WO2021139536A1 - 一种机器人控制系统 - Google Patents

一种机器人控制系统 Download PDF

Info

Publication number
WO2021139536A1
WO2021139536A1 PCT/CN2020/138935 CN2020138935W WO2021139536A1 WO 2021139536 A1 WO2021139536 A1 WO 2021139536A1 CN 2020138935 W CN2020138935 W CN 2020138935W WO 2021139536 A1 WO2021139536 A1 WO 2021139536A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
chip microcomputer
communication transceiver
obstacle avoidance
communication
Prior art date
Application number
PCT/CN2020/138935
Other languages
English (en)
French (fr)
Inventor
许哲涛
Original Assignee
京东数科海益信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东数科海益信息科技有限公司 filed Critical 京东数科海益信息科技有限公司
Publication of WO2021139536A1 publication Critical patent/WO2021139536A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • This application relates to the field of robot technology, and in particular to a robot control system.
  • the purpose of the embodiments of the present application is to provide a robot control system to solve the problem of difficulty in upgrading robot functions.
  • the specific technical solutions are as follows:
  • a robot control system in a first aspect, includes a movement device, an obstacle avoidance device, and a first communication bus respectively connected to the movement device and the obstacle avoidance device, wherein the obstacle avoidance device It includes an obstacle avoidance detection module, an anti-fall module, a safety edge contact module and a first communication transceiver module, the first communication transceiver module is respectively connected to the obstacle avoidance detection module, the anti-fall module and the safety edge contact module ,
  • the motion device includes a steering gear module and a second communication transceiver module connected to the steering gear module;
  • the obstacle avoidance detection module is configured to send the detected obstacle detection signal to the first communication transceiver module;
  • the anti-drop module is configured to send the measured height signal of the robot from the ground to the first communication transceiver module;
  • the safety edge contact module is configured to send the measured collision signal of the robot to the first communication transceiver module;
  • the steering gear module is configured to receive the motion control instruction obtained from the second communication transceiver module, perform motion according to the motion control instruction, and feed back the motion status to the second communication transceiver module.
  • the obstacle avoidance device further includes: a second communication bus, a first interface conversion module, and a first single-chip microcomputer, the obstacle avoidance detection module is connected to the second communication bus, and the second communication bus passes through the The first interface conversion module is connected with the first single-chip microcomputer, and the first single-chip microcomputer is connected with the first communication transceiver module.
  • the obstacle avoidance device further includes an amplifier, an analog-to-digital conversion module, and a first single-chip microcomputer.
  • the anti-drop module is connected to the first single-chip microcomputer through the amplifier and the analog-to-digital conversion module.
  • the single-chip microcomputer is connected to the first communication transceiver module;
  • the anti-drop module is configured to send the height signal to the first single-chip microcomputer after being amplified by the amplifier and converted by the analog-to-digital conversion module in sequence, and the first single-chip microcomputer is configured to be amplified and converted by the analog-to-digital converter.
  • the converted height signal is sent to the first communication transceiver module.
  • the obstacle avoidance device further includes a comparator and a first single-chip microcomputer, the safe edge contact module is connected to the first single-chip microcomputer through the comparator, and the single-chip microcomputer is connected to the first communication transceiver module;
  • the safety edge contact module is configured to send the collision signal to the comparator, and the comparator is configured to send a collision signal higher than a preset threshold to the first communication transceiver after comparison. Module.
  • the exercise device further includes a third communication bus, a second interface conversion module, and a second single-chip microcomputer, and the steering gear module communicates with the second communication bus and the second interface conversion module through the third communication bus and the second interface conversion module.
  • the single-chip microcomputer is connected, and the second single-chip microcomputer is connected with the second communication transceiver module;
  • the second single-chip microcomputer is configured to receive control instructions through the second communication transceiver module, and transmit the control instructions to the third communication bus through the second interface conversion module, and the steering gear module is connected to the third communication bus.
  • the third communication bus is connected, and the steering gear module is configured to obtain the control instruction through the third communication bus, and move according to the control instruction.
  • the system further includes a light source control device connected to the first communication bus, and the light source control device includes an LED drive unit, a third single-chip microcomputer, and a third communication transceiver module.
  • the LED The driving unit is connected to the third communication transceiver module through the third single-chip microcomputer;
  • the third communication transceiver module is configured to send a light control signal to the single-chip microcomputer, and the single-chip microcomputer is configured to drive the LED driving unit to work.
  • the system further includes a sound collection device connected to the first communication bus, and the sound collection device includes a sound collection module, a voice processing module, a power amplifier module, a speaker, and a fourth communication transceiver.
  • the sound collection device includes a sound collection module, a voice processing module, a power amplifier module, a speaker, and a fourth communication transceiver.
  • the sound collection module, the power amplifier module, and the fourth communication transceiver module are respectively connected to the voice processing module, and the speaker is connected to the power amplifier module.
  • system further includes: an environment collection device connected to the first communication bus;
  • the environment collection device includes a temperature collection module, a humidity collection module, a noise collection module, a wind speed collection module, an air cleanliness collection module, a fourth single-chip microcomputer, and a fifth communication transceiver module;
  • the temperature collection module, the humidity collection module, the noise collection module, the wind speed collection module, the air cleanliness collection module and the fifth communication transceiver module are respectively connected to the fourth single-chip microcomputer.
  • the system further includes: a power supply control device connected to the first communication bus;
  • the power control device includes a power supply, a voltage stabilizing module, a voltage conversion module, a fifth single-chip microcomputer, and a sixth communication transceiver module;
  • the power source is connected to the power device through the voltage stabilizing module and the first switch, the power source is connected to the obstacle avoidance device through the voltage conversion module and the second switch, and the power source is connected to the power device through the voltage conversion module and the first switch.
  • Three switches are connected with the movement device, the first switch, the second switch and the third switch are respectively connected with the fifth single-chip microcomputer, and the fifth single-chip microcomputer is connected with the sixth communication transceiver module.
  • a robot in a second aspect, includes any of the above-mentioned control systems.
  • the embodiment of this application provides a robot control system.
  • the robot system in this application is divided into multiple modules according to their functions.
  • the modules communicate through the first communication bus. When a certain functional requirement of the robot changes, it can directly add or Replace the corresponding modules to reduce the coupling between the modules.
  • Figure 1 is a schematic diagram of a robot control system provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of an obstacle avoidance device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of an exercise device provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a light source control device provided by an embodiment of the application.
  • Figure 5 is a schematic diagram of a sound collection device provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of an environment collection device provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of a power control device provided by an embodiment of the application.
  • the embodiment of the present application provides a robot control system, which can be applied to a server, and the server is set to control the robot.
  • FIG. 1 it is a schematic diagram of a robot control system provided by an embodiment of this application.
  • the robot control system includes the first CAN (Controller Area Network, Controller Area Network) bus and multiple functional modules.
  • the functional modules include: light source control device, motion device, power control device, control device, sound collection device, environment collection Device, obstacle avoidance device, the above-mentioned devices are connected through the first CAN bus.
  • each functional module can only be set to realize a single function, or each functional module includes multiple sub-functional modules, and multiple sub-functional modules in the same functional module communicate with the first CAN through the same communication transceiver module. Bus connection.
  • This application adopts a modular design.
  • the robot is divided into functional modules according to functions, and the functional modules are connected through the first CAN bus.
  • Each functional module of the robot control system independently processes internal information, and passes the processed information through The first CAN bus is sent to the control device. If you need to change or upgrade a certain function of the robot, or need to add functional modules to the robot, you only need to change the functional modules that need to be changed, and other functional modules are not affected, reducing the coupling between the functional modules Sex.
  • the robot control system may include a movement device, an obstacle avoidance device, and a first communication bus respectively connected with the movement device and the obstacle avoidance device.
  • the obstacle avoidance device includes an obstacle avoidance detection module, an anti-fall module, a safety edge contact module and a first communication transceiver module.
  • the first communication transceiver module is respectively connected to the obstacle avoidance detection module, the anti-fall module and the safety edge contact module, and the movement device It includes a steering gear module and a second communication transceiver module connected to the steering gear module.
  • the first communication bus may be a CAN bus, a 485 bus or an Ethernet bus.
  • the first communication bus is a CAN bus
  • the corresponding first communication transceiver module is a first CAN transceiver .
  • the obstacle avoidance detection module in the obstacle avoidance device is set to send the measured obstacle detection signal to the first communication transceiver module;
  • the fall prevention module is set to receive the measured height of the robot from the ground.
  • the safety edge contact module is configured to send the measured collision signal of the robot to the first communication transceiver module;
  • the steering gear module in the motion device is configured to receive the control instruction obtained from the second communication transceiver module, perform movement according to the control instruction, and feed back the movement situation to the second communication transceiver module.
  • FIG. 2 is a schematic diagram of an obstacle avoidance device provided by an embodiment of the application.
  • the obstacle avoidance device may further include: a second communication bus, a first interface conversion module, and a first single-chip microcomputer.
  • the obstacle avoidance detection module is connected with the second communication bus, the second communication bus is connected with the first single-chip microcomputer through the first interface conversion module, and the first single-chip microcomputer is connected with the first communication transceiver module.
  • the obstacle avoidance detection module is a 485 interface
  • the second communication bus is a 485 bus
  • the first interface conversion module connected to the 485 bus is a 485-to-UART (Universal Asynchronous Receiver Transmitter) Module.
  • the embodiment of the present application includes multiple ultrasonic obstacle avoidance sensors, such as obstacle avoidance detection module 1-obstacle avoidance detection 6 in Fig. 2.
  • the control module is configured to send obstacle avoidance control instructions to the first CAN transceiver through the CAN bus.
  • the first CAN transceiver is set to convert the differential signal on the CAN bus into a TTL (Time to Live) signal that can be recognized by the first single-chip microcomputer, and send the obstacle avoidance control command to the first one.
  • TTL Time to Live
  • a single-chip microcomputer Because the interface of the first single-chip microcomputer is different from that of the ultrasonic obstacle avoidance sensor, the first single-chip microcomputer is set to convert the obstacle avoidance control command to the second communication signal that the ultrasonic obstacle avoidance sensor can recognize through the first interface conversion module.
  • the obstacle sensor is configured to, after receiving the second communication signal, convert the collected obstacle avoidance information into a signal that can be recognized by the first single-chip microcomputer through the first interface conversion module, and send it to the first single-chip microcomputer,
  • the first single-chip microcomputer is configured to send obstacle avoidance information to the control device through the first CAN transceiver.
  • the embodiment of the application adopts multiple ultrasonic obstacle avoidance sensors to collect obstacle avoidance information in all directions, and reduce the probability of the robot hitting obstacles.
  • the ultrasonic obstacle avoidance sensor receives the obstacle avoidance control instruction, and then collects the obstacle avoidance information. Send to the control device to avoid conflicts caused by obstacle avoidance information from multiple ultrasonic obstacle avoidance sensors at the same time.
  • the obstacle avoidance device may also include an amplifier, an analog-to-digital conversion module, and a first single-chip microcomputer.
  • the anti-drop module is connected to the first single-chip microcomputer through the amplifier and the analog-to-digital conversion module. Transceiver connection.
  • the anti-drop module is configured to send the height signal to the single-chip microcomputer after being amplified by the amplifier and the analog-to-digital conversion module in turn, and the single-chip microcomputer is configured to send the amplified and analog-to-digital height signal to the first communication transceiver module.
  • the obstacle avoidance device further includes an amplifier, an analog-to-digital conversion module, and a first single-chip microcomputer.
  • the anti-drop module is connected to the first single-chip microcomputer through the amplifier and the analog-to-digital conversion module, and the first single-chip microcomputer is connected to the first CAN transceiver.
  • the anti-fall module is set to detect the distance between the bottom of the robot and the ground. If the detected distance is greater than the preset distance, the anti-fall module sends a height signal to the control device so that the control device knows that the robot is at risk of falling.
  • the control device is set to send an anti-drop detection instruction to the first single-chip microcomputer.
  • the first single-chip microcomputer is set to control the anti-drop module for distance collection, and the output voltage is 0-0.5V.
  • the anti-drop module is set to pass the height signal output voltage through After the amplifier is amplified, it becomes 0-3V, and then the analog signal is converted into a digital signal through the analog-to-digital conversion module.
  • the first single-chip microcomputer is set to send the amplified digital signal to the control device through the first CAN transceiver.
  • the control device is configured to send a motion instruction to the steering gear after receiving the height signal to make the robot change the direction of travel to prevent falling.
  • the obstacle avoidance device may also include a comparator and a first single-chip microcomputer.
  • the safety edge contact module is connected to the first single-chip microcomputer through the comparator, and the first single-chip microcomputer is connected to the first CAN transceiver;
  • the module is configured to send the collision signal to the comparator, and the comparator is configured to send the collision signal higher than the preset threshold to the first communication transceiver module after the comparison.
  • the obstacle avoidance device further includes a comparator and a first single-chip microcomputer, the safety edge contact module is connected with the first single-chip microcomputer through the comparator, and the first single-chip microcomputer is connected with the first CAN transceiver.
  • the safety edge module is set to send the collision signal to the comparator.
  • the comparator is an open-drain output comparator, the output voltage of the open-drain output comparator is determined by the pull-up voltage, and the comparator is set to After the comparison, the collision signal higher than the preset threshold is sent to the first single-chip microcomputer.
  • the open-drain output comparator obtains a voltage of 6-12V, because the output of the open-drain output comparator The voltage is determined by the pull-up voltage, so the voltage delivered by the open-drain output comparator to the first single-chip microcomputer is 0-3.3V.
  • FIG. 3 is a schematic diagram of an exercise device provided by an embodiment of the application.
  • the motion device may also include a third communication bus, a second interface conversion module, and a second single-chip microcomputer.
  • the steering gear module is connected to the second single-chip microcomputer through the third communication bus and the second interface conversion module, and the second single-chip microcomputer is connected to the second communication transceiver module. .
  • the second single-chip microcomputer is set to receive control instructions through the second communication transceiver module, and transmit the control instructions to the third communication bus through the second interface conversion module.
  • the steering gear module is connected to the third communication bus, and the steering gear module is set to pass through The third communication bus obtains control instructions, and moves according to the control instructions.
  • the third communication bus may be a 485 bus
  • the second interface conversion module is a UART to 485 module
  • the second communication transceiver module is a second CAN transceiver.
  • the second CAN transceiver is set to receive the motion control instruction from the control device, and convert the motion control instruction into a TTL signal recognizable by the single-chip microcomputer and send it to the second single-chip microcomputer.
  • the second single-chip microcomputer is set to transfer the motion control instruction through the second interface conversion module.
  • the motion control command is converted into a third communication signal that can be recognized by the steering gear module.
  • the steering gear module is set to obtain the signal through the third communication bus and then perform the corresponding motion action, and send the motion action signal to the second interface conversion module.
  • the second single-chip microcomputer is configured to feed back the motion action signal to the control device through the second CAN transceiver.
  • steering gear module 1-steering gear module 9 there may be multiple steering gear modules, such as steering gear module 1-steering gear module 9 in FIG. 3.
  • the steering gear module receives the motion control instruction from the control device, it performs the corresponding motion action and feeds back the motion action signal to the control device, which can reduce the conflict of multiple motion action signals on the third communication bus.
  • the second single-chip microcomputer will send the error signal of the failed steering gear module to the control device, and the control device will correspond to the error signal and the ip (Internet Protocol) address. Relationship, determine the ip address of the failed steering gear module, so as to know which steering gear module is faulty.
  • FIG. 4 is a schematic diagram of a light source control device provided by an embodiment of the application.
  • the system may also include a light source control device, which is connected to the first CAN bus.
  • the light source control device includes an LED drive unit, a third microcontroller, and a third communication transceiver module.
  • the LED drive unit is connected to the third communication transceiver module through the third microcontroller. .
  • the third communication transceiver module is a third CAN transceiver, and there may be multiple LED driving units, as shown in FIG. 4, which includes LED driving unit 1-LED driving unit 3.
  • the light source control device is connected to the first CAN bus.
  • the light source control device includes an LED drive unit, a third single-chip microcomputer, and a third communication transceiver module.
  • the third CAN transceiver is set to receive the light control signal sent by the control device and control the light The signal is sent to the third single-chip microcomputer.
  • the third single-chip microcomputer is set to control the LED driving unit to change the light color and brightness according to the light control signal. After the LED driving unit finishes its work, the third single-chip microcomputer is set to feed back the execution result to the control device , So that the control device knows whether the light control is successful.
  • FIG. 5 is a schematic diagram of a sound collection device provided by an embodiment of the application.
  • the system may also include a sound collection device connected to the first CAN bus.
  • the sound collection device includes a sound collection module, a voice processing module, a power amplifier module, a speaker and a fourth communication transceiver module, a sound collection module, a power amplifier module, and a fourth communication module.
  • the communication transceiver module is respectively connected with the voice processing module, and the loudspeaker is connected with the power amplifier module.
  • the fourth communication transceiver module is a fourth CAN transceiver
  • the sound collection module is a pickup microphone
  • the number of pickup microphones can be multiple, as shown in Figure 5: Sound Collection Module 1-Sound Collection Module 6.
  • the sound collection device is connected to the first CAN bus.
  • the sound collection device includes a sound collection module, a voice processing module, a power amplifier module, a speaker, and a fourth communication transceiver module.
  • the sound collection module, power amplifier module and fourth communication transceiver module are respectively connected to the voice processing module Connect the speaker and the power amplifier module.
  • the sound collection module collects sound and sends it to the speech processing unit.
  • the speech processing unit is set to convert the sound signal into a level signal and send it to the control device through the fourth CAN transceiver.
  • the control device is set to receive the sound signal,
  • the voice control instruction is sent to the fourth CAN transceiver, and the fourth CAN transceiver is configured to send the voice control instruction to the power amplifier module through the voice processing unit for voice amplification processing, and then play it through the speaker.
  • FIG. 6, is a schematic diagram of an environment collection device provided by an embodiment of the application.
  • the system may also include an environment collection device, which is connected to the first CAN bus.
  • the environment collection device includes a temperature collection module, a humidity collection module, a noise collection module, a wind speed collection module, an air cleanliness collection module, a fourth single-chip computer, and a fifth
  • the communication transceiver module, the temperature acquisition module, the humidity acquisition module, the noise acquisition module, the wind speed acquisition module, the air cleanliness acquisition module and the fifth communication transceiver module are respectively connected with the fourth single-chip microcomputer.
  • the fifth communication transceiver module is a fifth CAN transceiver.
  • the environment acquisition device is connected to the first CAN bus.
  • the environment acquisition device includes a temperature acquisition module, a humidity acquisition module, a noise acquisition module, a wind speed acquisition module, an air cleanliness acquisition module, a fourth single-chip microcomputer and a fifth communication transceiver module, a temperature acquisition module,
  • the humidity acquisition module, the noise acquisition module, the wind speed acquisition module, the air cleanliness acquisition module and the fifth communication transceiver module are respectively connected with the fourth single-chip microcomputer.
  • the control device is set to send the environment collection control command to the fourth single-chip computer through the fifth CAN transceiver, and the fourth single-chip is set to control the temperature collection module, humidity collection module, noise collection module, wind speed collection module and air cleanliness collection respectively
  • the module collects the environment and feeds back the collected result information to the control device.
  • FIG. 7 is a schematic diagram of a power control device provided by an embodiment of the application.
  • the system may also include: a power supply control device connected to the first CAN bus.
  • the power supply control device includes a power supply, a voltage stabilizing module, a voltage conversion module, a fifth single-chip microcomputer, and a sixth communication transceiver module.
  • the power supply passes through the voltage stabilizing module and the first CAN bus.
  • a switch is connected to the power device.
  • the power source is connected to the obstacle avoidance device through the voltage conversion module and the second switch.
  • the power source is connected to the movement device through the voltage conversion module and the third switch.
  • the first switch, the second switch and the third switch are respectively connected to the first switch and the third switch.
  • Five single-chip microcomputers are connected, and the fifth single-chip microcomputer is connected with the sixth communication transceiver module.
  • the power source is connected to the power device through the voltage stabilizing module and the first switch to provide electric energy for the power device, the power source is connected to the obstacle avoidance device through the voltage conversion module and the second switch, and the power source is connected to the third switch through the voltage conversion module.
  • the switch is connected to the motion device, the power source is connected to the light source control device through the voltage conversion module and the fourth switch, the power source is connected to the sound collection device through the voltage conversion module and the fifth switch, and the power source is connected to the environment collection device through the voltage conversion module and the sixth switch ,
  • the power supply is connected to the control device through the voltage conversion module and the seventh switch.
  • the first switch, the second switch, the third switch, the fourth switch, the fifth switch, the sixth switch and the seventh switch are respectively connected to the fifth single-chip microcomputer.
  • the fifth single-chip microcomputer is connected with the sixth communication transceiver module.
  • the sixth communication transceiver module is a sixth CAN transceiver, and each switch is a MOS (Field Effect Transistor) switch or a relay.
  • the power supply is set to supply power to the power unit through a 24V voltage stabilizing module, and the power supply converts the voltage from 24V to 12V through the voltage conversion module to supply power to the rest of the devices.
  • the power control module starts first, and the power supply is in accordance with regulations. A good sequence is to power on each module in turn. If a certain module needs to be powered off, the control device sends a power off instruction to the fifth single-chip computer through the sixth CAN transceiver, and the fifth single-chip controls the corresponding MOS switch or relay to realize the module Power off.
  • this application also provides a robot, which includes any of the above control systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种机器人控制系统,包括运动装置、避障装置、以及分别与运动装置和避障装置连接的第一通信总线,其中,避障装置包括避障检测模块、防跌落模块、安全触边模块和第一通信收发模块,第一通信收发模块分别与避障检测模块、防跌落模块和安全触边模块连接,运动装置包括舵机模块和与舵机模块连接的第二通信收发模块。机器人系统按照功能划分为多个模块,各模块间通过第一通信总线进行通讯,当机器人某个功能需求发生变更时,可直接增加或更换相应模块,减少各模块中间的耦合性。

Description

一种机器人控制系统
本申请要求于2020年01月08日提交于中国专利局,申请号为202010018240.X、申请名称“一种机器人控制系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及机器人技术领域,尤其涉及一种机器人控制系统。
背景技术
随着科技的发展,机器人的适用范围越来越广泛,机器人的功能也越来越多样化。机器人内部未按照模块功能进行划分,导致如果需要对其中某个功能进行升级,那么需要变更多个电路,增加机器人功能升级的难度,降低了升级效率。
发明内容
本申请实施例的目的在于提供一种机器人控制系统,以解决机器人功能升级困难的问题。具体技术方案如下:
第一方面,提供了一种机器人控制系统,所述系统包括运动装置、避障装置、以及分别与所述运动装置和所述避障装置连接的第一通信总线,其中,所述避障装置包括避障检测模块、防跌落模块、安全触边模块和第一通信收发模块,所述第一通信收发模块分别与所述避障检测模块、所述防跌落模块和所述安全触边模块连接,所述运动装置包括舵机模块和与所述舵机模块连接的第二通信收发模块;
所述避障检测模块,被设置为将测得的障碍物检测信号发送至所述第一通信收发模块;
所述防跌落模块,被设置为将测得的所述机器人距地面的高度信号发送至所述第一通信收发模块;
所述安全触边模块,被设置为将测得的所述机器人的碰撞信号发送至所述第一通信收发模块;
所述舵机模块,被设置为接收从所述第二通信收发模块获得的运动控制指令,并根据所述运动控制指令进行运动,以及将运动情况反馈至所述第二通信收发模块。
可选的,所述避障装置还包括:第二通信总线、第一接口转换模块和第一单片机,所述避障检测模块与所述第二通信总线连接,所述第二通信总线通过所述第一接口转换模块与所述第一单片机连接,所述第一单片机与所述第一通信收发模块连接。
可选的,所述避障装置还包括放大器、模数转换模块和第一单片机,所述防跌落模块通过所述放大器和所述模数转换模块与所述第一单片机连接,所述第一单片机与所述第一通信收发模块连接;
所述防跌落模块被设置为将所述高度信号依次通过所述放大器放大和所述模数转换模块转换后发送至所述第一单片机,所述第一单片机被设置为将经过放大和模数转换后的高度信号发送至所述第一通信收发模块。
可选的,所述避障装置还包括比较器和第一单片机,所述安全触边模块通过所述比较器与所述第一单片机连接,所述单片机与所述第一通信收发模块连接;
所述安全触边模块被设置为将所述碰撞信号发送至所述比较器,所述比较器被设置为在经过比较后,将高于预设阈值的碰撞信号发送至所述第一通信收发模块。
可选的,所述运动装置还包括第三通信总线、第二接口转换模块和第二单片机,所述舵机模块通过所述第三通信总线和所述第二接口转换模块与所述第二单片机连接,所述第二单片机与所述第二通信收 发模块连接;
所述第二单片机被设置为通过所述第二通信收发模块接收控制指令,并将所述控制指令通过所述第二接口转换模块传递至所述第三通信总线,所述舵机模块与所述第三通信总线连接,所述舵机模块被设置为通过所述第三通信总线获得所述控制指令,并根据所述控制指令进行运动。
可选的,所述系统还包括光源控制装置,所述光源控制装置与所述第一通信总线连接,所述光源控制装置包括LED驱动单元、第三单片机和第三通信收发模块,所述LED驱动单元通过所述第三单片机与所述第三通信收发模块连接;
所述第三通信收发模块被设置为发送灯光控制信号发送至所述单片机,所述单片机被设置为驱动所述LED驱动单元工作。
可选的,所述系统还包括声音采集装置,所述声音采集装置与所述第一通信总线连接,所述声音采集装置包括声音采集模块、语音处理模块、功放模块、扬声器和第四通信收发模块;
所述声音采集模块、所述功放模块和所述第四通信收发模块分别与所述语音处理模块连接,所述扬声器与所述功放模块连接。
可选的,所述系统还包括:环境采集装置,所述环境采集装置与所述第一通信总线连接;
所述环境采集装置包括温度采集模块、湿度采集模块、噪声采集模块、风速采集模块、空气洁净度采集模块、第四单片机和第五通信收发模块;
所述温度采集模块、所述湿度采集模块、所述噪声采集模块、所述风速采集模块、所述空气洁净度采集模块和所述第五通信收发模块分别与所述第四单片机连接。
可选的,所述系统还包括:电源控制装置,所述电源控制装置与所述第一通信总线连接;
所述电源控制装置包括电源、稳压模块、电压转换模块、第五单片机和第六通信收发模块;
所述电源通过所述稳压模块和第一开关与动力装置连接,所述电源通过所述电压转换模块和第二开关与所述避障装置连接,所述电源通过所述电压转换模块和第三开关与所述运动装置连接,所述第一开关、所述第二开关和第三开关分别与所述第五单片机连接,所述第五单片机与所述第六通信收发模块连接。
第二方面,提供了一种机器人,所述机器人包含任一上述控制系统。
本申请实施例有益效果:
本申请实施例提供了一种机器人控制系统,本申请中机器人系统按照功能划分为多个模块,各模块间通过第一通信总线进行通讯,当机器人某个功能需求发生变更时,可直接增加或更换相应模块,减少各模块中间的耦合性。
当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种机器人控制系统的示意图;
图2为本申请实施例提供的一种避障装置的示意图;
图3为本申请实施例提供的一种运动装置的示意图;
图4为本申请实施例提供的一种光源控制装置的示意图;
图5为本申请实施例提供的一种声音采集装置的示意图;
图6为本申请实施例提供的一种环境采集装置的示意图;
图7为本申请实施例提供的一种电源控制装置的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种机器人控制系统,可以应用于服务器,服务器被设置为对机器人进行控制。
下面将结合具体实施方式,对本申请实施例提供的一种机器人控制系统进行详细的说明。如图1所示,为本申请实施例提供的一种机器人控制系统的示意图。
机器人控制系统包括第一CAN(Controller Area Network,控制器局域网络)总线和多个功能模块,其中,功能模块包括:光源控制装置、运动装置、电源控制装置、控制装置、声音采集装置、环境采集装置、避障装置,上述各装置通过第一CAN总线连接。
其中,每个功能模块可以仅被设置为实现单一的功能,也可以是每个功能模块包括多个子功能模块,同一个功能模块中的多个子功能模块是通过同一个通信收发模块与第一CAN总线连接。
本申请采用模块化设计,将机器人按照功能划分为各功能模块,并且各功能模块之间通过第一CAN总线连接,机器人控制系统的各功能模块独自处理内部信息,并将处理完之后的信息通过第一CAN总线发送至控制装置。若需要对机器人的某一个功能进行变更或升级,或需要对机器人增加功能模块时,只将需改动的功能模块进行变动即可, 其他功能模块不受影响,降低了各功能模块之间的耦合性。
机器人控制系统可以包括运动装置、避障装置、以及分别与运动装置和避障装置连接的第一通信总线。其中,避障装置包括避障检测模块、防跌落模块、安全触边模块和第一通信收发模块,第一通信收发模块分别与避障检测模块、防跌落模块和安全触边模块连接,运动装置包括舵机模块和与舵机模块连接的第二通信收发模块。
在一种实现方式中,第一通信总线可以为CAN总线,485总线或以太网总线,本申请实施例中,第一通信总线为CAN总线,相应的第一通信收发模块为第一CAN收发器。
其中,避障装置中的避障检测模块,被设置为将测得的障碍物检测信号发送至第一通信收发模块;防跌落模块,被设置为接收将测得的机器人距地面的高度信号发送至第一通信收发模块;安全触边模块,被设置为将测得的机器人的碰撞信号发送至第一通信收发模块;
运动装置中的舵机模块,被设置为接收从第二通信收发模块获得的控制指令,并根据控制指令进行运动,以及将运动情况反馈至第二通信收发模块。
可选的,参见图2,图2为本申请实施例提供的一种避障装置的示意图。避障装置还可以包括:第二通信总线、第一接口转换模块和第一单片机。避障检测模块与第二通信总线连接,第二通信总线通过第一接口转换模块与第一单片机连接,第一单片机与第一通信收发模块连接。
在本申请实施例中,由于避障检测模块为485接口,因此第二通信总线为485总线,与485总线连接的第一接口转换模块为485转UART(Universal Asynchronous Receiver Transmitter,通用异步收发器)模块。
本申请实施例中包含多个超声波避障传感器,如图2中的避障检 测模块1-避障检测6,控制模块被设置为通过CAN总线将避障控制指令发送至第一CAN收发器,第一CAN收发器被设置为将CAN总线上的差分信号转化为第一单片机能识别的TTL(Time to Live,域名解析在DNS服务器中存留时间)信号,并将该避障控制指令发送至第一单片机,由于第一单片机接口与超声波避障传感器接口不同,因此第一单片机被设置为通过第一接口转换模块将避障控制指令转换至超声波避障传感器能识别的第二通信信号,超声波避障传感器被设置为在接收到该第二通信信号后,将采集到的避障信息通过第一接口转换模块将第二通信信号转换为第一单片机可识别的信号,并发送至第一单片机,第一单片机被设置为通过第一CAN收发器将避障信息发送至控制装置。
本申请实施例通过采用多个超声波避障传感器,可以全方位采集避障信息,降低机器人撞到障碍物的几率,另外,超声波避障传感器在接收到避障控制指令后,再将避障信息发送至控制装置,避免多个超声波避障传感器同时发生避障信息造成冲突。
可选的,如图2所示,避障装置还可以包括放大器、模数转换模块和第一单片机,防跌落模块通过放大器和模数转换模块与第一单片机连接,第一单片机与第一CAN收发器连接。防跌落模块被设置为将高度信号依次通过放大器放大和模数转换模块转换后发送至单片机,单片机被设置为将经过放大和模数转换后的高度信号发送至第一通信收发模块。
在本申请实施例中,避障装置还包括放大器、模数转换模块和第一单片机,防跌落模块通过放大器和模数转换模块与第一单片机连接,第一单片机与第一CAN收发器连接。防跌落模块可以有多个,如图2中包含防跌落模块1和防跌落模块2。
防跌落模块被设置为检测机器人底部与地面的距离,如果检测到 的距离大于预设距离,则防跌落模块发送高度信号至控制装置,以使控制装置得知机器人有跌落风险,可选地,控制装置被设置为发送防跌落检测指令至第一单片机,第一单片机被设置为控制防跌落模块进行距离采集,并输出电压为0-0.5V,防跌落模块被设置为将高度信号输出电压经过放大器放大后变成0-3V,然后通过模数转换模块将模拟信号转化为数字信号,第一单片机被设置为将放大后的数字信号通过第一CAN收发器发送至控制装置。控制装置被设置为在接收到该高度信号后,发送运动指令至舵机以使机器人改变行进方向,防止跌落。
可选的,如图2所示,避障装置还可以包括比较器和第一单片机,安全触边模块通过比较器与第一单片机连接,第一单片机与第一CAN收发器连接;安全触边模块被设置为将碰撞信号发送至比较器,比较器被设置为在经过比较后,将高于预设阈值的碰撞信号发送至第一通信收发模块。
在本申请是实施例中,避障装置还包括比较器和第一单片机,安全触边模块通过比较器与第一单片机连接,第一单片机与第一CAN收发器连接。
安全触边模块被设置为将碰撞信号发送至比较器,在本申请实施例中,比较器为开漏输出比较器,开漏输出比较器的输出电压由上拉电压决定,比较器被设置为在经过比较后,将高于预设阈值的碰撞信号发送至第一单片机。
举例来说,安全触边模块的触碰信号为0-12V,开漏输出比较器的预设阈值为6V,则开漏输出比较器获取6-12V的电压,由于开漏输出比较器的输出电压由上拉电压决定,那么开漏输出比较器输送到第一单片机的电压为0-3.3V。
可选的,参见图3,图3为本申请实施例提供的一种运动装置的示意图。运动装置还可以包括第三通信总线、第二接口转换模块和第二 单片机,舵机模块通过第三通信总线和第二接口转换模块与第二单片机连接,第二单片机与第二通信收发模块连接。第二单片机被设置为通过第二通信收发模块接收控制指令,并将控制指令通过第二接口转换模块传递至第三通信总线,舵机模块与第三通信总线连接,舵机模块被设置为通过第三通信总线获得控制指令,并根据控制指令进行运动。
在本申请实施例中,第三通信总线可以为485总线,第二接口转换模块为UART转485模块,第二通信收发模块为第二CAN收发器。
第二CAN收发器被设置为从控制装置接收运动控制指令,并将该运动控制指令转换为单片机可识别的TTL信号并发送至第二单片机,第二单片机被设置为通过第二接口转换模块将运动控制指令转化为舵机模块可识别的第三通信信号,舵机模块被设置为通过第三通信总线获取信号后进行相应的运动动作,并将该运动动作信号通过第二接口转换模块发送至第二单片机,第二单片机被设置为通过第二CAN收发器将运动动作信号反馈至控制装置。
在本申请实施例中,舵机模块可以为多个,如图3中的舵机模块1-舵机模块9。舵机模块在接收到控制装置的运动控制指令后,再进行相应的运动动作,并将该运动动作信号反馈至控制装置,可以减少多个运动动作信号在第三通信总线产生冲突。另外,如果其中某个舵机模块发生故障,第二单片机会将发生故障的舵机模块的错误信号发送至控制装置,控制装置根据错误信号和ip(Internet Protocol,网际互连协议)地址的对应关系,确定发生故障的舵机模块的ip地址,从而得知具体是哪个舵机模块发生故障。
可选的,参见图4,图4为本申请实施例提供的一种光源控制装置的示意图。系统还可以包括光源控制装置,光源控制装置与第一CAN总线连接,光源控制装置包括LED驱动单元、第三单片机和第三通信 收发模块,LED驱动单元通过第三单片机与第三通信收发模块连接。
在本申请实施例中,第三通信收发模块为第三CAN收发器,LED驱动单元可以为多个,如图4中包含LED驱动单元1-LED驱动单元3。
光源控制装置与第一CAN总线连接,光源控制装置包括LED驱动单元、第三单片机和第三通信收发模块,第三CAN收发器被设置为接收控制装置发送的灯光控制信号,并将该灯光控制信号发送至第三单片机,第三单片机被设置为根据灯光控制信号控制LED驱动单元进行灯光颜色和亮度的变化,LED驱动单元工作结束后,第三单片机被设置为将执行工作结果反馈至控制装置,以使控制装置得知灯光是否控制成功。
可选的,参见图5,图5为本申请实施例提供的一种声音采集装置的示意图。系统还可以包括声音采集装置,声音采集装置与第一CAN总线连接,声音采集装置包括声音采集模块、语音处理模块、功放模块、扬声器和第四通信收发模块,声音采集模块、功放模块和第四通信收发模块分别与语音处理模块连接,扬声器与功放模块连接。
在本申请实施例中,第四通信收发模块为第四CAN收发器,声音采集模块为拾音麦克风,拾音麦克风的数量可以为多个,如图5中的声音采集模块1-声音采集模块6。
声音采集装置与第一CAN总线连接,声音采集装置包括声音采集模块、语音处理模块、功放模块、扬声器和第四通信收发模块,声音采集模块、功放模块和第四通信收发模块分别与语音处理模块连接,扬声器与功放模块连接。
声音采集模块采集声音发送至语音处理单元,语音处理单元被设置为将声音信号转化为电平信号,并通过第四CAN收发器发送至控制装置,控制装置被设置为在收到声音信号后,发送声音控制指令至第四CAN收发器,第四CAN收发器被设置为通过语音处理单元将声音 控制指令发送至功放模块进行语音放大处理,然后通过扬声器播放出来。
可选的,参见图6,图6为本申请实施例提供的一种环境采集装置的示意图。系统还可以包括环境采集装置,环境采集装置与第一CAN总线连接,环境采集装置包括温度采集模块、湿度采集模块、噪声采集模块、风速采集模块、空气洁净度采集模块、第四单片机和第五通信收发模块,温度采集模块、湿度采集模块、噪声采集模块、风速采集模块、空气洁净度采集模块和第五通信收发模块分别与第四单片机连接。
在本申请实施例中,第五通信收发模块为第五CAN收发器。
环境采集装置与第一CAN总线连接,环境采集装置包括温度采集模块、湿度采集模块、噪声采集模块、风速采集模块、空气洁净度采集模块、第四单片机和第五通信收发模块,温度采集模块、湿度采集模块、噪声采集模块、风速采集模块、空气洁净度采集模块和第五通信收发模块分别与第四单片机连接。
控制装置被设置为将环境采集控制指令通过第五CAN收发器发送至第四单片机,第四单片机被设置为分别控制温度采集模块、湿度采集模块、噪声采集模块、风速采集模块和空气洁净度采集模块进行环境采集工作,并将采集的结果信息反馈至控制装置。
可选的,参见图7,图7为本申请实施例提供的一种电源控制装置的示意图。系统还可以包括:电源控制装置,电源控制装置与第一CAN总线连接,电源控制装置包括电源、稳压模块、电压转换模块、第五单片机和第六通信收发模块,电源通过稳压模块和第一开关与动力装置连接,电源通过电压转换模块和第二开关与避障装置连接,电源通过电压转换模块和第三开关与运动装置连接,第一开关、第二开关和第三开关分别与第五单片机连接,第五单片机与第六通信收发模块连 接。
在本申请实施例中,电源通过稳压模块和第一开关与动力装置连接,为动力装置提供电能,电源通过电压转换模块和第二开关与避障装置连接,电源通过电压转换模块和第三开关与运动装置连接,电源通过电压转换模块和第四开关与光源控制装置连接,电源通过电压转换模块和第五开关与声音采集装置连接,电源通过电压转换模块和第六开关与环境采集装置连接,电源通过电压转换模块和第七开关与控制装置连接,第一开关、第二开关、第三开关、第四开关、第五开关、第六开关和第七开关分别与第五单片机连接,第五单片机与第六通信收发模块连接。在本申请实施例中,第六通信收发模块为第六CAN收发器,各开关为MOS(场效应管)开关或者继电器。
可选地,电源被设置为通过24V稳压模块为动力装置供电,电源通过电压转换模块将电压从24V转化为12V为其余各装置供电,在机器人启动时,电源控制模块首先启动,电源按照规定好的时序依次为各模块上电,如果需要某一模块断电,则控制装置通过第六CAN收发器发送断电指令给第五单片机,第五单片机控制相应的MOS开关或者继电器实现对模块的断电。
可选的,本申请还提供了一种机器人,所述机器人包含任一上述控制系统。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或 者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种机器人控制系统,所述系统包括运动装置、避障装置、以及分别与所述运动装置和所述避障装置连接的第一通信总线,其中,所述避障装置包括避障检测模块、防跌落模块、安全触边模块和第一通信收发模块,所述第一通信收发模块分别与所述避障检测模块、所述防跌落模块和所述安全触边模块连接,所述运动装置包括舵机模块和与所述舵机模块连接的第二通信收发模块;
    所述避障检测模块,被设置为将测得的障碍物检测信号发送至所述第一通信收发模块;
    所述防跌落模块,被设置为将测得的所述机器人距地面的高度信号发送至所述第一通信收发模块;
    所述安全触边模块,被设置为将测得的所述机器人的碰撞信号发送至所述第一通信收发模块;
    所述舵机模块,被设置为接收从所述第二通信收发模块获得的运动控制指令,并根据所述运动控制指令进行运动,以及将运动情况反馈至所述第二通信收发模块。
  2. 根据权利要求1所述的控制系统,其中,所述避障装置还包括:第二通信总线、第一接口转换模块和第一单片机,所述避障检测模块与所述第二通信总线连接,所述第二通信总线通过所述第一接口转换模块与所述第一单片机连接,所述第一单片机与所述第一通信收发模块连接。
  3. 根据权利要求1所述的控制系统,其中,所述避障装置还包括放大器、模数转换模块和第一单片机,所述防跌落模块通过所述放大器和所述模数转换模块与所述第一单片机连接,所述第一单片机与所述第一通信收发模块连接;
    所述防跌落模块被设置为将所述高度信号依次通过所述放大器放大和所述模数转换模块转换后发送至所述第一单片机,所述第一单片机被设置为将经过放大和模数转换后的高度信号发送至所述第一通信收发模块。
  4. 根据权利要求1所述的控制系统,其中,所述避障装置还包括比较器和第一单片机,所述安全触边模块通过所述比较器与所述第一单片机连接,所述单片机与所述第一通信收发模块连接;
    所述安全触边模块被设置为将所述碰撞信号发送至所述比较器,所述比较器被设置为在经过比较后,将高于预设阈值的碰撞信号发送至所述第一通信收发模块。
  5. 根据权利要求1所述的控制系统,其中,所述运动装置还包括第三通信总线、第二接口转换模块和第二单片机,所述舵机模块通过所述第三通信总线和所述第二接口转换模块与所述第二单片机连接,所述第二单片机与所述第二通信收发模块连接;
    所述第二单片机被设置为通过所述第二通信收发模块接收控制指令,并将所述控制指令通过所述第二接口转换模块传递至所述第三通信总线,所述舵机模块与所述第三通信总线连接,所述舵机模块被设置为通过所述第三通信总线获得所述控制指令,并根据所述控制指令进行运动。
  6. 根据权利要求1所述的控制系统,其中,所述系统还包括光源控制装置,所述光源控制装置与所述第一通信总线连接,所述光源控制装置包括LED驱动单元、第三单片机和第三通信收发模块,所述LED驱动单元通过所述第三单片机与所述第三通信收发模块连接;
    所述第三通信收发模块被设置为发送灯光控制信号发送至所述单片机,所述单片机被设置为驱动所述LED驱动单元工作。
  7. 根据权利要求1所述的控制系统,其中,所述系统还包括声音采集装置,所述声音采集装置与所述第一通信总线连接,所述声音采集装置包括声音采集模块、语音处理模块、功放模块、扬声器和第四通信收发模块;
    所述声音采集模块、所述功放模块和所述第四通信收发模块分别与所述语音处理模块连接,所述扬声器与所述功放模块连接。
  8. 根据权利要求1所述的控制系统,其中,所述系统还包括:环境采集装置,所述环境采集装置与所述第一通信总线连接;
    所述环境采集装置包括温度采集模块、湿度采集模块、噪声采集模块、风速采集模块、空气洁净度采集模块、第四单片机和第五通信收发模块;
    所述温度采集模块、所述湿度采集模块、所述噪声采集模块、所述风速采集模块、所述空气洁净度采集模块和所述第五通信收发模块分别与所述第四单片机连接。
  9. 根据权利要求1所述的控制系统,其中,所述系统还包括:电源控制装置,所述电源控制装置与所述第一通信总线连接;
    所述电源控制装置包括电源、稳压模块、电压转换模块、第五单片机和第六通信收发模块;
    所述电源通过所述稳压模块和第一开关与动力装置连接,所述电源通过所述电压转换模块和第二开关与所述避障装置连接,所述电源通过所述电压转换模块和第三开关与所述运动装置连接,所述第一开关、所述第二开关和第三开关分别与所述第五单片机连接,所述第五单片机与所述第六通信收发模块连接。
  10. 一种机器人,所述机器人包括权利要求1-9任一所述的控制系统。
PCT/CN2020/138935 2020-01-08 2020-12-24 一种机器人控制系统 WO2021139536A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010018240.X 2020-01-08
CN202010018240.XA CN111070213B (zh) 2020-01-08 2020-01-08 一种机器人控制系统

Publications (1)

Publication Number Publication Date
WO2021139536A1 true WO2021139536A1 (zh) 2021-07-15

Family

ID=70322380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138935 WO2021139536A1 (zh) 2020-01-08 2020-12-24 一种机器人控制系统

Country Status (2)

Country Link
CN (1) CN111070213B (zh)
WO (1) WO2021139536A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111070213B (zh) * 2020-01-08 2022-06-07 京东科技信息技术有限公司 一种机器人控制系统
CN111625000B (zh) * 2020-05-28 2023-12-05 京东科技信息技术有限公司 机器人、用于机器人的避障方法和装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008005661A2 (en) * 2006-07-05 2008-01-10 Battelle Energy Alliance, Llc Occupancy change detection system and method
CN101770221A (zh) * 2008-12-30 2010-07-07 中国科学院自动化研究所 基于现场总线的双臂巡线机器人控制系统
CN105388896A (zh) * 2015-09-23 2016-03-09 上海物景智能科技有限公司 基于can总线的分布式清洁机器人控制系统及控制方法
CN107378971A (zh) * 2017-09-08 2017-11-24 南京阿凡达机器人科技有限公司 一种智能机器人控制系统
CN207256252U (zh) * 2017-07-12 2018-04-20 深圳市汉伟智能技术有限公司 一种基于can总线的养老医疗服务机器人
CN108363389A (zh) * 2017-01-16 2018-08-03 浙江国自机器人技术有限公司 一种应用于移动机器人的超声波避障系统
CN108710376A (zh) * 2018-06-15 2018-10-26 哈尔滨工业大学 基于多传感器融合的slam与避障的移动底盘
CN208149237U (zh) * 2018-02-27 2018-11-27 浙江大华技术股份有限公司 一种移动式agv设备
CN111070213A (zh) * 2020-01-08 2020-04-28 北京海益同展信息科技有限公司 一种机器人控制系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104199463A (zh) * 2014-09-15 2014-12-10 南京林业大学 一种六足仿生机器人控制系统
US9630318B2 (en) * 2014-10-02 2017-04-25 Brain Corporation Feature detection apparatus and methods for training of robotic navigation
CN206105864U (zh) * 2016-08-29 2017-04-19 江苏理工学院 基于麦克纳姆轮的无线视频监控移动机器人系统
CN106625725A (zh) * 2016-11-16 2017-05-10 浙江工业大学 换流阀大厅内壁清洁机器人的控制系统
CN107885213A (zh) * 2017-11-22 2018-04-06 广东艾可里宁机器人智能装备有限公司 一种扫地机器人室内导航系统及方法
CN107765613A (zh) * 2017-12-07 2018-03-06 成都量之星科技有限公司 一种智能机器人的分布式控制系统
CN108608443A (zh) * 2018-05-10 2018-10-02 吉林省允升科技有限公司 一种智能服务机器人控制系统
CN108748165A (zh) * 2018-08-13 2018-11-06 安徽爱依特科技有限公司 一种自主识别防撞的人工智能机器人
CN109531533B (zh) * 2018-11-30 2019-11-05 北京海益同展信息科技有限公司 一种机房巡检系统及其工作方法
CN109820699A (zh) * 2019-03-06 2019-05-31 钟祥博谦信息科技有限公司 一种导盲机器人避障系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008005661A2 (en) * 2006-07-05 2008-01-10 Battelle Energy Alliance, Llc Occupancy change detection system and method
CN101770221A (zh) * 2008-12-30 2010-07-07 中国科学院自动化研究所 基于现场总线的双臂巡线机器人控制系统
CN105388896A (zh) * 2015-09-23 2016-03-09 上海物景智能科技有限公司 基于can总线的分布式清洁机器人控制系统及控制方法
CN108363389A (zh) * 2017-01-16 2018-08-03 浙江国自机器人技术有限公司 一种应用于移动机器人的超声波避障系统
CN207256252U (zh) * 2017-07-12 2018-04-20 深圳市汉伟智能技术有限公司 一种基于can总线的养老医疗服务机器人
CN107378971A (zh) * 2017-09-08 2017-11-24 南京阿凡达机器人科技有限公司 一种智能机器人控制系统
CN208149237U (zh) * 2018-02-27 2018-11-27 浙江大华技术股份有限公司 一种移动式agv设备
CN108710376A (zh) * 2018-06-15 2018-10-26 哈尔滨工业大学 基于多传感器融合的slam与避障的移动底盘
CN111070213A (zh) * 2020-01-08 2020-04-28 北京海益同展信息科技有限公司 一种机器人控制系统

Also Published As

Publication number Publication date
CN111070213A (zh) 2020-04-28
CN111070213B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2021139536A1 (zh) 一种机器人控制系统
CN201129826Y (zh) 空调控制装置
CN204790566U (zh) 一种多功能智能家居机器人
TWI570529B (zh) 智慧電器控制系統
CN104934033A (zh) 机器人的声源定位、唤醒识别的控制方法及其控制系统
WO2015131752A1 (en) Smart led lighting system and monitoring method thereof
CN108818564A (zh) 一种家居机器人控制系统及其控制方法
CN210090942U (zh) 一种人机交互智能机器狗
CN106685099B (zh) 一种无线供电及控制的油烟机及其控制方法
CN103731949B (zh) 一种楼道灯照明控制系统及方法
JP2004351533A (ja) ロボットシステム
CN206096789U (zh) 一种智能家居控制系统
JP2001285969A (ja) 住宅設備機器の制御システム
CN204596410U (zh) 机器人的声源定位、唤醒识别的控制装置
CN206178409U (zh) 一种智能教育主控板
CN106739892A (zh) 一种基于wifi网络的家用监控机器人
CN205054014U (zh) 一种电源自学习吸尘器
CN212391994U (zh) 一种家用电器智能驱动机器人
CN107172757A (zh) 一种 led 照明声音控制系统及其声音控制方法
CN109803013B (zh) 一种基于人工智能的弱交互系统及其控制方法
CN209086698U (zh) 一种具有语音识别无人机的智能家居系统
CN206357238U (zh) 一种机器人控制系统
CN206331281U (zh) 一种运动系统控制电路
CN211827192U (zh) 人机交互控制电路及人机交互系统
CN206311945U (zh) 控制器系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911994

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20911994

Country of ref document: EP

Kind code of ref document: A1