WO2021139765A1 - 资源单元合并指示的方法和通信装置 - Google Patents

资源单元合并指示的方法和通信装置 Download PDF

Info

Publication number
WO2021139765A1
WO2021139765A1 PCT/CN2021/070851 CN2021070851W WO2021139765A1 WO 2021139765 A1 WO2021139765 A1 WO 2021139765A1 CN 2021070851 W CN2021070851 W CN 2021070851W WO 2021139765 A1 WO2021139765 A1 WO 2021139765A1
Authority
WO
WIPO (PCT)
Prior art keywords
tone
rus
resource unit
combination
indication
Prior art date
Application number
PCT/CN2021/070851
Other languages
English (en)
French (fr)
Inventor
狐梦实
于健
里德里·奥德
特所迪克·根纳季
西隆·希米
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2022008564A priority Critical patent/MX2022008564A/es
Priority to JP2022542355A priority patent/JP7585329B2/ja
Priority to PL21738465.0T priority patent/PL4080966T3/pl
Priority to AU2021206754A priority patent/AU2021206754B2/en
Priority to BR112022013699A priority patent/BR112022013699A2/pt
Priority to EP24186454.5A priority patent/EP4478649A2/en
Priority to KR1020227027683A priority patent/KR20220126752A/ko
Priority to EP21738465.0A priority patent/EP4080966B1/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3164366A priority patent/CA3164366A1/en
Publication of WO2021139765A1 publication Critical patent/WO2021139765A1/zh
Priority to US17/811,457 priority patent/US20220353029A1/en
Priority to US18/331,787 priority patent/US20230318764A1/en
Priority to US18/507,876 priority patent/US20240154746A1/en
Priority to AU2024203821A priority patent/AU2024203821A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This application relates to the field of communications, and more specifically, to a method and a communication device for resource unit merge indication.
  • the 802.11 standard needs to be further improved in the allocation of resources.
  • the frequency band resource allocation of a user is based on a resource unit (Resource Unit, RU) as a unit.
  • resource unit Resource Unit
  • multiple RUs may be included in the form of 26-tone RU, 52-tone RU, and 106-tone RU.
  • tone represents sub-carrier.
  • 802.11ax currently only supports the allocation of a single RU to one or more users, and does not support the allocation of multiple continuous or discontinuous RUs to one or more users. This will reduce the RU allocation flexibility of the system, and also make the spectrum utilization rate of the system low when the preamble is punctured.
  • the present application provides a method and communication device for resource unit combination indication, which can support one or more users to use multiple continuous or discontinuous RUs for data transmission, and indicate the combination of multiple RUs to the user, improving The allocation flexibility of the system RU is improved, and the system spectrum utilization rate is improved.
  • a method for resource unit merging instructions is provided.
  • the execution subject of the method may be a sending device.
  • the sending device may be an AP or a chip applied to the sending device.
  • the method includes: determining physical Layer protocol data unit PPDU, the PPDU includes a signaling field, the signaling field includes a resource unit allocation subfield and a merge indication corresponding to the resource unit allocation subfield, the resource unit allocation subfield indicates multiple resource units, and the merge indication Used to indicate the combined information of the multiple resource units;
  • the resource unit combination indication method provided in the first aspect can indicate the combination of small RUs within 20 MHz through the combination indication in the signaling field, thereby supporting one or more users to use multiple continuous or discontinuous RUs Data transmission is performed, and the combination of multiple RUs is indicated to the user, which improves the flexibility of system RU allocation and improves system spectrum utilization.
  • a method for resource unit merging indication is provided.
  • the execution subject of the method may be a receiving device.
  • the receiving device may be an STA or a chip applied to the receiving device.
  • the method includes: receiving physical Layer protocol data unit PPDU, the PPDU includes a signaling field, the signaling field includes a resource unit allocation subfield and a merge indication corresponding to the resource unit allocation subfield, the resource unit allocation subfield indicates multiple resource units, and the merge indication It is used to indicate the combination information of the multiple resource units; according to the PPDU, the combination information of the multiple resource units is determined.
  • the resource unit combination indication method provided in the second aspect can indicate to the user the combination of small RUs within 20 MHz through the combination indication in the signaling field, and can support one or more users to use multiple continuous or discontinuous RU performs data transmission, which improves the flexibility of system RU allocation and improves system spectrum utilization.
  • the small RU within 20 MHz includes: 26-tone RU, 52-tone RU, and 106-tone RU.
  • the small RUs do not merge across 20 MHz.
  • the merging between small RUs includes: a 26-tone RU and a 52-tone RU are merged into a Multi-RU, a 26-tone RU and a 106-tone RU is merged into one Multi-RU, and one 52-tone RU and one 106-tone RU are merged into one Multi-RU.
  • the combination indication is included in the resource unit allocation subfield; or, the signaling field further includes a multiple resource unit allocation field, and the multiple resource unit allocation field Including the merger instruction.
  • the signaling field may be HE-SIG-B, or it may be EHT-SIG, or it may also be a signaling field in 802.11 in the future network system .
  • the combination indication includes 2 bits; the combination indication is used to indicate the number of Multi-RUs obtained by combining the multiple resource units, where one Multi-RU The RU is composed of a combination of at least two resource units among the multiple resource units.
  • the one Multi-RU when the number of the Multi-RU is 1, the one Multi-RU is: a combination of a 26-tone RU and a 52-tone RU , Or a combination of a 26-tone RU and a 106-tone RU, or a combination of a 52-tone RU and a 106-tone RU;
  • one Multi-RU is: one is composed of a combination of 26-tone RU and one 52-tone RU, and the other Multi-RU is: A 26-tone RU and a 106-tone RU are combined, or each of the two Multi-RUs is composed of: one is a combination of a 26-tone RU and a 52-tone RU;
  • each of the 3 Multi-RUs is composed of a combination of a 26-tone RU and a 52-tone RU.
  • the merging indicator includes 1 bit, the merging indicator takes a first value to indicate that the plurality of resource units are not to be merged, and the merging indicator takes a second value to use It indicates that at least two RUs in the multiple resource units are merged into a Multi-RU.
  • the Multi-RU is a combination of 56-tone RU and adjacent 26-tone RU; or, the Multi-RU is The 106-tone RU is combined with the adjacent 26-tone RU; or, the Multi-RU is a combination of 106-tone RU and 52-tone RU.
  • the combination indicator takes a first value to indicate that the multiple resource units are not to be combined, and the combination indicator takes a second value to indicate the multiple resource units
  • the first 52-tone RU or the first 106-tone RU in RU is merged with the adjacent 26-tone RU
  • the merge indication takes the third value to indicate the second 106-tone RU of the multiple resource units Merging with the adjacent 26-tone RU
  • the merge indication takes a fourth value to indicate that the third 52-tone RU in the multiple resource units is merged with the adjacent 26-tone RU.
  • a method for resource unit merging instructions is provided.
  • the execution subject of the method may be a sending device.
  • the sending device may be an AP or a chip applied to the sending device.
  • the method includes: determining physical A layer protocol data unit PPDU, the PPDU includes a signaling field, the signaling field includes multiple resource unit allocation subfields and multiple merge indications, the multiple resource unit allocation subfields indicate multiple resource units, and the multiple merge indications Used to indicate the combination information of the multiple resource units, one combination indication corresponds to the RU indicated by one resource unit allocation subfield, and one resource unit is 242-tone RU, 484-tone RU or 996-tone RU;
  • the third aspect provides the method of resource unit combination indication, through the combination indication in the signaling field, it can indicate the combination of large RUs across 242-tone, which can support one or more users to use multiple continuous or discontinuous
  • the large RU performs data transmission and indicates the combination of multiple large RUs to the user, which improves the flexibility of system RU allocation and improves the system's spectrum utilization in the case of preamble puncturing.
  • a method for resource unit merging instructions is provided.
  • the execution subject of the method may be a receiving device.
  • the receiving device may be an STA or a chip applied to the receiving device.
  • the method includes: receiving physical A layer protocol data unit PPDU, the PPDU includes a signaling field, the signaling field includes multiple resource unit allocation subfields and multiple merge indications, the multiple resource unit allocation subfields indicate multiple resource units, and the multiple merge indications Used to indicate the combination information of the multiple resource units, one combination indication corresponds to the RU indicated by one resource unit allocation subfield, and one resource unit is 242-tone RU, 484-tone RU or 996-tone RU;
  • the method for resource unit combination indication provided by the third aspect can support one or more users to use multiple continuous or non-contiguous RUs by determining the combination of large RUs across 242-tones according to the combination indication in the received signaling field. Continuous large RUs perform data transmission, which improves the flexibility of system RU allocation and improves the spectrum utilization of the system when the preamble is punctured.
  • the signaling field may be HE-SIG-B, or may also be EHT-SIG, or may also be a signaling field in 802.11 in the future network system .
  • the combination indication is included in the corresponding resource unit allocation subfield; or, the signaling field further includes a multi-resource unit allocation field, and the multi-resource unit The allocation field includes the multiple merging instructions.
  • the merging instruction takes the first value to indicate that the RU corresponding to the merging instruction is not to be merged; among the multiple merging instructions, the value is all the second value. At least two merging of the value indicates merging of the corresponding at least two RUs.
  • the merging instruction takes a first value, indicating that the RU corresponding to the merging instruction does not merge; the merging instruction takes a second value, indicating the RU corresponding to the merging instruction Merged with other RUs into a Multi-RU, and this RU is the first RU in the Multi-RU; the merge instruction takes the third value, indicating that the RU corresponding to the merge instruction merges with other RUs into a Multi-RU, and the RU is The middle RU in the Multi-RU; the merge indication takes the fourth value, indicating that the RU corresponding to the merge indication is merged with other RUs into a Multi-RU, and the RU is the last RU in the Multi-RU.
  • the merging instruction takes a first value to indicate that the RU corresponding to the merging instruction does not merge; the merging instruction takes a second value to indicate the merging It indicates that the corresponding RU is merged with other RUs in the preset position into a Multi-RU.
  • a communication device in a fifth aspect, includes a unit for executing the steps in the first aspect or any possible implementation of the first aspect, or for executing the third aspect or the third aspect.
  • the unit of each step in any possible implementation manner.
  • a communication device in a seventh aspect, includes at least one processor and a memory.
  • the at least one processor is configured to execute the above first aspect or the method in any possible implementation of the first aspect, or to execute The above third aspect or any possible implementation of the third aspect.
  • a communication device in an eighth aspect, includes at least one processor and a memory.
  • the at least one processor is configured to execute the above second aspect or the method in any possible implementation of the second aspect, or to execute The above fourth aspect or any possible implementation of the fourth aspect.
  • a communication device in a ninth aspect, includes at least one processor and an interface circuit.
  • the at least one processor is configured to execute the above first aspect or the method in any possible implementation of the first aspect, or to Perform the above third aspect or any possible implementation of the third aspect.
  • a communication device in a tenth aspect, includes at least one processor and an interface circuit.
  • the at least one processor is configured to execute the above second aspect or the method in any possible implementation of the second aspect, or to Perform the above fourth aspect or any possible implementation method of the fourth aspect.
  • a network device includes the communication device provided in the above fifth aspect, or the terminal device includes the communication device provided in the above seventh aspect, or the terminal device includes the above ninth aspect Provided communication device.
  • a terminal device in a twelfth aspect, is provided, the network device includes the communication device provided in the sixth aspect, or the terminal device includes the communication device provided in the eighth aspect, or the terminal device includes the tenth aspect described above Provided communication device.
  • a computer program product includes a computer program.
  • the computer program product includes a computer program.
  • the computer program is executed by a processor, it is used to execute any one of the first to fourth aspects, or the first A method in any possible implementation manner of the first to fourth aspects.
  • a computer-readable storage medium stores a computer program.
  • the computer program When the computer program is executed, it is used to execute any one of the first to fourth aspects, Or, the method in any possible implementation of the first aspect to the fourth aspect.
  • a communication system which includes the device provided in the fifth aspect and the device provided in the sixth aspect; or
  • the system includes the device provided by the seventh aspect and the device provided by the eighth aspect; or
  • the system includes the device provided by the ninth aspect and the device provided by the tenth aspect; or
  • the system includes the network equipment provided by the eleventh aspect and the terminal equipment provided by the twelfth aspect.
  • Fig. 1 is a schematic diagram of an example of a communication system applicable to an embodiment of the present application.
  • Figure 3 is a schematic diagram of various permutations and combinations of resource units when the data packet bandwidth is 20 MHz.
  • Figure 4 is a schematic diagram of various permutations and combinations of resource units when the data packet bandwidth is 40 MHz.
  • Figure 5 is a schematic diagram of various permutations and combinations of resource units when the data packet bandwidth is 80 MHz.
  • Fig. 6 is a schematic diagram of the structure of the content channel when the data packet bandwidth is 20 MHz.
  • FIG. 7 is a schematic diagram of the structure of the content channel when the data packet bandwidth is 40 MHz.
  • Fig. 8 is a schematic diagram of the structure of the content channel when the data packet bandwidth is 80 MHz.
  • FIG. 9 is a schematic interaction diagram of a method for resource unit combination indication provided by an embodiment of the present application.
  • FIG. 10 is a schematic interaction diagram of another example of a method for resource unit merge indication provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an example of signaling fields provided for this application.
  • FIG. 12 shows a schematic diagram of an example of multiple resource unit allocation fields provided by an embodiment of this application.
  • FIG. 13 shows a schematic diagram of another example of multiple resource unit allocation fields provided by an embodiment of this application.
  • Fig. 14 is a schematic diagram of an example of signaling fields provided for this application.
  • FIG. 15 shows another example of a schematic diagram of determining a resource unit according to the location information of the resource unit according to another example of the embodiment of the present application.
  • Fig. 16 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of another example of a communication device provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of another example of a communication device provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of an example of terminal equipment provided by an embodiment of the present application.
  • FIG. 21 is a schematic diagram of another example of terminal equipment provided by an embodiment of the present application.
  • Fig. 22 is a schematic diagram of a network device provided by an embodiment of the present application.
  • FIG. 23 is a schematic diagram of an example of various combinations of resource units when the data packet bandwidth is 20 MHz according to an embodiment of the present application.
  • FIG. 24 is a schematic diagram of an example of various combinations of resource units when the data packet bandwidth is 40 MHz provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example, a wireless local area network (WLAN) system.
  • WLAN wireless local area network
  • the embodiments of the present application can be applied to the International Institute of Electrotechnical and Electronic Engineering (Institute of Electrical and Electronic Engineering) currently adopted by WLAN. electrical and electronics engineers, IEEE) 802.11ac/802.11ax/802.11be in the 802.11 series of protocols or any of the future IEEE 802.11 series.
  • Fig. 1 shows an example of a schematic diagram of a communication system suitable for an embodiment of the present application.
  • the communication system shown in Fig. 1 may be a WLAN system or a wide area network system.
  • the communication system in Figure 1 may include one or more APs and one or more STAs.
  • Figure 1 uses two APs (AP 1 and AP 2) and two user stations (stations, STAs) (STA 1 and STA 2).
  • the AP and the AP, the AP and the STA, and the STA and the STA can communicate wirelessly through various standards.
  • the solution provided in this application can be applied to communication between AP and AP, communication between STA and STA, and communication between AP and STA.
  • User station can also be called terminal, user unit, access terminal, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, user device, or user equipment (user equipment, UE).
  • the station can be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • the site is a mobile phone that supports wireless fidelity (WiFi) communication, a tablet that supports WiFi communication, a set-top box that supports WiFi communication, a smart TV that supports WiFi communication, and a smart wearable that supports WiFi communication.
  • WiFi wireless fidelity
  • the site can support devices of the 802.11 standard under the current network system or the future network system.
  • the access point AP involved in this application is a device deployed in a wireless communication network to provide wireless communication functions for stations, and can be used as a WLAN hub.
  • the access point AP can also be a base station, a router, a gateway, Repeaters, communication servers, switches or bridges, etc., where the base station may include various forms of macro base stations, micro base stations, and relay stations.
  • the above-mentioned devices that provide wireless communication function services for the station STA are collectively referred to as an access point or an AP.
  • the AP and the STA may communicate through a wireless local area network, and transmit data from the STA to the network side, or transmit data from the network side to the STA.
  • APs are also called wireless access points or hotspots.
  • APs are the access points for mobile users to enter the wired network. They are mainly deployed in homes, buildings, and campuses. The typical coverage radius is tens of meters to hundreds of meters. Of course, they can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired and wireless networks, and its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the AP may be a terminal device or a network device with a WiFi chip.
  • the AP may be a device that supports the 802.11 standard under the current network system or the future network system.
  • a multi-user multiple-input multiple-output (multi-users multiple-input multiple-output, MU-MIMO) technology can be used for wireless communication between the AP and the STA.
  • each STA is equipped with one or more antennas.
  • Each AP supports multi-site coordination and/or joint transmission.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network equipment or terminal equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in FIG. 1.
  • the embodiment of the present application does not limit the number of APs and STAs included in the communication system.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • 802.11ax In terms of bandwidth configuration, 802.11ax currently supports bandwidth configurations including: 20MHz, 40MHz, 80MHz, 160MHz and 80+80MHz. Among them, the difference between 160MHz and 80+80MHz is that the former is a continuous frequency band, while the two 80MHz of the latter can be separated. In 802.11be, configurations such as 320MHz will be supported.
  • the allocation of frequency band resources of a user is not in units of channels, but in resource units (RU).
  • RU resource units
  • multiple RUs can be included in the form of 26-tone RU, 52-tone RU, and 106-tone RU.
  • tone represents sub-carriers
  • 26-tone RU represents an RU composed of 26 sub-carriers
  • the 26-tone RU can be allocated to one user.
  • the RU can also be allocated to one or more users in the form of 242-tone, 484-tone, 996-tone, etc.
  • 802.11ax currently only supports the allocation of a single RU to one or more users. For example, the number of MU MIMO users supported by a resource unit (106-tone RU) with a size greater than or equal to 106 subcarriers can be Greater than or equal to 8. However, 802.11ax does not support the allocation of multiple continuous or discontinuous RUs to one or more users. This will reduce the RU allocation flexibility of the system, and also make the spectrum utilization rate of the system low when the preamble is punctured.
  • this application provides a method for resource unit combination indication, which can support one or more users to use multiple continuous or discontinuous RUs for data transmission, and indicate the combination of multiple RUs to the user,
  • the allocation flexibility of the system RU is improved, and the system spectrum utilization rate is improved.
  • Signaling fields are mainly used to notify users of RU allocation.
  • SIG is coded separately on each 20MHz.
  • the signaling field can be High Efficient Signal Field-B (HE-SIG-B), or it can be ultra-high throughput signaling.
  • Field Extremely High Throughput Signal Field, EHT-SIG
  • the information structure of the SIG on each 20MHz is shown in Figure 2.
  • HE-SIG is divided into two parts.
  • the first part is a common field (common part field), including 1 to N resource unit (RU) allocation subfields (RU allocation subfield).
  • resource unit allocation subfield when the bandwidth is greater than or equal to 80MHz (Center 26-Tone) resource unit indication subfield (Center 26-Tone RU indication), and then the cyclic redundancy code (cyclic redundancy code, CRC) and the Tail subfield for cyclic decoding.
  • One resource unit allocation subfield corresponds to the allocation of a 20MHz frequency domain resource unit, and one resource unit subfield indicates the size and location of one or more resource units included in 20MHz.
  • a site-by-site field (also called a user-specific field)
  • M site fields are usually two as a group, each There are a CRC and a tail field after the two site fields. Except for the last group, there may be one or two site fields.
  • the site field may also be referred to as a user field.
  • a resource unit allocation subfield is a resource unit allocation index, and a resource unit allocation index indicates the size and location of one or more resource units included in 20 MHz.
  • the sequence of at least one site field corresponds to the allocation sequence of the resource sheet.
  • Each site field indicates the site information of the allocated STA within the RU included in the allocation of the resource unit.
  • the resource unit allocation index is also used to indicate the support of resource units composed of greater than or equal to 106 subcarriers.
  • the number of MU MIMO users The number of MU MIMO users is greater than or equal to 8.
  • FIG. 3 is a schematic diagram of possible resource unit allocation methods when the data packet bandwidth is 20 MHz.
  • the entire 20MHz bandwidth can be composed of an entire resource unit (242-tone RU) composed of 242 subcarriers, or a resource unit composed of 26 subcarriers (26-tone RU), and a resource unit composed of 52 subcarriers (52-tone RU).
  • RU and a resource unit (106-tone RU) composed of 106 sub-carriers.
  • “Tone” can be understood as a sub-carrier.
  • it also includes some guard (Guard) subcarriers, null subcarriers, or direct current (DC) subcarriers.
  • Guard guard
  • DC direct current
  • FIG. 4 shows various allocation modes of resource units when the data packet bandwidth is 40 MHz.
  • the entire bandwidth is roughly equivalent to a copy of the 20MHz sub-carrier distribution.
  • the entire 40MHz bandwidth can be composed of a resource unit (484-tone RU) composed of a whole 484 subcarriers, or can be composed of various combinations of 26-tone RU, 52-tone RU, 106-tone RU, and 242-tone RU.
  • FIG. 5 is a schematic diagram of possible resource unit allocation methods when the data packet bandwidth is 80 MHz.
  • the entire bandwidth is roughly equivalent to a copy of the 20MHz sub-carrier distribution.
  • the entire 80MHz bandwidth can be composed of an entire resource unit (996-tone RU) composed of 996 subcarriers, or it can be composed of 484-tone RU, 242-tone RU, 106-tone RU, 52-tone RU, 26-tone RU Various combinations.
  • an intermediate 26-tone RU Center 26-Tone RU
  • the entire bandwidth can be regarded as a copy of the distribution of two 80Mhz subcarriers, and the entire bandwidth can be composed of an entire 2 ⁇ 996-tone RU (resource unit composed of 1992 subcarriers). It can also be composed of various combinations of 26-tone RU, 52-tone RU, 106-tone RU, 242-tone RU, 484-tone RU, and 996-tone RU. And, in the middle of the entire 80MHz bandwidth, there is also an intermediate 26-tone RU composed of two 13-tone subunits.
  • the 242-tone RU is used as the unit, the 242-tone RU on the left can be regarded as the lowest frequency of the data packet bandwidth, and the 242-tone RU on the right can be regarded as the highest frequency.
  • the 242-tone RU can be labeled 1, 2, 3, and 4 in order from left to right.
  • the 242-tone RU can be labeled from left to right: 1, 2, ... 8.
  • the eight 242-tone RUs correspond to the eight 20MHz channels in a one-to-one correspondence from low to high frequency, but due to the existence of the 26-tone RU in the middle, they do not completely overlap in frequency.
  • the 802.11ax introduces the concept of content channel (CC).
  • the content channel can be understood as the content included in SIG-B.
  • the content channel can include at least one resource unit allocation subfield (RU allocation subfield), multiple site-by-site fields, a CRC for verification, and a tail for cyclic decoding. (Tail) subfield.
  • Figure 6 shows a schematic diagram of the content channel structure when the data packet bandwidth is 20 MHz. As shown in Figure 6, when the data packet bandwidth is only 20MHz, SIG-B contains only one content channel, and the content channel contains one resource unit allocation subfield, which is used to indicate the first 242-tone RU in the data part. Indication of resource unit allocation within the range.
  • One resource unit allocation subfield is a resource unit allocation index, which is used to indicate all possible resource unit allocation methods within a 242-tone RU.
  • the index indicates the number of users performing SU/MU-MIMO transmission in the RU.
  • the 8-bit index can be used to indicate all possible resource unit allocation methods in a 242-tone RU.
  • an 8-bit index is used to indicate the number of users performing SU/MU-MIMO transmission in the RU.
  • the 8-bit index resource unit index table is shown in Table 1.
  • the first column represents an 8-bit index
  • the middle columns #1 to #9 represent different resource units.
  • the numbers in the table represent the number of subcarriers contained in the resource unit.
  • the index 00111y 2 y 1 y 0 indicates that the entire 242-tone RU is divided into four RUs: 52-tone RU, 52-tone RU, 26-tone RU, and 106-tone RU.
  • the number of entries in the third column indicates the number of entries allocated by the same resource unit, that is, the number of different indexes corresponding to the same resource unit arrangement.
  • y 2 y 1 y 0 there are 8 entries because while indicating the allocation of 242-tone RU resource units, y 2 y 1 y 0 is also used to indicate that the 106-tone RU
  • the number of users for SU/MU-MIMO transmission included in the table corresponds to 1 to 8 users. That is, a 3-bit y 2 y 1 y 0 is used to indicate 1 to 8 users supported in the 106-tone RU.
  • the 8 entries can be regarded as 8 independent rows in the table. These 8 rows correspond to the same resource unit allocation method, and each row corresponds to the number of users supported in a different 106-tone RU.
  • the site-by-site field indicates the site information of the STAs allocated within the 242-tone RU according to the order of resource allocation.
  • Most of the RU configurations shown in Table 1 are within the range of 242-tone, and a small number of them indicate that the RU belongs to 242-tone RU, 484-tone RU, and 996-tone RU. Among them, every 8-bit resource unit allocation subfield will inform the allocation status of the RU in the corresponding 20MHz range. It can be understood that: 20MHz bandwidth corresponds to 1 resource unit allocation subfield, 40MHz bandwidth corresponds to 2 resource unit allocation subfields, 80MHz bandwidth corresponds to 4 resource unit allocation subfields, and 160MHz bandwidth corresponds to 8 resource unit allocation subfields, 320MHz The bandwidth corresponds to 16 resource unit allocation subfields.
  • Figure 7 shows a schematic diagram of the content channel structure when the data packet bandwidth is 40 MHz.
  • CC1 on the first SIG-B channel includes the resource unit allocation subfield within the first 242-tone RU and the corresponding site-by-site field.
  • the CC2 of the second HE-SIG-B channel includes the resource unit allocation subfield within the second 242-tone RU and the corresponding site-by-site field.
  • Figure 8 shows a schematic diagram of the content channel structure when the data packet bandwidth is 80 MHz.
  • the resource unit allocation information is indicated on 4 channels according to the structure of CC1, CC2, CC1, and CC2 according to the frequency from low to high as a whole, including the first and third 242-tone RU ranges in CC1
  • CC2 includes the second and fourth resource unit subfields within the scope of 242-tone RU and the corresponding site-by-site fields within the scope.
  • an 80MHz middle 26-tone RU indicator field is included, indicating whether the resource unit is used for data transmission.
  • the signaling field can be signaling field B or extremely high throughput.
  • RUs are divided into two types: small-size RU and large-size RU.
  • the set is ⁇ 26,52,106 ⁇
  • the set of large RUs is ⁇ 242,484,996 ⁇
  • the numbers in the set indicate the number of subcarriers that make up the RU.
  • the following RU merging rules can be set:
  • the merging between small RUs should be continuous, optional, or discontinuous.
  • the combination of multiple continuous or discontinuous RUs is referred to as multi-RU (Multi-RU).
  • Multiple continuous or discontinuous RUs that make up the Multi-RU may be allocated to one or more users.
  • multiple continuous or discontinuous RUs may be defined by 802.11ax, and the number of combined RUs is not limited.
  • the combination of two small RUs within 20 MHz can also be understood as the combination of two small RUs into one Multi-RU.
  • possible small RU merging methods include: (52-tone RU+26-tone RU), (106-tone RU+26-tone RU), (52-tone RU+26-tone RU), (52-tone RU+26-tone RU), (52-tone RU+26-tone RU), (52-tone RU+26-tone RU), (52-tone RU+26-tone RU), (52-tone RU+26-tone RU), (52-tone RU+26-tone RU), (52-tone RU+26-tone RU), (52-tone RU+26-tone RU) Tone RU+106-tone RU), in other words, there can be three types of Multi-RU included in 20MH;
  • the first type of Multi-RU consists of a combination of a 52-tone RU and a 26-tone RU.
  • the second type of Multi-RU includes: a 106-tone RU and a 26-tone RU combined.
  • the third type of Multi-RU includes: a combination of a 52-tone RU and a 106-tone RU.
  • any one of the above three types of Multi-RU may appear, or the above may appear The first Multi-RU and the second Multi-RU of the three types of Multi-RU, and there is no restriction on the number (or number) of the first Multi-RU, for example, one or more The first Multi-RU.
  • the frequency domain resource unit allocation mode indicated by a certain RU allocation subfield includes two 52-tone RUs and at least two 26-tone RUs
  • the frequency domain resource unit allocation mode may include two The first Multi-RU.
  • a 52-tone RU is combined with a 26-tone RU to form a first type of Multi-RU
  • another 52-tone RU is combined with another 26-tone RU to form another type of Multi-RU.
  • Table 2 shows an example of possible combinations of small RUs within 20MHz
  • A indicates that there is a first type of Multi-RU in the 20MHz, that is, there is a combination of a 52-tone RU and a 26-tone RU
  • B indicates that there are two first types of Multi-RU in the 20MHz, that is, There is a combination of a 52-tone RU and a 26-tone RU, and a combination of another 52-tone RU and another 26-tone RU
  • C indicates that there are three Multi-RUs of the first type in the 20MHz, that is, there is a combination of a 52-tone RU and a 26-tone RU, another combination of a 52-tone RU and another 26-tone RU, and another The merger of 52-tone RU and another 26-tone RU.
  • D indicates that there is a third type of Multi-RU in the 20MHz, that is, there is a combination of a 106-tone RU and a 56-tone RU.
  • E indicates that there is a second type of Multi-RU in the 20MHz, that is, there is a combination of a 106-tone RU and a 26-tone RU.
  • the "or" in the table indicates that in the allocation of the same resource unit, only one of the corresponding A to E can appear.
  • resource unit allocation methods 52-tone RU, 26-tone RU, 26-tone RU, 26-tone RU, 26-tone RU, 26-tone RU, 52-tone RU
  • the first The (A, or) after the 52-tone RU and the second 52-tone RU (B, or) indicate: in this resource unit allocation method, the possible Multi-RUs are: two 52-tone RUs Any 52-tone RU and any 26-tone RU are merged into a first type of Multi-RU, that is, there is a first type of Multi-RU, which is merge mode A.
  • the first 52-tone RU is combined with any 26-tone RU to form a first type of Multi-RU
  • the second 52-tone RU is combined with any other 26-tone RU to form another first type of Multi-RU.
  • -RU that is, there are two Multi-RUs of the first type, which are merge mode B.
  • the possible Multi-RU is: any one of two 52-tone RUs is combined with one 26-tone RU A Multi-RU of the first type, that is, there is a Multi-RU of the first type, which is the combination mode A.
  • any 52-tone RU of the two 52-tone RUs and a 106-tone RU are combined to form a third type of Multi-RU, that is, there is a third type of Multi-RU, which is the combination mode D.
  • a 106-tone RU and a 26-tone RU are merged into a second type of Multi-RU, that is, there is a second type of Multi-RU, which is merge mode E.
  • the second type of Multi-RU and the third type of Multi-RU do not limit the positions of 52-tone RU, 106-tone RU, and 26-tone RU in each of the foregoing merging methods. That is to say, the above-mentioned combination method A only means that there is a first type of Multi-RU (52-tone RU+26-tone RU) in the corresponding RU allocation, for the location of a 26-tone RU and a 52-tone RU No restrictions.
  • the above combination method B only means that there are two first types of Multi-RU (52-tone RU+26-tone RU), (52-tone RU+26-tone RU)) in the corresponding RU allocation.
  • the positions of -tone RU and 52-tone RU are also not restricted.
  • the above merging method D only means that there is a third type of Multi-RU (106-tone RU+52-tone RU) in the corresponding RU allocation.
  • 106-tone RU and a 52-tone RU The location is also not restricted.
  • the above merging method E only means that there is a second type of Multi-RU (106-tone RU+26-tone RU) in the corresponding RU allocation, and does not apply to the positions of a 106-tone RU and a 26-tone RU that are combined. limit.
  • the small RU merging method shown in Table 2 is an unrestricted merging method, and there are no restrictions on the locations of the 106-tone RU, 26-tone RU, and 52-tone RU that are merged.
  • all 52-tone RU or 106-tone RU that can be combined with 26-tone RU can follow the following principles: within 20MHz, they can be the nearest 26-tone RU. Tone RU merge.
  • the 26-tone RU on the right may be merged preferentially at the same distance; the 26-tone RU on the left may be merged preferentially at the same distance; it may also be 106-tone RU or 52-tone RU on the left at the same distance.
  • the 26-tone RU on the left or right is preferentially merged within the range of tone RU, and the 26-tone RU on the right or left is preferentially merged within the range of 106-tone RU or 52-tone RU on the right under the same distance.
  • the left or right 26-tone RU that is continuous with a 52-tone RU can be combined with the 52-tone RU to form a first Kind of Multi-RU.
  • the second type of Multi-RU (106-tone RU+26-tone RU) it can be the left or right 26-tone RU that is continuous with a 106-tone RU and the 106-tone RU to form a second type of Multi-RU. -RU.
  • the third type of Multi-RU (106-tone RU+52-tone RU) it can be the 52-tone RU on the left or the right that is continuous with a 106-tone RU (or the closest distance) and the 106-tone RU is merged with the 106-tone RU Form a third type of Multi-RU.
  • the aforementioned small RU merging method is a restricted merging method, that is, there are certain restrictions on the locations of the 106-tone RU, 26-tone RU, and 52-tone RU to be merged.
  • Table 3 shows another possible combination of small RUs within 20 MHz provided in the embodiment of this application.
  • RUs marked (a) can be combined to obtain a Multi-RU
  • RUs marked (b) can be combined to obtain a Multi-RU.
  • Table 4 shows another possible combination of 52-tone RU and 106-tone RU within 20 MHz provided in this embodiment of the application.
  • RUs marked (c) can be combined to obtain a Multi-RU.
  • Table 3 and Table 4 show restricted small RU merging methods.
  • the merging of large RUs across 242-tone in the embodiment of the present application can also be understood as merging multiple large RUs into one Multi-RU.
  • a large RU combination method can be used to combine and allocate multiple RUs that have not been punctured to one or more users, which improves the flexibility and flexibility of RU allocation in the case of preamble puncturing. Spectrum utilization.
  • Table 5 shows possible RU merging methods for 80MHz bandwidth. Since the 80MHz bandwidth corresponds to 4 resource unit allocation subfields, one resource unit allocation subfield is used to indicate a 242-tone RU. The 4 resource unit allocation subfields are arranged in sequence on the 2 CCs. The positions in Table 5 indicate the sequential positions of the 4 242-tone RUs indicated by the 4 resource unit allocation subfields. As shown in Table 5, different combination modes respectively indicate that the corresponding two large RUs are merged into one Multi-RU. In other words, there are a total of five different Multi-RUs for the Multi-RU included in the 80MHz bandwidth. The different combinations in Table 5 represent different Multi-RUs. It can be seen that there are two types of Multi-RU included in the 80MHz bandwidth: (242-tone RU+242-tone RU) and (484-tone RU+242-tone RU).
  • -RU can have the following types: (996-tone RU+996-tone RU), (242-tone RU+484-tone RU), (242-tone RU+484-tone RU+484-tone RU) ), (242-tone RU+484-tone RU+242-tone RU), (484-tone RU+996-tone RU), (996-tone RU+484-tone RU).
  • each bracket represents a kind of Multi-RU.
  • Table 6 shows a possible RU merging method with a 160MHz bandwidth provided by the embodiment of this application. Since the 160MHz bandwidth corresponds to 8 resource unit allocation subfields, one resource unit allocation subfield is used to indicate a 242- tone RU.
  • the 160MHz bandwidth shown in Table 6 can be composed of two 996-tone RUs. The positions in Table 6 indicate the sequential positions of the two 996-tone RUs. As shown in Table 6, different combinations respectively indicate that multiple corresponding large RUs are merged into one Multi-RU.
  • Table 6 is only exemplary, and should not impose any restriction on the RU combination mode of the 160 MHz bandwidth.
  • the combination may be based on the above-mentioned 160MHz, or the combination based on the above-mentioned 80MHz, and so on.
  • Table 7 shows a possible RU merging method with a 320 MHz bandwidth provided in this embodiment of the present application. As shown in Table 7, different combination methods respectively indicate that two corresponding RUs are merged into one Multi-RU.
  • Tables 5 to 7 are only some examples of the large RU merging method across 242-tone in the embodiment of this application, and should not impose any restrictions on the large RU merging method across 242-tone in the embodiment of this application. .
  • Tables 5 to 7 show only limited large RU merging methods, and there are certain restrictions on the number, location, and combination of large RUs that need to be merged. In other words, the combination and location of large RUs that can be merged are predefined.
  • FIG. 9 is a schematic flowchart of a method 200 for indicating a combination of resource units according to an embodiment of the present application.
  • the method 200 may be applied to the method shown in FIG. Scene.
  • it can also be applied to other communication scenarios or communication systems, and the embodiments of the present application are not limited herein.
  • the sending device and the receiving device are taken as an example of executing the method of each embodiment to describe the method of each embodiment.
  • the sending device may be the aforementioned AP or STA, and the receiving device may also be the aforementioned AP or STA.
  • the execution body of the execution method may also be a chip applied to the sending device and the receiving device.
  • the method 200 shown in FIG. 9 may include step S210 to step S220.
  • each step in the method 200 will be described in detail with reference to FIG. 9.
  • the method 200 includes:
  • the sending device determines a PPDU.
  • the PPDU includes a signaling field.
  • the signaling field includes at least one resource unit allocation subfield and a merge indication corresponding to the at least one resource unit allocation subfield.
  • One resource unit allocation subfield corresponds to a 20MHz
  • one resource unit subfield indicates the size and location of multiple resource units included in 20 MHz
  • the signaling field includes a combination indicator for indicating the at least one resource unit allocation subfield.
  • the combined information of the resource unit indicated by the field That is, the signaling field includes a resource unit allocation subfield and a combination indication corresponding to the resource unit allocation subfield, the resource unit allocation subfield indicates multiple resource units, and the combination indication is used to indicate combination information of the multiple resource units.
  • a resource unit allocation subfield indication can indicate multiple resource units included in a 20MHz frequency domain, and the multiple resource units are all small-size RUs. In this case, it is the same as one resource unit.
  • the combination indication corresponding to the allocation subfield is used to indicate the combination of these small RUs in a frequency domain of 20 MHz.
  • S220 The sending device sends the PPDU.
  • the receiving device receives the PPDU.
  • the sending device when it needs to send data to the receiving device, it sends a PPDU to the receiving device, and the PPDU includes a signaling field (SIG).
  • the signaling field may be the aforementioned EHT-SIG-B.
  • the PPDU may also include the EHT-SIG-A field, data field, and so on.
  • the signaling field includes at least one resource unit allocation subfield (RU allocation subfield).
  • the signaling field may also include at least one site field (User Field).
  • a resource unit allocation subfield corresponds to the allocation of a 20MHz frequency domain resource unit, and a resource unit subfield indicates the size and position of multiple resource units included in 20MHz.
  • the order of at least one site field and the order of resource sheet allocation Is corresponding.
  • Each site field indicates the site information of the allocated STA within the RU included in the allocation of the resource unit.
  • the signaling field includes a combination indication (or may also be referred to as a combination indication bit), and the combination indication is used to indicate the combination information of the resource unit indicated by the at least one resource unit allocation subfield.
  • the receiving device can determine the combined information of the RU according to the signaling field and the indication bit, thereby determining multiple RUs corresponding to itself, which improves the flexibility of RU allocation in the system and improves the system Spectrum utilization.
  • FIG. 10 shows a schematic interaction diagram of a method 300 for providing another example of a resource unit merge indication for this application.
  • the method 300 may include step S310 to step S320.
  • the steps in the method 300 are described in detail below with reference to FIG. 10.
  • the method 300 includes:
  • the sending device generates a PPDU.
  • the PPDU includes a signaling field.
  • the signaling field includes multiple resource unit allocation subfields and a combination indication corresponding to the multiple resource unit allocation subfields.
  • One resource unit allocation subfield corresponds to a 20MHz Frequency domain resource unit allocation.
  • a resource unit subfield indicates the size and location of a resource unit included in 20MHz. This resource unit is a large-size RU, and a resource unit is 242-tone RU, 484 -tone RU or 996-tone RU.
  • the multiple resource unit allocation subfields indicate multiple resource units.
  • the signaling field further includes a combination indication, the multiple combination indications are used to indicate the combination information of the multiple resource units, and one combination indication corresponds to the RU indicated by one resource unit allocation subfield. That is, multiple merge indications are used to indicate merge information of multiple large RUs. That is, the signaling field includes multiple resource unit allocation subfields and multiple merging instructions, the multiple resource unit allocation subfields indicating multiple resource units, and the multiple merging instructions are used to indicate the combination information of the multiple resource units, One combination indication corresponds to the RU indicated by one resource unit allocation subfield, and one resource unit is 242-tone RU, 484-tone RU or 996-tone RU.
  • S320 The sending device sends the PPDU.
  • the receiving device receives the PPDU.
  • the sending device when it needs to send data to the receiving device, it will send a PPDU to the receiving device, and the PPDU includes a signaling field (Signal Field, SIG).
  • the signaling field may be the aforementioned EHT-SIG-B.
  • the PPDU may also include the EHT-SIG-A field, data field, and so on.
  • the signaling field includes at least one resource unit allocation subfield (RU allocation subfield).
  • the signaling field may also include at least one site field (User Field).
  • One resource unit allocation subfield corresponds to the allocation of a 20MHz frequency domain resource unit, and one resource unit subfield indicates the size and location of a large RU included in 20MHz.
  • the large RU is 242-tone RU, 484-tone RU or 996-tone RU, and the order of at least one site field corresponds to the order of resource unit allocation.
  • Each site field indicates the site information of the allocated STA within the RU included in the allocation of the resource unit.
  • the signaling field includes a combination indication (or may also be referred to as a combination indication bit), and the combination indication is used to indicate the combination information of the multiple resource units indicated by the multiple resource unit allocation subfields.
  • the merge indication is used to indicate large RU merge across 242-tone RUs.
  • the receiving device can determine the combined information of the large RU according to the signaling field and the indication bit, thereby determining multiple large RUs corresponding to itself, which improves the flexibility of system RU allocation and improves The spectrum utilization rate of the system is improved.
  • each resource unit allocation subfield can be extended, for example, based on the existing resource unit allocation subfield, the extension can be performed after it, and any one or more of the existing resource unit allocation subfields can be extended.
  • a bit is added after the resource unit allocation subfield to indicate the combination information of the resource unit indicated by the resource unit allocation subfield.
  • each resource unit allocation subfield includes a merge indication. The combination indication is used to indicate the combination information of the resource unit indicated by the resource unit allocation subfield.
  • the resource unit allocation subfield with an 8-bit index in Table 1 can be extended, and the resource unit allocation subfield with an 8-bit index can be extended to 9 bits and 10 bits.
  • Bit or more bits, using the extended 1 bit or multiple bits to indicate the combination of the resource unit indicated by the resource unit allocation subfield, that is to say, the extended 1 bit or multiple bits are the combination indication, and the combination indication can be used Indicates the combination of resource units indicated by the resource unit allocation subfield, including small RU combination within 242-tone and large RU combination across 242-tone.
  • one resource unit allocation subfield in the multiple resource unit allocation subfields corresponds to the allocation of a 20MHz frequency domain resource unit and the combination of resource units
  • one resource unit allocation subfield indicates 20MHz The size and location of one or more resource units included, and the combination of resource units.
  • the resource unit allocation subfield includes multiple bits (bits), some of which are used to indicate the allocation of a 20MHz frequency domain resource unit, that is, the size and location of one or more resource units, and the other part is used to indicate a 20MHz frequency domain resource unit.
  • the combination of frequency domain resource units For example, the resource unit allocation subfield includes 10 bits, where the first 8 bits are used to indicate resource unit allocation, and the last 2 bits indicate the combination of frequency domain resource units in the resource unit allocation.
  • the first 8 bits indicate the resource unit allocation mode
  • some of the 8 bits may be used to indicate the number of users who perform MU-MIMO transmission in an RU greater than or equal to 106-tone.
  • the last 2 bits can also be called a combination indication, and the values of the combination indication bits are 00, 01, 10, and 11, respectively, which can indicate different combination situations. For example, a value of 00 for two bits indicates that there is no multi-RU combination in the resource unit allocation mode, that is, there is no Multi-RU.
  • the two-bit value 01 indicates that there is a Multi-RU in the allocation mode of the resource unit.
  • This Multi-RU can be: the first type of Multi-RU (52-tone RU+26-tone RU), the second type of Multi-RU -RU (106-tone RU+26-tone RU), or the third type of Multi-RU (52-tone RU+106-tone RU).
  • a two-bit value of 10 indicates that there are two Multi-RUs in the resource unit allocation mode.
  • the two Multi-RUs can be two of the first type of Multi-RU, or one is the first type of Multi-RU, and the other One is the second Multi-RU (106-tone RU+26-tone RU).
  • a two-bit value of 11 indicates that there are 3 Multi-RUs in the allocation mode of the resource unit, and these 3 Multi-RUs are all the first type of Multi-RU (52-tone RU+26-tone RU).
  • the positions of the small RUs constituting the Multi-RU may be predefined.
  • the two-bit value is 01
  • the default indication is that in the allocation method of a resource unit, the first 52-tone RU from left to right and the left side of the 52-tone RU
  • the first 26-tone RU or the first one on the right (or the one consecutive to the 52-tone RU) 26-tone RU merge to obtain a first type of Multi-RU.
  • the allocation mode of a resource unit is indicated by default, from left to right the first 106-tone RU and the first 106-tone RU on the left or the first on the right.
  • One (or one consecutive to the 106-tone RU) 26-tone RU is combined to obtain a second type of Multi-RU.
  • the allocation method of a resource unit is indicated by default, from left to right the first 106-tone RU and the first 106-tone RU on the left or the first on the right ( Or combined with the 106-tone RU) 52-tone RU to obtain a second type of Multi-RU.
  • the positions of the 52-tone RU and the 26-tone RU included in each Multi-RU of the first type can be determined according to the predefined. If the two-bit value 10 indicates that one is the first type of Multi-RU and the other is the second type of Multi-RU (106-tone RU+26-tone RU), for the first type of Multi-RU and the second type of Multi-RU -The location of the RU included in the RU can also be determined according to predefined rules. For example, 106-tone RU and 52-tone RU are combined with the 26-tone RU closest to itself to obtain the first type of Multi-RU. A second type of Multi-RU. When the two-bit value is 11, among the three Multi-RUs of the first type, the position of the 26-tone RU included in each Multi-RU of the first type may also be determined according to the aforementioned predefined rule.
  • a two-bit value of 00 indicates that there is no multi-RU combination in the resource unit allocation mode, that is, there is no Multi-RU.
  • Other values of two bits indicate that there is a 52-tone RU in the allocation mode of the resource unit.
  • a two-bit value 01 means that in the allocation method of the resource unit, the first 52-tone RU or the first 106-tone RU from the left is combined with the consecutive or adjacent 26-tone RU, and the two The bit value of 10 indicates that the second 52-tone RU from the left is combined with the consecutive or adjacent 26-tone RU.
  • the two-bit value 11 indicates that the third 52-tone RU from the left is merged with the consecutive or adjacent 26-tone RU, etc.
  • the 26-tone RU that is continuous or adjacent to the 52-tone RU or 106-tone RU can be understood as: the first 26-tone RU located on the left side of the 52-tone RU or 106-tone RU or the first 26-tone RU on the right side.
  • the combination indication can also indicate the positional relationship of the two small RUs included in each Multi-RU.
  • the merging indication can also be 1 bit.
  • the resource unit allocation subfield includes 9 bits, where the first 8 bits are used to indicate the allocation of resource units, and the last 1 bit indicates a 20MHz frequency domain resource unit.
  • the merger situation That is, the resource unit allocation subfield of the 8-bit index is expanded to 9 bits, and the 9th bit is the above-mentioned combination indication.
  • a 1-bit value of 0 indicates that there is no multi-RU combination in the allocation mode of the resource unit, that is, there is no Multi-RU.
  • the value of 1 bit means that there is a Multi-RU in the allocation mode of the resource unit.
  • This Multi-RU can be: the first type of Multi-RU (52-tone RU+26-tone RU), the second type of Multi-RU -RU (106-tone RU+26-tone RU), or the third type of Multi-RU (52-tone RU+106-tone RU).
  • the positions of the two RUs included in a Multi-RU can be predefined, for example, it can be the first 52-tone RU or 106-tone RU from the left and the consecutive (or nearest) 26-tone RU. Merger etc. That is to say, in addition to indicating the number of Multi-RUs in the allocation mode of one resource unit, the combination indication can also indicate the positional relationship of the two small RUs included in each Multi-RU.
  • a 2-bit merging indicator can also be used to indicate 3 different Multi-RUs.
  • each Multi-RU includes two or more large RUs.
  • the resource unit allocation subfield with an 8-bit index is expanded to 10 bits, where the first 8 bits are used to indicate the size and location of the resource unit, and the last 2 bits indicate the combination of the resource unit.
  • the ninth bit and the tenth bit The bit is the above-mentioned combination indication.
  • a possible implementation manner is: a value of 00 for two bits indicates that the large RU indicated by the resource unit allocation subfield is not merged, that is, it is not merged with other large RUs.
  • the two-bit values 01, 10, and 11 respectively indicate a combination type different from the large RU indicated by the resource unit allocation subfield.
  • Table 8 shows an example of a merge mode of large RU merge indicated by different values of merge instructions.
  • Each RU in the first row of Table 8 represents a large RU indicated by a resource unit allocation subfield (that is, an RU allocation method in bandwidth). It is assumed that the signaling field includes the resource unit allocation subfield corresponding to the large RU shown in Table 8.
  • the value of the merge indication bit is 00 to indicate that the large RU indicated by the resource unit allocation subfield is not merged.
  • a value of 01 for the merging indicator bit indicates a type of RU merging, and the large RU corresponding to the value of the merging indicator bit as 01 is combined to obtain a Multi-RU.
  • the value of the combination indicator bit is 11 to indicate a combination, and the large RU corresponding to the combination indicator bit value of 11 is combined to obtain a Multi-RU.
  • the value of the combination indicator bit of 10 may also indicate a combination.
  • the large RU corresponding to the value of the combination indicator bit of 10 is combined to obtain a Multi-RU. Therefore, there are two Multi-RUs shown in Table 8.
  • One Multi-RU is (242-tone RU+242-tone RU+996-tone RU), and the other Multi-RU is (484-tone RU+ 242-tone RU). That is, the resource unit corresponding to the other combination indicator with the same value as a certain combination indicator bit is combined with the resource unit corresponding to the combination indicator to obtain a Multi-RU.
  • one 996-tone RU corresponds to 4 RU Allocation subfields, and the value of the combination indication in each RU Allocation subfield is the same, for example, both are 11 or 01.
  • One 484-tone RU corresponds to two RU Allocation subfields, and the value of the merge indication in each RU Allocation subfield is the same, for example, both are 11.
  • the merge indication corresponding to the small RU corresponds to the merge indication.
  • the merger instruction will not affect the merger between large RUs. That is, in the case where a merge instruction corresponding to a small RU appears between large RUs, the merge instruction corresponding to the small RU may be skipped or not read.
  • the number of large RUs that can be merged may also be predefined or configured. Further, the combination or mode of the large RU can also be defined or configured in advance.
  • a two-bit length merge instruction is used to perform a large RU merge instruction, it may indicate that more (for example, 3, 5, etc.) large RUs are merged to obtain one Multi-RU. That is, the merge instruction may further indicate a plurality of predefined large RU combinations, that is, the merge instruction indicates a limited large RU merge manner, which has certain restrictions on the location and sequence of the merged large RUs. For example, multiple combination combinations of large RUs that can be combined may be predefined, and the combination indication may indicate any one combination combination of large RUs among the multiple predefined combination combinations.
  • the different values of the 2-bit length merging indicator may also be used to indicate the different order of the large RUs when the resource units are merged. For example, when the value of two bits is 00, it indicates that the large RU indicated by the resource unit allocation subfield is not merged, and the values of the two bits are 01, 10, and 11, respectively, indicating that the large RUs that need to be merged are located at the beginning and the middle of the merge position. ,end.
  • Table 9 shows an example of RU merging mode indicated by the value of the merging indicator bit.
  • the large RU corresponding to the bit value of "00” can be skipped.
  • the large RU corresponding to the bit value of “00” can be skipped.
  • the large RU corresponding to the bit value “11” is the last large RU included in the Multi-RU. RU.
  • the large RU corresponding to the bit value "10” is the first large RU included in the Multi-RU.
  • the other Multi-RU is (484-tone RU+242-tone RU). It should be understood that in Table 9, one 996-tone RU corresponds to 4 RU Allocation subfields, and the value of the merge indication in each RU Allocation subfield is the same, for example, both are 11 or 00.
  • one Multi-RU includes multiple (for example, 2, 4, or more) large RUs.
  • the merging indicator corresponding to the small RU appears between the large RUs, then the merging indicator corresponding to the small RU Will not affect the merger between large RUs. That is, in the case where a merge instruction corresponding to a small RU appears between large RUs, the merge instruction corresponding to the small RU may be skipped or not read.
  • a 1-bit merging indication may also be used to indicate multiple large RUs included in one Multi-RU. That is, the resource unit allocation subfield of the 8-bit index is expanded to 9 bits, where the first 8 bits are used to indicate the size and location of the resource unit, and the last 1 bits indicate the combination of the resource unit. Among them, the ninth bit is the above-mentioned combination indication. For example, when the value of the combination indication is 0, it indicates that the large RU indicated by the resource unit allocation subfield is not combined, that is, it is not combined with other large RUs.
  • the value of the merging indicator bit is 1 to indicate merging with the large RU indicated by the resource unit allocation subfield.
  • the merging instruction may also indicate the number and location relationship of multiple large RUs included in each Multi-RU, that is, the merging instruction may further indicate a predefined combination of multiple large RUs.
  • the 1-bit or multi-bit merging indication included in each resource unit allocation subfield may be used to indicate the above-mentioned limited large RU merging mode, that is, for the number and location of the large RUs that need to be merged.
  • the combination has certain restrictions. For example, multiple combination combinations of large RUs that can be combined may be predefined, and the combination indication may indicate any one combination combination of large RUs among the multiple predefined combination combinations.
  • the first (first column) 996-tone RU shown in Table 6 can be the main 996-tone RU, that is, the main 80MHz, and the second (first column) Second column) 996-tone RU can be sub-996-tone RU, that is, sub-80MHz. If the 996-tone RU that needs to be combined is in the secondary 80MHz, then after the receiving device has read the RU distribution in the previous primary 80MHz, it needs to read the combination indication in the resource unit allocation subfield corresponding to the secondary 996-tone RU, if If the value of the merging indicator bit is 0, the 996-tone RU is not merged.
  • Multi-RU includes (242-tone RU+242-tone RU+996-tone RU) and Multi-RU includes (242-tone RU+242-tone RU) these two different Multi-RUs. RU.
  • the merging indication in the corresponding resource unit allocation subfield can be set to 1.
  • the combination of RUs in the 320MHz bandwidth can be a combination that can be based on 996-tone RUs. For example, when the receiving device reads that the merging indicator bits in the resource unit allocation subfields corresponding to three 996-tone RUs are all 1, it can determine that the three 996-tone RUs need to be merged, and one obtained Multi-RU includes (996-tone RU+996-tone RU+996-tone RU).
  • each resource unit allocation subfield may also be combined.
  • the merging instructions corresponding to the unit allocation subfields are extracted uniformly, that is, there is a multi-resource unit allocation field (Multi RU Allocation field) in the signaling field, and the multi-resource unit allocation field includes the merging instructions corresponding to each resource unit allocation subfield.
  • FIG. 11 shows a schematic diagram of an example of a signaling field provided for this application.
  • the signaling field also includes a multi-resource unit allocation field, and the multi-resource unit allocation field includes a merge indication corresponding to each resource unit allocation subfield.
  • the relative position of the merge indication in the multiple resource unit allocation field is the same as the relative position of the resource unit allocation subfield corresponding to the merge indication in the multiple resource unit allocation subfields.
  • the multiple resource unit allocation field is used to indicate the RU combination indicated by at least one resource unit allocation subfield included in the signaling field.
  • the specific indication mode is the same as the indication mode of adding an indication bit after each resource unit allocation subfield.
  • the length of the combination indication included in the multi-resource unit allocation field may be 16 bits or 32 bits.
  • the multiple resource unit allocation subfield may be included in the Common field.
  • FIG. 12 shows a schematic diagram of a multi-resource unit allocation field provided by an embodiment of this application.
  • the multi-resource unit allocation field is the same as the common field and the user specific field (User Specific field), and is divided into multiple CCs, and each CC carries a part of the content of the multi-resource unit allocation field.
  • FIG. 13 shows a schematic diagram of another multi-resource unit allocation field provided by an embodiment of this application. As shown in FIG. 13, the multi-resource unit allocation field is not divided, and completely repeated content is used on all 20MHz channels. That is, the multi-resource unit allocation field on each 20MHz channel is the same.
  • the combination indication included in the extended resource unit allocation subfield is used to indicate the combination information of the resource unit.
  • a reserved entry is used to indicate the combined information of the resource unit. For example, as shown in Table 1, multiple reserved 8-bit indexes may be used to indicate resource unit combination information corresponding to different resource unit allocation modes.
  • the resource unit allocation subfield can be redefined, that is, the resource unit allocation subfield is reconstructed, and a resource unit allocation subfield after the reconstruction corresponds to a 20MHz frequency.
  • the multi-RU combined information can be directly displayed in the public field, so that the user can directly know the new RU distribution order and the RU combination method after reading the public field, so even for multi-RU users It also only needs to use one user field to determine the new RU distribution order and RU merging method.
  • the length of the reconstructed resource unit allocation subfield may be 9 bits, 10 bits or more. This application is not restricted here.
  • the reconstructed resource unit allocation subfield may be used to indicate restricted RU combination, and may also indicate unrestricted RU combination.
  • the positions of the 52-tone RU, 106-tone RU, and 26-tone RU that need to be merged are not limited as indicated by the reconstructed resource unit allocation subfield.
  • the 26-tone RU that needs to be combined with the 52-tone RU or the 106-tone RU may be continuous with the 52-tone RU or the 106-tone RU, or may be discontinuous.
  • the effective RU may also be extracted and instructed to notify the receiving device of the multi-RU combination information.
  • the effective RUs are extracted and sorted according to the order in which the user reads the effective RUs.
  • a valid RU corresponds to 1 bit.
  • the effective RU set is ⁇ 52,106,242,484,996 ⁇ , and the numbers in the set indicate the number of subcarriers that make up the RU.
  • the effective RU will be associated according to the position in the bandwidth. For example, if there are 20 valid RUs in 320 MHz, at least 20 bits will be required to indicate the combined information of these RUs.
  • each valid small RU may correspond to 1 bit, which is used to indicate whether the corresponding valid small RU is combined with the 26-tone RU to obtain a Multi-RU.
  • the effective small RU set is ⁇ 52,106 ⁇ .
  • the multi-resource unit allocation field in the signaling field may include multiple combination indications, and each combination indication corresponds to an effective small RU, which is used to indicate whether the effective small RU is in the 242-tone where the effective small RU is located.
  • the 26-tone RU merged.
  • the value of the merge indicator bit corresponding to an effective small RU is 1, it indicates that the effective small RU is merged with the 26-tone RU in the 242-tone where the effective small RU is located, and the indicator bit corresponding to a certain effective small RU The value is 0, indicating that the effective small RU is not merged.
  • the value of the merge indicator bit corresponding to a certain effective small RU is 0, indicating that the effective small RU is merged with the 26-tone RU in the 242-tone where the effective small RU is located, and the merge indicator bit corresponding to a certain effective small RU The value is 1, indicating that the effective small RU is not merged.
  • the 26-tone RU combined with the effective small RU may be the effective small RU.
  • Continuous 26-tone RU merge with the first 26-tone RU on the left or the first 26-tone RU on the right of the effective small RU to obtain a Multi-RU. That is, the merging indication corresponding to a valid small RU is used to indicate the merging mode of the restricted small RUs.
  • a 242-tone can include at most 3 effective small RUs. Therefore, a 242-tone (or a resource unit allocation subfield) can correspond to a 1-bit combination indicator, and a 1-bit combination indicator can correspond to a 52-tone RU or a 106-tone RU. Alternatively, a 242-tone can correspond to a 2-bit combination indicator, each bit in the 2-bit combination indicator indicates a 52-tone RU, or one bit in the 2-bit combination indicator indicates a 52-tone RU , The other bit indicates a 106-tone RU. Alternatively, a 242-tone may correspond to a 3-bit length combination indicator, and each bit of the 3-bit length combination indicator indicates a 52-tone RU.
  • the length of the combination indication corresponding to different RU Allocation subfields may be different. Therefore, the length of the multi-resource unit allocation field is variable.
  • the length of the merge indication corresponding to the RU Allocation subfield may be indicated in the Common field.
  • the lengths of the merge instructions corresponding to different RU Allocation subfields may also be set to be the same. For example, assuming that there are at most x effective RU combinations in each RU Allocation subfield, for the existence of N RU Allocation subfields, the length of the multi-resource unit allocation field is N ⁇ x bits.
  • the effective large RU set is ⁇ 242,484,996 ⁇ .
  • a valid large RU may correspond to a 2-bit length combination indication, and the different values of the 2-bit length combination indication indicate the validity
  • the different order of large RUs when combining resource units For example, when the value of the merge indicator bit is 00, it means that the effective large RU is not merged, and the value of the merge indicator bit is 01, 10, and 11, respectively, which indicates that the effective large RU is located at the beginning, middle, and end of the merge position.
  • one effective large RU corresponds to a 2-bit length indicator bit.
  • the different values of the indicator bits of the 2-bit length indicate different combining states of the effective large RU when the resource unit is combined. For example, when the value of the merge indication bit is 00, it indicates that the effective large RU is not merged.
  • the values of the combination indicator bits of 01, 10, and 11 respectively indicate different combination types of the effective large RU, where the combination of the same value indicates that the corresponding effective large RUs are combined.
  • an effective large RU can also correspond to a 1-bit length indicator bit to indicate whether the effective large RU is merge. For example, when the value of the merge indicator bit is 0, it means that the effective large RU is not merged, and the value of the merge indicator bit is 1 to indicate that the effective large RU is merged. Of course, it is also possible to use when the merge indication is 1 to indicate that the effective large RU is not merged, and the value of the merge indication bit to be 0 indicates that the effective large RU is merged. In this case, it is necessary to predefine the combination and location of multiple large RUs included in a Multi-RU.
  • Table 10 shows an example of a schematic diagram of the correspondence between a merge indication and an effective large RU.
  • a value of 0 for the merge indication bit indicates that the effective large RU corresponding to the merge indication is not merged, and a value of 1 for the merge indication bit indicates that the effective large RU corresponding to the merge indication is merged. In this case, if there is no restriction, a certain degree of confusion will occur. In the example shown in Table 10, it is difficult to distinguish whether 996-tone RU+484-tone RU+242-tone RU is merged into one Multi-RU or 242-tone RU. -tone RU+242-tone RU+996-tone RU is combined into one Multi-RU, therefore, the combination or method of pre-defined or configured large RU can be used.
  • the Multi-RU shown in Table 10 includes 242-tone RU+242-tone RU+996 -tone RU. It should be understood that in Table 10, one 996-tone RU corresponds to 4 RU Allocation subfields, and the value of the merge indication corresponding to each RU Allocation subfield is the same, for example, both are 1 or 0. One 484-tone RU corresponds to two RU Allocation subfields, and the value of the merge indication in each RU Allocation subfield is the same, for example, both are 1.
  • the 1-bit or multi-bit merging indication corresponding to each effective large RU may be used to indicate the above-mentioned limited large RU merging mode, that is, the number, location, and location of large RUs that need to be merged.
  • the combination has certain restrictions. For example, multiple combination combinations of large RUs that can be combined may be predefined, and the combination indication may indicate any one combination combination of large RUs among the multiple predefined combination combinations.
  • the method for resource unit merging instructions provided in this application extracts valid RUs and arranges merging instructions indicating whether valid RUs are merged or not according to the positions where the valid RUs appear, so that multiple RU merge information can be effectively indicated.
  • the resource unit allocation subfield can also be extended to assign each resource unit to a subfield.
  • the combination indication of the valid RU corresponding to the field is set after the corresponding resource unit allocation subfield.
  • the expanded resource unit allocation subfield may be 9 bits, 10 bits or more bits, etc., and the expanded 1 bit or multiple bits are used to respectively indicate the combination of valid RUs.
  • the user field may also be improved to realize the merging of notification multiple RUs.
  • the STA IDs in different user fields can be set to be the same. In this way, a user can know that the corresponding multiple RUs are allocated to him, so as to realize the notification of RU merge information;
  • a Multi-RU is composed of a combination of multiple continuous or discontinuous RUs. Multiple consecutive or discontinuous RUs that make up the Multi-RU can be assigned to a user, and the STA IDs corresponding to these multiple RUs are the same. Therefore, the user field with the same STA ID can be modified except for the last user. Information in other user fields outside the field. For example, in the user fields with the same ID of these STAs, in each user field except the last user field, 9-bit indication information may be used to indicate the next RU belonging to the user (or corresponding to the user). The absolute position information or relative position information. Through this indication, the user of the multi-resource unit can directly learn the location of the next RU after reading the first RU, saving energy consumption to a certain extent.
  • a Multi-RU is composed of a combination of multiple continuous or discontinuous RUs.
  • Multiple continuous or discontinuous RUs that make up the Multi-RU may be allocated to one user, and the STA IDs corresponding to the multiple RUs are the same. Therefore, in this embodiment of the present application, each user field with the same ID of multiple STAs except the last user field can use 8-bit indication information to indicate the absolute value of the next RU belonging to the user.
  • Location information or relative location information that is, indicate the locations and sizes of multiple RUs that make up the Multi-RU.
  • the two information indicating the index channel number and the appearance order of the RU can be used to set the RU corresponding to the user field.
  • the location of a RU that needs to be merged is flexibly identified.
  • the STA can use the 4-bit indication to determine the channel of the RU that needs to be merged with the RU where it is currently located (4 bits can exhaust 16 channels), and at the same time, the STA can continue
  • the other 4 bits are used to indicate the specific RU position in each channel (there are up to 9 RUs in each 242-tone). Therefore, 8 bits can be used to flexibly indicate the location of the next RU that needs to be merged.
  • an 8-bit length indication field can be used to indicate the location information of the next RU that needs to be merged with the current user field. In this way, the RU information that needs to be merged with the RU where the current user is located is determined.
  • the STA IDs of the two user fields corresponding to the two RUs are the same. Therefore, an 8-bit indication field can be used in the first user field to indicate the current The location information of the next RU that needs to be merged in the user field can determine the Multi-RU.
  • the STA IDs of the three user fields corresponding to the 3 RUs are the same, and there can be an 8-bit indication field in both the first user field and the second user field.
  • Respectively, are used to indicate the positions of the second RU and the third RU that need to be merged, so that the Multi-RU can be determined.
  • the use of the 8-bit indication field in the user field can indicate an unrestricted combining manner, or may indicate a restricted combining manner. In addition, it may indicate merging of small RUs within 20 MHz, or may indicate merging of large RUs across 242-tone.
  • 4 bits can also be used to indicate the position of the RU in the restricted RU combination mode. information. Assuming that small RUs in 242-tone RU do not support cross-242-tone merging. For small RU merging within 20MHz, since there are at most 9 RUs in each 242-tone, 4 bits can completely indicate the location of the next merged RU. . Of course, for small RU merging within 20 MHz, 3 bits can completely indicate the location of the next RU merged.
  • 3 bits or 4 bits can be used to indicate the need to be with the current user (or Corresponding) RU merged RU information.
  • the large RU merging across 242-tone RU because small RU cannot merge with large RU across 242-tone, a certain number of indicator bits can be used to indicate the type of large RU, and a certain number of indicator bits can be used to indicate the location of the large RU.
  • the large RU that needs to be merged is indicated by the two pieces of information indicating the large RU type and the location of the large RU.
  • the large RU type refers to the large RU being 242-tone RU, 484-tone RU, or 996-tone RU.
  • each user field except the last user field can use 2 bits to indicate the type of RU that needs to be combined with the large RU where the current user is located, for example,
  • the two-bit value 00, 01, and 10 respectively indicate the types of large RUs as 242-tone RU, 484-tone RU, 996-tone RU, and the other 2 bits are used to indicate which is the latter.
  • Large RU of this type For example, in the user fields of multiple STAs with the same ID, each user field except the last user field can use 2 bits to indicate the type of RU that needs to be combined with the large RU where the current user is located, for example,
  • the two-bit value 00, 01, and 10 respectively indicate the types of large RUs as 242-tone RU, 484-tone RU, 996-tone RU, and the other 2 bits are used to indicate which is the latter.
  • Large RU of this type For example, in the user fields of multiple STAs with the same ID, each user field except the last user field can use
  • each user field except the last user field can use 3 bits or 4 bits to indicate the large RU that needs to be merged with the RU where the current user is located.
  • information For example, when a Multi-RU is composed of 3 large RUs combined, there may be a 4-bit indication field in the first and second user fields of the 3 user fields corresponding to the 3 large RUs to indicate The positions of the second and third large RUs that need to be merged, so that the Multi-RU can be determined.
  • a Multi-RU is combined by more than one RU, it is only necessary to set a 4-bit indication field in the user fields corresponding to the other RUs except the last RU to determine the Multi-RU.
  • the Multi-RU (242-tone RU+242-tone RU) formed by the combination method 1 shown in Table 5 there may be a 4-bit indicator bit in the user field corresponding to the first 242-tone RU.
  • the value of the four bits is 0010, where the value of 00 in the first two bits indicates that the next RU to be merged is of the 242-tone RU type, and the value of 10 in the next two bits indicates that it is the third after the current RU.
  • the user can know the specific RU location in combination with the known resource unit allocation subfield information, thereby determining the Multi-RU. There is no need to modify the user field corresponding to the second 242-tone RU. Therefore, the 4-bit length indicator bit can indicate the limited multi-RU combining mode.
  • the STA IDs in the multiple user fields are the same, therefore, It is also possible to add an indication bit used to indicate whether the user field is the last user field in each user field (including the last user field) in the multiple user fields, and the indication bit is used to indicate whether the user field is the last user field.
  • the user field corresponding to the last RU to be merged can prevent the user from thinking that the last user field also includes information indicating the location of the next RU.
  • the value of 1 bit in other user fields except the last user field is 1, which is used to indicate that the corresponding user field is not the last user field. In the last user field, this 1 bit The value is 0, which is used to indicate that the corresponding user field is the last user field.
  • indicating the location of the RU also indicates the location of the user field corresponding to the RU.
  • each user field in each of the multiple user fields.
  • an indication bit used to indicate the number of RUs to be combined is added to indicate the number of RUs to be combined.
  • the indication bit may be 2 bits in length. The value of the indication bit in each user field is the same, so that the user can read the number of RUs that need to be merged more accurately.
  • the signaling field may also include a multi-resource unit allocation field (Multi RU Allocation field), and the multi-resource unit allocation field includes multiple location information indicating subfields, one location
  • the information indication subfield is used to indicate the location of an RU that needs to be merged into a Multi-RU. Wherein, two or more of the multiple location information indicating subfields form a group, and multiple RUs indicated by a group of location information indicating subfields are combined into one Multi-RU.
  • the user can know his allocated RU according to the order in which he appears in the User Specific field by combining multiple position information indicator bits, and then on the basis of the RU allocation form that has been obtained Further obtain the information of multi-RU merging. In this way, users can still be sorted according to the order of appearance of the RUs, and each user only appears once in the User Specific field. By searching for its location, information such as assigned RUs can be obtained.
  • FIG. 14 shows a schematic diagram of an example of a signaling field provided by the present application.
  • the signaling field also includes the allocation of multiple resource units.
  • the multi-resource unit allocation field includes multiple location information indicating subfields, and one location information indicating subfield is used to indicate the location of an RU that needs to be merged into a Multi-RU.
  • the RU indicated by the adjacent location information indication field needs to be merged.
  • the multi-resource unit allocation field includes 6 location information indicating subfields, and one location information indicating subfield is used to indicate the location of an RU that needs to be merged into a Multi-RU.
  • each rectangle shown in FIG. 15 represents an RU, the number in the rectangle indicates the number of users (or the order in which user fields appear) that RU corresponds to, and each row of rectangles corresponds to a 20 MHz bandwidth.
  • the position information indicating subfield 1 indicates position 1, indicating the first rectangle in the first row, and the position information indicating subfield 2 indicates position 2, indicating the second rectangle in the third row, and the position 1 and position 2 can be set to RU is merged.
  • the location information indication subfield 3 also indicates the location 2, that is, the location information indication subfield 2 and the location information indication subfield 2 both indicate the RU at the location 2.
  • the position information indication subfield 4 indicates position 3, which represents the third rectangle in the third row. In addition, location 3 corresponds to only one location information indication subfield 4.
  • the RU at location 3 is the last RU included in a Multi-RU, and only the RU indicated by location information indication subfield 4 and the previous location information indication The RU indicated by the subfield (location information indication subfield 3) is merged. Therefore, it can be determined that the Multi-RU includes: RU indicated by location information indication subfield 1 + RU indicated by location information indication subfield 2 or 3 + RU indicated by location information indication subfield 4. That is, for a Multi-RU including three RUs, the middle RU corresponds to two location information indication subfields. That is, 4 location information indication subfields need to be used to indicate the combination of 3 RUs.
  • the position information indication subfield 5 indicates position 4, which indicates the second rectangle in the second row
  • the position information indication subfield 6 indicates position 5, which indicates the third rectangle in the second row. If no other location information indication subfield 6 also indicates location 5 subsequently, it can be determined that another Multi-RU includes: RU indicated by location information indication subfield 5 + RU indicated by location information indication subfield 6.
  • the user can determine the RU allocated by him according to the order in which he appears in the User Specific field, and further obtain the information of multiple RU merging on the basis of the RU allocation form already obtained. For example, in the example shown in FIG. 13, the 3 RUs corresponding to position 1 to position 4 are combined into one Multi-RU, which is used by user 1. The 2 RUs corresponding to positions 5 to 6 are merged into another Multi-RU, which is used by user 10.
  • each position information indication subfield may be 4 bits, 8 bits, 9 bits or other lengths. Used to indicate the merger of small RUs within 242-tone RU and the merger of large RUs across 242-tone RU.
  • both the small RU merging within the 242-tone RU and the large RU merging across the 242-tone RU may be unlimited RU merging.
  • a 1-bit group indicator bit can be added to each position information indicator subfield, and the RUs indicated by multiple position information indicator subfields with the same value of the group indicator bit can be combined. It is a Multi-RU. For example, as shown in FIG. 13, if a Multi-RU consists of 3 RUs, one bit of group indicator bits can be added to the 3 position information indication subfields corresponding to the 3 RUs, and 3 The group indicator bits corresponding to the RU have the same value.
  • 3 location information indication subfields can be used to indicate the combination of 3 RUs. There will be no two location information indicating subfields corresponding to the RU at the same location.
  • the user can determine the RU allocated by him according to the order in which he appears in the User Specific field, and further obtain the information of multiple RU merging on the basis of the RU allocation form already obtained. In addition, the same user only needs to appear once in the User Specific field.
  • the length of the multi-resource unit allocation field may be indicated in the common field.
  • the multi-resource unit allocation field includes multiple location information indicating subfields, which may all exist in CC1 and CC2, or a manner in which a part of CC1 exists and another part exists in CC2 may be used. The embodiments of the application are not limited here.
  • center 26-tone RU Center 26-tone RU
  • the center 26-tone RU can also be combined with other RUs to obtain a Multi-RU.
  • Whether the center 26-tone RU exists is related to the value of the Center 26-tone RU field in the Common field. This field is 1 bit. When the value of 1 bit is 1, it means there is a center 26-tone RU, 1 bit. When the value is 0, it means that there is no center 26-tone RU.
  • the Center 26-tone RU field can be extended by multiple bits, for example, extended to 2 bits, where the value of 2 bits is 00, which means that the center 26-tone RU does not exist in the corresponding 80MHz frequency band.
  • the 2-bit value of 01 indicates that the center 26-tone RU exists in the corresponding 80MHz frequency band, but the center 26-tone RU is not merged, that is, it is not merged with other RUs.
  • the 2-bit value of 10 and 11 respectively indicate that they correspond to 80MHz
  • a 2-bit value of 10 means that the center 26-tone RU is combined with the continuous RU in the 242-tone range on the right to obtain a Multi-RU.
  • a 2-bit value of 11 means that the center 26-tone RU is combined with the continuous RU in the 242-tone range on the left to obtain a Multi-RU.
  • a 2-bit value of 10 indicates that the center 26-tone RU and the RU closest to the center 26-tone RU in the range of 242-tone on the right are merged to obtain a Multi-RU.
  • the 2-bit value of 11 indicates that the center 26-tone RU is combined with the RU closest to the center 26-tone RU in the range of 242-tone on the left to obtain a Multi-RU.
  • the RU that is continuous with the center 26-tone RU can be understood as the RU before or after the center 26-tone RU, and the RU closest to the center 26-tone RU may be continuous with the center 26-tone RU.
  • the RU may not be the RU that is continuous with the 26-tone RU in the center.
  • the RU closest to the 26-tone RU in the center may be the RU at the 26-tone RU coordinates in the center or on the right after multiple RUs. .
  • the Center 26-tone RU field may also be extended by multiple bits to be expanded to more bits to indicate more merge states with the Center 26-tone RU.
  • the RU within the 242-tone range nearest or continuous to the center 26-tone RU may be 52-tone RU, 106-tone RU, or 242-tone RU, etc.
  • the merge indication for indicating whether the Center 26-tone RU is merged with multiple RUs can also be set in the User field corresponding to the center 26-tone RU, that is, the center 26-tone RU is modified.
  • the corresponding User field In addition, all users need to read the User field corresponding to the center 26-tone RU to determine whether the STA ID in the User field corresponding to the center 26-tone RU is the same as their own ID. If they are the same, it means that the 26-tone RU of the center needs to merge the RU corresponding to the current user field.
  • first, the second, etc. are only used to indicate that multiple objects are different.
  • first field and the second field are just to indicate different fields. It should not have any influence on the field itself, the number, etc., and the above-mentioned first, second, etc. should not cause any limitation to the embodiments of the present application.
  • pre-defined can be implemented by pre-saving corresponding codes, tables, or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices). There is no limitation on its specific implementation.
  • FIG. 16 shows a schematic block diagram of a communication device 400 according to an embodiment of the present application.
  • the device 400 may correspond to the sending device described in each of the above methods, or may be a chip or component applied to the sending device, and in the device 400 Each module or unit is used to execute each action or processing procedure performed by the sending device in each of the foregoing methods.
  • the communication device 400 may include: a processing unit 410 and a communication unit 420.
  • the processing unit 410 is configured to determine a physical layer protocol data unit PPDU, the PPDU includes a signaling field, the signaling field includes a resource unit allocation subfield and a merge indication corresponding to the resource unit allocation subfield, and the resource unit allocation subfield indicates Multiple resource units, where the combination indication is used to indicate combination information of the multiple resource units;
  • the communication unit 420 is configured to send the PPDU.
  • the processing unit 410 is configured to determine a physical layer protocol data unit PPDU.
  • the PPDU includes a signaling field.
  • the signaling field includes multiple resource unit allocation subfields and multiple merge indications.
  • the multiple resource unit allocation subfields indicate multiple Resource unit, the multiple combination indications are used to indicate the combination information of the multiple resource units, one combination indicator corresponds to the RU indicated by a resource unit allocation subfield, and one resource unit is 242-tone RU, 484-tone RU Or 996-tone RU;
  • the communication unit 420 is configured to send the PPDU.
  • the communication device provided in the present application can support one or more users to use multiple continuous or discontinuous RUs for data transmission, and indicate the combination of multiple RUs to the user, which improves the flexibility of RU allocation in the system and improves The spectrum utilization rate of the system is improved.
  • the communication unit 420 may include a receiving unit (module) and a sending unit (module), configured to perform the steps of sending information by the sending device in each of the foregoing methods.
  • the communication device 400 may further include a storage unit 430, and the storage unit 430 is configured to store instructions executed by the communication unit 420 and the processing unit 410.
  • the communication unit 420, the processing unit 410, and the storage unit 430 are coupled to each other, the storage unit 330 stores instructions, the processing unit 410 is used to execute the instructions stored in the storage unit 430, and the communication unit 420 is used to perform specific signal transceiving under the driving of the processing unit 410 .
  • the processing unit 410 may be a processor, and the communication unit 420 may be a transceiver, an input/output interface, or an interface circuit.
  • the storage unit 430 may be a memory.
  • the communication device 500 may include a processor 510, a memory 520, and a transceiver 530.
  • the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit outside the chip in the communication device (for example, Read only memory, random access memory, etc.).
  • the aforementioned communication apparatus 400 or 400 may be a sending device.
  • the sending device may be an AP or STA, or a network device.
  • FIG. 18 shows a schematic block diagram of a communication device 600 according to an embodiment of the present application.
  • the device 600 may correspond to the receiving device described in each of the foregoing embodiments, or may be a chip or component applied to the receiving device, and the device 600
  • Each module or unit in each of the foregoing method embodiments is used to execute each action or processing procedure performed by the receiving device in each of the foregoing method embodiments.
  • the communication device 600 may include: a communication unit 610 and a processing unit 620.
  • the communication unit 610 is configured to receive a physical layer protocol data unit PPDU.
  • the PPDU includes a signaling field.
  • the signaling field includes a resource unit allocation subfield and a merge indication corresponding to the resource unit allocation subfield.
  • the resource unit allocation subfield indicates Multiple resource units, where the combination indication is used to indicate combination information of the multiple resource units;
  • the processing unit 620 is configured to determine the combined information of the multiple resource units according to the PPDU.
  • the communication unit 610 is configured to receive a physical layer protocol data unit PPDU.
  • the PPDU includes a signaling field.
  • the signaling field includes a plurality of resource unit allocation subfields and a plurality of merge indications, and the plurality of resource unit allocation subfields indicate a plurality of Resource unit, the multiple combination indications are used to indicate the combination information of the multiple resource units, one combination indicator corresponds to the RU indicated by a resource unit allocation subfield, and one resource unit is 242-tone RU, 484-tone RU Or 996-tone RU;
  • the processing unit 620 is configured to determine the combined information of the multiple resource units according to the PPDU.
  • the communication device provided in this application can indicate the combination of small RUs within 20 MHz through the combination indication in the signaling field, and can support one or more users to use multiple continuous or discontinuous RUs for data transmission, improving The allocation flexibility of the system RU is improved, and the spectrum utilization rate of the system is improved.
  • the communication unit 610 may include a receiving unit (module) and a sending unit (module), configured to perform the steps of receiving information by the receiving device in each method embodiment.
  • the communication device 600 may further include a storage unit 630, and the storage unit 630 is configured to store instructions executed by the communication unit 610 and the processing unit 620.
  • the communication unit 610, the processing unit 620, and the storage unit 630 are coupled to each other.
  • the storage unit 630 stores instructions.
  • the processing unit 620 is used to execute the instructions stored in the storage unit 630.
  • the communication unit 610 is used to perform specific signal transceiving under the driving of the processing unit 620. .
  • the processing unit 620 may be implemented by a processor, and the communication unit 610 may be implemented by a transceiver.
  • the storage unit 630 may be implemented by a memory.
  • the communication device 700 may include a processor 710, a memory 720, and a transceiver 730.
  • the aforementioned communication apparatus 600 or 600 may be a receiving device, for example, a terminal device.
  • each unit in the device can be all implemented in the form of software called by processing elements; they can also be all implemented in the form of hardware; part of the units can also be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separate processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device.
  • the processing element may also be called a processor, and may be an integrated circuit with signal processing capability.
  • each step of the foregoing method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple digital signal processors (digital signal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuits.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • FPGA field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • FIG. 20 is a schematic structural diagram of a terminal device 800 provided by this application.
  • the foregoing apparatus 600 or 700 may be configured in the terminal device 800.
  • the apparatus 600 or 700 itself may be the terminal device 800.
  • the terminal device 800 can perform the actions performed by the receiving device in the foregoing method embodiments.
  • FIG. 20 only shows the main components of the terminal device.
  • the terminal device 800 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program. For example, it is used to support the terminal device to execute the above-mentioned resource unit merging instruction method embodiment. Describe the action.
  • the memory is mainly used to store software programs and data, for example, the codebook described in the above embodiments.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 20 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device, execute software programs, and process software programs. data.
  • the processor in FIG. 20 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and the various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiver function may be regarded as the transceiver unit 801 of the terminal device 800, and the processor with the processing function may be regarded as the processing unit 802 of the terminal device 800.
  • the terminal device 800 includes a transceiver unit 801 and a processing unit 202.
  • the transceiving unit may also be referred to as a transceiver, transceiver, transceiving device, and so on.
  • the device for implementing the receiving function in the transceiving unit 801 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 801 can be regarded as the sending unit, that is, the transceiving unit 801 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • FIG. 21 is a schematic structural diagram of another terminal device 900 provided by this application.
  • the terminal device includes a processor 910, a data sending processor 920, and a data receiving processor 930.
  • the processing unit 620 in the foregoing embodiment may be the processor 910 in FIG. 21, and completes corresponding functions.
  • the communication unit 610 in the foregoing embodiment may be the sending data processor 920 and/or the receiving data processor 930 in FIG. 21.
  • a channel encoder and a channel decoder are shown in FIG. 21, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are merely illustrative.
  • FIG. 22 is a schematic structural diagram of a network device provided by an embodiment of the present application. It is used to implement the operation of the network device (that is, the sending device) in the above embodiment.
  • the network equipment includes: an antenna 1001, a radio frequency device 1002, and a baseband device 1003.
  • the antenna 1001 is connected to the radio frequency device 1002.
  • the radio frequency device 1002 receives the information sent by the terminal through the antenna 1001, and sends the information sent by the terminal device to the baseband device 1003 for processing.
  • the baseband device 1003 processes the information of the terminal and sends it to the radio frequency device 1002, and the radio frequency device 1002 processes the information of the terminal equipment and sends it to the terminal via the antenna 1001.
  • the baseband device 1003 may include one or more processing elements 10031, for example, a main control CPU and other integrated circuits.
  • the baseband device 1003 may also include a storage element 10032 and an interface 10033.
  • the storage element 10032 is used to store programs and data; the interface 10033 is used to exchange information with the radio frequency device 1002.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above apparatus for network equipment may be located in the baseband apparatus 1003.
  • the above apparatus for network equipment may be a chip on the baseband apparatus 1003.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network. For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the merging indication is 2 bits
  • the value 00 of the two bits indicates the allocation of the resource unit
  • the two-bit value 01 means that the second 52-tone RU and the second 26-tone RU are combined into one Multi-RU, that is, the second 52-tone RU is combined with the adjacent 26-tone RU to the left.
  • a Multi-RU For example, as shown in FIG. 23, the ordering is in the order of the frequency domain from low to high within 20 MHz, and 20 MHz may include 9 26-tone RUs.
  • 20 MHz may include 4 52-tone RUs, or 20 MHz may include 2 106-tone RUs.
  • the second 26-tone RU is located at the second of the nine 26-tone RUs, and the second 52-tone RU is located at the second of the four 52-tone RUs.
  • the 26-tone RU marked as the first type of filling pattern in the first row is the second 26-tone RU mentioned above.
  • the 52-tone RU marked as the first filling pattern in the second row is the second 52-tone RU mentioned above.
  • the two-bit value 01 indicates that the first 106-tone RU and the middle 26-tone RU within 20 MHz (that is, the fifth 26-tone RU) are combined into one Multi-RU.
  • the 106-tone RU marked as the third filling pattern in the third row is the first 106-tone RU mentioned above, and the 26-tone RU marked as the second filling pattern in the first row is the above
  • the fifth 26-tone RU (the middle 26-tone RU within 20MHz).
  • RUs with the same filling pattern can be combined into one Multi-RU.
  • the third 52-tone RU and the eighth 26-tone RU are combined into one Multi-RU, that is, the third 52-tone RU is combined with the adjacent 26-tone RU on the right.
  • the third 52-tone RU is located at the third of the four 52-tone RUs
  • the eighth 26-tone RU is located at the eighth of the nine 26-tone RUs, as shown in Figure 23 .
  • the 52-tone RU marked as the third filling pattern in the second row is the third 52-tone RU mentioned above
  • the 26-tone RU marked as the third filling pattern in the first row is the eighth mentioned above 26-tone RU.
  • a two-bit value of 10 indicates that the second 106-tone RU and the middle 26-tone RU (that is, the fifth 26-tone RU) within 20 MHz are combined into one Multi-RU.
  • the 106-tone RU marked as the fourth type of filling pattern in the third row is the second 106-tone RU mentioned above, and the 26-tone RU in the middle within 20MHz is the first line marked as the second type of filling.
  • the 26-tone RU of the pattern is the first line marked as the second type of filling.
  • the meaning of the two-bit value can also be interchanged.
  • the content indicated by the two-bit value 01 can be interchanged with the two-bit value 10, or, The content indicated by the two-bit value 01 can be interchanged with the two-bit value 11, or the content indicated by the two-bit value 10 can be interchanged with the two-bit value 11. That is to say, the specific value of the two bits in the above example should not cause any limitation to the embodiment of the present application.
  • the combination can be performed according to the combination indication and combination mode shown in FIG. 23.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the baseband device.
  • the processing elements here may be integrated circuits, such as one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-chip.
  • the baseband device includes the SOC chip for implementing the above method.
  • the terminal equipment and network equipment in each of the above apparatus embodiments can completely correspond to the receiving equipment and sending equipment in the method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the receiving unit may be an interface circuit used by the chip to receive signals from other chips or devices.
  • the above sending unit is an interface circuit of the device for sending signals to other devices.
  • the sending unit is the chip for sending signals to other chips or devices.
  • the interface circuit is the case for sending signals to other chips or devices.
  • An embodiment of the present application also provides a communication system, which includes: the above-mentioned sending device and the above-mentioned receiving device.
  • the embodiment of the present application also provides a computer-readable medium for storing computer program code, and the computer program includes instructions for executing the resource unit combination instruction method of the embodiment of the present application in the foregoing method embodiments.
  • the readable medium may be a read-only memory (ROM) or a random access memory (RAM), which is not limited in the embodiment of the present application.
  • the present application also provides a computer program product, the computer program product including instructions, when the instructions are executed, so that the sending device and the receiving device perform the operations of the sending device and the receiving device corresponding to the above method.
  • An embodiment of the present application also provides a system chip, which includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute computer instructions so that the chip in the communication device executes any of the resource unit merging instructions provided in the embodiments of the present application.
  • the computer instructions are stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit can also be a storage unit in the terminal located outside the chip, such as a ROM or other storage units that can store static information and instructions.
  • static storage devices RAM, etc.
  • the processor mentioned in any of the above may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the program execution of the above feedback information method.
  • the processing unit and the storage unit can be decoupled, respectively set on different physical devices, and connected in a wired or wireless manner to realize the respective functions of the processing unit and the storage unit, so as to support the system chip to implement the above-mentioned embodiments Various functions in.
  • the processing unit and the memory may also be coupled to the same device.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM). , EEPROM) or flash memory.
  • Volatile memory can be RAM, which acts as an external cache.
  • RAM static RAM
  • dynamic RAM dynamic RAM
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate Synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory direct memory bus random access Access memory
  • direct rambus RAM direct rambus RAM
  • system and "network” in this article are often used interchangeably in this article.
  • and/or in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • uplink and downlink appearing in this application are used to describe the direction of data/information transmission in a specific scenario.
  • the "uplink” direction generally refers to the direction or distribution of data/information from the terminal to the network side.
  • the “downlink” direction generally refers to the direction in which data/information is transmitted from the network side to the terminal, or the direction in which the centralized unit transmits to the distributed unit.
  • uplink and downlink “It is only used to describe the direction of data/information transmission, and the specific start and end equipment of the data/information transmission is not limited.
  • the methods in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction can be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本申请提供了一种资源单元合并指示的方法和通信装置,该方法包括:确定物理层协议数据单元PPDU,该PPDU包括信令字段,该信令字段包括资源单元分配子字段和与资源单元分配子字段对应的合并指示,该资源单元分配子字段指示多个资源单元,该合并指示用于指示该多个资源单元的合并信息;发送该PPDU。本申请提供的方法,可以支持一个或多个用户使用多个连续或者不连续的RU进行数据传输,并将多个RU的合并情况指示给该用户,提高了系统RU的分配灵活性,提高了系统频谱利用率。

Description

资源单元合并指示的方法和通信装置
本申请要求于2020年01月10日提交中国专利局、申请号为202010028036.6、申请名称为“资源单元合并指示的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更为具体的,涉及一种资源单元合并指示的方法和通信装置。
背景技术
随着无线局域网(wireless local area network,WLAN)系统的802.11各个标准版本的演进,802.11标准在资源的分配上需要进一步的提高。在用户频带资源分配上,一个用户的频带资源的分配是以资源单元(Resource Unit,RU)为单位。例如,在802.11ax的一个20MHz信道内,可以包含多个RU,形式可以是26-tone RU、52-tone RU、106-tone RU。其中,tone表示子载波。
但是,802.11ax目前仅支持将单一RU分配给一个或者多个用户,并不支持将多个连续或者不连续的RU分配给某一个或多个用户使用。这会降低系统RU的分配灵活性,也使系统在有前导码打孔的情况下频谱利用率不高。
发明内容
本申请提供了一种资源单元合并指示的方法和通信装置,可以支持一个或多个用户使用多个连续或者不连续的RU进行数据传输,并将多个RU的合并情况指示给该用户,提高了系统RU的分配灵活性,提高了系统频谱利用率。
第一方面,提供了一种资源单元合并指示的方法,该方法的执行主体可以是发送设备,例如,该发送设备可以是AP,也可以是应用于发送设备的芯片,该方法包括:确定物理层协议数据单元PPDU,该PPDU包括信令字段,该信令字段包括资源单元分配子字段和与资源单元分配子字段对应的合并指示,该资源单元分配子字段指示多个资源单元,该合并指示用于指示该多个资源单元的合并信息;
发送该PPDU。
第一方面提供的资源单元合并指示的方法,通过在信令字段中的合并指示,可以指示20MHz内的小RU的合并情况,从而可以支持一个或多个用户使用多个连续或者不连续的RU进行数据传输,并将多个RU的合并情况指示给该用户,提高了系统RU的分配灵活性,提高了系统频谱利用率。
第二方面,提供了一种资源单元合并指示的方法,该方法的执行主体可以是接收设备,例如,该接收设备可以是STA,也可以是应用于接收设备的芯片,该方法包括:接收物理层协议数据单元PPDU,该PPDU包括信令字段,该信令字段包括资源单元分配子字段和 与资源单元分配子字段对应的合并指示,该资源单元分配子字段指示多个资源单元,该合并指示用于指示该多个资源单元的合并信息;根据该PPDU,确定该多个资源单元的合并信息。
第二方面提供的资源单元合并指示的方法,通过在信令字段中的合并指示,可以向用户指示20MHz内的小RU的合并情况,可以支持一个或多个用户使用多个连续或者不连续的RU进行数据传输,提高了系统RU的分配灵活性,提高了系统频谱利用率。
在第一方面或者第二方面的一种可能的实现方式中,20MHz内的小RU包括:26-tone RU、52-tone RU、106-tone RU。
在第一方面或者第二方面的一种可能的实现方式中,小RU之间不进行跨20MHz的合并。
在第一方面或者第二方面的一种可能的实现方式中,小RU之间的合并包括:一个26-tone RU和一个52-tone RU合并为一个Multi-RU,一个26-tone RU和一个106-tone RU合并为一个Multi-RU,一个52-tone RU和一个106-tone RU合并为一个Multi-RU。
在第一方面或者第二方面的一种可能的实现方式中,对于小RU之间的合并,对于需要合并的26-tone RU、52-tone RU、以及106-tone RU的位置不作限制。
在第一方面或者第二方面的一种可能的实现方式中,该合并指示包含于该资源单元分配子字段中;或,该信令字段还包括多资源单元分配字段,该多资源单元分配字段包括该合并指示。
在第一方面或者第二方面的一种可能的实现方式中,该信令字段可以是HE-SIG-B,或者也可以为EHT-SIG,或者还可是未来网络系统下802.11中的信令字段。
在第一方面或者第二方面的一种可能的实现方式中,该合并指示包括2比特;该合并指示用于指示该多个资源单元合并得到的Multi-RU的个数,其中,一个Multi-RU由该多个资源单元中的至少两个资源单元合并组成。
在第一方面或者第二方面的一种可能的实现方式中,当该Multi-RU的个数为1个时,该一个Multi-RU为:一个26-tone RU与一个52-tone RU合并组成,或者为,一个26-tone RU与一个106-tone RU合并组成,或者为:一个52-tone RU与一个106-tone RU合并组成;
当该Multi-RU的个数为2个时,该2个Multi-RU中,一个Multi-RU为:一个由26-tone RU与一个52-tone RU的合并组成,另一个Multi-RU为:一个26-tone RU与一个106-tone RU的合并组成,或者,该2个Multi-RU中的每一个Multi-RU均为:一个由26-tone RU与一个52-tone RU的合并组成;
当该Multi-RU的个数为3个时,该3个Multi-RU中每一个Multi-RU均为:一个26-tone RU与一个52-tone RU的合并组成。
在第一方面或者第二方面的一种可能的实现方式中,该合并指示包括1比特,该合并指示取第一值用于指示该多个资源单元不合并,该合并指示取第二值用于指示该多个资源单元中至少两个RU合并为Multi-RU。
可续的,在该多个资源单元中至少两个RU合并为Multi-RU的情况下,该Multi-RU为56-tone RU和相邻的26-tone RU合并;或,该Multi-RU为106-tone RU和相邻的26-tone RU合并;或,该Multi-RU为106-tone RU和52-tone RU的合并。
在第一方面或者第二方面的一种可能的实现方式中,该合并指示取第一值用于指示该 多个资源单元不合并,该合并指示取第二值用于指示该多个资源单元中的第一个52-tone RU或第一个106-tone RU与相邻的26-tone RU合并;合并指示取第三值用于指示该多个资源单元中的第二个106-tone RU与相邻的26-tone RU合并;该合并指示取第四值用于指示该多个资源单元中的第三个52-tone RU与相邻的26-tone RU合并。
第三方面,提供了一种资源单元合并指示的方法,该方法的执行主体可以是发送设备,例如,该发送设备可以是AP,也可以是应用于发送设备的芯片,该方法包括:确定物理层协议数据单元PPDU,该PPDU包括信令字段,该信令字段包括多个资源单元分配子字段和多个合并指示,该多个资源单元分配子字段指示多个资源单元,该多个合并指示用于指示该多个资源单元的合并信息,一个合并指示与一个资源单元分配子字段所指示的RU对应,一个该资源单元为242-tone RU,484-tone RU或996-tone RU;
发送该PPDU。
第三方面提供的资源单元合并指示的方法,通过在信令字段中的合并指示,可以指示跨242-tone的大RU合并情况,从而可以支持一个或多个用户使用多个连续或者不连续的大RU进行数据传输,并将多个大RU的合并情况指示给该用户,提高了系统RU的分配灵活性,提高了系统在有前导码打孔的情况下频谱利用率。
第四方面,提供了一种资源单元合并指示的方法,该方法的执行主体可以是接收设备,例如,该接收设备可以是STA,也可以是应用于接收设备的芯片,该方法包括:接收物理层协议数据单元PPDU,该PPDU包括信令字段,该信令字段包括多个资源单元分配子字段和多个合并指示,该多个资源单元分配子字段指示多个资源单元,该多个合并指示用于指示该多个资源单元的合并信息,一个合并指示与一个资源单元分配子字段所指示的RU对应,一个该资源单元为242-tone RU,484-tone RU或996-tone RU;
根据该PPDU,确定该多个资源单元的合并信息。
第三方面提供的资源单元合并指示的方法,通过根据接收到的信令字段中的合并指示,确定指示跨242-tone的大RU合并情况,可以支持一个或多个用户使用多个连续或者不连续的大RU进行数据传输,提高了系统RU的分配灵活性,提高了系统在有前导码打孔的情况下频谱利用率。
在第三方面或者第四方面的一种可能的实现方式中,该信令字段可以是HE-SIG-B,或者也可以为EHT-SIG,或者还可是未来网络系统下802.11中的信令字段。
在第三方面或者第四方面的一种可能的实现方式中,该合并指示包含于所对应的资源单元分配子字段中;或,该信令字段还包括多资源单元分配字段,该多资源单元分配字段包括该多个合并指示。
在第三方面或者第四方面的一种可能的实现方式中,该合并指示对应的RU为242-tone RU,484-tone RU或996-tone RU。
在第三方面或者第四方面的一种可能的实现方式中,该合并指示取第一值,用于指示该合并指示对应的RU不合并;该多个合并指示中,取值都为第二值的至少两个合并指示对应的至少两个RU合并。
在第三方面或者第四方面的一种可能的实现方式中,该合并指示取第一值,指示该合并指示对应的RU不合并;该合并指示取第二值,指示该合并指示对应的RU与其他RU合并为Multi-RU,且该RU为Multi-RU中的首个RU;该合并指示取第三值,指示该合并 指示对应的RU与其他RU合并为Multi-RU,且该RU为Multi-RU中的中间RU;该合并指示取第四值,指示该合并指示对应的RU与其他RU合并为Multi-RU,且该RU为Multi-RU中的末尾RU。
在第三方面或者第四方面的一种可能的实现方式中,该合并指示取第一值,用于指示该合并指示对应的RU不合并;该合并指示取第二值,用于指示该合并指示对应的RU与预设位置的其他RU合并为Multi-RU。
第五方面,提供了一种通信装置,该装置包括用于执行以上第一方面或者第一方面的任意可能的实现方式中的各个步骤的单元,或者用于执行以上第三方面或者第三方面的任意可能的实现方式中的各个步骤的单元。
第六方面,提供了一种通信装置,该装置包括用于执行以上第二方面或第二方面的任意可能的实现方式中的各个步骤的单元,或者,用于执行以上第四方面或者第四方面的任意可能的实现方式中的各个步骤的单元。
第七方面,提供了一种通信装置,该装置包括至少一个处理器和存储器,该至少一个处理器用于执行以上第一方面或第一方面的任意可能的实现方式中的方法,或者用于执行以上第三方面或第三方面的任意可能的实现方式中的方法。
第八方面,提供了一种通信装置,该装置包括至少一个处理器和存储器,该至少一个处理器用于执行以上第二方面或第二方面的任意可能的实现方式中的方法,或者用于执行以上第四方面或第四方面的任意可能的实现方式中的方法。
第九方面,提供了一种通信装置,该装置包括至少一个处理器和接口电路,该至少一个处理器用于执行以上第一方面或第一方面的任意可能的实现方式中的方法,或者用于执行以上第三方面或第三方面的任意可能的实现方式中的方法。
第十方面,提供了一种通信装置,该装置包括至少一个处理器和接口电路,该至少一个处理器用于执行以上第二方面或第二方面的任意可能的实现方式中的方法,或者用于执行以上第四方面或第四方面的任意可能的实现方式中的方法。
第十一方面,提供了一种网络设备,该终端设备包括上述第五方面提供的通信装置,或者,该终端设备包括上述第七方面提供的通信装置,或者,该终端设备包括上述第九方面提供的通信装置。
第十二方面,提供了一种终端设备,该网络设备包括上述第六方面提供的通信装置,或者,该终端设备包括上述第八方面提供的通信装置,或者,该终端设备包括上述第十方面提供的通信装置。
第十三方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序在被处理器执行时,用于执行第一方面至第四方面中的任意一方面,或者,第一方面至第四方面的任意可能的实现方式中的方法。
第十四方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,用于执行第一方面至第四方面中的任意一方面,或者,第一方面至第四方面中的任意可能的实现方式中的方法。
第十五方面,提供了一种通信系统,该通信系统包括上述第五方面提供的装置以及第六方面提供的装置;或者
该系统包括上述第七方面提供的装置以及第八方面提供的装置;或者
该系统包括上述第九方面提供的装置以及第十方面提供的装置;或者
该系统包括上述第十一方面提供的网络设备以及第十二方面提供的终设备。
第十六方面,提供了一种芯片,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的通信设备执行第一方面至第四方面中的任意一方面,或第一方面至第四方面中的任意一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法。
附图说明
图1是一例适用于本申请实施例的通信系统的示意图。
图2是一个20MHz上的HE-SIG的结构的示意图。
图3是数据分组带宽为20MHz时资源单元的各种排列组合方式的示意图。
图4是数据分组带宽为40MHz时资源单元的各种排列组合方式的示意图。
图5是数据分组带宽为80MHz时资源单元的各种排列组合方式的示意图。
图6是当数据分组带宽为20MHz时内容信道的结构的示意图。
图7是当数据分组带宽为40MHz时内容信道的结构的示意图。
图8是当数据分组带宽为80MHz时内容信道的结构的示意图。
图9是本申请实施例提供的资源单元合并指示的方法的示意性交互图。
图10是本申请实施例提供的另一例资源单元合并指示的方法的示意性交互图。
图11是为本申请提供的一例信令字段的示意图。
图12所示的为本申请实施例提供的一例多资源单元分配字段的示意图。
图13所示的为本申请实施例提供的另一例多资源单元分配字段的示意图。
图14是为本申请提供的一例信令字段的示意图。
图15所示的为本申请实施例提供的另一例根据资源单元的位置信息确定资源单元的示意图。
图16是本申请实施例提供的通信装置的示意图。
图17是本申请实施例提供的又一例通信装置的示意图。
图18是本申请实施例提供的通信装置的示意图。
图19是本申请实施例提供的又一例通信装置的示意图。
图20是本申请实施例提供的一例终端设备的示意图。
图21是本申请实施例提供的另一例终端设备的示意图。
图22是本申请实施例提供的网络设备的示意图。
图23是本申请实施例提供的一例数据分组带宽为20MHz时资源单元的各种合并方式的示意图。
图24是本申请实施例提供的一例数据分组带宽为40MHz时资源单元的各种合并方式的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如,无线局域网(Wireless Local  Area Network,WLAN)系统,例如,本申请实施例可以适用于WLAN当前采用的国际电工电子工程学会(institute of electrical and electronics engineers,IEEE)802.11系列协议中的802.11ac/802.11ax/802.11be或者未来IEEE 802.11系列中任意一种协议。
图1示出了一例适用于本申请实施例的通信系统的示意图,如图1所示的通信系统可以是WLAN系统,也可以是广域网系统。图1的通信系统可以包括一个或多个AP,以及一个或多个STA,图1以两个AP(AP 1和AP 2)和两个用户站点(station,STA)(STA 1和STA 2)为例,其中,AP与AP、AP与STA、STA与STA之间可以通过各种标准进行无线通信。本申请提供的方案可以应用在AP与AP之间的通信、STA与STA之间的通信以及AP与STA之间的通信。
用户站点(STA)也可以称为终端、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。站点可以为无线通信芯片、无线传感器或无线通信终端。例如站点为支持无线保真(wireless fidelity,WiFi)通信功能的移动电话、支持WiFi通信功能的平板电脑、支持WiFi通信功能的机顶盒、支持WiFi通信功能的智能电视、支持WiFi通信功能的智能可穿戴设备、支持WiFi通信功能的车载通信设备和支持WiFi通信功能的计算机、支持WiFi通信功能的智能家居设备,比如智能摄像头,智能水表电表、传感器,以及支持WiFi通信功能的车联网设备,或物联网设备,传感器等。可选地,站点可以支持当前网络系统或者未来网络系统下802.11制式的设备。
本申请所涉及到的接入点AP是一种部署在无线通信网络中为站点提供无线通信功能的装置,可用作WLAN的中枢,所述接入点AP还可以为基站、路由器、网关、中继器,通信服务器,交换机或网桥等,其中,所述基站可以包括各种形式的宏基站,微基站,中继站等。在此为描述方便,将上述为站点STA提供无线通信功能服务的装置统称为接入点或AP。
本申请实施例中AP与STA可以通过无线局域网进行通信,并将STA的数据传输至网络侧,或将来自网络侧的数据传输至STA。AP也称之为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有WiFi芯片的终端设备或者网络设备。可选地,AP可以为支持当前网络系统或者未来网络系统下802.11制式的设备。
具体地,AP和STA之间可以多用户多入多出(multi-users multiple-input multiple-output,MU-MIMO)技术进行无线通信。在本申请实施例中,每个STA配备一个或多个天线。每个AP支持多站点协同和/或联合传输。
还应理解。图1只是示意图,该通信系统中还可以包括其它网络设备或者终端设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该通信系统中包括AP和STA的数量不做限定。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软 盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
在带宽配置方面,802.11ax目前支持的带宽配置包括:20MHz、40MHz、80MHz、160MHz及80+80MHz。其中,160MHz与80+80MHz的区别在于前者为连续频带,而后者的两个80MHz间可以分离。在802.11be中,将对320MHz等配置进行支持。
在用户频带资源分配上,一个用户的频带资源的分配并不是以信道为单位,而是以资源单元(Resource Unit,RU)为单位。在802.11ax的一个20MHz信道内,可以包含多个RU,形式可以是26-tone RU、52-tone RU、106-tone RU。其中,tone表示子载波,例如,26-tone RU表示由26个子载波组成的RU,该26-tone RU可以被分配给一个用户使用。此外,RU也可以是242-tone、484-tone、996-tone等形式分配给一个或者多个用户使用。
但是,802.11ax目前仅支持将单一RU分配给一个或者多个用户,例如,对于尺寸(size)大于或者等于106个子载波组成的资源的单元(106-tone RU)支持的MU MIMO的用户数可以大于或者等于8。但是802.11ax并不支持将多个连续或者不连续的RU分配给某一个或多个用户使用。这会降低系统RU的分配灵活性,也使系统在有前导码打孔的情况下频谱利用率不高。
有鉴于此,本申请提供了一种资源单元合并指示的方法,可以支持一个或多个用户使用多个连续或者不连续的RU进行数据传输,并将多个RU的合并情况指示给该用户,提高了系统RU的分配灵活性,提高了系统频谱利用率。
为了更清楚的说明本申请提供的方法,首先简单说明RU的分配和指示方式。
目前,主要利用信令字段(Signal Field,SIG)向用户通知RU的分配。SIG在每个20MHz上是单独编码的例如,例如,该信令字段可以是高效信令字段B(High Efficient Signal Field-B,HE-SIG-B),或者也可以为超高吞吐率信令字段(Extremely High Throughput Signal Field,EHT-SIG),或者还可是未来网络系统下802.11中的信令字段等。在每一个20MHz上的SIG的信息结构如图2所示。
如图2中所示的,HE-SIG分为两部分,其中第一部分是公共字段(公共部分字段),包括1~N个资源单元(resource unit,RU)分配子字段(RU allocation subfield),以及当带宽大于等于80MHz时存在的中间26-子载波(Center 26-Tone)资源单元指示子字段(Center 26-Tone RU indication),然后是用于校验的循环冗余码(cyclic redundancy code,CRC)以及用于循环解码的尾部(Tail)子字段。一个资源单元分配子字段对应一个20MHz的频域资源单元的分配,一个资源单元子字段指示了20MHz内包括的一个或者多个资源单元的大小和位置。在逐个站点字段(也可以叫做用户特定字段(user specific field),按照资源单元分配的顺序,存在着1~M个站点字段(User Field),M个站点字段通常是两个为一组,每两个站点字段后有一个CRC和tail字段,除了最后一组,可能会存在1个或者2个站点字段。在本申请中,站点字段也可以称为用户字段。
其中,一个资源单元分配子字段为一个资源单元分配索引,一个资源单元分配索引指示了20MHz内包括的一个或者多个资源单元的大小和位置。其中,至少一个站点字段的 顺序和资源单的分配顺序是对应的。每一个站点字段指示在资源单元的分配中包括的RU内被分配的STA的站点信息。当一个资源单元分配子字段指示的资源单元的排列组合中包括由大于或者等于106个子载波组成的资源单元时,该资源单元分配索引还用于指示由大于或者等于106个子载波组成的资源单元支持的MU MIMO用户数。其中MU MIMO用户数大于或者等于8。
当数据分组带宽为20MHz时,如图3所示的,图3所示为数据分组带宽为20MHz时的资源单元可能的分配方式的示意图。整个20MHz带宽可以由一整个242个子载波组成的资源单元(242-tone RU)组成,也可以由26个子载波组成的资源单元(26-tone RU)、52个子载波组成的资源单元(52-tone RU)、106个子载波组成的资源单元(106-tone RU)的各种组合组成。其中“Tone”可以理解为子载波。除了用于传输数据的RU,此外,还包括一些保护(Guard)子载波,空子载波,或者直流(direct current,DC)子载波。
当数据分组带宽为40MHz时,如图4所示的,图4所示为数据分组带宽为40MHz时资源单元的各种分配方式。整个带宽大致相当于20MHz的子载波分布的复制。整个40MHz带宽可以由一整个484个子载波组成的资源单元(484-tone RU)组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU的各种组合组成。
当数据分组带宽为80MHz时,如图5所示的,图5所示为数据分组带宽为80MHz时的资源单元可能的分配方式的示意图。整个带宽大致相当于20MHz的子载波分布的复制。整个80MHz带宽可以由一整个996个子载波组成的资源单元(996-tone RU)组成,也可以由484-tone RU、242-tone RU,106-tone RU,52-tone RU,26-tone RU的各种组合组成。并且,在整个80MHz带宽的中间,还存在一个由两个13-tone子单元组成的中间26-tone RU(Center 26-Tone RU)。
类似的,当数据分组带宽为160MHz时,整个带宽可以看成两个80Mhz的子载波分布的复制,整个带宽可以由一整个2×996-tone RU(由1992个子载波组成的资源单元)组成,也可以由26-tone RU,52-tone RU,106-tone RU,242-tone RU,484-tone RU,996-tone RU的各种组合组成。并且,在整个80MHz带宽的中间,还存在一个由两个13-tone子单元组成的中间26-tone RU。
以上的各种子载波分布方式中,以242-tone RU为单位,左边的242-tone RU可以看作为数据分组带宽最低频率,右边的242-tone RU可以看作最高频率。例如,以图6所示的为例,从左到右,可以对242-tone RU依次进行标号:1,2,3,4。又例如,当数据分组带宽为160MHz时,从左到右,可以对242-tone RU依次进行标号:1,2,…8。应该理解的是,在数据字段,8个242-tone RU与8个20MHz信道按照频率从低到高一一对应,但是由于中间26-tone RU的存在,在频率上并不完全重合。
802.11ax引入了内容信道(content channel,CC)的概念。内容信道可以理解为SIG-B包括的内容,例如,内容信道可以包括至少一个资源单元分配子字段(RU allocation subfield)、多个逐个站点字段、用于校验的CRC以及用于循环解码的尾部(Tail)子字段。图6所示的为当数据分组带宽为20MHz时内容信道的结构的示意图。如图6所示的,当数据分组带宽只有20MHz时,SIG-B只包含1个内容信道,该内容信道中包含1个资源单元分配子字段,用于指示数据部分第一个242-tone RU范围内的资源单元分配指示。1个资源单元分配子字段为一个资源单元分配索引,用于指示一个242-tone RU内所有可能 的资源单元的分配方式。此外,对于尺寸大于或者等于106-tone的RU(即由大于或者等于106个子载波组成的RU),同时通过该索引,指示该RU中进行SU/MU-MIMO传输的用户数。
举例说明,假设资源单元分配子字段为8个比特的索引,可以通过8个比特索引的方式指示出一个242-tone RU内所有可能的资源单元的分配方式。此外,对于尺寸大于或者等于106-tone的RU(即由大于或者等于106个子载波组成的RU),同时通过8个比特的索引,指示该RU中进行SU/MU-MIMO传输的用户数。8比特的索引资源单元索引表如表1所示。
表1
Figure PCTCN2021070851-appb-000001
Figure PCTCN2021070851-appb-000002
表1中,第一列代表8比特索引,中间列#1~#9代表着不同资源单元。表格的数字代表该资源单元所包含的子载波数目。例如,索引00111y 2y 1y 0表示整个242-tone RU被分成了52-tone RU、52-tone RU、26-tone RU、106-tone RU这4个RU组成。第三列的条目数量指示相同资源单元分配的条目个数,即相同资源单元排列方式对应的不同的索引个数。对于索引00111y 2y 1y 0而言,之所以会存在8个条目,是因为在指示242-tone RU资源单元分配方式的同时,y 2y 1y 0还用于指示在该106-tone RU内所包含的SU/MU-MIMO传输的用户数,对应1~8个用户。即利用3比特的y 2y 1y 0指示该106-tone RU内支持的1至8个用户。8个条目可以看成表格中独立的8行,这8行对应相同的资源单元分配方式,每一行对应不同的106-tone RU内支持的用户数。在802.11ax标准中,规定子载波数大于或者等于106的RU可以进行MU-MIMO,所以当表2中的某一行中存在子载波数大于等于106的RU时,条目数会大于1。对应的,逐个站点字段中按照资源分配的顺序,指示在该242-tone RU范围内被分配的STA的站点信息。
表1所示的大部分的RU配置是在242-tone的范围内,另外有少部分属于指示该RU属于242-tone RU、484-tone RU、996-tone RU。其中,每8比特的资源单元分配子字段将告知对应20MHz范围内的RU分配状况。可以理解的是:20MHz带宽对应1个资源单元分配子字段,40MHz带宽对应2个资源单元分配子字段,80MHz带宽对应4个资源单元分配子字段、160MHz带宽对应8个资源单元分配子字段,320MHz带宽对应16个资源单元分配子字段。
图7所示的为当数据分组带宽为40MHz时内容信道的结构的示意图。如图7所示,当数据分组带宽为40MHz时,存在两个SIG-B内容信道,CC1和CC2。其中在第1个SIG-B信道的CC1包括第1个242-tone RU范围内的资源单元分配子字段以及所对应的逐个站点字段。第2个HE-SIG-B信道的CC2包括第2个242-tone RU范围内的资源单元分配子字段以及所对应的逐个站点字段。
图8所示的为当数据分组带宽为80MHz时内容信道的结构的示意图。如图8所示,当数据分组带宽为80MHz时,仍然存在2个CC,一共4个信道。因此整体上按照频率由低到高,按照CC1、CC2、CC1、CC2的结构在4个信道上对资源单元分配信息进行指示,其中在CC1中包括第1个和第3个242-tone RU范围内的资源单元分配子字段以及其范围内所对应的逐个站点字段。CC2包括第2个和第4个242-tone RU范围内的资源单元子字段以及其范围内所对应的逐个站点字段。另外在两个CC上,都会包括80MHz的中间26-tone RU指示字段,指示该资源单元是否被用于传输数据。
类似的,当数据分组带宽为160MHz时,仍然存在2个CC,一共8个信道,相当于在80MHz的基础上进一步扩展。
本申请实施例中,可以支持将不同的RU进行合并,并且可以将RU的合并信息通过信令字段通知给用户设备,例如,信令字段可以为信令字段B,也可以为极高吞吐量信令字段(EHT SIG),或者为EHT SIG中包括的信令字段,或者,也可以为EHT SIG-B,或者还可以是物理层协议数据单元(physical layer protocol data unit,PPDU)包括的其他字段。本申请在此不作限制。
下面说明本申请实施例中的提供的一些RU可能的合并情况,为了便于说明,将RU分为小RU(small-size RU)与大RU(large-size RU)两种类型,其中小RU的集合为{26,52,106},大RU的集合为{242,484,996},集合中的数字表示组成RU的子载波的个数。
可选的,在本申请实施例中,可以设置下列的RU合并规则:
第一:小RU与大RU之间不合并;
第二:小RU之间不进行跨20MHz的合并;
第三:小RU之间的合并应是连续的,可选的,也可以是不连续的。
在本申请实施例中,将多个连续的或者不连续的RU合并称为多RU(Multi-RU)。组成该Multi-RU的多个连续的或者不连续的RU可以分配给一个或多个用户。可选的,其中的多个连续的或不连续的RU可以由802.11ax定义,且合并的RU的个数不限。例如,本申请实施例中的20MHz内,两个小RU的合并,也可以理解为两个小RU合并为一个Multi-RU。
基于上述的规则:对于20MHz内的小RU合并,可能的小RU的合并的方式包括:(52-tone RU+26-tone RU)、(106-tone RU+26-tone RU)、(52-tone RU+106-tone RU)的方式,换句话说,20MH中包括的Multi-RU可以有三种;
第一种Multi-RU包括:一个52-tone RU和一个26-tone RU合并组成。
第二种Multi-RU包括:一个106-tone RU和一个26-tone RU合并组成。
第三种Multi-RU包括:一个52-tone RU和一个106-tone RU合并组成。
并且,在本申请实施例中,20MHz内,在一个RU allocation subfield指示的频域资源单元的分配中,可能出现上述的三种Multi-RU中的任意一种Multi-RU,或者,可能出现上述的三种Multi-RU中的第一种Multi-RU和第二种Multi-RU,并且,对于出现的第一种Multi-RU的次数(或者个数)不作限制,例如,可以出现一个或者多个第一种Multi-RU。例如,假设对于某一个RU allocation subfield指示的频域资源单元的分配方式中包括两个52-tone RU和至少两个26-tone RU的情况,则该频域资源单元的分配方式中可以包括两个第一种Multi-RU。一个52-tone RU与一个26-tone RU合并组成一个第一种Multi-RU,另 一个52-tone RU与另一个26-tone RU合并组成另一个第一种Multi-RU。
例如,表2所示的为一例20MHz内的小RU可能出现的合并方式
表2
Figure PCTCN2021070851-appb-000003
表2中,A表示该20MHz内存在一个第一种Multi-RU,即存在一个52-tone RU和一个26-tone RU的合并,B表示该20MHz内存在两个第一种Multi-RU,即存在一个52-tone RU和一个26-tone RU的合并,以及另一个52-tone RU和另一个26-tone RU的合并。C表示该20MHz内存在三个第一种Multi-RU,即存在一个52-tone RU和一个26-tone RU的合并,另一个52-tone RU和另一个26-tone RU的合并,以及又一个52-tone RU和又一个26-tone RU的合并。D表示该20MHz内存在一个第三种Multi-RU,即存在一个106-tone RU和一 个56-tone RU的合并。E表示该20MHz内存在一个第二种Multi-RU,即存在一个106-tone RU和一个26-tone RU的合并。
表格中的“或”表示在同一个资源单元的分配方式中,对应的A至E中的只能出现一种。例如,对于资源单元的分配方式为:52-tone RU、26-tone RU、26-tone RU、26-tone RU、26-tone RU、26-tone RU、52-tone RU的情况,第一个52-tone RU后的(A,或者)与第二个52-tone RU(B,或)表示:在这种资源单元分配方式下,可能出现的Multi-RU为:两个52-tone RU中的任意一个52-tone RU与任意一个26-tone RU合并成一个第一种Multi-RU,即存在一个第一种Multi-RU,为合并方式A。或者,第一个52-tone RU与任意一个26-tone RU合并成一个第一种Multi-RU,第二个52-tone RU与另外的任意一个26-tone RU合并成另一个第一种Multi-RU,即存在两个第一种Multi-RU,为合并方式B。
又例如,对于资源单元的分配方式为:52-tone RU、52-tone RU、26-tone RU、106-tone RU的情况,第一个52-tone RU后的(A,或者)与106-tone RU(E或D,或)表示:在这种资源单元分配方式下,可能出现的Multi-RU为:两个52-tone RU中的任意一个52-tone RU与一个26-tone RU合并成一个第一种Multi-RU,即存在一个第一种Multi-RU,为合并方式A。或者,两个52-tone RU中的任意一个52-tone RU与一个106-tone RU合并成一个第三种Multi-RU,即存在一个第三种Multi-RU,为合并方式D。或者,一个106-tone RU与一个26-tone RU合并成一个第二种Multi-RU,即存在一个第二种Multi-RU,为合并方式E。
应理解,在本申请实施例中,对于上述的第一种Multi-RU。第二种Multi-RU以及第三种Multi-RU,均不限定上述的各个合并方式中52-tone RU、106-tone RU、以及26-tone RU的位置。也就是说,上述的合并方式A仅仅表示在对应的RU分配存在一个第一种Multi-RU(52-tone RU+26-tone RU),对于一个26-tone RU以及一个52-tone RU的位置不作限制。上述的合并方式B仅仅表示在对应的RU分配存在两个第一种Multi-RU(52-tone RU+26-tone RU)、(52-tone RU+26-tone RU)),对于合并的26-tone RU以及52-tone RU的位置也不作限制。类似的,上述的合并方式D仅仅表示在对应的RU分配存在一个第三种Multi-RU(106-tone RU+52-tone RU),对于合并的一个106-tone RU与一个52-tone RU的位置也不作限制。上述的合并方式E仅仅表示在对应的RU分配存在一个第二种Multi-RU(106-tone RU+26-tone RU),对于合并的一个106-tone RU与一个26-tone RU的位置也不作限制。换句话说,表2所示的小RU的合并方式为非受限的合并方式,对进行合并的106-tone RU、26-tone RU以及52-tone RU的位置不作限制。
可选的,在本申请一些可能的实现方式中,所有可以合并的52-tone RU或106-tone RU与26-tone RU合并时可以遵循以下原则:与20MHz内可以与离自己最近的26-tone RU合并。例如,可以是在同距离情况下优先合并右边的26-tone RU;也可以是在同距离情况下优先合并左边的26-tone RU;也可以是同距离下在左边106-tone RU或者52-tone RU范围内优先合并左边或者右边的26-tone RU,同距离下在右边106-tone RU或者52-tone RU范围内优先合并右边或者左边的26-tone RU等。例如,对于第一种Multi-RU(52-tone RU+26-tone RU),可以是与一个52-tone RU连续的左边或者右边的26-tone RU与该52-tone RU合并组成一个第一种Multi-RU。对于第二种Multi-RU(106-tone RU+26-tone RU),可以是与一个106-tone RU连续的左边或者右边的26-tone RU与该106-tone RU合并组成 一个第二种Multi-RU。对于第三种Multi-RU(106-tone RU+52-tone RU),可以是与一个106-tone RU连续的(或者距离最近的)左边或者右边的52-tone RU与该106-tone RU合并组成一个第三种Multi-RU。换句话说,上述的小RU的合并方式为受限的合并方式,即对进行合并的106-tone RU、26-tone RU以及52-tone RU的位置具有一定的限制。
例如,表3所示的为本申请实施例提供的另一种20MHz内的小RU合并可能出现的合并方式。
表3
Figure PCTCN2021070851-appb-000004
表3中,对于任意一行子载波的分布中,标号为(a)的RU可以合并,得到一个Multi-RU,标号为(b)的RU可以合并,得到一个Multi-RU。并且,在相同的RU分配中,可以同时存在(a)方式的RU合并和(b)方式的RU合并。
又例如,表4所示的为本申请实施例提供的另一种20MHz内的52-tone RU与106-tone RU合并可能出现的合并方式。
表4
Figure PCTCN2021070851-appb-000005
表4中,对于任意一行子载波的分布中,标号为(c)的RU可以合并得到一个Multi-RU。
应理解,在本申请实施例中,对于20MHz内的小RU的合并,还可以存在其它可能的合并方式,表2至表4仅仅示例性的列出一些可能的RU合并方式,而不应该对本申请实施例中的20MHz内的小RU的合并方式产生任何限制。
还应理解,表3和表4所示的为受限的小RU合并方式。
对于大RU的合并方式,下面将分别以80MHz带宽、160MHz带宽、320MHz带宽为例进行说明。本申请实施例中的跨242-tone的大RU合并,也可以理解为多个大RU合并为一个Multi-RU。对于信道中存在前导码打孔的情况下,采用大RU的合并方式可以将未被打孔的多个RU合并分配给一个或多个用户,提升前导码打孔情况下的RU分配灵活度和频谱利用率。
表5所示的80MHz带宽可能存在的RU合并方式,由于80MHz带宽对应4个资源单元分配子字段,1个资源单元分配子字段用于指示一个242-tone RU。4个资源单元分配子字段按照顺序在2个CC上依次排列。表5中的位置表示4个资源单元分配子字段指示的4个242-tone RU的先后位置。如表5所示的,不同的组合方式分别表示对应的两个大RU合并为一个Multi-RU。也就是说,对于80MHz带宽中包括的Multi-RU一共有五种不同的Multi-RU。表5中不同的组合方式分别表示不同的Multi-RU。可以看出,对于80MHz带宽中包括的Multi-RU可以有二种:分别为:(242-tone RU+242-tone RU)、(484-tone RU+242-tone RU)。
表5
Figure PCTCN2021070851-appb-000006
对于160MHz带宽,由于160MHz带宽对应8个资源单元分配子字段,1个资源单元分配子字段用于指示一个242-tone RU,因此,对于160MHz带宽,由两个或者更多个大RU组成的Multi-RU可以有以下几种:分别为:(996-tone RU+996-tone RU)、(242-tone RU+484-tone RU)、(242-tone RU+484-tone RU+484-tone RU)、(242-tone RU+484-tone RU+242-tone RU)、(484-tone RU+996-tone RU)、(996-tone RU+484-tone RU)。其中,每个括号表示一种Multi-RU。
例如,表6所示的为本申请实施例提供的一种160MHz带宽可能存在的RU合并方式,由于160MHz带宽对应8个资源单元分配子字段,1个资源单元分配子字段用于指示一个242-tone RU。表6所所示的160MHz带宽可以由两个996-tone RU组成。表6中的位置表示2个996-tone RU的先后位置。如表6所示的,不同的组合方式分别表示对应的多个大RU合并为一个Multi-RU。
表6
Figure PCTCN2021070851-appb-000007
应该理解,表6仅仅是示例性的,不应该对于160MHz带宽的RU合并方式产生任何限制。
对于320MHz中的合并组合,可以是基于上述160MHz的合并,也可以是基于上述的80MHz的合并等。例如,表7所示的为本申请实施例提供的一种320MHz带宽可能存在的RU合并方式,如表7所示的,不同的组合方式分别表示对应的两大RU合并为一个Multi-RU。
表7
Figure PCTCN2021070851-appb-000008
应理解,上述的表5至表7仅仅本申请实施例中的跨242-tone的大RU合并方式的一些例子,不应该对本申请实施例中的跨242-tone的大RU合并方式产生任何限制。并且,表5至表7所示的仅仅是受限的大RU合并方式,对于需要合并的大RU的个数、位置以及组合等均有一定的限制。也就是说,预先定义了可以进行合并的大RU的组合以及位置等。
下面结合图9详细说明本申请提供的资源单元合并指示的方法,图9是本申请一个实施例的资源单元合并指示的方法200的示意性流程图,该方法200可以应用在图1所示的场景中。当然也可以应用在其他通信场景或者通信系统中,本申请实施例在此不作限制。
应理解,下文的描述中,以发送设备和接收设备作为各个实施例的执行方法的执行主体为例,对各个实施例的方法进行说明。发送设备可以是上述的AP或者STA,接收设备也可以是上述的AP或者STA。作为示例而非限定,执行方法的执行主体也可以是应用于发送设备和接收设备的芯片。
如图9所示,图9中示出的方法200可以包括步骤S210至步骤S220。下面结合图9详细说明方法200中的各个步骤。该方法200包括:
S210,发送设备确定PPDU,该PPDU包括信令字段,该信令字段包括至少一个资源单元分配子字段和与至少一个资源单元分配子字段对应的合并指示,一个资源单元分配子字段对应一个20MHz的频域资源单元的分配,一个资源单元子字段指示了20MHz内包括的多个资源单元的大小和位置,该信令字段包括还包括合并指示,该合并指示用于指示该至少一个资源单元分配子字段指示的资源单元的合并信息。即该信令字段包括资源单元分配子字段和与资源单元分配子字段对应的合并指示,该资源单元分配子字段指示多个资源单元,该合并指示用于指示该多个资源单元的合并信息。
其中,一个资源单元分配子字段指示可以指示一个20MHz的频域上包括的多个资源单元,该多个资源单元均为小RU(small-size RU),在这种情况下,与一个资源单元分配子字段对应的合并指示用于指示一个20MHz的频域上的这些小RU的合并情况。
S220,发送设备发送该PPDU。相应的,接收设备接收该PPDU。
具体而言,在S210中,发送设备向接收设备需要发送数据时,会向接收设备发送PPDU,PPDU包括信令字段(Signal Field,SIG)。可选的,该信令字段可以为上述的 EHT-SIG-B。该PPDU除了包括信令字段,还可以包括EHT-SIG-A字段、数据字段等。信令字段包括至少一个资源单元分配子字段(RU allocation subfield)。该信令字段还可以包括至少一个站点字段(User Field)。一个资源单元分配子字段对应一个20MHz的频域资源单元的分配,一个资源单元子字段指示了20MHz内包括的多个资源单元的大小和位置其中,至少一个站点字段的顺序和资源单的分配顺序是对应的。每一个站点字段指示在资源单元的分配中包括的RU内被分配的STA的站点信息。并且,所述信令字段包括还包括合并指示(或者也可以称为合并指示比特),所述合并指示用于指示所述至少一个资源单元分配子字段指示的资源单元的合并信息。在S220,接收设备接收到该PPDU后,根据该信令字段以及指示比特,便可以确定RU的合并信息,从而确定与自己对应的多个RU,提高了系统RU的分配灵活性,提高了系统的频谱利用率。
如图10所示,图10中示出的为本申请提供另一例资源单元合并指示的方法300的示意性交互图。方法300可以包括步骤S310至步骤S320。下面结合图10详细说明方法300中的各个步骤。该方法300包括:
S310,发送设备生成PPDU,该PPDU包括信令字段,该信令字段包括多个资源单元分配子字段和与多个资源单元分配子字段对应的合并指示,一个资源单元分配子字段对应一个20MHz的频域资源单元的分配,一个资源单元子字段指示了20MHz内包括的一个资源单元的大小和位置,这一个资源单元为大RU(large-size RU),一个资源单元为242-tone RU,484-tone RU或996-tone RU。该多个资源单元分配子字段指示多个资源单元。该信令字段包括还包括合并指示,该多个合并指示用于指示该多个资源单元的合并信息,一个合并指示与一个资源单元分配子字段所指示的RU对应。也就是说,多个合并指示用于指示多个大RU的合并信息。即该信令字段包括多个资源单元分配子字段和多个合并指示,该多个资源单元分配子字段指示多个资源单元,该多个合并指示用于指示该多个资源单元的合并信息,一个合并指示与一个资源单元分配子字段所指示的RU对应,一个资源单元为242-tone RU,484-tone RU或996-tone RU。
S320,发送设备发送该PPDU。相应的,接收设备接收该PPDU。
具体而言,在S310中,发送设备向接收设备需要发送数据时,会向接收设备发送PPDU,PPDU包括信令字段(Signal Field,SIG)。可选的,该信令字段可以为上述的EHT-SIG-B。该PPDU除了包括信令字段,还可以包括EHT-SIG-A字段、数据字段等。信令字段包括至少一个资源单元分配子字段(RU allocation subfield)。该信令字段还可以包括至少一个站点字段(User Field)。一个资源单元分配子字段对应一个20MHz的频域资源单元的分配,一个资源单元子字段指示了20MHz内包括的一个大RU的大小和位置。该大RU为242-tone RU,484-tone RU或996-tone RU,至少一个站点字段的顺序和资源单元分配顺序是对应的。每一个站点字段指示在资源单元的分配中包括的RU内被分配的STA的站点信息。并且,所述信令字段包括还包括合并指示(或者也可以称为合并指示比特),所述合并指示用于指示所述多个资源单元分配子字段指示的多个资源单元的合并信息。也就是说,该合并指示用于指示跨242-tone RU的大RU合并。在S320,接收设备接收到该PPDU后,根据该信令字段以及指示比特,便可以确定大RU的合并信息,从而确定与自己对应的多个大RU,提高了系统RU的分配灵活性,提高了系统的频谱利用率。
下面将分别进行说明。
在本申请一些可能的实现方式中,可以对每一个资源单元分配子字段进行扩展,例如,基于现有的资源单元分配子字段,在其后面进行扩展,可以在现有的任意一个或者多个资源单元分配子字段后面添加比特,用于指示该资源单元分配子字段指示的资源单元的合并信息。例如,每个资源单元分配子字段中包括合并指示。该合并指示用于指示该资源单元分配子字段指示的资源单元的合并信息。
例如,如表1所示的,在本申请实施例中,可以在表1中8比特索引的资源单元分配子字段后面进行扩展,将8比特索引的资源单元分配子字段扩展为9比特、10比特或更多的比特,利用扩展的1比特或者多比特来指示资源单元分配子字段指示的资源单元的合并情况,也就是说,扩展的1比特或者多比特为合并指示,可以利用该合并指示指示资源单元分配子字段指示的资源单元的合并,包括242-tone内的小RU合并以及跨242-tone的大RU合并。
对于242-tone内的小RU合并,由上述的分析可知,一个20MHz内最多存在3个Multi-RU,这3个Multi-RU为3个第一种Multi-RU,即存在3个形式为(52-tone RU+26-tone RU)的Multi-RU。因此可以使用2比特进行指示可以实现0至3个Multi-RU的指示。因此,可以将表1中的8比特索引的资源单元分配子字段扩展为10比特,其中,第九比特和第十比特为上述的合并指示。
例如,一种可能的实现方式为:多个资源单元分配子字段中的一个资源单元分配子字段对应一个20MHz的频域资源单元的分配以及资源单元的合并情况,一个资源单元分配子字段指示20MHz内包括的一个或多个资源单元的大小和位置,以及,资源单元的合并情况。资源单元分配子字段包括多个比特(bits),其中一部分bits用于指示一个20MHz的频域资源单元的分配,即一个或多个资源单元的大小和位置,另外一部分bits用于指示一个20MHz的频域资源单元的合并情况。例如,资源单元分配子字段包括10bits,其中前8bits用于指示资源单元的分配,后2bits指示该资源单元的分配中频域资源单元的合并情况,可选的,前8bits指示的资源单元分配方式,可以参考802.11ax中的HE-SIGB中的设计,例如表1,当然需要说明的是,对于20MHz包括大于等于106-tone RU的情形中,由于大于等于106-tone的RU可以用于MU-MIMO传输,因此这8bits中还可以有一部分bits用于指示在大于等于106-tone的RU中进行MU-MIMO传输的用户的个数。后2bits也可以称为合并指示,该合并指示位取值为00、01、10、11分别可以指示不同的合并情况。例如,两比特位取值00表示该资源单元的分配方式中无多RU合并,即不存在Multi-RU。两比特位取值01表示该资源单元的分配方式中有一个Multi-RU,这一个Multi-RU可以为:第一种Multi-RU(52-tone RU+26-tone RU)、第二种Multi-RU(106-tone RU+26-tone RU)、或者为第三种Multi-RU(52-tone RU+106-tone RU)。两比特位取值10表示该资源单元的分配方式中有两个Multi-RU,这两个Multi-RU可以为两个第一种Multi-RU,或者,一个为第一种Multi-RU,另一个为第二种Multi-RU(106-tone RU+26-tone RU)。两比特位取值11表示该资源单元的分配方式中有3个Multi-RU,这3个Multi-RU均为第一种Multi-RU(52-tone RU+26-tone RU)。
可选的,在本申请实施例中,对于合并指示指示的Multi-RU,组成该Multi-RU的小RU的位置可以是预定义的。例如,两比特位取值01时,如果指示第一种Multi-RU,则默认指示在一个资源单元的分配方式中,从左向右第一个52-tone RU与该52-tone RU左 侧的第一个或者右侧第一个(或者与该52-tone RU连续的一个)26-tone RU合并得到一个第一种Multi-RU。类似的,如果指示第二种Multi-RU,则默认指示在一个资源单元的分配方式,从左向右第一个106-tone RU与该106-tone RU左侧的第一个或者右侧第一个(或者与该106-tone RU连续的一个)26-tone RU合并得到一个第二种Multi-RU。如果指示第三种Multi-RU,则默认指示在一个资源单元的分配方式,从左向右第一个106-tone RU与该106-tone RU左侧的第一个或者右侧第一个(或者与该106-tone RU连续的一个)52-tone RU合并得到一个第二种Multi-RU。
对于两比特位取值10时,如果指示两个第一种Multi-RU,每个第一种Multi-RU包括的52-tone RU以及26-tone RU的位置可以根据预定义的确定。如果两比特位取值10指示一个为第一种Multi-RU,另一个为第二种Multi-RU(106-tone RU+26-tone RU),对于第一种Multi-RU和第二种Multi-RU包括的RU位置的确定,也可以按照预定义的规则确定,例如,106-tone RU与52-tone RU分别与距离自己最近的26-tone RU合并,得到一个第一种Multi-RU,一个第二种Multi-RU。对于两比特位取值11时,三个第一种Multi-RU中,每个第一种Multi-RU包括的26-tone RU位置也可以按照上述的预定义的规则进行确定。
也就是说,在本申请实施例中,上述的三种Multi-RU还可以分别指示包括的两个小RU的位置关系。即可以根据不同类型的Multi-RU,还可确定不同类型的Multi-RU包括的两个小RU的位置。换句话说,在本申请实施例中,合并指示除了可以指示一个资源单元的分配方式中的Multi-RU个数,还可以指示每一个Multi-RU包括的两个小RU的位置关系,即合并指示指示的为受限小RU的合并方式。
在本申请另一些可能的实现方式中,两比特位的取值00表示该资源单元的分配方式中无多RU合并,即不存在Multi-RU。两比特位的其他取值表示该资源单元的分配方式存在一个52-tone RU。例如,两比特位的取值01表示在该资源单元的分配方式中,对左起第一个52-tone RU或者第一个106-tone RU与连续或者临近的26-tone RU进行合并,两比特位的取值10表示对左起第二个52-tone RU与连续或者临近的26-tone RU进行合并。两比特位的取值11表示对左起第三个52-tone RU与连续或者临近的26-tone RU进行合并等。与52-tone RU或者106-tone RU连续或者临近的26-tone RU可以理解为:位于52-tone RU或者106-tone RU左侧的第一个或者右侧第一个26-tone RU。换句话说,合并指示除了可以指示一个资源单元的分配方式中的Multi-RU个数,还可以指示每一个Multi-RU包括的两个小RU的位置关系。
对于242-tone内的小RU合并,该合并指示也可以为1比特,例如,资源单元分配子字段包括9bits,其中前8bits用于指示资源单元的分配,后1bits指示一个20MHz的频域资源单元的合并情况。即将8比特索引的资源单元分配子字段扩展为9比特,第9比特为上述的合并指示。在这种情况下,例如,1比特位取值0表示该资源单元的分配方式中无多RU合并,即不存在Multi-RU。1比特位取值1表示该资源单元的分配方式中有一个Multi-RU,这一个Multi-RU可以为:第一种Multi-RU(52-tone RU+26-tone RU)、第二种Multi-RU(106-tone RU+26-tone RU)、或者为第三种Multi-RU(52-tone RU+106-tone RU)。对于一个Multi-RU包括的两个RU的位置可以是预定义的,例如,可以是从左起第一个52-tone RU或者106-tone RU与其连续的(或者最近的)26-tone RU的合并等。也就是说,合并指示除了可以指示一个资源单元的分配方式中的Multi-RU个数,还可以指 示每一个Multi-RU包括的两个小RU的位置关系。
对于跨242-tone的大RU合并,也可以使用2比特长度的合并指示实现指示3个不同的Multi-RU。其中,每一个Multi-RU包括两个或者更多个大RU。例如,将8比特索引的资源单元分配子字段扩展为10比特,其中,前8bits用于指示资源单元的大小以及位置等,后2bits指示该资源单元的合并情况,其中,第九比特和第十比特为上述的合并指示。
一种可能的实现方式为:两比特位取值00表示这个资源单元分配子字段指示的大RU不合并,即不与其他大RU合并。两比特位取值01、10、11分别表示与该资源单元分配子字段指示的大RU不同的合并种类。例如,表8所示的为一例合并指示的不同取值指示的大RU合并的合并方式。
表8
Figure PCTCN2021070851-appb-000009
表8中的第一行每一个RU表示一个资源单元分配子字段指示的大RU(即一种带宽中的RU分配方式)。假设该信令字段包括表8所示的大RU对应的资源单元分配子字段。对于每个资源单元中的合并指示,合并指示位取值为00时来表示这个资源单元分配子字段指示的大RU不合并。合并指示位取值为01表示一种RU合并,将合并指示位取值为01对应的大RU合并后得到一个Multi-RU。合并指示位取值为11表示一种合并,将合并指示位取值为11对应的大RU合并后得到一个Multi-RU。合并指示位取值为10也可以表示一种合并,将合并指示位取值为10对应的大RU合并后得到一个Multi-RU。因此,表8中所示的存在两个Multi-RU,其中一个Multi-RU为(242-tone RU+242-tone RU+996-tone RU),另一个Multi-RU为(484-tone RU+242-tone RU)。即与某一个合并指示位取值相同的其他合并指示对应的资源单元与该合并指示对应的资源单元进行合并,得到一个Multi-RU。应理解,表8中,一个996-tone RU对应4个RU Allocation subfield,每个RU Allocation subfield中合并指示的取值相同,例如,均为11或者01。一个484-tone RU对应2个RU Allocation subfield,每个RU Allocation subfield中合并指示的取值相同,例如,均为11。
还应理解,如果在利用2比特长度的合并指示的不同取值表示大RU不同的合并类型 时,在大RU对应的合并指示之间之间出现小RU对应的合并指示,则小RU对应的合并指示不会对大RU之间的合并产生影响。即在大RU之间出现小RU对应的合并指示的情况下,可以跳过或者不读取小RU对应的合并指示。
应理解,在本申请实施例中,对于跨242-tone RU的大RU合并,也可以预先定义或者配置可以合并的大RU的个数。进一步的,还可以预先定义或者配置大RU的合并组合或者方式等。在利用2比特长度的合并指示进行大RU合并指示时,可以指示更多个(例如3个、5个等)大RU合并得到一个Multi-RU。也就是说,合并指示可以进一步指示预定义的多个大RU组合方式,即合并指示指示的为受限的大RU的合并方式,对进行合并的大RU的位置以及顺序具有一定的限制。例如,可以预先定义可以合并的大RU的多种合并组合,合并指示可以指示预先定义的多种合并组合中的任意一种大RU的合并组合。
作为另一种可能的实现方式:还可以利用2比特长度的合并指示的不同取值表示大RU在资源单元合并时的不同顺序。例如,两比特位取值00时来表示这个资源单元分配子字段指示的大RU不合并,两比特位取值为01、10、11分别表示需要合并的大RU分别位于合并位置的开头、中间、结尾。例如,表9所示的为一例合并指示位取值指示的RU合并的合并方式。
表9
Figure PCTCN2021070851-appb-000010
在表9所示的例子中,由于在比特位取值“01”与“10”之间存在比特位取值“00”,因此,可以跳过比特位取值“00”对应的大RU,继续向后读取比特位取值“10”以及“11”, 读取到比特位取值“11”时,比特位取值“11”对应的大RU为该Multi-RU包括的最后一个大RU。比特位取值“10”对应的大RU为该Multi-RU包括的第一个大RU。在表9所示的例子中,可以确定存在两个Multi-RU,其中一个Multi-RU为(242-tone RU+242-tone RU+996-tone RU)。另一个Multi-RU为(484-tone RU+242-tone RU)。应理解,表9中,一个996-tone RU对应4个RU Allocation subfield,每个RU Allocation subfield中合并指示的取值相同,例如,均为11或者00。
利用上述的方法,还可以指示出一个Multi-RU包括多个(例如,2个、4个或者更多个)大RU。
还应理解,如果在利用2比特长度的合并指示的不同取值表示大RU在资源单元合并时的不同顺序时,在大RU之间出现小RU对应的合并指示,则小RU对应的合并指示不会对大RU之间的合并产生影响。即在大RU之间出现小RU对应的合并指示的情况下,可以跳过或者不读取小RU对应的合并指示。
可选的,对于跨242-tone的大RU合并,也可以使用1比特长度的合并指示可以实现指示一个Multi-RU包括的多个大RU。即将8比特索引的资源单元分配子字段扩展为9比特,其中前8bits用于指示资源单元的大小以及位置等,后1bits指示该资源单元的合并情况。其中,第九比特上述的合并指示。例如,合并指示取值为0时来表示这个资源单元分配子字段指示的大RU不合并,即不与其他大RU合并。合并指示位取值为1表示与该资源单元分配子字段指示的大RU合并。当然,也可以利用指合并指示取值为1时来表示这个资源单元分配子字段指示的大RU不合并,合并指示为0表示与该资源单元分配子字段指示的大RU合并。在这种情况下需要加以一些限制,如一个Multi-RU为(242-tone RU+484-tone RU),则这个Multi-RU应当在某一个80MHz之内、并且这个Multi-RU包括的多个RU是预先定好的组合,多个RU的读取顺序为从左到右进行读取等。也就是说,合并指示还可以指示每一个Multi-RU包括的多个大RU的个数以及位置关系,即合并指示可以进一步指示预定义的多个大RU组合方式。
应理解,对于每一个资源单元分配子字段包括的1比特或者多比特的合并指示,可以是用于指示上述的受限的大RU的合并方式,即对于需要合并的大RU的个数、位置以及组合均有一定的限制。例如,可以预先定义可以合并的大RU的多种合并组合,合并指示可以指示预先定义的多种合并组合中的任意一种大RU的合并组合。
例如,如表5所示的合并方式,对于80MHz内的RU合并的不同的组合方式,只需要将需要合并242-tone RU以及484-tone RU对应的资源单元分配子字段最后的指示比特置为1,就可以指示80MHz之内大RU的合并方式,得到不同的Multi-RU。
例如,对于带宽为160MHz时,如表6所示的,表6所示的第一个(第一列)996-tone RU可以为主996-tone RU,即为主80MHz,第二个(第二列)996-tone RU可以为次996-tone RU,即为次80MHz。如果需要合并的996-tone RU在次80MHz,那么在接收设备读取完前面的主80MHz中的RU分布后需要接着读取次996-tone RU对应的资源单元分配子字段中的合并指示,如果合并指示位取值为0则该次996-tone RU不合并,如果合并指示位取值为1则该次996-tone RU合并。通过这种方法可以辨别出Multi-RU包括(242-tone RU+242-tone RU+996-tone RU)与Multi-RU包括(242-tone RU+242-tone RU)这两个不同的Multi-RU。
另外,对于Multi-RU包括(484-tone RU+242-tone RU+242-tone RU+484-tone RU),由于这几个大RU的位置不同,只需要将这几个需要合并的大RU对应的资源单元分配子字段中的合并指示置1即可。
对于带宽为320MHz时,320MHz带宽内RU的合并方式可以为可以基于996-tone RU的合并方式。例如,当接收设备读取到有三个996-tone RU对应的资源单元分配子字段中的合并指示位取值均为1时,就可以确定出这三个996-tone RU需要合并,得到的一个Multi-RU包括(996-tone RU+996-tone RU+996-tone RU)。
在本申请另一些可能的实现方式中,除了对每一个资源单元分配子字段在其后面添加合并指示来指示该资源单元分配子字段指示的资源单元的合并信息之外,还可以将每一个资源单元分配子字段对应的合并指示统一提取出来,即在该信令字段还存在多资源单元分配字段(Multi RU Allocation field),该多资源单元分配字段包括每一个资源单元分配子字段对应的合并指示。例如,图11所示的为本申请提供的一例信令字段的示意图,该信令字段还包括多资源单元分配字段,该多资源单元分配字段包括每一个资源单元分配子字段对应的合并指示。合并指示在该多资源单元分配字段的相对位置与合并指示对应的资源单元分配子字段在多个资源单元分配子字段中的相对位置相同。该多资源单元分配字段用于指示信令字段包括的至少一个资源单元分配子字段指示的RU合并情况。具体指示方式与上述的在每一个资源单元分配子字段在其后面添加指示比特的指示方式相同。
例如,对于320MHz带宽而言,该多资源单元分配字段包括的合并指示的长度可以为16比特或者为32比特。
可选的,在本申请实施例中,该多资源单元分配子字段可以在包括在Common字段中。
应理解,在本申请实施例中,对于信令字段中新增的多资源单元分配字段,多资源单元分配字段的构成形式可以有两种。图12所示的为本申请实施例提供的一种多资源单元分配字段的示意图。如图12所示的,多资源单元分配字段与公共字段(Common field)和用户特定字段(User Specific field)一样,划分为多个CC,每个CC携带多资源单元分配字段的一部分的内容。图13所示的为本申请实施例提供的另一种多资源单元分配字段的示意图。如图13所示的,多资源单元分配字段不进行划分,在所有20MHz信道上使用完全重复的内容。即每一个20MHz信道上的多资源单元分配字段均是相同的。
可选的,在本申请一些可能的实现方式中,除了上述的对资源单元分配子字段进行扩展,利用扩展后的资源单元分配子字段包括的合并指示指示资源单元的合并信息之外,还可以不用对资源单元分配子字段进行扩展,而是利用预留的条目来指示资源单元的合并信息。例如,如表1所示的,可以利用预留的多个8比特索引来指示不同的资源单元的分配方式对应的资源单元合并信息。
可选的,在本申请另一些可能的实现方式中,还可以重新定义资源单元分配子字段,即重新构造资源单元分配子字段,重新构造后的一个资源单元分分配子字段对应一个20MHz的频域资源单元的分配以及资源单元的合并情况。也就是说,一个重新构造后资源单元分配子字段指示20MHz内包括的一个或多个资源单元的大小和位置,以及,资源单元的合并情况。通过重新构造资源单元分分配子字段,可以使多RU合并信息直接在公共字段中显示,这样用户在读取公共字段后可以直接知晓新的RU分布顺序以及RU合并方式,因此即使是多RU用户也只需要使用一个用户字段即可确定新的RU分布顺序以及 RU合并方式。
例如。重新构造后的资源单元分配子字段的长度可以为9比特、10比特或者更多比特。本申请在此不作限制。
应理解,重新构造的资源单元分配子字段可以用于指示受限的RU合并,也可以指示非受限的RU合并。例如,对于20MHz内的小RU合并,重新构造的资源单元分配子字段指示的对需要合并的52-tone RU、106-tone RU以及26-tone RU的位置不作限定。例如,需要与52-tone RU或者106-tone RU合并的26-tone RU可以与52-tone RU或者106-tone RU连续的,也可以是不连续的。对于跨242-tone的大RU合并,在相应的20MHz上使用对应配置的重新构造的资源单元分配子字段即可。例如,如果存在80MHz内242tone RU+242tone RU的合并,只需要在对应的两个20MHz处全部使用指示242-tone RU与242-tone RU合并的资源单元分配子字段即可。
可选的,在本申请一些可能的实现方式中,还可以通过对有效RU进行提取并进行指示进而通知接收设备多RU合并信息。也就是说,按照用户读取有效的RU顺序进行所有效的RU的提取以及排序。其中,一个有效RU对应1比特。有效RU集合为{52,106,242,484,996},集合中的数字表示组成RU的子载波的个数。有效RU将根据在带宽中出现的位置进行关联。例如,如果320MHz中存在20个有效RU,那么将需要至少20比特来对这些RU的合并信息进行指示。
例如,对于242-tone内的小RU合并,每个有效的小RU可以对应1比特,用于指示对应的有效小RU是否与26-tone RU合并得到一个Multi-RU。其中,有效的小RU集合为{52,106}。具体的,在信令字段中的多资源单元分配字段可以包括多个合并指示,每一个合并指示对应一个有效小RU,用于指示这个有效小RU是否与该有效小RU所在的242-tone内的26-tone RU合并。例如,一个有效小RU对应的合并指示位取值为1,则指示该效小RU与该有效小RU所在的242-tone内的26-tone RU合并,某一个有效小RU对应的指示比特位取值为0,指示该效小RU不合并。或者,某一个有效小RU对应的合并指示位取值为0,指示该效小RU与该有效小RU所在的242-tone内的26-tone RU合并,某一个有效小RU对应的合并指示位取值为1,指示该效小RU不合并。
应理解,当某一个合并指示指示该有效小RU与该有效小RU所在的242-tone内的26-tone RU合并时,与该有效小RU合并的26-tone RU可以是与该有效小RU连续的26-tone RU。例如,与该有效小RU左侧的第一个或者右侧第一个26-tone RU合并得到一个Multi-RU。即一个有效小RU对应的合并指示用于指示受限的小RU的合并方式。
可以理解,对于242-tone内的小RU合并,一个242-tone内最多可以包括3个有效小RU。因此,一个242-tone(或者一个资源单元分配子字段)可以对应1比特长度的合并指示,1比特长度的合并指示可以对应一个52-tone RU或者一个106-tone RU。或者,一个242-tone可以对应2比特长度的合并指示,2比特长度的合并指示中每一比特分别指示一个52-tone RU,或者,2比特长度的合并指示中一比特指示一个52-tone RU,另一比特指示一个106-tone RU。或者,一个242-tone可以对应3比特长度的合并指示,3比特长度的合并指示中每一比特分别指示一个52-tone RU。
应理解,对于242-tone内的小RU合并,由于一个RU Allocation subfield指示的RU中可能存在多个有效小RU,因此,不同的RU Allocation subfield对应的合并指示的长度 可以是不同。因此,多资源单元分配字段的长度是可变的。可选的,RU Allocation subfield对应的合并指示的长度可以在Common field中进行指示。或者,也可以设置不同的RU Allocation subfield对应的合并指示的长度为相同。例如,假设每个RU Allocation subfield中最多有x个有效RU合并,则对于存在N个RU Allocation subfield而言,多资源单元分配字段的长度为N×x比特。
对于跨242-tone的大RU合并,即有效大RU的合并指示。其中,有效的大RU集合为{242,484,996}。
可选的,作为一种可能的实现方式,在多资源单元分配字段包括合并指示中,一个有效大RU可以对应2比特长度的合并指示,该2比特长度的合并指示的不同取值表示该有效大RU在资源单元合并时的不同顺序。例如,合并指示位取值为00时来表示该有效大RU不合并,合并指示位取值为01、10、11分别表示该有效大RU位于合并位置的开头、中间、结尾。
可选的,作为一种可能的实现方式,在多资源单元分配字段包括合并指示中,一个有效大RU对应2比特长度的指示比特。该2比特长度的指示比特的不同取值表示有效大RU在资源单元合并时的不同合并状态。例如,合并指示位取值为00时来表示该有效大RU不合并。合并指示位取值为01、10和11分别表示该有效大RU不同的合并种类,其中,相同取值的合并指示对应的有效大RU之间进行合并。
在本申请一些可能的实现方式中,对于跨242-tone的大RU合并,即有效大RU的合并指示,一个有效大RU也可以对应1比特长度的指示比特,用于指示这个有效大RU是否合并。例如,合并指示位取值为0时来表示该有效大RU不合并,合并指示位取值为1表示该有效大RU合并。当然,也可以利用合并指示为1时来表示指示该有效大RU不合并,合并指示位取值为0表示该有效大RU合并。在这种情况下,需要预先定义一个Multi-RU包括的多个大RU的组合以及位置等。
例如,表10所示的为一例合并指示与有效大RU之间的对应关系的示意图。
表10
Figure PCTCN2021070851-appb-000011
在表10所示的例子中,合并指示位取值为0表示该合并指示对应的有效大RU不合并,合并指示位取值为1表示该合并指示对应的有效大RU合并。在这种情况下,如果不加以约束会产生一定的混淆,如表10所示的例子中难以区分是996-tone RU+484-tone RU+242-tone RU合并成一个Multi-RU,还是242-tone RU+242-tone RU+996-tone RU合并成一个Multi-RU,因此,可以按照预先定义或者配置大RU的合并组合或者方式等。例如, 选择从左到右出现的预定好的组合则可以解决该问题。假设预先设定好的大RU合并组合为242-tone RU+242-tone RU+996-tone RU,即可以确定表10中所示的Multi-RU包括242-tone RU+242-tone RU+996-tone RU。应理解,表10中,一个996-tone RU对应4个RU Allocation subfield,每个RU Allocation subfield对应的合并指示的取值相同,例如,均为1或者0。一个484-tone RU对应2个RU Allocation subfield,每个RU Allocation subfield中合并指示的取值相同,例如,均为1。
也就是说,对于每一个有效大RU对应的1比特或者多比特的合并指示,可以是用于指示上述的受限的大RU的合并方式,即对于需要合并的大RU的个数、位置以及组合均有一定的限制。例如,可以预先定义可以合并的大RU的多种合并组合,合并指示可以指示预先定义的多种合并组合中的任意一种大RU的合并组合。
本申请提供的资源单元合并指示的方法,通过对有效RU进行了提取,并按照有效RU出现的位置对指示有效RU合并与否的合并指示进行排列,可以实现多RU合并信息进行有效指示。
应理解,除了将有效RU对应的合并指示统一设置在信令字段中的多资源单元分配字段中之外,可选的,还可以对资源单元分配子字段进行扩展,将每个资源单元分配子字段对应的有效RU的合并指示设置在对应的资源单元分配子字段后面。例如,扩展后的资源单元分配子字段可以为9比特、10比特或更多的比特等,利用扩展的1比特或者多比特分别指示有效RU的合并情况。
可选的,在本申请一些可能的实现方式中,除了上述对于信令字段中的公共字段进行改进实现通知多RU的合并之外,还可以对用户字段进行改进实现通知多RU的合并。
作为一种可能的实现方式,可以将不同用户字段(User Field)中的STA ID设置为相同。这样一个用户可以知道对应的多个RU被分配给自己,从而实现RU合并信息的告知;
作为另一种可能的实现方式,由于一个Multi-RU是由多个连续的或者不连续的RU合并组成。组成该Multi-RU的多个连续的或者不连续的RU可以分配给一个用户,这多个RU分别对应的STA ID是相同的,因此,可以修改这些STA ID相同的用户字段中除最后一个用户字段外其他用户字段中的信息。例如,可以在这些STA ID相同的用户字段中,在除过最后一个用户字段外的其他每个用户字段中,均利用9比特的指示信息指示属于该用户(或者该用户对应)的下一个RU的绝对位置信息或者相对位置信息。通过这种指示,可以使多资源单元用户在读取到第一个RU后直接获知下一个RU的位置,在一定程度上节约能耗。
作为又一种可能的实现方式,由于一个Multi-RU是由多个连续的或者不连续的RU合并组成。组成该Multi-RU的多个连续的或者不连续的RU可以分配给一个用户,这多个RU分别对应的STA ID是相同的。因此,在本申请实施例中,可以在多个STA ID相同的用户字段除过最后一个用户字段外的其他每个用户字段中均利用8比特的指示信息指示属于该用户的下一个RU的绝对位置信息或者相对位置信息,即指示组成Multi-RU的多个RU的位置以及大小等。
例如,在多个STA ID相同的用户字段除过最后一个用户字段外的其他每个用户字段中,可以通过指示索引信道编号与RU出现次序这两个信息对与该用户字段对应的RU的下一个需要合并的RU位置进行灵活标识。
具体的,当STA确定资源单元分配子字段后,STA可以利用4比特指示确定需要与当前自己所处的RU合并的RU所处的信道(4比特可以穷尽16个信道),同时,STA可以再用另外的4比特指示每个信道中具体的RU(每个242-tone内最多有9个RU)位置。因此,可以用8比特灵活的指示下一个需要合并的RU所处的位置。换句话说,在多个STA ID相同的用户字段除过最后一个用户字段外的其他用户字段中,可以利用8比特长度的指示字段去指示与当前用户字段需要合并的下一个RU的位置信息。从而确定需要与当前用户所处的RU合并的RU信息。
例如,当一个Multi-RU由两个RU合并组成时,两个RU对应的两个用户字段的STA ID相同,因此,在第一个用户字段中可以利用8比特长度的指示字段去指示与当前用户字段需要合并的下一个RU的位置信息便可以确定该Multi-RU。
又例如,当一个Multi-RU由3个RU合并组成时,3个RU对应的三个用户字段的STA ID相同,在第一个用户字段和第二个用户字段均可以存在8比特的指示字段,分别用于指示需要合并的第二个RU和第3个RU的位置,这样便可以确定该Multi-RU。类似的,对于一个Multi-RU由更多个RU合并组成时,只需要在除过最后一个RU之外的其他RU对应的用户字段设置8比特的指示字段,便可以确定Multi-RU。
应理解,利用用户字段中的8比特指示字段可以指示非受限的合并方式,或者可以指示受限的合并方式。并且,可以指示对于20MHz内的小RU合并,或者还可以指示跨242-tone的大RU合并。
在另一些可能的实现方式中,在多个STA ID相同的用户字段中,除过最后一个用户字段外的其他每个用户字段中,还可以利用4比特指示受限的RU合并方式RU的位置信息。假设242-tone RU内的小RU不支持跨242-tone合并,对于20MHz内的小RU合并,由于每个242-tone内最多有9个RU,则4比特完全可以指示下一个合并RU的位置。当然,对于20MHz内的小RU合并,3比特完全也可以指示下一个合并RU的位置。因此,对于20MHz内的小RU合并,在多个STA ID相同的用户字段中,除过最后一个用户字段外的其他用户字段中,可以利用3比特或者4比特指示需要与当前用户所处(或者所对应)的RU合并的RU信息。
对于跨242-tone RU的大RU合并,由于小RU不能跨242-tone与大RU合并,因此可以用一定数目的指示比特指示大RU的类型,并另外用一定数目指示比特指示大RU位置,通过指示大RU类型以及大RU位置这两个信息对需要合并的大RU进行指示。其中,大RU类型指的是大RU为242-tone RU、484-tone RU、或者是996-tone RU。例如,在多个STA ID相同的用户字段中,除过最后一个用户字段外的其他每个用户字段中,均可以利用2比特指示需要与当前用户所处的大RU合并的RU类型,例如,2比特位取值为00、01、10分别指示的大RU的类型为242-tone RU、484-tone RU、996-tone RU,用另外的2比特用另外的2比特指示是后面第几个该类型的大RU。
也就是说,多个STA ID相同的用户字段中,除过最后一个用户字段外的其他每个用户字段中,均可以利用3比特或者4比特指示需要与当前用户所处的RU合并的大RU信息。例如,当一个Multi-RU由3个大RU合并组成时,在3个大RU对应的3个用户字段中的第一个和第二个用户字段中可以存在4比特的指示字段,用于指示需要合并的第2个和第3个大RU的位置,这样便可以确定该Multi-RU。类似的,对于一个Multi-RU由更 多个RU合并组成时,只需要在除过最后一个RU之外的其他RU对应的用户字段均设置4比特的指示字段,便可以确定Multi-RU。
例如,如表5所示的组合方式1形成的Multi-RU(242-tone RU+242-tone RU),在第一个242-tone RU对应的用户字段中可以存在4比特的指示比特,该四比特位取值为0010表示,其中,前面两个比特位取值00表示下一个需要合并的RU为242-tone RU类型,后面两个比特位取值10表示是在当前RU之后的第三个。用户结合已知的资源单元分配子字段信息,便可以得知具体的RU位置,从而确定该Multi-RU。对第二个242-tone RU对应的用户字段可以不用进行修改。因此,4比特长度的指示比特可以对受限的多RU合并方式进行指示。
还应理解,如果需要进一步增加指示的灵活性,可以进一步增加使用的比特数目。例如,在多个相同的用户字段除过最后一个用户字段外的其他每个用户字段中,利用其他长度的指示比特指示与当前用户所处的RU合并的大RU信息。
可选的,在本申请实施例中,无论对于大RU的合并还是小RU的合并,对于需要合并的多个RU对应的多个用户字段,由于多个用户字段中的STA ID相同,因此,还可以在这多个用户字段中的每个用户字段中(包括最后一个用户字段)添加用于指示该用户字段是否为最后一个用户字段的指示比特,该指示比特用于指示该用户字段是否为最后一个需要合并的RU对应的用户字段,这样可以避免用户以为最后一个用户字段还包括指示下一个RU的位置的信息。例如,利用一比特的指示,在除过最后一个用户字段外的其他用户字段这1比特取值为1,用于指示对应的用户字段不是最后一个用户字段,在最后一个用户字段中这1比特取值为0,用于指示对应的用户字段为最后一个用户字段。
需要说明的是,由于RU的位置与用户字段在用户特定字段中的位置存在对应关系,因此,指示RU位置也是指示了RU对应的用户字段的位置。
可选的,在本申请实施例中,对于需要合并的多个RU对应的多个用户字段,由于这多个用户字段中的STA ID相同,因此,还可以在这多个用户字段中的每个用户字段中(包括最后一个用户字段),添加用于指示需要合并的RU的个数的指示比特,用于指示需要合并的RU的个数。例如,当需要合并的RU的个数为4个时,该指示比特可以为2比特长度。每个用户字段中的该指示比特取值相同,这样可以使得用户更加准确的都读取需要合并的RU的个数。
在本申请另一些可能的实现方式中,在该信令字段还可以包括多资源单元分配字段(Multi RU Allocation field),在该多资源单元分配字段中包括多个位置信息指示子字段,一个位置信息指示子字段用于指示一个需要合并为Multi-RU的RU位置。其中,多个位置信息指示子字段的两个或者更多个为一组,一组位置信息指示子字段指示的多个RU合并为一个Multi-RU。用户通过读取资源单元分配子字段的基础上,结合多个位置信息指示比特,根据自己出现在User Specific field中的次序可以知晓自己所分配的RU,进而可以在已得到RU分配形式的基础上进一步取得多RU合并的信息。利用这种方式,用户仍按照RU出现顺序进行排序即可,每个用户仅在User Specific field出现一次,通过查找其所在的位置,就可以获得被分配的RU等信息。
具体的,作为一种可能的实现方式,下面结合图14所示的为例进进行说明,图14所示的本申请提供的一例信令字段的示意图,该信令字段还包括多资源单元分配字段,该多 资源单元分配字段包括多个位置信息指示子字段,一个位置信息指示子字段用于指示一个需要合并为Multi-RU的RU位置。相邻位置信息指示字段指示的RU需要进行合并。例如,图14所示的例子中,多资源单元分配字段包括6个位置信息指示子字段,一个位置信息指示子字段用于指示一个需要合并为Multi-RU的RU位置。
假设:位置信息指示子字段1至位置信息指示子字段4指示的3个RU需要合并为一个Multi-RU,位置信息指示子字段5和位置信息指示子字段6指示的2个RU需要合并为另一个Multi-RU。如图15所示,图15所示的每一个长方形中表示一个RU,长方形中的数字表示该RU对应第几个用户(或者用户字段出现的顺序),每一行长方形对应一个20MHz带宽。假设,位置信息指示子字段1指示位置1,表示第一行第一个长方形,位置信息指示子字段2指示位置2,表示第三行第二个长方形,并且,可以将位置1和位置2上的RU进行合并。位置信息指示子字段3也指示位置2,即位置信息指示子字段2和位置信息指示子字段2均指示位置2上的RU。位置信息指示子字段4指示位置3,表示第三行第三个长方形。并且,位置3只对应一个位置信息指示子字段4,可以确定位置3上的RU为一个Multi-RU包括的最后一个RU,只需要将位置信息指示子字段4指示的RU和前一个位置信息指示子字段(位置信息指示子字段3)指示的RU进行合并。因此,可以确定该Multi-RU包括:位置信息指示子字段1指示的RU+位置信息指示子字段2或3指示的RU+位置信息指示子字段4指示的RU。即对于一个Multi-RU包括三个RU而言,中间的RU对应两个位置信息指示子字段。即需要利用4个位置信息指示子字段指示3个RU的合并。
进一步的,位置信息指示子字段5指示位置4,表示第二行第二个长方形,位置信息指示子字段6指示位置5,表示第二行第三个长方形。如果后续没有其他的位置信息指示子字段6也指示位置5,则可以确定另外一个Multi-RU包括:位置信息指示子字段5指示的RU+位置信息指示子字段6指示的RU。用户根据自己出现在User Specific field中的次序可以确定自己所分配的RU,进而可以在已得到RU分配形式的基础上进一步取得多RU合并的信息。例如在图13所的例子中,位置1至位置4对应的3个RU合并为一个Multi-RU,为用户1使用。位置5至位置6对应的2个RU合并为另一个Multi-RU,为用户10使用。
可选的,每一个位置信息指示子字段的长度可以为4比特、8比特、9比特或者其他长度。用于指示242-tone RU内的小RU合并以及跨242-tone RU的大RU合并。可选的,242-tone RU内的小RU合并以及跨242-tone RU的大RU合并均可以是不受限的RU合并。
可选的,作为另一种可能的实现方式,可以在每一个位置信息指示子字段添加1比特的组指示比特,组指示比特位取值相同的多个位置信息指示子字段指示的RU可以合并为一个Multi-RU。例如,对于图13所示的,如果一个Multi-RU由3个RU组成,则可以在这个3个RU对应的3个位置信息指示子字段中分别添加一比特的组指示比特,并且,3个RU对应的组指示比特位取值相同。这样就可以指示这3个RU需要合并为一个Multi-RU,而不同通过重复指示一个RU位置的方式去确定哪些RU需要合并为一个Multi-RU可以节省需要的位置信息指示子字段个数。即可以利用3个位置信息指示子字段指示3个RU的合并。不会出现同一个位置上的RU对应两个位置信息指示子字段。用户根据自己出现在User Specific field中的次序可以确定自己所分配的RU,进而可以在已得到RU分配形式的基础上进一步取得多RU合并的信息。并且,同一用户只需要在User  Specific field中出现一次。
应该理解,在本申请实施例中,多资源单元分配字段的长度可以在公共字段中指示。并且,多资源单元分配字段包括多个位置信息指示子字段可以在CC1、CC2中全部存在,也可以采用CC1存在一部分,CC2存在存另一部分的方式。本申请实施例在此不作限制。
可选的,在本申请另一些可能的实现方式中,对于每80MHz中间的一个中心26-tone RU(Center 26-tone RU)的合并情况。该中心26-tone RU也可以和其他的RU进行合并得到一个Multi-RU。该中心26-tone RU是否存在与Common field中的Center 26-tone RU字段的取值有关,该字段为1比特位,1比特位取值为1时表示存在中心26-tone RU,1比特位取值为0时表示不存在中心26-tone RU。
作为一种可能的实现方式,可以将Center 26-tone RU字段扩展多个比特,例如,扩展为2比特,其中,2比特位取值为00表示对应80MHz频带不存在该中心26-tone RU,2比特位取值为01表示对应80MHz频带存在该中心26-tone RU,但该中心26-tone RU不合并,即不与其他的RU合并,2比特位取值为10、11分别表示对应80MHz频带存在该中心26-tone RU,且该中心26-tone RU需要与其他RU合并。
例如,2比特位取值为10表示该中心26-tone RU与右边的242-tone范围内的连续RU进行合并得到一个Multi-RU。2比特位取值为11表示该中心26-tone RU与左边的242-tone范围内的连续RU进行合并得到一个Multi-RU。
又例如,2比特位取值为10表示该中心26-tone RU与右边的242-tone范围内的与该中心26-tone RU最接近的RU进行合并得到一个Multi-RU。2比特位取值为11表示该中心26-tone RU与左边的242-tone范围内的与该中心26-tone RU最接近的RU进行合并得到一个Multi-RU。
其中,与该中心26-tone RU连续的RU可以理解为该中心26-tone RU前一个或者后一个RU,与该中心26-tone RU最接近的RU可以是与该中心26-tone RU连续的RU,也可以不是与该中心26-tone RU连续的RU,例如,与该中心26-tone RU最接近的RU可能是在间隔多个RU后的在该中心26-tone RU坐标或者右边的RU。
应理解,在本申请实施例中,还可将Center 26-tone RU字段扩展多个比特扩展为更多个比特,用于指示与该Center 26-tone RU更多的合并状态。
还应理解,与中心26-tone RU最近或者连续的242-tone范围内RU可以是52-tone RU、106-tone RU、或者242-tone RU等。
作为另一种可能的实现方式,还可以将用于指示Center 26-tone RU是否与多RU合并的合并指示设置在该中心26-tone RU对应的User field中,即修改该中心26-tone RU对应的User field。并且,所有的用户都需要读取该中心26-tone RU对应的User field,确定中心26-tone RU对应的User field中的STA ID和自己的ID是否相同。如果相同,表示该中心26-tone RU需要当前用户字段对应的RU进行合并。
应理解,在本申请的各个实施例中,第一、第二等只是为了表示多个对象是不同的。例如第一字段和第二字段只是为了表示出不同的字段。而不应该对字段的本身和数量等产生任何影响,上述的第一、第二等不应该对本申请的实施例造成任何限制。
还应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下 可以相结合。
还应理解,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化.例如,上述方法200、中某些步骤可以是不必须的,或者可以新加入某些步骤等。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
还应理解,本申请实施例中,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
以上结合图1至图15对本申请实施例的资源单元合并指示的方法进行了详细的说明。以下,结合图16至图22对本申请实施例通信装置进行详细说明。
图16示出了本申请实施例的通信装置400的示意性框图,该装置400可以对应上述各个方法中描述的发送设备,也可以是应用于发送设备的芯片或组件,并且,该装置400中各模块或单元分别用于执行上述各个方法中发送设备所执行的各动作或处理过程,如图16所示,该通信装置400可以包括:处理单元410和通信单元420。
处理单元410,用于确定物理层协议数据单元PPDU,该PPDU包括信令字段,该信令字段包括资源单元分配子字段和与资源单元分配子字段对应的合并指示,该资源单元分配子字段指示多个资源单元,该合并指示用于指示该多个资源单元的合并信息;
通信单元420,用于发送该PPDU。
或者,
处理单元410,用于确定物理层协议数据单元PPDU,该PPDU包括信令字段,该信令字段包括多个资源单元分配子字段和多个合并指示,该多个资源单元分配子字段指示多个资源单元,该多个合并指示用于指示该多个资源单元的合并信息,一个合并指示与一个资源单元分配子字段所指示的RU对应,一个该资源单元为242-tone RU,484-tone RU或996-tone RU;
通信单元420,用于发送该PPDU。
本申请提供的通信装置,可以支持一个或多个用户使用多个连续或者不连续的RU进行数据传输,并将多个RU的合并情况指示给该用户,提高了系统RU的分配灵活性,提高了系统频谱利用率。
应理解,装置400中各单元执行上述相应步骤的具体过程请参照前文中结合图9至图15的方法实施例的描述,为了简洁,这里不加赘述。
可选的,通信单元420可以包括接收单元(模块)和发送单元(模块),用于执行前述各个方法中发送设备发送信息的步骤。可选的,通信装置400还可以存储单元430,存 储单元430用于存储通信单元420和处理单元410执行的指令。通信单元420、处理单元410和存储单元430相互耦合,存储单元330存储指令,处理单元410用于执行存储单元430存储的指令,通信单元420用于在处理单元410的驱动下执行具体的信号收发。
处理单元410可以是处理器,通信单元420可以是收发器、输入/输出接口或接口电路。存储单元430可以是存储器。如图17所示,通信装置500可以包括处理器510、存储器520和收发器530。当该通信装置是通信设备内的芯片时,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该通信设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
本领域技术人员可以清楚地了解到,通信装置400和400所执行的步骤以及相应的有益效果可以参考上述方法实施例中发送设备的相关描述,为了简洁,在此不再赘述。
上述的通信装置400或者400可以为发送设备。例如。该发送设备可以为AP或者STA,或者为网络设备。
图18示出了本申请实施例的通信装置600的示意性框图,该装置600可以对应上述各个实施例中描述的接收设备,也可以是应用于接收设备的芯片或组件,并且,该装置600中各模块或单元分别用于执行上述各个方法实施例中接收设备所执行的各动作或处理过程,如图18所示,该通信装置600可以包括:通信单元610和处理单元620。
通信单元610,用于接收物理层协议数据单元PPDU,该PPDU包括信令字段,该信令字段包括资源单元分配子字段和与资源单元分配子字段对应的合并指示,该资源单元分配子字段指示多个资源单元,该合并指示用于指示该多个资源单元的合并信息;
处理单元620,用于根据该PPDU,确定该多个资源单元的合并信息。
或者,
通信单元610,用于接收物理层协议数据单元PPDU,该PPDU包括信令字段,该信令字段包括多个资源单元分配子字段和多个合并指示,该多个资源单元分配子字段指示多个资源单元,该多个合并指示用于指示该多个资源单元的合并信息,一个合并指示与一个资源单元分配子字段所指示的RU对应,一个该资源单元为242-tone RU,484-tone RU或996-tone RU;
处理单元620,用于根据该PPDU,确定该多个资源单元的合并信息。
本申请提供的通信装置,通过在信令字段中的合并指示,可以向指示20MHz内的小RU的合并情况,可以支持一个或多个用户使用多个连续或者不连续的RU进行数据传输,提高了系统RU的分配灵活性,提高了系统频谱利用率。
应理解,装置600中各单元执行上述相应步骤的具体过程请参照前文中结合各个实施例中的接收设备描述,为了简洁,这里不加赘述。
可选的,通信单元610可以包括接收单元(模块)和发送单元(模块),用于执行各个方法实施例中接收设备接收信息的步骤。可选的,通信装置600还可以存储单元630,存储单元630用于存储通信单元610和处理单元620执行的指令。通信单元610、处理单元620和存储单元630相互耦合,存储单元630存储指令,处理单元620用于执行存储单元630存储的指令,通信单元610用于在处理单元620的驱动下执行具体的信号收发。
应理解,处理单元620可由处理器实现,通信单元610可以由收发器实现。存储单元630可以由存储器实现。如图19所示,通信装置700可以包括处理器710、存储器720和 收发器730。
本领域技术人员可以清楚地了解到,通信装置600和700所执行的步骤以及相应的有益效果可以参考上述的各个实施例中接收设备的相关描述,为了简洁,在此不再赘述。
上述的通信装置600或者600可以为接收设备,例如,终端设备。
还应理解,以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。这里该处理元件又可以称为处理器,可以是一种具有信号处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图20为本申请提供的一种终端设备800的结构示意图。上述装置600或者700可以配置在该终端设备800中。或者,该装置600或者700本身可以即为该终端设备800。或者说,该终端设备800可以执行上述方法实施例中接收设备执行的动作。
为了便于说明,图20仅示出了终端设备的主要部件。如图20所示,终端设备800包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述资源单元合并指示的方法实施例中所描述的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的码本。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图20仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
例如,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图20中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备800的收发单元801,将具有处理功能的处理器视为终端设备800的处理单元802。如图10所示,终端设备800包括收发单元801和处理单元202。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元801中用于实现接收功能的器件视为接收单元,将收发单元801中用于实现发送功能的器件视为发送单元,即收发单元801包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图21为本申请提供的另一种终端设备900的结构示意图。在图21中,该终端设备包括处理器910,发送数据处理器920,接收数据处理器930。上述实施例中的处理单元620可以是图21中的处理器910,并完成相应的功能。上述实施例中的通信单元610可以是图21中的发送数据处理器920,和/或接收数据处理器930。虽然图21中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图22是本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备(即发送设备)的操作。如图22所示,该网络设备包括:天线1001、射频装置1002、基带装置1003。天线1001与射频装置1002连接。在上行方向上,射频装置1002通过天线1001接收终端发送的信息,将终端设备发送的信息发送给基带装置1003进行处理。在下行方向上,基带装置1003对终端的信息进行处理,并发送给射频装置1002,射频装置1002对终端设备的信息进行处理后经过天线1001发送给终端。
基带装置1003可以包括一个或多个处理元件10031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1003还可以包括存储元件10032和接口10033,存储元件10032用于存储程序和数据;接口10033用于与射频装置1002交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置1003,例如,以上用于网络设备的装置可以为基带装置1003上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置 包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
可选的,在本申请另一些可能的实现方式中,对于242-tone内的小RU合并,在20MHz内,当合并指示为2比特时,两比特位的取值00表示该资源单元的分配方式中无多RU合并,即不存在Multi-RU。两比特位的取值01表示第2个52-tone RU与第2个26-tone RU合并为一个Multi-RU,也即第2个52-tone RU与其左边相邻的26-tone RU合并为一个Multi-RU。例如,如图23所示的,排序按照20MHz内频域从低到高的顺序,20MHz可以包括有9个26-tone RU。或者,20MHz可以包括有4个52-tone RU,或者,20MHz可以包括有2个106-tone RU。第2个26-tone RU位于9个26-tone RU中的第2个,第2个52-tone RU位于4个52-tone RU中的第2个。在图23中,第一行标记为第一种填充图案的26-tone RU即为上述的第2个26-tone RU。第二行标记为第一种填充图案的52-tone RU即为上述的第2个52-tone RU。或者,两比特位的取值01表示第1个106-tone RU与20MHz内的中间的26-tone RU(即第5个26-tone RU)合并为一个Multi-RU。在图23中,第三行标记为第三种填充图案的106-tone RU即为上述的第1个106-tone RU,第一行标记为第二种填充图案的26-tone RU即为上述的第5个26-tone RU(20MHz内的中间的26-tone RU)。图23中,具有同种填充图案的RU可以合并为一个Multi-RU。
当两比特位的取值10表示第3个52-tone RU与第8个26-tone RU合并为一个Multi-RU,也即第3个52-tone RU与其右边相邻的26-tone RU合并为一个Multi-RU,第3个52-tone RU位于4个52-tone RU中的第3个,第8个26-tone RU位于9个26-tone RU中的第8个,在图23中,第二行标记为第三种填充图案的52-tone RU即为上述的第3个52-tone RU,第一行标记为第三种填充图案的26-tone RU即为上述的第8个26-tone RU。
或者,两比特位的取值10表示:第2个106-tone RU与20MHz内的中间的26-tone RU(即第5个26-tone RU)合并为一个Multi-RU。在图23中,第三行标记为第四种填充图案的106-tone RU即为上述的第2个106-tone RU,20MHz内中间的26-tone RU为第一行标记为第二种填充图案的26-tone RU。
当两比特位的取值11表示:存在两比特位的取值01指示的RU合并以及两比特位的取值10指示的RU合并。
应理解,在本申请实施例中,两比特位的取值表示的含义还可以互换,例如,两比特位的取值01指示的内容可以和两比特位的取值10互换,或者,两比特位的取值01指示的内容可以和两比特位的取值11互换,或者,两比特位的取值10指示的内容可以和两比特位的取值11互换。也就是说,上述的例子中的两比特位的具体取值不应该对本申请实施例造成任何限制。
在40MHz上时,由于40MHz带宽大致相当于20MHz的子载波分布的复制,如图24所示的,由于小RU之间不进行跨20MHz的合并,因此,在每个20MHz的信道上,都可以按照图23所示的合并指示以及合并方式进行合并。
类似的,对于80MHz、160MHz以及320MHz的带宽,由于小RU之间不进行跨20MHz的合并。在每个20MHz的信道上,都可以按照图23所示的合并指示以及合并方式进行合并。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。
上述各个装置实施例中的终端设备与网络设备可以与方法实施例中的接收设备和发送设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
本申请实施例还提供了一种通信系统,该通信系统包括:上述的发送设备和上述的接收设备。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述方法实施例中本申请实施例的资源单元合并指示的方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请还提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被执行时,以使得该发送设备和该接收设备执行对应于上述方法的发送设备和接收设备的操作。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该通信装置内的芯片执行上述本申请实施例提供的任一种资源单元合并指示的方法。
可选地,该计算机指令被存储在存储单元中。
可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该终端内的位于该芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述的反馈信息的方法的程序执行的集成电路。该处理单元和该存储单元可以解耦,分别设置在不同的物理设备上,通过有线或者无线的方式连接来实现该处理单元和该存储单元的各自的功能,以支持该系统芯片实现上述实施例中的各种功能。或者,该处理单元和该存储器也可以耦合在同一个设备上。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是RAM,其用作外部高速缓存。RAM有多种不同的类型,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM, ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的术语“上行”和“下行”,用于在特定场景描述数据/信息传输的方向,比如,“上行”方向一般是指数据/信息从终端向网络侧传输的方向,或者分布式单元向集中式单元传输的方向,“下行”方向一般是指数据/信息从网络侧向终端传输的方向,或者集中式单元向分布式单元传输的方向,可以理解,“上行”和“下行”仅用于描述数据/信息的传输方向,该数据/信息传输的具体起止的设备都不作限定。
在本申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请的实施例中的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行该计算机程序或指令时,全部或部分地执行本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (49)

  1. 一种通信装置,其特征在于,包括:
    处理单元,用于确定物理层协议数据单元PPDU,所述PPDU包括信令字段,所述信令字段包括一个或多个资源单元分配子字段,一个所述资源单元分配子字段指示位于一个20MHz上的一个多资源单元Multi-RU或多个Multi-RU的大小和位置,所述Multi-RU包含至少两个资源单元RU,所述资源单元分配子字段包含9个比特;
    通信单元,用于发送所述PPDU。
  2. 一种通信装置,其特征在于,包括:
    通信单元,用于接收物理层协议数据单元PPDU,所述PPDU包括信令字段,所述信令字段包括一个或多个资源单元分配子字段,一个所述资源单元分配子字段指示位于一个20MHz上的一个多资源单元Multi-RU或多个Multi-RU的大小和位置,所述Multi-RU包含至少两个资源单元RU;
    处理单元,用于根据所述所述PPDU,确定所述一个Multi-RU或所述多个Multi-RU的大小和位置。
  3. 根据权利要求1或2所述的装置,其特征在于,所述Multi-RU包含的资源单元为小于242-tone的RU,或者所述Multi-RU包含的资源单元为大于或者等于242-tone的RU。
  4. 根据权利要求1至3中任意一项所述的装置,其特征在于,所述一个Multi-RU包括一个26-tone RU与一个52-tone RU,或者所述一个Multi-RU包含一个26-tone RU与一个106-tone RU,或者所述一个Multi-RU包含一个52-tone RU与一个106-tone RU,或者所述一个Multi-RU包含一个242-tone RU与一个484-tone RU,或者所述一个Multi-RU包含一个242-tone RU与一个484-tone RU,或者所述一个Multi-RU包含一个242-tone RU、一个484-tone RU和一个996-tone RU,或者所述一个Multi-RU包含三个996-tone RU。
  5. 根据权利要求1至3中任意一项所述的装置,其特征在于,所述多个Multi-RU为2个Multi-RU,所述2个Multi-RU中,一个Multi-RU包括一个26-tone RU与一个52-tone RU,另一个Multi-RU包括一个26-tone RU与一个106-tone RU,或者,所述2个Multi-RU中的每一个Multi-RU包括一个26-tone RU与一个52-tone RU。
  6. 根据权利要求1至3中任意一项所述的装置,其特征在于,所述多个Multi-RU为3个Multi-RU,所述3个Multi-RU中每一个Multi-RU包括一个26-tone RU与一个52-tone RU。
  7. 根据权利要求1至6中任意一项所述的装置,其特征在于,所述Multi-RU中包含的至少两个RU不相邻。
  8. 根据权利要求1至6中任意一项所述的装置,其特征在于,所述Multi-RU中包含的任意两个RU相邻。
  9. 根据权利要求1至8任意一项所述的装置,其特征在于,所述信令字段包括合并指示,所述合并指示用于指示所述多资源单元Multi-RU的大小和位置;
    所述合并指示包含于所述资源单元分配子字段中;或,
    所述信令字段还包括多资源单元分配字段,所述多资源单元分配字段包括所述合并指 示。
  10. 一种资源合并指示的方法,其特征在于,包括:
    确定物理层协议数据单元PPDU,所述PPDU包括信令字段,所述信令字段包括一个或多个资源单元分配子字段,一个所述资源单元分配子字段指示位于一个20MHz上的一个多资源单元Multi-RU或多个Multi-RU的大小和位置,所述Multi-RU包含至少两个资源单元RU,所述资源单元分配子字段包含9个比特;
    发送所述PPDU。
  11. 一种资源合并指示的方法,其特征在于,包括:
    接收物理层协议数据单元PPDU,所述PPDU包括信令字段,所述信令字段包括一个或多个资源单元分配子字段,一个所述资源单元分配子字段指示位于一个20MHz上的一个多资源单元Multi-RU或多个Multi-RU的大小和位置,所述Multi-RU包含至少两个资源单元RU;
    根据所述所述PPDU,确定所述一个Multi-RU或所述多个Multi-RU的大小和位置。
  12. 根据权利要求10或11所述的方法,其特征在于,所述Multi-RU包含的资源单元为小于242-tone的RU,或者所述Multi-RU包含的资源单元为大于或者等于242-tone的RU。
  13. 根据权利要求10至12中任意一项所述的方法,其特征在于,所述一个Multi-RU包括一个26-tone RU与一个52-tone RU,或者所述一个Multi-RU包含一个26-tone RU与一个106-tone RU,或者所述一个Multi-RU包含一个52-tone RU与一个106-tone RU,或者所述一个Multi-RU包含一个242-tone RU与一个484-tone RU,或者所述一个Multi-RU包含一个242-tone RU与一个484-tone RU,或者所述一个Multi-RU包含一个242-tone RU、一个484-tone RU和一个996-tone RU,或者所述一个Multi-RU包含三个996-tone RU。
  14. 根据权利要求10至12中任意一项所述的方法,其特征在于,所述多个Multi-RU为2个Multi-RU,所述2个Multi-RU中,一个Multi-RU包括一个26-tone RU与一个52-tone RU,另一个Multi-RU包括一个26-tone RU与一个106-tone RU,或者,所述2个Multi-RU中的每一个Multi-RU包括一个26-tone RU与一个52-tone RU。
  15. 根据权利要求10至12中任意一项所述的方法,其特征在于,所述多个Multi-RU为3个Multi-RU,所述3个Multi-RU中每一个Multi-RU包括一个26-tone RU与一个52-tone RU。
  16. 根据权利要求10至15中任意一项所述的方法,其特征在于,所述Multi-RU中包含的至少两个RU不相邻。
  17. 根据权利要求10至15中任意一项所述的方法,其特征在于,所述Multi-RU中包含的任意两个RU相邻。
  18. 根据权利要求10至17任意一项所述的方法,其特征在于,所述信令字段包括合并指示,所述合并指示用于指示所述Multi-RU的大小和位置;
    所述合并指示包含于所述资源单元分配子字段中;或,
    所述信令字段还包括多资源单元分配字段,所述多资源单元分配字段包括所述合并指示。
  19. 一种通信装置,其特征在于,包括:
    处理单元,用于确定物理层协议数据单元PPDU,所述PPDU包括信令字段,所述信令字段包括资源单元分配子字段和与资源单元分配子字段对应的合并指示,所述资源单元分配子字段指示多个资源单元,所述合并指示用于指示所述多个资源单元的合并信息;
    通信单元,用于发送所述PPDU。
  20. 一种通信装置,其特征在于,包括:
    通信单元,用于接收物理层协议数据单元PPDU,所述PPDU包括信令字段,所述信令字段包括资源单元分配子字段和与资源单元分配子字段对应的合并指示,所述资源单元分配子字段指示多个资源单元,所述合并指示用于指示所述多个资源单元的合并信息;
    处理单元,用于根据所述所述PPDU,确定所述多个资源单元的合并信息。
  21. 根据权利要求19或20所述的装置,其特征在于,
    所述合并指示包含于所述资源单元分配子字段中;或,
    所述信令字段还包括多资源单元分配字段,所述多资源单元分配字段包括所述合并指示。
  22. 根据权利19至21中任一项所述的装置,其特征在于,所述合并指示包括2比特;所述合并指示用于指示所述多个资源单元合并得到的多资源单元Multi-RU的个数,其中,一个Multi-RU由所述多个资源单元中的至少两个资源单元合并组成。
  23. 根据权利要求22所述的装置,其特征在于,
    当所述Multi-RU的个数为1个时,所述一个Multi-RU为:一个26-tone RU与一个52-tone RU合并组成,或者为,一个26-tone RU与一个106-tone RU合并组成,或者为:一个52-tone RU与一个106-tone RU合并组成;
    当所述Multi-RU的个数为2个时,所述2个Multi-RU中,一个Multi-RU为:一个由26-tone RU与一个52-tone RU的合并组成,另一个Multi-RU为:一个26-tone RU与一个106-tone RU的合并组成,或者,所述2个Multi-RU中的每一个Multi-RU均为:一个由26-tone RU与一个52-tone RU的合并组成;
    当所述Multi-RU的个数为3个时,所述3个Multi-RU中每一个Multi-RU均为:一个26-tone RU与一个52-tone RU的合并组成。
  24. 根据权利要求19至21中任一项所述的装置,其特征在于,所述合并指示包括1比特,所述合并指示取第一值用于指示所述多个资源单元不合并,所述合并指示取第二值用于指示所述多个资源单元中至少两个RU合并为多资源单元Multi-RU。
  25. 根据权利要求24所述的装置,其特征在于,所述Multi-RU为56-tone RU和相邻的26-tone RU合并;或,所述Multi-RU为106-tone RU和相邻的26-tone RU合并;或,所述Multi-RU为106-tone RU和52-tone RU的合并。
  26. 根据权利要求19至21中任一项所述的装置,其特征在于,所述合并指示取第一值用于指示所述多个资源单元不合并,所述合并指示取第二值用于指示所述多个资源单元中的第一个52-tone RU或第一个106-tone RU与相邻的26-tone RU合并;所述合并指示取第三值用于指示所述多个资源单元中的第二个106-tone RU与相邻的26-tone RU合并;所述合并指示取第四值用于指示所述多个资源单元中的第三个52-tone RU与相邻的26-tone RU合并。
  27. 一种通信装置,其特征在于,包括:
    处理单元,用于确定物理层协议数据单元PPDU,所述PPDU包括信令字段,所述信令字段包括多个资源单元分配子字段和多个合并指示,所述多个资源单元分配子字段指示多个资源单元,所述多个合并指示用于指示所述多个资源单元的合并信息,一个合并指示与一个资源单元分配子字段所指示的RU对应,一个所述资源单元为242-tone RU,484-tone RU或996-tone RU;
    通信单元,用于发送所述PPDU。
  28. 一种通信装置,其特征在于,包括:
    通信单元,用于接收物理层协议数据单元PPDU,所述PPDU包括信令字段,所述信令字段包括多个资源单元分配子字段和多个合并指示,所述多个资源单元分配子字段指示多个资源单元,所述多个合并指示用于指示所述多个资源单元的合并信息,一个合并指示与一个资源单元分配子字段所指示的RU对应,一个所述资源单元为242-tone RU,484-tone RU或996-tone RU;
    处理单元,用于根据所述PPDU,确定所述多个资源单元的合并信息。
  29. 根据权利要求27或28所述的装置,其特征在于,
    所述合并指示包含于所对应的资源单元分配子字段中;或,
    所述信令字段还包括多资源单元分配字段,所述多资源单元分配字段包括所述多个合并指示。
  30. 根据权利要求27至29中任一项所述的装置,其特征在于,
    所述合并指示取第一值,用于指示所述合并指示对应的RU不合并;
    所述多个合并指示中,取值都为第二值的至少两个合并指示对应的至少两个RU合并。
  31. 根据权利要求27至29中任一项所述的装置,其特征在于,
    所述合并指示取第一值,指示所述合并指示对应的RU不合并;
    所述合并指示取第二值,指示所述合并指示对应的RU与其他RU合并为Multi-RU,且所述RU为Multi-RU中的首个RU;
    所述合并指示取第三值,指示所述合并指示对应的RU与其他RU合并为Multi-RU,且所述RU为Multi-RU中的中间RU;
    所述合并指示取第四值,指示所述合并指示对应的RU与其他RU合并为Multi-RU,且所述RU为Multi-RU中的末尾RU。
  32. 根据权利要求27至29中任一项所述的装置,其特征在于,
    所述合并指示取第一值,用于指示所述合并指示对应的RU不合并;
    所述合并指示取第二值,用于指示所述合并指示对应的RU与预设位置的其他RU合并为Multi-RU。
  33. 一种资源单元合并指示的方法,其特征在于,包括:
    确定物理层协议数据单元PPDU,所述PPDU包括信令字段,所述信令字段包括资源单元分配子字段和与资源单元分配子字段对应的合并指示,所述资源单元分配子字段指示多个资源单元,所述合并指示用于指示所述多个资源单元的合并信息;
    发送所述PPDU。
  34. 一种资源单元合并指示的方法,其特征在于,包括:
    接收物理层协议数据单元PPDU,所述PPDU包括信令字段,所述信令字段包括资源 单元分配子字段和与资源单元分配子字段对应的合并指示,所述资源单元分配子字段指示多个资源单元,所述合并指示用于指示所述多个资源单元的合并信息;
    根据所述PPDU,确定所述多个资源单元的合并信息。
  35. 根据权利要求33或34所述的方法,其特征在于,
    所述合并指示包含于所述资源单元分配子字段中;或,
    所述信令字段还包括多资源单元分配字段,所述多资源单元分配字段包括所述合并指示。
  36. 根据权利要求33至35中任一项所述的方法,其特征在于,所述合并指示包括2比特;所述合并指示用于指示所述多个资源单元合并得到的Multi-RU的个数,其中,一个Multi-RU由所述多个资源单元中的至少两个资源单元合并组成。
  37. 根据权利要求36所述的方法,其特征在于,
    当所述Multi-RU的个数为1个时,所述一个Multi-RU为:一个26-tone RU与一个52-tone RU合并组成,或者为,一个26-tone RU与一个106-tone RU合并组成,或者为:一个52-tone RU与一个106-tone RU合并组成;
    当所述Multi-RU的个数为2个时,所述2个Multi-RU中,一个Multi-RU为:一个由26-tone RU与一个52-tone RU的合并组成,另一个Multi-RU为:一个26-tone RU与一个106-tone RU的合并组成,或者,所述2个Multi-RU中的每一个Multi-RU均为:一个由26-tone RU与一个52-tone RU的合并组成;
    当所述Multi-RU的个数为3个时,所述3个Multi-RU中每一个Multi-RU均为:一个26-tone RU与一个52-tone RU的合并组成。
  38. 根据权利要求33至35中任一项所述的方法,其特征在于,所述合并指示包括1比特,所述合并指示取第一值用于指示所述多个资源单元不合并,所述合并指示取第二值用于指示所述多个资源单元中至少两个RU合并为Multi-RU。
  39. 根据权利要求38所述的方法,其特征在于,所述Multi-RU为56-tone RU和相邻的26-tone RU合并;或,所述Multi-RU为106-tone RU和相邻的26-tone RU合并;或,所述Multi-RU为106-tone RU和52-tone RU的合并。
  40. 根据权利要求33至35中任一项所述的方法,其特征在于,所述合并指示取第一值用于指示所述多个资源单元不合并,所述合并指示取第二值用于指示所述多个资源单元中的第一个52-tone RU或第一个106-tone RU与相邻的26-tone RU合并;合并指示取第三值用于指示所述多个资源单元中的第二个106-tone RU与相邻的26-tone RU合并;所述合并指示取第四值用于指示所述多个资源单元中的第三个52-tone RU与相邻的26-tone RU合并。
  41. 一种资源单元合并指示的方法,其特征在于,包括:
    确定物理层协议数据单元PPDU,所述PPDU包括信令字段,所述信令字段包括多个资源单元分配子字段和多个合并指示,所述多个资源单元分配子字段指示多个资源单元,所述多个合并指示用于指示所述多个资源单元的合并信息,一个合并指示与一个资源单元分配子字段所指示的RU对应,一个所述资源单元为242-tone RU,484-tone RU或996-tone RU;
    发送所述PPDU。
  42. 一种资源单元合并指示的方法,其特征在于,包括:
    接收物理层协议数据单元PPDU,所述PPDU包括信令字段,所述信令字段包括多个资源单元分配子字段和多个合并指示,所述多个资源单元分配子字段指示多个资源单元,所述多个合并指示用于指示所述多个资源单元的合并信息,一个合并指示与一个资源单元分配子字段所指示的RU对应,一个所述资源单元为242-tone RU,484-tone RU或996-tone RU;
    根据所述PPDU,确定所述多个资源单元的合并信息。
  43. 根据权利要求41或42所述的方法,其特征在于,
    所述合并指示包含于所对应的资源单元分配子字段中;或,
    所述信令字段还包括多资源单元分配字段,所述多资源单元分配字段包括所述多个合并指示。
  44. 根据权利要求41至43中任一项所述的方法,其特征在于,
    所述合并指示取第一值,用于指示所述合并指示对应的RU不合并;
    所述多个合并指示中,取值都为第二值的至少两个合并指示对应的至少两个RU合并。
  45. 根据权利要求41至43中任一项所述的方法,其特征在于,
    所述合并指示取第一值,指示所述合并指示对应的RU不合并;
    所述合并指示取第二值,指示所述合并指示对应的RU与其他RU合并为Multi-RU,且所述RU为Multi-RU中的首个RU;
    所述合并指示取第三值,指示所述合并指示对应的RU与其他RU合并为Multi-RU,且所述RU为Multi-RU中的中间RU;
    所述合并指示取第四值,指示所述合并指示对应的RU与其他RU合并为Multi-RU,且所述RU为Multi-RU中的末尾RU。
  46. 根据权利要求41至43中任一项所述的方法,其特征在于,
    所述合并指示取第一值,用于指示所述合并指示对应的RU不合并;
    所述合并指示取第二值,用于指示所述合并指示对应的RU与预设位置的其他RU合并为Multi-RU。
  47. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,所述至少一个处理器用于执行如权利要求10至18中任一项所述的方法,或者33至40中任一项所述的方法,或者41至46中任一项所述的方法。
  48. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,所述至少一个处理器用于执行如权利要求10至18中任一项所述的方法,或者33至40中任一项所述的方法,或者41至46中任一项所述的方法。
  49. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序,当所述程序被处理器运行时,如权利要求10至18中任一项所述的方法被执行,或者33至46中任一项所述的方法被执行。
PCT/CN2021/070851 2020-01-10 2021-01-08 资源单元合并指示的方法和通信装置 WO2021139765A1 (zh)

Priority Applications (13)

Application Number Priority Date Filing Date Title
KR1020227027683A KR20220126752A (ko) 2020-01-10 2021-01-08 자원 유닛 결합 표시 방법 및 통신 장치
PL21738465.0T PL4080966T3 (pl) 2020-01-10 2021-01-08 Sposób wskazywania kombinacji jednostek zasobów i urządzenie komunikacyjne
AU2021206754A AU2021206754B2 (en) 2020-01-10 2021-01-08 Resource unit combination indication method and communications apparatus
BR112022013699A BR112022013699A2 (pt) 2020-01-10 2021-01-08 Método de indicação de combinação de unidade de recurso e aparelho de comunicações
EP24186454.5A EP4478649A2 (en) 2020-01-10 2021-01-08 Resource unit combination indication method and communications apparatus
MX2022008564A MX2022008564A (es) 2020-01-10 2021-01-08 Método de indicación de combinación de unidades de recursos y aparato de comunicaciones.
EP21738465.0A EP4080966B1 (en) 2020-01-10 2021-01-08 Resource unit combination indication method and communication apparatus
JP2022542355A JP7585329B2 (ja) 2020-01-10 2021-01-08 リソースユニット結合指示方法及び通信装置
CA3164366A CA3164366A1 (en) 2020-01-10 2021-01-08 Resource unit combination indication method and communications apparatus
US17/811,457 US20220353029A1 (en) 2020-01-10 2022-07-08 Resource Unit Combination Indication Method and Communications Apparatus
US18/331,787 US20230318764A1 (en) 2020-01-10 2023-06-08 Resource Unit Combination Indication Method and Communications Apparatus
US18/507,876 US20240154746A1 (en) 2020-01-10 2023-11-13 Resource Unit Combination Indication Method and Communications Apparatus
AU2024203821A AU2024203821A1 (en) 2020-01-10 2024-06-06 Resource unit combination indication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010028036.6 2020-01-10
CN202010028036.6A CN113133116A (zh) 2020-01-10 2020-01-10 资源单元合并指示的方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/811,457 Continuation US20220353029A1 (en) 2020-01-10 2022-07-08 Resource Unit Combination Indication Method and Communications Apparatus

Publications (1)

Publication Number Publication Date
WO2021139765A1 true WO2021139765A1 (zh) 2021-07-15

Family

ID=76771731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070851 WO2021139765A1 (zh) 2020-01-10 2021-01-08 资源单元合并指示的方法和通信装置

Country Status (11)

Country Link
US (3) US20220353029A1 (zh)
EP (2) EP4478649A2 (zh)
JP (1) JP7585329B2 (zh)
KR (1) KR20220126752A (zh)
CN (3) CN116437468B (zh)
AU (2) AU2021206754B2 (zh)
BR (1) BR112022013699A2 (zh)
CA (1) CA3164366A1 (zh)
MX (1) MX2022008564A (zh)
PL (1) PL4080966T3 (zh)
WO (1) WO2021139765A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116437468B (zh) * 2020-01-10 2024-01-16 华为技术有限公司 资源单元合并指示的方法和通信装置
CN113795044B (zh) * 2021-09-15 2024-06-11 深圳市佳贤通信科技股份有限公司 一种ue基带合并方法、系统、计算机设备及存储介质
CN117528662A (zh) * 2022-07-29 2024-02-06 华为技术有限公司 一种数据传输方法和通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170048862A1 (en) * 2015-08-11 2017-02-16 Lg Electronics Inc. Method and apparatus for configuring a signal field including allocation information for a resource unit in wireless local area network system
CN107113830A (zh) * 2014-11-01 2017-08-29 Lg电子株式会社 用于在无线lan中分配资源单元的方法和装置
WO2019149243A1 (en) * 2018-02-01 2019-08-08 Mediatek Singapore Pte. Ltd. Enhanced resource unit allocation schemes for ofdma transmission in wlan
CN110460415A (zh) * 2018-05-07 2019-11-15 华为技术有限公司 数据传输方法、装置及存储介质

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167561A1 (ko) * 2015-04-14 2016-10-20 엘지전자 주식회사 무선랜 시스템에서 다수의 자원 유닛을 위해 사용되는 시그널 필드를 구성하는 방법 및 장치
WO2016201739A1 (zh) * 2015-06-16 2016-12-22 华为技术有限公司 资源调度的方法、装置和设备
US10219271B1 (en) * 2015-07-01 2019-02-26 Newracom, Inc. Bandwidth allocation signalling
CA2946926C (en) * 2015-07-31 2021-03-30 Lg Electronics Inc. Method for transmitting data in wireless communication system and apparatus therefor
EP3332490A4 (en) * 2015-08-07 2019-03-27 Newracom, Inc. TAX INFORMATION FOR MULTI-USER TRANSMISSIONS IN WLAN SYSTEMS
WO2017026782A1 (ko) * 2015-08-10 2017-02-16 엘지전자 주식회사 무선랜 시스템에서 자원 유닛에 관한 정보를 포함하는 제어 필드를 구성하는 방법 및 장치
US10165551B2 (en) * 2015-08-11 2018-12-25 Qualcomm Incorporated Resource allocation signaling in a high efficiency wireless local area network preamble
TWI710272B (zh) * 2015-09-11 2020-11-11 美商內數位專利控股公司 無線區域網路(wlan)多使用者同時隨機存取方法及裝置
US10506446B2 (en) * 2017-10-26 2019-12-10 Avago Technologies International Sales Pte. Limited Protocols for flexible channel utilization
US20190069298A1 (en) * 2017-10-31 2019-02-28 Intel IP Corporation Enhanced high efficiency frames for wireless communications
US20210409172A1 (en) * 2018-05-04 2021-12-30 Intel Corporation Enhanced resource allocation for wireless communications
US11539482B2 (en) * 2018-05-04 2022-12-27 Intel Corporation Enhanced resource allocation for wireless communications
WO2019235787A1 (ko) * 2018-06-08 2019-12-12 엘지전자 주식회사 무선랜 시스템에서 톤 플랜을 기반으로 데이터를 송수신하는 방법 및 장치
US11476994B2 (en) * 2018-06-15 2022-10-18 Lg Electronics Inc. Method and apparatus for transmitting and receiving data on basis of tone plan in wireless LAN system
US11496278B2 (en) * 2018-06-15 2022-11-08 Lg Electronics Inc. Method and device for transmitting PPDU in wireless LAN system
WO2019245203A1 (ko) * 2018-06-20 2019-12-26 엘지전자 주식회사 무선랜 시스템에서 톤 플랜을 기반으로 데이터를 송수신하는 방법 및 장치
WO2020013594A1 (ko) * 2018-07-10 2020-01-16 엘지전자 주식회사 무선랜 시스템에서 데이터를 전송하는 방법 및 장치
CN111148243B (zh) * 2018-11-06 2023-04-18 华为技术有限公司 数据传输的方法和通信装置
CN111970761A (zh) * 2019-05-20 2020-11-20 华为技术有限公司 资源分配的指示方法及装置
WO2020242109A1 (ko) * 2019-05-29 2020-12-03 엘지전자 주식회사 무선랜 시스템에서 mu ppdu를 수신하는 방법 및 장치
WO2021006494A1 (ko) * 2019-07-05 2021-01-14 엘지전자 주식회사 무선랜 시스템에서 광대역의 톤 플랜에서 ldpc 톤 매핑이 수행된 ppdu를 수신하는 방법 및 장치
US11115163B2 (en) * 2019-08-09 2021-09-07 Newracom Inc. Enhanced resource unit allocation in wireless local area network
US20220279587A1 (en) * 2019-08-19 2022-09-01 Lg Electronics Inc. Ofdma random access method for low latency
WO2021033929A1 (ko) * 2019-08-20 2021-02-25 엘지전자 주식회사 무선랜 시스템에서 광대역을 통해 ppdu를 수신하는 방법 및 장치
US11665574B2 (en) * 2019-10-25 2023-05-30 Qualcomm Incorporated Physical layer preamble design for special packet types
US11228396B2 (en) * 2020-01-06 2022-01-18 Qualcomm Incorporated Probabilistic amplitude shaping
CN116437468B (zh) * 2020-01-10 2024-01-16 华为技术有限公司 资源单元合并指示的方法和通信装置
CN113746595B (zh) * 2020-05-28 2023-06-20 华为技术有限公司 数据传输方法及相关装置
CN113747580A (zh) * 2020-05-28 2021-12-03 华为技术有限公司 通信方法及装置
US11696270B2 (en) * 2020-06-16 2023-07-04 Mediatek Singapore Pte. Ltd. Efficient resource unit allocation signaling in extreme-high-throughput wireless communications
JP7487346B2 (ja) * 2020-06-16 2024-05-20 エルジー エレクトロニクス インコーポレイティド 制御情報を含むシグナルフィールドを構成する方法および装置
KR20220001433A (ko) * 2020-06-29 2022-01-05 삼성전자주식회사 증진된 ndpa에 기초한 무선 통신을 위한 장치 및 방법
CN116390250B (zh) * 2020-07-01 2024-01-09 华为技术有限公司 一种ppdu的传输方法及相关装置
US20220006594A1 (en) * 2020-07-01 2022-01-06 Samsung Electronics Co., Ltd. Apparatus and method for communication based on multi-resource unit in wireless local area network system
US20220132371A1 (en) * 2020-10-26 2022-04-28 Apple Inc. Configuring a Preamble for Trigger-Based Protocol Data Unit
CN115037409A (zh) * 2021-03-03 2022-09-09 华为技术有限公司 极高吞吐率链路自适应控制信息的传输方法及相关装置
CN115334664A (zh) * 2021-05-11 2022-11-11 华为技术有限公司 资源分配方法、通信装置及计算机可读存储介质
CN116723252B (zh) * 2021-05-20 2024-03-26 华为技术有限公司 通信方法和装置
CN115484644A (zh) * 2021-05-31 2022-12-16 华为技术有限公司 一种数据传输方法及装置
CN115499089A (zh) * 2021-06-17 2022-12-20 华为技术有限公司 通信方法及通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113830A (zh) * 2014-11-01 2017-08-29 Lg电子株式会社 用于在无线lan中分配资源单元的方法和装置
US20170048862A1 (en) * 2015-08-11 2017-02-16 Lg Electronics Inc. Method and apparatus for configuring a signal field including allocation information for a resource unit in wireless local area network system
WO2019149243A1 (en) * 2018-02-01 2019-08-08 Mediatek Singapore Pte. Ltd. Enhanced resource unit allocation schemes for ofdma transmission in wlan
CN110460415A (zh) * 2018-05-07 2019-11-15 华为技术有限公司 数据传输方法、装置及存储介质

Also Published As

Publication number Publication date
US20240154746A1 (en) 2024-05-09
BR112022013699A2 (pt) 2022-09-06
JP2023509788A (ja) 2023-03-09
CN113133116A (zh) 2021-07-16
AU2024203821A1 (en) 2024-06-27
US20220353029A1 (en) 2022-11-03
JP7585329B2 (ja) 2024-11-18
US20230318764A1 (en) 2023-10-05
EP4478649A2 (en) 2024-12-18
CN116437468B (zh) 2024-01-16
EP4080966A1 (en) 2022-10-26
CN116419407B (zh) 2024-09-24
AU2021206754A1 (en) 2022-08-18
CN116437468A (zh) 2023-07-14
EP4080966B1 (en) 2024-08-21
AU2021206754B2 (en) 2024-03-14
CN116419407A (zh) 2023-07-11
MX2022008564A (es) 2022-10-18
KR20220126752A (ko) 2022-09-16
CA3164366A1 (en) 2021-07-15
EP4080966A4 (en) 2023-07-05
PL4080966T3 (pl) 2024-11-18

Similar Documents

Publication Publication Date Title
WO2022022249A1 (zh) 资源调度方法及相关装置
CN109600836B (zh) 信息传输方法和装置
WO2019029662A1 (zh) 信息传输的方法和通信装置
CN112217548B (zh) 多用户多输入多输出的用户数指示方法和通信装置
WO2021139765A1 (zh) 资源单元合并指示的方法和通信装置
CN110351859A (zh) 资源指示值的获取方法及装置
EP4017175A1 (en) Frequency domain resource allocation method and apparatus
JP6612895B2 (ja) Wlanシステムのリソース指示方法及び装置
JP2019510400A (ja) 無線ローカルエリアネットワークにおいてチャネルを示すための方法および装置
CN115334664A (zh) 资源分配方法、通信装置及计算机可读存储介质
CN114727262A (zh) 时间资源分配和接收方法及相关装置
WO2022257836A1 (zh) Ppdu传输方法及相关装置
WO2022048654A1 (zh) 资源单元指示方法、接入点及站点
EP4247085A1 (en) Method for indicating channel division information, and communication apparatus
KR20230007434A (ko) 통신 방법 및 통신 장치
KR20210116610A (ko) 신호 전송 방법 및 장치
WO2018137541A1 (zh) 小区公共信号的覆盖增强、获取方法、装置、基站及终端
WO2024103750A1 (zh) 通信方法和通信装置
US20240340917A1 (en) Compact downlink control information size alignment
WO2024021862A1 (zh) 通信方法、装置及存储介质
WO2022178881A1 (zh) 通信方法及装置
WO2025007741A1 (zh) 一种通信的方法及装置
WO2024207944A1 (zh) 资源确定方法、通信方法以及相关装置
JP2023550771A (ja) プロトコルデータユニットppdu送信方法および装置
CN117376845A (zh) 一种通信的方法、设备和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21738465

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022542355

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3164366

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022013699

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2021206754

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20227027683

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021738465

Country of ref document: EP

Effective date: 20220719

ENP Entry into the national phase

Ref document number: 2021206754

Country of ref document: AU

Date of ref document: 20210108

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022013699

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220708