尚、本願における「栄養分」とは、体内においてグルコースに変換されるものであれば特に限られるものではなく、例えば、糖質、炭水化物、タンパク質、アミノ酸、脂質、食物繊維などを例示することができ、被検者は、アセトン発生種とともに、これらのうちの一つのみを摂取しても良いし、複数組み合わせて摂取しても良い。 That is, in the second embodiment, the mitochondrial activity evaluation device 1 is in a state where the concentration value of acetone contained in the exhaled breath of the subject who has ingested the nutrients at the same time as the acetone-generating species and the acetone-generating species and the nutrients have not been ingested. Based on the concentration of acetone contained in the exhaled breath of the subject (reference concentration value), the rate of increase in acetone concentration is determined as an index value, and the subject is based on the rate of increase in acetone concentration, which is the determined index value. To assess the mitochondrial activity of. The "nutrient" in the present application is not particularly limited as long as it is converted into glucose in the body, and examples thereof include sugars, carbohydrates, proteins, amino acids, lipids, and dietary fiber. , The subject may ingest only one of these together with the glucose-producing species, or may ingest a plurality of them in combination.
 このように、被検者がアセトン発生種と同時に栄養分を摂取している状態であることにより、測定時に被検者が空腹であったり、インスリンが過剰に分泌されていたりすることで低血糖の状態であった場合でも、摂取したアセトン発生種を利用したエネルギーの生成を抑えることができ、エネルギーの生成に起因する測定中でのアセトン発生種の量の変動が抑えられた状態でのアセトン濃度値を取得できるため、取得するアセトン濃度値の信頼性が高まり、再現性良く測定を行うことができ、ミトコンドリア活性の評価精度を高められる。 In this way, when the subject is ingesting nutrients at the same time as the acetone-producing species, the subject is hungry at the time of measurement, or insulin is excessively secreted, resulting in hypoglycemia. Even in the state, it is possible to suppress the generation of energy using the ingested acetone-generating species, and the acetone concentration in a state where the fluctuation in the amount of acetone-generating species during measurement due to the energy generation is suppressed. Since the value can be obtained, the reliability of the acquired acetone concentration value is improved, the measurement can be performed with good reproducibility, and the evaluation accuracy of the mitochondrial activity can be improved.
 以下、アセトン発生種と同時に栄養分を摂取した場合の効果を確認するために行った実験について説明する。 Below, we will explain the experiments conducted to confirm the effect of ingesting nutrients at the same time as the acetone-generating species.
 5gの3HBを100mlの水に溶かし、水酸化カリウムでpH4に調整したサンプル(サンプル1)及び5gの3HBと2gの砂糖とを100mlの水に溶かし、水酸化カリウムでpH4に調整したサンプル(サンプル2)をそれぞれ作製し、被検者Cに対して、これらサンプル1及び2を摂取させることにより行い、サンプル摂取前及びサンプル摂取から所定時間経過するごとに、安静状態における被検者Cの呼気を採取し、ガスクロマトグラフで分析して、呼気中のアセトン濃度を測定した。図7は、サンプル1を摂取した場合についてのサンプル摂取後の経過時間とアセトン濃度値の変化量(摂取前に対する変化量)との関係を示すグラフであり、図8は、サンプル2を摂取した場合についてのサンプル摂取後の経過時間とアセトン濃度値の変化量(摂取前に対する変化量)との関係を示すグラフである。また、サンプル1を午前に摂取する実験を2回(図7中の「午前1」、「午前2」)、サンプル1を午後に摂取する実験を2回(図7中の「午後1」、「午後2」)、サンプル2を午前に摂取する実験を2回(図8中の「午前+栄養1」、「午前+栄養2」)、サンプル2を午後に摂取する実験を2回(図8中の「午後+栄養1」、「午後+栄養2」)の計8回の実験をそれぞれ異なる日に行った。 A sample in which 5 g of 3HB was dissolved in 100 ml of water and adjusted to pH 4 with potassium hydroxide (Sample 1) and a sample in which 5 g of 3HB and 2 g of sugar were dissolved in 100 ml of water and adjusted to pH 4 with potassium hydroxide (Sample 1). 2) is prepared and the subject C is ingested of these samples 1 and 2, respectively, and the exhaled breath of the subject C in a resting state before the sample is ingested and every predetermined time elapses from the sample ingestion. Was collected and analyzed by gas chromatography to measure the concentration of acetone in the exhaled breath. FIG. 7 is a graph showing the relationship between the elapsed time after ingestion of the sample and the amount of change in the acetone concentration value (the amount of change with respect to the amount before ingestion) in the case of ingesting sample 1, and FIG. 8 shows the ingestion of sample 2. It is a graph which shows the relationship between the elapsed time after ingestion of a sample, and the amount of change (change amount with respect to before ingestion) of an acetone concentration value about a case. In addition, two experiments in which sample 1 was ingested in the morning (“1 am” and “2 am” in FIG. 7) and two experiments in which sample 1 was ingested in the afternoon (“1 pm” in FIG. 7). "2 pm"), 2 experiments ingesting sample 2 in the morning ("am + nutrition 1", "am + nutrition 2" in FIG. 8), 2 experiments ingesting sample 2 in the afternoon (Fig. 8) A total of eight experiments (“afternoon + nutrition 1” and “afternoon + nutrition 2”) in 8 were performed on different days.
 サンプル1を摂取した場合について、各実験に関するグラフを比較すると、図7に示すようにバラつきが大きいことが分かる。具体的に、サンプル1の摂取から所定時間経過時におけるアセトン濃度値の変化量の最小値及び最大値は、15分経過時においては、最小値が-119ppb(午後2)、最大値が31ppb(午前1)であり、30分経過時においては、最小値が-37ppb(午前2)、最大値が26ppb(午前1)であり、45分経過時においては、最小値が-35ppb(午後1)、最大値が223ppb(午前2)であり、60分経過時においては、最小値が93ppb(午前1)、最大値が287ppb(午前2)であった。 Comparing the graphs related to each experiment with respect to the case of ingesting sample 1, it can be seen that there is a large variation as shown in FIG. Specifically, the minimum and maximum values of the amount of change in the acetone concentration value after the lapse of a predetermined time from the intake of sample 1 are -119 ppb (2 pm) and the maximum value of 31 ppb (2 pm) after 15 minutes. 1) am, the minimum value is -37 ppb (2 am) after 30 minutes, the maximum value is 26 ppb (1 am), and the minimum value is -35 ppb (1 pm) after 45 minutes. The maximum value was 223 ppb (2 am), and after 60 minutes, the minimum value was 93 ppb (1 am) and the maximum value was 287 ppb (2 am).
 一方、サンプル2を摂取した場合について、各実験に関するグラフを比較すると、図8に示すように、サンプル1を摂取した場合よりバラつきが小さいことが分かる。具体的に、サンプル2の摂取から所定時間経過時におけるアセトン濃度値の変化量の最小値及び最大値は、15分経過時においては、最小値が19ppb(午前+栄養1)、最大値が75ppb(午後+栄養2)であり、30分経過時においては、最小値が86ppb(午前+栄養1)、最大値が196ppb(午後+栄養2)であり、45分経過時においては、最小値が234ppb(午前+栄養1)、最大値が302ppb(午前+栄養2)であり、60分経過時においては、最小値が355ppb(午後+栄養2)、最大値が539ppb(午前+栄養2)であった。 On the other hand, when comparing the graphs related to each experiment with respect to the case of ingesting sample 2, it can be seen that the variation is smaller than that of the case of ingesting sample 1, as shown in FIG. Specifically, the minimum and maximum values of the change in the acetone concentration value after the lapse of a predetermined time from the intake of sample 2 are 19 ppb (morning + nutrition 1) at the minimum value and 75 ppb at the maximum value at the lapse of 15 minutes. (Afternoon + Nutrition 2), the minimum value is 86 ppb (AM + Nutrition 1) after 30 minutes, the maximum value is 196 ppb (Afternoon + Nutrition 2), and the minimum value is 45 minutes. 234 ppb (morning + nutrition 1), maximum value 302 ppb (morning + nutrition 2), minimum value is 355 ppb (afternoon + nutrition 2), maximum value is 539 ppb (morning + nutrition 2) after 60 minutes. there were.
 このように、3HBと同時に砂糖を摂取した場合と摂取しなかった場合とでバラつき具合が変化している要因としては、3HBと同時に砂糖を摂取しなかった場合、測定時において、被検者Cが空腹状態であったり、糖質の多い食事を摂ったことでインスリンが過剰に分泌されている状態であったりすることで低血糖状態となり、摂取した3HBがエネルギーの生成に利用され、エネルギーの生成に利用される3HBの量が測定中に変動することで、アセトンの発生量もそれに応じて変動し、結果的に、取得されるアセトン濃度値がエネルギーの生成量に応じて変動してしまい、バラつきが大きくなっているが、3HBと同時に砂糖を摂取した場合には、砂糖の摂取によって血糖値が上がり、3HBを利用したエネルギーの生成が抑えられるため、エネルギーの生成に利用される3HBの量が測定中に変動し難くなっている状態で、アセトン濃度値を取得できており、バラつきが小さくなっているものと推察される。 In this way, the reason why the degree of variation changes between the case where sugar is ingested at the same time as 3HB and the case where sugar is not ingested is that when sugar is not ingested at the same time as 3HB, the subject C at the time of measurement. Is hungry, or is in a state of excessive insulin secretion due to eating a sugar-rich diet, resulting in a hypoglycemic state, and the ingested 3HB is used to generate energy, and energy When the amount of 3HB used for production fluctuates during measurement, the amount of acetone generated also fluctuates accordingly, and as a result, the obtained acetone concentration value fluctuates according to the amount of energy produced. However, when sugar is ingested at the same time as 3HB, the blood sugar level rises due to the intake of sugar, and the generation of energy using 3HB is suppressed. It is presumed that the acetone concentration value can be obtained in a state where the amount is less likely to fluctuate during measurement, and the variation is small.
 次に、ミトコンドリアの活性と体から放出されるアセトンの濃度との関係を検証するためにラットを使用して行った実験について説明する。 Next, we will explain an experiment conducted using rats to verify the relationship between mitochondrial activity and the concentration of acetone released from the body.
 10%3HBナトリウム溶液(アセトン発生種)を体重1kg当たり1gとなるように2匹のラット(ラットA、ラットB)に投与し、投与後115~125分の間に尻尾から放出されたアセトンの濃度を半導体ガスセンサで測定した。次に、同じ2匹のラットA,Bに対して、10mg/mlストレプトゾトシン(STZ)を体重1kg当たり50mgとなるように腹腔内投与して2週間飼育した後、10%3HBナトリウム溶液を体重1kg当たり1gとなるように投与し、投与後115~125分の間に尻尾から放出されたアセトンの濃度を半導体ガスセンサで測定した。図9及び図10はラットAに関する結果、図11及び図12はラットBに関する結果をそれぞれ示す図であって、図9及び図11は、それぞれのマウスに関するSTZ投与前及び投与後における3HBナトリウム溶液を摂取してからの経過時間とアセトン濃度との関係を示すグラフである。また、図10及び図12は、それぞれ図9及び図11中の0分から115分までにおける各折れ線グラフ(STZ投与前及びSTZ投与後)の下の面積(即ち、アセトン量(μg))を示すグラフである。 A 10% 3HB sodium solution (acetone-generating species) was administered to two rats (rat A, rat B) so as to weigh 1 g per kg of body weight, and the acetone released from the tail between 115 and 125 minutes after administration. The concentration was measured with a semiconductor gas sensor. Next, 10 mg / ml streptozotocin (STZ) was intraperitoneally administered to the same two rats A and B so as to be 50 mg / kg body weight, and the rats were bred for 2 weeks, and then a 10% 3HB sodium solution was added to 1 kg body weight. The dose was 1 g per dose, and the concentration of acetone released from the tail was measured with a semiconductor gas sensor between 115 and 125 minutes after the administration. 9 and 10 show the results for rat A, FIGS. 11 and 12 show the results for rat B, respectively, and FIGS. 9 and 11 show the 3HB sodium solution before and after STZ administration for each mouse. It is a graph which shows the relationship between the elapsed time after ingesting, and the acetone concentration. In addition, FIGS. 10 and 12 show the area (that is, the amount of acetone (μg)) under each line graph (before STZ administration and after STZ administration) from 0 minutes to 115 minutes in FIGS. 9 and 11, respectively. It is a graph.
 ストレプトゾトシンには、ミトコンドリアの膜電位と酵素活性を低下させてATP合成を阻害することでミトコンドリアの活性を低下させる作用があることが報告されている(Int. J. Mol. Sci. 2012, 13, 5751-5767)。図9及び図11から明らかなように、STZを投与する前とSTZを投与した後とでは、いずれのラットについてもSTZ投与前では放出されるアセトンの濃度が徐々に減少しているが、STZ投与後(即ち、ミトコンドリア活性が低下した状態)では高濃度のアセトンの放出が継続していた。また、図10及び図12に示すように、両ラットともに115分で放出したアセトンの量は、STZ投与後の方がSTZ投与前よりも2倍前後高い値であった。 It has been reported that streptozotocin has the effect of lowering mitochondrial activity by lowering mitochondrial membrane potential and enzyme activity and inhibiting ATP synthesis (Int. J. Mol. Sci. 2012, 13, 5751-5767). As is clear from FIGS. 9 and 11, the concentration of acetone released before STZ administration gradually decreased in both rats before and after STZ administration, but STZ. After administration (ie, reduced mitochondrial activity), high concentrations of acetone continued to be released. Further, as shown in FIGS. 10 and 12, the amount of acetone released in 115 minutes in both rats was about twice as high after STZ administration as compared with before STZ administration.
 これらのことから、ミトコンドリア活性が低い方が体からアセトンが放出され易く、ミトコンドリア活性とアセトン濃度値との間に高い相関があることが実験的に確認できた。また、3HBを摂取することで体からアセトンが放出されるようになることから、対象に3HBを投与し、その後に対象から放出されるアセトンの濃度を測定することによって、ミトコンドリア活性と相関を有する指標値を決定でき、この決定した指標値を基に対象のミトコンドリア活性を評価できることも確認できた。 From these facts, it was experimentally confirmed that the lower the mitochondrial activity, the easier it is for acetone to be released from the body, and there is a high correlation between the mitochondrial activity and the acetone concentration value. In addition, since acetone is released from the body by ingesting 3HB, it has a correlation with mitochondrial activity by administering 3HB to the subject and then measuring the concentration of acetone released from the subject. It was also confirmed that the index value could be determined and the mitochondrial activity of the subject could be evaluated based on the determined index value.
〔別実施形態〕
〔1〕上記実施形態では、アセトン濃度増加速度を指標値とする態様を示したが、これに限られるものではない。ミトコンドリア活性と相関を有する指標値として、アセトン濃度増加速度に代えて、アセトンの濃度値が最大濃度値に達した後、一定時間、所定範囲内の濃度値を維持するようになる、アセトン発生種の最低摂取量を用いるようにしても良い。尚、上記一定時間とは、5~30分、好ましくは5~10分であり、また、上記所定範囲内とは、最大濃度値の±30%、好ましくは最大濃度値の±20%である。被検者が摂取したアセトン発生種の摂取量が、ミトコンドリアが処理できる量を超えていない場合には、アセトンの濃度値は最大値に達した後に低下していくのに対し、ミトコンドリアが処理できる量を超えている場合には、アセトンの濃度値は最大値に達した後、一定時間、所定範囲内の濃度値を維持するようになる。したがって、ミトコンドリア活性が高いほど、アセトンの濃度値が最大濃度値に達した後、一定時間、所定範囲内の濃度値を維持するようになる、アセトン発生種の最低摂取量が多くなる。よって、上記のようなアセトン発生種の最低摂取量を指標値としても、ミトコンドリア活性を把握することができる。
[Another Embodiment]
[1] In the above embodiment, an embodiment in which the rate of increase in acetone concentration is used as an index value is shown, but the present invention is not limited to this. As an index value that correlates with mitochondrial activity, instead of the rate of increase in acetone concentration, an acetone-generating species that maintains the concentration value within a predetermined range for a certain period of time after the concentration value of acetone reaches the maximum concentration value. The minimum intake of may be used. The above-mentioned fixed time is 5 to 30 minutes, preferably 5 to 10 minutes, and the above-mentioned predetermined range is ± 30% of the maximum concentration value, preferably ± 20% of the maximum concentration value. .. If the intake of the acetone-producing species ingested by the subject does not exceed the amount that can be processed by mitochondria, the concentration value of acetone reaches the maximum value and then decreases, whereas the mitochondria can process it. If the amount is exceeded, the concentration value of acetone reaches the maximum value and then maintains the concentration value within a predetermined range for a certain period of time. Therefore, the higher the mitochondrial activity, the higher the minimum intake of acetone-producing species, which keeps the concentration value within a predetermined range for a certain period of time after the concentration value of acetone reaches the maximum concentration value. Therefore, the mitochondrial activity can be grasped even when the minimum intake of the acetone-producing species as described above is used as an index value.
〔2〕上記実施形態では、被検者の呼気に含まれるアセトンを一定時間ごとに、即ち、断続的に呼気センサーを用いて検出するようにしたが、これに限られるものではなく、所定時間継続して連続的にアセトンを検出し続けるようにしても良い。また、アセトンを検出するセンサーは呼気センサーに限られず、被検者の皮膚から放出されるアセトンを検出可能な皮膚センサーを用いることができる。 [2] In the above embodiment, acetone contained in the exhaled breath of the subject is detected at regular intervals, that is, intermittently by using the exhaled breath sensor, but the present invention is not limited to this, and is not limited to this. Acetone may be continuously detected continuously. Further, the sensor for detecting acetone is not limited to the exhalation sensor, and a skin sensor capable of detecting acetone released from the skin of the subject can be used.
〔3〕上記実施形態では、指標値が活性評価部5から指標値記憶部6へ送信されて記憶される態様を例示したが、これに限られるものではなく、指標値出力部から指標値記憶部に指標値が送信されて記憶されるようにしても良いし、濃度値取得部が取得した濃度値を記憶するための適宜記憶部を設けるようにしても良い。 [3] In the above embodiment, an embodiment in which the index value is transmitted from the activity evaluation unit 5 to the index value storage unit 6 and stored is illustrated, but the present invention is not limited to this, and the index value output unit stores the index value. The index value may be transmitted and stored in the unit, or a storage unit may be provided as appropriate for storing the concentration value acquired by the concentration value acquisition unit.
〔4〕上記実施形態において、指標値出力部3は、指標値としてのアセトン濃度増加速度を決定して出力するようになっているが、必ずしも指標値を出力する必要はなく、指標値を記憶しておき、活性評価部が適宜アクセスして取得するようにしても良い。 [4] In the above embodiment, the index value output unit 3 determines and outputs the rate of increase in the acetone concentration as the index value, but it is not always necessary to output the index value and the index value is stored. However, the activity evaluation unit may access and acquire the information as appropriate.
〔5〕上記ミトコンドリア活性評価方法及び指標値決定方法は、ミトコンドリア活性評価装置及び指標値決定装置を用いることなく実行することができる。 [5] The above-mentioned mitochondrial activity evaluation method and index value determination method can be executed without using the mitochondrial activity evaluation device and the index value determination device.
〔6〕上記第2実施形態においては、被検者がアセトン発生種と同時に栄養分を摂取している態様を示したが、これに限られるものではなく、アセトン発生種を摂取する前、或いはアセトン発生種を摂取した後に栄養分を摂取していても良い。 [6] In the second embodiment, the present subject is ingesting nutrients at the same time as the acetone-generating species, but the present invention is not limited to this, and the subject is not limited to this, and is before ingesting the acetone-generating species or acetone. Nutrients may be ingested after ingesting the outbreak.
 ミトコンドリア活性の容易な把握を可能にする指標値を決定することができる指標値決定システム及び指標値決定方法、並びに、指標値を基にミトコンドリア活性を容易に評価することができるミトコンドリア活性評価システム及びミトコンドリア活性評価方法に利用することができる。 An index value determination system and an index value determination method capable of determining an index value that enables easy grasping of mitochondrial activity, and a mitochondrial activity evaluation system and an index value determination method that can easily evaluate mitochondrial activity based on the index value. It can be used as a method for evaluating mitochondrial activity.
1 ミトコンドリア活性評価装置(ミトコンドリア活性評価システム)
2 濃度値取得部(濃度値取得手段)
3 指標値出力部(指標値決定手段)
4 指標値決定装置(指標値決定システム)
5 活性評価部(活性評価手段)
1 Mitochondrial activity evaluation device (mitochondrial activity evaluation system)
2 Concentration value acquisition unit (concentration value acquisition means)
3 Index value output unit (index value determination means)
4 Index value determination device (index value determination system)
5 Activity evaluation department (activity evaluation means)

Claims (12)

  1.  最終的に体内で分解されてアセトンを発生するアセトン発生種たる3-ヒドロキシ酪酸、3-ヒドロキシ酪酸塩、3-ヒドロキシ酪酸エステル及びアセト酢酸の中から選択される少なくとも一つを摂取した被検者から放出される前記アセトンの濃度値を連続的又は断続的に取得する濃度値取得手段と、
     少なくとも前記取得したアセトンの濃度値を用いて、前記被検者のミトコンドリア活性と相関を有する指標値を決定する指標値決定手段とを備える指標値決定システム。
    Subjects who ingested at least one selected from 3-hydroxybutyric acid, 3-hydroxybutyrate, 3-hydroxybutyric acid ester, and acetoacetic acid, which are acetone-generating species that are finally decomposed in the body to generate acetone. A concentration value acquisition means for continuously or intermittently acquiring the concentration value of the acetone released from
    An index value determination system including an index value determining means for determining an index value having a correlation with the mitochondrial activity of the subject using at least the obtained concentration value of acetone.
  2.  前記濃度値取得手段において、前記アセトン発生種を摂取していない被検者から放出されるアセトンの基準濃度値を取得し、
     前記指標値決定手段において、前記アセトンの濃度値が前記基準濃度値から最大濃度値に達するまでの所定区間におけるアセトン濃度増加速度を前記指標値として決定する請求項1に記載の指標値決定システム。
    In the concentration value acquisition means, a reference concentration value of acetone released from a subject who has not ingested the acetone-generating species is acquired.
    The index value determining system according to claim 1, wherein in the index value determining means, the rate of increase in acetone concentration in a predetermined section from the reference concentration value to the maximum concentration value is determined as the index value.
  3.  前記指標値決定手段において、前記アセトンの濃度値が最大濃度値に達した後、一定時間、所定範囲内の濃度値を維持するようになる、前記アセトン発生種の最低摂取量を前記指標値として決定する請求項1に記載の指標値決定システム。 In the index value determining means, after the concentration value of acetone reaches the maximum concentration value, the concentration value within a predetermined range is maintained for a certain period of time, and the minimum intake amount of the acetone-generating species is used as the index value. The index value determination system according to claim 1.
  4.  前記アセトン発生種の中から選択される少なくとも一つを摂取した前記被検者は、前記アセトン発生種とともに、栄養分を摂取している請求項1~3のいずれか一項に記載の指標値決定システム。 The index value determination according to any one of claims 1 to 3, wherein the subject who has ingested at least one selected from the acetone-producing species is ingesting nutrients together with the acetone-generating species. system.
  5.  請求項1から4のいずれか一項に記載の指標値決定システムと、
     前記決定された指標値を基に、前記被検者のミトコンドリア活性を評価する活性評価手段とを備え、
     前記活性評価手段において、前記決定された指標値を同一被検者に関する過去の指標値と比較し、前記被検者のミトコンドリア活性を評価するミトコンドリア活性評価システム。
    The index value determination system according to any one of claims 1 to 4,
    An activity evaluation means for evaluating the mitochondrial activity of the subject based on the determined index value is provided.
    A mitochondrial activity evaluation system for evaluating the mitochondrial activity of a subject by comparing the determined index value with a past index value for the same subject in the activity evaluation means.
  6.  請求項1から4のいずれか一項に記載の指標値決定システムを用いて、前記被検者のミトコンドリア活性と相関を有する指標値を決定する方法であって、
     前記アセトン発生種の中から選択される少なくとも一つを摂取した前記被検者から放出される前記アセトンの濃度値を連続的又は断続的に取得する濃度値取得ステップと、
     少なくとも前記取得したアセトンの濃度値を用いて、前記被検者のミトコンドリア活性と相関を有する前記指標値を決定する指標値決定ステップとを実行する指標値決定方法。
    A method for determining an index value having a correlation with the mitochondrial activity of the subject by using the index value determination system according to any one of claims 1 to 4.
    A concentration value acquisition step of continuously or intermittently acquiring the concentration value of the acetone released from the subject who ingested at least one selected from the acetone-generating species.
    An index value determination method for performing an index value determination step of determining the index value having a correlation with the mitochondrial activity of the subject using at least the acquired concentration value of acetone.
  7.  請求項5に記載のミトコンドリア活性評価システムを用いて、前記被検者のミトコンドリア活性を評価する方法であって、
     前記アセトン発生種の中から選択される少なくとも一つを摂取した前記被検者から放出される前記アセトンの濃度値を連続的又は断続的に取得する濃度値取得ステップと、
     少なくとも前記取得したアセトンの濃度値を用いて、前記被検者のミトコンドリア活性と相関を有する前記指標値を決定する指標値決定ステップと、
     前記決定された指標値を基に、前記被検者のミトコンドリア活性を評価する活性評価ステップとを実行し、
     前記活性評価ステップにおいて、前記決定された指標値を同一被検者に関する過去の指標値と比較し、前記被検者のミトコンドリア活性を評価するミトコンドリア活性評価方法。
    A method for evaluating the mitochondrial activity of a subject using the mitochondrial activity evaluation system according to claim 5.
    A concentration value acquisition step of continuously or intermittently acquiring the concentration value of the acetone released from the subject who ingested at least one selected from the acetone-generating species.
    An index value determination step for determining the index value having a correlation with the mitochondrial activity of the subject using at least the obtained concentration value of acetone.
    Based on the determined index value, an activity evaluation step for evaluating the mitochondrial activity of the subject is performed.
    A method for evaluating mitochondrial activity in which the determined index value is compared with a past index value for the same subject in the activity evaluation step, and the mitochondrial activity of the subject is evaluated.
  8.  最終的に体内で分解されてアセトンを発生するアセトン発生種たる3-ヒドロキシ酪酸、3-ヒドロキシ酪酸塩、3-ヒドロキシ酪酸エステル及びアセト酢酸の中から選択される少なくとも一つを摂取した被検者から放出される前記アセトンの濃度値を連続的又は断続的に取得する濃度値取得ステップと、
     少なくとも前記取得したアセトンの濃度値を用いて、前記被検者のミトコンドリア活性と相関を有する指標値を決定する指標値決定ステップとを実行する指標値決定方法。
    Subjects who ingested at least one selected from 3-hydroxybutyric acid, 3-hydroxybutyrate, 3-hydroxybutyric acid ester, and acetoacetic acid, which are acetone-generating species that are finally decomposed in the body to generate acetone. A concentration value acquisition step for continuously or intermittently acquiring the concentration value of the acetone released from
    An index value determination method for performing an index value determination step of determining an index value having a correlation with the mitochondrial activity of the subject using at least the acquired concentration value of acetone.
  9.  前記濃度値取得ステップにおいて、前記アセトン発生種を摂取していない被検者から放出されるアセトンの基準濃度値を取得し、
     前記指標値決定ステップにおいて、前記アセトンの濃度値が前記基準濃度値から最大濃度値に達するまでの所定区間におけるアセトン濃度増加速度を前記指標値として決定する請求項8に記載の指標値決定方法。
    In the concentration value acquisition step, a reference concentration value of acetone released from a subject who has not ingested the acetone-generating species is acquired.
    The index value determination method according to claim 8, wherein in the index value determination step, the rate of increase in acetone concentration in a predetermined section from the reference concentration value to the maximum concentration value is determined as the index value.
  10.  前記指標値決定ステップにおいて、前記アセトンの濃度値が最大濃度値に達した後、一定時間、所定範囲内の濃度値を維持するようになる、前記アセトン発生種の最低摂取量を前記指標値として決定する請求項8に記載の指標値決定方法。 In the index value determination step, after the concentration value of acetone reaches the maximum concentration value, the concentration value within a predetermined range is maintained for a certain period of time, and the minimum intake amount of the acetone-generating species is used as the index value. The index value determining method according to claim 8.
  11.  前記アセトン発生種の中から選択される少なくとも一つを摂取した前記被検者は、前記アセトン発生種とともに、栄養分を摂取している請求項8~10のいずれか一項に記載の指標値決定方法。 The index value determination according to any one of claims 8 to 10, wherein the subject who has ingested at least one selected from the acetone-producing species is ingesting nutrients together with the acetone-generating species. Method.
  12.  請求項8から11のいずれか一項に記載の指標値決定方法により、前記指標値を決定した後に、
     前記決定した指標値を基に、前記被検者のミトコンドリア活性を評価する活性評価ステップを実行し、
     前記活性評価ステップにおいて、前記決定した指標値を同一被検者に関する過去の指標値と比較し、前記被検者のミトコンドリア活性を評価するミトコンドリア活性評価方法。
    After determining the index value by the index value determining method according to any one of claims 8 to 11,
    Based on the determined index value, an activity evaluation step for evaluating the mitochondrial activity of the subject is executed.
    A method for evaluating mitochondrial activity in which the determined index value is compared with a past index value for the same subject in the activity evaluation step to evaluate the mitochondrial activity of the subject.
PCT/JP2020/000632 2020-01-10 2020-01-10 Index value determination system, mitochondrial activiy evaluation system, index value determination method, and mitochondrial activity evaluation method WO2021140640A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000632 WO2021140640A1 (en) 2020-01-10 2020-01-10 Index value determination system, mitochondrial activiy evaluation system, index value determination method, and mitochondrial activity evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000632 WO2021140640A1 (en) 2020-01-10 2020-01-10 Index value determination system, mitochondrial activiy evaluation system, index value determination method, and mitochondrial activity evaluation method

Publications (1)

Publication Number Publication Date
WO2021140640A1 true WO2021140640A1 (en) 2021-07-15

Family

ID=76787814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000632 WO2021140640A1 (en) 2020-01-10 2020-01-10 Index value determination system, mitochondrial activiy evaluation system, index value determination method, and mitochondrial activity evaluation method

Country Status (1)

Country Link
WO (1) WO2021140640A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205935A (en) * 2010-03-29 2011-10-20 Japan Science & Technology Agency Method for measuring mitochondrial metabolic activity
JP2017151063A (en) * 2016-02-26 2017-08-31 国立大学法人 東京大学 Metabolism state estimation method based on skin gas measurement
JP2017209581A (en) * 2017-09-11 2017-11-30 株式会社タニタ Apparatus, method and program for evaluating body change
JP2018179960A (en) * 2017-04-06 2018-11-15 株式会社明治 Device for monitoring effective state of ketogenic meal
JP2020016651A (en) * 2018-07-17 2020-01-30 大阪瓦斯株式会社 Index value determination system, mitochondrial activity evaluation system, index value determination method, and mitochondrial activity evaluation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205935A (en) * 2010-03-29 2011-10-20 Japan Science & Technology Agency Method for measuring mitochondrial metabolic activity
JP2017151063A (en) * 2016-02-26 2017-08-31 国立大学法人 東京大学 Metabolism state estimation method based on skin gas measurement
JP2018179960A (en) * 2017-04-06 2018-11-15 株式会社明治 Device for monitoring effective state of ketogenic meal
JP2017209581A (en) * 2017-09-11 2017-11-30 株式会社タニタ Apparatus, method and program for evaluating body change
JP2020016651A (en) * 2018-07-17 2020-01-30 大阪瓦斯株式会社 Index value determination system, mitochondrial activity evaluation system, index value determination method, and mitochondrial activity evaluation method

Similar Documents

Publication Publication Date Title
Zaharieva et al. Lag time remains with newer real-time continuous glucose monitoring technology during aerobic exercise in adults living with type 1 diabetes
EP1886113B1 (en) Use of multiple data points and filtering in an analyte sensor
US20070083092A1 (en) External exercise monitor
Edwards et al. Short‐term consumption of a high‐fat diet impairs whole‐body efficiency and cognitive function in sedentary men
US20070083095A1 (en) External exercise monitor
Hahn et al. An aggregate urine analysis tool to detect acute dehydration
Caron et al. Energy expenditure in people with diabetes mellitus: a review
JPH1156822A (en) Blood sugar measuring instrument
Hoenig et al. Evaluation of long-term glucose homeostasis in lean and obese cats by use of continuous glucose monitoring
Terada et al. Test–retest reliability of a continuous glucose monitoring system in individuals with type 2 diabetes
JP7361517B2 (en) Index value determination system, mitochondrial activity evaluation system, index value determination method, and mitochondrial activity evaluation method
Block et al. Minimally-invasive and non-invasive continuous glucose monitoring systems: Indications, advantages, limitations and clinical aspects
WO2021140640A1 (en) Index value determination system, mitochondrial activiy evaluation system, index value determination method, and mitochondrial activity evaluation method
Iscoe et al. High rates of nocturnal hypoglycemia in a unique sports camp for athletes with type 1 diabetes: lessons learned from continuous glucose monitoring systems
Ajibola et al. Non-invasive glucometer using acetone gas sensor for low income earners’ diabetes monitoring
Simões et al. Methods to identify the anaerobic threshold for type-2 diabetic and non-diabetic subjects
JP2011036416A (en) Method for evaluation of biological cell function, measuring instrument, computer, computer program, recording medium, and cellular phone
Ronsen et al. Residual effects of prior exercise and recovery on subsequent exercise-induced metabolic responses
EP3373173A1 (en) Method and apparatus for monitoring a subject
Di Stefano et al. Mixing of the intestinal content and variations of fermentation capacity do not affect the results of hydrogen breath test
Stewart et al. Role of blood pressure responses to exercise and vascular insulin sensitivity with nocturnal blood pressure dipping in metabolic syndrome
Baines et al. Comparison of venous, capillary and interstitial blood glucose data measured during hyperbaric oxygen treatment from patients with diabetes mellitus
CA2996778A1 (en) Systems and methods to track and manage individualized redox homeostasis
Hu et al. Breath Ethanol and Acetone as Indicators of Serum Glucose Levels
Tu et al. Sweat cortisol response to stress, macronutrient consumption and birth control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP