WO2021139488A1 - 空间分析任务的处理方法、装置、计算机设备和存储介质 - Google Patents

空间分析任务的处理方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2021139488A1
WO2021139488A1 PCT/CN2020/136096 CN2020136096W WO2021139488A1 WO 2021139488 A1 WO2021139488 A1 WO 2021139488A1 CN 2020136096 W CN2020136096 W CN 2020136096W WO 2021139488 A1 WO2021139488 A1 WO 2021139488A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial analysis
task
subtask
bim
spatial
Prior art date
Application number
PCT/CN2020/136096
Other languages
English (en)
French (fr)
Inventor
侯丽
刘翔
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2021139488A1 publication Critical patent/WO2021139488A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/48Program initiating; Program switching, e.g. by interrupt
    • G06F9/4806Task transfer initiation or dispatching
    • G06F9/4843Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
    • G06F9/4881Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues

Definitions

  • This application relates to the field of network technology, and in particular to a processing method, device, computer equipment, and storage medium for spatial analysis tasks.
  • Spatial analysis is mainly through the joint analysis of spatial data and spatial model, mining the potential information of the spatial target, and combining the spatial data and attribute data of the spatial target, it can perform spatial calculation and analysis of many specific tasks.
  • the data processing speed of spatial analysis is of great significance to the application requirements of spatial data.
  • the inventor realizes that traditional spatial analysis needs to process a large amount of data carrying location information, which often requires a long analysis time for spatial analysis, and thus it is difficult to provide spatial analysis results in a timely manner.
  • a method, apparatus, computer equipment, and storage medium for processing spatial analysis tasks are provided.
  • a method for processing spatial analysis tasks includes:
  • a processing device for spatial analysis tasks includes:
  • the task acquisition module is used to acquire a spatial analysis task and identify the spatial analysis type of the spatial analysis task
  • a task division module configured to obtain a task division strategy corresponding to the spatial analysis type, and divide the space analysis task into multiple subtasks according to the obtained task division strategy;
  • the task processing module is used to call the preset spatial analysis processing node to process the multiple subtasks, and obtain the subtask processing result corresponding to each subtask;
  • the result merging module is configured to read the result merging rule matching the task division strategy, and merge the subtask processing results based on the result merging rule to obtain the processing result of the spatial analysis task.
  • a computer device including a memory and one or more processors, the memory stores computer readable instructions, and when the computer readable instructions are executed by the processor, the one or more processors execute The following steps:
  • One or more computer-readable storage media storing computer-readable instructions.
  • the one or more processors perform the following steps:
  • the processing method, device, computer equipment and storage medium of the above-mentioned spatial analysis task can identify the spatial analysis type of the spatial analysis task by acquiring the spatial analysis task. Different spatial analysis types correspond to different task division strategies, and obtain the tasks corresponding to the spatial analysis type. Divide the strategy, and then split the space analysis task based on the task division strategy obtained, call the preset space analysis processing node to process multiple subtasks, get the subtask processing result corresponding to each subtask, and finally read the task division strategy
  • the matched result merging rules are used to merge the subtask processing results based on the result merging rules to obtain the processing results of the spatial analysis task.
  • the processing of the above spatial analysis tasks is based on the spatial analysis type of the spatial analysis task, determines the task division strategy of the spatial task splitting, and splits the spatial analysis task into multiple sub-tasks, thereby reducing the time-consuming of the spatial analysis, and based on the task Division strategy matching results merge rules, merge the subtask processing results, and obtain the processing results of the spatial analysis task.
  • the data processing volume corresponding to each subtask is less than that of the spatial analysis task, which can shorten the time consumption of the spatial analysis and provide the spatial analysis results in time .
  • Fig. 1 is an application environment diagram of a processing method for spatial analysis tasks according to one or more embodiments
  • FIG. 2 is a schematic flowchart of a method for processing a spatial analysis task according to one or more embodiments
  • Fig. 3 is a schematic flow chart of the spatial analysis task division step according to one or more embodiments.
  • FIG. 4 is a schematic flow chart of the spatial analysis task division step in another embodiment
  • FIG. 5 is a schematic flow chart of the steps of obtaining system hierarchical relationships according to one or more embodiments
  • FIG. 6 is a schematic flowchart of a step of obtaining a system hierarchical relationship in another embodiment
  • Fig. 7 is a structural block diagram of a processing device for spatial analysis tasks according to one or more embodiments.
  • Fig. 8 is an internal structure diagram of a computer device according to one or more embodiments.
  • the method for processing spatial analysis tasks can be applied to the application environment as shown in FIG. 1.
  • the client 102 communicates with the server 104 through the network.
  • the client 102 sends the spatial analysis task to the server 104, and the server 104 obtains the spatial analysis task, identifies the spatial analysis type of the spatial analysis task; obtains the task division strategy corresponding to the spatial analysis type, and divides the spatial analysis task into Multiple subtasks; call the preset spatial analysis processing node to process multiple subtasks, and obtain the subtask processing results corresponding to each subtask; read the result merging rules that match the task division strategy, and process the subtasks based on the result merging rules The results are combined to obtain the processing result of the spatial analysis task.
  • the client 102 may be, but is not limited to, various personal computers, notebook computers, smart phones, tablet computers, and portable wearable devices.
  • the server 104 may be implemented by an independent server or a server cluster composed of multiple servers.
  • a method for processing spatial analysis tasks is provided. Taking the method applied to the server in FIG. 1 as an example for description, the method includes the following steps:
  • Step 202 Obtain a spatial analysis task, and identify the spatial analysis type of the spatial analysis task.
  • a spatial analysis task refers to a task that carries spatial analysis data and is used to obtain processing results of the spatial analysis data.
  • the spatial analysis data processing request uploaded by the client can be received through the server, or the server can receive the spatial analysis data processing request directly imported from the outside, and the spatial analysis data is carried in the request; the server responds to the request and creates a spatial analysis data correspondence Space analysis task.
  • the spatial analysis task carries spatial analysis data.
  • the spatial analysis data includes GIS (Geographic Information System) data, BIM (Building Information Modeling) data, and GIS and BIM fusion data.
  • GIS Geographic Information System
  • BIM Building Information Modeling
  • GIS and BIM fusion data GIS usually refers to the establishment of a spatial model of urban or regional objects, and its main purpose is to describe geographic spatial objects at the urban or regional scale, and pay less attention to details.
  • BIM focuses on the internal details of facilities or building-scale objects, but it is rarely used for objects other than facilities or buildings. Therefore, GIS data and BIM data are different in data types and data levels.
  • the spatial analysis data can also be the fusion of GIS data and BIM data, which may be partially integrated.
  • the spatial analysis data corresponding to the teaching building of University B in City A, where the location of University B in City A And the spatial analysis data located in the teaching building in University B belongs to GIS data, while the spatial analysis data in the teaching building belongs to BIM data.
  • Step 204 Obtain a task division strategy corresponding to the spatial analysis type, and divide the spatial analysis task into multiple subtasks according to the obtained task division strategy.
  • the task division strategy is used to divide the spatial analysis task into multiple sub-tasks, and the corresponding relationship between the spatial analysis type and the task division strategy is constructed in advance, including the task division strategy for the GIS spatial analysis task and the task division for the BIM spatial analysis task Strategy, the task division strategy corresponding to the spatial analysis task for the fusion of GIS and BIM data.
  • Step 206 Invoke a preset spatial analysis processing node to process multiple subtasks, and obtain a subtask processing result corresponding to each subtask.
  • Spatial analysis processing nodes refer to nodes that can perform spatial analysis tasks. Each node processes the received task creation thread separately to obtain corresponding processing results.
  • a single node can be understood as a computing and processing node in a large spatial analysis server; or a single server in a server cluster constructed by many servers.
  • each subtask can be processed separately in a parallel processing manner to obtain the corresponding subtask processing result. It should be pointed out that each subtask processing result carries a subtask identifier, which is used to indicate which subtask processed the result.
  • Step 208 Read the result merging rule matching the task division strategy, merge the subtask processing results based on the result merging rule, and obtain the processing result of the spatial analysis task.
  • the result merging rule is a preset rule. Specifically, the result merging rule matches the task division strategy.
  • the task division strategy specifically includes the task division strategy for GIS spatial analysis tasks, the task division strategy for BIM spatial analysis tasks, and the corresponding task division strategy for spatial analysis tasks for GIS and BIM data fusion.
  • the task division strategy of the task is based on the location area hierarchical relationship
  • the task division strategy for the BIM spatial analysis task is based on the system hierarchy relationship.
  • the subtask processing results are merged, it is also based on the task division.
  • the bottom-level results are merged first, and then the upper-level results are merged to obtain the processing results of the spatial analysis task.
  • the spatial analysis type of the spatial analysis task is identified, different spatial analysis types correspond to different task division strategies, and the task division strategy corresponding to the spatial analysis type is obtained, and then based on the acquisition
  • the task division strategy splits the spatial analysis task, calls the preset spatial analysis processing node to process multiple subtasks, and obtains the subtask processing result corresponding to each subtask, and finally reads the result merging rules that match the task division strategy, based on The result merging rule merges the processing results of the subtasks to obtain the processing results of the spatial analysis task.
  • the processing of the above spatial analysis tasks is based on the spatial analysis type of the spatial analysis task, determines the task division strategy of the spatial task splitting, and splits the spatial analysis task into multiple sub-tasks, thereby reducing the time-consuming of the spatial analysis, and based on the task Division strategy matching results merge rules, merge the subtask processing results, and obtain the processing results of the spatial analysis task.
  • the data processing volume corresponding to each subtask is less than that of the spatial analysis task, which can shorten the time consumption of the spatial analysis and provide the spatial analysis results in time .
  • the spatial analysis task is a GIS spatial analysis task.
  • the spatial analysis task is divided into multiple subtasks according to the obtained task division strategy, including: step 302, obtaining the GIS spatial analysis task The regional hierarchical relationship of the included geographic location; step 304, according to the regional hierarchical relationship of the geographic location, divide the GIS spatial analysis task into GIS spatial analysis subtasks of different levels. Taking city A under city Y in province X as an example, the three location area levels included in the GIS spatial analysis task are province X, city Y, and city A. According to the location area level, the GIS spatial analysis task is divided to obtain the corresponding There are three levels of subtask 1, subtask 2, and subtask 3.
  • the GIS spatial analysis task after dividing the GIS spatial analysis task into GIS spatial analysis subtasks of different levels according to the regional hierarchical relationship of the geographic location, it also includes: determining the relationship between the GIS spatial analysis subtasks according to the inclusion relationship between each regional level Priority; add corresponding priority labels to the GIS spatial analysis subtasks according to the determined priority; call the preset spatial analysis processing node to process multiple subtasks, and obtain the subtask processing results corresponding to each subtask, including: Call the preset spatial analysis processing node, process multiple subtasks based on the priority label, and obtain the subtask processing result corresponding to each subtask.
  • subtask 1 For the divided GIS spatial analysis subtask 1, subtask 2 and subtask 3, according to the inclusion relationship between the regional levels, for example, according to X province contains Y city, Y city contains A city, determine the subtask 1, subtask 2 and subtask respectively.
  • Priority of task 3 and add priority tags to each subtask according to the determined priority.
  • the priority tag is used to clarify the order of execution of each subtask, and to clarify the identity of the processing result of each subtask in subsequent processing, so as to facilitate the integration of the subtask processing results.
  • the spatial analysis task is a BIM spatial analysis task.
  • the spatial analysis task is divided into multiple subtasks, including: step 402, obtaining the corresponding BIM spatial analysis task
  • step 402 obtaining the corresponding BIM spatial analysis task
  • step 404 according to the system hierarchical relationship in the BIM model, divide the BIM space analysis task into different BIM space analysis subtasks.
  • BIM is a process of analyzing, simulating, visualizing, constructing drawings, and engineering quantity statistics of buildings in various stages of design, construction, operation and maintenance using the information in the digital model of the building.
  • the core of the BIM model is not the geometric information and visualization of the model itself.
  • the system hierarchy is used to characterize the various professional information in the BIM model. Hierarchical relationship between.
  • obtaining the BIM model corresponding to the BIM spatial analysis task and the system hierarchical relationship in the BIM model includes: step 502, obtaining the BIM model corresponding to the BIM spatial analysis task, and combining the BIM model Divide into multiple single-level information models; step 504, extract the professional-level information model corresponding to the single-level information model, and decompose the professional-level information model into component and equipment-level information models; step 506, based on the component and equipment-level information model Divide the component and equipment level information model into the steel and part level information model to obtain the system level relationship in the BIM model.
  • Project-level information model refers to the establishment of original three-dimensional terrain surface and three-dimensional geological body based on surveying and geotechnical survey data, and the formation of site model after excavation and backfilling of the terrain according to design requirements, and then division of functional areas within the site. Use this as the basis for a project-level information model.
  • the site model is also a single-level information model, and the project-level information model is an integrated and associated expression of all single-level information models.
  • the creation of the water transport engineering design stage includes the establishment of single-level information models such as wharfs, approach bridges, and breakwaters within the water area, as well as single-level information models such as production, living facilities and auxiliary production and living facilities within the land area, including transfer stations, Substations, machine repair rooms, comprehensive buildings, etc.; after the creation of a single-level information model, it is associated with the project-level information model. At this time, the project-level information model can be expressed by a single-level information model. After the single-level information model is disassembled from the project-level information model, each major establishes its own work set in the single-level information model, and conducts the design and review work of the major in accordance with the design workflow, and conducts inter-professional work.
  • single-level information models such as wharfs, approach bridges, and breakwaters within the water area
  • single-level information models such as production, living facilities and auxiliary production and living facilities within the land area, including transfer stations, Substations, machine repair rooms, comprehensive
  • the process of collaborative work between the majors is the creation process of the professional-level information model.
  • the professional-level information model is an organizational model, not a physical model, but embodies the work content of each specialty.
  • the component and equipment-level information model is the smallest functional unit of the single-level information model.
  • each major refines the content related to the major in the single-level information model to the component and equipment level.
  • the hydraulic engineering profession refines the dock platform to pile foundations, beams, longitudinal beams, panels, etc.
  • the architecture profession refines the building to the building walls, doors, windows, roofs, and stairs.
  • the component and equipment-level information model is not limited to structural components and mechanical equipment. Braking waters and whirling waters in the general map profession, and generators, distribution boxes, and battery equipment in the electrical profession belong to this level.
  • the reinforcement and part-level information model is the smallest component of the component and equipment-level information model, and the hierarchical model is a further refinement of the component and equipment-level information model.
  • the creation of this hierarchical model is mainly manifested by adding model objects such as steel bars, embedded parts, bolts, anchors, etc., and adding steel structures to form a rod system on the basis of component and equipment-level information models.
  • This hierarchical information model can be directly used for components and equipment. Processing and manufacturing of equipment.
  • obtaining the BIM model corresponding to the BIM spatial analysis task and the system hierarchical relationship in the BIM model includes: step 602, obtaining the BIM model corresponding to the BIM spatial analysis task, and extracting the BIM model
  • Step 604 Obtain tree-shaped spatial structure elements based on the spatial structure data and obtain tree-shaped component classification entries based on the component classification data
  • Step 606 According to the tree-shaped spatial structure elements and tree-shaped Component classification items determine the system hierarchy in the BIM model.
  • the spatial structure data includes the spatial structure table of the BIM database.
  • the spatial structure includes three-story tree-like spatial structure elements of unit engineering, floor division and area division; the component classification data includes the component classification system table of the BIM database.
  • the component classification system includes professional and system. And the three-level tree-like component classification item of component type. Generally speaking, these two tables will exist in a mature BIM model. The tables carry a three-layer tree diagram of the subordinates. Based on this part of the data, the BIM spatial analysis task is divided into multiple subtasks. For example, extract the unit project "main teaching building", the floor “third floor”, and the area "third floor 301 classroom” from the BIM model, and the inclusion relationship between the three to form a tree structure; from the BIM model Extract the "civil engineering” major, "building load-bearing” system, "load-bearing beam” component types, and the containment relationship between the three to form a tree structure.
  • calling a preset spatial analysis processing node to process multiple subtasks, and obtaining a subtask processing result corresponding to each subtask includes: constructing a node flow according to a task division strategy, the node flow includes multiple nodes and The data interaction relationship between nodes; call the nodes in the node flow to process multiple subtasks separately to obtain the subtask processing results corresponding to each subtask; merge the subtask processing results based on the result merging rules to obtain the spatial analysis task
  • the result includes: merging the processing results of the subtasks based on the result merging rules and the data interaction relationship between the nodes to obtain the processing results of the spatial analysis task.
  • the data interaction relationship between nodes refers to the dependency relationship between the data processed by each node.
  • the upper subtask depends on the lower subtask processing to obtain intermediate results or final result data.
  • These data interaction relationships can be based on the location area level in the task division strategy. And the system hierarchy relationship is obtained, and the node flow is constructed from this.
  • the subtask processing results are merged, since the node flow can characterize the relationship between the subtasks, the subtask results obtained by the processing of each node are combined based on the node flow to obtain the space Analyze the processing results of the task.
  • a device for processing spatial analysis tasks including: a task acquisition module 702, a task division module 704, a task processing module 706, and a result merging module 708, wherein: task acquisition Module 702 is used to obtain spatial analysis tasks and identify the spatial analysis type of the spatial analysis task; task division module 704 is used to obtain the task division strategy corresponding to the spatial analysis type, and divide the spatial analysis task into multiple tasks according to the obtained task division strategy.
  • task processing module 706, used to call preset spatial analysis processing nodes to process multiple subtasks, and obtain the subtask processing results corresponding to each subtask
  • result merging module 708, used to read the matching task division strategy Based on the result merging rules of, merge the subtask processing results based on the result merging rules to obtain the processing results of the spatial analysis task.
  • the task division module is also used to obtain the regional hierarchical relationship of the geographic location included in the GIS spatial analysis task; according to the regional hierarchical relationship of the geographic location, the GIS spatial analysis task is divided into different levels of GIS spatial analysis subordinates. task.
  • the processing device of the spatial analysis task further includes a priority determining module, which is used to determine the priority between the GIS spatial analysis subtasks according to the containment relationship between the various regional levels;
  • the GIS spatial analysis subtasks are respectively added with corresponding priority tags;
  • the task processing module is also used to call preset spatial analysis processing nodes, process multiple subtasks based on the priority tags, and obtain the subtask processing results corresponding to each subtask.
  • the task division module is also used to obtain the BIM model corresponding to the BIM spatial analysis task and the system hierarchical relationship in the BIM model; according to the system hierarchical relationship in the BIM model, the BIM spatial analysis task is divided into different BIMs Spatial analysis subtask.
  • the task division module is also used to obtain the BIM model corresponding to the BIM spatial analysis task, and divide the BIM model into multiple single-level information models; extract the professional-level information model corresponding to the single-level information model, Decompose the professional-level information model into component and equipment-level information models; based on the component information of the component and equipment-level information models, divide the component and equipment-level information models into steel and part-level information models to obtain the system level relationship in the BIM model .
  • the task division module is also used to obtain the BIM model corresponding to the BIM spatial analysis task, and extract the spatial structure data and component classification data contained in the BIM model; obtain tree-like spatial structure elements based on the spatial structure data, Based on the component classification data, the tree-shaped component classification entries are obtained; according to the tree-shaped spatial structure elements and the tree-shaped component classification entries, the system hierarchy relationship in the BIM model is determined.
  • the task processing module is also used to construct a node flow according to the task division strategy.
  • the node flow includes multiple nodes and data interaction relationships between the nodes; the nodes in the node flow are called to process multiple subtasks respectively, Obtain the subtask processing result corresponding to each subtask; the result merging module is also used to merge the subtask processing results based on the result merging rules and the data interaction relationship between the nodes to obtain the processing result of the spatial analysis task.
  • Each module in the processing device for the aforementioned spatial analysis task can be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the computer equipment, or may be stored in the memory of the computer equipment in the form of software, so that the processor can call and execute the operations corresponding to the above-mentioned modules.
  • a computer device is provided.
  • the computer device may be a server, and its internal structure diagram may be as shown in FIG. 8.
  • the computer equipment includes a processor, a memory, and a network interface connected through a system bus. Among them, the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, computer readable instructions, and a database.
  • the internal memory provides an environment for the operation of the operating system and computer-readable instructions in the non-volatile storage medium.
  • the database of the computer equipment is used to store data such as spatial analysis tasks, the relationship between spatial analysis types and task division strategies.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection. When the computer-readable instructions are executed by the processor, a method for processing spatial analysis tasks is realized.
  • FIG. 8 is only a block diagram of part of the structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • a computer device including a memory and a processor, and computer-readable instructions are stored in the memory.
  • the processor executes the computer-readable instructions, the following steps are implemented: acquiring spatial analysis tasks, identifying spatial analysis The spatial analysis type of the task; obtain the task division strategy corresponding to the spatial analysis type, and divide the spatial analysis task into multiple subtasks according to the obtained task division strategy; call the preset spatial analysis processing node to process multiple subtasks, and obtain each The subtask processing results corresponding to each subtask; read the result merging rules that match the task division strategy, and merge the subtask processing results based on the result merging rules to obtain the processing results of the spatial analysis task.
  • the processor further implements the following steps when executing the computer-readable instructions: obtain the regional hierarchical relationship of the geographic location included in the GIS spatial analysis task; divide the GIS spatial analysis task into GIS spatial analysis subtasks at different levels.
  • the processor further implements the following steps when executing the computer-readable instructions: determining the priority between the subtasks of GIS spatial analysis according to the containment relationship between the various regional levels; The analysis subtasks are respectively added with corresponding priority tags; the preset spatial analysis processing node is called, and multiple subtasks are processed based on the priority tags, and the subtask processing result corresponding to each subtask is obtained.
  • the processor further implements the following steps when executing the computer-readable instructions: obtaining the BIM model corresponding to the BIM space analysis task and the system hierarchy relationship in the BIM model; according to the system hierarchy relationship in the BIM model, the BIM space
  • the analysis task is divided into different BIM spatial analysis subtasks.
  • the processor further implements the following steps when executing the computer-readable instructions: obtaining the BIM model corresponding to the BIM spatial analysis task, and dividing the BIM model into multiple single-level information models; extracting the single-level information model The corresponding professional-level information model decomposes the professional-level information model into component and equipment-level information models; based on the component information of the component and equipment-level information models, the component and equipment-level information models are divided into steel and part-level information models to obtain The system hierarchy in the BIM model.
  • the processor further implements the following steps when executing the computer-readable instructions: obtain the BIM model corresponding to the BIM spatial analysis task, and extract the spatial structure data and component classification data contained in the BIM model; based on the spatial structure data Obtain the tree-shaped spatial structure elements, and obtain the tree-shaped component classification entries based on the component classification data; determine the system hierarchical relationship in the BIM model according to the tree-shaped spatial structure elements and the tree-shaped component classification entries.
  • the processor further implements the following steps when executing the computer-readable instructions: construct a node flow according to the task division strategy, the node flow includes multiple nodes and the data interaction relationship between the nodes; call the nodes in the node flow respectively Process multiple subtasks to obtain the subtask processing results corresponding to each subtask; based on the result merging rules and the data interaction relationship between the nodes, the subtask processing results are merged to obtain the processing results of the spatial analysis task.
  • a computer-readable storage medium on which computer-readable instructions are stored, and when the computer-readable instructions are executed by a processor, the following steps are implemented: obtain a spatial analysis task, and identify the space of the spatial analysis task Analysis type; Obtain the task division strategy corresponding to the spatial analysis type, and divide the spatial analysis task into multiple subtasks according to the obtained task division strategy; call the preset spatial analysis processing node to process multiple subtasks, and get the correspondence of each subtask The result of the subtask processing; read the result merging rule that matches the task division strategy, and merge the subtask processing results based on the result merging rule to obtain the processing result of the spatial analysis task.
  • the following steps are also implemented: obtain the regional hierarchical relationship of the geographic location included in the GIS spatial analysis task; divide the GIS spatial analysis task according to the regional hierarchical relationship of the geographic location It is a subtask of GIS spatial analysis at different levels.
  • the following steps are also implemented: determine the priority between the GIS spatial analysis subtasks according to the containment relationship between the various regional levels;
  • the spatial analysis subtasks are respectively added with corresponding priority tags;
  • the preset spatial analysis processing node is called, and multiple subtasks are processed based on the priority tags, and the subtask processing result corresponding to each subtask is obtained.
  • the following steps are also implemented: obtaining the BIM model corresponding to the BIM spatial analysis task and the system hierarchy relationship in the BIM model; according to the system hierarchy relationship in the BIM model, the BIM The spatial analysis task is divided into different BIM spatial analysis subtasks.
  • the following steps are also implemented: obtain the BIM model corresponding to the BIM spatial analysis task, and divide the BIM model into multiple single-level information models; extract single-level information
  • the professional-level information model corresponding to the model decomposes the professional-level information model into component and equipment-level information models; based on the component information of the component and equipment-level information models, the component and equipment-level information models are divided into steel and part-level information models, Obtain the system hierarchical relationship in the BIM model.
  • the following steps are also implemented: obtain the BIM model corresponding to the BIM spatial analysis task, and extract the spatial structure data and component classification data contained in the BIM model; based on the spatial structure The data acquires tree-shaped spatial structure elements, and the tree-shaped component classification entries are acquired based on the component classification data; according to the tree-shaped spatial structure elements and the tree-shaped component classification entries, the system hierarchical relationship in the BIM model is determined.
  • the following steps are also implemented: construct a node flow according to the task division strategy, the node flow includes multiple nodes and the data interaction relationship between the nodes; call the nodes in the node flow The multiple subtasks are processed separately to obtain the subtask processing result corresponding to each subtask; based on the result merging rules and the data interaction relationship between the nodes, the subtask processing results are merged to obtain the processing result of the spatial analysis task.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory, or optical storage.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM may be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.

Abstract

一种空间分析任务的处理方法,涉及数据处理领域。包括:获取空间分析任务,识别空间分析任务的空间分析类型(S202);获取空间分析类型对应的任务划分策略,根据获得的任务划分策略,将空间分析任务划分为多个子任务(S204);调用预设的空间分析处理节点对多个子任务进行处理,得到每个子任务对应的子任务处理结果(S206);读取与任务划分策略匹配的结果合并规则,基于结果合并规则对子任务处理结果进行合并,得到空间分析任务的处理结果(S208)。

Description

空间分析任务的处理方法、装置、计算机设备和存储介质
相关申请的交叉引用
本申请要求于2020年7月27日提交中国专利局,申请号为2020107321333,申请名称为“空间分析任务的处理方法、装置、计算机设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及网络技术领域,特别是涉及一种空间分析任务的处理方法、装置、计算机设备和存储介质。
背景技术
随着计算机技术的发展,信息获取手段不断丰富,人们所能获取到的空间数据大幅增长。空间分析主要通过空间数据和空间模型的联合分析,挖掘空间目标的潜在信息,结合空间目标的空间数据和属性数据,可以进行许多特定任务的空间计算与分析。
因此,空间分析的数据处理速度对于空间数据的应用需求具有重要意义。然而,发明人意识到,传统的空间分析需要处理大量携带有位置信息的数据,导致空间分析往往需要较长的分析时间,从而难以及时地提供空间分析结果。
发明内容
根据本申请公开的各种实施例,提供一种空间分析任务的处理方法、装置、计算机设备和存储介质。
一种空间分析任务的处理方法包括:
获取空间分析任务,识别所述空间分析任务的空间分析类型;
获取所述空间分析类型对应的任务划分策略,根据获得的任务划分策略,将所述空间分析任务划分为多个子任务;
调用预设的空间分析处理节点对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果;及
读取与所述任务划分策略匹配的结果合并规则,基于所述结果合并规则对所述子任务处理结果进行合并,得到所述空间分析任务的处理结果。
一种空间分析任务的处理装置包括:
任务获取模块,用于获取空间分析任务,识别所述空间分析任务的空间分析类型;
任务划分模块,用于获取所述空间分析类型对应的任务划分策略,根据获得的任务划分策略,将所述空间分析任务划分为多个子任务;
任务处理模块,用于调用预设的空间分析处理节点对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果;及
结果合并模块,用于读取与所述任务划分策略匹配的结果合并规则,基于所述结果合并规则对所述子任务处理结果进行合并,得到所述空间分析任务的处理结果。
一种计算机设备,包括存储器和一个或多个处理器,所述存储器中储存有计算机可读指令,所述计算机可读指令被所述处理器执行时,使得所述一个或多个处理器执行以下步骤:
获取空间分析任务,识别所述空间分析任务的空间分析类型;
获取所述空间分析类型对应的任务划分策略,根据获得的任务划分策略,将所述空间分析任务划分为多个子任务;
调用预设的空间分析处理节点对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果;及
读取与所述任务划分策略匹配的结果合并规则,基于所述结果合并规则对所述子任务处理结果进行合并,得到所述空间分析任务的处理结果。
一个或多个存储有计算机可读指令的计算机可读存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行以下步骤:
获取空间分析任务,识别所述空间分析任务的空间分析类型;
获取所述空间分析类型对应的任务划分策略,根据获得的任务划分策略,将所述空间分析任务划分为多个子任务;
调用预设的空间分析处理节点对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果;及
读取与所述任务划分策略匹配的结果合并规则,基于所述结果合并规则对所述子任务处理结果进行合并,得到所述空间分析任务的处理结果。
上述空间分析任务的处理方法、装置、计算机设备和存储介质,通过获取空间分析任务,识别空间分析任务的空间分析类型,不同的空间分析类型对应不同的任务划分策略,获取空间分析类型对应的任务划分策略,然后再基于获得的任务划分策略拆分空间分析任务,调用预设的空间分析处理节点对多个子任务进行处理,得到每个子任务对应的子任务处理结果,最后读取与任务划分策略匹配的结果合并规则,基于结果合并规则对子任务处理结果进行合并,得到空间分析任务的处理结果。上述空间分析任务的处理,基于空间分析任务的空间分析类型,确定空间任务拆分的任务划分策略,将空间分析任务拆分为多个子任务,由此缩短空间分析的耗时,且基于与任务划分策略匹配的结果合并规则,将子任务处理结果合并,得到空间分析任务的处理结果,每个子任务对应的数据处理量小于空间分析任务,因而可以缩短空间分析的耗时,及时提供空间分析结果。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为根据一个或多个实施例中空间分析任务的处理方法的应用环境图;
图2为根据一个或多个实施例中空间分析任务的处理方法的流程示意图;
图3为根据一个或多个实施例中空间分析任务划分步骤的流程示意图;
图4为另一个实施例中空间分析任务划分步骤的流程示意图;
图5为根据一个或多个实施例中体系层级关系获取步骤的流程示意图;
图6为另一个实施例中体系层级关系获取步骤的流程示意图;
图7为根据一个或多个实施例中空间分析任务的处理装置的结构框图;
图8为根据一个或多个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的空间分析任务的处理方法,可以应用于如图1所示的应用环境中。其中,客户端102通过网络与服务器104进行通信。客户端102发送空间分析任务至服务器104,服务器104获取空间分析任务,识别空间分析任务的空间分析类型;获取空间分析类型对应的任务划分策略,根据获得的任务划分策略,将空间分析任务划分为多个子任务;调用预设的空间分析处理节点对多个子任务进行处理,得到每个子任务对应的子任务处理结果;读取与任务划分策略匹配的结果合并规则,基于结果合并规则对子任务处理结果进行合并,得到空间分析任务的处理结果。其中,客户端102可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备,服务器104可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
在其中一个实施例中,如图2所示,提供了一种空间分析任务的处理方法,以该方法应用于图1中的服务器为例进行说明,包括以下步骤:
步骤202,获取空间分析任务,识别空间分析任务的空间分析类型。
空间分析任务是指携带空间分析数据、用于获取空间分析数据的处理结果的任务。具体地,可以通过服务器接收客户端上传的空间分析数据处理请求,或者服务器接收外部直接导入的空间分析数据处理请求,在该请求中携带有空间分析数据;服务器响应该请求,创建空间分析数据对应的空间分析任务。
空间分析任务携带空间分析数据,具体地,空间分析数据包括GIS(Geographic  Information System,地理信息系统)数据、BIM(Building Information Modeling,建筑信息模型化)数据以及GIS与BIM融合的数据。其中,GIS通常是指对城市或区域对象建立空间模型,其最主要的目的是描述城市或区域尺度的地理空间对象,而较少关注细节。而BIM关注设施或建筑物尺度对象的内部细节,但很少用于除设施或建筑物外的其他对象,因此,GIS数据和BIM数据在数据种类和数据层级上存在差异。相应地,对于GIS数据的空间分析任务的处理策略与BIM数据的空间分析任务的处理策略也会存在区别,发现并挖掘空间分析数据的类型,基于空间分析类型来确定不同的任务划分策略。可以理解的是,空间分析数据还可以是GIS数据和BIM融合的数据,其存在部分融合的情况,例如A城市中B大学教学楼对应的空间分析数据,其中,在A城市中定位到B大学以及B大学内定位到教学楼的空间分析数据属于GIS数据,而教学楼内的空间分析数据则属于BIM数据。
步骤204,获取空间分析类型对应的任务划分策略,根据获得的任务划分策略,将空间分析任务划分为多个子任务。
任务划分策略用于将空间分析任务划分为多个子任务,预先构建空间分析类型与任务划分策略之间的对应关系,具体包括针对GIS空间分析任务的任务划分策略、针对BIM空间分析任务的任务划分策略、针对GIS和BIM数据融合的空间分析任务对应的任务划分策略。
步骤206,调用预设的空间分析处理节点对多个子任务进行处理,得到每个子任务对应的子任务处理结果。
空间分析处理节点是指可以执行空间分析任务的节点,每个节点分别对接收到的任务创建线程进行处理,得到对应的处理结果。单个节点可以理解为大型空间分析服务器中运算、处理节点;或者是由众多服务器构建的服务器集群中单个服务器。具体地,可以采用并行处理的方式对每个子任务分别进行处理,得到对应的子任务处理结果。需要指出的是,每个子任务处理结果携带有子任务标识,用来表明是由哪个子任务处理得到的结果。
步骤208,读取与任务划分策略匹配的结果合并规则,基于结果合并规则对子任务处理结果进行合并,得到空间分析任务的处理结果。
结果合并规则是预先设定的规则,具体来说,结果合并规则是与任务划分策略匹配对应的。如上所述,任务划分策略具体包括针对GIS空间分析任务的任务划分策略、针对BIM空间分析任务的任务划分策略、针对GIS和BIM数据融合的空间分析任务对应的任务划分策略,其中针对GIS空间分析任务的任务划分策略是基于位置区域等级关系进行任务划分,针对BIM空间分析任务的任务划分策略是基于体系层级关系进行任务划分,那么在对子任务处理结果进行合并时,也是基于任务划分对应的方式进行合并,在合并时先合并底层结果,再合并上层结果,得到空间分析任务的处理结果。
上述空间分析任务的处理方法中,通过获取空间分析任务,识别空间分析任务的空间分析类型,不同的空间分析类型对应不同的任务划分策略,获取空间分析类型对应的任务划分策略,然后再基于获得的任务划分策略拆分空间分析任务,调用预设的空间分析处理 节点对多个子任务进行处理,得到每个子任务对应的子任务处理结果,最后读取与任务划分策略匹配的结果合并规则,基于结果合并规则对子任务处理结果进行合并,得到空间分析任务的处理结果。上述空间分析任务的处理,基于空间分析任务的空间分析类型,确定空间任务拆分的任务划分策略,将空间分析任务拆分为多个子任务,由此缩短空间分析的耗时,且基于与任务划分策略匹配的结果合并规则,将子任务处理结果合并,得到空间分析任务的处理结果,每个子任务对应的数据处理量小于空间分析任务,因而可以缩短空间分析的耗时,及时提供空间分析结果。
在其中一个实施例中,空间分析任务为GIS空间分析任务,如图3所示,根据获得的任务划分策略,将空间分析任务划分为多个子任务,包括:步骤302,获取GIS空间分析任务中包含的地理位置的区域等级关系;步骤304,根据地理位置的区域等级关系,将GIS空间分析任务划分为不同层级的GIS空间分析子任务。以X省Y市下的A城市为例,GIS空间分析任务包含的三个位置区域等级分别是X省、Y市以及A城市,根据该位置区域等级将该GIS空间分析任务划分,得到对应的三个等级的子任务1、子任务2和子任务3。具体地,根据地理位置的区域等级关系,将GIS空间分析任务划分为不同层级的GIS空间分析子任务之后,还包括:根据各个区域等级之间的包含关系,确定GIS空间分析子任务之间的优先级;根据确定的优先级对GIS空间分析子任务分别添加对应的优先级标签;调用预设的空间分析处理节点对多个子任务进行处理,得到每个子任务对应的子任务处理结果,包括:调用预设的空间分析处理节点,基于优先级标签对多个子任务进行处理,得到每个子任务对应的子任务处理结果。针对划分的GIS空间分析子任务1、子任务2和子任务3,根据区域等级之间的包含关系,比如根据X省包含Y市,Y市包含A城市,分别确定子任务1、子任务2和子任务3的优先级,并根据确定的优先级给各个子任务分别添加优先级标签。优先级标签用于明确各个子任务之间执行的先后顺序,并且可以在后续处理中明确各个子任务处理结果的身份,便于子任务处理结果的融合。
在其中一个实施例中,空间分析任务为BIM空间分析任务,如图4所示,根据获得的任务划分策略,将空间分析任务划分为多个子任务,包括:步骤402,获取BIM空间分析任务对应的BIM模型以及BIM模型中的体系层级关系;步骤404,根据BIM模型中的体系层级关系,将BIM空间分析任务划分为不同的BIM空间分析子任务。BIM是利用建筑物数字模型里面的信息在设计、施工、运维等各个阶段对建筑物进行分析、模拟、可视化、施工图、工程量统计的过程,BIM模型的核心不是模型本身几何信息、可视化信息,而是存放在BIM模型中的专业信息,比如建筑、结构、机电、热工、声学、材料、价格、采购、规范、标准等信息,体系层级关系用于表征BIM模型中各个专业信息之间的层级关系。
在其中一个实施例中,如图5所示,获取BIM空间分析任务对应的BIM模型以及BIM模型中的体系层级关系,包括:步骤502,获取BIM空间分析任务对应的BIM模型,并将BIM模型划分为多个单体级信息模型;步骤504,提取单体级信息模型对应的专业级信息模型,将专业级信息模型分解为构件与设备级信息模型;步骤506,基于构件与设备级信 息模型的零部件信息,将构件与设备级信息模型划分为钢筋与零件级信息模型,得到BIM模型中的体系层级关系。项目级信息模型是指根据测量、岩土勘察资料,建立原始三维地形曲面和三维地质体,按照设计要求对地形进行开挖回填等处理后,形成场地模型,然后进行场地范围内功能区域划分,以此作为项目级信息模型的基础。该场地模型同时也是一个单体级信息模型,项目级信息模型是所有单体级信息模型的集成关联表达。水运工程设计阶段的创建工作包括建立水域范围内码头、引桥、防波堤等单体级信息模型,以及陆域范围内生产、生活设施和辅助生产、生活设施等单体级信息模型,包括转运站、变电所、机修间、综合楼等;单体级信息模型创建后与项目级信息模型进行关联,此时该项目级信息模型可采用单体级信息模型来表达。单体级信息模型从项目级信息模型中拆解出来后,各专业在单体级信息模型中建立自己的工作集,按照设计工作流程,进行本专业的设计、校审工作,并开展专业间和专业内的协同设计工作,各专业协同工作的过程即为专业级信息模型的创建过程。专业级信息模型是组织模型,不是实体模型,体现的是各专业的工作内容。构件与设备级信息模型是单体级信息模型的最小功能单元,在这一层级信息模型的创建过程中,各专业将单体级信息模型中与本专业相关的内容细化到构件与设备级。比如水工专业将码头平台细化到桩基、横梁、纵梁、面板等;建筑专业将楼房细化到建筑墙、门、窗、屋顶、楼梯等。由于不同专业设计对象存在较大差异,构件与设备级信息模型不仅仅局限于结构构件和机械设备。总图专业中的制动水域、回旋水域等,电气专业中的发电机、配电箱、电池设备等均属于这一层级。钢筋与零件级信息模型是构件与设备级信息模型的最小组成单元,该层级模型是构件与设备级信息模型的进一步细化。该层级模型的创建主要表现为在构件与设备级信息模型基础上增加钢筋、埋件、螺栓、锚栓等模型对象,以及增加钢结构组成杆系等,该层级信息模型可直接用于构件与设备的加工制造。
在其中一个实施例中,如图6所示,获取BIM空间分析任务对应的BIM模型以及BIM模型中的体系层级关系,包括:步骤602,获取BIM空间分析任务对应的BIM模型,并提取BIM模型中所包含的空间结构数据和构件分类数据;步骤604,基于空间结构数据获取树状空间结构元素,并基于构件分类数据获取树状构件分类条目;步骤606,根据树状空间结构元素以及树状构件分类条目,确定BIM模型中的体系层级关系。空间结构数据包括BIM数据库的空间结构表,空间结构包括单位工程、楼层划分、区域划分三层的树状空间结构元素;构件分类数据包括BIM数据库的构件分类体系表,构件分类体系包括专业、系统和构件类型三层的树状构件分类条目。一般来说,在成熟的BIM模型中都会存在这两张表,在表中携带有下属三层树状图,基于这部分的数据对BIM空间分析任务进行划分,划分为多个子任务。例如,从BIM模型中提取单位工程“主教学楼”,楼层“第三层”,及区域“第三层301教室”,以及三者之间的包含关系,形成树状结构;从BIM模型中提取“土建”专业,“建筑承重”系统,“承重梁”构件类型,以及三者之间的包含关系,形成树状结构。
在其中一个实施例中,调用预设的空间分析处理节点对多个子任务进行处理,得到每 个子任务对应的子任务处理结果,包括:根据任务划分策略构建节点流,节点流包括多个节点以及节点之间的数据交互关系;调用节点流中的节点分别对多个子任务进行处理,得到每个子任务对应的子任务处理结果;基于结果合并规则对子任务处理结果进行合并,得到空间分析任务的结果,包括:基于结果合并规则以及节点之间的数据交互关系,对子任务处理结果进行合并,得到空间分析任务的处理结果。节点之间的数据交互关系是指各个节点处理的数据之间的依存关系,例如上层子任务依赖下层子任务处理得到中间结果或最终结果数据,这些数据交互关系可以根据任务划分策略中位置区域等级以及体系层级关系得到,由此构建节点流,在进行子任务处理结果合并时,由于节点流能够表征各子任务之间的关系,基于节点流将各个节点处理得到的子任务结果组合,得到空间分析任务的处理结果。
应该理解的是,虽然图2-6的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-6中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在其中一个实施例中,如图7所示,提供了一种空间分析任务的处理装置,包括:任务获取模块702、任务划分模块704、任务处理模块706和结果合并模块708,其中:任务获取模块702,用于获取空间分析任务,识别空间分析任务的空间分析类型;任务划分模块704,用于获取空间分析类型对应的任务划分策略,根据获得的任务划分策略,将空间分析任务划分为多个子任务;任务处理模块706,用于调用预设的空间分析处理节点对多个子任务进行处理,得到每个子任务对应的子任务处理结果;结果合并模块708,用于读取与任务划分策略匹配的结果合并规则,基于结果合并规则对子任务处理结果进行合并,得到空间分析任务的处理结果。
在其中一个实施例中,任务划分模块还用于获取GIS空间分析任务中包含的地理位置的区域等级关系;根据地理位置的区域等级关系,将GIS空间分析任务划分为不同层级的GIS空间分析子任务。
在其中一个实施例中,空间分析任务的处理装置还包括优先级确定模块,用于根据各个区域等级之间的包含关系,确定GIS空间分析子任务之间的优先级;根据确定的优先级对GIS空间分析子任务分别添加对应的优先级标签;任务处理模块还用于调用预设的空间分析处理节点,基于优先级标签对多个子任务进行处理,得到每个子任务对应的子任务处理结果。
在其中一个实施例中,任务划分模块还用于获取BIM空间分析任务对应的BIM模型以及BIM模型中的体系层级关系;根据BIM模型中的体系层级关系,将BIM空间分析任务划 分为不同的BIM空间分析子任务。
在其中一个实施例中,任务划分模块还用于获取BIM空间分析任务对应的BIM模型,并将BIM模型划分为多个单体级信息模型;提取单体级信息模型对应的专业级信息模型,将专业级信息模型分解为构件与设备级信息模型;基于构件与设备级信息模型的零部件信息,将构件与设备级信息模型划分为钢筋与零件级信息模型,得到BIM模型中的体系层级关系。
在其中一个实施例中,任务划分模块还用于获取BIM空间分析任务对应的BIM模型,并提取BIM模型中所包含的空间结构数据和构件分类数据;基于空间结构数据获取树状空间结构元素,并基于构件分类数据获取树状构件分类条目;根据树状空间结构元素以及树状构件分类条目,确定BIM模型中的体系层级关系。
在其中一个实施例中,任务处理模块还用于根据任务划分策略构建节点流,节点流包括多个节点以及节点之间的数据交互关系;调用节点流中的节点分别对多个子任务进行处理,得到每个子任务对应的子任务处理结果;结果合并模块还用于基于结果合并规则以及节点之间的数据交互关系,对子任务处理结果进行合并,得到空间分析任务的处理结果。
关于空间分析任务的处理装置的具体限定可以参见上文中对于空间分析任务的处理方法的限定,在此不再赘述。上述空间分析任务的处理装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在其中一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图8所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机可读指令和数据库。该内存储器为非易失性存储介质中的操作系统和计算机可读指令的运行提供环境。该计算机设备的数据库用于存储空间分析任务、空间分析类型与任务划分策略之间的关系等数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机可读指令被处理器执行时以实现一种空间分析任务的处理方法。
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在其中一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机可读指令,该处理器执行计算机可读指令时实现以下步骤:获取空间分析任务,识别空间分析任务的空间分析类型;获取空间分析类型对应的任务划分策略,根据获得的任务划分策略,将空间分析任务划分为多个子任务;调用预设的空间分析处理节点对多个 子任务进行处理,得到每个子任务对应的子任务处理结果;读取与任务划分策略匹配的结果合并规则,基于结果合并规则对子任务处理结果进行合并,得到空间分析任务的处理结果。
在其中一个实施例中,处理器执行计算机可读指令时还实现以下步骤:获取GIS空间分析任务中包含的地理位置的区域等级关系;根据地理位置的区域等级关系,将GIS空间分析任务划分为不同层级的GIS空间分析子任务。
在其中一个实施例中,处理器执行计算机可读指令时还实现以下步骤:根据各个区域等级之间的包含关系,确定GIS空间分析子任务之间的优先级;根据确定的优先级对GIS空间分析子任务分别添加对应的优先级标签;调用预设的空间分析处理节点,基于优先级标签对多个子任务进行处理,得到每个子任务对应的子任务处理结果。
在其中一个实施例中,处理器执行计算机可读指令时还实现以下步骤:获取BIM空间分析任务对应的BIM模型以及BIM模型中的体系层级关系;根据BIM模型中的体系层级关系,将BIM空间分析任务划分为不同的BIM空间分析子任务。
在其中一个实施例中,处理器执行计算机可读指令时还实现以下步骤:获取BIM空间分析任务对应的BIM模型,并将BIM模型划分为多个单体级信息模型;提取单体级信息模型对应的专业级信息模型,将专业级信息模型分解为构件与设备级信息模型;基于构件与设备级信息模型的零部件信息,将构件与设备级信息模型划分为钢筋与零件级信息模型,得到BIM模型中的体系层级关系。
在其中一个实施例中,处理器执行计算机可读指令时还实现以下步骤:获取BIM空间分析任务对应的BIM模型,并提取BIM模型中所包含的空间结构数据和构件分类数据;基于空间结构数据获取树状空间结构元素,并基于构件分类数据获取树状构件分类条目;根据树状空间结构元素以及树状构件分类条目,确定BIM模型中的体系层级关系。
在其中一个实施例中,处理器执行计算机可读指令时还实现以下步骤:根据任务划分策略构建节点流,节点流包括多个节点以及节点之间的数据交互关系;调用节点流中的节点分别对多个子任务进行处理,得到每个子任务对应的子任务处理结果;基于结果合并规则以及节点之间的数据交互关系,对子任务处理结果进行合并,得到空间分析任务的处理结果。
在其中一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机可读指令,计算机可读指令被处理器执行时实现以下步骤:获取空间分析任务,识别空间分析任务的空间分析类型;获取空间分析类型对应的任务划分策略,根据获得的任务划分策略,将空间分析任务划分为多个子任务;调用预设的空间分析处理节点对多个子任务进行处理,得到每个子任务对应的子任务处理结果;读取与任务划分策略匹配的结果合并规则,基于结果合并规则对子任务处理结果进行合并,得到空间分析任务的处理结果。
在其中一个实施例中,计算机可读指令被处理器执行时还实现以下步骤:获取GIS空 间分析任务中包含的地理位置的区域等级关系;根据地理位置的区域等级关系,将GIS空间分析任务划分为不同层级的GIS空间分析子任务。
在其中一个实施例中,计算机可读指令被处理器执行时还实现以下步骤:根据各个区域等级之间的包含关系,确定GIS空间分析子任务之间的优先级;根据确定的优先级对GIS空间分析子任务分别添加对应的优先级标签;调用预设的空间分析处理节点,基于优先级标签对多个子任务进行处理,得到每个子任务对应的子任务处理结果。
在其中一个实施例中,计算机可读指令被处理器执行时还实现以下步骤:获取BIM空间分析任务对应的BIM模型以及BIM模型中的体系层级关系;根据BIM模型中的体系层级关系,将BIM空间分析任务划分为不同的BIM空间分析子任务。
在其中一个实施例中,计算机可读指令被处理器执行时还实现以下步骤:获取BIM空间分析任务对应的BIM模型,并将BIM模型划分为多个单体级信息模型;提取单体级信息模型对应的专业级信息模型,将专业级信息模型分解为构件与设备级信息模型;基于构件与设备级信息模型的零部件信息,将构件与设备级信息模型划分为钢筋与零件级信息模型,得到BIM模型中的体系层级关系。
在其中一个实施例中,计算机可读指令被处理器执行时还实现以下步骤:获取BIM空间分析任务对应的BIM模型,并提取BIM模型中所包含的空间结构数据和构件分类数据;基于空间结构数据获取树状空间结构元素,并基于构件分类数据获取树状构件分类条目;根据树状空间结构元素以及树状构件分类条目,确定BIM模型中的体系层级关系。
在其中一个实施例中,计算机可读指令被处理器执行时还实现以下步骤:根据任务划分策略构建节点流,节点流包括多个节点以及节点之间的数据交互关系;调用节点流中的节点分别对多个子任务进行处理,得到每个子任务对应的子任务处理结果;基于结果合并规则以及节点之间的数据交互关系,对子任务处理结果进行合并,得到空间分析任务的处理结果。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,所述的计算机可读指令可存储于一非易失性计算机可读取存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾, 都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种空间分析任务的处理方法,包括:
    获取空间分析任务,识别所述空间分析任务的空间分析类型;
    获取所述空间分析类型对应的任务划分策略,根据获得的任务划分策略,将所述空间分析任务划分为多个子任务;
    调用预设的空间分析处理节点对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果;及
    读取与所述任务划分策略匹配的结果合并规则,基于所述结果合并规则对所述子任务处理结果进行合并,得到所述空间分析任务的处理结果。
  2. 根据权利要求1所述的方法,其中,所述空间分析任务为GIS空间分析任务,所述根据获得的任务划分策略,将所述空间分析任务划分为多个子任务,包括:
    获取所述GIS空间分析任务中包含的地理位置的区域等级关系;及
    根据所述地理位置的区域等级关系,将所述GIS空间分析任务划分为不同层级的GIS空间分析子任务。
  3. 根据权利要求2所述的方法,其中,根据所述地理位置的区域等级关系,将所述GIS空间分析任务划分为不同层级的GIS空间分析子任务之后,还包括:
    根据各个区域等级之间的包含关系,确定所述GIS空间分析子任务之间的优先级;及根据确定的优先级对所述GIS空间分析子任务分别添加对应的优先级标签;
    所述调用预设的空间分析处理节点对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果,包括:
    调用预设的空间分析处理节点,基于所述优先级标签对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果。
  4. 根据权利要求2所述的方法,其中,所述调用预设的空间分析处理节点对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果,包括:
    根据所述任务划分策略构建节点流,所述节点流包括多个节点以及节点之间的数据交互关系;及
    调用所述节点流中的节点分别对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果;
    所述基于所述结果合并规则对所述子任务处理结果进行合并,得到所述空间分析任务的结果,包括:
    基于所述结果合并规则以及所述节点之间的数据交互关系,对所述子任务处理结果进行合并,得到所述空间分析任务的处理结果。
  5. 根据权利要求1所述的方法,其中,所述空间分析任务为BIM空间分析任务,所述根据获得的任务划分策略,将所述空间分析任务划分为多个子任务,包括:
    获取所述BIM空间分析任务对应的BIM模型以及所述BIM模型中的体系层级关系;及根据所述BIM模型中的体系层级关系,将所述BIM空间分析任务划分为不同的BIM空间分析子任务。
  6. 根据权利要求5所述的方法,其中,所述获取所述BIM空间分析任务对应的BIM模型以及所述BIM模型中的体系层级关系,包括:
    获取所述BIM空间分析任务对应的BIM模型,并将所述BIM模型划分为多个单体级信息模型;
    提取所述单体级信息模型对应的专业级信息模型,将所述专业级信息模型分解为构件与设备级信息模型;及
    基于所述构件与设备级信息模型的零部件信息,将所述构件与设备级信息模型划分为钢筋与零件级信息模型,得到BIM模型中的体系层级关系。
  7. 根据权利要求5所述的方法,其中,所述获取所述BIM空间分析任务对应的BIM模型以及所述BIM模型中的体系层级关系,包括:
    获取所述BIM空间分析任务对应的BIM模型,并提取所述BIM模型中所包含的空间结构数据和构件分类数据;
    基于所述空间结构数据获取树状空间结构元素,并基于所述构件分类数据获取树状构件分类条目;及
    根据所述树状空间结构元素以及所述树状构件分类条目,确定所述BIM模型中的体系层级关系。
  8. 根据权利要求5所述的方法,其中,所述调用预设的空间分析处理节点对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果,包括:
    根据所述任务划分策略构建节点流,所述节点流包括多个节点以及节点之间的数据交互关系;及
    调用所述节点流中的节点分别对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果;
    所述基于所述结果合并规则对所述子任务处理结果进行合并,得到所述空间分析任务的结果,包括:
    基于所述结果合并规则以及所述节点之间的数据交互关系,对所述子任务处理结果进行合并,得到所述空间分析任务的处理结果。
  9. 根据权利要求1所述的方法,其中,所述调用预设的空间分析处理节点对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果,包括:
    根据所述任务划分策略构建节点流,所述节点流包括多个节点以及节点之间的数据交互关系;及
    调用所述节点流中的节点分别对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果;
    所述基于所述结果合并规则对所述子任务处理结果进行合并,得到所述空间分析任务的结果,包括:
    基于所述结果合并规则以及所述节点之间的数据交互关系,对所述子任务处理结果进行合并,得到所述空间分析任务的处理结果。
  10. 根据权利要求1所述的方法,其中,所述空间分析任务还包括GIS和BIM数据融合的空间分析任务。
  11. 一种空间分析任务的处理装置,包括:
    任务获取模块,用于获取空间分析任务,识别所述空间分析任务的空间分析类型;
    任务划分模块,用于获取所述空间分析类型对应的任务划分策略,根据获得的任务划分策略,将所述空间分析任务划分为多个子任务;
    任务处理模块,用于调用预设的空间分析处理节点对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果;及
    结果合并模块,用于读取与所述任务划分策略匹配的结果合并规则,基于所述结果合并规则对所述子任务处理结果进行合并,得到所述空间分析任务的处理结果。
  12. 一种计算机设备,包括存储器及一个或多个处理器,所述存储器中储存有计算机可读指令,所述计算机可读指令被所述一个或多个处理器执行时,使得所述一个或多个处理器执行以下步骤:
    获取空间分析任务,识别所述空间分析任务的空间分析类型;
    获取所述空间分析类型对应的任务划分策略,根据获得的任务划分策略,将所述空间分析任务划分为多个子任务;
    调用预设的空间分析处理节点对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果;及
    读取与所述任务划分策略匹配的结果合并规则,基于所述结果合并规则对所述子任务处理结果进行合并,得到所述空间分析任务的处理结果。
  13. 根据权利要求12所述的计算机设备,其中,所述处理器执行所述计算机可读指令时还执行以下步骤:
    获取所述GIS空间分析任务中包含的地理位置的区域等级关系;及
    根据所述地理位置的区域等级关系,将所述GIS空间分析任务划分为不同层级的GIS空间分析子任务。
  14. 根据权利要求13所述的计算机设备,其中,所述处理器执行所述计算机可读指令时还执行以下步骤:
    根据各个区域等级之间的包含关系,确定所述GIS空间分析子任务之间的优先级;
    根据确定的优先级对所述GIS空间分析子任务分别添加对应的优先级标签;及
    调用预设的空间分析处理节点,基于所述优先级标签对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果。
  15. 根据权利要求12所述的计算机设备,其中,所述处理器执行所述计算机可读指令时还执行以下步骤:
    获取所述BIM空间分析任务对应的BIM模型以及所述BIM模型中的体系层级关系;及根据所述BIM模型中的体系层级关系,将所述BIM空间分析任务划分为不同的BIM空间分析子任务。
  16. 根据权利要求15所述的计算机设备,其中,所述处理器执行所述计算机可读指令时还执行以下步骤:
    获取所述BIM空间分析任务对应的BIM模型,并将所述BIM模型划分为多个单体级信息模型;
    提取所述单体级信息模型对应的专业级信息模型,将所述专业级信息模型分解为构件与设备级信息模型;及
    基于所述构件与设备级信息模型的零部件信息,将所述构件与设备级信息模型划分为钢筋与零件级信息模型,得到BIM模型中的体系层级关系。
  17. 根据权利要求15所述的计算机设备,其中,所述处理器执行所述计算机可读指令时还执行以下步骤:
    获取所述BIM空间分析任务对应的BIM模型,并提取所述BIM模型中所包含的空间结构数据和构件分类数据;
    基于所述空间结构数据获取树状空间结构元素,并基于所述构件分类数据获取树状构件分类条目;及
    根据所述树状空间结构元素以及所述树状构件分类条目,确定所述BIM模型中的体系层级关系。
  18. 一个或多个存储有计算机可读指令的计算机可读存储介质,所述计算机可读指令被一个或多个处理器执行时,使得所述一个或多个处理器执行以下步骤:
    获取空间分析任务,识别所述空间分析任务的空间分析类型;
    获取所述空间分析类型对应的任务划分策略,根据获得的任务划分策略,将所述空间分析任务划分为多个子任务;
    调用预设的空间分析处理节点对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果;及
    读取与所述任务划分策略匹配的结果合并规则,基于所述结果合并规则对所述子任务处理结果进行合并,得到所述空间分析任务的处理结果。
  19. 根据权利要求18所述的存储介质,其中,所述计算机可读指令被所述处理器执行时还执行以下步骤:
    获取所述GIS空间分析任务中包含的地理位置的区域等级关系;及
    根据所述地理位置的区域等级关系,将所述GIS空间分析任务划分为不同层级的GIS空间分析子任务。
  20. 根据权利要求19所述的存储介质,其中,所述计算机可读指令被所述处理器执行时还执行以下步骤:
    根据各个区域等级之间的包含关系,确定所述GIS空间分析子任务之间的优先级;
    根据确定的优先级对所述GIS空间分析子任务分别添加对应的优先级标签;及
    调用预设的空间分析处理节点,基于所述优先级标签对所述多个子任务进行处理,得到每个子任务对应的子任务处理结果。
PCT/CN2020/136096 2020-07-27 2020-12-14 空间分析任务的处理方法、装置、计算机设备和存储介质 WO2021139488A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010732133.3 2020-07-27
CN202010732133.3A CN111858821B (zh) 2020-07-27 2020-07-27 空间分析任务的处理方法、装置、计算机设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021139488A1 true WO2021139488A1 (zh) 2021-07-15

Family

ID=72947251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136096 WO2021139488A1 (zh) 2020-07-27 2020-12-14 空间分析任务的处理方法、装置、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN111858821B (zh)
WO (1) WO2021139488A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111858821B (zh) * 2020-07-27 2024-03-29 平安科技(深圳)有限公司 空间分析任务的处理方法、装置、计算机设备和存储介质
CN113656520B (zh) * 2021-08-10 2022-10-28 广州市规划和自然资源自动化中心(广州市基础地理信息中心) 空间分析方法、装置、计算机设备和存储介质
CN115658325B (zh) * 2022-11-18 2024-01-23 北京市大数据中心 数据处理方法、装置、多核处理器、电子设备以及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160050735A (ko) * 2014-10-30 2016-05-11 에스케이텔레콤 주식회사 대용량 공간 데이터 환경에서 공간분석을 위한 공간질의 장치 및 그를 위한 컴퓨터로 읽을 수 있는 기록 매체
CN106776963A (zh) * 2016-12-05 2017-05-31 同济大学 轻量化的bim大数据在线可视化方法和系统
CN110134752A (zh) * 2019-05-16 2019-08-16 洛阳众智软件科技股份有限公司 三维大场景建模数据处理方法及装置
CN110874271A (zh) * 2019-11-20 2020-03-10 山东省国土测绘院 一种海量建筑图斑特征快速计算方法及系统
CN111160810A (zh) * 2020-01-09 2020-05-15 中国地质大学(武汉) 基于工作流的高性能分布式空间分析任务调度方法及系统
CN111858821A (zh) * 2020-07-27 2020-10-30 平安科技(深圳)有限公司 空间分析任务的处理方法、装置、计算机设备和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160050735A (ko) * 2014-10-30 2016-05-11 에스케이텔레콤 주식회사 대용량 공간 데이터 환경에서 공간분석을 위한 공간질의 장치 및 그를 위한 컴퓨터로 읽을 수 있는 기록 매체
CN106776963A (zh) * 2016-12-05 2017-05-31 同济大学 轻量化的bim大数据在线可视化方法和系统
CN110134752A (zh) * 2019-05-16 2019-08-16 洛阳众智软件科技股份有限公司 三维大场景建模数据处理方法及装置
CN110874271A (zh) * 2019-11-20 2020-03-10 山东省国土测绘院 一种海量建筑图斑特征快速计算方法及系统
CN111160810A (zh) * 2020-01-09 2020-05-15 中国地质大学(武汉) 基于工作流的高性能分布式空间分析任务调度方法及系统
CN111858821A (zh) * 2020-07-27 2020-10-30 平安科技(深圳)有限公司 空间分析任务的处理方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
CN111858821B (zh) 2024-03-29
CN111858821A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2021139488A1 (zh) 空间分析任务的处理方法、装置、计算机设备和存储介质
Quattrini et al. From TLS to HBIM. High quality semantically-aware 3D modeling of complex architecture
Campanaro et al. 3D GIS for cultural heritage restoration: A ‘white box’workflow
Saygi et al. Evaluation of GIS and BIM roles for the information management of historical buildings
CN109214068B (zh) 基于bim的底层装配式建筑信息提取方法
Barontini et al. Development and demonstration of an HBIM framework for the preventive conservation of cultural heritage
Santoni et al. HBIM approach to implement the historical and constructive knowledge. The case of the Real Colegiata of San Isidoro (León, Spain)
Liu et al. IFC-based integration tool for supporting information exchange from architectural model to structural model
Floros et al. Investigating interoperability capabilities between IFC and CityGML LOD 4–retaining semantic information
CN114238488A (zh) 一种多专业数字化成果集成与数据交互方法及系统
Nieto-Julián et al. Collaborative workflow in an HBIM project for the restoration and conservation of cultural heritage
Continenza et al. HBIM for the archaeology of standing buildings: Case study of the Church of San Cipriano in Castelvecchio Calvisio (L’Aquila, Italy)
CN113779663A (zh) 基于bim的地铁车站围护结构三维建模方法、系统和介质
Zhang et al. 3D CAD modeling and visualization of the tunnel construction process in a distributed simulation environment
Floros et al. LOSS of INFORMATION during design & construction for highways asset management: A GeoBIM perspective
Yuan et al. Life cycle assessment of building energy in big-data era: theory and framework
Wang et al. Integration of 3DGIS and BIM and its application in visual detection of concealed facilities
KR20110129172A (ko) 건축물 설계 및 에너지 성능평가모듈
Aksin et al. A Review of The Distinguishing Features of The Historical Buildings in Safranbolu Region For The Purpose of Classification For Semantically Enhanced 3d Building Model
Shutkin et al. City and building information modelling using IFC standard
Baroš THE APPLICATION OF BIM TECHNOLOGY AND ITS RELIABILITY IN THE STATIC LOAD ANALYSIS.
Solnosky et al. Formulation of systems and information architecture hierarchies for building structures
Liang et al. Research on the Technical Integration of Heterogeneous Materials into Building Information Modeling
CN116629585B (zh) 一种运用本体的工艺管理系统及其方法
Sun Design of Full Life-Cycle Management System for Construction Project Based on “BIM+ GIS”

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911986

Country of ref document: EP

Kind code of ref document: A1