WO2021139602A1 - 高强度聚焦超声设备与控制方法 - Google Patents

高强度聚焦超声设备与控制方法 Download PDF

Info

Publication number
WO2021139602A1
WO2021139602A1 PCT/CN2020/142369 CN2020142369W WO2021139602A1 WO 2021139602 A1 WO2021139602 A1 WO 2021139602A1 CN 2020142369 W CN2020142369 W CN 2020142369W WO 2021139602 A1 WO2021139602 A1 WO 2021139602A1
Authority
WO
WIPO (PCT)
Prior art keywords
focused ultrasound
intensity focused
working
image
working assembly
Prior art date
Application number
PCT/CN2020/142369
Other languages
English (en)
French (fr)
Inventor
袁进强
赵可娜
毛佳炜
刘文海
周佳
蒋祖平
Original Assignee
深圳市奥昇医疗科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市奥昇医疗科技有限责任公司 filed Critical 深圳市奥昇医疗科技有限责任公司
Priority to US17/758,545 priority Critical patent/US20230061243A1/en
Priority to EP20912118.5A priority patent/EP4088673A4/en
Publication of WO2021139602A1 publication Critical patent/WO2021139602A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/225Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
    • A61B17/2256Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves with means for locating or checking the concrement, e.g. X-ray apparatus, imaging means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/225Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/225Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
    • A61B17/2255Means for positioning patient, shock wave apparatus or locating means, e.g. mechanical aspects, patient beds, support arms, aiming means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8936Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in three dimensions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2063Acoustic tracking systems, e.g. using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0052Ultrasound therapy using the same transducer for therapy and imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0056Beam shaping elements
    • A61N2007/0065Concave transducers

Definitions

  • This application relates to the technical field of high-intensity focused ultrasound, in particular to a high-intensity focused ultrasound equipment and control method.
  • Tissue destruction and lithotripsy are non-invasive tissue ablation methods that focus pulsed ultrasound from outside the body to target tissues in the body. Tissue destruction surgery mechanically damages tissues through cavitation microbubbles. Microbubbles homogenize cell tissues into cell-free liquids that can be discharged or absorbed by the body. Lithotripsy usually uses sound waves to break up urinary stones.
  • tissue destruction uses high-intensity focused ultrasound to cavitation target tissue volume or tissue content, mechanically destroying the target tissue.
  • the tissue destruction technique is most effective when the entire acoustic and transducer scanning parameters in the spatial range of periodic cavitation are controlled within a fairly narrow range. Small changes in any parameter may cause the ongoing process to be interrupted.
  • Tissue destruction requires high peak acoustic pulses, which means that a large surface area is required to focus the transducer.
  • these transducers are very similar to those used in lithotripsy and operate in the same frequency range.
  • diagnostic/imaging ultrasound can be used to visualize surgical anatomy and monitor the dissection process in real time.
  • the cavitation bubble cloud of tissue destruction can be clearly shown as a hyperechoic (bright) area
  • the ablated homogenized tissue can be shown as a hypoechoic (dark) area.
  • tissue destruction can be used to ablate, by electronically changing the focus of the treatment array or mechanically moving the focus of the treatment transducer within the surgical target area.
  • This application provides a high-intensity focused ultrasound equipment, which is used to perform high-intensity focused ultrasound processing on an area to be treated, including:
  • An imaging device for acquiring an image of the area to be processed
  • An optical tracking device including a camera and a plurality of optical markers, the plurality of optical markers are arranged in the area to be processed or the imaging device, and are used to realize the positioning of any point in the area to be processed;
  • the working component is used to release a high-intensity focused ultrasound pulse to irradiate the target coordinate point after determining the target coordinate point in the area to be processed;
  • the positioning device has one end fixedly set, and the other end is set to clamp the working assembly to freely stretch and move, and is used to clamp the working assembly to move to a working position corresponding to the target coordinate point, so that the working assembly can be aligned
  • the target coordinate point is irradiated;
  • the plurality of optical markers are also provided on the working component or the positioning device for realizing the positioning of the working component.
  • the present application also provides a method for controlling high-intensity focused ultrasound equipment, which is applied to the high-intensity focused ultrasound equipment mentioned above, and the control method of the high-intensity focused ultrasound equipment includes:
  • a first image of the area to be processed is acquired, and the first image is modeled and analyzed to generate a 3D model of the area to be processed; the first image is acquired by a medical imaging device;
  • a second image of the area to be processed is acquired;
  • the second image is acquired by an imaging device in a high-intensity focused ultrasound equipment;
  • the first moment is earlier than the second moment;
  • the imaging device acquires an image of the area to be processed in real time to monitor the irradiation process of the working component irradiating the target coordinate point.
  • This application relates to a high-intensity focused ultrasound equipment and a control method.
  • the image of the area to be processed is acquired through an imaging device, and the target coordinate points in the working assembly and the area to be processed are positioned by an optical tracking device, so that the positioning device can clamp the work.
  • the component quickly and accurately moves to the working position corresponding to the target coordinate point, so that the working component can quickly and accurately release high-intensity focused ultrasound pulses to the target coordinate point, which not only greatly improves the processing of the high-intensity focused ultrasound equipment Accuracy, and improve processing efficiency.
  • FIG. 1 is a schematic structural diagram of a high-intensity focused ultrasound device provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the cooperation of an imaging device and an optical marker in a high-intensity focused ultrasound equipment provided by an embodiment of the application;
  • Figure 3 is an exploded view of working components in a high-intensity focused ultrasound device provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of the assembled structure of the working components of the high-intensity focused ultrasound equipment provided by an embodiment of the application;
  • Figure 5 is an exploded view of working components in a high-intensity focused ultrasound device provided by an embodiment of the application;
  • FIG. 6 is an exploded view of working components in a high-intensity focused ultrasound device provided by an embodiment of this application;
  • FIG. 7 is a schematic structural diagram of a high-intensity focused ultrasound device provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a high-intensity focused ultrasound device provided by an embodiment of the application.
  • FIG. 9 is a schematic flowchart of a method for controlling a high-intensity focused ultrasound device according to an embodiment of the application.
  • This application provides a high-intensity focused ultrasound device 10.
  • the high-intensity focused ultrasound equipment 10 includes an imaging device 100, an optical tracking device 200, a working assembly 300, and a positioning device 400.
  • the optical tracking device 200 includes a camera 210 and a plurality of optical markers 220.
  • the plurality of optical markers 220 are arranged in the area to be processed or the imaging device 100 for realizing the positioning of any point in the area to be processed.
  • the plurality of optical markers 220 are also arranged on the working assembly 300 or the positioning device 400 for realizing the positioning of the working assembly 300.
  • One end of the positioning device 400 is fixedly arranged.
  • the other end of the positioning device 400 is configured to clamp the working assembly 300 to extend and move freely.
  • the imaging device 100 is used to obtain an image of an area to be processed.
  • the working assembly 300 is used to release high-intensity focused ultrasound pulses to irradiate the target coordinate point after selecting the target coordinate point in the area to be processed.
  • the positioning device 400 is used to clamp the working component 300 to a working position corresponding to the target coordinate point, so that the working component 300 can irradiate the target coordinate point.
  • the optical tracking device 200 includes a camera 210 and a plurality of optical markers 220.
  • the camera 210 may be an optical camera.
  • the optical marker 220 may be an optical marker ball.
  • the plurality of optical markers 220 may be arranged in a regular arrangement on the area to be processed.
  • the plurality of optical markers 220 may also be provided in the imaging device 100.
  • the plurality of optical markers 220 may be provided in any one of the area to be processed and the imaging device 100 for realizing the positioning of any point in the area to be processed.
  • the image of the region to be processed includes the image of the plurality of optical markers 220 position.
  • the coordinate position of any point in the image of the area to be processed can be calculated based on the positions of the multiple optical markers 220 in the image of the area to be processed.
  • the number of optical markers 220 may be three. Although there are only three optical markers 220, the coordinate position of any point in the image of the region to be processed can be calculated based on the mutual position relationship of the three optical markers 220.
  • the imaging device 100 acquires an image of the area to be processed, and the camera 210 can track the position of the imaging device 100 at this time.
  • the coordinate position of any point on the image acquired by the imaging device 100 can be calculated according to the position of the imaging device 100.
  • the plurality of optical markers 220 may be provided on the working assembly 300.
  • the plurality of optical markers 220 may be provided on the positioning device 400. Whether the plurality of optical markers 220 are provided on the working assembly 300 or the positioning device 400, the positioning of the working assembly 300 can be achieved.
  • the working assembly 300 can be positioned directly according to the positions of the plurality of optical markers 220.
  • the positions of the plurality of optical markers 220 and the relative positions of the positioning device 400 and the working assembly 300 that is, the The distance between the positioning device 400 and the working assembly 300, the distance may be preset when the high-intensity focused ultrasound device 10 is designed), to position the working assembly 300.
  • the positioning device 400 is fixedly arranged on any component or equipment.
  • one end of the positioning device 400 may be fixedly installed on a trolley.
  • the other end of the positioning device 400 is configured to clamp the working assembly 300 to extend and move freely.
  • the high-intensity focused ultrasound equipment 10 may also include a display device and a control device.
  • the display device and the control device may be arranged on a trolley.
  • the display device can display real-time images acquired by the imaging device 100 to facilitate monitoring of the irradiation process of the working component.
  • the display device can also display the fused 3D model image after fusion, and the user selects the target coordinate point on the fused 3D model image.
  • the target coordinate point is one of any points in the area to be processed.
  • the control device is used to control the positioning device 400 to clamp the working component 300 to move to a working position corresponding to the target coordinate point, so that the working component 300 is released.
  • the intensity focused ultrasound pulses irradiate the target coordinate points.
  • the imaging device 100 acquires an image of the area to be processed, and the optical tracking device 200 locates the working assembly 300 and the target coordinate point in the area to be processed, so that the positioning device 400 can clamp the work assembly 300 quickly and accurately Move to the working position corresponding to the target coordinate point, so that the working assembly 300 can quickly and accurately release the high-intensity focused ultrasound pulse to the target coordinate point, which not only greatly improves the processing accuracy of the high-intensity focused ultrasound device 10 , And improve the processing efficiency.
  • the imaging device 100 is an ultrasound imaging probe.
  • the imaging device 100 may be an ultrasound imaging probe, and the ultrasound imaging probe is configured to be rotatable to obtain images of different angles of the area to be processed.
  • the positioning device 400 is a robotic arm.
  • the positioning device 400 may be a mechanical arm that can extend freely.
  • the working assembly 300 releases the energy focus point of the high-intensity focused ultrasound pulse, which is located in the image scanning area of the imaging device 100.
  • the imaging device 100 and the working assembly 300 can be integrally formed, or they can be set separately, but no matter how they are set, the working assembly 300 releases the focal point of the high-intensity focused ultrasound pulse and needs to be in the imaging device. 100 images within the scanning area.
  • the working component 300 by setting the working component 300 to release the energy focus point of the high-intensity focused ultrasound pulse, it is located in the image scanning area of the imaging device 100, so that the working component 300 irradiates the target coordinate point.
  • the image of the area to be processed can be acquired in real time to achieve the purpose of monitoring.
  • the working assembly 300 includes a first component 310, a film 320, a second component 330, and a high-intensity focused ultrasound probe 340 that are stacked in sequence. ⁇ Component body 350.
  • the first component 310 is a hollow annular structure, and a plurality of first buckles 311 are provided on the outer circumference of the first component 310.
  • the second member 330 is a hollow annular structure.
  • the film 320 is disposed between the first part 310 and the second part 330.
  • the high-intensity focused ultrasound probe 340 includes a first end surface 341 and a second end surface 342.
  • the second end surface 342 is fixedly connected/movably connected to the working assembly main body 350.
  • the outer wall of the working assembly main body 350 is provided with a second buckle 360.
  • the second buckle 360 is configured to be able to engage with the first buckle 311.
  • the number of the first buckles 311 can be set arbitrarily.
  • the first buckles 311 may be arranged on the outer circumference of the first component 310 at equal intervals.
  • the shape of the working assembly body 350 may be a cylinder.
  • the second buckles 360 can also be arranged on the outer wall of the working assembly main body 350 at equal intervals, so as to facilitate a firm fit with the first buckles 311.
  • the film 320 may have elasticity. When the working assembly 300 is in use, the working assembly 300 is filled with a liquid ultrasonic medium.
  • the working assembly 300 After the first buckle 311 is engaged with the second buckle 360, the working assembly 300 is formed as a whole, the material of the film 320 is set to prevent the ultrasonic medium from flowing out of the working assembly 300, and the film 320 is attached to the surface of the area to be processed, so that the working assembly 300 releases high-intensity focused ultrasound pulses, and irradiates the target coordinate points through the ultrasonic medium, so as to obtain a better irradiation effect.
  • the second end surface 342 may be fixedly connected to the main body 350 of the working assembly.
  • the second end surface 342 may also be movably connected with the main body 350 of the working assembly.
  • the high-intensity focused ultrasound probe 340 serves as an ultrasonic energy source and can release high-intensity focused ultrasound pulses.
  • the first component 310, the thin film 320, the second component 330, the high-intensity focused ultrasound probe 340, and the working component body 350 are stacked in sequence, so that the working component 300 formed by the combination of the above components can realize the release of high-intensity focus.
  • Ultrasonic pulses irradiate the target coordinate points.
  • the working assembly main body 350 includes a chassis 351, a driving device 352, a plurality of connecting rods 353 and a housing 354.
  • the chassis 351 is provided with a plurality of connecting holes 351a.
  • the driving device 352 is fixedly connected to the surface of the chassis 351.
  • One end of the connecting rod 353 penetrates the connecting hole 351 a and is electrically connected to the driving device 352.
  • the other end of the connecting rod 353 is fixedly connected/movably connected to the second end surface 342 of the high-intensity focused ultrasound probe 340.
  • the casing 354 covers the chassis 351, the driving device 352 and the plurality of connecting rods 353.
  • the outer surface of the housing 354 is provided with the plurality of second buckles 360.
  • the shape of the working assembly 300 may be a cylinder, and the shape of the housing 354 may be a cylinder, so as to realize the packaging of the chassis 351, the driving device 352 and the plurality of connecting rods 353. cover.
  • the driving device 352 may be a driving motor.
  • the number of the connecting holes 351a is equal to the number of the connecting rods 353.
  • the driving motor can be electrically connected to the connecting rod 353 through the connecting hole 351a to drive the connecting rod 353 to bend and deform or move along the axis of the driving motor to realize the connecting rod 353 and the height Active connection of intensity focused ultrasound probe 340.
  • the connecting rod 353 can be movably connected to the high-intensity focused ultrasound probe 340, so that the high-intensity focused ultrasound probe 340 can be opposed to the chassis 351.
  • the position is adjusted.
  • the energy focus point of the high-intensity focused ultrasound probe 340 is adjusted so that the energy focus point can coincide with the target coordinate point of the area to be processed.
  • the driving device 352 is a driving motor.
  • the driving motor may be a motor or a driving motor.
  • each connecting rod 353 includes a first connecting rod 353a and a second connecting rod 353b.
  • the first connecting rod 353a and the second connecting rod 353b are rotatably connected to each other.
  • the first connecting rod 353a can rotate relative to the second connecting rod 353b.
  • first connecting rod 353a and the second connecting rod 353b may be rotatably connected by a rotating pin shaft.
  • the first connecting rod 353a can rotate relative to the second connecting rod 353b. It is understood that the position of the high-intensity focused ultrasound probe 340 can be adjusted relative to the chassis 351 to realize the high-intensity focused ultrasound probe 340. The adjustment of the energy focus point.
  • the position adjustment of the high-intensity focused ultrasound probe 340 relative to the chassis 351 is realized, thereby achieving the high-intensity focused ultrasound probe 340.
  • the adjustment of the energy focus point makes the energy focus point coincide with the target coordinate point of the area to be processed.
  • the driving device 352 includes a plurality of driving sub-devices.
  • the number of the driving sub-devices is less than or equal to the number of the connecting rods 353.
  • Each driving sub-device is electrically connected to a connecting rod 353.
  • the driving device 352 may be a driving motor.
  • the driving device 352 may also be a plurality of driving motors (ie, driving sub-devices). The number of the driving sub-devices is less than or equal to the number of the connecting rods 353.
  • each driving sub-device When the number of the driving sub-devices is equal to the number of the connecting rods 353, each driving sub-device is electrically connected to one connecting rod 353, and the first connecting rod 353a of the different connecting rods 353 is driven relative to the second connecting rod 353b. Rotating, flexible control.
  • the connecting rod 353 that is electrically connected to the driving sub-device can be driven to drive the connecting rod 353 that is not electrically connected to the driving sub-device to rotate, thereby reducing the number of driving sub-devices and saving costs.
  • each driving sub-device is electrically connected to one connecting rod 353, so that the first connecting rod 353a of the different connecting rods 353 can be driven relative to the second connecting rod 353a.
  • the connecting rod 353b rotates, and the control is more flexible.
  • the working assembly 300 further includes a sliding device 370 and a medium injection hole 380.
  • the sliding device 370 is disposed on the outer surface of the housing 354.
  • One end of the positioning device 400 is slidably connected to the main body 350 of the working assembly through the sliding device 370.
  • the sliding device 370 enables the working assembly 300 to slide freely relative to the positioning device 400 when the positioning device 400 clamps the working assembly 300.
  • the medium injection hole 380 is provided on the outer surface of the housing 354.
  • the medium injection hole 380 is a through hole for injecting a liquid ultrasonic medium.
  • the sliding device 370 may be a sliding rail.
  • the control device controls the positioning device 400 to freely extend and move to a suitable position.
  • the working assembly 300 can be slid relative to the positioning device 400, which is more suitable for the area to be treated.
  • the surface plays a role of assisting the positioning of the positioning device 400, with higher positioning accuracy and faster positioning speed.
  • the sliding device 370 can also eliminate the air gap in the ultrasonic irradiation path and improve the irradiation effect.
  • the imaging device 100 and the working assembly 300 are integrally formed.
  • the imaging device 100 and the working assembly 300 may be integrally formed and prepared.
  • the imaging device 100 can move synchronously with the working assembly 300, with higher work efficiency and convenient control.
  • the high-intensity focused ultrasound probe 340 is provided with a through hole 343.
  • the imaging device 100 penetrates the through hole 343 and is rotatably/fixedly connected with the high-intensity focused ultrasound probe 340.
  • the imaging device 100 and the working assembly 300 are integrally formed.
  • the high-intensity focused ultrasound probe 340 is provided with a through hole 343, and the imaging device 100 penetrates The through hole 343 realizes that the imaging device 100 and the working assembly 300 are integrally formed.
  • the size of the through hole 343 and the size of the high-intensity focused ultrasound probe 340 are matched with each other, so that the imaging device 100 can penetrate the through hole 343.
  • the imaging device 100 and the working assembly 300 are integrally formed.
  • the imaging device 100 By arranging the imaging device 100 to be rotationally connected with the high-intensity focused ultrasound probe 340, the imaging device 100 can rotate freely in the through hole 343, and the acquisition angle and range are greatly improved.
  • the working assembly 300 further includes a first gear 391 and a second gear 392.
  • the first gear 391 is sleeved on the driving shaft 352 a of the driving device 352.
  • the second gear 392 is sleeved on the imaging device 100.
  • the first gear 391 and the second gear 392 mesh with each other.
  • This embodiment belongs to an embodiment in which the imaging device 100 and the high-intensity focused ultrasound probe 340 are rotationally connected. Specifically, during use, the driving device 352 drives the driving shaft 352a to rotate, and the first gear 391 rotates accordingly. The first gear 391 and the second gear 392 mesh with each other, so that the rotation of the first gear 391 can drive the second gear 392 to rotate. The rotation of the second gear 392 can drive the imaging device 100 to rotate.
  • the imaging device 100 and the high-intensity focused ultrasound probe 340 are connected in rotation, which is simple in implementation and low in cost.
  • the imaging device 100 includes a housing 110 and a front-end transducer 120.
  • the housing 110 is provided with a driving motor 111.
  • the housing 110 is fixedly connected to the high-intensity focused ultrasound probe 340.
  • the front-end transducer 120 is driven by the driving motor 111 to rotate freely relative to the high-intensity focused ultrasound probe 340.
  • This embodiment belongs to another embodiment in which the imaging device 100 and the high-intensity focused ultrasound probe 340 are rotationally connected. Specifically, when in use, the driving motor 111 drives the front-end transducer 120 to rotate, and the housing 110 is fixed. The front-end transducer 120 is used to obtain an image of the area to be processed.
  • the housing 110, the front-end transducer 120, and the driving motor 111 are provided so that the front-end transducer 120 is driven by the driving motor 111 to rotate freely relative to the high-intensity focused ultrasound probe 340, so that all The imaging device 100 and the high-intensity focused ultrasound probe 340 are connected in rotation, and the rotation precision is high.
  • This application also provides a method for controlling high-intensity focused ultrasound equipment.
  • control method of the high-intensity focused ultrasound equipment provided in this application does not limit its execution subject.
  • the execution subject of the method for controlling the high-intensity focused ultrasound device provided by the present application may be the high-intensity focused ultrasound device 10 mentioned in the foregoing.
  • the high-intensity focused ultrasound equipment 10 may further include a control device.
  • the execution subject of the control method of the high-intensity focused ultrasound equipment may be the control device.
  • control method of the high-intensity focused ultrasound device is applied to the high-intensity focused ultrasound device 10 mentioned in the foregoing.
  • the control method of the high-intensity focused ultrasound equipment includes the following steps S100 to S500:
  • S100 At a first moment, acquire a first image of an area to be processed, perform modeling analysis on the first image, and generate a 3D model of the area to be processed.
  • the first image is acquired by a medical imaging device.
  • a second image of the region to be processed is acquired.
  • the second image is acquired by the imaging device 100 in the high-intensity focused ultrasound equipment 10.
  • the first moment is earlier than the second moment.
  • the medical imaging equipment may be one of MRI equipment (magnetic resonance imaging equipment), CT equipment (electronic computed tomography equipment), and ultrasound scanning equipment.
  • the time when the medical imaging device acquires the first image may be earlier than the time when the imaging device 100 acquires the second image.
  • the medical imaging device first obtains the first image.
  • the first image is an image of a region to be processed with a higher definition than the second image. After the first image is acquired, modeling and analysis can be performed on the first image to generate a 3D model of the region to be processed.
  • the imaging device 100 acquires the second image to be processed. Since the area to be processed may change in real time, the second image is a real-time image of the area to be processed.
  • the high-intensity focused ultrasound device 10 processes the first image and the second image, fuses the first image and the second image, and generates a fused 3D model image of the region to be processed .
  • the optical tracking device 200 locates the fused 3D model image through the optical marker 220 placed on the surface of the area to be processed or the optical marker 200 on the imaging device 100.
  • S300 After selecting the target coordinate point in the fused 3D model image, obtain the coordinate position of the working component 300 or the positioning device 400 according to the multiple optical markers 220 set on the working component 300 or the positioning device 400.
  • the plurality of optical markers 220 may be provided on the working assembly 300.
  • the plurality of optical markers 220 may also be provided in the positioning device 400. Whether the plurality of optical markers 220 are provided on the working assembly 300 or the positioning device 400, the positioning of the working assembly 300 can be achieved.
  • the working assembly 300 can be positioned directly according to the positions of the plurality of optical markers 220.
  • the positions of the plurality of optical markers 220 and the relative positions of the positioning device 400 and the working assembly 300 that is, the The distance between the positioning device 400 and the working assembly 300, the distance may be preset when the high-intensity focused ultrasound device 10 is designed), to position the working assembly 300.
  • S400 Obtain the coordinate position of the target coordinate point, and control the positioning device 400 to clamp the working component 300 to move according to the coordinate position of the target coordinate point and the coordinate position of the working component 300 or the positioning device 400 To the working position corresponding to the target coordinate point, so that the working assembly 300 releases a high-intensity focused ultrasound pulse to irradiate the target coordinate point.
  • the high-intensity focused ultrasound device 10 may have a built-in control device.
  • the control device may obtain the coordinate position of the target coordinate point, and control the positioning device 400 to clamp the work according to the coordinate position of the target coordinate point and the coordinate position of the working assembly 300 or the positioning device 400
  • the component 300 moves to a working position corresponding to the target coordinate point, so that the working component 300 releases a high-intensity focused ultrasound pulse to irradiate the target coordinate point.
  • the imaging device 100 acquires an image of the area to be processed in real time to monitor the irradiation process of the working component 300 irradiating the target coordinate point.
  • the imaging device 100 acquires an image of the area to be processed in real time. This is to monitor the irradiation process of the working assembly 300 irradiating the target coordinate point, and to avoid the irradiation error or misoperation of the working assembly 300.
  • This embodiment can realize that the positioning device 400 clamps the working assembly 300 to quickly and accurately move to the working position corresponding to the target coordinate point, so that the working assembly 300 can quickly and accurately release high-intensity focused ultrasound pulses to the target coordinate point. Not only the processing accuracy of the high-intensity focused ultrasound device 10 is greatly improved, but also the processing efficiency is improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Robotics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Surgical Instruments (AREA)

Abstract

一种高强度聚焦超声设备(10)与控制方法,通过成像装置(100)获取待处理区域的图像,通过光学追踪装置(200)对工作组件(300)和待处理区域中的目标坐标点进行定位,使得定位装置(400)可以夹持工作组件(300)快速并准确的移动至与目标坐标点对应的工作位置,从而使得工作组件(300)可以快速并准确地对目标坐标点释放高强度聚焦超声脉冲,不但提高了高强度聚焦超声设备(10)的处理精确度,而且提高了处理效率。

Description

高强度聚焦超声设备与控制方法 技术领域
本申请涉及高强度聚焦超声技术领域,特别是涉及一种高强度聚焦超声设备与控制方法。
背景技术
组织摧毁术和碎石术是从体外将脉冲超声聚焦到体内目标组织的非侵入性的组织消融方式。组织摧毁术通过空化的微泡机械损伤组织,微泡使细胞组织均质化为可被人体排出或吸收的无细胞液体。碎石术通常通过声波破碎尿结石。
作为外科手术或其他治疗程序的一部分,组织摧毁术通过高强度聚焦超声空化目标组织体积或组织内含物,机械地破坏目标组织。当周期性空化的空间范围内的整个声学和换能器扫描参数控制在相当窄的范围内时,组织摧毁术最有效。任何参数的微小变化都可能导致正在进行的过程中断。
组织摧毁术需要高峰值的声脉冲,也就意味着需要大的表面积来聚焦换能器。通常,这些换能器与碎石术中使用的换能器非常相似,并且在相同的频率范围内运行。
在组织摧毁术过程中,诊断/成像超声可用于可视化手术解剖并实时监控解剖过程。在诊断/成像超声上,组织摧毁术的空化气泡云可以非常清楚地显示为高回声(亮)区域,而消融的均质化组织可以显示为低回声(暗)区域。对于体积较大和不规则的组织体积,可以通过使用组织摧毁术来消融,方法是在手术目标区域内,通过电子方式改变治疗阵列的焦点或机械地移动治疗换能器的焦点。
传统的高强度聚焦超声设备,存在无法实现快速、准确定位待处理区域的目标坐标点的问题,这大大影响了高强度聚焦超声设备的处理精确度和处理效率。
发明内容
基于此,有必要针对传统方案中高强度聚焦超声设备无法实现快速、准确定位待处理区域的目标坐标点的问题,提供一种高强度聚焦超声设备与控制方法。
本申请提供一种高强度聚焦超声设备,用于对待处理区域进行高强度聚焦超声处理,包括:
成像装置,用于获取待处理区域的图像;
光学追踪装置,包括摄像头和多个光学标记物,所述多个光学标记物设置于所述待处理区域或所述成像装置,用于实现对所述待处理区域中任意点的定位;
工作组件,用于在确定所述待处理区域中的目标坐标点后,释放高强度聚焦超声脉冲,对所述目标坐标点进行照射;
定位装置,一端固定设置,另一端设置为可夹持所述工作组件自由伸展移动,用于夹持所述工作组件移动至与所述目标坐标点对应的工作位置,使得所 述工作组件能够对所述目标坐标点进行照射;
所述多个光学标记物,还设置于所述工作组件或所述定位装置,用于实现对所述工作组件的定位。
本申请还提供一种高强度聚焦超声设备的控制方法,应用于前述内容提及的高强度聚焦超声设备,所述高强度聚焦超声设备的控制方法包括:
在第一时刻,获取待处理区域的第一图像,对所述第一图像进行建模分析,生成所述待处理区域的3D模型;所述第一图像由医疗成像设备获取;
以及在第二时刻,获取所述待处理区域的第二图像;所述第二图像由高强度聚焦超声设备中的成像装置获取;所述第一时刻早于所述第二时刻;
融合所述第一图像和所述第二图像,生成所述待处理区域的融合3D模型图像,并控制光学追踪装置对所述融合3D模型图像进行定位;
在选定所述融合3D模型图像中的目标坐标点后,依据工作组件或定位装置上设置的多个光学标记物,获取所述工作组件或定位装置的坐标位置;
获取所述目标坐标点的坐标位置,依据所述目标坐标点的坐标位置,以及所述工作组件或定位装置的坐标位置,控制所述定位装置夹持所述工作组件移动至与所述目标坐标点对应的工作位置,以使所述工作组件释放高强度聚焦超声脉冲,对所述目标坐标点进行照射;
所述成像装置实时获取所述待处理区域的图像,以监控所述工作组件对所述目标坐标点进行照射的照射过程。
本申请涉及一种高强度聚焦超声设备与控制方法,通过成像装置获取待处理区域的图像,通过光学追踪装置对工作组件和待处理区域中的目标坐标点进行定位,使得定位装置可以夹持工作组件快速并准确的移动至与所述目标坐标点对应的工作位置,,从而使得工作组件可以快速并准确地对目标坐标点释放高强度聚焦超声脉冲,不但大大提高了高强度聚焦超声设备的处理精确度,而且提高了处理效率。
附图说明
图1为本申请一实施例提供的高强度聚焦超声设备的结构示意图;
图2为本申请一实施例提供的高强度聚焦超声设备中,成像装置与光学标记物配合的示意图;
图3为本申请一实施例提供的高强度聚焦超声设备中工作组件的爆炸图;
图4为本申请一实施例提供的高强度聚焦超声设备中工作组件装配后的结构示意图;
图5为本申请一实施例提供的高强度聚焦超声设备中工作组件的爆炸图;
图6为本申请一实施例提供的高强度聚焦超声设备中工作组件的爆炸图;
图7为本申请一实施例提供的高强度聚焦超声设备的结构示意图;
图8为本申请一实施例提供的高强度聚焦超声设备的结构示意图;
图9为本申请一实施例提供的高强度聚焦超声设备的控制方法的流程示意图。
附图标记:
10    高强度聚焦超声设备
100   成像装置
110   外壳
111   驱动马达
120   前端换能器
200   光学追踪装置
210   摄像头
220   光学标记物
300   工作组件
310   第一部件
311   第一卡扣
320   薄膜
330   第二部件
340   高强度聚焦超声探头
341   第一端面
342   第二端面
343   通孔
350   工作组件主体
351   底盘
351a  连接孔
352   驱动装置
352a  驱动轴
353   连接杆
353a  第一连接杆
353b  第二连接杆
354   壳体
360   第二卡扣
370   滑动器件
380   介质注入孔
391   第一齿轮
392   第二齿轮
400   定位装置
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供一种高强度聚焦超声设备10。
如图1所示,在本申请的一实施例中,所述高强度聚焦超声设备10包括成 像装置100、光学追踪装置200、工作组件300和定位装置400。所述光学追踪装置200包括摄像头210和多个光学标记物220。所述多个光学标记物220设置于所述待处理区域或所述成像装置100,用于实现对所述待处理区域中任意点的定位。所述多个光学标记物220还设置于所述工作组件300或所述定位装置400,用于实现对所述工作组件300的定位。所述定位装置400一端固定设置。所述定位装置400的另一端设置为可夹持所述工作组件300自由伸展移动。
所述成像装置100用于获取待处理区域的图像。所述工作组件300用于在选定所述待处理区域中的目标坐标点后,释放高强度聚焦超声脉冲,对所述目标坐标点进行照射。所述定位装置400用于夹持所述工作组件300移动至与所述目标坐标点对应的工作位置,使得所述工作组件300能够对所述目标坐标点经行照射。
具体地,所述光学追踪装置200包括摄像头210和多个光学标记物220。所述摄像头210可以为光学摄像头。所述光学标记物220可以为光学标记球。
所述多个光学标记物220可以有规则的排布设置于所述待处理区域。所述多个光学标记物220也可以设置于所述成像装置100。所述多个光学标记物220可以设置于所述待处理区域和所述成像装置100中的任意一个,用于实现对所述待处理区域中任意点的定位。
当所述多个光学标记物220设置于所述待处理区域时,所述成像装置100获取所述待处理区域的图像时,所述待处理区域的图像包含所述多个光学标记物220的位置。可以依据所述待处理区域的图像中的多个光学标记物220的位置,推算待处理区域图像中任意点的坐标位置。例如,光学标记物220可以为3个。虽然光学标记物220只有3个,但是可以依据3个光学标记物220的相互位置关系,推算所述待处理区域图像中任意点的坐标位置。
当所述多个光学标记物220设置于所述成像装置100时,所述成像装置100获取所述待处理区域的图像,此时所述摄像头210可以追踪所述成像装置100的位置。可以依据所述成像装置100的位置,计算所述成像装置100获取的图像上任意点的坐标位置。
所述多个光学标记物220可以设置于所述工作组件300。所述多个光学标记物220可以设置于所述定位装置400。所述多个光学标记物220无论设置于所述工作组件300还是所述定位装置400,都可以实现对所述工作组件300的定位。
当所述多个光学标记物220设置于所述工作组件300时,可以直接依据所述多个光学标记物220的位置,对所述工作组件300进行定位。
当所述多个光学标记物220设置于所述定位装置400时,可以依据所述多个光学标记物220的位置,以及所述定位装置400与所述工作组件300的相对位置(即所述定位装置400与所述工作组件300的距离,所述距离可以在设计所述高强度聚焦超声设备10时预先设定),对所述工作组件300进行定位。
所述定位装置400一端固定设置于任何部件或设备。例如,所述定位装置400的一端可以固定设置于一架台车。所述定位装置400的另一端设置为可夹持所述工作组件300自由伸展移动。所述高强度聚焦超声设备10还可以包括显示装置和控制装置。所述显示装置和所述控制装置可以设置于一架台车上。所述 显示装置可以显示所述成像装置100获取的实时图像,以便于监控工作组件的照射过程。所述显示装置也可以显示融合后的融合3D模型图像,用户在融合3D模型图像上选取目标坐标点。所述目标坐标点为所述待处理区域中任意点中的一个。在选取所述目标坐标点后,所述控制装置用于控制所述定位装置400夹持所述工作组件300移动至与所述目标坐标点对应的工作位置,以使所述工作组件300释放高强度聚焦超声脉冲,对所述目标坐标点进行照射。
本实施例中,通过成像装置100获取待处理区域的图像,通过光学追踪装置200对工作组件300和待处理区域中的目标坐标点进行定位,使得定位装置400可以夹持工作组件300快速并准确的移动至与与所述目标坐标点对应的工作位置,从而使得工作组件300可以快速并准确地对目标坐标点释放高强度聚焦超声脉冲,不但大大提高了高强度聚焦超声设备10的处理精确度,而且提高了处理效率。
在本申请的一实施例中,所述成像装置100为超声成像探头。
具体地,所述成像装置100可以为超声成像探头,所述超声成像探头设置为可以转动,以获取所述待处理区域不同角度的图像。
本申请的一实施例中,所述定位装置400为机械臂。
具体地,所述定位装置400可以为能够自由伸展的机械臂。
本申请的一实施例中,所述工作组件300释放高强度聚焦超声脉冲的能量聚焦点,位于所述成像装置100的图像扫描区域内。
具体地,所述成像装置100与所述工作组件300可以一体成型,也可以分别独立设置,但是无论如何设置,所述工作组件300释放高强度聚焦超声脉冲的聚焦点,需要处于所述成像装置100的图像扫描区域内。
本实施例中,通过设置工作组件300释放高强度聚焦超声脉冲的能量聚焦点,位于所述成像装置100的图像扫描区域内,使得在所述工作组件300对所述目标坐标点进行照射的过程中,成像装置100可以实时获取所述待处理区域的图像,以实现监控目的。
如图3,图4和图5所示,在本申请的一实施例中,所述工作组件300包括依次层叠设置的第一部件310、薄膜320、第二部件330、高强度聚焦超声探头340和工作组件主体350。
所述第一部件310为中空的圆环状结构,所述第一部件310的外圆周上设置有多个第一卡扣311。所述第二部件330为中空的圆环状结构。所述薄膜320设置于所述第一部件310和所述第二部件330之间。所述高强度聚焦超声探头340包括第一端面341和第二端面342。所述第二端面342与所述工作组件主体350固定连接/活动连接。所述工作组件主体350的外壁设置有第二卡扣360。所述第二卡扣360设置为能够与所述第一卡扣311卡合。
具体地,所述第一卡扣311的数量可以任意设置。可选地,所述第一卡扣311可以等间距设置于所述第一部件310的外圆周上。所述工作组件主体350的形状可以为圆柱体。所述第二卡扣360也可以等间距设置于所述工作组件主体350的外壁,便于与所述第一卡扣311牢固配合。所述薄膜320可以具有弹性。在所述工作组件300处于使用状态时,所述工作组件300内注满液体状的超声 介质。所述第一卡扣311与所述第二卡扣360卡合后,所述工作组件300形成一个整体,所述薄膜320的材料设置为无法让超声介质流出所述工作组件300,所述薄膜320贴合待处理区域表面,以使得所述工作组件300释放高强度聚焦超声脉冲,通过超声介质对所述目标坐标点进行照射,获得更好的照射效果。
所述第二端面342可以与所述工作组件主体350固定连接。所述第二端面342也可以与所述工作组件主体350活动连接。所述高强度聚焦超声探头340作为超声能量源,可以释放高强度聚焦超声脉冲。
本实施例中,通过依次层叠设置的第一部件310、薄膜320、第二部件330、高强度聚焦超声探头340和工作组件主体350,使得上述部件组合形成的工作组件300可以实现释放高强度聚焦超声脉冲,对所述目标坐标点进行照射。
请继续参阅图3,图4和图5,在本申请的一实施例中,所述工作组件主体350包括底盘351、驱动装置352、多个连接杆353和壳体354。所述底盘351设置有多个连接孔351a。所述驱动装置352固定连接于所述底盘351的表面。所述连接杆353的一端贯穿所述连接孔351a,与所述驱动装置352电连接。所述连接杆353的另一端与所述高强度聚焦超声探头340的第二端面342固定连接/活动连接。所述壳体354,包覆所述底盘351、所述驱动装置352和所述多个连接杆353。所述壳体354的外表面设置有所述多个第二卡扣360。
具体地,所述工作组件300的形状可以为圆柱体,所述壳体354的形状可以为圆筒状,实现对所述底盘351、所述驱动装置352和所述多个连接杆353的包覆。所述驱动装置352可以为驱动电机。所述连接孔351a的数量与所述连接杆353的数量相等。所述驱动电机可以通过所述连接孔351a与所述连接杆353电连接,以驱动所述连接杆353弯曲变形或沿所述驱动电机轴轴向运动,实现所述连接杆353与所述高强度聚焦超声探头340的活动连接。
本实施例中,通过设置驱动装置352和多个连接杆353,可以实现连接杆353与所述高强度聚焦超声探头340的活动连接,使得所述高强度聚焦超声探头340可以相对所述底盘351调整位置,在调整位置过程中,实现所述高强度聚焦超声探头340的能量聚焦点的调整,使得能量聚焦点可以与所述待处理区域的目标坐标点重合。通过设置壳体354,可以包覆所述底盘351、所述驱动装置352和所述多个连接杆353,保护上述部件在工作过程中不受损坏。
在本申请的一实施例中,所述驱动装置352为驱动电机。
具体地,所述驱动电机可以为电动机,也可以为驱动马达。
请继续参阅图3,图4和图5,在本申请的一实施例中,每一个连接杆353包括第一连接杆353a和第二连接杆353b。所述第一连接杆353a与所述第二连接杆353b互相转动连接。所述第一连接杆353a可相对所述第二连接杆353b转动。
具体地,所述第一连接杆353a与所述第二连接杆353b可以通过转动销轴转动连接。所述第一连接杆353a可相对所述第二连接杆353b转动,可以理解,相当于所述高强度聚焦超声探头340可以相对所述底盘351调整位置,以实现所述高强度聚焦超声探头340的能量聚焦点的调整。
本实施例中,通过设置互相转动连接的第一连接杆353a与第二连接杆353b, 实现所述高强度聚焦超声探头340相对所述底盘351调整位置,进而实现所述高强度聚焦超声探头340的能量聚焦点的调整,使得能量聚焦点可以与所述待处理区域的目标坐标点重合。
在本申请的一实施例中,所述驱动装置352包括多个驱动子装置。所述驱动子装置的数量小于或等于所述连接杆353的数量。每一个驱动子装置与一个连接杆353电连接。
具体地,所述驱动装置352可以为一个驱动电机。本实施例中,所述驱动装置352也可以为多个驱动电机(即驱动子装置)。所述驱动子装置的数量小于或等于所述连接杆353的数量。
当所述驱动子装置的数量等于所述连接杆353的数量时,每一个驱动子装置与一个连接杆353电连接,驱动不同的连接杆353中的第一连接杆353a相对第二连接杆353b转动,控制灵活。
当所述驱动子装置的数量小于所述连接杆353的数量时,存在一个或多个连接杆353没有与驱动子装置电连接。可以通过驱动与驱动子装置电连接的连接杆353,以带动没有与驱动子装置电连接的连接杆353转动,减少驱动子装置的数量,节省成本。
本实施例中,通过设置所述驱动装置352包括多个驱动子装置,每一个驱动子装置与一个连接杆353电连接,可以实现驱动不同的连接杆353中的第一连接杆353a相对第二连接杆353b转动,控制更加灵活。
请继续参阅图3,图4和图5,在本申请的一实施例中,所述工作组件300还包括滑动器件370和介质注入孔380。所述滑动器件370设置于所述壳体354的外表面。所述定位装置400的一端通过所述滑动器件370与所述工作组件主体350滑动连接。所述滑动器件370,使得所述定位装置400夹持所述工作组件300时,所述工作组件300可相对所述定位装置400自由滑动。所述介质注入孔380设置于所述壳体354的外表面。
具体地,所述介质注入孔380为一个通孔,用于注入液体状的超声介质。所述滑动器件370可以为滑轨。
本实施例中,控制装置控制所述定位装置400自由伸展移动至合适位置,通过设置滑动器件370,可以实现所述工作组件300可相对所述定位装置400滑动,更加贴合所述待处理区域表面,起到辅助所述定位装置400定位的作用,定位精度更高,定位速度更快。所述滑动器件370还可以起到消除超声照射路径中的空气间隙,提高照射效果。
在本申请的一实施例中,所述成像装置100与所述工作组件300一体成型。
具体地,所述成像装置100可以与所述工作组件300一体成型制备。
本实施例中,通过设置成像装置100与所述工作组件300一体成型,使得所述成像装置100可以与所述工作组件300同步移动,工作效率更高,控制方便。
如图6所示,在本申请的一实施例中,所述高强度聚焦超声探头340设置有通孔343。所述成像装置100贯穿所述通孔343,与所述高强度聚焦超声探头340转动/固定连接。
具体地,承接上述实施例,所述成像装置100与所述工作组件300一体成型,本实施例中,通过在所述高强度聚焦超声探头340设置通孔343,并设置所述成像装置100贯穿所述通孔343,实现所述成像装置100与所述工作组件300一体成型。所述通孔343的尺寸与所述高强度聚焦超声探头340的尺寸互相配合,以使得所述成像装置100可以贯穿所述通孔343。
本实施例中,通过设置所述高强度聚焦超声探头340内的通孔343,使得所述成像装置100与所述工作组件300实现一体成型。通过设置所述成像装置100与所述高强度聚焦超声探头340转动连接,使得所述成像装置100可以在所述通孔343内自由转动,获取角度和范围大大提升。
如图7所示,在本申请的一实施例中,所述工作组件300还包括第一齿轮391和第二齿轮392。所述第一齿轮391套设于所述驱动装置352的驱动轴352a。所述第二齿轮392套设于所述成像装置100。所述第一齿轮391与所述第二齿轮392相互啮合。
本实施例属于所述成像装置100与所述高强度聚焦超声探头340转动连接的一个实施例。具体地,在使用过程中,所述驱动装置352驱动所述驱动轴352a转动,所述第一齿轮391随之转动。所述第一齿轮391与所述第二齿轮392相互啮合,使得所述第一齿轮391的转动可以带动所述第二齿轮392转动。所述第二齿轮392的转动又可以带动所述成像装置100转动。
本实施例中,通过设置互相啮合的第一齿轮391和第二齿轮392,使得所述成像装置100与所述高强度聚焦超声探头340实现转动连接,实现方式简单,成本低。
如图8所示,在本申请的一实施例中,所述成像装置100包括外壳110和前端换能器120。所述外壳110内设置有驱动马达111。所述外壳110与所述高强度聚焦超声探头340固定连接。所述前端换能器120在所述驱动马达111的驱动下相对所述高强度聚焦超声探头340自由转动。
本实施例属于所述成像装置100与所述高强度聚焦超声探头340转动连接的另一个实施例。具体地,在使用时,所述驱动马达111驱动所述前端换能器120转动,所述外壳110固定不动。所述前端换能器120用于获取所述待处理区域的图像。
本实施例中,通过设置外壳110、前端换能器120和驱动马达111,使得前端换能器120在所述驱动马达111的驱动下相对所述高强度聚焦超声探头340自由转动,进而使得所述成像装置100与所述高强度聚焦超声探头340实现转动连接,转动精密程度高。
本申请还提供一种高强度聚焦超声设备的控制方法。
需要说明的是,本申请提供的高强度聚焦超声设备的控制方法并不限制其执行主体。可选地,本申请提供的高强度聚焦超声设备的控制方法的执行主体可以为前述内容提及的高强度聚焦超声设备10。具体地,所述高强度聚焦超声设备10还可以包括控制装置。所述高强度聚焦超声设备的控制方法的执行主体可以为所述控制装置。
如图9所示,在本申请的一实施例中,所述高强度聚焦超声设备的控制方 法,应用于前述内容提及的高强度聚焦超声设备10。所述高强度聚焦超声设备的控制方法包括如下步骤S100至步骤S500:
S100,在第一时刻,获取待处理区域的第一图像,对所述第一图像进行建模分析,生成所述待处理区域的3D模型。所述第一图像由医疗成像设备获取。
以及在第二时刻,获取所述待处理区域的第二图像。所述第二图像由高强度聚焦超声设备10中的成像装置100获取。所述第一时刻早于所述第二时刻。
具体地,所述医疗成像设备可以为MRI设备(磁共振成像设备)、CT设备(电子计算机断层扫描设备)和超声扫描设备中的一种。所述医疗成像设备获取所述第一图像的时刻可以早于所述成像装置100获取所述第二图像的时刻。所述医疗成像设备先获取所述第一图像。所述第一图像为比所述第二图像清晰度更高的待处理区域的图像。获取第一图像后,可以对所述第一图像进行建模分析,生成所述待处理区域的3D模型。
进一步地,所述成像装置100获取所述待处理器的第二图像。由于待处理区域可能出现实时变动的情况,所述第二图像为所述待处理区域的实时图像。
S200,融合所述第一图像和所述第二图像,生成所述待处理区域的融合3D模型图像,并控制所述光学追踪装置对所述融合3D模型图像定位。
具体地,所述高强度聚焦超声设备10对所述第一图像和所述第二图像进行处理,融合所述第一图像和所述第二图像,生成所述待处理区域的融合3D模型图像。所述光学追踪装置200,通过放置于所述待处理区域表面的光学标记物220或者所述成像装置100上的光学标记物200,定位所述融合3D模型图像。
S300,在选定所述融合3D模型图像中的目标坐标点后,依据工作组件300或定位装置400上设置的多个光学标记物220,获取所述工作组件300或定位装置400的坐标位置。
具体地,所述多个光学标记物220可以设置于所述工作组件300。所述多个光学标记物220也可以设置于所述定位装置400。所述多个光学标记物220无论设置于所述工作组件300还是所述定位装置400,都可以实现对所述工作组件300的定位。
当所述多个光学标记物220设置于所述工作组件300时,可以直接依据所述多个光学标记物220的位置,对所述工作组件300进行定位。
当所述多个光学标记物220设置于所述定位装置400时,可以依据所述多个光学标记物220的位置,以及所述定位装置400与所述工作组件300的相对位置(即所述定位装置400与所述工作组件300的距离,所述距离可以在设计所述高强度聚焦超声设备10时预先设定),对所述工作组件300进行定位。
S400,获取所述目标坐标点的坐标位置,依据所述目标坐标点的坐标位置,以及所述工作组件300或定位装置400的坐标位置,控制所述定位装置400夹持所述工作组件300移动至与所述目标坐标点对应的工作位置,以使所述工作组件300释放高强度聚焦超声脉冲,对所述目标坐标点进行照射。
具体地,所述高强度聚焦超声设备10可以内置控制装置。所述控制装置可以获取所述目标坐标点的坐标位置,依据所述目标坐标点的坐标位置,以及所述工作组件300或定位装置400的坐标位置,控制所述定位装置400夹持所述 工作组件300移动至与所述目标坐标点对应的工作位置,以使所述工作组件300释放高强度聚焦超声脉冲,对所述目标坐标点进行照射。
S500,所述成像装置100实时获取所述待处理区域的图像,以监控所述工作组件300对所述目标坐标点进行照射的照射过程。
具体地,在所述工作组件300开始释放高强度聚焦超声脉冲,对所述目标坐标点进行照射后,所述成像装置100实时获取所述待处理区域的图像。这是为了监控所述工作组件300对所述目标坐标点进行照射的照射过程,避免所述工作组件300出现照射误差或出现误操作现象。
本实施例可以实现定位装置400夹持工作组件300快速并准确的移动至与所述目标坐标点对应的工作位置,使得工作组件300可以快速,精确地对目标坐标点释放高强度聚焦超声脉冲,不但大大提高了高强度聚焦超声设备10的处理精确度,而且提高了处理效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种高强度聚焦超声设备,用于对待处理区域进行高强度聚焦超声处理,其特征在于,包括:
    成像装置(100),用于获取待处理区域的图像;
    光学追踪装置(200),包括摄像头(210)和多个光学标记物(220),所述多个光学标记物(220)设置于所述待处理区域或所述成像装置(100),用于实现对所述待处理区域中任意点的定位;
    工作组件(300),用于在选定所述待处理区域中的目标坐标点后,释放高强度聚焦超声脉冲,对所述目标坐标点进行照射;以及
    定位装置(400),一端固定设置,另一端设置为可夹持所述工作组件(300)自由伸展移动,用于夹持所述工作组件(300)移动至与所述目标坐标点对应的工作位置,使得所述工作组件(300)能够对所述目标坐标点进行照射;
    所述多个光学标记物(220),还设置于所述工作组件(300)或所述定位装置(400),用于实现对所述工作组件(300)的定位。
  2. 根据权利要求1所述的高强度聚焦超声设备,其特征在于,所述成像装置(100)为超声成像探头。
  3. 根据权利要求1所述的高强度聚焦超声设备,其特征在于,所述定位装置(400)为机械臂。
  4. 根据权利要求1所述的高强度聚焦超声设备,其特征在于,所述工作组件(300)释放高强度聚焦超声脉冲的能量聚焦点,位于所述成像装置(100)的图像扫描区域内。
  5. 根据权利要求4所述的高强度聚焦超声设备,其特征在于,所述工作组件(300)包括依次层叠设置的第一部件(310)、薄膜(320)、第二部件(330)、高强度聚焦超声探头(340)和工作组件主体(350);
    所述第一部件(310)为中空的圆环状结构,所述第一部件(310)的外圆周上设置有多个第一卡扣(311);
    所述第二部件(330)为中空的圆环状结构;
    所述薄膜(320)设置于所述第一部件(310)和所述第二部件(330)之间;
    所述高强度聚焦超声探头(340)包括第一端面(341)和第二端面(342),所述第二端面(342)与所述工作组件主体(350)固定连接/活动连接;
    所述工作组件主体(350)的外壁设置有第二卡扣(360),所述第二卡扣(360)设置为能够与所述第一卡扣(311)卡合。
  6. 根据权利要求5所述的高强度聚焦超声设备,其特征在于,所述工作组件主体(350)包括:
    底盘(351),设置有多个连接孔(351a);
    驱动装置(352),固定连接于所述底盘(351)的表面;
    多个连接杆(353),一端贯穿所述连接孔(351a),与所述驱动装置(352)电连接,另一端与所述高强度聚焦超声探头(340)的第二端面(342)固定连接/活动连接;以及
    壳体(354),包覆所述底盘(351)、所述驱动装置(352)和所述多个连接 杆(353);所述壳体(354)的外表面设置有所述多个第二卡扣(360)。
  7. 根据权利要求6所述的高强度聚焦超声设备,其特征在于,所述驱动装置(352)为驱动电机。
  8. 根据权利要求6所述的高强度聚焦超声设备,其特征在于,每一个连接杆(353)包括互相转动连接的第一连接杆(353a)和第二连接杆(353b),所述第一连接杆(353a)可相对所述第二连接杆(353b)转动。
  9. 根据权利要求8所述的高强度聚焦超声设备,其特征在于,所述驱动装置(352)包括多个驱动子装置,所述驱动子装置的数量小于或等于所述连接杆(353)的数量,每一个驱动子装置与一个连接杆(353)电连接。
  10. 根据权利要求6所述的高强度聚焦超声设备,其特征在于,所述工作组件(300)还包括:
    滑动器件(370),设置于所述壳体(354)的外表面,所述定位装置(400)的一端通过所述滑动器件(370)与所述工作组件主体(350)滑动连接,以使所述定位装置(400)夹持所述工作组件(300)时,所述工作组件(300)可相对所述定位装置(400)自由滑动;以及
    介质注入孔(380),设置于所述壳体(354)的外表面。
  11. 根据权利要求6所述的高强度聚焦超声设备,其特征在于,所述成像装置(100)与所述工作组件(300)一体成型。
  12. 根据权利要求11所述的高强度聚焦超声设备,其特征在于,所述高强度聚焦超声探头(340)设置有通孔(343),所述成像装置(100)贯穿所述通孔(343),与所述高强度聚焦超声探头(340)连接。
  13. 根据权利要求12所述的高强度聚焦超声设备,其特征在于,所述工作组件(300)还包括:
    第一齿轮(391),套设于所述驱动装置(352)的驱动轴(352a);以及
    第二齿轮(392),套设于所述成像装置(100);
    所述第一齿轮(391)与所述第二齿轮(392)相互啮合。
  14. 根据权利要求12所述的高强度聚焦超声设备,其特征在于,所述成像装置(100)包括外壳(110)和前端换能器(120),所述外壳(110)内设置有驱动马达(111),所述外壳(110)与所述高强度聚焦超声探头(340)固定连接,所述前端换能器(120)在所述驱动马达(111)的驱动下相对所述高强度聚焦超声探头(340)自由转动。
  15. 一种高强度聚焦超声设备的控制方法,其特征在于,应用于权利要求1-14中任一项所述的高强度聚焦超声设备,所述高强度聚焦超声设备的控制方法包括:
    S100,在第一时刻,获取待处理区域的第一图像,对所述第一图像进行建模分析,生成所述待处理区域的3D模型;所述第一图像由医疗成像设备获取;
    以及在第二时刻,获取所述待处理区域的第二图像;所述第二图像由高强度聚焦超声设备中的成像装置(100)获取;所述第一时刻早于所述第二时刻;
    S200,融合所述第一图像和所述第二图像,生成所述待处理区域的融合3D模型图像,并控制光学追踪装置(200)对所述融合3D模型图像进行定位;
    S300,在选定所述融合3D模型图像中的目标坐标点后,依据工作组件(300)或定位装置(400)上设置的多个光学标记物(220),获取所述工作组件(300)或定位装置(400)的坐标位置;
    S400,获取所述目标坐标点的坐标位置,依据所述目标坐标点的坐标位置,以及所述工作组件(300)或定位装置(400)的坐标位置,控制所述定位装置(400)夹持所述工作组件(300)移动至与所述目标坐标点对应的工作位置,以使所述工作组件(300)释放高强度聚焦超声脉冲,对所述目标坐标点进行照射;
    S500,所述成像装置(100)实时获取所述待处理区域的图像,以监控所述工作组件(300)对所述目标坐标点进行照射的照射过程。
PCT/CN2020/142369 2020-01-10 2020-12-31 高强度聚焦超声设备与控制方法 WO2021139602A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/758,545 US20230061243A1 (en) 2020-01-10 2020-12-31 High-intensity focused ultrasound device and control method
EP20912118.5A EP4088673A4 (en) 2020-01-10 2020-12-31 APPARATUS AND METHOD FOR CONTROLLING HIGH-INTENSITY FOCUSED ULTRASOUND

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010026121.9A CN111134776A (zh) 2020-01-10 2020-01-10 高强度聚焦超声设备与控制方法
CN202010026121.9 2020-01-10

Publications (1)

Publication Number Publication Date
WO2021139602A1 true WO2021139602A1 (zh) 2021-07-15

Family

ID=70524591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142369 WO2021139602A1 (zh) 2020-01-10 2020-12-31 高强度聚焦超声设备与控制方法

Country Status (4)

Country Link
US (1) US20230061243A1 (zh)
EP (1) EP4088673A4 (zh)
CN (1) CN111134776A (zh)
WO (1) WO2021139602A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111134776A (zh) * 2020-01-10 2020-05-12 深圳市奥昇医疗科技有限责任公司 高强度聚焦超声设备与控制方法
CN113558716B (zh) * 2021-07-16 2023-08-22 深圳市奥昇医疗科技有限责任公司 耦合膜组件以及高强度聚焦超声设备
CN115531752A (zh) * 2022-04-28 2022-12-30 上海康乃馨医疗科技有限公司 聚焦超声治疗头和聚焦超声治疗方法
CN117323588B (zh) * 2023-11-17 2024-04-23 木斐乐医疗科技发展(南京)有限公司 一种可精准定位的聚焦超声波紧肤祛皱美容仪及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120215108A1 (en) * 2011-02-22 2012-08-23 Samsung Electronics Co., Ltd. Apparatus and method for tracking tumor for ultrasound therapy and ultrasound therapy system
CN103143125A (zh) * 2013-03-25 2013-06-12 广州多浦乐电子科技有限公司 一种高强度聚焦超声治疗仪
CN103479403A (zh) * 2012-06-08 2014-01-01 长庚大学 以手术导航系统导引聚焦式超声波释放能量的系统及其方法
CN104815399A (zh) * 2015-04-03 2015-08-05 西安交通大学 基于六轴机械臂的高强度聚焦超声治疗引导和控制系统及方法
CN107320180A (zh) * 2017-07-24 2017-11-07 重庆市肿瘤研究所 一种用于肝胆外科的手术系统
CN108290053A (zh) * 2015-08-10 2018-07-17 福斯移动有限公司 图像引导的聚焦超声治疗设备和瞄准装置
CN109688934A (zh) * 2016-08-01 2019-04-26 戈尔丹斯医疗公司 超声引导的血脑屏障的打开
CN110464456A (zh) * 2019-09-11 2019-11-19 嘉兴莫比乌斯智能科技有限公司 一种自动激光治疗机器人
CN111134776A (zh) * 2020-01-10 2020-05-12 深圳市奥昇医疗科技有限责任公司 高强度聚焦超声设备与控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150165243A1 (en) * 2004-09-24 2015-06-18 Guided Therapy Systems, Llc System and Method for Treating Cartilage and Injuries to Joints and Connective Tissue
FR2954903B1 (fr) * 2010-01-05 2012-03-02 Edap Tms France Procede et appareil de localisation et de visualisation d'une cible par rapport a un point focal d'un systeme de traitement
EP3236467A1 (en) * 2016-04-22 2017-10-25 Cardiawave Ultrasound imaging and therapy device
DE102017216017B4 (de) * 2017-09-12 2019-03-21 Richard Wolf Gmbh Medizinisch-therapeutisches System

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120215108A1 (en) * 2011-02-22 2012-08-23 Samsung Electronics Co., Ltd. Apparatus and method for tracking tumor for ultrasound therapy and ultrasound therapy system
CN103479403A (zh) * 2012-06-08 2014-01-01 长庚大学 以手术导航系统导引聚焦式超声波释放能量的系统及其方法
CN103143125A (zh) * 2013-03-25 2013-06-12 广州多浦乐电子科技有限公司 一种高强度聚焦超声治疗仪
CN104815399A (zh) * 2015-04-03 2015-08-05 西安交通大学 基于六轴机械臂的高强度聚焦超声治疗引导和控制系统及方法
CN108290053A (zh) * 2015-08-10 2018-07-17 福斯移动有限公司 图像引导的聚焦超声治疗设备和瞄准装置
CN109688934A (zh) * 2016-08-01 2019-04-26 戈尔丹斯医疗公司 超声引导的血脑屏障的打开
CN107320180A (zh) * 2017-07-24 2017-11-07 重庆市肿瘤研究所 一种用于肝胆外科的手术系统
CN110464456A (zh) * 2019-09-11 2019-11-19 嘉兴莫比乌斯智能科技有限公司 一种自动激光治疗机器人
CN111134776A (zh) * 2020-01-10 2020-05-12 深圳市奥昇医疗科技有限责任公司 高强度聚焦超声设备与控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4088673A4 *

Also Published As

Publication number Publication date
EP4088673A1 (en) 2022-11-16
CN111134776A (zh) 2020-05-12
EP4088673A4 (en) 2023-12-27
US20230061243A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
WO2021139602A1 (zh) 高强度聚焦超声设备与控制方法
JP7063882B2 (ja) 血液脳関門の超音波ガイド下開放
JP4322322B2 (ja) 超音波治療装置
US7494466B2 (en) Ultrasonic treatment of breast cancer
US4932414A (en) System of therapeutic ultrasound and real-time ultrasonic scanning
RU2379074C2 (ru) Ультразвуковая терапевтическая система
CN105848717B (zh) 用于处理组织的装置以及用于操作该装置的方法
TWI414330B (zh) A guided positioning module and a treatment system having the positioning module
CA2770700C (en) Micromanipulator control arm for therapeutic and imaging ultrasound transducers
JP3325300B2 (ja) 超音波治療装置
JP3505512B2 (ja) 腫瘍を走査し処置するための高い強度に集光された超音波システム
CA2593127A1 (en) A focused ultrasound therapy system
US20110028867A1 (en) Apparatus and method for non-invasive delivery and tracking of focused ultrasound generated from transducer
KR20170120215A (ko) 초음파 치료 장치
JP3373602B2 (ja) 超音波治療装置
CN104815399A (zh) 基于六轴机械臂的高强度聚焦超声治疗引导和控制系统及方法
JP2010501214A (ja) 撮像装置により誘導される高強度集束超音波治療システム
JP3325534B2 (ja) 超音波治療装置
JP2000237205A (ja) 超音波治療装置
CN1817386B (zh) B超装置引导的超声波诊疗装置
EP3254731A1 (en) Multi-purpose robotic system for mri guided focused ultrasound treatment
US20110028840A1 (en) High intensity focused ultrasound method and associated apparatus
CN211911724U (zh) 高强度聚焦超声设备
JP3322649B2 (ja) 超音波治療装置
US20120089021A1 (en) Method and system for three-dimensional (3D) imaging of biological structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020912118

Country of ref document: EP

Effective date: 20220810