WO2021140370A1 - 焊料、基板组件及其装配方法 - Google Patents

焊料、基板组件及其装配方法 Download PDF

Info

Publication number
WO2021140370A1
WO2021140370A1 PCT/IB2020/060355 IB2020060355W WO2021140370A1 WO 2021140370 A1 WO2021140370 A1 WO 2021140370A1 IB 2020060355 W IB2020060355 W IB 2020060355W WO 2021140370 A1 WO2021140370 A1 WO 2021140370A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
alloy
substrate
degrees celsius
alloy powder
Prior art date
Application number
PCT/IB2020/060355
Other languages
English (en)
French (fr)
Inventor
莊鑫毅
吳俊毅
顏怡文
Original Assignee
罗伯特•博世有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗伯特•博世有限公司 filed Critical 罗伯特•博世有限公司
Publication of WO2021140370A1 publication Critical patent/WO2021140370A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F7/064Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/81024Applying flux to the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/8121Applying energy for connecting using a reflow oven
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0212Resin particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0215Metallic fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0221Insulating particles having an electrically conductive coating

Definitions

  • the present invention relates to the field of electronics and semiconductor technology.
  • it relates to the solder used to connect the substrate and the electronic components, the substrate assembly formed by the solder, and the assembly method of the substrate assembly.
  • a spacer element Spacer
  • Adding a spacer element (Spacer) to the solder between an electronic component and a substrate is an effective measure to maintain the distance between the electronic component and the substrate during the soldering process.
  • the spacer element can prevent the solder from collapsing during soldering. This prevents the electronic component from sinking to the substrate and maintains the distance between the electronic component and the substrate.
  • the reduction of the distance between the electronic part and the substrate will lead to the attenuation of solder fatigue life and the flow of epoxy resin under the electronic part, which may cause reliability problems when the epoxy resin encapsulation is realized.
  • an intermetallic compound may be formed between the spacer element and the solder, and the stress concentration generated by the accumulated intermetallic compound will reduce the strength of the soldering.
  • the interfacial metal alloy formed between the spacer element and the solder and the interfacial metal alloy formed between the spacer element and the substrate accumulate separately, which may affect each other, thereby reducing soldering quality.
  • the particle diameter of the second alloy powder is greater than or equal to 10 microns and less than or equal to 200 microns.
  • the second alloy powder is spherical. [0009] Further, it includes a mixture of 88% to 92% by weight of the first alloy powder and the second alloy powder, and 8% to 12% by weight of flux.
  • a substrate assembly including: a substrate; and an electronic component coupled to the substrate via a soldering portion formed by the solder described in any one of the foregoing, said The soldering part includes a plurality of spacer elements composed of the second alloy distributed between the substrate and the electronic component.
  • the spacer element has a spherical shape, and the diameter of the spacer element is greater than or equal to 10 microns and less than or equal to 200 microns.
  • the melting point of the spacer element is higher than the melting point of the solder.
  • the melting point of the spacer element is higher than 250 degrees Celsius.
  • a method for assembling an electronic component to a substrate including: setting a template on the surface of the substrate, the surface of the substrate including at least one pad, The template has an opening above the pad of the substrate; adding the solder described in any one of the foregoing in the opening; removing the template; positioning the contact portion of the electronic component on the On the solder; and, heating to 240 degrees Celsius to 250 degrees Celsius to reflow the solder to couple the contact portion and the pad, wherein the second alloy remains solid during the solder reflow and maintains the electronic component and the substrate the distance between.
  • the distance is between 10 and 200 microns.
  • the spacer element provided by the technical solution of the present invention can still maintain a solid state during the soldering process, and will not react with the solder and/or the substrate to form an interface metal alloy. As a result, stable soldering between electronic components and substrates is achieved, and the quality of soldering is improved.
  • FIG. 1 shows a schematic diagram of a substrate assembly according to a specific embodiment.
  • FIG. 2 shows a schematic flow diagram of a method for forming a substrate assembly in a specific implementation manner.
  • Figure 3 shows a specific implementation of the silver-bismuth binary phase diagram.
  • Figure 4 shows a specific implementation of the tin-bismuth binary phase diagram.
  • Figure 5 shows a specific implementation of the Bi-Cu binary phase diagram. Detailed ways
  • the substrate assembly includes a substrate and a component, and the component may be coupled to the substrate via a solder joint.
  • the soldering part may include a spacer element, and the spacer element is used to maintain the distance between the substrate and the component during the soldering process.
  • FIG. 1 shows a substrate assembly 100 according to an embodiment of the present invention.
  • the substrate assembly 100 includes a substrate 102.
  • the substrate 102 may include any component known to those of ordinary skill in the art. Install the components of the platform.
  • the component may include at least one of leads or pins, a chip mounting board, a lead frame, a substrate, a power electronic substrate, a printed circuit board, a carrier or chip carrier, a semiconductor package, and the like.
  • the substrate 102 includes a dielectric material and one or more conductive elements located in the dielectric material, and the conductive elements are used to conduct electrical signals through the substrate 102.
  • the substrate 102 includes one or more pads 104 on the surface 106 of the substrate 102.
  • the pads 104 may be coupled to one or more of the conductive elements in the substrate 102, and may allow electrical signals to be connected to the pads 104 and solder.
  • the conductive elements to which the disk 104 is coupled are transferred.
  • the substrate assembly 100 also includes an electronic component 108 located adjacent to the surface 106.
  • the electronic component 108 may include any electronic component.
  • the electronic component includes passive electronic components, active electronic components, semiconductor dies, and semiconductor packages. At least one of structure, sensor, etc.
  • passive electronic components may include at least one of resistors, capacitors, inductors, etc.
  • active electronic components may include at least one of diodes, transistors, integrated circuits, optoelectronic devices, etc.
  • semiconductor dies include integrated circuits , Passive electronic components, active electronic components, micro-electromechanical structures, etc.
  • the integrated circuits are, for example, logic integrated circuits, analog integrated circuits, mixed-signal integrated circuits, power integrated circuits, and the like.
  • the electronic component 108 also includes one or more pads 110.
  • the pad 110 may be located at the surface 112 of the electronic component 108 or extend to the surface 112 of the electronic component 108, wherein, The surface 112 is arranged to face the substrate 102.
  • the pad 110 may be coupled to one or more elements (such as a die) within the electronic component 108, and may allow electrical signals to pass between the pad 110 and the element.
  • the substrate assembly 100 also includes one or more soldering portions 114 that couple the pads 104 of the substrate 102 to the pads 110 of the assembly 108.
  • the soldering part 114 is formed of solder 116.
  • the solder 116 may include one or various combinations of lead-based solder, lead-free solder, and silver alloy solder.
  • the solder 116 may include tin, silver, copper, lead, hydrogen, oxygen, nitrogen, or various combinations.
  • the solder 116 includes a first alloy powder and a second alloy powder, where the first alloy powder includes the first alloy whose solidus temperature is between 200 degrees Celsius and 250 degrees Celsius, and the second alloy powder includes the solidus powder. A second alloy with a temperature higher than 250 degrees Celsius.
  • the first alloy includes tin or tin alloy
  • the second alloy includes bismuth or bismuth alloy.
  • the welding part 114 further includes one or more spacer elements 118.
  • the spacer 118 may be composed of the second alloy powder.
  • the spacing element 118 may include one or more elements having any form or shape, and the particle size of the spacing element 118 may be in the range of about 10 micrometers to about 200 micrometers.
  • the spacer 118 may at least partially have a circular shape, that is, a spherical shape, an oval shape, a drop shape, and the like.
  • the spacer element 118 is spherical, and the diameter of the spacer element 118 may be in the range of about 10 microns to about 200 microns.
  • the spacer elements 118 embedded in the solder 116 may all have substantially similar dimensions.
  • all the ball-shaped spacer elements 118 embedded in the solder 116 may have similar diameters in one of the aforementioned ranges.
  • the spacer elements 118 are interspersedly embedded in the solder 116.
  • the spacing member 118 may include a material having a higher melting point than the first alloy powder.
  • the first alloy powder may include a material having a melting point between 170 degrees Celsius and 250 degrees Celsius
  • the spacer 118 may include a material having a higher melting point than 250 degrees Celsius.
  • the first alloy powder is a tin-lead alloy having a melting point of 183 degrees Celsius, or a tin-antimony alloy having a melting point of 240 to 250 degrees Celsius.
  • the spacing element 118 includes a material having a melting point higher than 250 degrees Celsius.
  • the spacer 118 may be made of at least one of a metal and a polymer having a melting point higher than that of the first alloy powder.
  • the spacer 118 including metal or made of metal includes, for example, at least one of copper, silver, nickel, aluminum, bismuth, and alloys thereof, or various combinations thereof.
  • the spacer element 118 is formed of secret or secret alloy, for example, the spacer element 118 has a melting point of 262 Silver-bismuth alloy in degrees Celsius.
  • the spacer element 118 including metal or made of metal can increase the thermal conductivity and/or electrical conductivity of the solder.
  • the conductivity of the solder 116 can be increased;
  • the spacer element 118 made of the alloy and the spacer element 118 can increase the soldering stability of the solder 116.
  • the spacer element 118 including or made of polymer can provide good compressibility.
  • the spacer element including or made of polymer may also have a metal coating that can increase the conductivity of the spacer element. Such as tin coating.
  • the spacer element 118 is used to maintain a desired minimum distance between the electronic component 108 and the substrate 102 during the soldering process. Therefore, the spacer 118 has a particle size equal to the desired minimum distance, such as diameter, length, width, and/or height.
  • the spacer element 118 is spherical, and therefore the spacer element 118 can have a diameter equal to the desired minimum distance.
  • the diameter of the spacer element 118 may be in the range of about 10 micrometers to about 200 micrometers, more specifically in the range of about 10 micrometers to about 150 micrometers, and more specifically in the range of about 10 micrometers to about 100 micrometers. In the range of about 10 microns to about 60 microns, more specifically in the range of about 10 microns to about 40 microns, more specifically in the range of about 10 microns to about 30 microns.
  • the spacer element 118 maintains the desired minimum distance between the electronic component 108 and the substrate 102 and can provide better fatigue life of the solder 116 and better epoxy resin fluidity under the electronic component 108.
  • the spacer element 118 that maintains the desired minimum distance can also provide sufficient spacing between the electronic component 108 and the substrate 102 to remove any solder bridges that may be formed between the electronic component 108 and the substrate 102 during the soldering process. (Solder bridges) or solder balls (Solder balls).
  • FIG. 2 shows a method 200 for forming a substrate assembly 100.
  • the substrate 102 is a printed circuit board made of a material including copper.
  • the method 200 includes steps 202 to 208.
  • the template (Stencil) is first positioned on the surface 106 of the substrate 102.
  • the template may have one or more openings for allowing a portion of the substrate 102 to be exposed when the template is positioned on the surface 106 of the substrate 102.
  • the template may be arranged such that the opening is located adjacent to the pad 104 of the substrate 102. Then proceed to the step 204 of applying solder.
  • the solder 116 is applied to the surface 106 of the substrate 102.
  • the solder 116 may be applied to the surface 106 of the substrate 102 while the template of the template placement step 202 is still positioned on the surface 106 of the substrate 102, wherein the solder 116 is applied to the portion of the surface 106 exposed by the opening of the template
  • the surface 106 exposed by the opening of the template may include the pad 104 of the substrate 102, which may cause the solder 116 to be applied to the pad 104 of the substrate 102.
  • the solder 116 when applied to the surface 106 may fill or partially fill the opening P of the template.
  • the solder 116 may include one or more spacer elements 118.
  • the solder 116 containing one or more spacer elements 118 may have been combined before the solder 116 is applied to the surface 106 of the substrate 102.
  • the solder 116 includes a first alloy powder and a second alloy powder, and the spacer 118 is composed of the second alloy powder.
  • the first alloy powder may include one or a combination of lead-based solder, lead-free solder, and silver alloy solder.
  • the first alloy powder may include tin, silver, copper, lead, hydrogen, oxygen, nitrogen, or various combinations.
  • the first alloy powder includes the first alloy whose solidus temperature is between 200 degrees Celsius and 250 degrees Celsius
  • the second alloy powder includes the second alloy whose solidus temperature is higher than 250 degrees Celsius.
  • the first alloy powder includes tin or tin alloy
  • the second alloy powder includes bismuth or bismuth alloy.
  • the solder 116 includes the first alloy powder in an amount between 90% and 99.99% by weight, and the second alloy powder in an amount between 0.01% and 10% by weight.
  • the first alloy is a Sn-Ag-Cu (SAC305) lead-free solder alloy
  • the second alloy includes a silver-bismuth alloy
  • the silver-bismuth alloy includes silver in an amount not exceeding 20% by weight.
  • the solder 116 may also include a certain weight of flux, for example, 8% to 12% by weight of flux, and the rest is a mixture of the first alloy powder and the second alloy powder. In some embodiments, the solder 116 includes 9% by weight of flux, in some embodiments, the solder 116 includes 10% by weight of flux, and in some embodiments, the solder 116 includes 10% by weight. % Of flux.
  • the solder 116 is a cream solder, and when the solder 116 is applied to the surface 106 of the substrate 102, the positioning of the spacer 118 can be maintained. After the solder 116 has been applied to the surface 106 of the substrate 102, the template can be removed. Then proceed to step 206 of placing electronic components.
  • the electronic components 108 may be positioned on the substrate 102.
  • the electronic component 108 may be positioned on the surface 106 of the substrate 102 using the pad 110, and the pad 110 may be located on the solder 116.
  • the pad 110 may be located on the solder 116 applied in the solder applying step 204, and then proceed to the performing solder reflow step 208.
  • a solder reflow process may be performed on the substrate 102 and the electronic component 108 formed in the electronic component placement step 206, and the solder reflow process may include heating the substrate 102 and the electronic component 108 to 240 A temperature between degrees Celsius and 255 degrees Celsius, for example, the substrate 102 and the electronic component 108 are heated to 243 degrees Celsius, 245 degrees Celsius, 248 degrees Celsius, or 250 degrees Celsius. This temperature is above the melting point of the first alloy powder of the solder 116, but below the melting point of the spacer element 118. For example, when the spacer element 118 includes a silver-bismuth alloy, referring to FIG.
  • the binary phase diagram of the silver-bismuth alloy shows the solidus and liquidus of silver-bismuth, where the silver-bismuth alloy has a melting point of 262 degrees Celsius, which is higher than the The melting point of SAC305 solder 116 (217 degrees Celsius).
  • the solder 116 may be cooled, so that the solder II 6 is solidified (Solidify) to form the solder 11 4 .
  • the spacer element 118 composed of the second alloy remains solid.
  • the welding part 114 includes a first alloy powder and a spacer 118. Specifically, when the first alloy powder of the solder 116 is melted, the spacing element 118 can move downward toward the pad 104 due to gravity, thereby causing the spacing element 118 to be arranged along the pad 104.
  • the spacer element 118 remains solid, so the spacer element 118 can maintain the desired minimum distance between the electronic component 108 and the substrate 102.
  • the first alloy powder of the solder 116 can flow during the solder reflow process to contact the pad 110 of the electronic component 108 and the pad 104 of the substrate 102, and when the solder reflow process ends, the first alloy powder solidifies so that the solder can be coupled.
  • the binary phase diagram of the tin-bismuth alloy shows that when the solder reflow process is finished, the first alloy powder of the solder 116 containing tin or tin alloy and the spacer element 118 do not form an interfacial metallization at the tin-bismuth interface. Therefore, there is no stress concentration at the interface of tin and bismuth.
  • the binary phase diagram of the copper-bismuth alloy shows that the copper-containing substrate 102 and the spacer element 118 do not form an interfacial metallurgical compound between the copper-bismuth interface, and there is no stress concentration at the copper-bismuth interface. , Thereby improving the reliability of welding.
  • the above method 200 is only an exemplary description of forming the substrate assembly 100. Those skilled in the art should know that the substrate assembly 100 can also be formed by a combination of the above-mentioned different steps, for example, the substrate assembly 100 can be formed first on the surface 106 of the substrate 102.
  • the first alloy powder of the solder 116 is applied thereon, and then one or more spacer elements 118 composed of the second alloy powder are applied on top of the first alloy powder.
  • the first alloy powder of the solder 116 may be pre-processed by reflow (heat treatment). After processing, the first alloy powder of the solder 116 may also be electroplated/electroless or vapor deposited, so as to maintain the positioning of the solder 116.
  • the spacer element provided by the embodiment of the present invention can still maintain a solid state during the welding process, and will not react with the solder and/or the substrate to form an interface metal eutectic. This enables a stable solder connection between the electronic component and the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

本发明提供了一种焊料,包括:按重量计90%至99.99%之间的量的第一合金粉末,其包括固相线温度在170摄氏度和250摄氏度之间的第一合金,所述第一合金包括锡或锡合金;按重量计0.01%至10%之间的量的第二合金粉末,其包括固相线温度高于250摄氏度的第二合金,所述第二合金包括铋或者铋合金。还提供了一种基板组件,包括:基板;及经由前述的焊料形成的焊接部而耦合到所述基板的电子部件,所述焊接部包括分布在所述基板和所述电子部件之间的由所述第二合金构成的若干个间隔元件。该基板组件具有良好的焊接稳定性和可靠性。

Description

焊料 、 基板组件及其装 配方法 技术 领域
[0001] 本发明 涉及电 子和半 导体技 术领域 。 尤其涉及用 于连接 基板和 电 子部 件的焊料 、 由该焊料形成 的基板组 件以及基 板组件 的装配方 法。 背景 技术 [0002] 在电子 部件和 基板之 间的焊 料中加 入间隔 元件 (Spacer) 是在焊 接工 艺期间保 持电子 部件和 基板之 间距离的 有效措施 , 间隔元件可 以阻止 焊接 时焊料可 能产生 的崩塌 , 从而阻止了电子 部件沉 向基板 并保持 电子部 件和 基板之 间的距离 。 电子部件和基 板之间 距离的减 少会导 致焊料疲 劳寿 命 的衰减 以及在电子 部件下 方的环氧 树脂流 动, 这在实现环氧 树脂包封 的 时候 可能引起 可靠性 问题。
[0003] 与此同 时, 在焊接工 艺期间 , 间隔元件和 焊料之 间可能 会形成 介 面金 属共化 物 (Intermetallic Compound, IMC) , 由累积的介面金属共化 物产 生的应 力集中则 会降低 焊接的强 度。 此外, 间隔元件和 焊料之 间形成 的介 面金属 共化物 与间隔元 件和基 板之间形 成的介 面金属共 化物分 别各 自 累积 从而可 能影响彼 此, 从而降低焊接 质量。 发明 内容
[0004] 本发明 的目的 在于克 服上述 不足之 处, 本发明 的技术方 案解 决了 现有 技术中加 入间隔元 件的焊 料的焊接 质量低下 的问题 。 [0005] 在本发 明一些 实施方 式中 , 提供了一种焊 料, 其包括 : 按重量计 90% 至 99. 99%之间的量的第 一合金粉 末, 其包括固相 线温度在 170摄 氏 度和 250摄 氏度之间 的第一合 金, 所述第一合金 包括锡 或锡合金 ; 按重量 计 0. 01 %至 10%之间的量 的第二 合金粉末 , 其包括固相 线温度高 于 250 摄 氏度的第 二合金, 所述第二合金包 括铋或者 铋合金 。 [0006] 进一步 地, 所述第二 合金包 括银秘 合金 , 所述银秘合金 中包括 按 重量 计不超过 20%的量 的银。
[0007]进 一步地 , 所述第二合金 粉末的粒 径大于 等于 10微米并 且小于 等 于 200微米。
[0008]进 一步地 , 所述第二合金 粉末为球 形。 [0009]进 一步地 , 其包括按照重 量计 88%至 92%的第 一合金粉 末和第 二 合金 粉末的混 合物, 以及按重量计 8%至 12%的助焊剂 。
[0010] 根据本 发明的 一些实 施方式 , 还提供了一 种基板 组件, 包括: 基 板 ; 以及经由前述 中任意一 项所述 的焊料形 成的焊接 部而耦 合到所述 基板 的 电子部件 , 所述焊接部包括 分布在 所述基 板和所述 电子部 件之间 的由所 述第 二合金构 成的若 干个间隔 元件。
[0011]进 一步 地, 所述间隔 元件呈 球形, 所述间隔元件 的直径 大于等 于 10 微米并且 小于等于 200微米。
[0012]进 一步地 , 所述间隔元件 的熔点高 于所述焊 料的熔 点。
[0013]进 一步地 , 所述间隔元件 的熔点高 于 250摄氏度 。 [0014] 根据本 发明的 一些实 施方式 , 还提供了一 种将 电子部件 装配到 基 板 的方法, 包括: 将模板设置于在所 述基板 的表面 上, 所述基板的 表面包 括至 少一个 焊盘, 所述模板 具有在所 述基板 的焊盘上 方的开 口; 将前述中 任意 一项所述 的焊料 添加在所 述开 口内; 移除所述模 板; 将所述电子 部件 的接 触部定位 在所述 焊料上; 以及, 加热到 240摄氏度至 250摄氏度使 焊 料 回流以耦 合所述接 触部和 所述焊盘 , 其中, 所述第二合金 在焊料 回流期 间保 持固态并 且维持所 述电子部 件与所 述基板之 间的距 离。
[0015]进 一步地 , 所述距离在 10至 200微米之间 。
[0016] 由以上可以看 出, 本发明的 技术方 案所提 供的 间隔元件 在焊接 工 艺期 间依然 能保持 固态, 并且不会与焊料 和 /或基板之 间反应形 成介面 金 属共 化物。 由此使得电子部 件和基板 之间实现 稳固的 焊接, 提高了焊 接质 量 。 附图说 明
[0017] 本发明 的特征 、 特点、 优点和益处 通过以 下结合 附图的 详细描述 将变 得显而易 见。 [0018] 图 1显示一 个具体实 施方式 的基板组件 的示意 图。
[0019] 图 2显示一 个具体实 施方式 的形成基 板组件的 方法流程 示意图 。 [0020] 图 3显示一 个具体实 施方式 的银-铋的 二元相图 。
[0021] 图 4显示一 个具体实 施方式 的锡-铋的 二元相图 。 [0022] 图 5显示一 个具体实 施方式 的铋-铜的 二元相图 。 具体 实施方式
[0023] 下面, 结合附图详 细描述本 发明的 一些具体 实施方式 。
[0024] 本文公 开了与 用于在 焊接工 艺期间 维持基 板和组 件之间距 离的 间 隔元 件相关 的焊料和 装置。 在具体实 施方式 中, 基板组件包 括基板和 组件, 组件 可以经 由焊接 部 (Solder Joint) 被耦合到基板。 其中, 焊接部可 以 包括 间隔元件 , 间隔元件用 于在焊接 工艺期 间保持基 板与组件 之间的 距离。 [0025] 请参考 图 1, 图中示出了根据本发明一 个实施 方式的基 板组件 100, 基板 组件 100包括基板 102, 基板 102可以包括对本 领域普通 技术人 员来 说 已知的任 何可以为 组件提 供安装平 台的部 件。 例如部件可 以包括 引线或 引脚 、 芯片安装板 、 引线框、 衬底、 功率电子衬底、 印刷电路板、 载体或 芯片 载体、 半导体封 装等中的 至少一种 。 具体地, 基板 102包括介电材料 与位 于介电材 料内 的一个或 多个导 电元件, 所述导 电元件被 用于通过 基板 102 传导电信 号。 基板 102包括位于基板 102的表面 106上的一 个或多 个 焊盘 104, 焊盘 104可以被耦合 到基板 102 内的导电元件中 的一个或 多个, 并且 可以允许 电信号在 焊盘 104与焊盘 104所耦合到 的导电元件 之间传递 。 [0026] 基板组件 100还包括位 于与表 面 106相邻处的电子 部件 108, 电子 部件 108可 以包括任何 电子元器 件, 电子元器件包括无 源电子部 件、 有源 电子 部件、 半导体管芯、 半导体封装 结构、 传感器等 中的至少 一种。 例如, 无源 电子部件 可以包 括电阻器 、 电容器、 电感器等 中的至少 一种; 有源电 子部 件可以 包括二极 管、 晶体管、 集成电路 、 光电子器件等 中的至少 一种; 半导 体管芯包 括集成 电路、 无源电子部件、 有源电子 部件、 微机电结构等。 集成 电路例 如为逻辑 集成电路 、 模拟集成电路 、 混合信号集成 电路、 功率 集成 电路等 。 电子部件 108还包括一个或 多个焊 盘 110。 焊盘 110可以位 于 电子部件 108的表面 112处或延伸 到电子 部件 108的表面 112, 其中, 表面 112设置为 面向基板 102。 焊盘 110可以被耦合 到电子部 件 108内的 一个 或多个元 件 (诸如管芯) , 并且可以允许电信号在 焊盘 110与元件之 间传 递。
[0027]基 板组件 100 还包括一 个或多个 焊接部 114, 焊接部 114将基板 102 的焊盘 104耦合到组 件 108的焊盘 110。 焊接部 114由焊料 116形成 。 焊料 116可以 是包括基 于铅的焊 料、 无铅焊料、 银合金焊料其中之 一或者 各种 组合。 在一些实施 方式中 , 焊料 116可以包 括锡、 银、 铜、 铅、 氢、 氧、 氮、 或者各种组合。 本实施方式中 , 焊料 116包括第 一合金粉 末和第 二合 金粉末 , 其中, 第一合金粉末包 括固相线 温度在 200摄氏度到 250摄 氏度 之间的第 一合金 , 第二合金粉末包 括固相 线温度高 于 250摄氏度的第 二合 金。 具体地, 第一合金 包括锡或 者锡合 金, 第二合金包 括铋或者 铋合 金 。
[0028] 焊接部 114还包括一个 或多个 间隔元件 118。 间隔元件 118可以由 第二 合金粉末 构成。 间隔元件 118可以是包括一 个或多 个具有任 意的形 式 或形 状的元件 , 间隔元件 118的粒径可 以在约 10微米至 约 200微米的范 围内 。 例如, 间隔元件 118可以至少部 分地具有 圆形式 , 即球形、 椭圆形、 水滴 形等。 在本实施 方式中 , 间隔元件 118是呈球 形, 间隔元件 118的直 径可 以在约 10微米至 约 200微米的范 围内。 此外, 嵌入焊料 116中的间 隔元 件 118可以全部具有 基本相 似的尺寸 。 例如, 嵌入焊料 116中的所有 的球 形间隔元 件 118可以具有处于 上述范 围之一中 的相似直 径。
[0029] 间隔元件 118被散 布地嵌 入在焊料 116 内。 间隔元件 118可以包 括具 有比第 一合金粉 末更高 熔点的材 料。 例如, 第一合金粉 末可 以包括具 有在 170摄氏度 与 250摄氏度 之间的熔 点的材 料, 而间隔元件 118可以包 括具 有比 250摄氏度 更高的熔 点的材料 。 比如, 第一合金粉末 为具有 183 摄氏 度的熔点 的锡铅合 金、 或者为具有 240至 250摄氏度的熔 点的锡锑 合 金 。 而间隔元件 118包括具有比 250摄氏度更 高的熔 点的材料 。 此外, 间 隔元 件 118可以由具有 比第一 合金粉末 的熔点更 高熔点 的金属 、 聚合物中 的至 少一种制 成。 本实施方式 中, 包括金属 或由金属 制成 的间隔元件 118 包括 例如铜 、 银、 镍、 铝、 铋及其合金中的至少一种 或其各种 组合。 具体 地 , 间隔元件 118 由秘或者秘合金形成 , 例如间隔元件 118为熔点 在 262 摄氏 度的银铋 合金。 包括金属 或由金属 制成的 间隔元件 118可以 增加焊料 的 导热性 和 /或导电性 , 例如, 通过嵌入 由铜及 其合 金制成 的间 隔元件 118 可以增 加焊料 116 的传导性; 通过嵌入 由铋及其合 金制成 的间隔元 件 118 可以增 加焊料 116 的焊接稳定性 。 与包括金属或 由金属制 成的间 隔元 件相 比, 包括聚合物 或由聚合 物制成 的间隔元 件 118可以提供 良好的可 压 缩性 。 此外, 在一些实施方式 中, 包括聚合 物或由聚 合物制 成的间 隔元件 还可 以具有可 以增加 间隔元件 的传导性 的金属涂 层。 诸如锡涂层 。
[0030] 间隔元件 118 用于在焊 接工艺期 间保持 电子部件 108 与基板 102 之间 所期望 的最小距 离。 因此, 间隔元件 118具有与所 期望的最 小距离相 等 的粒径 , 例如: 直径、 长度、 宽度和 /或高度。 本实施方式 中, 间隔元 件 118是球形 , 间隔元件 118因此可 以具有 与所期望 的最小距 离相等 的直 径 。 在本实施方式中 , 间隔元件 118的直径可 以在约 10微米至约 200微 米的 范围内 , 更具体地在约 10微米 至约 150微米的 范围内 , 更具体地在 约 10微米至约 100微米 的范围 内, 更具体地在约 10微米至 约 60微米的 范围 内, 更具体地在 约 10微米至约 40微 米的范 围内, 更具体地在 约 10 微米 至约 30微米的范围 内。
[0031] 间隔元件 118维持 电子部件 108与 基板 102之间的所 期望的 最小 距离 可以提供 更好的 焊料 116疲劳寿命 以及在电子 部件 108下方的更 好的 环氧 树脂流动 性。 此外, 维持所期望的 最小距离 的间隔 元件 118还能够在 电子 部件 108和基板 102之间提供足 够的间隔 , 以清除在焊接 工艺期间 在 电子 部件 108 与基板 102 之间可能形 成的 任何 焊料 的桥接 ( Solder bridges) 或焊料球 (Solder balls) 。
[0032] 参考图 2, 图 2示出了用于形成 基板组件 100的方 法 200, 本实施 方式 中, 基板 102是由包 括铜的 材料制成 的印刷 电路板。 方法 200包括步 骤 202至 208, 具体地, 在放置模板步骤 202, 模板 (Stencil) 首先被定 位在 基板 102的表面 106上。 模板可以具有 一个或 多个开口 , 所述开口用 于在 模板被 定位在基 板 102的表面 106上的 时候使得基 板 102的一部分被 暴露 。 模板可以被布 置成所述 开口位于 与基板 102的焊盘 104相邻处 。 然 后继 续进行到 施加焊料 步骤 204。 [0033]在 施加焊 料步骤 204, 焊料 116被施加到基板 102的表面 106。 具 体地 , 可以在放置模 板步骤 202的模板仍 定位在基 板 102的表面 106上时 将焊 料 116施加到基板 102的表面 106, 其中, 焊料 116被施加到被模 板 的开 口所暴 露的表面 106的部分 , 被模板的开口暴 露的表 面 106可以包括 基板 102的焊 盘 104, 这可以使得焊料 116被施加 到基板 102的焊盘 104 上 。 焊料 116当被施加 到表面 106的时候可 以填充或 部分地 填充模板 的开 P 。
[0034] 焊料 116可以包括一 个或多 个间隔元 件 118。 包含一个或多个间隔 元件 118的焊料 116可以在焊 料 116被施加到基板 102的表面 106之前已 经被 组合。 具体地, 焊料 116包括第一 合金粉末 和第二 合金粉末 , 间隔元 件 118 由第二合金粉末 构成 。 第一合金粉末可 以是包括 基于铅 的焊料、 无 铅焊 料、 银合金焊料 其中之一 或者各 种组合 。 具体地, 第一合金粉末 可以 包括 锡、 银、 铜、 铅、 氢、 氧、 氮、 或者各种组合。 本实施方式中, 第一 合金 粉末包 括固相线 温度在 200摄氏度到 250摄氏度 之间的第 一合金 , 第 二合 金粉末 包括固相 线温度高 于 250摄氏度的第 二合金 。 更具体地, 第一 合金 粉末包 括锡或者 锡合金 , 第二合金粉末 包括铋或 者铋合 金。 更具体地, 焊料 116包括按 重量计 90%至 99. 99%之间的量的第一合金粉末 , 以及按重 量计 0. 01%至 10%之间的量的第 二合金粉 末。 更具体地 , 第一合金为 Sn- Ag-Cu(SAC305)无铅 焊料合 金, 第二合金 包括银铋 合金 , 银铋合金包括 按 重量 计不超过 20%的量的银 。 焊料 116还可 以包括一 定重量的 助焊剂 , 例 如按 重量计 8%至 12%的助 焊剂, 其余为第一 合金粉 末和第二 合金粉末 的 混合 物。 在一些实施 方式中 , 焊料 116包括按 重量计 9%的助 焊剂, 在一 些实 施方式 中, 焊料 116 包括按重量计 10%的 助焊剂 , 以及在一些实施 方式 中, 焊料 116包括按重 量计 10%的助焊 剂。 焊料 116 为膏状焊料, 焊料 116被施加 到基板 102的表面 106时可以维持 间隔元件 118的定位 。 在 已经将焊料 116施加到 基板 102的表面 106之后, 可以移除模板 。 然后 继续 进行到放 置电子部 件步骤 206。
[0035] 在放置 电子部件 步骤 206, 电子部件 108可以被定位在 基板 102上。 特别 地, 电子部件 108可以利用 焊盘 110而被定位在 基板 102的表面 106 上 , 焊盘 110可以位于焊 料 116上。 例如, 焊盘 110可以位于在施 加焊料 步骤 204中所 施加的焊 料 116上, 然后继续进行到 执行焊接 回流步骤 208。 [0036]在 执行焊 接回流步 骤 208, 可以对在放置电子 部件步骤 206中形成 的基 板 102和电子部件 108执行焊接 回流工艺 (Reflow) , 焊接回流工艺 可 以包括将基 板 102和电子部件 108加热到 240摄氏度至 255摄氏度之 间 的一 温度, 例如, 基板 102和电子部件 108被加热到 243摄氏度 、 245摄 氏度 、 248摄氏度或 250摄氏度 。 该温度在焊料 116的第一 合金粉 末的熔 点之 上, 但是在间隔 元件 118的熔点之下 。 例如, 当间隔元件 118包括银 铋合 金时, 参考图 3, 银铋合金的 二元相 图显示了 银铋的固 相线和液 相线, 其中 银铋合金 具有 262摄氏度 的熔点, 高于包括 SAC305的焊料 116的熔 点 (217摄氏度) 。 在执行加热之后焊料 116可以被冷 却, 从而使得焊 料 II6凝 固 (Solidify) 形成焊接部 114
[0037]在 焊接 回流工艺 期间, 由第二合金构成 的间隔 元件 118 保持固态 。 焊接 部 114包括第一合 金粉末和 间隔元件 118。 具体地, 当焊料 116的第 一合 金粉末熔 化时, 由于重力使得间 隔元件 118可以向下 朝向焊盘 104移 动, 从而导致间隔元件 118沿着焊 盘 104被布置开。 在焊接回流 工艺期 间, 间隔 元件 118 —直保持固态 , 所以间隔器元件 118可维持 电子部件 108与 基板 102之间所 期望的最 小距离 。 同时, 焊料 116的第一合金 粉末在 焊接 回流 工艺期 间可流动 以接触电子 部件 108 的焊盘 110 与基板 102 的焊盘 104, 并且当焊接 回流工 艺结束 时, 第一合金粉 末凝 固从而可 以耦合 焊盘 110 和焊盘 104。 参考图 4, 锡铋合金的二元 相图显 示了当焊 接回流 工艺 结束 时, 包含锡或锡合 金的焊料 116的第一 合金粉 末和间隔 元件 118在锡 铋界 面处没有 形成介 面金属共 化物 , 因此不会在锡铋 的界面 处产生应 力集 中的 情况。 再参考图 5, 铜铋合金的 二元相 图显示了包 含铜的基 板 102和 间隔 元件 118在铜铋界 面之间也 没有形成 介面金 属共化物 , 也不会在铜铋 的界 面处产生 应力集 中, 从而提高了焊 接的可靠 性。 [0038] 以上方法 200 仅仅是形成基板组 件 100 的示例性描述 , 本领域技 术人 员应当知 晓, 还可以通过 以上所述 不同步 骤的组合 来实现形 成基板 组 件 100, 例如可以先在基板 102的表面 106上施加 焊料 116的第一合金 粉 末 , 随后将一个或者 多个由第 二合金粉 末构成 的间隔元 件 118施加在第 一 合金 粉末的顶 部。 可选地, 间隔元件 118被施加在 焊料 116的第一合金 粉 末顶 部之前 , 可以通过回流 (热处理) 对焊料 116的第一 合金粉末 进行预 处理 , 焊料 116 的第一合金粉末还 可以被 电镀 /无电镀或者气 相沉积 , 从 而维 持焊料 116的定位。
[0039] 由此可见, 与现有技 术相比 , 本发明的实 施方式 提供的 间隔元 件 在焊 接工艺 期间依然 能保 持固态 , 并且不会与焊 料和 /或基板之 间反应 形 成介 面金属共 化物。 由此使得电子部件 和基板 之间实现 稳固的焊 接。

Claims

权 利 要 求 书
1、 一种焊料, 其特征在于, 其包括: 按重 量计 90%至 99. 99%之间的量的第一合 金粉末 , 其包括固相线 温 度在 170摄氏度 和 250摄氏 度之间的 第一合金 , 所述第一合金 包括锡或 锡 合金 ; 按重 量计 0. 01 %至 10%之间的量 的第二合 金粉末 , 其包括固相线 温 度高 于 250摄氏度 的第二合 金, 所述第二合 金包括 铋或者铋 合金。
2、 根据权利要 求 1 所述的焊料 , 其特征在于, 所述第二 合金包 括银 秘合 金, 所述银铋合金 中包括 按重量计 不超过 20%的量 的银。
3、 根据权利要 求 1 所述的焊料 , 其特征在于, 所述第二 合金粉末 的 粒径 大于等于 10微米并 且小于等 于 200微米 。
4、 根据权利要 求 1 所述的焊料 , 其特征在于, 所述第二 合金粉 末为 球形 。
5、 根据权利要 求 1 至 4 中任意一项所述 的焊料, 其特征在于, 其包 括按 照重量 计 88%至 92%的第 一合金粉 末和第 二合金粉 末的混 合物, 以 及按 重量计 8 %至 12%的助焊剂 。
6、 一种基板组 件, 其特征在于 , 包括: 基板 ; 以及经由权利要 求 1至 5中任意一 项所述 的焊料形 成的焊接 部 而耦 合到所 述基板 的电子部 件, 所述焊接部 包括分布 在所述 基板和 所述电 子部 件之间 的由所述 第二合金 构成的若 干个间 隔元件 。
7、 根据权利要 求 6 所述的基板组 件, 其特征在于 , 所述间隔元件 呈 球形 , 所述间隔元件 的直径大 于等于 10微米并且 小于等于 200微米。
8、 根据权利要 求 6或 7所述的基 板组件 , 其特征在于, 所述间隔元 件的 熔点高于 所述焊 料的熔点 。
9、 根据权利要 求 6或 7所述的基 板组件 , 其特征在于, 所述间隔元 件的 熔点高于 250摄氏度 。
10、 一种将电子 部件装配 到基板 的方法, 其特征在于, 包括: 放置 模板步骤 202: 将模板设置于在 所述基 板的表面 上, 所述基板 的 表面 包括至少 一个焊 盘, 所述模板具有 在所述 基板的焊 盘上方 的开口; 施加 焊料步骤 204: 将权利要求 1至 4中任意一 项所述 的焊料添 加在所述 开 口内并且移 除所述 模板; 放置 电子部件 步骤 206: 将所述电子 部件的接 触部定 位在所 述焊料上; 以及 , 执行焊 接回流 步骤 208: 加热到 240摄氏度 至 255摄氏度使焊料 回流 以耦 合所述 接触部和 所述焊 盘, 其中, 所述第二合金 在焊料 回流期 间保持 固态 并且维持 所述电子 部件与 所述基板 之间的距 离。
11、 根据权利要 求 10 所述的方法 , 其特征在于, 所述距离 在 10 至 200微 米之间 。
PCT/IB2020/060355 2019-11-07 2020-11-04 焊料、基板组件及其装配方法 WO2021140370A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911080058.0A CN112775580A (zh) 2019-11-07 2019-11-07 焊料、基板组件及其装配方法
CN201911080058.0 2019-11-07

Publications (1)

Publication Number Publication Date
WO2021140370A1 true WO2021140370A1 (zh) 2021-07-15

Family

ID=74095909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/060355 WO2021140370A1 (zh) 2019-11-07 2020-11-04 焊料、基板组件及其装配方法

Country Status (3)

Country Link
CN (1) CN112775580A (zh)
TW (1) TW202142338A (zh)
WO (1) WO2021140370A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040170524A1 (en) * 2001-06-12 2004-09-02 Petra Lambracht Unleaded solder
WO2008022530A1 (fr) * 2006-08-17 2008-02-28 Poshan Huang Brasure à l'étain et procédé de soudure par presse chauffante l'utilisant
US20170266765A1 (en) * 2016-03-21 2017-09-21 Indium Corporation Hybrid lead-free solder wire
US20190001408A1 (en) * 2016-03-07 2019-01-03 Murata Manufacturing Co., Ltd. Method of manufacturing joined body, and joining material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034483A1 (de) * 2009-07-22 2011-01-27 W.C. Heraeus Gmbh Bleifreie Hochtemperaturverbindung für die AVT in der Elektronik
EP3292943A1 (en) * 2016-09-12 2018-03-14 Interflux Electronics N.V. Lead-free solder alloy comprising sn, bi and at least one of p, mn, cu, zn, sb and its use for soldering an electronic component to a substrate
US20190206821A1 (en) * 2017-12-29 2019-07-04 Intel Corporation Substrate assembly with spacer element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040170524A1 (en) * 2001-06-12 2004-09-02 Petra Lambracht Unleaded solder
WO2008022530A1 (fr) * 2006-08-17 2008-02-28 Poshan Huang Brasure à l'étain et procédé de soudure par presse chauffante l'utilisant
US20190001408A1 (en) * 2016-03-07 2019-01-03 Murata Manufacturing Co., Ltd. Method of manufacturing joined body, and joining material
US20170266765A1 (en) * 2016-03-21 2017-09-21 Indium Corporation Hybrid lead-free solder wire

Also Published As

Publication number Publication date
TW202142338A (zh) 2021-11-16
CN112775580A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
JP4051893B2 (ja) 電子機器
KR100545008B1 (ko) 반도체소자와 그 제조방법 및 반도체장치와 그 제조방법
US7838954B2 (en) Semiconductor structure with solder bumps
KR100867871B1 (ko) 솔더 페이스트, 및 전자장치
JP5533665B2 (ja) 電子装置の製造方法、電子部品搭載用基板及びその製造方法
JP5649805B2 (ja) 半導体装置の製造方法
US20100105173A1 (en) Method of producing semiconductor device provided with flip-chip mounted semiconductor element
JP6004441B2 (ja) 基板接合方法、バンプ形成方法及び半導体装置
JPH09134934A (ja) 半導体パッケージ及び半導体装置
US20030189260A1 (en) Flip-chip bonding structure and method thereof
JP2017063180A (ja) 合金のフリップチップ接合
US20020089836A1 (en) Injection molded underfill package and method of assembly
JP2009099669A (ja) 電子部品の実装構造および実装方法
JP4022139B2 (ja) 電子装置及び電子装置の実装方法及び電子装置の製造方法
US20100167466A1 (en) Semiconductor package substrate with metal bumps
JP6398499B2 (ja) 電子装置及び電子装置の製造方法
WO2021140370A1 (zh) 焊料、基板组件及其装配方法
JP2004079891A (ja) 配線基板、及び、配線基板の製造方法
JP4940662B2 (ja) はんだバンプ、はんだバンプの形成方法及び半導体装置
JP3631230B2 (ja) 予備ハンダの形成方法
EP1039527A2 (en) Semiconductor device mounting structure
JP3836449B2 (ja) 半導体装置の製造方法
JP4065264B2 (ja) 中継基板付き基板及びその製造方法
JPH10209591A (ja) 配線基板
JP2001156207A (ja) バンプ接合体及び電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20829965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20829965

Country of ref document: EP

Kind code of ref document: A1