WO2021139361A1 - Schottky diode and manufacturing method therefor - Google Patents

Schottky diode and manufacturing method therefor Download PDF

Info

Publication number
WO2021139361A1
WO2021139361A1 PCT/CN2020/125413 CN2020125413W WO2021139361A1 WO 2021139361 A1 WO2021139361 A1 WO 2021139361A1 CN 2020125413 W CN2020125413 W CN 2020125413W WO 2021139361 A1 WO2021139361 A1 WO 2021139361A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
layer
nitride
anode
schottky diode
Prior art date
Application number
PCT/CN2020/125413
Other languages
French (fr)
Chinese (zh)
Inventor
程凯
Original Assignee
苏州晶湛半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶湛半导体有限公司 filed Critical 苏州晶湛半导体有限公司
Priority to US17/779,064 priority Critical patent/US20220416092A1/en
Publication of WO2021139361A1 publication Critical patent/WO2021139361A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66212Schottky diodes

Abstract

A Schottky diode and a manufacturing method therefor. The Schottky diode (100) comprises a nitride channel layer (1); a nitride barrier layer (2) formed on the nitride channel layer (1); a nitride cap layer (3) formed on the nitride barrier layer (2) and comprising an activated region (31) and a non-activated region (32); a passivation layer (4) formed on the nitride cap layer (3) and comprising a first groove which penetrates through the passivation layer (4) and exposes the nitride cap layer (3), the first groove corresponding to the activated region (31); a dielectric layer (5) located on the passivation layer (4) and the inner wall of the first groove, a second groove being defined by the dielectric layer (5), and the dielectric layer (5) comprising a third groove which penetrates through the dielectric layer (5) and exposes part of the activated region (31) on the nitride cap layer (3); and an anode layer (6) formed in the second groove and the third groove and in contact with the activated region (31).

Description

肖特基二极管及其制造方法Schottky diode and manufacturing method thereof
相关交叉引用Related cross references
本申请基于申请号为2020100264931、申请日为2020年1月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。This application is filed based on a Chinese patent application with an application number of 2020100264931 and an application date of January 10, 2020, and claims the priority of the Chinese patent application. The entire content of the Chinese patent application is hereby incorporated by reference into this application.
技术领域Technical field
本申请涉及半导体技术领域,尤其涉及一种肖特基二极管及其制造方法。This application relates to the field of semiconductor technology, and in particular to a Schottky diode and a manufacturing method thereof.
背景技术Background technique
基于开关频率高、正向压降低等优点,使得肖特基二极管得到广泛应用,并逐渐可取代硅在高功率半导体器件上的应用。通常,肖特基二极管的阳极层直接成型在异质结构层上,使得异质结构层在高温环境下的漏电特性较大。Based on the advantages of high switching frequency and reduced forward voltage, Schottky diodes are widely used, and can gradually replace the application of silicon in high-power semiconductor devices. Generally, the anode layer of the Schottky diode is directly formed on the heterostructure layer, so that the leakage characteristic of the heterostructure layer in a high temperature environment is relatively large.
发明内容Summary of the invention
本申请提供一种肖特基二极管及其制造方法,以解决相关技术中的不足。This application provides a Schottky diode and a manufacturing method thereof to solve the deficiencies in the related art.
根据本申请实施例的第一方面,提供一种肖特基二极管,包括:According to a first aspect of the embodiments of the present application, there is provided a Schottky diode, including:
氮化物沟道层;Nitride channel layer;
氮化物势垒层,所述氮化物势垒层形成于所述氮化物沟道层上;A nitride barrier layer formed on the nitride channel layer;
氮化物冒层,所述氮化物冒层形成于所述氮化物势垒层上,所述氮化物冒层包括激活区域和非激活区域;A nitride cap layer, the nitride cap layer is formed on the nitride barrier layer, and the nitride cap layer includes an active region and an inactive region;
钝化层,所述钝化层形成于位于所述氮化物冒层上,所述钝化层包括第一凹槽,所述第一凹槽贯穿所述钝化层并暴露所述氮化物冒层,所述第一凹槽对应于所述激活区域;A passivation layer, the passivation layer is formed on the nitride cap, the passivation layer includes a first groove, the first groove penetrates the passivation layer and exposes the nitride cap Layer, the first groove corresponds to the activation area;
介质层,所述介质层位于所述钝化层上以及所述第一凹槽的内壁上,且所述介质层围成第二凹槽,所述介质层包括第三凹槽,所述第三凹槽贯穿所述介质层并暴露所述氮化物冒层上的部分所述激活区域;和The dielectric layer is located on the passivation layer and on the inner wall of the first groove, and the dielectric layer surrounds a second groove, the dielectric layer includes a third groove, and the first groove Three grooves penetrate through the dielectric layer and expose part of the active region on the nitride cap layer; and
阳极层,所述阳极层形成在所述第二凹槽和所述第三凹槽内,所述阳极层与所述激活区域接触。An anode layer, the anode layer is formed in the second groove and the third groove, and the anode layer is in contact with the active region.
可选的,所述氮化物冒层包括形成于所述激活区域的第四凹槽,所述第四凹槽贯穿所述氮化物冒层并暴露所述氮化物势垒层的一部分,且所述第四凹槽与所述第三凹槽连通;Optionally, the nitride cap layer includes a fourth groove formed in the active region, the fourth groove penetrates the nitride cap layer and exposes a part of the nitride barrier layer, and The fourth groove communicates with the third groove;
所述阳极层包括第一阳极层和第二阳极层,所述第一阳极层形成于所述第二凹槽内,所述第二阳极层形成于所述第三凹槽和所述第四凹槽内并与所述氮化物势垒层接触。The anode layer includes a first anode layer and a second anode layer, the first anode layer is formed in the second groove, and the second anode layer is formed in the third groove and the fourth anode layer. In the groove and in contact with the nitride barrier layer.
可选的,还包括:Optionally, it also includes:
第五凹槽和第六凹槽,所述第五凹槽和所述第六凹槽分别位于所述阳极层的两侧,所述第五凹槽和所述第六凹槽均依次贯穿所述介质层、所述钝化层和所述氮化物冒层至所述氮化物势垒层;和The fifth groove and the sixth groove, the fifth groove and the sixth groove are respectively located on both sides of the anode layer, the fifth groove and the sixth groove both penetrate through the The dielectric layer, the passivation layer, and the nitride capping layer to the nitride barrier layer; and
阴极层,所述阴极层形成于所述第五凹槽和所述第六凹槽内,并与所述氮化物势垒层接触。A cathode layer, the cathode layer is formed in the fifth groove and the sixth groove, and is in contact with the nitride barrier layer.
可选的,所述氮化物势垒层和氮化物冒层之间设有阻挡层。Optionally, a barrier layer is provided between the nitride barrier layer and the nitride cap layer.
可选的,所述激活区域为P型氮化物冒层。Optionally, the active region is a P-type nitride cap layer.
可选的,所述氮化物冒层包括掺杂有镁元素的氮化物冒层。Optionally, the nitride capping layer includes a nitride capping layer doped with magnesium.
可选的,镁元素的掺杂浓度物位于1E16cm3-5E20/cm3之间。Optionally, the doping concentration of magnesium is between 1E16cm3-5E20/cm3.
可选的,所述氮化物沟道层包括氮化镓沟道层,所述氮化物势垒层包括氮化镓铝势垒层。Optionally, the nitride channel layer includes a gallium nitride channel layer, and the nitride barrier layer includes an aluminum gallium nitride barrier layer.
可选的,还包括:Optionally, it also includes:
第七凹槽,形成于所述第三凹槽的至少一侧,且与所述第二凹槽连通或不连通;其中,所述第七凹槽贯穿所述介质层至所述氮化物冒层,和/或所述第七凹槽贯穿所述介质层且部分进入或贯穿所述氮化物冒层;所述第七凹槽内形成有所述阳极层。The seventh groove is formed on at least one side of the third groove and is connected or disconnected from the second groove; wherein, the seventh groove penetrates the dielectric layer to the nitride cap Layer, and/or the seventh groove penetrates the dielectric layer and partially enters or penetrates the nitride cap layer; the anode layer is formed in the seventh groove.
根据本申请实施例的第二方面,提供一种肖特基二极管的制造方法,包括:According to a second aspect of the embodiments of the present application, there is provided a method for manufacturing a Schottky diode, including:
形成氮化物沟道层;Forming a nitride channel layer;
在所述氮化物沟道层上形成氮化物势垒层;Forming a nitride barrier layer on the nitride channel layer;
在所述氮化物势垒层上形成氮化物冒层;Forming a nitride cap layer on the nitride barrier layer;
在所述氮化物冒层上形成钝化层;Forming a passivation layer on the nitride capping layer;
形成第一凹槽,所述第一凹槽贯穿所述钝化层以暴露所述氮化物冒层;Forming a first groove, the first groove penetrating the passivation layer to expose the nitride cap layer;
形成介质层,所述介质层位于所述钝化层上以及所述第一凹槽的内壁上,且所述介质层形成第二凹槽;Forming a dielectric layer, the dielectric layer is located on the passivation layer and on the inner wall of the first groove, and the dielectric layer forms a second groove;
将形成有所述第二凹槽的待加工结构退火,以在所述氮化物冒层上对应于所述第一凹槽的区域形成激活区域,并在所述氮化物冒层上被所述钝化层覆盖的区域形成所述非激活区域;The structure to be processed in which the second groove is formed is annealed to form an active region on the nitride cap layer corresponding to the first groove, and is covered by the nitride cap layer. The area covered by the passivation layer forms the inactive area;
在所述待加工结构上形成第三凹槽,所述第三凹槽贯穿所述介质层以暴露所述氮化物冒层上的部分激活区域;Forming a third groove on the structure to be processed, the third groove penetrating the dielectric layer to expose a part of the active area on the nitride cap;
在所述第二凹槽和所述第三凹槽内形成阳极层,所述阳极层与所述激活区域接触。An anode layer is formed in the second groove and the third groove, and the anode layer is in contact with the active region.
可选的,还包括:Optionally, it also includes:
形成第四凹槽,所述第四凹槽贯穿所述氮化物冒层以暴露所述氮化物势垒层,且所述第四凹槽与所述第三凹槽连通;Forming a fourth groove, the fourth groove penetrates the nitride cap to expose the nitride barrier layer, and the fourth groove communicates with the third groove;
所述在所述第二凹槽和所述第三凹槽内形成阳极层,包括:The forming an anode layer in the second groove and the third groove includes:
在所述第三凹槽和所述第四凹槽内形成第二阳极层并与所述氮化物势垒层接触;Forming a second anode layer in the third groove and the fourth groove and in contact with the nitride barrier layer;
在所述第二凹槽内形成第一阳极层。A first anode layer is formed in the second groove.
可选的,还包括:Optionally, it also includes:
形成第五凹槽和第六凹槽,所述阳极层位于所述第五凹槽和所述第六凹槽之间,所述第五凹槽和所述第六凹槽均依次贯穿所述介质层、所述钝化层和所述氮化物冒层至所述氮化物势垒层;A fifth groove and a sixth groove are formed, the anode layer is located between the fifth groove and the sixth groove, and both the fifth groove and the sixth groove pass through the A dielectric layer, the passivation layer, and the nitride cap to the nitride barrier layer;
在所述第五凹槽和所述第六凹槽内形成阴极层。A cathode layer is formed in the fifth groove and the sixth groove.
可选的,还包括:Optionally, it also includes:
在所述第三凹槽的至少一侧形成第七凹槽,且与所述第二凹槽连通或不连通;其中, 所述第七凹槽贯穿所述介质层至所述氮化物冒层,和/或所述第七凹槽贯穿所述介质层且部分进入或贯穿所述氮化物冒层;A seventh groove is formed on at least one side of the third groove, and is connected or disconnected from the second groove; wherein, the seventh groove penetrates the dielectric layer to the nitride cap layer , And/or the seventh groove penetrates the dielectric layer and partially penetrates or penetrates the nitride cap layer;
在所述第七凹槽内形成第一阳极层。A first anode layer is formed in the seventh groove.
本申请的实施例提供的技术方案可以包括以下有益效果:The technical solutions provided by the embodiments of the present application may include the following beneficial effects:
本申请中阳极层与氮化物冒层之间形成肖特基接触,可以有效避免阳极层与包含有氮化物沟道层和氮化物势垒层的异质结构层直接接触,能够平衡肖特基二极管在正向开启电压与反向漏电特性方面的矛盾,并且能够抑制异质结构层在高温环境下的漏电特性。进一步地,由于阳极层与氮化物冒层上的激活区域相接触,而该激活区域的空穴浓度较高,而有利于提高器件性能。且通过设置阻挡层,能够在后续高温生长其他外延层的过程中,利用阻挡层在高温下不易分解的特性,使得凹槽不会贯穿阻挡层,从而凹槽的深度不会低于阻挡层,进而精准控制凹槽的刻蚀深度。In this application, a Schottky contact is formed between the anode layer and the nitride cap layer, which can effectively avoid direct contact between the anode layer and the heterostructure layer including the nitride channel layer and the nitride barrier layer, and can balance the Schottky The diode has a contradiction between the forward turn-on voltage and the reverse leakage characteristics, and can suppress the leakage characteristics of the heterostructure layer in a high-temperature environment. Further, since the anode layer is in contact with the active region on the nitride cap layer, and the concentration of holes in the active region is relatively high, it is beneficial to improve the performance of the device. In addition, by providing a barrier layer, it is possible to utilize the barrier layer’s non-decomposability characteristics at high temperatures during the subsequent high-temperature growth of other epitaxial layers, so that the groove does not penetrate the barrier layer, so that the depth of the groove will not be lower than the barrier layer. In turn, the etching depth of the groove is precisely controlled.
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。It should be understood that the above general description and the following detailed description are only exemplary and explanatory, and cannot limit the application.
附图说明Description of the drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。The drawings herein are incorporated into the specification and constitute a part of the specification, show embodiments that conform to the application, and are used together with the specification to explain the principle of the application.
图1是根据一示例性实施例示出的一种肖特基二极管的结构示意图。Fig. 1 is a schematic diagram showing the structure of a Schottky diode according to an exemplary embodiment.
图2是根据一示例性实施例示出的另一种肖特基二极管的结构示意图。Fig. 2 is a schematic diagram showing the structure of another Schottky diode according to an exemplary embodiment.
图3是根据一示例性实施例示出的又一种肖特基二极管的结构示意图。Fig. 3 is a schematic diagram showing the structure of still another Schottky diode according to an exemplary embodiment.
图4是根据一示例性实施例示出的一种肖特基二极管的制造工艺流程图。Fig. 4 is a flow chart showing a manufacturing process of a Schottky diode according to an exemplary embodiment.
图5是根据一示例性实施例示出的另一种肖特基二极管的制造流程图。Fig. 5 is a manufacturing flow chart showing another Schottky diode according to an exemplary embodiment.
图6是根据一示例性实施例示出的又一种肖特基二极管的制造流程图。Fig. 6 is a manufacturing flow chart showing yet another Schottky diode according to an exemplary embodiment.
图7是根据一示例性实施例示出的再一种肖特基二极管的结构示意图。Fig. 7 is a schematic diagram showing the structure of still another Schottky diode according to an exemplary embodiment.
图8是根据一示例性实施例示出的再一种肖特基二极管的制造流程图。Fig. 8 is a manufacturing flow chart of still another Schottky diode according to an exemplary embodiment.
具体实施方式Detailed ways
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。The exemplary embodiments will be described in detail here, and examples thereof are shown in the accompanying drawings. When the following description refers to the accompanying drawings, unless otherwise indicated, the same numbers in different drawings represent the same or similar elements. The implementation manners described in the following exemplary embodiments do not represent all implementation manners consistent with the present application. On the contrary, they are merely examples of devices and methods consistent with some aspects of the application as detailed in the appended claims.
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。The terms used in this application are only for the purpose of describing specific embodiments, and are not intended to limit the application. The singular forms of "a", "said" and "the" used in this application and the appended claims are also intended to include plural forms, unless the context clearly indicates other meanings. It should also be understood that the term "and/or" as used herein refers to and includes any or all possible combinations of one or more associated listed items.
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。It should be understood that although the terms first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other. For example, without departing from the scope of this application, the first information may also be referred to as second information, and similarly, the second information may also be referred to as first information. Depending on the context, the word "if" as used herein can be interpreted as "when" or "when" or "in response to determination".
图1是根据一示例性实施例示出的一种肖特基二极管100的结构示意图。如图1所示,该肖特基二极管100可以包括氮化物沟道层1、氮化物势垒层2、氮化物冒层3、钝化层4和介质层5。其中,氮化物势垒层2形成在氮化物沟道层1上,该氮化物沟道层1可以采用GaN和AlN中的一种或者多种材料制成,氮化物势垒层2可以采用AlN、GaN、AlGaN和InN中的一种或者多种材料制成,本申请并不对此进行限制。进一步地,可以在氮化物势垒层2上形成氮化物冒层3,并且该氮化物冒层3可以包括激活区域31和非激活区域32。钝化层4形成在氮化物冒层3上,该钝化层4具有钝化和保护作用,能够降低氮化物冒层3的表面态,有效降低电流崩塌效应,其中,钝化层4可以是氮化硅、硅铝氮和二氧化硅中的一种或者多种的组合。该钝化层4可以是通过沉积工艺形成在氮化物冒层3上,沉积该钝化层4的工艺可以是PECVD(Plasma Enhanced Chemical Vapor Deposition、等离子增强化学气相沉积)、LPCVD(Low Pressure Chemical Vapor Deposition、低压力化学气相沉积)、ALD(Atomic Layer Deposition、原子层沉积)和MOCVD(Metal-organic Chemical Vapor Deposition、金属有机化合物化学气相沉积)中一种或者几种工艺的组合。Fig. 1 is a schematic diagram showing the structure of a Schottky diode 100 according to an exemplary embodiment. As shown in FIG. 1, the Schottky diode 100 may include a nitride channel layer 1, a nitride barrier layer 2, a nitride cap layer 3, a passivation layer 4 and a dielectric layer 5. Wherein, the nitride barrier layer 2 is formed on the nitride channel layer 1. The nitride channel layer 1 can be made of one or more of GaN and AlN, and the nitride barrier layer 2 can be made of AlN. It is made of one or more materials among GaN, AlGaN, and InN, which is not limited in this application. Further, a nitride cap layer 3 may be formed on the nitride barrier layer 2, and the nitride cap layer 3 may include an active region 31 and an inactive region 32. The passivation layer 4 is formed on the nitride cap 3, the passivation layer 4 has passivation and protection, can reduce the surface state of the nitride cap 3, effectively reduce the current collapse effect, wherein the passivation layer 4 can be One or a combination of silicon nitride, silicon aluminum nitrogen, and silicon dioxide. The passivation layer 4 may be formed on the nitride layer 3 by a deposition process, and the process of depositing the passivation layer 4 may be PECVD (Plasma Enhanced Chemical Vapor Deposition, plasma enhanced chemical vapor deposition), LPCVD (Low Pressure Chemical Vapor) Deposition, low pressure chemical vapor deposition), ALD (Atomic Layer Deposition, atomic layer deposition) and MOCVD (Metal-organic Chemical Vapor Deposition, metal organic compound chemical vapor deposition) one or a combination of several processes.
该钝化层4可以包括第一凹槽,该第一凹槽贯穿钝化层4并暴露一部分的氮化物冒 层3,且该第一凹槽对应于激活区域31设置,介质层5可以形成于钝化层4上以及第一凹槽的内壁上,通过介质层5可以降低栅极漏电并使得肖特基二极管100能够具有较高的电压耐受值。该介质层5可以包括氮化铝介质层、氮化硅介质层、氧化铝介质层、氮氧化铝介质层、二氧化硅介质层中的一种或者多种的组合,本申请不进行限制。The passivation layer 4 may include a first groove that penetrates the passivation layer 4 and exposes a part of the nitride cap layer 3, and the first groove is disposed corresponding to the active region 31, and the dielectric layer 5 may be formed On the passivation layer 4 and the inner wall of the first groove, the dielectric layer 5 can reduce the gate leakage and enable the Schottky diode 100 to have a higher voltage withstand value. The dielectric layer 5 may include one or a combination of aluminum nitride dielectric layer, silicon nitride dielectric layer, aluminum oxide dielectric layer, aluminum oxynitride dielectric layer, and silicon dioxide dielectric layer, which is not limited in this application.
由于该介质层5接触了第一凹槽的内壁,从而由该介质层5可以围成一第二凹槽,。进一步地,该介质层5还可以包括第三凹槽,该第三凹槽贯穿介质层5并且暴露氮化物冒层3上的部分激活区域31。由此,通过第一凹槽、第二凹槽和第三凹槽可以形成一个向内凹陷的空间,而且通过第三凹槽可以暴露氮化物冒层3的部分激活区域31。其中,该肖特基二极管100还可以包括阳极层6和阴极层9,该阳极层6形成在第二凹槽和第三凹槽内,并且由于第三凹槽暴露了氮化物冒层3上的激活区域31,所以阳极层6可以与激活区域31形成肖特基接触。其中,该阳极层6可以采用功函数较高的金属来实现肖特基金属,例如可以采用Ni、Au或者Pt金属的阳极层6来与异质结构层形成肖特基接触。Since the dielectric layer 5 contacts the inner wall of the first groove, the dielectric layer 5 can form a second groove. Further, the dielectric layer 5 may further include a third groove, which penetrates the dielectric layer 5 and exposes a part of the active region 31 on the nitride cap layer 3. Thus, a space recessed inward can be formed by the first groove, the second groove, and the third groove, and a part of the active region 31 of the nitride cap layer 3 can be exposed by the third groove. Wherein, the Schottky diode 100 may further include an anode layer 6 and a cathode layer 9. The anode layer 6 is formed in the second groove and the third groove, and because the third groove exposes the nitride layer 3 Therefore, the anode layer 6 can form Schottky contact with the active region 31. Wherein, the anode layer 6 may use a metal with a higher work function to realize Schottky metal, for example, the anode layer 6 of Ni, Au or Pt metal may be used to form Schottky contact with the heterostructure layer.
由上述实施例可知,阳极层6与氮化物冒层3之间形成肖特基接触,可以有效避免阳极层6与包含有氮化物沟道层1和氮化物势垒层2的异质结构层直接接触,能够平衡肖特基二极管100在正向开启电压与反向漏电特性方面的矛盾,并且能够有效抑制异质结构层在高温环境下的漏电特性。进一步地,由于该阳极层6与氮化物冒层3的激活区域31相接触,而该激活区域31的空穴浓度较高,从而有利于提高器件性能。It can be seen from the above embodiment that the Schottky contact between the anode layer 6 and the nitride layer 3 can effectively avoid the anode layer 6 and the heterostructure layer including the nitride channel layer 1 and the nitride barrier layer 2 Direct contact can balance the contradiction between the forward turn-on voltage and the reverse leakage characteristics of the Schottky diode 100, and can effectively suppress the leakage characteristics of the heterostructure layer in a high temperature environment. Further, since the anode layer 6 is in contact with the active region 31 of the nitride cap layer 3, and the active region 31 has a higher hole concentration, it is beneficial to improve the performance of the device.
在该实施例中,氮化物冒层3可以包括P型氮化物冒层,例如是通过掺杂镁元素形成的P型氮化物冒层。可选的,氮化物冒层3可以是基于GaN进行镁元素的掺杂后得到的P型氮化物冒层,其中,镁元素的掺杂浓度可以位于1E16/cm 3-5E20/cm 3之间。进一步地,激活区域31可以通过对氮化物冒层3进行退火处理=形成。在一实施例中,工艺步骤可以包括,依次层叠形成氮化物沟道层1、氮化物势垒层2、氮化物冒层3和钝化层4,然后在钝化层4上形成贯穿钝化层4至氮化物冒层3的第一凹槽,再将形成了第一凹槽后的结构置入无氢气的氛围内进行退火,例如可以在氮气、一氧化氮、空气、或者氮气与氧气的混合气体中进行退火,由于第一凹槽区域对应的氮化物冒层3没有被钝化层4遮挡,氢原子溢出、镁原子被激活,从而形成激活区域31,而被钝化层4遮挡的区域由于氢原子没有通道溢出,所以被钝化层4遮挡的区域的氮化物冒层3依旧保持半绝缘状态,从而形成非激活区域32。 In this embodiment, the nitride capping layer 3 may include a P-type nitride capping layer, for example, a P-type nitride capping layer formed by doping with magnesium. Alternatively, the nitride run between 1E16 / cm 3 -5E20 / cm 3 may be a GaN based layer 3 of the P-type doping magnesium nitride obtained risk layer, wherein the doping concentration of magnesium may be located . Further, the active region 31 can be formed by annealing the nitride layer 3. In an embodiment, the process steps may include sequentially stacking and forming a nitride channel layer 1, a nitride barrier layer 2, a nitride cap layer 3, and a passivation layer 4, and then forming a through passivation on the passivation layer 4. Layer 4 to the first groove of nitride layer 3, and then put the structure after forming the first groove in a hydrogen-free atmosphere for annealing, for example, it can be annealed in nitrogen, nitric oxide, air, or nitrogen and oxygen. Annealing in the mixed gas of the first groove region, since the nitride layer 3 corresponding to the first groove area is not blocked by the passivation layer 4, hydrogen atoms overflow and magnesium atoms are activated, thereby forming an active region 31, which is blocked by the passivation layer 4. Since there is no channel for hydrogen atoms to overflow, the nitride layer 3 in the area blocked by the passivation layer 4 still maintains a semi-insulating state, thereby forming an inactive area 32.
在一实施例中,如图2所示,氮化物冒层3还可以包括形成在激活区域31的第四凹 槽,该第四凹槽贯穿氮化物冒层3并且暴露氮化物势垒层2的一部分,并且该第四凹槽与第三凹槽连通,从而阳极层6进一步可以通过该第四凹槽与氮化物势垒层2接触。具体而言,该阳极层6可以包括第一阳极层61和第二阳极层62,如图2所示,该第一阳极层61可以形成在第二凹槽内,且形成在第二凹槽内的第一阳极层61可以与激活区域31配合形成肖特基接触;该第二阳极层62可以形成在第三凹槽和第四凹槽内,且形成在该第三凹槽和第四凹槽内的第二阳极层62与包含有氮化物沟道层1和氮化物势垒层2的异质结构层形成欧姆接触。可选的,如图2所示,第三凹槽与第四凹槽的侧壁可以平齐。In an embodiment, as shown in FIG. 2, the nitride cap layer 3 may further include a fourth groove formed in the active region 31, the fourth groove penetrates the nitride cap layer 3 and exposes the nitride barrier layer 2. And the fourth groove communicates with the third groove, so that the anode layer 6 can further contact the nitride barrier layer 2 through the fourth groove. Specifically, the anode layer 6 may include a first anode layer 61 and a second anode layer 62. As shown in FIG. 2, the first anode layer 61 may be formed in the second groove and formed in the second groove. The first anode layer 61 inside may cooperate with the active region 31 to form a Schottky contact; the second anode layer 62 may be formed in the third groove and the fourth groove, and formed in the third groove and the fourth groove. The second anode layer 62 in the groove forms an ohmic contact with the heterostructure layer including the nitride channel layer 1 and the nitride barrier layer 2. Optionally, as shown in FIG. 2, the side walls of the third groove and the fourth groove may be flush.
需要说明的是,上述实施例中的第一凹槽、第三凹槽和第四凹槽可以是通过刻蚀工艺形成,而第二凹槽可以是在沿钝化层4的表面溅射介质层5时,沿着第一凹槽的侧壁形成。并且,由于第三凹槽是贯穿第二凹槽的底面形成,所以该第三凹槽的宽度小于或者等于第二凹槽的宽度。It should be noted that the first groove, the third groove, and the fourth groove in the foregoing embodiment may be formed by an etching process, and the second groove may be formed by sputtering the medium along the surface of the passivation layer 4. The layer 5 is formed along the sidewall of the first groove. Moreover, since the third groove is formed through the bottom surface of the second groove, the width of the third groove is less than or equal to the width of the second groove.
在一实施例中,如图7所示,还可以包括形成在介质层的第七凹槽,该第七凹槽位于第三凹槽的至少一侧,且贯穿介质层5至氮化物冒层3的激活区域31,并且该第七凹槽与第二凹槽连通。如图7所示实施例,该阳极层6可以包括第一阳极层61和第二阳极层62,该第一阳极层61可以形成在第二凹槽和第七凹槽内,且形成在第二凹槽和第七凹槽内的第一阳极层61可以与激活区域31配合形成肖特基接触;该第二阳极层62可以形成在第三凹槽和第四凹槽内,且形成在该第三凹槽和第四凹槽内的第二阳极层62与包含有氮化物沟道层1和氮化物势垒层2的异质结构层形成欧姆接触。在另一实施例中,该第七凹槽贯穿介质层5且部分进入或贯穿氮化物冒层3的激活区域31,从而使得形成在第二凹槽和第七凹槽内的第一阳极层61形成肖特基接触或欧姆接触。In one embodiment, as shown in FIG. 7, it may further include a seventh groove formed in the dielectric layer. The seventh groove is located on at least one side of the third groove and penetrates through the dielectric layer 5 to the nitride cap layer. 3 active area 31, and the seventh groove communicates with the second groove. As shown in the embodiment shown in FIG. 7, the anode layer 6 may include a first anode layer 61 and a second anode layer 62. The first anode layer 61 may be formed in the second groove and the seventh groove, and is formed in the second groove. The first anode layer 61 in the second groove and the seventh groove may cooperate with the active region 31 to form a Schottky contact; the second anode layer 62 may be formed in the third groove and the fourth groove, and is formed in The second anode layer 62 in the third groove and the fourth groove forms an ohmic contact with the heterostructure layer including the nitride channel layer 1 and the nitride barrier layer 2. In another embodiment, the seventh groove penetrates the dielectric layer 5 and partially enters or penetrates the active region 31 of the nitride cap layer 3, so that the first anode layer formed in the second groove and the seventh groove 61 forms a Schottky contact or an ohmic contact.
在上述各个实施例中,肖特基二极管100还可以包括第五凹槽、第六凹槽和阴极层9,且阳极层6位于第五凹槽和第六凹槽之间,该第五凹槽和第六凹槽均依次贯穿介质层5、钝化层4和氮化物冒层3至氮化物势垒层2,阴极层9形成在第五凹槽和第六凹槽内,并与氮化物势垒层2之间形成欧姆接触。In each of the foregoing embodiments, the Schottky diode 100 may further include a fifth groove, a sixth groove, and a cathode layer 9, and the anode layer 6 is located between the fifth groove and the sixth groove. The groove and the sixth groove penetrate through the dielectric layer 5, the passivation layer 4, and the nitride layer 3 to the nitride barrier layer 2 in sequence. The cathode layer 9 is formed in the fifth groove and the sixth groove and is combined with nitrogen. An ohmic contact is formed between the barrier layers 2.
如图3所示,该肖特基二极管100还可以包括位于氮化物势垒层2和氮化物冒层3之间的阻挡层10,该阻挡层可10可以用于对刻蚀的深度进行限定。该阻挡层10可以包括铝镓氮层。通过设置阻挡层10,能够准确控制第四凹槽的深度。As shown in FIG. 3, the Schottky diode 100 may further include a barrier layer 10 located between the nitride barrier layer 2 and the nitride cap layer 3. The barrier layer 10 may be used to limit the depth of etching. . The barrier layer 10 may include an aluminum gallium nitride layer. By providing the barrier layer 10, the depth of the fourth groove can be accurately controlled.
其中,该第五凹槽和第六凹槽可以通过刻蚀工艺形成,阴极层9可以通过沉积工艺形成至第五凹槽和第六凹槽内。其中,该沉积工艺包括PECVD、LPCVD、ALD和MOCVD 中的一种或者几种工艺的组合。阴极层9可以包括Ti、Al、Ni和Au中一种或者多种金属材质。Wherein, the fifth groove and the sixth groove may be formed by an etching process, and the cathode layer 9 may be formed into the fifth groove and the sixth groove by a deposition process. Wherein, the deposition process includes one or a combination of PECVD, LPCVD, ALD, and MOCVD. The cathode layer 9 may include one or more metal materials among Ti, Al, Ni, and Au.
基于上述技术方案,本申请还提供一种肖特基二极管的制造方法,相关处可以参考上文对于产品的介绍。如图4所示,该制造方法可以包括以下步骤:Based on the above technical solution, the present application also provides a method for manufacturing a Schottky diode. For related parts, please refer to the product introduction above. As shown in Figure 4, the manufacturing method may include the following steps:
步骤501,形成氮化物沟道层1。In step 501, a nitride channel layer 1 is formed.
步骤502,在所述氮化物沟道层1上形成氮化物势垒层2。 Step 502, forming a nitride barrier layer 2 on the nitride channel layer 1.
步骤503,在所述氮化物势垒层2上形成氮化物冒层3。 Step 503, forming a nitride dummy layer 3 on the nitride barrier layer 2.
步骤504,在所述氮化物冒层3上形成钝化层4。 Step 504, forming a passivation layer 4 on the nitride capping layer 3.
步骤505,形成第一凹槽41,所述第一凹槽41贯穿所述钝化层4以暴露所述氮化物冒层3。In step 505, a first groove 41 is formed, and the first groove 41 penetrates the passivation layer 4 to expose the nitride cap layer 3.
在本实施例中,如图5所示,可以在衬底基板上依次层叠形成氮化物沟道层1、氮化物势垒层2、氮化物冒层3和钝化层4,并进一步可以通过刻蚀工艺在钝化层4上形成第一凹槽41,该第一凹槽41贯穿钝化层4并暴露出一部分的氮化物冒层3。其中,还可以在氮化物沟道层1和氮化物势垒层2之间形成氮化物缓冲层(图中未示出),或者还可以在如图5中氮化物冒层3的下方形成氮化物成核层(图中未示出),或者,还可以在氮化物势垒层2和氮化物冒层3之间形成阻挡层,本申请并不对此进行限制。In this embodiment, as shown in FIG. 5, a nitride channel layer 1, a nitride barrier layer 2, a nitride cap layer 3, and a passivation layer 4 can be sequentially stacked on the base substrate, and further can be formed by The etching process forms a first groove 41 on the passivation layer 4, and the first groove 41 penetrates the passivation layer 4 and exposes a part of the nitride cap layer 3. Wherein, a nitride buffer layer (not shown in the figure) can also be formed between the nitride channel layer 1 and the nitride barrier layer 2, or nitrogen can also be formed under the nitride layer 3 as shown in FIG. A compound nucleation layer (not shown in the figure), or a barrier layer may be formed between the nitride barrier layer 2 and the nitride cap layer 3, which is not limited in this application.
步骤506,形成介质层5,所述介质层5位于所述钝化层4以及所述第一凹槽41的内壁上,且所述介质层5形成第二凹槽51。 Step 506, forming a dielectric layer 5, the dielectric layer 5 is located on the passivation layer 4 and the inner wall of the first groove 41, and the dielectric layer 5 forms a second groove 51.
步骤507,将形成有所述第二凹槽的待加工结构退火,以在所述氮化物冒层3上对应于所述第一凹槽的区域形成激活区域31,并在所述氮化物冒层3上被所述钝化层4覆盖的区域形成非激活区域32。Step 507: Anneal the structure to be processed in which the second groove is formed to form an active region 31 on the nitride cap layer 3 corresponding to the first groove, and in the nitride cap layer 3 The area on the layer 3 covered by the passivation layer 4 forms an inactive area 32.
在本实施例中,如图5所示,基于步骤505中得到的结构,进一步可以通过沉积工艺在钝化层4形成介质层5,且该介质层5与钝化层4接触,并且该介质层5可以与第一凹槽41的内壁接触,从而可以围绕形成第二凹槽51。In this embodiment, as shown in FIG. 5, based on the structure obtained in step 505, a dielectric layer 5 may be further formed on the passivation layer 4 by a deposition process, and the dielectric layer 5 is in contact with the passivation layer 4, and the dielectric The layer 5 may be in contact with the inner wall of the first groove 41 so that the second groove 51 may be formed around.
进一步地,可以在氮化物冒层3上的预设区域掺杂镁元素。可选的,可以是基于GaN进行镁元素的掺杂,其中,镁元素的掺杂浓度可以位于1E16/cm 3-5E20/cm 3之间。而后,可以将掺杂有镁元素且形成有的第二凹槽51的待加工结构放置在无氢气的氛围中进行退火,例如可以在氮气、一氧化氮、空气、或者氮气与氧气的混合气体中进行退火,由 于第一凹槽41区域对应的氮化物冒层3没有被钝化层4遮挡,氢原子溢出、镁原子被激活,从而使得预设区域被激活得到P型氮化物冒层,即得到激活区域31,而被钝化层4遮挡区域由于氢原子没有通道溢出,所以被钝化层4遮挡的区域的氮化物冒层3依旧保持半绝缘状态,从而形成非激活区域32,图5中以标识在氮化物冒层3上的虚线区分激活区域31和非激活区域32。 Further, a predetermined area on the nitride cap layer 3 can be doped with magnesium element. Alternatively, it may be performed based on magnesium-doped GaN, wherein the doping concentration of magnesium may be located 1E16 / cm 3 -5E20 / cm 3. Then, the structure to be processed with the second groove 51 doped with magnesium can be placed in a hydrogen-free atmosphere for annealing, such as nitrogen, nitric oxide, air, or a mixed gas of nitrogen and oxygen. During annealing, since the nitride cap 3 corresponding to the region of the first groove 41 is not blocked by the passivation layer 4, hydrogen atoms overflow and magnesium atoms are activated, so that the preset area is activated to obtain a P-type nitride cap. That is, the active area 31 is obtained, and the area covered by the passivation layer 4 has no channels for hydrogen atoms to overflow, so the nitride layer 3 in the area blocked by the passivation layer 4 still maintains a semi-insulating state, thereby forming an inactive area 32, In 5, the active area 31 and the inactive area 32 are distinguished by a dotted line marked on the nitride cap layer 3.
步骤508,在所述待加工结构上形成第三凹槽52,所述第三凹槽52贯穿所述介质层5以暴露所述氮化物冒层3的部分激活区域31。In step 508, a third groove 52 is formed on the structure to be processed, and the third groove 52 penetrates the dielectric layer 5 to expose a part of the active region 31 of the nitride cap layer 3.
步骤509,在所述第二凹槽51和所述第三凹槽52内形成阳极层6,所述阳极层6与所述激活区域31部分接触。In step 509, an anode layer 6 is formed in the second groove 51 and the third groove 52, and the anode layer 6 is partially in contact with the active region 31.
在本实施例中,在退火之后的待加工结构上可以通过刻蚀工艺形成第三凹槽52,该第三凹槽52贯穿介质层5并暴露激活区域31的一部分。进一步地,可以在第三凹槽52和第二凹槽51内沉积形成阳极层6,该阳极层6与激活区域31部分接触,并与氮化物势垒层2形成肖特基接触。In this embodiment, on the structure to be processed after annealing, a third groove 52 may be formed through an etching process, and the third groove 52 penetrates the dielectric layer 5 and exposes a part of the active region 31. Further, an anode layer 6 may be deposited in the third groove 52 and the second groove 51, and the anode layer 6 is partially in contact with the active region 31 and forms Schottky contact with the nitride barrier layer 2.
在另一实施例中,如图6所示,图6所示实施例中形成第三凹槽52以及形成第三凹槽52之前的步骤与图5所示实施例相同。并且,在图6所示实施例中,还可以对应于第三凹槽52形成第四凹槽33,该第四凹槽33贯穿激活区域31至氮化物势垒层2,以暴露氮化物势垒层2的一部分,阳极层6可以沉积在第二凹槽51、第三凹槽52和第四凹槽33内,且形成在第二凹槽51内的阳极层6可以与激活区域31配合形成肖特基接触;形成在该第三凹槽52和第四凹槽33内的阳极层6与包含有氮化物沟道层1和氮化物势垒层2的异质结构层形成欧姆接触。In another embodiment, as shown in FIG. 6, in the embodiment shown in FIG. 6, forming the third groove 52 and the steps before forming the third groove 52 are the same as the embodiment shown in FIG. 5. Moreover, in the embodiment shown in FIG. 6, a fourth groove 33 may be formed corresponding to the third groove 52, and the fourth groove 33 penetrates the active region 31 to the nitride barrier layer 2 to expose the nitride potential. A part of the barrier layer 2, the anode layer 6 may be deposited in the second groove 51, the third groove 52, and the fourth groove 33, and the anode layer 6 formed in the second groove 51 may cooperate with the active region 31 A Schottky contact is formed; the anode layer 6 formed in the third groove 52 and the fourth groove 33 forms an ohmic contact with the heterostructure layer including the nitride channel layer 1 and the nitride barrier layer 2.
在一实施例中,如图8所示,图8所示实施例中形成第三凹槽52以及形成第三凹槽52之前的步骤与图5所示实施例相同。并且,在图8所示实施例中,还可以在第三凹槽52的至少一侧形成第七凹槽53,且该第七凹槽53与第二凹槽51连通,该第七凹槽53贯穿介质层5至氮化物冒层3,阳极层6可以沉积在第二凹槽51、第三凹槽52、第四凹槽33和第七凹槽53内,且形成在第二凹槽51和第七凹槽53内的阳极层6可以与激活区域31配合形成肖特基接触;形成在该第三凹槽52和第四凹槽33内的阳极层6与包含有氮化物沟道层1和氮化物势垒层2的异质结构层形成欧姆接触。在另一实施例中,第七凹槽53可以贯穿介质层5并部分进入或贯穿氮化物冒层3的激活区域31,使得形成在第二凹槽51和第七凹槽53内的阳极层6形成肖特基接触或欧姆接触。In one embodiment, as shown in FIG. 8, in the embodiment shown in FIG. 8, the third groove 52 is formed and the steps before the third groove 52 are formed are the same as the embodiment shown in FIG. 5. Moreover, in the embodiment shown in FIG. 8, a seventh groove 53 may also be formed on at least one side of the third groove 52, and the seventh groove 53 is in communication with the second groove 51, and the seventh groove 53 penetrates the dielectric layer 5 to the nitride layer 3, and the anode layer 6 can be deposited in the second groove 51, the third groove 52, the fourth groove 33 and the seventh groove 53, and is formed in the second groove The anode layer 6 in the seventh groove 51 and the seventh groove 53 can cooperate with the active region 31 to form a Schottky contact; the anode layer 6 formed in the third groove 52 and the fourth groove 33 and contains the nitride channel The heterostructure layer of layer 1 and nitride barrier layer 2 forms an ohmic contact. In another embodiment, the seventh groove 53 may penetrate the dielectric layer 5 and partially enter or penetrate the active region 31 of the nitride cap layer 3, so that the anode layer formed in the second groove 51 and the seventh groove 53 6 Form Schottky contact or ohmic contact.
基于图5、图6和图8所示的实施例中,上述制造工艺还可以包括形成第五凹槽7和第六凹槽8,阳极层6位于第五凹槽7和第六凹槽8之间,且该第五凹槽7和第六凹槽8均依次贯穿介质层5、钝化层4和氮化物冒层3至氮化物势垒层2。进一步地,仍以图5、图6所示,还可以在第五凹槽7和第六凹槽8内形成阴极层9,该阴极层9与氮化物势垒层2接触形成欧姆接触。Based on the embodiment shown in FIG. 5, FIG. 6 and FIG. 8, the above-mentioned manufacturing process may further include forming a fifth groove 7 and a sixth groove 8, and the anode layer 6 is located in the fifth groove 7 and the sixth groove 8. In between, the fifth groove 7 and the sixth groove 8 penetrate the dielectric layer 5, the passivation layer 4, and the nitride layer 3 to the nitride barrier layer 2 in sequence. Furthermore, as shown in FIG. 5 and FIG. 6, a cathode layer 9 may be formed in the fifth groove 7 and the sixth groove 8, and the cathode layer 9 is in contact with the nitride barrier layer 2 to form an ohmic contact.
需要说明的是:在图5和图6所示实施例中,均以先在第五凹槽7和第六凹槽8内形成阴极层9、再在第二凹槽51、第三凹槽52和第四凹槽33沉积阳极层6为例进行示例性说明。而实际上,在其他一些实施例中,也可以先在第二凹槽51、第三凹槽52和第四凹槽33沉积阳极层6,再在第五凹槽7和第六凹槽8内形成阴极层9,本申请对阳极层6和阴极层9的沉积顺序不进行限制。It should be noted that in the embodiments shown in FIGS. 5 and 6, the cathode layer 9 is formed in the fifth groove 7 and the sixth groove 8, and then the second groove 51 and the third groove are formed. The anode layer 6 deposited by 52 and the fourth groove 33 is taken as an example for illustration. In fact, in some other embodiments, the anode layer 6 may be deposited in the second groove 51, the third groove 52, and the fourth groove 33 first, and then in the fifth groove 7 and the sixth groove 8. The cathode layer 9 is formed inside, and the application does not limit the deposition sequence of the anode layer 6 and the cathode layer 9.
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。After considering the specification and practicing the disclosure disclosed herein, those skilled in the art will easily think of other embodiments of the present application. This application is intended to cover any variations, uses, or adaptive changes of this application. These variations, uses, or adaptive changes follow the general principles of this application and include common knowledge or customary technical means in the technical field that are not disclosed in this application. . The description and the embodiments are only regarded as exemplary, and the true scope and spirit of the application are pointed out by the following claims.
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。It should be understood that the present application is not limited to the precise structure that has been described above and shown in the drawings, and various modifications and changes can be made without departing from its scope. The scope of the application is only limited by the appended claims.

Claims (14)

  1. 一种肖特基二极管,包括:A Schottky diode, including:
    氮化物沟道层;Nitride channel layer;
    氮化物势垒层,形成于所述氮化物沟道层上;A nitride barrier layer formed on the nitride channel layer;
    氮化物冒层,形成于所述氮化物势垒层上,所述氮化物冒层包括激活区域和非激活区域;A nitride cap layer formed on the nitride barrier layer, the nitride cap layer including an active area and an inactive area;
    钝化层,形成于所述氮化物冒层上,所述钝化层包括第一凹槽,所述第一凹槽贯穿所述钝化层并暴露所述氮化物冒层,所述第一凹槽对应于所述激活区域;The passivation layer is formed on the nitride cap layer, the passivation layer includes a first groove, the first groove penetrates the passivation layer and exposes the nitride cap layer, the first The groove corresponds to the activation area;
    介质层,位于所述钝化层上以及所述第一凹槽的内壁上,且所述介质层围成第二凹槽,所述介质层还包括第三凹槽,所述第三凹槽贯穿所述介质层并暴露所述氮化物冒层上的部分所述激活区域;和The dielectric layer is located on the passivation layer and on the inner wall of the first groove, and the dielectric layer encloses a second groove, the dielectric layer further includes a third groove, the third groove Penetrate through the dielectric layer and expose a portion of the active region on the nitride cap layer; and
    阳极层,形成在所述第二凹槽和所述第三凹槽内,所述阳极层与所述激活区域接触。An anode layer is formed in the second groove and the third groove, and the anode layer is in contact with the active region.
  2. 根据权利要求1所述的肖特基二极管,其中,所述氮化物冒层包括形成于所述激活区域的第四凹槽,所述第四凹槽贯穿所述氮化物冒层并暴露所述氮化物势垒层的一部分,且所述第四凹槽与所述第三凹槽连通;The Schottky diode according to claim 1, wherein the nitride cap layer includes a fourth groove formed in the active region, and the fourth groove penetrates the nitride cap layer and exposes the A part of a nitride barrier layer, and the fourth groove communicates with the third groove;
    所述阳极层包括第一阳极层和第二阳极层,所述第一阳极层形成于所述第二凹槽内,所述第二阳极层形成于所述第三凹槽和所述第四凹槽内,并与所述氮化物势垒层接触。The anode layer includes a first anode layer and a second anode layer, the first anode layer is formed in the second groove, and the second anode layer is formed in the third groove and the fourth anode layer. In the groove and in contact with the nitride barrier layer.
  3. 根据权利要求1所述的肖特基二极管,其中,所述第三凹槽的宽度小于所述第二凹槽。The Schottky diode according to claim 1, wherein the width of the third groove is smaller than that of the second groove.
  4. 根据权利要求1所述的肖特基二极管,还包括:The Schottky diode according to claim 1, further comprising:
    第五凹槽和第六凹槽,所述述第五凹槽和所述第六凹槽分别位于所述阳极层的两侧,所述第五凹槽和所述第六凹槽均依次贯穿所述介质层、所述钝化层和所述氮化物冒层至所述氮化物势垒层;和The fifth groove and the sixth groove, the fifth groove and the sixth groove are respectively located on both sides of the anode layer, and the fifth groove and the sixth groove both penetrate sequentially The dielectric layer, the passivation layer, and the nitride cap to the nitride barrier layer; and
    阴极层,形成于所述第五凹槽和所述第六凹槽内,并与所述氮化物势垒层接触。A cathode layer is formed in the fifth groove and the sixth groove and is in contact with the nitride barrier layer.
  5. 根据权利要求1所述的肖特基二极管,其中,所述氮化物势垒层和氮化物冒层之间设有阻挡层。The Schottky diode according to claim 1, wherein a barrier layer is provided between the nitride barrier layer and the nitride cap layer.
  6. 根据权利要求1所述的肖特基二极管,其中,所述激活区域为P型氮化物冒层。The Schottky diode of claim 1, wherein the active region is a P-type nitride cap layer.
  7. 根据权利要求6所述的肖特基二极管,其中,所述P型氮化物冒层掺杂有镁元素。The Schottky diode according to claim 6, wherein the P-type nitride capping layer is doped with magnesium element.
  8. 根据权利要求7所述的肖特基二极管,其中,所述镁元素的掺杂浓度位于1E16/cm 3-5E20/cm 3之间。 The Schottky diode of claim 7, wherein the doping concentration of the magnesium element located 1E16 / cm 3 -5E20 / cm 3.
  9. 根据权利要求1所述的肖特基二极管,其中,所述氮化物沟道层包括氮化镓沟道层,所述氮化物势垒层包括氮化镓铝势垒层。The Schottky diode of claim 1, wherein the nitride channel layer includes a gallium nitride channel layer, and the nitride barrier layer includes a gallium aluminum nitride barrier layer.
  10. 根据权利要求1所述的肖特基二极管,还包括:The Schottky diode according to claim 1, further comprising:
    第七凹槽,形成于所述第三凹槽的至少一侧,与所述第二凹槽连通或不连通;其中,所述第七凹槽贯穿所述介质层至所述氮化物冒层,和/或所述第七凹槽贯穿所述介质层且部分进入或贯穿所述氮化物冒层;A seventh groove is formed on at least one side of the third groove, and is connected or disconnected from the second groove; wherein, the seventh groove penetrates the dielectric layer to the nitride cap layer , And/or the seventh groove penetrates the dielectric layer and partially penetrates or penetrates the nitride cap layer;
    所述第七凹槽内形成有所述阳极层。The anode layer is formed in the seventh groove.
  11. 一种肖特基二极管的制造方法,包括:A method for manufacturing a Schottky diode includes:
    形成氮化物沟道层;Forming a nitride channel layer;
    在所述氮化物沟道层上形成氮化物势垒层;Forming a nitride barrier layer on the nitride channel layer;
    在所述氮化物势垒层上形成氮化物冒层;Forming a nitride cap layer on the nitride barrier layer;
    在所述氮化物冒层上形成钝化层;Forming a passivation layer on the nitride capping layer;
    形成第一凹槽,所述第一凹槽贯穿所述钝化层以暴露所述氮化物冒层;Forming a first groove, the first groove penetrating the passivation layer to expose the nitride cap layer;
    形成介质层,所述介质层位于所述钝化层上以及所述第一凹槽的内壁上,且所述介质层形成第二凹槽;Forming a dielectric layer, the dielectric layer is located on the passivation layer and on the inner wall of the first groove, and the dielectric layer forms a second groove;
    将形成有所述第二凹槽的待加工结构退火,以在所述氮化物冒层上对应于所述第一凹槽的区域形成激活区域,并在所述氮化物冒层上被所述钝化层覆盖的区域形成非激活区域;The structure to be processed in which the second groove is formed is annealed to form an active region on the nitride cap layer corresponding to the first groove, and is covered by the nitride cap layer. The area covered by the passivation layer forms an inactive area;
    在所述待加工结构上形成第三凹槽,所述第三凹槽贯穿所述介质层以暴露所述氮化物冒层上的部分所述激活区域;Forming a third groove on the structure to be processed, the third groove penetrating the dielectric layer to expose a part of the active region on the nitride cap layer;
    在所述第二凹槽和所述第三凹槽内形成阳极层,所述阳极层与所述激活区域接触。An anode layer is formed in the second groove and the third groove, and the anode layer is in contact with the active region.
  12. 根据权利要求11所述的制造方法,还包括:The manufacturing method according to claim 11, further comprising:
    形成第四凹槽,所述第四凹槽贯穿所述氮化物冒层以暴露所述氮化物势垒层,且所述第四凹槽与所述第三凹槽连通;Forming a fourth groove, the fourth groove penetrates the nitride cap to expose the nitride barrier layer, and the fourth groove communicates with the third groove;
    在所述第二凹槽和所述第三凹槽内形成阳极层,包括:Forming an anode layer in the second groove and the third groove includes:
    在所述第三凹槽和所述第四凹槽内形成第二阳极层并与所述氮化物势垒层接触;Forming a second anode layer in the third groove and the fourth groove and in contact with the nitride barrier layer;
    在所述第二凹槽内形成第一阳极层。A first anode layer is formed in the second groove.
  13. 根据权利要求11所述的制造方法,还包括:The manufacturing method according to claim 11, further comprising:
    形成第五凹槽和第六凹槽,所述阳极层位于所述第五凹槽和所述第六凹槽之间,所述第五凹槽和所述第六凹槽均依次贯穿所述介质层、所述钝化层和所述氮化物冒层至所述氮化物势垒层;A fifth groove and a sixth groove are formed, the anode layer is located between the fifth groove and the sixth groove, and both the fifth groove and the sixth groove pass through the A dielectric layer, the passivation layer, and the nitride cap to the nitride barrier layer;
    在所述第五凹槽和所述第六凹槽内形成阴极层。A cathode layer is formed in the fifth groove and the sixth groove.
  14. 根据权利要求11所述的制造方法,还包括:The manufacturing method according to claim 11, further comprising:
    在所述第三凹槽的至少一侧形成第七凹槽,且与所述第二凹槽连通或不连通;其中,所述第七凹槽贯穿所述介质层至所述氮化物冒层,和/或所述第七凹槽贯穿所述介质层且部分进入或贯穿所述氮化物冒层;A seventh groove is formed on at least one side of the third groove, and is connected or disconnected with the second groove; wherein, the seventh groove penetrates the dielectric layer to the nitride cap layer , And/or the seventh groove penetrates the dielectric layer and partially penetrates or penetrates the nitride cap layer;
    在所述第七凹槽内形成第一阳极层。A first anode layer is formed in the seventh groove.
PCT/CN2020/125413 2020-01-10 2020-10-30 Schottky diode and manufacturing method therefor WO2021139361A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/779,064 US20220416092A1 (en) 2020-01-10 2020-10-30 Schottky diode and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010026493.1A CN113130666A (en) 2020-01-10 2020-01-10 Schottky diode and method of manufacturing the same
CN202010026493.1 2020-01-10

Publications (1)

Publication Number Publication Date
WO2021139361A1 true WO2021139361A1 (en) 2021-07-15

Family

ID=76771457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125413 WO2021139361A1 (en) 2020-01-10 2020-10-30 Schottky diode and manufacturing method therefor

Country Status (3)

Country Link
US (1) US20220416092A1 (en)
CN (1) CN113130666A (en)
WO (1) WO2021139361A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308390A (en) * 2008-12-10 2012-01-04 特兰斯夫公司 Semiconductor heterostructure diodes
CN104134704A (en) * 2014-08-12 2014-11-05 苏州捷芯威半导体有限公司 Schottky diode and manufacturing method for Schottky diode
US20150053991A1 (en) * 2013-08-26 2015-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor having an ohmic contact by gradient layer and method of making the same
CN104465748A (en) * 2014-11-28 2015-03-25 中国科学院半导体研究所 Novel GaN-based enhanced HEMT device and manufacturing method thereof
CN105321994A (en) * 2015-11-06 2016-02-10 江苏能华微电子科技发展有限公司 Gallium nitride diode and preparation method thereof
CN108376707A (en) * 2018-01-11 2018-08-07 北京华碳科技有限责任公司 A kind of enhanced HEMT device of GaN base and preparation method thereof
US20190097034A1 (en) * 2017-09-27 2019-03-28 Sumitomo Electric Industries, Ltd. Field effect transistor and process of forming the same
CN211654831U (en) * 2020-01-10 2020-10-09 苏州晶湛半导体有限公司 Schottky diode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308390A (en) * 2008-12-10 2012-01-04 特兰斯夫公司 Semiconductor heterostructure diodes
US20150053991A1 (en) * 2013-08-26 2015-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Transistor having an ohmic contact by gradient layer and method of making the same
CN104134704A (en) * 2014-08-12 2014-11-05 苏州捷芯威半导体有限公司 Schottky diode and manufacturing method for Schottky diode
CN104465748A (en) * 2014-11-28 2015-03-25 中国科学院半导体研究所 Novel GaN-based enhanced HEMT device and manufacturing method thereof
CN105321994A (en) * 2015-11-06 2016-02-10 江苏能华微电子科技发展有限公司 Gallium nitride diode and preparation method thereof
US20190097034A1 (en) * 2017-09-27 2019-03-28 Sumitomo Electric Industries, Ltd. Field effect transistor and process of forming the same
CN108376707A (en) * 2018-01-11 2018-08-07 北京华碳科技有限责任公司 A kind of enhanced HEMT device of GaN base and preparation method thereof
CN211654831U (en) * 2020-01-10 2020-10-09 苏州晶湛半导体有限公司 Schottky diode

Also Published As

Publication number Publication date
CN113130666A (en) 2021-07-16
US20220416092A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
US10032898B2 (en) Method for manufacturing a HEMT transistor and HEMT transistor with improved electron mobility
CN110034186B (en) III-nitride enhanced HEMT based on composite barrier layer structure and manufacturing method thereof
US20200111876A1 (en) Algan/gan heterojunction hemt device compatible with si-cmos process and manufacturing method therefor
US11888052B2 (en) Semiconductor device and manufacturing method thereof employing an etching transition layer
EP2246880B1 (en) Semiconductor device fabrication method
US20210028016A1 (en) Semiconductor structure having sets of iii-v compound layers and method of forming
US10916445B2 (en) Method for preparing a p-type semiconductor layer, enhanced device and method for manufacturing the same
US10026808B2 (en) Semiconductor device including insulating film that includes negatively charged microcrystal
CN211654831U (en) Schottky diode
JPWO2008012877A1 (en) Compound semiconductor device using SiC substrate and manufacturing method thereof
TW201724269A (en) III-N material structure for gate-recessed transistors
US9960265B1 (en) III-V semiconductor device and method therefor
US20160133738A1 (en) High electron mobility transistor and manufacturing method thereof
CN109103098B (en) Gallium nitride insulated gate high electron mobility transistor and manufacturing method thereof
KR20180123953A (en) Semiconductor device and method of manufacturing the same
EP1903600A2 (en) Method for producing P-type group III nitride semiconductor and method for producing electrode for P-type group III nitride semiconductor
CN110600549B (en) Enhanced AlGaN/GaN MOS-HEMT device structure and preparation method thereof
WO2021139361A1 (en) Schottky diode and manufacturing method therefor
TW201901958A (en) Structure of GaN-based transistor and method of fabricating the same
US20220406949A1 (en) Diode and manufacturing method therefor
CN209843716U (en) Enhanced AlGaN/GaN MOS-HEMT device structure
US20230118944A1 (en) Schottky diode and manufacturing method thereof
WO2022110006A1 (en) Schottky diode
US11646357B2 (en) Method for preparing a p-type semiconductor structure, enhancement mode device and method for manufacturing the same
US11810910B2 (en) Group III nitride transistor structure capable of reducing leakage current and fabricating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912173

Country of ref document: EP

Kind code of ref document: A1