WO2021139168A1 - 乙酰丙酮在抑制蓝藻生长中的应用 - Google Patents

乙酰丙酮在抑制蓝藻生长中的应用 Download PDF

Info

Publication number
WO2021139168A1
WO2021139168A1 PCT/CN2020/111195 CN2020111195W WO2021139168A1 WO 2021139168 A1 WO2021139168 A1 WO 2021139168A1 CN 2020111195 W CN2020111195 W CN 2020111195W WO 2021139168 A1 WO2021139168 A1 WO 2021139168A1
Authority
WO
WIPO (PCT)
Prior art keywords
algae
acetylacetone
growth
cyanobacteria
blue
Prior art date
Application number
PCT/CN2020/111195
Other languages
English (en)
French (fr)
Inventor
张淑娟
金吉媛
王晓萌
王鑫
张文涛
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Priority to US17/290,982 priority Critical patent/US11464228B2/en
Publication of WO2021139168A1 publication Critical patent/WO2021139168A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N35/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
    • A01N35/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical containing aliphatically bound aldehyde or keto groups, or thio analogues thereof; Derivatives thereof, e.g. acetals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P13/00Herbicides; Algicides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention relates to the field of algae inhibitors, in particular to the application of acetylacetone to inhibit the growth of cyanobacteria in eutrophic water bodies.
  • Cyanobacteria blooms caused by eutrophication of water bodies have seriously affected people's lives. Cyanobacteria blooms not only cause the death of other aquatic organisms and change the aquatic ecological environment, but also directly affect the safety of human water supply. Cyanobacteria are generally divided into drug-producing lines (such as FACHB-905) and non-drug-producing lines (FACHB-469). The drug-producing lines release microcystin which is toxic to the liver. Microcystis aeruginosa is the most typical algae during blooms, and it is also the most common type of toxic cyanobacteria. It has strong viability and is difficult to remove. Therefore, it is of great significance to effectively control the growth of Microcystis aeruginosa in water bodies.
  • the commonly used methods are physical or chemical methods.
  • the physical method mainly collects algae bodies through physical methods such as salvage, which has a high cost and is difficult to implement in large waters.
  • the most commonly used chemical method is the chemical method, that is, adding algae inhibitors to the water body.
  • the most researched algae inhibitors are allelochemicals, that is, the use of non-nutritive substances produced in other organisms to control the growth of algae.
  • the phenolic acids and fatty acids secreted by Myriophyllum spicatum and the N-phenyl-2-naphthylamine secreted by Hydrilla verticillata can control the growth of Microcystis aeruginosa ("Allelopathy and its influence on algae photosynthesis" "Research Progress in Environmental Sciences", Environmental Science and Technology, 2019, 42(4), 43-52).
  • allelochemicals can achieve a good effect of killing cyanobacteria, because the effective components of allelochemicals in natural water are not high, the purification of allelochemicals greatly increases the cost of controlling blooms, resulting in the cost of allelopathic algae inhibitors. Applications are greatly restricted.
  • Anthraquinone, gallic acid, pyrogallic acid and sanguinarine are currently common algae inhibitors, all of which have antibacterial properties ("Study on the antibacterial properties of multi-walled carbon nanotubes modified with pyrogallic acid", 2013 Annual Conference Paper Abstracts, Tianjin Biomedical Engineering; “Research Progress on the Pharmacological Action of Gallic Acid", Chinese Hospital Pharmaceutical Impurities, 2017, 37, 94-98; "Anthraquinone Compound Antibacterial Activity and Its Mechanism Research Progress", China New Drug Impurities, 2016, 25, 2450-2455; "In vitro antibacterial effect of sanguinarine and its effect on bacterial biofilm", Animal Health, 2012, 48, 67-70), which can inhibit the growth of cyanobacteria while affecting other organisms .
  • Acetylacetone is a small molecule diketone. Its standard name is 2,4-pentanedione. It is an important chemical and pharmaceutical intermediate. It is mainly used in the pharmaceutical industry, veterinary medicine, feed additives, catalysts, and cocatalyst And the treatment of inorganic materials.
  • Patent CN 106519756 B discloses a bactericidal and antifungal interior wall nano paint, one of the raw materials of which is acetylacetone;
  • Patent CN 101454267 B discloses a method for preparing curcumin by condensing vanillin and acetylacetone as raw materials to remove water.
  • Patent CN 108217868 A discloses a method for preparing a composite algaecide, in which acetylacetone is used as a hydrolysis inhibitor for the preparation of nano-titanium dioxide, the embryonic component of the algaecide.
  • the composite algaecide combines allelopathic substances and copper sulfate into
  • the algae inhibitory substance is fixed in the embryo body of the algaecide, and the growth of algae is controlled by the combined action of flocculation, photocatalytic titanium dioxide to generate free radicals, and the algae inhibitory substance fixed in the embryo body; according to Henry's law constant of acetylacetone (25°C) When calculated as 2.35 x 10 -6 atm-cu m/mol), its volatilization half-lives in the model river and model lake are 16 days and 120 days, respectively (Handbook of chemical property estimation methods.1990, pp.
  • the present invention provides an application of acetylacetone in inhibiting the growth of cyanobacteria and a method for inhibiting the growth of cyanobacteria.
  • the above-mentioned object of the invention is through the following technical solutions Achieved:
  • an embodiment of the present invention provides an application of acetylacetone in inhibiting the growth of cyanobacteria;
  • the above-mentioned cyanobacteria include the toxin-producing strain FACHB-905 in Microcystis aeruginosa and the non-toxin-producing strain FACHB-469.
  • an embodiment of the present invention provides a cyanobacteria inhibitor containing acetylacetone.
  • the cyanobacteria inhibitor may also include other common auxiliary agents or fillers; the auxiliary agents refer to auxiliary substances used to improve the physical and chemical properties of the inhibitor, such as solvents, dispersants, adhesives, stabilizers, and retarders. Interpretation materials, etc.
  • an embodiment of the present invention also provides a method for inhibiting the growth of cyanobacteria.
  • the specific steps are as follows: adding acetylacetone to the waters of cyanobacteria to inhibit the growth of cyanobacteria; wherein the dosage of acetylacetone is not less than 7mg/L, the density of cyanobacteria in cyanobacteria waters is less than 2.59 x 10 7 cells/ml.
  • cyanobacteria includes algae of the cyanobacteria such as Microcystis aeruginosa, Microcystis algae, Microcystis wyethi, Microcystis fringe, Microcystis indefinite, etc. Harm and Control", 2011, Yang Liuyan, Xiao Lin, Science Press, P 10-12. ).
  • Microcystis aeruginosa includes toxin-producing FACHB-905 and non-toxin-producing FACHB-469.
  • the applicable density range is less than 2.59 x 10 7 cells/ml.
  • the relationship between optical density and concentration is as follows:
  • Y is the algae concentration (unit: 10 6 cells/ml)
  • X is the optical density value OD 680 of the algae liquid.
  • One embodiment of the present invention provides a cyanobacteria inhibitor containing acetylacetone, which is combined with common algae inhibitors (anthraquinone, lysine, ethyl 2-methylacetoacetate, gallic acid, pyrogallic acid and sanguinaria).
  • common algae inhibitors anthraquinone, lysine, ethyl 2-methylacetoacetate, gallic acid, pyrogallic acid and sanguinaria.
  • An embodiment of the present invention selected four common bacteria (E. coli, Salmonella, Bacillus subtilis and Staphylococcus aureus), and found that 6-1536mg/L of acetylacetone has no inhibitory effect on the above-mentioned bacteria and is environmentally friendly .
  • the mechanism of the method for inhibiting algae proposed by the present invention is that acetylacetone causes algal cell death by inhibiting the photosynthesis of Microcystis aeruginosa.
  • Acetylacetone not only has a good algae inhibitory effect, but is also bio-friendly to activated sludge, large fleas and some common bacteria within the concentration range.
  • Using acetylacetone as an algae inhibitor to inhibit cyanobacteria is a low-cost and environmentally friendly method to control the growth of algae.
  • FIG. 1 is a schematic diagram of the change in the optical density of the algae during the inhibition of the growth of Microcystis aeruginosa (FACHB-905) in Example AA;
  • FIG. 2 is a schematic diagram of the change in the optical density of the algae during the inhibition of the growth of Microcystis aeruginosa (FACHB-469) in Example AA;
  • Fig. 3 is a schematic diagram of the change of the algae optical density of different initial concentrations of Microcystis aeruginosa under the action of 15 mg/L of AA in the embodiment;
  • Figure 4 is a schematic diagram of the effect comparison between Example AA and other common algae inhibitors
  • FIG. 5 is a schematic diagram of the change of the optical density of the bacteria in the process of the influence of Example AA on the growth of different types of bacteria;
  • FIG. 6 is a schematic diagram of the actual photochemical quantum yield changes of the photosynthetic system during the inhibition of the growth of Microcystis aeruginosa in Example AA.
  • Figure 7 is a schematic diagram of the experimental results of AA inhibiting the growth of Microcystis aeruginosa under natural light conditions.
  • Acetylacetone (hereinafter referred to as AA, purchased from Nanjing Chemical Reagent Company) and pyrogallic acid (purchased from Aladdin Company) used in the examples are analytical grades, and anthraquinone (purchased from Alfa Aesar Company), L- The purity of lysine (purchased from Aladdin) and sanguinarine (purchased from Macleans) is 98%, the purity of gallic acid (purchased from Sinopharm) is 99%, 2-methylacetoacetate ( (Purchased from Aladdin Company) is chemically pure grade;
  • the cyanobacteria used are the high-toxin-producing strain of Microcystis aeruginosa (FACHB-905) and the non-toxic strain (FACHB-469) (refer to the literature: "Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis vulgaris", Harmful Algae 2015, 48, 21-29), provided by the Institute of Hydrobiology, Chinese Academy of Sciences, cultured on BG-11 medium.
  • the composition of BG-11 medium is: NaNO 3 1.5g/L, K 2 HPO 4 ⁇ 3H 2 O 0.04g/L, MgSO 4 ⁇ 7H 2 O 0.075g/L, CaCl 2 ⁇ 2H 2 O 0.036g/L , Citric acid 0.006g/L, Ferric ammonium citrate 0.006g/L, Na 2 EDTA 0.001g/L, NaCO 3 0.02g/L, A5solution, 0.1ml; the formula of A5solution is: H 3 BO 3 2.86g/ L, MnCl 2 ⁇ 4H 2 O 1.86g/L, ZnSO 4 ⁇ 7H 2 O 0.22g/L, Na 2 MoO 4 ⁇ 2H 2 O 0.39g/L, CuSO 4 ⁇ 5H 2 O 0.08g/L, Co( NO 3 ) 2 ⁇ 6H 2 O 0.05g/L.
  • the algae species used in the following examples is a high-yielding strain of FACHB-905.
  • the strains used in the following examples are Escherichia coli, Salmonella, Bacillus subtilis and Staphylococcus aureus, all provided by the School of Life Sciences, Nanjing University; the strains are cultured in LB nutrient broth, and the main component of LB nutrient broth is: tryptone 10.0 g/L, yeast extract powder 5.0g/L, sodium chloride 10.0g/L.
  • Microcystis aeruginosa was cultivated in a light incubator (GZX-250BS-III), provided by Shanghai Xinmiao Medical Equipment Manufacturing Co., Ltd., with a light intensity of 3000 LX, a light-dark time ratio of 12:12, and a temperature setting of 25°C.
  • the four kinds of bacteria are cultured in a biochemical incubator (SPX-150), provided by Shanghai Yuejin Medical Equipment Co., Ltd., and the temperature is set to 37°C.
  • the concentration of Microcystis aeruginosa and other bacteria was measured using an ultraviolet spectrophotometer (Shimadzu, UV-2700), and the concentration was characterized by the optical density of the liquid at 680 nm and 600 nm, and recorded as OD 680 and OD 600 .
  • the measurement of chlorophyll a refers to the method in the literature ("Potent removal of cyanobacteria with controlled release of toxic secondary metabolites by a titanium xerogel coagulant", Water Res. 2018, 128, 341-349), using the collected algae liquid with 0.7 ⁇ m GF /F glass filter membrane (Whatman) filter, collect algae cells, freeze overnight in a refrigerator at -4°C, and then add 90% acetone for overnight extraction, and use a high-speed refrigerated centrifuge (Tinoda, CT14RD) at 10000rpm The supernatant was collected by centrifugation at 4°C for 10 minutes, and the absorbance was detected at 630nm, 663nm, 645nm and 750nm.
  • the formula for calculating the content of chlorophyll a is as follows:
  • A663, A750, A645 and A750 are the absorbance of the solution at 663nm, 750nm, 645nm and 750nm, Ve is the volume of the extracted solution, V s is the volume of the filtered solution, and ⁇ is the optical path of the cuvette.
  • the calculation formula for the inhibition rate of the algae inhibitor on Microcystis aeruginosa is as follows:
  • [chl-a] C is the content of chlorophyll a in the blank control group (Control)
  • [chl-a] is the content of chlorophyll a in the experimental group added with algae inhibitors.
  • the actual photochemical quantum yield was measured using Water-PAM Phytoplankton Analyzer (Walz), and 2.5ml of algae liquid was taken to measure F m 'and F s after light adaptation.
  • the actual photochemical quantum yield calculation formula is as follows:
  • ⁇ e is the actual photochemical quantum yield
  • F m ⁇ and F s are the maximum chlorophyll fluorescence and stable chlorophyll fluorescence of the algae fluid after light adaptation (Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis aeruginosa, Sci. Total Environ. 2013, 463, 111-119).
  • Figure 1 shows the change of the optical density of the high-toxin-producing strains within 5 days. It can be seen from the figure that AA has no significant effect on the growth of algae on the first day. From the 1.5th day, the AA concentration is greater than 15mg/L in the algae solution.
  • the optical density of the cysts began to decrease, and the algae continued to die during the continued cultivation; when the AA concentration was 20 mg/L, the growth curve of the algae in the algae solution with an AA concentration of 15 mg/L did not change significantly; 10 mg/L
  • the inhibitory effect of AA on algae is weaker than 15mg/L AA, but it continues to show the effect of inhibiting the growth of algae within the culture time range; when the AA concentration is 7mg/L, the growth of Microcystis aeruginosa is inhibited, but the algae It is still growing; 5mg/L of AA has no significant effect on the growth of algae compared to the Control group.
  • step (1) Except for the different species of algae, the other operations are the same as step (1).
  • Figure 2 shows the change in optical density of avirulent strains within 5 days. It can be seen from the figure that, similar to the response of toxic strains to AA, the avirulent strains are also affected by AA on day 1.5. The higher the concentration of AA, the growth of algae. The inhibitory effect of AA is more pronounced; when the dosage of AA is greater than 10mg/L, the growth of algae is significantly inhibited. In the subsequent cultivation process, the algae continues to die. When the concentration of AA increases to 20mg/L, the algae grows.
  • the curve has no obvious change; when the AA concentration is 7mg/L, the growth inhibitory effect of the algae is significantly weakened, but it is different from the effect of AA on the toxin-producing strains.
  • /L AA has a certain inhibitory effect on algae; 5mg/L AA still exhibits growth inhibitory effect on non-toxic strains; it can be seen that the non-toxic strain FACHB-469 is less resistant to AA than the virulent strain FACHB-905 , The same concentration of AA has a more significant effect on non-toxic strains.
  • Figure 3 shows the changes in the optical density of algae within 5 days under the action of 15mg/L AA concentration of different initial concentrations of algae. It can be seen from the figure that when the optical density value of algae OD 680 changes from 0.11 to 1.0, AA all exhibited to Microcystis aeruginosa The excellent inhibitory performance indicates that the effect of AA on high-density cyanobacteria (2.59 x 10 7 cells/ml) is still significant.
  • Taihu Lake is a water body with serious eutrophication in China. From 2011 to 2017, the annual average value of algae density in Wuxi waters of Taihu Lake was lower than 1.7 x 10 7 cells/ml (Analysis of characteristics and causes of water quality changes in Wuxi waters of Taihu Lake, People's Yangtze River, 2019, 50,40-44). The experiment in this example shows that AA is expected to be applied to cyanobacteria blooms in actual water bodies.
  • FIG 4 shows the comparison of the inhibition rates of various algae inhibitors on Microcystis aeruginosa. It can be seen from Figure 4 that although some of the algae inhibitors showed significant algal inhibitory effects on the second day, they continued to be cultured until the third day. The inhibition rate of AA on Microcystis aeruginosa is higher than that of all other algae inhibitors. Among the algae inhibitors tested in the experiment, only gallic acid has an inhibition rate close to AA; it should be pointed out that pyrogallic acid and sanguinarine cause water bodies. The factors of chromaticity and solubility are not suitable for placing in environmental water bodies.
  • the final concentration of AA in each tube is 0mg/L, 6mg/L, 12mg/L, 24mg/L, 96mg/L, 192mg/L 384mg/L, 768mg/L and 1536mg/L; Dilute the suspension of the used bacteria with nutrient broth to an OD 600 of 0.05, add 100 ⁇ L of the diluted suspension of the bacteria to 9 test tubes, and seal the test tubes with the sterilized sealing film; complete the above operation Then put the bacterial solution into a biochemical incubator, set the temperature to 37°C, and measure the OD 600 in each test tube after 24 hours of incubation.
  • Figure 5 shows the changes in optical density at 600nm of Escherichia coli, Salmonella, Bacillus subtilis, and Staphylococcus aureus treated with different concentrations of AA after 24 hours. It can be seen from the figure that the AA concentration is within the range of 6-1536mg/L. Seed bacteria can grow, and compared with the control group without AA, AA basically does not affect the growth of the four bacteria; the growth rate of E. coli under the action of 12 mg/L AA is slightly slower than that of the blank group, but when the AA concentration is There was no significant difference in the growth of E.
  • the growth rate of Salmonella was accelerated under the action of 6-768 mg/L AA. It may be that AA as a carbon source promoted the growth of Salmonella. Although the growth rate of Salmonella slows down when the concentration of AA is 1536mg/L, the bacteria still shows a growth trend within 24h; the effect of AA on Bacillus subtilis is similar to that on E. coli; AA with a concentration of up to 768mg/L has an effect on golden grapes Cocci still have a certain role in promoting growth.
  • AA will not kill these bacteria when the concentration is less than 1536mg/L, and AA can promote the growth of some bacteria.
  • the above examples show that AA has no toxic effect on bacteria that do not contain photosynthetic system, and it is further speculated that AA, as an algae inhibitor, is friendly to zooplankton in the water.
  • Figure 6 shows the actual photochemical quantum yield change of algae during the process of AA inhibiting the growth of algae. It can be seen from the figure that the actual photochemical quantum yield of Microcystis aeruginosa is significantly inhibited by AA after 1 day of culture, and with the increase of AA concentration, this The inhibitory effect is more significant; during the continued cultivation, the actual photochemical quantum yield of the algae continues to decrease.
  • the actual photochemical quantum yield of the algae in the algae liquid treated with AA with a concentration greater than 7 mg/L is 0; from the examples 1 It can be seen that the growth of the algae is inhibited by AA on day 1.5, and the actual photochemical quantum yield of the algae is inhibited on the first day when AA acts, indicating that AA acts on the photosynthetic system of the algae, showing that AA leads to the actual photochemistry of the algae The quantum yield is significantly reduced, which subsequently causes the death of the algae.
  • Figure 7 shows the changes in the optical density of the algae under the action of AA under sunlight in 5 days. It can be seen from Figure 7 that the algae fluid of the control group grows well under the sunlight, while the growth of the algae fluid treated with 10mg/L and 20mg/L AA Both are significantly inhibited, indicating that AA can still effectively inhibit the growth of algae under sunlight, and can be used as an algae inhibitor to be applied to cyanobacteria growing waters.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

乙酰丙酮在抑制蓝藻生长中的应用,即在蓝藻生长水域投加乙酰丙酮,投加量不低于7mg/L,以抑制蓝藻生长;乙酰丙酮通过抑制光合作用进而抑制蓝藻生长,抑藻效果优于常见的抑藻剂,且对大肠杆菌、沙门氏菌、枯草芽孢杆菌、金黄色葡萄球菌等常见细菌无害,环境友好,易于推广应用。

Description

乙酰丙酮在抑制蓝藻生长中的应用 技术领域
本发明涉及抑藻剂领域,特别是乙酰丙酮在抑制富营养化水体中蓝藻生长的应用。
背景技术
近年来水体富营养化导致的蓝藻水华爆发严重影响了人们的生活。蓝藻水华不仅会引起其他水生生物死亡,改变水生生态环境,还直接关系着人类的供水安全。蓝藻一般分为产毒品系(如FACHB-905)和非产毒品系(FACHB-469),其中产毒品系会释放对肝脏具有毒性的微囊藻毒素。铜绿微囊藻是水华爆发时最为典型的藻类,也是最常见的一种有毒蓝藻,其生存能力强,难去除,因此,有效控制水体中铜绿微囊藻的生长具有重要的意义。
对于突发性的蓝藻水华,常用的方法为物理法或者化学法。物理法主要通过打捞等物理方式收集藻体,成本较高,在大水域的实施较为困难。化学法中最常用的是化学药剂法,即向水体中投加抑藻剂。目前研究较多的抑藻剂为化感物质,即利用其他生物体内产生的非营养性物质来控制藻的生长。如穗花狐尾藻分泌的酚酸类和脂肪酸类的物质以及轮叶黑藻分泌的N-苯基-2-萘胺都可以控制铜绿微囊藻的生长(“化感效应及其对藻类光合作用影响的研究进展”,环境科学与技术,2019,42(4),43-52)。部分化感物质虽然可以达到很好的抑杀蓝藻效果,但是由于自然水体中化感物质的有效成分不高,提纯化感物质极大地增加了控制水华的成本,导致化感抑藻剂的应用受到很大限制。
蒽醌、没食子酸、焦性没食子酸以及血根碱是目前常见的抑藻剂,这些抑藻剂均具有抗菌性(“焦性没食子酸修饰的多壁碳纳米管的抗菌性研究”,2013年学术年会论文摘要,天津生物医学工程;“没食子酸药理作用的研究进展”,中国医院药学杂质,2017,37,94-98;“蒽醌类化合物抗菌活性及其机制研究进展”,中国新药杂质,2016,25,2450-2455;“血根碱体外抑菌作用及其对细菌生物被膜的影响”,动物保健,2012,48,67-70),在抑制蓝藻生长的同时影响其他生物。
乙酰丙酮是一种小分子双酮,其标准命名为2,4-戊二酮,是一种重要的化工及医药中间体,主要应用于医药工业、兽药、饲料添加剂、催化剂、助催化剂 的制备及无机材料的处理。专利CN 106519756 B公开了一种杀菌抗霉内墙纳米涂料其原料之一即为乙酰丙酮;专利CN 101454267 B公开了一种以香草醛和乙酰丙酮为原料缩合除水制备姜黄素的方法。专利CN 108217868 A公开了一种复合除藻剂的制备方法,其中乙酰丙酮作为水解抑制剂用于除藻剂胚体组分纳米二氧化钛的制备,该复合抑藻剂将化感物质及硫酸铜为抑藻物质固定到除藻剂胚体中,通过絮凝、光催化二氧化钛产生自由基、以及胚体中固定的抑藻物质的综合作用来控制藻的生长;根据乙酰丙酮的亨利定律常数(25℃时为2.35 x 10 -6atm-cu m/mol)计算得到,其在模型河和模型湖的挥发半衰期分别为16天和120天(Handbook of chemical property estimation methods.1990,pp.15-1至15-29)。通过实验确定乙酰丙酮在pH 6.4时的水生氧化速率为9.9 X 10 -9L mol -1s -1,基于此速率和连续日光照射下水中羟基自由基的浓度(1 X 10 -17M),估计乙酰丙酮在水中氧化的半衰期为81天(Handbook of chemical property estimation methods.1990,pp.7-4,7-5,8-12)。乙酰丙酮的生物富集因子(BCF)为3,说明其生物富集潜力很低(Exploring QSAR.Hydrophobic,Electronic,and Steric Constants.1995,p.14)。已有研究表明浓度高至50mg/L的乙酰丙酮及其光解产物对活性污泥具有生物友好性(“Fate and implication of acetylacetone in photochemical processes for water treatment”,Water Res.2016,101,233-240);乙酰丙酮对水生动物大型蚤的半致死浓度高于50mg/L(“Feasibility of the UV/AA process as a pretreatment approach for bioremediation of dye-laden wastewater”,Chemosphere 2018,194,488-494)。上述数据表明乙酰丙酮应用于自然水体中不会造成不利的环境影响;虽然乙酰丙酮被广泛用作合成杀虫剂和杀菌剂的原料,但是迄今尚未见将其用作抑藻剂的报道。
发明内容
本发明针对目前缺乏经济有效的控制蓝藻水华的方法这一问题,提供了一种乙酰丙酮在抑制蓝藻生长中的应用及抑制蓝藻生长的方法,具体而言,上述发明目的是通过以下技术方案实现的:
首先,本发明的一个实施例提供了一种乙酰丙酮在抑制蓝藻生长中的应用;上述蓝藻包括铜绿微囊藻中产毒型菌株FACHB-905和不产毒型菌株FACHB-469。
其次,本发明的一个实施例提供了一种含有乙酰丙酮的蓝藻抑制剂。在具体应用中,该蓝藻抑制剂还可包括其他常见的助剂或填料;所述助剂是指用于改善抑制剂理化性质的辅助物质,如溶剂、分散剂、粘着剂、稳定剂、缓释材料等。
第三,本发明的一个实施例还提供了一种抑制蓝藻生长的方法,其具体步骤如下:向蓝藻水域中投加乙酰丙酮,以抑制蓝藻生长;其中,乙酰丙酮的投加量不低于7mg/L,蓝藻水域中蓝藻密度小于2.59 x 10 7cells/ml。
乙酰丙酮的化学式为CH 3COCH 2COCH 3,结构式为:
Figure PCTCN2020111195-appb-000001
本申请中,技术术语“蓝藻”包括铜绿微囊藻、水华微囊藻、惠氏微囊藻、具缘微囊藻、不定微囊藻等蓝菌门的藻类(《湖泊蓝藻水华暴发、危害与控制》,2011,杨柳燕,肖琳,科学出版社,P 10-12.)。
上述铜绿微囊藻包括产毒的FACHB-905和不产毒的FACHB-469,密度适用范围为小于2.59 x 10 7cells/ml,其光密度与浓度之间存在如下关系:
Y=25.561X+0.3268;
其中Y为藻浓度(单位:10 6cells/ml),X为藻液的光密度值OD 680
本发明的一个实施例提供了一种含有乙酰丙酮的蓝藻抑制剂,与常见抑藻剂(蒽醌、赖氨酸、2-甲基乙酰乙酸乙酯、没食子酸、焦性没食子酸和血根碱)相比,该含有乙酰丙酮的抑藻剂作用于铜绿微囊藻的效果优于其他抑藻剂。
本发明的一个实施例选取了常见的四种菌(大肠杆菌、沙门氏菌、枯草芽孢杆菌和金黄色葡萄球菌),发现6-1536mg/L的乙酰丙酮对上述菌种无抑制效果,具有环境友好性。
本发明提出的抑藻方法的作用机理为:乙酰丙酮通过抑制铜绿微囊藻的光合作用导致藻细胞死亡。
本发明与现有的物理和化学的抑杀蓝藻方法相比,更为经济有效。乙酰丙酮不仅有较好的抑藻效果,且在使用浓度范围内对活性污泥、大型蚤及一些常见细菌都具有生物友好性。将乙酰丙酮作为抑藻剂抑杀蓝藻是一种成本低廉、环境友好的控制藻生长的方法。
附图说明
图1为实施例AA抑制铜绿微囊藻(FACHB-905)生长过程中藻光密度变化情况示意图;
图2为实施例AA抑制铜绿微囊藻(FACHB-469)生长过程中藻光密度变化情况示意图;
图3为实施例不同初始浓度的铜绿微囊藻在15mg/L的AA作用下的藻光密度变化情况示意图;
图4为实施例AA与其他常见抑藻剂的效果对比情况示意图;
图5为实施例AA对不同类型的菌生长影响过程中菌光密度变化情况示意图;
图6为实施例AA抑制铜绿微囊藻生长过程中光合系统实际光化学量子产量变化情况示意图。
图7为自然光照条件下AA抑制铜绿微囊藻生长实验结果示意图。
具体实施方式
下面结合实施例对本发明进行详细的说明。
(1)实施例涉及试剂
实施例中所用的乙酰丙酮(以下简称AA,购自南京化学试剂公司)和焦性没食子酸(购自阿拉丁公司)为分析纯级,蒽醌(购自阿法埃莎公司)、L-赖氨酸(购自阿拉丁公司)和血根碱(购自麦克林公司)的纯度为98%,没食子酸(购自国药公司)的纯度为99%,2-甲基乙酰乙酸乙酯(购自阿拉丁公司)为化学纯级;
所用蓝藻种为铜绿微囊藻高产毒株(FACHB-905)和不产毒株(FACHB-469)(参见文献:“Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris”,Harmful Algae 2015,48,21-29),由中国科学院水生生物研究所提供,采用BG-11培养基培养。
BG-11培养基的成分为:NaNO 3 1.5g/L,K 2HPO 4·3H 2O 0.04g/L,MgSO 4·7H 2O 0.075g/L,CaCl 2·2H 2O 0.036g/L,柠檬酸0.006g/L,柠檬酸铁铵0.006g/L,Na 2EDTA 0.001g/L,NaCO 3 0.02g/L,A5solution,0.1ml;其中A5solution的配方为:H 3BO 3 2.86g/L,MnCl 2·4H 2O 1.86g/L,ZnSO 4·7H 2O 0.22g/L,Na 2MoO 4·2H 2O 0.39g/L,CuSO 4·5H 2O 0.08g/L,Co(NO 3) 2·6H 2O 0.05g/L。
除特殊说明外,以下实施例中所用的藻种为FACHB-905高产毒株。
以下实施例所用菌种为大肠杆菌、沙门氏菌、枯草芽孢杆菌和金黄色葡萄球菌,均由南京大学生命科学学院提供;菌株采用LB营养肉汤培养,LB营养肉汤的主要成分为:胰蛋白胨10.0g/L,酵母浸粉5.0g/L,氯化钠10.0g/L。
(2)反应装置
铜绿微囊藻在光照培养箱(GZX-250BS-III)中培养,由上海新苗医疗器械制造有限公司提供,光照强度为3000LX,光暗时间比为12:12,温度设置为25℃。四种细菌均在生化培养箱中培养(SPX-150),由上海跃进医疗器械有限公司提供,温度设置为37℃。
(3)检测方法
铜绿微囊藻和其他菌的浓度使用紫外分光光度计(岛津,UV-2700)测量,分别以680nm和600nm处液体的光密度表征浓度,记作OD 680和OD 600
叶绿素a的测量参照文献(“Potent removal of cyanobacteria with controlled release of toxic secondary metabolites by a titanium xerogel coagulant”,Water Res.2018,128,341-349)中的方法,将收集到的藻液用0.7μm的GF/F玻璃滤膜(Whatman)过滤,收集藻细胞,在-4℃的冰箱中过夜冷冻,然后加入90%的丙酮过夜提取,提取液用高速冷冻离心机(天诺达,CT14RD)在10000rmp转速4℃下离心10min收集上清液,在630nm、663nm、645nm和750nm处检测吸光度,叶绿素a的含量计算公式如下:
Figure PCTCN2020111195-appb-000002
其中A663、A750、A645及A750是溶液在663nm、750nm、645nm和750nm处的吸光度,V e是提取溶液的体积,V s是过滤溶液的体积,δ是比色皿的光程。抑藻剂对铜绿微囊藻的抑制率计算公式如下:
Figure PCTCN2020111195-appb-000003
其中[chl-a] C是空白对照组(Control)中叶绿素a的含量,[chl-a]是加入抑藻剂的实验组中叶绿素a的含量。
实际光化学量子产量使用Water-PAM浮游植物分析仪(Walz)测量,取2.5ml藻液在光适应后测量F m’和F s,实际光化学量子产量计算公式如下:
φ e=ΔF/F m'=(F m'-F s)/F m';
其中,φ e是实际光化学量子产量,F m`和F s分别是藻液在光适应后最大叶绿素荧光和稳定叶绿素荧光(Effects of different algaecides on the photosynthetic capacity,cell integrity and microcystin-LR release of Microcystis aeruginosa,Sci.Total Environ.2013,463,111-119)。
实施例1
(1)乙酰丙酮对高产毒株FACHB-905铜绿微囊藻的抑制效果
在无菌条件下向150ml的三角瓶中加入100ml的BG-11培养基,并接入藻种,使得OD 680为0.2,并向三角瓶中投加不同体积的稀释100倍的AA原液,使得AA的投加量为5mg/L,7mg/L,10mg/L,15mg/L和20mg/L,同时设立不含AA的对照试验(Control);将藻液放入光照培养箱中培养,考虑到现有报道蓝藻最适宜的生长光照为2000-4000LX(参见“中国科学院淡水藻总库”,网址“http://algae.ihb.ac.cn/Products/ProductDetail.aspx?product=523”以及文献“光照对小球藻和铜绿微囊藻生长及叶绿素荧光的影响,西安文理学院学报,2019,22,73-77”),故本实施例中光照强度选择3000LX;在培养初期及培养0.5d,1d,1.5d,2d,3d,4d,5d后在无菌条件下取样检测OD 680
图1为5d内高产毒菌株的光密度变化情况,由图可见,AA在加入第1天对藻的生长没有显著影响,从第1.5天开始,AA浓度大于15mg/L的藻液中铜绿微囊藻的光密度开始下降,且继续培养的过程中藻持续死亡;AA浓度为20mg/L时,相较AA浓度为15mg/L的藻液中藻的生长曲线没有发生显著变化;10mg/L AA对藻的抑制作用弱于15mg/L AA,但是在培养时间范围内,还是持续表现出抑制藻生长的效果;AA浓度为7mg/L时,铜绿微囊藻的生长受到了抑制,但是藻依旧呈生长状态;5mg/L的AA对藻的生长相较Control组没有显著的影响。
(2)乙酰丙酮对无毒株FACHB-469铜绿微囊藻的抑制效果
除藻种不同外,其他操作同步骤(1)。
图2为5天内无毒菌株的光密度变化情况,由图可知,与有毒菌株对AA反映相同的是,无毒菌株也在第1.5天受到了AA的影响,AA浓度越高,对藻生长 的抑制作用越显著;当AA的投加量大于10mg/L时,藻的生长受到了显著的抑制,在后续培养过程中,藻持续死亡,当AA浓度升高至20mg/L时,藻生长曲线相较含有10mg/L和15mg/L AA的藻液没有明显变化;当AA浓度为7mg/L时,藻的生长抑制效果被显著减弱,但是与AA对产毒株效果不同的是,7mg/L的AA具有一定的抑藻作用;5mg/L的AA对无毒菌株仍然表现出生长抑制作用;由此可见,无毒菌株FACHB-469对于AA的耐受性较有毒菌株FACHB-905差,同浓度的AA对无毒菌株的作用更显著。
实施例2
在无菌条件下向150ml的三角瓶中加入100ml的BG-11培养基,并接入藻种,最终得到OD 680为0.11,0.27,0.62和1.0的藻液,并向三角瓶中投加一定体积的稀释100倍的AA原液,使得AA的投加量为15mg/L,同时不同藻密度下都设立不含AA的对照试验(Control);将藻液放入光照培养箱中培养,在培养初期及培养1d,2d,3d,4d,5d后在无菌条件下取样检测OD 680
图3为不同初始浓度的藻在15mg/L AA浓度作用下5d内藻光密度变化情况,由图可知,藻的光密度值OD 680从0.11变化到1.0时AA均对铜绿微囊藻表现出优异的抑制性能,说明AA对高密度的蓝藻(2.59 x 10 7cells/ml)作用效果依旧显著。
太湖是我国富营养化较严重的水体,2011-2017年太湖无锡水域藻密度的年均值均低于1.7 x 10 7cells/ml(太湖无锡水域水质变化特征及其原因分析,人民长江,2019,50,40-44),本实施例实验说明AA有望应用于实际水体中爆发的蓝藻水华。
实施例3
在无菌条件下向500ml的三角瓶中加入300ml的BG-11培养基,并接入藻种,使得OD 680为0.2,并向三角瓶中投加AA、蒽醌、赖氨酸、2-甲基乙酰乙酸乙酯、没食子酸、焦性没食子酸以及血根碱的浓储备液,使得焦性没食子酸和血根碱的投加量分别为5和0.5mg/L,其他抑藻剂的投加量均为15mg/L,同时设立不含抑藻剂的对照试验(Control);将藻液放入光照培养箱中培养,在培养初期及培养1d,2d,3d后在无菌条件下取样检测叶绿素a的含量,以叶绿素a含量的变化来评估各种抑藻剂的效果。
图4为各种抑藻剂对铜绿微囊藻抑制率的对比情况,由图4可知,虽然部分抑藻剂在第2天就表现出较显著的抑藻效果,但是继续培养到第3天时AA对铜绿微囊藻的抑制率高于其他所有抑藻剂,实验中测试的抑藻剂中仅没食子酸的抑制率接近AA;需要指出的是,焦性没食子酸和血根碱由于引起水体色度和溶解度的因素而不宜于投放于环境水体中。
实施例4
在无菌条件下,取9个试管,并向其中加入4ml营养肉汤,编号1到9号,配制含有3072mg/L的AA肉汤储备液,取4ml加入9号试管,混匀9号试管后取4ml 9号试管中的溶液到8号试管中,以此类推,采用逐级稀释法稀释到2号试管,混匀后将2号试管中的溶液取4ml弃去,以1号试管为不加入AA的空白组(Control),最终各管中AA的浓度分别为0mg/L,6mg/L,12mg/L,24mg/L,96mg/L,192mg/L 384mg/L,768mg/L和1536mg/L;用营养肉汤稀释所用菌种的悬浮液至OD 600为0.05,向9个试管中分别加入100μL稀释后的该菌悬浮液,用灭菌后的封口膜密封试管;完成上述操作后将菌液放入生化培养箱,温度设置为37℃,培养24h后测定各试管中的OD 600
图5为24h后经过不同浓度的AA处理后的大肠杆菌、沙门氏菌、枯草芽孢杆菌、金黄色葡萄球菌在600nm处光密度的变化,由图可见,AA浓度在6-1536mg/L范围内时四种菌都可以生长,且与不加AA的对照组相比,AA基本不影响四种菌的生长;大肠杆菌在12mg/L AA作用下生长速率较空白组稍慢,但当AA浓度提高至48mg/L时大肠杆菌的生长与空白组相比并没有显著差别;与空白组相比沙门氏菌在6-768mg/L AA的作用下生长速率加快,可能是AA作为碳源促进了沙门氏菌的生长,虽然AA浓度为1536mg/L时沙门氏菌的生长速率变慢,但是菌在24h内仍呈增长趋势;AA对枯草芽孢杆菌的作用与对大肠杆菌的类似;浓度高达768mg/L的AA对金黄色葡萄球菌仍有一定的促进生长作用。由以上四种菌对AA的耐受性可以看出AA在浓度小于1536mg/L的范围内都不会对这几种菌有杀害作用,且AA对部分菌有促进生长的作用。上述实施例说明AA对不含有光合系统的细菌没有毒害作用,进一步推测AA作为抑藻剂对于水中的浮游动物友好。
实施例5
在无菌条件下向150ml三角瓶中加入100ml的BG-11培养基,并接入藻种,使得OD 680为0.2,并向三角瓶中加入不同体积稀释100倍的AA原液,使得AA的投加量分别为7mg/L,10mg/L,15mg/L,同时设立不含AA的对照试验(Control);将藻液放入光照培养箱中培养,在培养初期及培养0.5d,1d,1.5d,2d,3d,4d,5d后在无菌条件下取样进行叶绿素荧光参数的检测。
图6为AA抑制藻生长过程中藻的实际光化学量子产量变化,由图可知,在培养1天后铜绿微囊藻的实际光化学量子产量被AA显著抑制,且随着AA浓度的升高,这种抑制效果更加显著;继续培养的过程中,藻的实际光化学量子产量持续降低,生长到第2天时,浓度大于7mg/L的AA处理的藻液中藻的实际光化学量子产量为0;由实施例1可知在第1.5天时藻的生长才受到AA的抑制,而AA作用时藻的实际光化学量子产量在第1天时即受到抑制,说明AA作用于藻的光合系统,表现为AA导致藻的实际光化学量子产量显著降低,随后引起藻的死亡。
实施例6
在无菌条件下向150ml的三角瓶中加入100ml的BG-11培养基,并接入藻种,使得OD 680为0.2,并向三角瓶中投加一定体积的稀释100倍的AA原液,使得AA的投加量为10mg/L和20mg/L,同时设立不含AA的对照试验(Control);将藻液置于朝阳的窗台处培养,在培养初期及培养0.5d,1d,1.5d,2d,3d,4d,5d后在无菌条件下取样检测OD 680
图7为5天内在太阳光下AA作用时藻光密度变化情况,由图7可知,在太阳光下对照组的藻液生长良好,而用10mg/L及20mg/L AA处理藻液的生长均显著受到了抑制,说明AA在太阳光下仍可以有效的抑制藻生长,可作为抑藻剂施入蓝藻生长水域。

Claims (5)

  1. 乙酰丙酮在抑制蓝藻生长中的应用。
  2. 根据权利要求1所述的应用,其特征在于,所述蓝藻包括铜绿微囊藻。
  3. 一种包含乙酰丙酮的抑藻剂。
  4. 一种抑制蓝藻生长的方法,其特征在于,具体步骤如下:向蓝藻生长水域投加乙酰丙酮,以抑制蓝藻生长。
  5. 如权利要求4所述的方法,其特征在于,所述乙酰丙酮的投加量不低于7mg/L。
PCT/CN2020/111195 2020-01-10 2020-08-26 乙酰丙酮在抑制蓝藻生长中的应用 WO2021139168A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/290,982 US11464228B2 (en) 2020-01-10 2020-08-26 Application of acetylacetone in inhibiting growth of cyanobacteria

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010025079.9 2020-01-10
CN202010025079.9A CN111165492B (zh) 2020-01-10 2020-01-10 乙酰丙酮在抑制蓝藻生长中的应用

Publications (1)

Publication Number Publication Date
WO2021139168A1 true WO2021139168A1 (zh) 2021-07-15

Family

ID=70624162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111195 WO2021139168A1 (zh) 2020-01-10 2020-08-26 乙酰丙酮在抑制蓝藻生长中的应用

Country Status (3)

Country Link
US (1) US11464228B2 (zh)
CN (1) CN111165492B (zh)
WO (1) WO2021139168A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111165492B (zh) * 2020-01-10 2021-05-28 南京大学 乙酰丙酮在抑制蓝藻生长中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070032550A1 (en) * 2005-08-05 2007-02-08 Halliburton Energy Services, Inc. Novel salts and methods for their preparation
CN101511193A (zh) * 2006-02-16 2009-08-19 萨克特本化学有限责任公司 生物杀伤剂组合物
CN104349669A (zh) * 2012-06-06 2015-02-11 巴斯夫欧洲公司 含钒颗粒作为杀生物剂的用途
CN104381253A (zh) * 2014-11-19 2015-03-04 华中师范大学 含苯肼叉间二酮类化合物在蓝藻生长抑制中的应用
CN104944547A (zh) * 2015-06-05 2015-09-30 南京大学 一种TiO2基混凝剂及其应用
CN111165492A (zh) * 2020-01-10 2020-05-19 南京大学 乙酰丙酮在抑制蓝藻生长中的应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069113A (en) * 1997-09-23 2000-05-30 Laporte Water Technologies & Biochem, Inc. Formulated copper algaecides
CN102747041B (zh) * 2011-04-21 2014-07-16 畿晋庆三联(北京)生物技术有限公司 抗蓝藻重组抗体多肽及其基因与制备方法
CN105950500A (zh) * 2016-05-13 2016-09-21 上海交通大学 一株溶藻气单胞菌及其在控制蓝藻水华中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070032550A1 (en) * 2005-08-05 2007-02-08 Halliburton Energy Services, Inc. Novel salts and methods for their preparation
CN101511193A (zh) * 2006-02-16 2009-08-19 萨克特本化学有限责任公司 生物杀伤剂组合物
CN104349669A (zh) * 2012-06-06 2015-02-11 巴斯夫欧洲公司 含钒颗粒作为杀生物剂的用途
CN104381253A (zh) * 2014-11-19 2015-03-04 华中师范大学 含苯肼叉间二酮类化合物在蓝藻生长抑制中的应用
CN104944547A (zh) * 2015-06-05 2015-09-30 南京大学 一种TiO2基混凝剂及其应用
CN111165492A (zh) * 2020-01-10 2020-05-19 南京大学 乙酰丙酮在抑制蓝藻生长中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AMINABHAVI, T.M. ; BIRADAR, N.S. ; DIVAKAR, M.C. ; RUDZINSKI, W.E.: "Biologically active bimetallic complexes formed from acetylacetonates of copper, cobalt and nickel", INORGANICA CHIMICA ACTA, ELSEVIER BV, NL, vol. 92, no. 2, 1 June 1984 (1984-06-01), NL, pages 99 - 105, XP026595768, ISSN: 0020-1693, DOI: 10.1016/S0020-1693(00)80005-5 *
BRINGMANN, G.; KÜHN, R.: "Testing of substances for their toxicity threshold: model organisms Microcystis (Diplocystis) aeruginosa and Scenedesmus quadricauda", MITTEILUNGEN INTERNATIONALE VEREINIGUNG FÜR THEORETISCHE UND ANGEWANDTE LIMNOLOGIE, vol. 21, no. 1, 30 June 1978 (1978-06-30), pages 275 - 284, XP009529009, ISSN: 0538-4680, DOI: 10.1080/05384680.1978.11903971 *
GAO WEI, ZHANG HUA, CAI XIAO-YU: "Study on Joint Toxicity Effect to Scenedesmus Obliquus of Ketones", JIANGSU ENVIRONMENTAL SCIENCE AND TECHNOLOGY, vol. 20, no. 6, 1 December 2007 (2007-12-01), pages 20 - 25, XP055827785, ISSN: 1004-8642 *
XIA, SHANSHAN; CHANG, XUE-XIU; WU, FENG; LIU, JUN-YAN: "Study on Joint Toxicity Effect to Scenedesmus Obliquus of Ketones", ACTA ECOLOGICA SINICA, vol. 28, no. 8, 15 August 2008 (2008-08-15), pages 3927 - 3936, XP009529010, ISSN: 1000-0933 *

Also Published As

Publication number Publication date
CN111165492A (zh) 2020-05-19
CN111165492B (zh) 2021-05-28
US20220151228A1 (en) 2022-05-19
US11464228B2 (en) 2022-10-11

Similar Documents

Publication Publication Date Title
Sudha et al. Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria
Yu et al. Preparation of visible light-responsive AgBiO3 bactericide and its control effect on the Microcystis aeruginosa
Hrenovic et al. Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite
Ansa et al. The role of algae in the removal of Escherichia coli in a tropical eutrophic lake
Nguyen et al. Effects of nano cerium (IV) oxide and zinc oxide particles on biogas production
Khaydarov et al. Silver nanoparticles: Environmental and human health impacts
CN100581641C (zh) 一种反渗透膜用杀菌剂及其制备方法
US9428399B1 (en) Synthesis of nanoparticles of metals and metal oxides using plant seed extract
CN109355223A (zh) 一株具有氨氮降解功能的枯草芽孢杆菌n2及其应用
CN105154474A (zh) 红色纳米硒的生物制备方法
WO2021139168A1 (zh) 乙酰丙酮在抑制蓝藻生长中的应用
Jingrui et al. Enhanced removal of tetracycline from synthetic wastewater using an optimal ratio of co-culture of Desmodesmus sp. and Klebsiella pneumoniae
Shujah et al. Molybdenum-doped iron oxide nanostructures synthesized via a chemical co-precipitation route for efficient dye degradation and antimicrobial performance: in silico molecular docking studies
Anooj et al. Synthesis and characterization of graphene quantum dots from nutmeg seeds and its biomedical application
Zhou et al. One-pot synthesis of 2D Ag/BiOCl/Bi2O2CO3 S-scheme heterojunction with oxygen vacancy for photocatalytic disinfection of Fusarium graminearum in vitro and in vivo
CN112010369A (zh) 一种过硫复合盐水产养殖水质改良剂及其制备方法和其粉剂、片剂制备方法
CN104312949A (zh) 有机氯污染物净化方法及其使用的净化剂和培养液
Bomo et al. The impact of cyanobacteria on growth and death of opportunistic pathogenic bacteria
CN103613178B (zh) 一种杀藻剂在控制微囊藻水华中的用途
CN113749116B (zh) 抑藻材料及其应用
Al-Fawwaz et al. Removal of methylene blue and malachite green from aqueous solutions by Chlorella and Chlamydomonas species isolated from a thermal spring environment
CN102786528A (zh) 一种多氧生物碱类化合物及其制备和应用
CN113016802A (zh) 富马酸在抑制蓝藻生长中的应用
CN106967610B (zh) 球形棕囊藻的培养方法
Mohy El-Din et al. Biosynthesis of silver nanoparticles from the marine microalga Isochrysis galbana and their antibacterial activity against pathogenic bacteria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912122

Country of ref document: EP

Kind code of ref document: A1