WO2021139360A1 - 一种用于病毒和细菌监测的污水采集装置 - Google Patents

一种用于病毒和细菌监测的污水采集装置 Download PDF

Info

Publication number
WO2021139360A1
WO2021139360A1 PCT/CN2020/125192 CN2020125192W WO2021139360A1 WO 2021139360 A1 WO2021139360 A1 WO 2021139360A1 CN 2020125192 W CN2020125192 W CN 2020125192W WO 2021139360 A1 WO2021139360 A1 WO 2021139360A1
Authority
WO
WIPO (PCT)
Prior art keywords
enrichment
collection device
virus
sewage collection
piston
Prior art date
Application number
PCT/CN2020/125192
Other languages
English (en)
French (fr)
Inventor
鱼敏坚
张瑜
秦骏
Original Assignee
未名环境分子诊断(常熟)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 未名环境分子诊断(常熟)有限公司 filed Critical 未名环境分子诊断(常熟)有限公司
Publication of WO2021139360A1 publication Critical patent/WO2021139360A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration

Definitions

  • the present invention relates to the technical field of sewage collection, in particular to a sewage collection device used for virus and bacteria monitoring.
  • the new coronavirus can appear in urine and feces.
  • these viruses in urine and feces are usually discharged into the sewage system.
  • people's washing process will directly release the virus into domestic sewage.
  • an important destination of the virus in cities is to enter the sewage system, which makes it possible to monitor the epidemic through sewage. Analyzing domestic sewage, isolating viruses in sewage, and monitoring them with modern biological techniques such as next-generation sequencing will be able to overcome the shortcomings of traditional epidemiology mentioned earlier.
  • sewage sample collection For the monitoring of viruses and bacteria in sewage, effective sewage sample collection is required.
  • the existing sewage collection methods, collecting instantaneous samples or collecting mixed samples through equal flow ratios, equal time ratios, etc., are suitable for the analysis of chemical substances in sewage, but not for the detection and analysis of bacteria or viruses.
  • the purpose of the present invention is to provide a sewage collection device for virus and bacteria monitoring, which adopts a continuous sampling method to realize uninterrupted monitoring of sewage viruses and bacteria, and can monitor and warn the prevalence of related epidemics all-weather; Sample enrichment is completed at the same time of large-volume sampling, which reduces the workload of subsequent sample processing in the laboratory, greatly shortens the analysis time, and improves the accuracy and sensitivity of sewage virus and bacteria monitoring.
  • a sewage collection device for virus and bacteria monitoring which includes a filter unit, a power unit, and an enrichment unit that are sequentially linked;
  • the filter unit includes a fixed plate with a through hole, a permeable stainless steel shell enclosed in a funnel shape and a free end fixed to the fixed plate, and a 5-level filter layer sheathed in the funnel enclosed by the permeable stainless steel shell;
  • the power unit includes a sleeve penetrating the fixed plate through a through hole, a two-stage composite nested piston pump with a piston movably arranged in the sleeve, and a power source connected to the second-stage composite nested piston pump;
  • the enrichment unit includes a plurality of enrichment bottles arranged in series, an enrichment membrane arranged in the enrichment bottle, and a plurality of automatic switching valves arranged on the pipeline and used for controlling the enrichment bottle.
  • the two-stage composite nested piston pump includes an outer piston arranged close to the filter unit, an inner piston arranged close to the enrichment unit, a communication tube, and a sleeve sleeved outside the inner piston and the outer piston
  • the piston sleeve of the piston tube, and the motor connected with the connecting pipe, the shaft center of the outer piston and the inner piston is provided with a passage, and the two ends of the connecting pipe are connected with the passage.
  • the above-mentioned 5-stage filter layer gradually decreases in pore size starting from the first stage close to the water-permeable stainless steel housing.
  • the pore diameters of the above-mentioned 5-stage filter layer are 5-10 microns, 10-20 microns, 20-50 microns, 50-100 microns, and 100-300 microns, respectively.
  • the above-mentioned water-permeable stainless steel casing and the 5-stage filter layer adopt a bionic streamline design
  • the stainless steel casing is a grid structure.
  • the above-mentioned enrichment membrane is one of microfiltration membrane, ultrafiltration membrane, nanofiltration membrane or agarose gel.
  • the above-mentioned enrichment membrane is agarose gel.
  • a waste water discharge port is provided on the above-mentioned enrichment bottle.
  • the continuous sampling method is adopted to realize the uninterrupted monitoring of the virus and bacteria in the sewage, which can monitor and warn the prevalence of related epidemics around the clock;
  • the two-stage composite nested piston pump can realize sampling while backflushing the filter layer, avoiding particles adhering on the outside of the filter layer during long-term sampling and reducing the sampling efficiency, so that the entire device can operate efficiently for a long time.
  • Figure 1 is a schematic structural diagram of a sewage collection device used for virus and bacteria monitoring according to an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a filter unit according to an embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of a two-stage composite nested piston pump according to an embodiment of the present invention.
  • Icon 100-Sewage collection device for virus and bacteria monitoring; 110-filtration unit; 120-power unit; 130-enrichment unit; 111-fixed plate; 114-through hole; 112-permeable stainless steel housing; 113-5 -Stage filter layer; 121-sleeve; 122-second-stage composite nested piston pump; 123-power supply; 131-concentration bottle; 132-concentration membrane; 133-automatic switching valve; 134-wastewater outlet; 141-outside Piston; 142-inner piston; 143-connecting pipe; 144-piston sleeve; 145-motor; 146-wide mouth section; 147-narrow mouth section; 148-cone section.
  • this embodiment provides a sewage collection device 100 for virus and bacteria monitoring, which includes a filter unit 110, a power unit 120, and an enrichment unit 130 that are sequentially linked.
  • the filter unit 110 includes a fixing plate 111 with a through hole 114, a water-permeable stainless steel housing 112 and a five-stage filter layer 113.
  • the water-permeable stainless steel shell 112 is enclosed in a funnel shape and the free end is fixed to the fixing plate 111.
  • the five-stage filter layer 113 is sleeved in the funnel surrounded by the water-permeable stainless steel shell 112.
  • the 5-stage filter layer 113 gradually decreases in pore size from the first stage close to the water-permeable stainless steel housing 112.
  • the pore diameters of the above-mentioned 5-stage filter layer 113 are 5-10 microns, 10-20 microns, 20-50 microns, 50-100 microns, and 100-300 microns, respectively.
  • the above-mentioned pore size may also have other sizes, as long as the purpose of filtering large particles can be achieved, it is within the protection scope of this embodiment.
  • the pore size of the 5-stage filter layer 113 needs to be adjusted accordingly.
  • the 10-300 micron filter layers at all levels are made of stainless steel, and the 5-10 micron filter layers are made of polypropylene, polytetrafluoroethylene and other materials.
  • the permeable stainless steel housing 112 and the 5-stage filter layer 113 adopt a bionic streamlined design, which is beneficial to reduce the resistance encountered during the flow of sewage.
  • the permeable stainless steel housing 112 has a grid structure.
  • the power unit 120 includes a sleeve 121, a two-stage composite nested piston pump 122 and a power source 123 for powering the above-mentioned second-stage composite nested piston pump 122.
  • the sleeve 121 passes through the fixing plate 111 through the through hole 114.
  • the piston of the two-stage composite nested piston pump 122 is movably arranged in the above-mentioned sleeve 121.
  • the power source 123 is connected to the secondary composite nested piston pump 122 and is wrapped in a waterproof layer.
  • the nested piston can backflush the filter layer at the same time of sampling, so as to prevent the particles adhering on the outside of the filter layer from reducing the sampling efficiency during the long-term sampling process.
  • the power source 123 is a rechargeable lithium battery. In other embodiments, it may also be other types of power sources, all of which fall within the protection scope of this embodiment.
  • the two-stage composite nested piston pump 122 includes an outer piston 141 close to the filter unit 110, an inner piston 142 close to the enrichment unit 130, a communication pipe 143, a piston sleeve 144 and a motor 145.
  • the shafts of the outer piston 141 and the inner piston 142 are provided with channels, and the two ends of the communication pipe 143 are connected to the inner piston 142 and the outer piston 141.
  • the outer piston 141 and the inner piston 142 are sleeved in the piston sleeve 144.
  • the motor 145 is connected to the communication pipe 143 and drives the communication pipe 143 to move, providing power for the movement of the inner piston 142 and the outer piston 141.
  • the communicating pipe 143 includes a wide-mouth section 146, a narrow-mouth section 147 and a tapered section 148.
  • the wide-mouth section 146 is used to accommodate the outer piston 141 with a larger diameter
  • the narrow-mouth section 147 is used to accommodate a larger diameter. Small inner piston 142.
  • the connecting pipe 143 may also be of equal width, and the inner piston 142 and the outer piston 141 may be of equal diameter, and both can achieve the technical effects of this embodiment, and all fall within the protection scope of this embodiment.
  • the diameter of the outer piston 141 is greater than the diameter of the inner piston 142, a small amount of water can be ensured to enter the enrichment unit 130, and most of the water backwashes to the filter unit 110, which can greatly avoid the outside of the filter layer during a long sampling process. Adhesive particles reduce sampling efficiency.
  • the enrichment unit 130 includes four enrichment bottles 131, an enrichment membrane 132 and four automatic switching valves 133 arranged in series.
  • the above-mentioned enrichment membrane 132 is arranged in the enrichment bottle 131 for enriching bacteria and viruses in the sewage.
  • the automatic switching valve 133 is arranged on the pipeline connected to the enrichment bottle 131 to control the inflow and out of the sewage in the four enrichment bottles 131 connected in series.
  • the enrichment bottle 131 is provided with a waste water outlet 134, and the sewage from which bacteria and viruses have been removed through the enrichment membrane 132 can flow out from the waste water outlet 134.
  • the above-mentioned enrichment membrane 132 is an agarose gel, which is a gel prepared with agarose as a matrix, which relies on secondary chains between sugar chains to maintain a network structure, and the concentration of agarose Determines the pore size of the network structure, which can be used for the separation and enrichment of bacteria and viruses of different sizes.
  • the enrichment membrane 132 can also be other materials, such as filter membranes such as microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, etc.
  • the particle size range that the above-mentioned filter membranes can retain is between 0.005-5 microns, and Choose according to the particle size of the target bacteria and virus.
  • the material of the filter membrane can be selected from polypropylene, polysulfone, plastic alloy, polytetrafluoroethylene, etc., as long as it can achieve the separation and enrichment of bacteria and viruses of different particle sizes through adjustment in this embodiment, all of which are protected in this embodiment.
  • the automatic switching valve 133 adopts a solenoid valve with timing switching. The principle is that when one enrichment bottle 131 works for the full enrichment time, the valve of the solenoid valve with timing switching is automatically opened, and the sewage flows into the next enrichment bottle. 131 continues to enrich.
  • the automatic switching valve 133 may also be another valve body, as long as it can realize convenient switching of the enrichment bottle 131, it is within the protection scope of this embodiment.
  • the enrichment time can be set according to the particle size and concentration of bacteria and viruses. The working efficiency of the enrichment membrane 132 and the expected enrichment rate are determined through experimental research.
  • the working principle of the sewage collection device 100 for virus and bacteria monitoring is as follows: (1) When the inner piston 142 and the outer piston 141 move to the side close to the enrichment unit 130, they provide sewage With the power flowing through the filter layer, sewage flows from the permeable stainless steel housing 112 through the five-stage filter layer 113 to achieve filtration, and the filtered sewage is introduced into the subsequent enrichment unit 130 through the inner piston 142. When the sewage passes through the enrichment bottle 131, the bacteria and viruses in the sewage are concentrated on the enrichment membrane 132, and the sewage after passing through the enrichment membrane 132 to remove the bacteria and viruses can flow out from the waste water outlet 134.
  • the valve of the automatic switching valve 133 is opened, and the sewage flows into the next enrichment bottle 131 to continue the enrichment.
  • a sufficient number of enrichment bottles 131 are set;
  • the present invention provides a sewage collection device for virus and bacteria monitoring, which adopts a continuous sampling method to realize uninterrupted monitoring of sewage viruses and bacteria, and can conduct all-weather monitoring and early warning of the prevalence of related epidemics;
  • Sample enrichment is completed at the same time of large-volume sampling, which reduces the workload of subsequent sample processing in the laboratory, greatly shortens the analysis time, and improves the accuracy and sensitivity of sewage virus and bacteria monitoring;
  • the two-stage composite nested piston pump can achieve sampling
  • the filter layer is backflushed to prevent the particles adhering on the outside of the filter layer from reducing the sampling efficiency during the long-term sampling process, so that the entire device can operate efficiently for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种用于病毒和细菌监测的污水采集装置,包括依次连接的过滤单元(110)、动力单元(120)和富集单元(130);过滤单元(110)包括开设有通孔(114)的固定板(111)、围成漏斗状且自由端固定至固定板(111)的透水不锈钢外壳(112)和套设在透水不锈钢外壳(112)围成的漏斗中的5级过滤层(113);动力单元(120)包括通过通孔(114)贯穿固定板(111)的套筒(121)、活塞活动设置在套筒(121)中的二级复合嵌套活塞泵(122),以及连接至二级复合嵌套活塞泵(122)的电源(123);富集单元(130)包括多个串联设置的富集瓶(131)、设置在富集瓶(131)内的富集膜(132)和设置在管路上且用于控制富集瓶(131)的多个自动切换阀(133)。该用于病毒和细菌监测的污水采集装置采用连续采样的方式,实现对污水病毒细菌的不间断监测。

Description

一种用于病毒和细菌监测的污水采集装置 技术领域
本发明涉及污水采集技术领域,具体而言,涉及一种用于病毒和细菌监测的污水采集装置。
背景技术
新冠病毒可以出现在尿液和粪便中。在城市中,这些尿液和粪便中的病毒通常会被排入污水系统。另外人的洗漱过程也会直接将病毒释放到生活污水中。这些提示病毒在城市中的一个重要去向是进入污水系统,这为通过污水监测疫情提供了可能。分析生活污水、分离污水中病毒,并采用新一代测序等现代生物学技术对其实施监测将能够克服前面提到的传统流行病学的不足。
针对于污水中病毒和细菌的监测,需要进行有效的污水样品采集。现有的污水采集方式,采集瞬时样或者通过等流量比例、等时间比例等方式采集混合样,适用于污水中化学物质的分析,不能适用于细菌或病毒的检测分析。
技术问题
本发明的目的在于提供一种用于病毒和细菌监测的污水采集装置,其采用连续采样的方式,实现对污水病毒细菌的不间断监测,可对相关疫情的流行进行全天候的监控和预警;在大体积采样的同时完成样品富集,降低实验室后续样品处理的工作量,大幅度缩短分析时间,提高污水病毒和细菌监测的准确性和灵敏度。
技术解决方案
一种用于病毒和细菌监测的污水采集装置,其包括依次链接的过滤单元、动力单元和富集单元;
过滤单元包括开设有通孔的固定板、围成漏斗状且自由端固定至固定板的透水不锈钢外壳和套设在透水不锈钢外壳围成的漏斗中的5级过滤层;
动力单元包括通过通孔贯穿固定板的套筒、活塞活动设置在套筒中的二级复合嵌套活塞泵,以及连接至二级复合嵌套活塞泵的电源;
富集单元包括多个串联设置的富集瓶、设置在富集瓶内的富集膜和设置在管路上且用于控制富集瓶的多个自动切换阀。
进一步地,在本发明较佳的实施例中,二级复合嵌套活塞泵包括靠近过滤单元设置的外活塞、靠近富集单元设置的内活塞、连通管、套设在内活塞和外活塞外侧的活塞套管,以及连接连通管的电机,外活塞和内活塞的轴心开设有通道,连通管的两端与通道连通。
进一步地,在本发明较佳的实施例中,上述5级过滤层由靠近透水不锈钢外壳的一级开始孔径逐渐减小。
进一步地,在本发明较佳的实施例中,上述5级过滤层的孔径分别为5-10微米、10-20微米、20-50微米、50-100微米和100-300微米。
进一步地,在本发明较佳的实施例中,上述透水不锈钢外壳和5级过滤层采用仿生学的流线型设计,不锈钢外壳为栅板结构。
进一步地,在本发明较佳的实施例中,上述富集膜为微滤膜、超滤膜、纳滤膜或琼脂糖凝胶中的一种。
进一步地,在本发明较佳的实施例中,上述富集膜为琼脂糖凝胶。
进一步地,在本发明较佳的实施例中,上述富集瓶上设置有废水排出口。
进一步地,在本发明较佳的实施例中,上述富集瓶和自动切换阀均为4个,自动切换阀和富集瓶一一对应配合。
有益效果
(1)采用连续采样的方式,实现对污水病毒细菌的不间断监测,可对相关疫情的流行进行全天候的监控和预警;
(2)在大体积采样的同时完成样品富集,降低实验室后续样品处理的工作量,大幅度缩短分析时间,提高污水病毒和细菌监测的准确性和灵敏度。
(3)二级复合嵌套活塞泵可以实现采样的同时对过滤层进行反冲,避免长时间采样过程中过滤层外面粘附的颗粒物降低采样效率,使得整个装置能够长时间高效运转。
附图说明
图1为本发明实施例用于病毒和细菌监测的污水采集装置的结构示意图;
图2为本发明实施例过滤单元的结构示意图;
图3为本发明实施例二级复合嵌套活塞泵的结构示意图。
图标:100-用于病毒和细菌监测的污水采集装置;110-过滤单元;120-动力单元;130-富集单元;111-固定板;114-通孔;112-透水不锈钢外壳;113-5级过滤层;121-套筒;122-二级复合嵌套活塞泵;123-电源;131-富集瓶;132-富集膜;133-自动切换阀;134-废水排出口;141-外活塞;142-内活塞;143-连通管;144-活塞套管;145-电机;146-宽口段;147-窄口段;148-锥形段。
本发明的实施方式
请参照图1,本实施例提供一种用于病毒和细菌监测的污水采集装置100,其包括依次链接的过滤单元110、动力单元120和富集单元130。
请参照图1和图2,过滤单元110包括开设有通孔114的固定板111、透水不锈钢外壳112和5级过滤层113。透水不锈钢外壳112围成漏斗状且自由端固定至固定板111。5级过滤层113套设在上述透水不锈钢外壳112围成的漏斗中。5级过滤层113由靠近透水不锈钢外壳112的一级开始孔径逐渐减小。在本实施例中,上述5级过滤层113的孔径分别为5-10微米、10-20微米、20-50微米、50-100微米和100-300微米。在其他实施例中,上述孔径还可以是其他大小,只要能够达到过滤大颗粒的目的,都在本实施例的保护范围中。根据目标物细菌或病毒的大小,5级过滤层113的孔径需要相应调整。在本实施例中10-300微米的各级过滤层均采用不锈钢材质,5-10微米过滤层采用聚丙烯、聚四氟乙烯等材质。在本实施例中透水不锈钢外壳112和5级过滤层113采用仿生学的流线型设计,有利于减小污水流动过程中遇到的阻力。透水不锈钢外壳112为栅板结构。
请继续参照图1,动力单元120包括套筒121、二级复合嵌套活塞泵122和给上述二级复合嵌套活塞泵122提供动力的电源123。上述套筒121通过通孔114贯穿固定板111。二级复合嵌套活塞泵122的活塞活动设置在上述套筒121中。电源123连接至二级复合嵌套活塞泵122,且包裹在防水层中。嵌套的活塞可以实现采样的同时对过滤层进行反冲,避免长时间采样过程中过滤层外面粘附的颗粒物降低采样效率。在本实施例中,电源123为可充电锂电池,在其他实施例中也可以是其他种类的电源,都在本实施例的保护范围中。
请参照图3,二级复合嵌套活塞泵122包括靠近过滤单元110的外活塞141、靠近富集单元130的内活塞142、连通管143、活塞套管144和电机145。外活塞141和内活塞142的轴心开设有通道,上述连通管143的两端连接至内活塞142和外活塞141。外活塞141和内活塞142套设在活塞套管144中。电机145连接至连通管143,且带动连通管143运动,为内活塞142和外活塞141的运动提供动力。在本实施例中,连通管143包括宽口段146、窄口段147和锥形段148,上述宽口段146用于容纳直径更大的外活塞141,窄口段147用于容纳直径更小的内活塞142。当内活塞142和外活塞141向靠近富集单元130一侧运动时,污水被推入富集单元130;当内活塞142和外活塞141向靠近过滤单元110的一端运动时,窄口段147逐渐形成真空,污水沿着外活塞141的通道、连通管143和内活塞142的通道流入二级复合嵌套活塞泵122,同时部分污水被外活塞141推回过滤单元110实现反冲。在其他实施例中,连通管143也可以是等宽的,内活塞142和外活塞141可以等直径,都能实现本实施例的技术效果,都在本实施例的保护范围中。但是,当外活塞141的直径大于内活塞142的直径时,能够保证少量的水进入富集单元130,大部分水反冲至过滤单元110,能够极大的避免长时间采样过程中过滤层外面粘附的颗粒物降低采样效率。
请继续参照图1,富集单元130包括4个串联设置的富集瓶131、富集膜132和4个自动切换阀133。上述富集膜132设置在富集瓶131内,用于富集污水中的细菌和病毒。自动切换阀133设置在连接富集瓶131的管路上,分别控制串联的4个富集瓶131中污水的进出。富集瓶131上设置有废水排出口134,经过富集膜132除去细菌和病毒的污水可从废水排出口134流出。在本实施例中上述富集膜132为琼脂糖凝胶,琼脂糖凝胶是以琼脂糖为基质制备的凝胶,其依靠糖链之间的次级链维持网状结构,琼脂糖的浓度决定了网状结构的孔径,可用于不同粒径细菌和病毒的分离富集。在其他实施例中富集膜132还可以是其他材料,例如微滤膜、超滤膜、纳滤膜等滤膜,上述滤膜可截留的颗粒粒径范围在0.005-5微米之间,可以根据目标细菌和病毒的粒径来选择。滤膜的材料可以选择聚丙烯、聚砜、塑料合金、聚四氟乙烯等材质,只要能达到本实施例通过调节实现对不同粒径细菌和病毒的分离富集,都在本实施例的保护范围中。在本实施例中,自动切换阀133采用定时切换的电磁阀,其原理是当一个富集瓶131工作满富集时间时,定时切换的电磁阀的阀门自动开启,污水流入下一个富集瓶131继续进行富集。在其他实施例中,自动切换阀133也可以是其他阀体,只要能够实现方便的富集瓶131切换,都在本实施例的保护范围中。富集时间的设定可以根据细菌和病毒的粒径、浓度。富集膜132的工作效率,期望达到的富集率,通过实验研究确定。
请参照图1和图2,上述用于病毒和细菌监测的污水采集装置100的工作原理是:(1)当内活塞142和外活塞141向靠近富集单元130一侧运动时,为污水提供流过过滤层的动力,污水从透水不锈钢外壳112,穿过5级过滤层113实现过滤,过滤的污水通过内活塞142导入后面的富集单元130。当污水通过富集瓶131,污水中的细菌和病毒富集在富集膜132上,经过富集膜132除去细菌和病毒的污水可从废水排出口134流出。当富集膜132的富集时间达到设定值时,自动切换阀133的阀门开启,污水流入下一个富集瓶131继续进行富集。根据污水中病毒的量,设置足够数量的富集瓶131;(2)当内活塞142和外活塞141向靠近过滤单元110的一端运动时,窄口段147逐渐形成真空,污水沿着外活塞141的通道、连通管143和内活塞142的通道流入二级复合嵌套活塞泵122,同时部分污水被外活塞141推回过滤单元110实现反冲。上述反冲有效去除过滤层外附着的颗粒,提高整个装置的工作效率。
综上所述,本发明提供一种用于病毒和细菌监测的污水采集装置,采用连续采样的方式,实现对污水病毒细菌的不间断监测,可对相关疫情的流行进行全天候的监控和预警;在大体积采样的同时完成样品富集,降低实验室后续样品处理的工作量,大幅度缩短分析时间,提高污水病毒和细菌监测的准确性和灵敏度;二级复合嵌套活塞泵可以实现采样的同时对过滤层进行反冲,避免长时间采样过程中过滤层外面粘附的颗粒物降低采样效率,使得整个装置能够长时间高效运转。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种用于病毒和细菌监测的污水采集装置,其特征在于,其包括依次链接的过滤单元、动力单元和富集单元;
    所述过滤单元包括开设有通孔的固定板、围成漏斗状且自由端固定至所述固定板的透水不锈钢外壳和套设在所述透水不锈钢外壳围成的漏斗中的5级过滤层;
    所述动力单元包括通过所述通孔贯穿所述固定板的套筒、活塞活动设置在所述套筒中的二级复合嵌套活塞泵,以及连接至所述二级复合嵌套活塞泵的电源;
    所述富集单元包括多个串联设置的富集瓶、设置在所述富集瓶内的富集膜和设置在管路上且用于控制所述富集瓶的多个自动切换阀。
  2. 根据权利要求1所述的一种用于病毒和细菌监测的污水采集装置,其特征在于,所述二级复合嵌套活塞泵包括靠近所述过滤单元设置的外活塞、靠近所述富集单元设置的内活塞、连通管、套设在所述内活塞和所述外活塞外侧的活塞套管,以及连接所述连通管的电机,所述外活塞和所述内活塞的轴心开设有通道,所述连通管的两端与所述通道连通。
  3. 根据权利要求1所述的一种用于病毒和细菌监测的污水采集装置,其特征在于,所述5级过滤层由靠近所述透水不锈钢外壳的一级开始孔径逐渐减小。
  4. 根据权利要求3所述的一种用于病毒和细菌监测的污水采集装置,其特征在于,所述5级过滤层的孔径分别为5-10微米、10-20微米、20-50微米、50-100微米和100-300微米。
  5. 根据权利要求4所述的一种用于病毒和细菌监测的污水采集装置,其特征在于,所述透水不锈钢外壳和所述5级过滤层采用仿生学的流线型设计,所述不锈钢外壳为栅板结构。
  6. 根据权利要求1所述的一种用于病毒和细菌监测的污水采集装置,其特征在于,所述富集膜为微滤膜、超滤膜、纳滤膜或琼脂糖凝胶中的一种。
  7. 根据权利要求6所述的一种用于病毒和细菌监测的污水采集装置,其特征在于,所述富集膜为琼脂糖凝胶。
  8. 根据权利要求1所述的一种用于病毒和细菌监测的污水采集装置,其特征在于,所述富集瓶上设置有废水排出口。
  9. 根据权利要求1所述的一种用于病毒和细菌监测的污水采集装置,其特征在于,所述富集瓶和所述自动切换阀均为4个,所述自动切换阀和所述富集瓶一一对应配合。
PCT/CN2020/125192 2020-08-06 2020-10-30 一种用于病毒和细菌监测的污水采集装置 WO2021139360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010782376.8 2020-08-06
CN202010782376.8A CN111811887A (zh) 2020-08-06 2020-08-06 一种用于病毒和细菌监测的污水采集装置

Publications (1)

Publication Number Publication Date
WO2021139360A1 true WO2021139360A1 (zh) 2021-07-15

Family

ID=72864276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125192 WO2021139360A1 (zh) 2020-08-06 2020-10-30 一种用于病毒和细菌监测的污水采集装置

Country Status (2)

Country Link
CN (1) CN111811887A (zh)
WO (1) WO2021139360A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111811887A (zh) * 2020-08-06 2020-10-23 未名环境分子诊断(常熟)有限公司 一种用于病毒和细菌监测的污水采集装置
CN113720667B (zh) * 2021-09-02 2022-09-06 苏州幻宝安全与环境工程有限公司 一种环境监测用水样品处理系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201354372Y (zh) * 2008-12-23 2009-12-02 李阳 一种用于液体悬浮颗粒收集转移器
US20110100921A1 (en) * 2008-05-17 2011-05-05 Hans-Werner Heinrich Device for Separating Particles in and from Liquids and Use of Said Device in Biotechnology, Biological Research, Diagnostics and the Treatment of Diseases
CN104215475A (zh) * 2014-09-19 2014-12-17 国家深海基地管理中心 一种深海热液喷口微生物过滤采样装置
CN105372095A (zh) * 2015-12-11 2016-03-02 国家深海基地管理中心 一种深海生物抽吸式多级富集采样器
CN205246392U (zh) * 2015-12-11 2016-05-18 国家深海基地管理中心 一种深海生物抽吸式多级富集采样器
WO2016209938A1 (en) * 2015-06-25 2016-12-29 Envirologix Inc. Compositions and methods for processing a biological sample
CN111811887A (zh) * 2020-08-06 2020-10-23 未名环境分子诊断(常熟)有限公司 一种用于病毒和细菌监测的污水采集装置
CN212275346U (zh) * 2020-08-06 2021-01-01 未名环境分子诊断(常熟)有限公司 一种用于病毒和细菌监测的污水采集装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110100921A1 (en) * 2008-05-17 2011-05-05 Hans-Werner Heinrich Device for Separating Particles in and from Liquids and Use of Said Device in Biotechnology, Biological Research, Diagnostics and the Treatment of Diseases
CN201354372Y (zh) * 2008-12-23 2009-12-02 李阳 一种用于液体悬浮颗粒收集转移器
CN104215475A (zh) * 2014-09-19 2014-12-17 国家深海基地管理中心 一种深海热液喷口微生物过滤采样装置
WO2016209938A1 (en) * 2015-06-25 2016-12-29 Envirologix Inc. Compositions and methods for processing a biological sample
CN105372095A (zh) * 2015-12-11 2016-03-02 国家深海基地管理中心 一种深海生物抽吸式多级富集采样器
CN205246392U (zh) * 2015-12-11 2016-05-18 国家深海基地管理中心 一种深海生物抽吸式多级富集采样器
CN111811887A (zh) * 2020-08-06 2020-10-23 未名环境分子诊断(常熟)有限公司 一种用于病毒和细菌监测的污水采集装置
CN212275346U (zh) * 2020-08-06 2021-01-01 未名环境分子诊断(常熟)有限公司 一种用于病毒和细菌监测的污水采集装置

Also Published As

Publication number Publication date
CN111811887A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
US5820767A (en) Method for quantitation of microorganism contamination of liquids
CN101509843B (zh) 一种无人值守船载多通道膜过滤水样采样系统
WO2021139360A1 (zh) 一种用于病毒和细菌监测的污水采集装置
CN201681012U (zh) 环境水样快速病毒富集装置
CN106999928A (zh) 核酸提纯盒
CN106020016B (zh) 智能净水设备
US20170246628A1 (en) A method and device for concentrating particles in a fluid sample
CN112619242A (zh) 一种海洋浮游植物快速过滤浓缩装置
CN102235948B (zh) 环境水样快速病毒富集方法和富集装置
CN102451588A (zh) 固液分离过滤器及水样品预处理装置和操作方法
CN212275346U (zh) 一种用于病毒和细菌监测的污水采集装置
CN103981084B (zh) 水中病毒分离提取装置及水中札幌病毒的提取方法
CN108072558B (zh) 一种水样品制备装置
CN109323915B (zh) 水中微生物样品采集用冷藏装置、水中微生物样品采集装置及方法
CN111053057A (zh) 浮游动物分离装置及分离方法
CN206350950U (zh) 一种污水悬浮物多级模块化过滤装置
CN115747042A (zh) 一种大体积样本全自动一体化的核酸提取设备
CN212955136U (zh) 一种快速分离外泌体的装置
CN211586040U (zh) 一种快速分离r-pe和r-pc的膜过滤装置
CN210302662U (zh) 一种全生物信息自动定量浓缩装置
CN210894332U (zh) 一种可拆卸多单元水质反应器
CN211581219U (zh) 浮游动物分离装置
CN203777942U (zh) 中空纤维超滤膜分离装置
CN208829336U (zh) 无动力超滤净水装置
CN206089224U (zh) 一种净水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911651

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20911651

Country of ref document: EP

Kind code of ref document: A1