WO2021139147A1 - Bivalent adenovirus vaccine - Google Patents

Bivalent adenovirus vaccine Download PDF

Info

Publication number
WO2021139147A1
WO2021139147A1 PCT/CN2020/106400 CN2020106400W WO2021139147A1 WO 2021139147 A1 WO2021139147 A1 WO 2021139147A1 CN 2020106400 W CN2020106400 W CN 2020106400W WO 2021139147 A1 WO2021139147 A1 WO 2021139147A1
Authority
WO
WIPO (PCT)
Prior art keywords
adenovirus
gene
replication
plasmid
orf2
Prior art date
Application number
PCT/CN2020/106400
Other languages
French (fr)
Chinese (zh)
Inventor
陈凌
杨臣臣
刘晓琳
Original Assignee
广州恩宝生物医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州恩宝生物医药科技有限公司 filed Critical 广州恩宝生物医药科技有限公司
Publication of WO2021139147A1 publication Critical patent/WO2021139147A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10334Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the invention belongs to the technical field of virus immunology, and specifically relates to an adenovirus bivalent vaccine.
  • Adenovirus is a double-stranded DNA virus with a genome length of about 35-40 kb. It is known that human adenoviruses are divided into 7 subgroups (A ⁇ G), including more than 50 serotypes (more than 90 genotypes). After infection, patients mainly cause acute respiratory diseases (adenovirus B and C subgroups) and conjunctivitis (Adenovirus B and D subgroups) and gastroenteritis (Adenovirus F subgroups 41 and 42, G subgroup 52). Respiratory tract infections caused by adenovirus are mostly caused by adenovirus types 3, 4 and 7. Ad4 and Ad7 broke out mainly in places where young people and teenagers gather such as troops and schools, and even led to the death of patients. However, there is no specific medicine for the treatment of adenovirus infection, and only supportive treatment can be taken clinically.
  • the vaccine is an oral live virus vaccine in the form of enteric-coated capsules, which are passed on human embryonic kidney diploid fibroblasts and are produced by freeze-dehydration and mixing with cellulose lactose.
  • the use of the vaccine effectively controlled the outbreak of adenovirus infections in the US military.
  • the Ad4 and Ad7 vaccines used by the U.S. military are extremely risky.
  • the vaccine is mainly low-dose wild-type adenovirus.
  • There is a risk that the residual live virus will be discharged from the intestine to pollute the living environment, and it is very easy to cause secondary pollution of the virus.
  • the safety is poor, so it cannot be widely used in the general population. Therefore, it is very necessary to develop a replication-deficient adenovirus vaccine that is highly safe and can prevent the strong strains of Ad4 and Ad7.
  • Replication-deficient adenovirus vectors have been widely used in vaccine development, gene therapy and other fields. They are not only safe, but also have a strong immune response in the organism. Studies have shown that the E1 gene of adenovirus is an essential gene for its replication and proliferation, and the E3 gene plays a key role in resisting the host's immune system. After knocking out the E1 and E3 genes, the adenovirus loses the ability to replicate in normal humans and has an attenuated phenotype in this respect. At the same time, the main surface antigens Hexon and Fiber of Ad4 and Ad7 are not affected and will not affect the immunogenicity of the vaccine.
  • replication-defective adenovirus as a vaccine can effectively increase the completeness and scope of the vaccine.
  • Replication-deficient adenovirus can be produced in complementary cell lines, such as 293 cells and PerC6 cells expressing the Ad5E1 gene.
  • complementary cell lines such as 293 cells and PerC6 cells expressing the Ad5E1 gene.
  • studies have found that many adenoviruses, especially non-C subgroup adenoviruses, have lower yields in these production cell lines after knocking out the E1 and E3 genes.
  • Ad5E1B 55K cannot interact with the B subtype adenovirus E4Orf6 protein. It cannot effectively inhibit the nucleation of host cell mRNA, and cannot increase the expression of late viral proteins.
  • adenoviruses require 293 cell lines or other cell lines expressing the corresponding E1 gene to be produced. Therefore, replication-defective Ad3, Ad4 and Ad7, which only knock out the E1 and E3 genes, are difficult to produce in the vaccine production cell line 293 or PerC6. Improving its production capacity in these cell lines is currently a bottleneck technical problem that needs to be resolved.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a preparation method and application of replication-defective recombinant Ad4 and Ad7 that can be amplified on a large scale in vaccine production cell strains, and the replication-defective recombinant Ad4 and Ad7 can be used to a certain extent.
  • Ad4 and Ad7 bivalent vaccines are prepared by mixing Ad4 and Ad7 in a ratio of 5%.
  • the immune body can effectively stimulate the body to produce humoral immunity and cellular immune response, and produce specific Ad4 and Ad7 neutralizing antibodies, which are used to prevent the infection of Ad4 and Ad7 pathogens.
  • a composition comprising replication-deficient human type 4 adenovirus and type 7 adenovirus.
  • the E1 and E3 genes of the replication-deficient type 4 adenovirus are deleted, and part of the coding frame of the E4 gene is replaced with the corresponding coding frame of the human type 5 adenovirus E4 gene.
  • the E1 and E3 genes of the replication-deficient human adenovirus type 7 are deleted, and part of the coding frame of the E4 gene is replaced with the corresponding coding frame of the human type 5 adenovirus E4 gene.
  • At least one of the E1 gene regions of the replication-deficient adenovirus integrates the foreign gene expression cassette.
  • the exogenous gene expression cassette contains a nucleotide sequence that can induce an immune response in the human body or generate a biological reporter molecule or a tracking molecule for detection, or a nucleotide sequence that can regulate gene function or a therapeutic molecule.
  • the mixing ratio of the number of replication-defective human adenovirus type 4 and replication-defective human adenovirus type 7 virus particles is between 1:10 and 10:1.
  • composition in preparing vaccines, detecting reagents, regulating gene function or medicines.
  • any of the above-mentioned compositions further includes a pharmaceutically acceptable adjuvant, carrier, diluent or excipient.
  • the present invention replaces the Orf2, Orf3, Orf4, and Orf6 coding frames of the E4 gene of Ad4 and Ad7 with the corresponding coding frames of the Ad5 E4 gene, which greatly improves the replication-defective Ad4 and The safety of Ad7 and its ability to replicate in production cell lines.
  • the Ad4 and Ad7 bivalent vaccine prepared by the present invention can effectively induce Ad4 and Ad7 specific humoral immunity and cellular immunity in experimental animals after primary immunization and booster immunization, and produce specific Ad4 and Ad7 neutralizing antibodies , Used to prevent the infection of Ad4 and Ad7 pathogens.
  • the bivalent vaccine of the present invention greatly improves the safety and scope of use of the vaccine while retaining its immunogenicity.
  • Figure 1 is a flow chart of the construction of pAd4 plasmid.
  • Figure 2 is a flow chart of the construction of pAd4 ⁇ E3 plasmid.
  • Figure 3 is a flow chart of the construction of pAd4 ⁇ E1 ⁇ E3 plasmid.
  • Figure 4 is a flow chart of the construction of pAd4 ⁇ E1 ⁇ E3 (Orf2-6) plasmid.
  • Figure 5 is a flow chart of the construction of pAd4 ⁇ E1 ⁇ E3(Orf2-6)-EGFP plasmid.
  • Figure 6 shows the enzyme digestion and identification results of pAd4 plasmid, pAd4 ⁇ E3 plasmid, pAd4 ⁇ E1 ⁇ E3 plasmid, pAd4 ⁇ E1 ⁇ E3 (Orf2-6) and pAd4 ⁇ E1 ⁇ E3 (Orf2-6)-EGFP plasmid.
  • Figure 7 shows the results of the production and purification of the replication-defective Ad4 vector.
  • Figure 8 shows the results of the plaque formation experiment of the replication-deficient Ad4 vector in HEK293 and A549 cells.
  • Figure 9 shows the construction flow chart (A) of pAd7 plasmid and the result of restriction digestion (B).
  • Figure 10 is the construction flow chart (A) and restriction diagram (B) of pAd7 ⁇ E3 plasmid.
  • Figure 11 is the construction flow chart (A) and restriction diagram (B) of pAd7 ⁇ E1 ⁇ E3 plasmid.
  • Figure 12 is the construction flow chart (A) and restriction diagram (B) of pAd7 ⁇ E1 ⁇ E3 (Orf2-6) plasmid.
  • Figure 13 is the construction flow chart (A) and restriction diagram (B) of pAd7 ⁇ E1 ⁇ E3(Orf2-6)-EGFP plasmid.
  • Figure 14 shows the results of the production and purification of the replication-defective Ad7 vector.
  • Figure 15 shows the results of the plaque formation experiment of the replication-deficient Ad7 vector in HEK293 and A549 cells.
  • Figure 16 shows the results of determination of the levels of Ad4 and Ad7 neutralizing antibodies in the serum of rhesus monkeys.
  • Figure 17 shows the results of determining the levels of Ad3, Ad11 and Ad14 cross-neutralizing antibodies in the serum of rhesus monkeys.
  • Figure 18 shows the results of the PMBC ELISPOT experiment in rhesus monkeys.
  • human type 4 adenovirus, human type 7 adenovirus refers to the type 4 adenovirus and type 7 adenovirus known to those of ordinary skill in the art.
  • the adenovirus genome used in the examples is also derived from these known adenoviruses.
  • Human adenovirus The replication-deficient human type 4 adenovirus vector and human type 7 adenovirus vector of the present invention are not limited to the specific clinical isolates used in the examples.
  • Ad4 genome as a template for PCR amplification, recombinant arms Ad4-L and Ad4-R were obtained.
  • Ad4-L primer sequence
  • Ad4-L Fw ATAGAATTCGGGGTGGAGTGTTTTTGCAAG (SEQ ID NO.1);
  • Ad4-L Rw TTTACTAGTGTTTAAACGTAATCGAAACCTCCACGTAATGG (SEQ ID NO. 2).
  • PCR program 95°C, 30 seconds; 62°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
  • Ad4-R primer sequence
  • Ad4-R Fw ACTAGTAGCTGGATCCAAGCCTCGAGGCACTACAATG (SEQ ID NO.3);
  • Ad4-R Rw CCTGCCGTTCGACGATGCGATCGCCATCATCAATAATATACCTTATAGATGG (SEQ ID NO. 4).
  • PCR program 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 80 seconds; 25 cycles.
  • Homologous recombinase was used to connect to pSIMPLE 19 (EcoRV) vector (TaKaRa) to obtain Ad4 genome circularized shuttle plasmid pT-Ad4 (L+R).
  • pT-Ad4(L+R) was linearized with SpeI and BamHI, it was co-transformed with Ad4 genome into BJ5183 competent cells; after screening for ampicillin resistance, the plasmid was manually extracted and further transformed into XL-Blue competent cells (Beijing Sibai Hui Biotechnology Co., Ltd.); manually extract the plasmid to obtain pAd4, the technical process is shown in Figure 1, and the restriction diagram is shown in Figure 6.
  • L-delE3 (or called delE3-4L) primer sequence:
  • L-delE3 F GACATTGATTATTGACTAGTTTCAACACCTGGACCACTGCC (SEQ ID NO.5);
  • L-delE3 R ATTTAAATTGGAATTCAAGGTCAGAGACTGGTTGAAGGATG (SEQ ID NO. 6).
  • PCR program 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
  • R-delE3 F GAATTCCAATTTAAATAGCAGTCTGGCGATACCAAGG (SEQ ID NO. 7);
  • R-delE3 R GTTTAAACGGGCCCTCTAGACATTCTTGGTGGTGACAGGGTC (SEQ ID NO. 8).
  • PCR program 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
  • the shuttle plasmid pVax-delE3(L+R) which knocked out the E3 gene was obtained by ligating the homologous recombinase to pVax vector.
  • L-delE1 (or L-delK) primer sequence:
  • L-delE1 F CCAGATATACGCGTGTATACCATCATCAATAATATACCTTATAGATGG (SEQ ID NO.9);
  • L-delE1 R GATATCAAGTTAATTAAAATCGAAACCTCCACGTAAAC (SEQ ID NO. 10).
  • PCR program 95°C, 30 seconds; 50°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
  • R-delE1 (or R-delK) primer sequence:
  • R-delE1 F TTAATTAACTTGATATCGTGTGGATGTGACGGAGGAC (SEQ ID NO.11);
  • R-delE1 R GCCCAGTAGAAGCGCCGGTGCGGGATTATTAGTGGAACTTGAG (SEQ ID NO. 12).
  • PCR program 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
  • Homologous recombinase was used to connect to the pVax vector (Invitrogen) to obtain the shuttle plasmid pVax-delE1(L+R) which knocked out the E1 gene.
  • pVax-delE1(L+R) was linearized with BstZ17I+SgrAI double enzyme digestion, it was co-transformed with pAd4 ⁇ E3 linearized by PsiI to transform BJ5183 competent cells (Stratagene); after screening for ampicillin resistance, the plasmid was manually extracted, and further Transform XL-Blue competent cells (Beijing Sibaihui Biotechnology Co., Ltd.); manually extract the plasmid to obtain the pAd4 ⁇ E1 ⁇ E3 plasmid.
  • the technical process is shown in Figure 3, and the restriction map is shown in Figure 6.
  • a PacI restriction site was introduced into the pro-E1 region of the adenovirus genome in the resulting pAd4 ⁇ E1 ⁇ E3 plasmid to facilitate subsequent cloning.
  • 4E4R F CATTGATTATTGACTAGAGTATACCATGCTGGCGCGGCTGACCTAGCT (SEQ ID NO.13);
  • PCR program 95°C, 30 seconds; 60°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
  • PCR program 95°C, 30 seconds; 60°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
  • the Ad5 genome was used as a template for PCR amplification to obtain Orf2-6 of the Ad5 adenovirus E4 gene.
  • Orf2-6 primer sequence :
  • Orf2-6 F TCCTCGGTGGTTGGAATCACAGCTACATGGGGGTAGAGTCATAATCG (SEQ ID NO.17);
  • Orf2-6 R CCAAAAACACTAACCATGCTGGAATGCAGAAACCCGCAGACATGTTTGAG (SEQ ID NO.18).
  • PCR program 95°C, 30 seconds; 65°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
  • Homologous recombinase was used to connect to the pGK143-(L+R) vector linearized by BamHI to obtain the shuttle plasmid pGK143-Orf2-6 modified by the Ad4 E4 gene.
  • pGK143-Orf2-6 was linearized with BstZ17I+SgrAI double enzyme digestion, it was co-transformed with SwaI linearized pAd4 ⁇ E1 ⁇ E3 to transform BJ5183 competent cells (Stratagene); after screening for ampicillin resistance, the plasmid was manually extracted and further transformed into XL- Blue Competent Cells (Beijing Sibaihui Biotechnology Co., Ltd.); the plasmid was manually extracted to obtain the pAd4 ⁇ E1 ⁇ E3 (Orf2-6) plasmid.
  • the technical process is shown in Figure 4, and the restriction map is shown in Figure 6.
  • PCR program 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
  • PCR program 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 1 minute, 30 seconds; 25 cycles.
  • the homologous recombination arms 4SE1L and 4SE1R of the E1 region were connected to the pVax vector by using the homologous recombinase (Vazyme) ligation to obtain the shuttle plasmid pGK41-(L+R) carrying the recombination arms.
  • PCR program 95°C, 30 seconds; 66°C, 30 seconds; 72°C, 30s; 25 cycles.
  • Homologous recombinase (Vazyme) was used to connect the CMV-EGFP-BGH expression cassette to the pGK41-(L+R) vector to obtain the shuttle plasmid pGK41-EGFP carrying the recombination arm.
  • pGK41-EGFP plasmid was cut with BstZ17I+SgrAI and recovered by ethanol precipitation; pAd4 ⁇ E1 ⁇ E3 (Orf2-6) was linearized with PacI and recovered by ethanol precipitation; co-transformed with BJ5183, homologous recombination yielded pAd4 ⁇ E1 ⁇ E3 (Orf2-6) carrying the foreign gene expression cassette -EGFP plasmid, the technical process is shown in Figure 5. Refer to Figure 6 for the results of double restriction digestion.
  • pAd4 ⁇ E1 ⁇ E3(Orf2-6) and pAd4 ⁇ E1 ⁇ E3(Orf2-6)-EGFP were linearized with AsiSI, recovered by ethanol precipitation, and transfected with cationic liposome transfection method into 293 cells. 8 hours after transfection, 2 ml Incubate in DMEM medium with 5% fetal bovine serum for 7-10 days to observe the cytopathic changes; after the virus has emerged, collect the cells and culture supernatant, freeze and thaw them in a 37-degree water bath and liquid nitrogen three times and centrifuge to remove cell debris.
  • plaque formation experiments were used to identify the growth ability of replication-deficient Ad4 virus in HEK293 helper cells and A549 non-helper cells.
  • 293 or A549 cells in the six-well plate grow to 90% full, they are infected with Ad4 ⁇ E1 ⁇ E3(Orf2-6)-EGFP, and the infection titer is 1X10 7 Vp/well.
  • the medium was aspirated, and a 1% agarose gel (containing 1% agarose, 1% BSA, 1 ⁇ MEM medium) was spread. After being placed in a 37°C incubator for 9-12 days, observe the formation of virus clones under a fluorescence microscope, and take pictures and record. The result is shown in Figure 8.
  • the replication-defective Ad4 ⁇ E1 ⁇ E3(Orf2-6)-EGFP can only form plaques in HEK293 cells, but not in A549 cells. This indicates that the replication-deficient Ad4 vector can effectively proliferate in HEK293 cells with E1 gene complementation, but it has no replication ability in non-helper cells such as A549 cells and has an attenuated phenotype. At the same time, the results also show that the replication-defective human type 4 adenovirus vector can carry the reporter gene into the target cell, so it can be used in the reporter tracer system.
  • the left arm (L-Ad7) and the right arm (R-Ad7) of the Ad7 genome were obtained by PCR.
  • L-Ad7-F ACTGCGATCGCCTCTCTATTTAATATACCTTATAGATGG (SEQ ID NO.25);
  • L-Ad7-R ACATGGATCCTCACTGAAGATAATCTCCTGTGG (SEQ ID NO. 26).
  • PCR conditions 95°C, 3min; 95°C, 30s; 56°C for 30s; 72°C, 40s; cycles 30; 72°C, 5min; 12°C storage.
  • R-Ad7-F AGCTGGATCCGAACCACCAGTAATATCATCAAAG (SEQ ID NO.27);
  • R-Ad7-R TGAGCGATCGCCTCTCTATATAATATACCTTATAGATGGAA (SEQ ID NO. 28).
  • the PCR product and the T vector were ligated with three fragments using Exnase recombinase to obtain pT-Ad7(L+R).
  • pT-Ad7(L+R) was digested and linearized with BamHI, and then co-transformed with Ad7 genome into BJ5183 competent cells for recombination, and the ampicillin resistance plate was used for resistance screening, and the selected single clones were amplified and extracted
  • the plasmid was transformed into XL-Blue chemically competent cells, and the plasmid was extracted to obtain pAd7, which was identified by different enzyme digestion methods.
  • pAd7 introduced two AsisI digestion sites on both sides of the genome to facilitate subsequent linearization of the modified Ad7 genome Rescue the virus. The specific construction process is shown in Figure 9.
  • L- ⁇ E3-F CATACTAGTCTGTCTACTTCAACCCCTTCTCCG (SEQ ID NO.29);
  • L- ⁇ E3-R GCAGAATTCATTTAAATGGAGGAAGGGTCTGGGTCTTCTG (SEQ ID NO. 30).
  • PCR conditions 95°C, 3min; 95°C, 30s; 63°C 30s; 72°C, 30s; cycles 30; 72°C, 5min; 12°C storage.
  • R- ⁇ E3-F GCAGATATCATTTAAATAGACCCTATGCGGCCTAAGAGAC (SEQ ID NO.31);
  • R- ⁇ E3-R ACATCTAGAGACAGTTGGCTCTGGTGGGGT (SEQ ID NO.32).
  • PCR conditions 95°C, 3min; 95°C, 30s; 61°C 30s; 72°C, 40s; cycles 30; 72°C, 5min; 12°C storage.
  • L- ⁇ E3 was digested with SpeI+EcoRI, it was ligated to the pVax vector digested with the same restriction to obtain pVax-L- ⁇ E3.
  • R- ⁇ E3 was digested with EcoRV+XbaI and connected to the pVax-L- ⁇ E3 backbone of the same digestion to obtain pVax- ⁇ E3(L+R).
  • pVax- ⁇ E3(L+R) was linearized with SpeI+XbaI
  • pAd7 was linearized with EcoRI, recovered by ethanol precipitation, and then co-transformed into BJ5183 competent cells, spread to ampicillin resistant plates, hand-extracted plasmids, and continued to transform XL-Blue Competent cells were hand-extracted and the plasmids were digested for identification.
  • the genomic plasmid pAd7 ⁇ E3 with the E3 gene knocked out and the only single restriction site SwaI introduced in the E3 region was obtained.
  • the insertion of the SwaI restriction site facilitates linearization in the E3 gene region.
  • the schematic diagram of the construction of the shuttle plasmid and pAd7 ⁇ E3 plasmid and the restriction enzyme digestion results of the large plasmid are shown in Figure 10.
  • L- ⁇ E1-F ACTCACCGGCGGCGATCGCCTCTCTATTTAATATACCTTATAGATGG (SEQ ID NO.33);
  • L- ⁇ E1-R ATCACAATTGAATTCGTTTAAACGTAATCGAAACCTCCACGTAA (SEQ ID NO.34).
  • PCR conditions 95°C, 3min; 95°C, 30s; 54°C for 30s; 72°C, 30s; cycles 30; 72°C, 5min; 12°C storage.
  • R-SE1-F ATAGAATTC ACTAGTGAGGCCCGATCATTTGGTGCT (SEQ ID NO.35);
  • R-SE1-R ACGTATAC CTATCATTATGGATGAGTGCATGG (SEQ ID NO. 36).
  • PCR conditions 95°C, 3min; 95°C, 30s; 61°C 30s; 72°C, 1min 10s; cycles 30; 72°C, 5min; 12°C storage.
  • the PCR product and the T vector were ligated with three fragments using Exnase recombinase to obtain pT-Ad7(L+R).
  • pT-Ad7- ⁇ E1(L+R) was linearized with Bstz17I
  • pAd7 was linearized with AatII
  • the insertion of the PmeI restriction site facilitates linearization in the E1 gene region.
  • the construction diagram of the shuttle plasmid and pAd7 ⁇ E1 ⁇ E3 plasmid and the restriction enzyme digestion results of the large plasmid are shown in Figure 11.
  • L-SE4-F CGCGGATCTTCCAGAGATGTTTAAACAACCAGTTACTCCTAGAACAGTCAGC (SEQ ID NO.37);
  • R-SE4-R GCCTGCCGTTCGACGATGTTTAAAC CAGCTGGCACGACAGGTTTC (SEQ ID NO.40)
  • L-SE4 and R-SE4 fragments obtained by PCR and the blunt-ended T vector were ligated with three fragments to obtain p7SE4.
  • Ad5 Orf2-6-F TCACAGTCCAACTGCT CCTACATGGGGGTAGAGTCATAATCG (SEQ ID NO.41);
  • p7SE4-F CAATAGGTTACCGCGCTGCG (SEQ ID NO.43);
  • p7SE4 (Orf2-6) uses PmeI for restriction digestion and linearization
  • pAd7 ⁇ E1 ⁇ E3 uses SwaI for restriction digestion and linearization.
  • the above two digestion products are recovered by ethanol precipitation, and the BJ5183 competent cells are co-transformed for recombination, and the ampicillin plate is resistant.
  • the left arm SE1L and the right arm SE1R of the E1 gene region shuttle plasmid were obtained by PCR using the Ad7 genome as a template.
  • SE1L-F CCAGATATACGCGTGTATACTTAATTAACGGCATCAGAGCAGATTGTACTG (SEQ ID NO.45);
  • SE1L-R GTTTAAACAAGATTTAAATGTAATCGAAACCTCCACGTAAACG (SEQ ID NO. 46).
  • SE1R-F ATTTAAATCTTGTTTAAACGAATTCACTAGTGAGGCCCGATC (SEQ ID NO.47);
  • SE1R-R GCCCAGTAGAAGCGCCGGTGTTAATTAACAAGTAGCTTGTCCTCAGCCAGG (SEQ ID NO. 48).
  • the plasmid pVax was digested with Bstz17I+SgraI to recover the plasmid backbone, and then SE1L was obtained with the above PCR, and SE1R was ligated with three fragments using Exnase enzyme to obtain pSE1LR.
  • the primer sequence for amplifying CMV-EGFP-BGH is the primer sequence for amplifying CMV-EGFP-BGH
  • CMV-EGFP-BGH-F ACTAGTGAATTCGTTTACTAGTTATTAATAGTAATCAATTACGGG (SEQ ID NO.49);
  • pSE1LR was linearized by PmeI digestion, and then ligated with the CMV-EGFP-BGH expression box obtained by PCR amplification with Exnase enzyme to obtain pGK71-EGFP.
  • pGK71-EGFP is linearized with PacI
  • pAd7 ⁇ E1 ⁇ E3 (Orf2-6) is linearized with PmeI digestion
  • the above two digestion products are recovered by ethanol precipitation
  • the BJ5183 competent cells are co-transformed for recombination, and the ampicillin plate is resistant
  • Screening after screening the monoclonal amplification, the plasmid is extracted and transformed into XL-Blue competent cells, the plasmid is extracted to obtain pAd7 ⁇ E1 ⁇ E3(Orf2-6)-EGFP, and the plasmid is extracted and identified by restriction enzyme digestion.
  • the specific construction of pAd7 ⁇ E1 ⁇ E3(Orf2-6)-EGFP Refer to Figure 13 for the process and the identification results of large plasmids.
  • pAd7 ⁇ E1 ⁇ E3(Orf2-6) and pAd7 ⁇ E1 ⁇ E3(Orf2-6)-EGFP were linearized with AsiSI, recovered by ethanol precipitation, and transfected into 293 cells by cationic liposome transfection method, 4-6 hours after transfection, added 2 ml of DMEM medium containing 5% fetal bovine serum, incubate for 7-10 days, observe the cell pathology; after the virus is found, collect the cells and culture supernatant, freeze and thaw them in a 37°C water bath and liquid nitrogen three times and remove them by centrifugation Cell debris, the supernatant infects 10 cm dishes; 2-3 days later, collect cells and culture supernatant, freeze-thaw three times and centrifuge to remove cell debris, supernatants infect 10-15 15 cm dishes; 2-3 days later, collect Cells were repeatedly frozen and thawed three times and centrifuged to remove cell debris.
  • virus concentration OD260 ⁇ dilution factor ⁇ 36/genome length (Kb); virus stock solution is frozen at -80°C.
  • the results of the production and purification of the replication-defective Ad7 vector are shown in Figure 14.
  • the plaque experiment was used to determine the replication ability of the replication-deficient Ad7 vector in the helper cell 293 and the non-helper cell A549. Inoculate 293 or A549 cells in a 6-well cell plate. When the cell density approaches 100%, dilute the harvested P1 generation Ad7 ⁇ E1 ⁇ E3(Orf2-6)-EGFP virus stock solution and infect 293 or A549 cells respectively, each virus Do two repetitions for the concentration. After the virus infects the cells for 2 hours, aspirate the medium, and spread about 2ml agarose gel on each well (containing 1ml 1.4% agarose, 1ml 1 ⁇ MEM medium, 200ul BSA, 1 ⁇ penicillin antibiotic).
  • the replication-defective Ad4 and Ad7 vaccines purified by cesium chloride density gradient force centrifugation were carried out until the concentration of Ad4 was 4 ⁇ 10 11 vp/ml and the concentration of Ad7 was 4 ⁇ 10 11 vp/ml, and stored at -80°C.
  • Ad4 and Ad7 tetravalent vaccines were designed. As shown in Table 1, the immunogenicity of Ad4 and Ad7 bivalent vaccines was evaluated according to the designed immunization protocol.
  • Ad4 and Ad7 bivalent vaccines Ad4: 2 ⁇ 10 10 vp/ml, Ad7: 2 ⁇ 10 10 vp/ml).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Communicable Diseases (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Disclosed is a bivalent adenovirus vaccine comprising a replication-deficient human type 4 adenovirus and a replication-deficient human type 7 adenovirus. The E1 and E3 genes of the replication-deficient human type 4 adenovirus and the replication-deficient human type 7 adenovirus are deleted. A portion of the coding cassette of the E4 gene is replaced with the corresponding coding cassette of the E4 gene of human type 5 adenovirus. The bivalent adenovirus vaccine can effectively stimulate the body to produce a humoral immune response and a cellular immune response to produce high-titer, specific neutralizing antibodies for preventing pathogen infection.

Description

一种腺病毒二价疫苗A bivalent adenovirus vaccine 技术领域Technical field
本发明属于病毒免疫学技术领域,具体涉及一种腺病毒二价疫苗。The invention belongs to the technical field of virus immunology, and specifically relates to an adenovirus bivalent vaccine.
背景技术Background technique
腺病毒(Adenovirus,Ad)是双链DNA病毒,其基因组长度约35-40kb。已知人腺病毒分为7个亚群(A~G),包括50多个血清型(90多个基因型),患者感染后主要引起急性呼吸道疾病(腺病毒B和C亚群)、结膜炎(腺病毒B和D亚群)和胃肠炎(腺病毒F亚群41型和42型,G亚群52型)。腺病毒导致的呼吸道感染多由腺病毒3型、4型和7型引起。Ad4和Ad7主要集中在部队、学校等青年和青少年聚集的地方爆发,甚至导致病人的死亡。但是,尚无治疗腺病毒感染的特效药物,临床上只能采取支持性治疗。Adenovirus (Ad) is a double-stranded DNA virus with a genome length of about 35-40 kb. It is known that human adenoviruses are divided into 7 subgroups (A~G), including more than 50 serotypes (more than 90 genotypes). After infection, patients mainly cause acute respiratory diseases (adenovirus B and C subgroups) and conjunctivitis (Adenovirus B and D subgroups) and gastroenteritis (Adenovirus F subgroups 41 and 42, G subgroup 52). Respiratory tract infections caused by adenovirus are mostly caused by adenovirus types 3, 4 and 7. Ad4 and Ad7 broke out mainly in places where young people and teenagers gather such as troops and schools, and even led to the death of patients. However, there is no specific medicine for the treatment of adenovirus infection, and only supportive treatment can be taken clinically.
目前,预防腺病毒感染的疫苗仅在美国军队获得使用。该疫苗为野生型Ad4、Ad7在人胚肾二倍体成纤维细胞上传代,经冷冻脱水、混和纤维素乳糖等制成的肠溶型胶囊形式的口服活病毒疫苗。该疫苗的使用有效控制了美军腺病毒感染疫情的爆发。但是,美军使用的Ad4和Ad7苗存在极大的风险,该疫苗主要是低剂量野生型腺病毒,存在残余活病毒从肠道排出后污染生活环境的风险,极易造成病毒的二次污染,安全性较差,因而不能广泛应用于普通人群。所以,研制安全性高并能预防Ad4和Ad7强病毒株的复制缺陷型腺病毒疫苗是十分必要的。Currently, vaccines to prevent adenovirus infection are only available in the U.S. military. The vaccine is an oral live virus vaccine in the form of enteric-coated capsules, which are passed on human embryonic kidney diploid fibroblasts and are produced by freeze-dehydration and mixing with cellulose lactose. The use of the vaccine effectively controlled the outbreak of adenovirus infections in the US military. However, the Ad4 and Ad7 vaccines used by the U.S. military are extremely risky. The vaccine is mainly low-dose wild-type adenovirus. There is a risk that the residual live virus will be discharged from the intestine to pollute the living environment, and it is very easy to cause secondary pollution of the virus. The safety is poor, so it cannot be widely used in the general population. Therefore, it is very necessary to develop a replication-deficient adenovirus vaccine that is highly safe and can prevent the strong strains of Ad4 and Ad7.
复制缺陷型腺病毒载体已经被广泛的应用于疫苗研发、基因治疗等领域,其不仅安全性好,并且在生物体内又发生较强的免疫反应。已有研究显示,腺病毒E1基因是其复制增殖的必需基因,E3基因在抵抗宿主的免疫系统中起关键性作用。敲除E1、E3基因后,腺病毒在正常人体内丧失复制能力,在此方面具有减毒表型。同时,Ad4和Ad7主要的表面抗原Hexon、Fiber等则不受影响,不会影响疫苗的免疫原性。因此,采用复制缺陷的腺病毒作为疫苗可有效增加疫苗的全性和使用范围。复制缺陷型腺病毒可在互补细胞株,如表达Ad5E1基因的293细胞、PerC6细胞中生产。但是,研究发现很多腺病毒,尤其是非C亚群腺病毒,敲除E1、E3基因后在这些生产细胞株中产量较低,其主要原因是Ad5E1B 55K不能与B亚型腺病毒E4Orf6蛋白产生相互作用,不能有效抑制宿主细胞mRNA的出核,不能提升病毒晚期蛋白的表达。这些腺病毒需要表达相应E1基因的293细胞株或其他细胞株才能生产。因此,仅敲除E1、E3基因的复制缺陷型Ad3、Ad4和Ad7在疫苗生产细胞株293或PerC6种难以生产。提升其在这些细胞株中的生产能力是当前需要解决的瓶颈技术问题。Replication-deficient adenovirus vectors have been widely used in vaccine development, gene therapy and other fields. They are not only safe, but also have a strong immune response in the organism. Studies have shown that the E1 gene of adenovirus is an essential gene for its replication and proliferation, and the E3 gene plays a key role in resisting the host's immune system. After knocking out the E1 and E3 genes, the adenovirus loses the ability to replicate in normal humans and has an attenuated phenotype in this respect. At the same time, the main surface antigens Hexon and Fiber of Ad4 and Ad7 are not affected and will not affect the immunogenicity of the vaccine. Therefore, the use of replication-defective adenovirus as a vaccine can effectively increase the completeness and scope of the vaccine. Replication-deficient adenovirus can be produced in complementary cell lines, such as 293 cells and PerC6 cells expressing the Ad5E1 gene. However, studies have found that many adenoviruses, especially non-C subgroup adenoviruses, have lower yields in these production cell lines after knocking out the E1 and E3 genes. The main reason is that Ad5E1B 55K cannot interact with the B subtype adenovirus E4Orf6 protein. It cannot effectively inhibit the nucleation of host cell mRNA, and cannot increase the expression of late viral proteins. These adenoviruses require 293 cell lines or other cell lines expressing the corresponding E1 gene to be produced. Therefore, replication-defective Ad3, Ad4 and Ad7, which only knock out the E1 and E3 genes, are difficult to produce in the vaccine production cell line 293 or PerC6. Improving its production capacity in these cell lines is currently a bottleneck technical problem that needs to be resolved.
发明内容Summary of the invention
本发明的目的在于为了克服现有技术缺陷,提供一种可在疫苗生产细胞株中大规模扩增的复制缺陷型重组Ad4和Ad7的制备方法和应用,及复制缺陷型重组Ad4和Ad7以一定的比例混合制备Ad4和Ad7二价疫苗,免疫机体可以有效刺激机体产生体液免疫和细胞免疫反应,产生特异性Ad4和Ad7中和抗体,用于预防Ad4和Ad7的病原 体的感染。The purpose of the present invention is to overcome the defects of the prior art and provide a preparation method and application of replication-defective recombinant Ad4 and Ad7 that can be amplified on a large scale in vaccine production cell strains, and the replication-defective recombinant Ad4 and Ad7 can be used to a certain extent. Ad4 and Ad7 bivalent vaccines are prepared by mixing Ad4 and Ad7 in a ratio of 5%. The immune body can effectively stimulate the body to produce humoral immunity and cellular immune response, and produce specific Ad4 and Ad7 neutralizing antibodies, which are used to prevent the infection of Ad4 and Ad7 pathogens.
本发明所采取的技术方案是:The technical scheme adopted by the present invention is:
一种组合物,其包括复制缺陷型人4型腺病毒和7型腺病毒。A composition comprising replication-deficient human type 4 adenovirus and type 7 adenovirus.
作为优选地,所述复制缺陷型4型腺病毒的E1、E3基因缺失,E4基因的部分编码框置换为人5型腺病毒E4基因的相应编码框。Preferably, the E1 and E3 genes of the replication-deficient type 4 adenovirus are deleted, and part of the coding frame of the E4 gene is replaced with the corresponding coding frame of the human type 5 adenovirus E4 gene.
作为优选地,所述E4基因的编码框包括Orf2、Orf 3、Orf 4和Orf6编码框。Preferably, the coding frame of the E4 gene includes Orf2, Orf3, Orf4 and Orf6 coding frame.
作为优选地,所述复制缺陷型人7型腺病毒的E1、E3基因缺失,E4基因的部分编码框置换为人5型腺病毒E4基因的相应编码框。Preferably, the E1 and E3 genes of the replication-deficient human adenovirus type 7 are deleted, and part of the coding frame of the E4 gene is replaced with the corresponding coding frame of the human type 5 adenovirus E4 gene.
作为优选地,所述E4基因的编码框包括Orf2、Orf 3、Orf 4和Orf6编码框。Preferably, the coding frame of the E4 gene includes Orf2, Orf3, Orf4 and Orf6 coding frame.
进一步优选地,至少有一所述复制缺陷型腺病毒的E1基因区域整合了外源基因表达框。Further preferably, at least one of the E1 gene regions of the replication-deficient adenovirus integrates the foreign gene expression cassette.
作为优选地,所述的外源基因表达框包含了可在人体中诱导免疫应答或产生生物报告分子或用于检测的追踪分子或调节基因功能或治疗性分子的核苷酸序列。Preferably, the exogenous gene expression cassette contains a nucleotide sequence that can induce an immune response in the human body or generate a biological reporter molecule or a tracking molecule for detection, or a nucleotide sequence that can regulate gene function or a therapeutic molecule.
进一步优选地,以上所述的组合物中,所述复制缺陷型人4型腺病毒和复制缺陷型人7型腺病毒病毒颗粒数混合比例介于1:10到10:1之间。Further preferably, in the composition described above, the mixing ratio of the number of replication-defective human adenovirus type 4 and replication-defective human adenovirus type 7 virus particles is between 1:10 and 10:1.
以上所述的组合物在制备疫苗,检测试剂,调节基因功能或药物中的应用。Application of the above-mentioned composition in preparing vaccines, detecting reagents, regulating gene function or medicines.
作为优选地,以上所述的任一组合物还包括药学上可接受的佐剂、载体、稀释剂或赋形剂。Preferably, any of the above-mentioned compositions further includes a pharmaceutically acceptable adjuvant, carrier, diluent or excipient.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)本发明在敲除E1和E3基因的基础上,将Ad4和Ad7的E4基因部分编码框Orf2、Orf3、Orf4和Orf6置换为Ad5 E4基因的相应编码框,大大提升复制缺陷型Ad4和Ad7的安全性及其在生产细胞株中的复制能力。(1) On the basis of knocking out the E1 and E3 genes, the present invention replaces the Orf2, Orf3, Orf4, and Orf6 coding frames of the E4 gene of Ad4 and Ad7 with the corresponding coding frames of the Ad5 E4 gene, which greatly improves the replication-defective Ad4 and The safety of Ad7 and its ability to replicate in production cell lines.
(2)本发明制备得到的Ad4和Ad7二价疫苗经初免和加强免后,能够有效在实验动物体内诱导产生Ad4和Ad7特异性体液免疫和细胞免疫,产生特异性Ad4和Ad7中和抗体,用于预防Ad4和Ad7的病原体的感染。与市面上Ad4和Ad7二价活疫苗(美国)相比较,本发明的二价疫苗在保留了其免疫原性的条件下大大提高了疫苗的安全性及使用范围。(2) The Ad4 and Ad7 bivalent vaccine prepared by the present invention can effectively induce Ad4 and Ad7 specific humoral immunity and cellular immunity in experimental animals after primary immunization and booster immunization, and produce specific Ad4 and Ad7 neutralizing antibodies , Used to prevent the infection of Ad4 and Ad7 pathogens. Compared with the commercially available Ad4 and Ad7 bivalent live vaccines (U.S.), the bivalent vaccine of the present invention greatly improves the safety and scope of use of the vaccine while retaining its immunogenicity.
附图说明Description of the drawings
图1为pAd4质粒的构建流程图。Figure 1 is a flow chart of the construction of pAd4 plasmid.
图2为pAd4ΔE3质粒的构建流程图。Figure 2 is a flow chart of the construction of pAd4ΔE3 plasmid.
图3为pAd4ΔE1ΔE3质粒的构建流程图。Figure 3 is a flow chart of the construction of pAd4ΔE1ΔE3 plasmid.
图4为pAd4ΔE1ΔE3(Orf2-6)质粒的构建流程图。Figure 4 is a flow chart of the construction of pAd4ΔE1ΔE3 (Orf2-6) plasmid.
图5为pAd4ΔE1ΔE3(Orf2-6)-EGFP质粒的构建流程图。Figure 5 is a flow chart of the construction of pAd4ΔE1ΔE3(Orf2-6)-EGFP plasmid.
图6为pAd4质粒、pAd4ΔE3质粒、pAd4ΔE1ΔE3质粒、pAd4ΔE1ΔE3(Orf2-6)和 pAd4ΔE1ΔE3(Orf2-6)-EGFP质粒的酶切鉴定结果。Figure 6 shows the enzyme digestion and identification results of pAd4 plasmid, pAd4ΔE3 plasmid, pAd4ΔE1ΔE3 plasmid, pAd4ΔE1ΔE3 (Orf2-6) and pAd4ΔE1ΔE3 (Orf2-6)-EGFP plasmid.
图7为复制缺陷型Ad4载体的生产及纯化结果。Figure 7 shows the results of the production and purification of the replication-defective Ad4 vector.
图8为复制缺陷型Ad4载体在HEK293及A549细胞中的噬斑形成实验结果。Figure 8 shows the results of the plaque formation experiment of the replication-deficient Ad4 vector in HEK293 and A549 cells.
图9为pAd7质粒的构建流程图(A)和酶切鉴定结果(B)。Figure 9 shows the construction flow chart (A) of pAd7 plasmid and the result of restriction digestion (B).
图10为pAd7ΔE3质粒的构建流程图(A)和酶切鉴定图(B)。Figure 10 is the construction flow chart (A) and restriction diagram (B) of pAd7ΔE3 plasmid.
图11为pAd7ΔE1ΔE3质粒的构建流程图(A)和酶切鉴定图(B)。Figure 11 is the construction flow chart (A) and restriction diagram (B) of pAd7ΔE1ΔE3 plasmid.
图12为pAd7ΔE1ΔE3(Orf2-6)质粒的构建流程图(A)和酶切鉴定图(B)。Figure 12 is the construction flow chart (A) and restriction diagram (B) of pAd7ΔE1ΔE3 (Orf2-6) plasmid.
图13为pAd7ΔE1ΔE3(Orf2-6)-EGFP质粒的构建流程图(A)和酶切鉴定图(B)。Figure 13 is the construction flow chart (A) and restriction diagram (B) of pAd7ΔE1ΔE3(Orf2-6)-EGFP plasmid.
图14为复制缺陷型Ad7载体的生产及纯化结果。Figure 14 shows the results of the production and purification of the replication-defective Ad7 vector.
图15为复制缺陷型Ad7载体在HEK293及A549细胞中的噬斑形成实验结果。Figure 15 shows the results of the plaque formation experiment of the replication-deficient Ad7 vector in HEK293 and A549 cells.
图16为猕猴血清中Ad4和Ad7中和抗体水平测定结果。Figure 16 shows the results of determination of the levels of Ad4 and Ad7 neutralizing antibodies in the serum of rhesus monkeys.
图17为猕猴血清中Ad3、Ad11和Ad14交叉中和抗体水平测定结果。Figure 17 shows the results of determining the levels of Ad3, Ad11 and Ad14 cross-neutralizing antibodies in the serum of rhesus monkeys.
图18为猕猴PMBC ELISPOT实验结果。Figure 18 shows the results of the PMBC ELISPOT experiment in rhesus monkeys.
具体实施方式Detailed ways
下面结合实施例对本发明作进一步的说,但并不局限于此。The present invention will be further described below in conjunction with the embodiments, but it is not limited thereto.
本发明术语“人4型腺病毒、人7型腺病毒”指本领域普通技术人员已知的4型腺病毒、7型腺病毒,实施例中用到的腺病毒基因组也来源于这些已知的人腺病毒。本发明所述复制缺陷型人4型腺病毒载体、人7型腺病毒载体不局限于实施例所采用的特定临床分离株。The term "human type 4 adenovirus, human type 7 adenovirus" in the present invention refers to the type 4 adenovirus and type 7 adenovirus known to those of ordinary skill in the art. The adenovirus genome used in the examples is also derived from these known adenoviruses. Human adenovirus. The replication-deficient human type 4 adenovirus vector and human type 7 adenovirus vector of the present invention are not limited to the specific clinical isolates used in the examples.
为了能够更清楚地理解本发明的技术内容,特举以下实施例结合附图详细说明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring Harbor Laboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。实施例中所用到的各种常用化学试剂,均为市售产品。In order to understand the technical content of the present invention more clearly, the following embodiments are described in detail in conjunction with the accompanying drawings. It should be understood that these embodiments are only used to illustrate the present invention and not to limit the scope of the present invention. The experimental methods without specific conditions in the following examples usually follow conventional conditions, such as the conditions described in Sambrook et al., Molecular Cloning: Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989), or according to manufacturing The conditions suggested by the manufacturer. Various common chemical reagents used in the examples are all commercially available products.
除非另有定义,本发明所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不用于限制本发明。Unless otherwise defined, all technical and scientific terms used in the present invention have the same meaning as commonly understood by those skilled in the technical field of the present invention. The terms used in the specification of the present invention are only for the purpose of describing specific embodiments, and are not used to limit the present invention.
实施例1 复制缺陷型Ad4疫苗的制备Example 1 Preparation of replication-deficient Ad4 vaccine
一、Ad4基因组环化穿梭载体的构建1. Construction of Ad4 genome circularization shuttle vector
1.Ad4基因组环化穿梭载体的构建。1. Construction of Ad4 genome circularization shuttle vector.
以Ad4基因组为模板进行PCR扩增,得到重组臂Ad4-L及Ad4-R。Using Ad4 genome as a template for PCR amplification, recombinant arms Ad4-L and Ad4-R were obtained.
Ad4-L引物序列:Ad4-L primer sequence:
Ad4-L Fw,ATAGAATTCGGGGTGGAGTGTTTTTGCAAG(SEQ ID NO.1);Ad4-L Fw, ATAGAATTCGGGGTGGAGTGTTTTTGCAAG (SEQ ID NO.1);
Ad4-L Rw,TTTACTAGTGTTTAAACGTAATCGAAACCTCCACGTAATGG(SEQ ID NO.2)。Ad4-L Rw, TTTACTAGTGTTTAAACGTAATCGAAACCTCCACGTAATGG (SEQ ID NO. 2).
PCR程序:95℃,30秒;62℃,30秒;72℃,20秒;25个循环。PCR program: 95°C, 30 seconds; 62°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
Ad4-R引物序列:Ad4-R primer sequence:
Ad4-R Fw,ACTAGTAGCTGGATCCAAGCCTCGAGGCACTACAATG(SEQ ID NO.3);Ad4-R Fw, ACTAGTAGCTGGATCCAAGCCTCGAGGCACTACAATG (SEQ ID NO.3);
Ad4-R Rw,CCTGCCGTTCGACGATGCGATCGCCATCATCAATAATATACCTTATAGATGG(SEQ ID NO.4)。Ad4-R Rw, CCTGCCGTTCGACGATGCGATCGCCATCATCAATAATATACCTTATAGATGG (SEQ ID NO. 4).
PCR程序:95℃,30秒;55℃,30秒;72℃,80秒;25个循环。PCR program: 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 80 seconds; 25 cycles.
采用同源重组酶连接至pSIMPLE 19(EcoRV)载体(TaKaRa)得到Ad4基因组环化穿梭质粒pT-Ad4(L+R)。Homologous recombinase was used to connect to pSIMPLE 19 (EcoRV) vector (TaKaRa) to obtain Ad4 genome circularized shuttle plasmid pT-Ad4 (L+R).
2.pAd4质粒的构建。2. Construction of pAd4 plasmid.
pT-Ad4(L+R)以SpeI、BamHI线性化后,与Ad4基因组共转化BJ5183感受态细胞;经氨苄青霉素抗性筛选后,手工提取质粒,进一步转化XL-Blue感受态细胞(北京斯百汇生物科技有限公司);手工提取质粒,得到pAd4,技术流程如图1所示,酶切图如图6所示。After pT-Ad4(L+R) was linearized with SpeI and BamHI, it was co-transformed with Ad4 genome into BJ5183 competent cells; after screening for ampicillin resistance, the plasmid was manually extracted and further transformed into XL-Blue competent cells (Beijing Sibai Hui Biotechnology Co., Ltd.); manually extract the plasmid to obtain pAd4, the technical process is shown in Figure 1, and the restriction diagram is shown in Figure 6.
二、E3基因的敲除及pAd55ΔE3质粒的构建2. Knockout of E3 gene and construction of pAd55ΔE3 plasmid
1.E3基因敲除穿梭质粒pVax-delE3(L+R)的构建。1. The construction of E3 gene knockout shuttle plasmid pVax-delE3(L+R).
以Ad4基因组为模板进行PCR扩增,得到重组臂L-delE3及R-delE3。Using Ad4 genome as a template for PCR amplification, recombination arms L-delE3 and R-delE3 were obtained.
L-delE3(或称为delE3-4L)引物序列:L-delE3 (or called delE3-4L) primer sequence:
L-delE3 F,GACATTGATTATTGACTAGTTTCAACACCTGGACCACTGCC(SEQ ID NO.5);L-delE3 F, GACATTGATTATTGACTAGTTTCAACACCTGGACCACTGCC (SEQ ID NO.5);
L-delE3 R,ATTTAAATTGGAATTCAAGGTCAGAGACTGGTTGAAGGATG(SEQ ID NO.6)。L-delE3 R, ATTTAAATTGGAATTCAAGGTCAGAGACTGGTTGAAGGATG (SEQ ID NO. 6).
PCR程序:95℃,30秒;55℃,30秒;72℃,20秒;25个循环。PCR program: 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
R-delE3(delE3-4R)引物序列:R-delE3 (delE3-4R) primer sequence:
R-delE3 F,GAATTCCAATTTAAATAGCAGTCTGGCGATACCAAGG(SEQ ID NO.7);R-delE3 F, GAATTCCAATTTAAATAGCAGTCTGGCGATACCAAGG (SEQ ID NO. 7);
R-delE3 R,GTTTAAACGGGCCCTCTAGACATTCTTGGTGGTGACAGGGTC(SEQ ID NO.8)。R-delE3 R, GTTTAAACGGGCCCTCTAGACATTCTTGGTGGTGACAGGGTC (SEQ ID NO. 8).
PCR程序:95℃,30秒;55℃,30秒;72℃,20秒;25个循环。PCR program: 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
采用同源重组酶连接至pVax载体得到到敲除E3基因的穿梭质粒pVax-delE3(L+R)。The shuttle plasmid pVax-delE3(L+R) which knocked out the E3 gene was obtained by ligating the homologous recombinase to pVax vector.
2.pAd4ΔE3质粒的构建。2. Construction of pAd4ΔE3 plasmid.
pVax-delE3(L+R)以SpeI和XbaI双酶切线性化后,与EcoRI部分酶切线性化的pAd4共转化BJ5183感受态细胞(Stratagene);经氨苄青霉素抗性筛选后,手工提取质粒,进一步转化XL-Blue感受态细胞(北京斯百汇生物科技有限公司);手工提取质粒,得到pAd4ΔE3质粒,技术流程如附图2所示,酶切图如图6所示。所得到的pAd4ΔE3质粒中的腺病毒基因组原E3区引入1个SwaI酶切位点,以方便后续克隆。After pVax-delE3(L+R) was linearized with SpeI and XbaI, it was co-transformed with EcoRI partially digested and linearized pAd4 to transform BJ5183 competent cells (Stratagene); after screening for ampicillin resistance, the plasmid was manually extracted, Further transform XL-Blue competent cells (Beijing Sibaihui Biotechnology Co., Ltd.); manually extract the plasmid to obtain the pAd4ΔE3 plasmid. The technical process is shown in Figure 2 and the restriction map is shown in Figure 6. A SwaI restriction site was introduced into the pro-E3 region of the adenovirus genome in the resulting pAd4ΔE3 plasmid to facilitate subsequent cloning.
三、E1基因的敲除及pAd4ΔE1ΔE3质粒的构建3. Knockout of E1 gene and construction of pAd4ΔE1ΔE3 plasmid
1.E1基因敲除穿梭质粒pVax-delE3(L+R)的构建1. Construction of E1 gene knockout shuttle plasmid pVax-delE3 (L+R)
以Ad4基因组为模板进行PCR扩增,得到重组臂L-delE1及R-delE1。Using Ad4 genome as a template for PCR amplification, recombination arms L-delE1 and R-delE1 were obtained.
L-delE1(或称为L-delK)引物序列:L-delE1 (or L-delK) primer sequence:
L-delE1 F,CCAGATATACGCGTGTATACCATCATCAATAATATACCTTATAGATGG(SEQ ID NO.9);L-delE1 F, CCAGATATACGCGTGTATACCATCATCAATAATATACCTTATAGATGG (SEQ ID NO.9);
L-delE1 R,GATATCAAGTTAATTAAAATCGAAACCTCCACGTAAAC(SEQ ID NO.10)。L-delE1 R, GATATCAAGTTAATTAAAATCGAAACCTCCACGTAAAC (SEQ ID NO. 10).
PCR程序:95℃,30秒;50℃,30秒;72℃,20秒;25个循环。PCR program: 95°C, 30 seconds; 50°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
R-delE1(或称为R-delK)引物序列:R-delE1 (or R-delK) primer sequence:
R-delE1 F,TTAATTAACTTGATATCGTGTGGATGTGACGGAGGAC(SEQ ID NO.11);R-delE1 F, TTAATTAACTTGATATCGTGTGGATGTGACGGAGGAC (SEQ ID NO.11);
R-delE1 R,GCCCAGTAGAAGCGCCGGTGCGGGATTATTAGTGGAACTTGAG(SEQ ID NO.12)。R-delE1 R, GCCCAGTAGAAGCGCCGGTGCGGGATTATTAGTGGAACTTGAG (SEQ ID NO. 12).
PCR程序:95℃,30秒;55℃,30秒;72℃,20秒;25个循环。PCR program: 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
采用同源重组酶连接至pVax载体(Invitrogen)得到敲除E1基因的穿梭质粒pVax-delE1(L+R)。Homologous recombinase was used to connect to the pVax vector (Invitrogen) to obtain the shuttle plasmid pVax-delE1(L+R) which knocked out the E1 gene.
2.pAd4ΔE1ΔE3质粒的构建。2. Construction of pAd4ΔE1ΔE3 plasmid.
pVax-delE1(L+R)以BstZ17I+SgrAI双酶切线性化后,与PsiI酶切线性化的pAd4ΔE3共转化BJ5183感受态细胞(Stratagene);经氨苄青霉素抗性筛选后,手工提取质粒,进一步转化XL-Blue感受态细胞(北京斯百汇生物科技有限公司);手工提取质粒,得到pAd4ΔE1ΔE3质粒,技术流程如图3所示,酶切图如图6所示。所得到的pAd4ΔE1ΔE3质粒中的腺病毒基因组原E1区引入1个PacI酶切位点,以方便后续克隆。After pVax-delE1(L+R) was linearized with BstZ17I+SgrAI double enzyme digestion, it was co-transformed with pAd4ΔE3 linearized by PsiI to transform BJ5183 competent cells (Stratagene); after screening for ampicillin resistance, the plasmid was manually extracted, and further Transform XL-Blue competent cells (Beijing Sibaihui Biotechnology Co., Ltd.); manually extract the plasmid to obtain the pAd4ΔE1ΔE3 plasmid. The technical process is shown in Figure 3, and the restriction map is shown in Figure 6. A PacI restriction site was introduced into the pro-E1 region of the adenovirus genome in the resulting pAd4ΔE1ΔE3 plasmid to facilitate subsequent cloning.
四、Ad4 E4基因的改造及pAd4ΔE1ΔE3(Orf2-6)质粒的构建4. Modification of Ad4 E4 gene and construction of pAd4ΔE1ΔE3 (Orf2-6) plasmid
1.Ad4 E4基因的改造穿梭质粒pGK143-(L+R)的构建。1. Modification of Ad4 E4 gene. Construction of shuttle plasmid pGK143-(L+R).
以Ad4基因组为模板进行PCR扩增,得到重组臂4E4L及4E4R。Using Ad4 genome as a template for PCR amplification, recombination arms 4E4L and 4E4R were obtained.
4E4L引物序列:4E4L primer sequence:
4E4R F,CATTGATTATTGACTAGAGTATACCATGCTGGCGCGGCTGACCTAGCT(SEQ ID NO.13);4E4R F, CATTGATTATTGACTAGAGTATACCATGCTGGCGCGGCTGACCTAGCT (SEQ ID NO.13);
4E4R R,CGGATCCGCTGTGATTCCAACCACCGAGGACAGCCCTC(SEQ ID NO.14)。4E4R R, CGGATCCGCTGTGATTCCAACCACCGAGGACAGCCCTC (SEQ ID NO.14).
PCR程序:95℃,30秒;60℃,30秒;72℃,20秒;25个循环。PCR program: 95°C, 30 seconds; 60°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
4E4R引物序列:4E4R primer sequence:
4E4R F,CGGATCCGTCCAGCATGGTTAGTGTTTTTGGTGATCTGTAGAAC(SEQ ID NO.15);4E4R F, CGGATCCGTCCAGCATGGTTAGTGTTTTTGGTGATCTGTAGAAC (SEQ ID NO. 15);
4E4R R,TAGAAGCGCCGGTGGGTAAGCTATGGACGCTGAG(SEQ ID NO.16)。4E4R R, TAGAAGCGCCGGTGGGTAAGCTATGGACGCTGAG (SEQ ID NO. 16).
PCR程序:95℃,30秒;60℃,30秒;72℃,20秒;25个循环。PCR program: 95°C, 30 seconds; 60°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
采用同源重组酶连接至pVax载体(Invitrogen)得到到Ad4 E4基因的改造的穿梭质粒pGK143-(L+R)。Using homologous recombinase to connect to pVax vector (Invitrogen), the shuttle plasmid pGK143-(L+R) modified with Ad4 E4 gene was obtained.
2.Ad4 E4基因的改造穿梭质粒pGK143-Orf2-6的构建。2. Transformation of Ad4 E4 gene. Construction of shuttle plasmid pGK143-Orf2-6.
以Ad5基因组为模板进行PCR扩增得到Ad5腺病毒E4基因的Orf2-6。The Ad5 genome was used as a template for PCR amplification to obtain Orf2-6 of the Ad5 adenovirus E4 gene.
Orf2-6引物序列:Orf2-6 primer sequence:
Orf2-6 F,TCCTCGGTGGTTGGAATCACAGCTACATGGGGGTAGAGTCATAATCG(SEQ ID NO.17);Orf2-6 F, TCCTCGGTGGTTGGAATCACAGCTACATGGGGGTAGAGTCATAATCG (SEQ ID NO.17);
Orf2-6 R,CCAAAAACACTAACCATGCTGGAATGCAGAAACCCGCAGACATGTTTGAG(SEQ ID NO.18)。Orf2-6 R, CCAAAAACACTAACCATGCTGGAATGCAGAAACCCGCAGACATGTTTGAG (SEQ ID NO.18).
PCR程序:95℃,30秒;65℃,30秒;72℃,20秒;25个循环。PCR program: 95°C, 30 seconds; 65°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
采用同源重组酶连接至BamHI线性化的pGK143-(L+R)载体,得到Ad4 E4基因的改造的穿梭质粒pGK143-Orf2-6。Homologous recombinase was used to connect to the pGK143-(L+R) vector linearized by BamHI to obtain the shuttle plasmid pGK143-Orf2-6 modified by the Ad4 E4 gene.
3.pAd4ΔE1ΔE3(Orf2-6)质粒的构建。3. The construction of pAd4ΔE1ΔE3 (Orf2-6) plasmid.
pGK143-Orf2-6以BstZ17I+SgrAI双酶切线性化后,与SwaI酶切线性化的pAd4ΔE1ΔE3共转化BJ5183感受态细胞(Stratagene);经氨苄青霉素抗性筛选后,手工提取质粒,进一步转化XL-Blue感受态细胞(北京斯百汇生物科技有限公司);手工提取质粒,得到pAd4ΔE1ΔE3(Orf2-6)质粒,技术流程如图4所示,酶切图如图6所示。After pGK143-Orf2-6 was linearized with BstZ17I+SgrAI double enzyme digestion, it was co-transformed with SwaI linearized pAd4ΔE1ΔE3 to transform BJ5183 competent cells (Stratagene); after screening for ampicillin resistance, the plasmid was manually extracted and further transformed into XL- Blue Competent Cells (Beijing Sibaihui Biotechnology Co., Ltd.); the plasmid was manually extracted to obtain the pAd4ΔE1ΔE3 (Orf2-6) plasmid. The technical process is shown in Figure 4, and the restriction map is shown in Figure 6.
五、携带外源基因的穿梭质粒及pAd4ΔE1ΔE3(Orf2-6)-EGFP质粒的构建5. Construction of shuttle plasmid carrying foreign gene and pAd4ΔE1ΔE3(Orf2-6)-EGFP plasmid
1.构建携带外源基因表达框的穿梭质粒pGK3-EGFP。1. Construction of the shuttle plasmid pGK3-EGFP carrying the expression cassette of foreign genes.
1.1以Ad4基因组为模板PCR扩增得到E1区同源重组臂4SE1L及4SE1R:1.1 Using the Ad4 genome as a template PCR amplification obtains the homologous recombination arms 4SE1L and 4SE1R in the E1 region:
SE1L引物序列:SE1L primer sequence:
4SE1L Fw,CCAGATATACGCGTGTATACCATCATCAATAATATACCTTATAGATGG(SEQ ID NO.19);4SE1L Fw, CCAGATATACGCGTGTATACCATCATCAATAATATACCTTATAGATGG (SEQ ID NO.19);
4SE1R Rw,GATATCAAGTTAATTAAAATCGAAACCTCCACGTAAAC(SEQ ID NO.20)。4SE1R Rw, GATATCAAGTTAATTAAAATCGAAACCTCCACGTAAAC (SEQ ID NO. 20).
PCR程序:95℃,30秒;55℃,30秒;72℃,20秒;25个循环。PCR program: 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 20 seconds; 25 cycles.
4SE1R引物序列:4SE1R primer sequence:
4SE1R Fw,TTAATTAACTTGATATCGTGTGGATGTGACGGAGGAC(SEQ ID NO.21);4SE1R Fw, TTAATTAACTTGATATCGTGTGGATGTGACGGAGGAC (SEQ ID NO.21);
4SE1R Rw,GCCCAGTAGAAGCGCCGGTGCGGGATTATTAGTGGAACTTGAG(SEQ ID NO.22)。4SE1R Rw, GCCCAGTAGAAGCGCCGGTGCGGGATTATTAGTGGAACTTGAG (SEQ ID NO. 22).
PCR程序:95℃,30秒;55℃,30秒;72℃,1分钟30秒;25个循环。PCR program: 95°C, 30 seconds; 55°C, 30 seconds; 72°C, 1 minute, 30 seconds; 25 cycles.
1.2构建携带重组臂的穿梭质粒pGK41-(L+R)。1.2 Construction of the shuttle plasmid pGK41-(L+R) carrying the recombination arm.
采用同源重组酶(Vazyme)连接将E1区同源重组臂4SE1L和4SE1R连接至pVax载体,得到携带重组臂的穿梭质粒pGK41-(L+R)。The homologous recombination arms 4SE1L and 4SE1R of the E1 region were connected to the pVax vector by using the homologous recombinase (Vazyme) ligation to obtain the shuttle plasmid pGK41-(L+R) carrying the recombination arms.
1.3构建携带外源基因表达框的穿梭质粒pGK41-EGFP。1.3 Construction of the shuttle plasmid pGK41-EGFP carrying the foreign gene expression cassette.
以pGA1-EGFP为模板,以下列引物PCR得到CMV-EGFP-BGH表达框。Using pGA1-EGFP as a template, PCR with the following primers to obtain the CMV-EGFP-BGH expression box.
引物序列:Primer sequence:
CMV,GTCACATCCACACGATACTAGTTATTAATAGTAATCAATTACGGG(SEQ ID NO.23);CMV, GTCACATCCACACGATACTAGTTATTAATAGTAATCAATTACGGG (SEQ ID NO.23);
BGH,TTTTAATTAACTTGATCCTGCTATTGTCTTCCCAATC(SEQ ID NO.24)。BGH, TTTTAATTAACTTGATCCTGCTATTGTCTTCCCAATC (SEQ ID NO. 24).
PCR程序:95℃,30秒;66℃,30秒;72℃,30s;25个循环。PCR program: 95°C, 30 seconds; 66°C, 30 seconds; 72°C, 30s; 25 cycles.
采用同源重组酶(Vazyme)将CMV-EGFP-BGH表达框连接至pGK41-(L+R)载体,得到携带重组臂的穿梭 质粒pGK41-EGFP。Homologous recombinase (Vazyme) was used to connect the CMV-EGFP-BGH expression cassette to the pGK41-(L+R) vector to obtain the shuttle plasmid pGK41-EGFP carrying the recombination arm.
2.构建基因组质粒pAd4ΔE1ΔE3(Orf2-6)-EGFP。2. Construction of the genomic plasmid pAd4ΔE1ΔE3(Orf2-6)-EGFP.
pGK41-EGFP质粒以BstZ17I+SgrAI切,乙醇沉淀回收;pAd4ΔE1ΔE3(Orf2-6)以PacI线性化后乙醇沉淀回收;共转化BJ5183,同源重组得到携带外源基因表达框的pAd4ΔE1ΔE3(Orf2-6)-EGFP质粒,技术流程如图5所示。双酶切鉴定结果参见图6。pGK41-EGFP plasmid was cut with BstZ17I+SgrAI and recovered by ethanol precipitation; pAd4ΔE1ΔE3 (Orf2-6) was linearized with PacI and recovered by ethanol precipitation; co-transformed with BJ5183, homologous recombination yielded pAd4ΔE1ΔE3 (Orf2-6) carrying the foreign gene expression cassette -EGFP plasmid, the technical process is shown in Figure 5. Refer to Figure 6 for the results of double restriction digestion.
六、复制缺陷型Ad4载体的拯救与生产6. Rescue and production of replication-defective Ad4 vector
按照常规方法,pAd4ΔE1ΔE3(Orf2-6)和pAd4ΔE1ΔE3(Orf2-6)-EGFP以AsiSI线性化,乙醇沉淀回收,阳离子脂质体转染法转染293细胞,转染后8小时,加入2毫升含5%胎牛血清的DMEM培养基,孵育7-10天,观察细胞病变;出毒后,收集细胞及培养上清,在37度水浴及液氮中反复冻融3次并离心去除细胞碎片,上清感染10厘米皿;2-3天后,收集细胞及培养上清,反复冻融3次并离心去除细胞碎片,上清感染3-5个15厘米皿;2-3天后,收集细胞,反复冻融3次并离心去除细胞碎片;上清感染30个15厘米皿2-3天后,收集细胞,反复冻融3次并离心去除细胞碎片;上清加至氯化铯密度梯度离心管;4℃,40000转,离心4小时;吸出病毒条带,脱盐,分装;以OD260吸光度测定病毒粒子滴度,计算公式为:病毒浓度=OD260×稀释倍数×36/基因组长度(Kb);病毒储存液于-80℃冻存。复制缺陷型Ad4载体的生产及纯化结果如附图7所示。According to the conventional method, pAd4ΔE1ΔE3(Orf2-6) and pAd4ΔE1ΔE3(Orf2-6)-EGFP were linearized with AsiSI, recovered by ethanol precipitation, and transfected with cationic liposome transfection method into 293 cells. 8 hours after transfection, 2 ml Incubate in DMEM medium with 5% fetal bovine serum for 7-10 days to observe the cytopathic changes; after the virus has emerged, collect the cells and culture supernatant, freeze and thaw them in a 37-degree water bath and liquid nitrogen three times and centrifuge to remove cell debris. The supernatant was infected with a 10 cm dish; after 2-3 days, the cells and the culture supernatant were collected, freeze-thaw three times and centrifuged to remove cell debris, and the supernatant was infected with 3-5 15 cm dishes; after 2-3 days, the cells were collected and repeated Freeze and thaw three times and centrifuge to remove cell debris; after the supernatant infects 30 15 cm dishes for 2-3 days, collect the cells, freeze and thaw three times and centrifuge to remove cell debris; add the supernatant to a cesium chloride density gradient centrifuge tube; 4 ℃, 40,000 revolutions, centrifugation for 4 hours; aspirate the virus bands, desalinate, and aliquot; determine the virus particle titer by OD260 absorbance, the calculation formula is: virus concentration = OD260 × dilution factor × 36/genome length (Kb); virus storage Freeze the solution at -80°C. The results of the production and purification of the replication-defective Ad4 vector are shown in FIG. 7.
七、复制缺陷型Ad4病毒在A549及293细胞中的复制能力测定7. Determination of replication ability of replication-deficient Ad4 virus in A549 and 293 cells
按照常规实验方法,以噬斑形成实验鉴定复制缺陷型Ad4病毒在辅助细胞HEK293和非辅助细胞A549中的生长能力。六孔板中293或A549细胞长至九成满后,以Ad4ΔE1ΔE3(Orf2-6)-EGFP进行感染,感染滴度为1X10 7Vp/孔。感染后4小时,吸走培养基,并铺上1%的琼脂糖凝胶(含1%琼脂糖,1%BSA,1×MEM培养基)。37℃培养箱内放置9-12天后,在荧光显微镜下观察病毒克隆的形成,并拍照记录。结果如图8所示。复制缺陷型Ad4ΔE1ΔE3(Orf2-6)-EGFP仅能在HEK293细胞中形成噬斑,在A549细胞中则不能形成噬斑。这表明,复制缺陷型Ad4载体可在E1基因互补的HEK293细胞中有效增殖,但在非辅助细胞如A549细胞中不具备复制能力,具有减毒表型。同时,该结果也显示复制缺陷型人4型腺病毒载体可携带报告基因进入靶细胞,因而可应用于报告示踪系统中。 According to conventional experimental methods, plaque formation experiments were used to identify the growth ability of replication-deficient Ad4 virus in HEK293 helper cells and A549 non-helper cells. After the 293 or A549 cells in the six-well plate grow to 90% full, they are infected with Ad4ΔE1ΔE3(Orf2-6)-EGFP, and the infection titer is 1X10 7 Vp/well. 4 hours after infection, the medium was aspirated, and a 1% agarose gel (containing 1% agarose, 1% BSA, 1×MEM medium) was spread. After being placed in a 37°C incubator for 9-12 days, observe the formation of virus clones under a fluorescence microscope, and take pictures and record. The result is shown in Figure 8. The replication-defective Ad4ΔE1ΔE3(Orf2-6)-EGFP can only form plaques in HEK293 cells, but not in A549 cells. This indicates that the replication-deficient Ad4 vector can effectively proliferate in HEK293 cells with E1 gene complementation, but it has no replication ability in non-helper cells such as A549 cells and has an attenuated phenotype. At the same time, the results also show that the replication-defective human type 4 adenovirus vector can carry the reporter gene into the target cell, so it can be used in the reporter tracer system.
实施例2 复制缺陷型Ad7疫苗的制备Example 2 Preparation of replication-deficient Ad7 vaccine
一、Ad7基因组的环化1. Circularization of Ad7 genome
1.构建环化Ad7基因组的穿梭质粒pT-Ad7(L+R)。1. Construction of the shuttle plasmid pT-Ad7(L+R) that circularizes the Ad7 genome.
以Ad7的基因组为模板,PCR获得Ad7基因组的左臂(L-Ad7)和右臂(R-Ad7)。Using the Ad7 genome as a template, the left arm (L-Ad7) and the right arm (R-Ad7) of the Ad7 genome were obtained by PCR.
L-Ad7引物:L-Ad7 primer:
L-Ad7-F:ACTGCGATCGCCTCTCTATTTAATATACCTTATAGATGG(SEQ ID NO.25);L-Ad7-F: ACTGCGATCGCCTCTCTATTTAATATACCTTATAGATGG (SEQ ID NO.25);
L-Ad7-R:ACATGGATCCTCACTGAAGATAATCTCCTGTGG(SEQ ID NO.26)。L-Ad7-R: ACATGGATCCTCACTGAAGATAATCTCCTGTGG (SEQ ID NO. 26).
PCR条件:95℃,3min;95℃,30s;56℃30s;72℃,40s;cycles 30;72℃,5min;12℃保存。PCR conditions: 95°C, 3min; 95°C, 30s; 56°C for 30s; 72°C, 40s; cycles 30; 72°C, 5min; 12°C storage.
R-Ad7引物:R-Ad7 primer:
R-Ad7-F:AGCTGGATCCGAACCACCAGTAATATCATCAAAG(SEQ ID NO.27);R-Ad7-F: AGCTGGATCCGAACCACCAGTAATATCATCAAAG (SEQ ID NO.27);
R-Ad7-R:TGAGCGATCGCCTCTCTATATAATATACCTTATAGATGGAA(SEQ ID NO.28)。R-Ad7-R: TGAGCGATCGCCTCTCTATATAATATACCTTATAGATGGAA (SEQ ID NO. 28).
PCR条件:95℃,3min;95℃,30s;56℃,30s;72℃,1min;cycles 30;72℃,5min;12℃保存。PCR conditions: 95°C, 3min; 95°C, 30s; 56°C, 30s; 72°C, 1min; cycles 30; 72°C, 5min; 12°C storage.
PCR产物和T载体使用Exnase重组酶进行三片段连接得到pT-Ad7(L+R)。The PCR product and the T vector were ligated with three fragments using Exnase recombinase to obtain pT-Ad7(L+R).
2.构建pAd7。2. Construction of pAd7.
pT-Ad7(L+R)使用BamHI进行酶切线性化,然后和Ad7的基因组共转化BJ5183感受态细胞进行重组,氨苄抗性平板进行抗性筛选,将筛选得到的单克隆扩增后提取其质粒转化XL-Blue化学感受态细胞,提取质粒得到pAd7,使用不同的酶切方式进行鉴定,pAd7在基因组的两侧引入了两个AsisI酶切位点,方便后续对改造后的Ad7基因组进行线性化进行病毒拯救。具体构建过程如图9所示。pT-Ad7(L+R) was digested and linearized with BamHI, and then co-transformed with Ad7 genome into BJ5183 competent cells for recombination, and the ampicillin resistance plate was used for resistance screening, and the selected single clones were amplified and extracted The plasmid was transformed into XL-Blue chemically competent cells, and the plasmid was extracted to obtain pAd7, which was identified by different enzyme digestion methods. pAd7 introduced two AsisI digestion sites on both sides of the genome to facilitate subsequent linearization of the modified Ad7 genome Rescue the virus. The specific construction process is shown in Figure 9.
二、E3基因的敲除及pAd7ΔE3质粒的构建2. Knockout of E3 gene and construction of pAd7ΔE3 plasmid
1.构建E3基因敲除的穿梭质粒pVax-ΔE3(L+R)。1. Construction of the shuttle plasmid pVax-ΔE3(L+R) for knockout of E3 gene.
E3基因敲除穿梭质粒pVax-ΔE3(L+R)的构建。以Ad7的基因组为模板,PCR获得E3基因的左臂(L-ΔE3)和右臂(R-ΔE3)。Construction of E3 gene knockout shuttle plasmid pVax-ΔE3(L+R). Using the Ad7 genome as a template, the left arm (L-ΔE3) and the right arm (R-ΔE3) of the E3 gene were obtained by PCR.
L-ΔE3引物:L-ΔE3 primer:
L-ΔE3-F:CATACTAGTCTGTCTACTTCAACCCCTTCTCCG(SEQ ID NO.29);L-ΔE3-F: CATACTAGTCTGTCTACTTCAACCCCTTCTCCG (SEQ ID NO.29);
L-ΔE3-R:GCAGAATTCATTTAAATGGAGGAAGGGTCTGGGTCTTCTG(SEQ ID NO.30)。L-ΔE3-R: GCAGAATTCATTTAAATGGAGGAAGGGTCTGGGTCTTCTG (SEQ ID NO. 30).
PCR条件:95℃,3min;95℃,30s;63℃30s;72℃,30s;cycles 30;72℃,5min;12℃保存。PCR conditions: 95°C, 3min; 95°C, 30s; 63°C 30s; 72°C, 30s; cycles 30; 72°C, 5min; 12°C storage.
R-ΔE3引物:R-ΔE3 primer:
R-ΔE3-F:GCAGATATCATTTAAATAGACCCTATGCGGCCTAAGAGAC(SEQ ID NO.31);R-ΔE3-F: GCAGATATCATTTAAATAGACCCTATGCGGCCTAAGAGAC (SEQ ID NO.31);
R-ΔE3-R:ACATCTAGAGACAGTTGGCTCTGGTGGGGT(SEQ ID NO.32)。R-ΔE3-R: ACATCTAGAGACAGTTGGCTCTGGTGGGGT (SEQ ID NO.32).
PCR条件:95℃,3min;95℃,30s;61℃30s;72℃,40s;cycles 30;72℃,5min;12℃保存。PCR conditions: 95°C, 3min; 95°C, 30s; 61°C 30s; 72°C, 40s; cycles 30; 72°C, 5min; 12°C storage.
L-ΔE3使用SpeI+EcoRI酶切后,连接至相同酶切的pVax载体上,得到pVax-L-ΔE3。R-ΔE3使用EcoRV+XbaI进行酶切,连接至相同酶切的pVax-L-ΔE3骨架上得到pVax-ΔE3(L+R)。After L-ΔE3 was digested with SpeI+EcoRI, it was ligated to the pVax vector digested with the same restriction to obtain pVax-L-ΔE3. R-ΔE3 was digested with EcoRV+XbaI and connected to the pVax-L-ΔE3 backbone of the same digestion to obtain pVax-ΔE3(L+R).
2.pAd7ΔE3质粒的构建。2. Construction of pAd7ΔE3 plasmid.
pVax-ΔE3(L+R)以SpeI+XbaI线性化,pAd7以EcoRI线性化,乙醇沉淀法回收后共转化BJ5183感受态细胞,涂至氨苄抗性平板,手提取质粒后,继续转化XL-Blue感受态细胞,手提取质粒并进行酶切鉴定。得到敲除E3基因并在E3区引入唯一的单酶切位点SwaI的基因组质粒pAd7ΔE3。SwaI酶切位点的插入,方便在E3基因区进行线性化。穿梭质粒及pAd7ΔE3质粒的构建示意图及大质粒的酶切鉴定结果如图10所示。pVax-ΔE3(L+R) was linearized with SpeI+XbaI, pAd7 was linearized with EcoRI, recovered by ethanol precipitation, and then co-transformed into BJ5183 competent cells, spread to ampicillin resistant plates, hand-extracted plasmids, and continued to transform XL-Blue Competent cells were hand-extracted and the plasmids were digested for identification. The genomic plasmid pAd7ΔE3 with the E3 gene knocked out and the only single restriction site SwaI introduced in the E3 region was obtained. The insertion of the SwaI restriction site facilitates linearization in the E3 gene region. The schematic diagram of the construction of the shuttle plasmid and pAd7ΔE3 plasmid and the restriction enzyme digestion results of the large plasmid are shown in Figure 10.
三、E1基因的敲除及pAd7ΔE1ΔE3质粒的构建3. Knockout of E1 gene and construction of pAd7ΔE1ΔE3 plasmid
1.构建E1基因敲除的穿梭质粒pT-Ad7ΔE1(L+R)。1. Construction of the shuttle plasmid pT-Ad7ΔE1(L+R) with knockout of E1 gene.
E1基因敲除穿梭质粒pT-Ad7ΔE1(L+R)的构建。以Ad7的基因组为模板,PCR获得E1基因的左臂(L-ΔE1)和右臂(R-ΔE1)。Construction of E1 gene knockout shuttle plasmid pT-Ad7ΔE1(L+R). Using the Ad7 genome as a template, the left arm (L-ΔE1) and the right arm (R-ΔE1) of the E1 gene were obtained by PCR.
L-ΔE1引物:L-ΔE1 primer:
L-ΔE1-F:ACTCACCGGCGGCGATCGCCTCTCTATTTAATATACCTTATAGATGG(SEQ ID NO.33);L-ΔE1-F: ACTCACCGGCGGCGATCGCCTCTCTATTTAATATACCTTATAGATGG (SEQ ID NO.33);
L-ΔE1-R:ATCACAATTGAATTCGTTTAAACGTAATCGAAACCTCCACGTAA(SEQ ID NO.34)。L-ΔE1-R: ATCACAATTGAATTCGTTTAAACGTAATCGAAACCTCCACGTAA (SEQ ID NO.34).
PCR条件:95℃,3min;95℃,30s;54℃30s;72℃,30s;cycles 30;72℃,5min;12℃保存。PCR conditions: 95°C, 3min; 95°C, 30s; 54°C for 30s; 72°C, 30s; cycles 30; 72°C, 5min; 12°C storage.
R-SE1引物:R-SE1 primer:
R-SE1-F:ATAGAATTC ACTAGTGAGGCCCGATCATTTGGTGCT(SEQ ID NO.35);R-SE1-F: ATAGAATTC ACTAGTGAGGCCCGATCATTTGGTGCT (SEQ ID NO.35);
R-SE1-R:ACGTATAC CTATCATTATGGATGAGTGCATGG(SEQ ID NO.36)。R-SE1-R: ACGTATAC CTATCATTATGGATGAGTGCATGG (SEQ ID NO. 36).
PCR条件:95℃,3min;95℃,30s;61℃30s;72℃,1min 10s;cycles 30;72℃,5min;12℃保存。PCR conditions: 95°C, 3min; 95°C, 30s; 61°C 30s; 72°C, 1min 10s; cycles 30; 72°C, 5min; 12°C storage.
PCR产物和T载体使用Exnase重组酶进行三片段连接得到pT-Ad7(L+R)。The PCR product and the T vector were ligated with three fragments using Exnase recombinase to obtain pT-Ad7(L+R).
2.pAd7ΔE1ΔE3质粒的构建。2. Construction of pAd7ΔE1ΔE3 plasmid.
pT-Ad7-ΔE1(L+R)以Bstz17I线性化,pAd7以AatII线性化,乙醇沉淀法回收后共转化BJ5183感受态细胞,涂至氨苄抗性平板,手提取质粒后,继续转化XL-Blue感受态细胞,手提取质粒并进行酶切鉴定。敲除E1基因并在E1区引入单酶切位点PmeI的基因组质粒pAd7ΔE1ΔE3。PmeI酶切位点的插入,方便在E1基因区进行线性化。穿梭质粒及pAd7ΔE1ΔE3质粒的构建示意图及大质粒的酶切鉴定结果如图11所示pT-Ad7-ΔE1(L+R) was linearized with Bstz17I, pAd7 was linearized with AatII, and recovered by ethanol precipitation method to co-transform BJ5183 competent cells, spread to ampicillin resistant plate, hand-extract the plasmid, and continue to transform XL-Blue Competent cells were hand-extracted and the plasmids were digested for identification. Knock out the E1 gene and introduce a genomic plasmid pAd7ΔE1ΔE3 with a single restriction site PmeI in the E1 region. The insertion of the PmeI restriction site facilitates linearization in the E1 gene region. The construction diagram of the shuttle plasmid and pAd7ΔE1ΔE3 plasmid and the restriction enzyme digestion results of the large plasmid are shown in Figure 11.
四、构建整合Ad5 E4 Orf2-6序列的质粒pAd7ΔE1ΔE3(Orf2-6)Fourth, construct the plasmid pAd7ΔE1ΔE3 (Orf2-6) that integrates the Ad5 E4 Orf2-6 sequence
1.构建E4基因区的穿梭质粒p7SE4。以Ad7的基因组为模板PCR获得E4基因区的左臂(L-SE4)和右臂(R-SE4)。1. Construct the shuttle plasmid p7SE4 of the E4 gene region. The left arm (L-SE4) and the right arm (R-SE4) of the E4 gene region were obtained by PCR using the Ad7 genome as a template.
扩增Ad7 L-SE4的引物序列:Amplification of Ad7 L-SE4 primer sequence:
L-SE4-F:CGCGGATCTTCCAGAGATGTTTAAACAACCAGTTACTCCTAGAACAGTCAGC(SEQ ID NO.37);L-SE4-F: CGCGGATCTTCCAGAGATGTTTAAACAACCAGTTACTCCTAGAACAGTCAGC (SEQ ID NO.37);
L-SE4-R:ACGCGTATGGATTTAAAT CGATGCAGGCGAGAGTCTATTC(SEQ ID NO.38)。L-SE4-R: ACGCGTATGGATTTAAAT CGATGCAGGCGAGAGTCTATTC (SEQ ID NO.38).
PCR条件:95℃,3min;95℃,30s;60℃30s;72℃,45s;cycles 30;72℃,5min;PCR conditions: 95℃, 3min; 95℃, 30s; 60℃ 30s; 72℃, 45s; cycles 30; 72℃, 5min;
扩增Ad7 R-SE4的引物序列:Amplification of Ad7 R-SE4 primer sequence:
R-SE4-F:ATTTAAATCCATACGCG TGGAGTTCTTATTAAGTGCGGATGG(SEQ ID NO.39)R-SE4-F:ATTTAAATCCATACGCGTGGAGTTCTTATTAAGTGCGGATGG(SEQ ID NO.39)
R-SE4-R:GCCTGCCGTTCGACGATGTTTAAAC CAGCTGGCACGACAGGTTTC(SEQ ID NO.40)R-SE4-R: GCCTGCCGTTCGACGATGTTTAAAC CAGCTGGCACGACAGGTTTC (SEQ ID NO.40)
PCR条件:95℃,3min;95℃,30s;60℃30s;72℃,30s;cycles 30;72℃,5min;PCR conditions: 95℃, 3min; 95℃, 30s; 60℃30s; 72℃, 30s; cycles 30; 72℃, 5min;
PCR获得的L-SE4、R-SE4片段和平末端的T载体进行三片段连接得到p7SE4。The L-SE4 and R-SE4 fragments obtained by PCR and the blunt-ended T vector were ligated with three fragments to obtain p7SE4.
2.构建携带Ad5 E4 Orf2-6序列的E4基因区的穿梭质粒p7SE4(Orf2-6)。以Ad5的基因组为模板PCR获得Ad5  E4的Orf2-6。2. Construction of the shuttle plasmid p7SE4 (Orf2-6) carrying the E4 gene region of the Ad5 E4 Orf2-6 sequence. Using Ad5 genome as a template, the Orf2-6 of Ad5 E4 was obtained by PCR.
Ad5 Orf2-6-F:TCACAGTCCAACTGCT CCTACATGGGGGTAGAGTCATAATCG(SEQ ID NO.41);Ad5 Orf2-6-F: TCACAGTCCAACTGCT CCTACATGGGGGTAGAGTCATAATCG (SEQ ID NO.41);
Ad5 Orf2-6-R:GCGCGGTAACCTATTG CATGCAGAAACCCGCAGACATG(SEQ ID NO.42)。Ad5 Orf2-6-R: GCGCGGTAACCTATTG CATGCAGAAACCCGCAGACATG (SEQ ID NO. 42).
PCR条件:95℃,3min;95℃,30s;65℃30s;72℃,2min;cycles 30;72℃,5min;PCR conditions: 95℃, 3min; 95℃, 30s; 65℃30s; 72℃, 2min; cycles 30; 72℃, 5min;
以p7SE4为模板PCR获得其骨架序列Use p7SE4 as template PCR to obtain its backbone sequence
p7SE4-F:CAATAGGTTACCGCGCTGCG(SEQ ID NO.43);p7SE4-F: CAATAGGTTACCGCGCTGCG (SEQ ID NO.43);
P7SE4-R:AGCAGTTGGACTGTGAAAGCGC(SEQ ID NO.44)。P7SE4-R: AGCAGTTGGACTGTGAAAGCGC (SEQ ID NO.44).
PCR条件:95℃,3min;95℃,30s;60℃30s;72℃,6min;cycles 30;72℃,6min;PCR conditions: 95℃, 3min; 95℃, 30s; 60℃30s; 72℃, 6min; cycles 30; 72℃, 6min;
将上述PCR获得的片段利用Exnase酶进行双片段连接得到p7SE4(Orf2-6);The fragments obtained by the above PCR were double-fragmented with Exnase enzyme to obtain p7SE4 (Orf2-6);
3.构建质粒pAd7ΔE1ΔE3(Orf2-6)。3. Construction of plasmid pAd7ΔE1ΔE3 (Orf2-6).
p7SE4(Orf2-6)使用PmeI进行酶切线性化,pAd7ΔE1ΔE3使用SwaI进行酶切线性化,利用乙醇沉淀法回收上述两种酶切产物,共转化BJ5183感受态细胞进行重组,将氨苄平板进行抗性筛选,将筛选得到单克隆扩增后提取其质粒转化XL-Blue感受态细胞,提取质粒得到pAd7ΔE1ΔE3(Orf2-6),提取质粒进行酶切鉴定,pAd7ΔE1ΔE3(Orf2-6)具体构建过程及大质粒的鉴定结果参见图12。p7SE4 (Orf2-6) uses PmeI for restriction digestion and linearization, pAd7ΔE1ΔE3 uses SwaI for restriction digestion and linearization. The above two digestion products are recovered by ethanol precipitation, and the BJ5183 competent cells are co-transformed for recombination, and the ampicillin plate is resistant. Screening, after screening the monoclonal amplification, the plasmid is extracted and transformed into XL-Blue competent cells, the plasmid is extracted to obtain pAd7ΔE1ΔE3 (Orf2-6), the plasmid is extracted for identification by restriction enzyme digestion, pAd7ΔE1ΔE3 (Orf2-6) specific construction process and large plasmid See Figure 12 for the identification results.
五、携带外源基因的E1基因区穿梭质粒及pAd7ΔE1ΔE3(Orf2-6)-EGFP质粒的构建。5. Construction of the shuttle plasmid of the E1 gene region carrying the foreign gene and the plasmid pAd7ΔE1ΔE3(Orf2-6)-EGFP.
1.构建携带外源基因表达框的E1基因区穿梭质粒pGK71-EGFP。1. Construction of the shuttle plasmid pGK71-EGFP carrying the E1 gene region of the foreign gene expression cassette.
1)以Ad7的基因组为模板PCR获得E1基因区穿梭质粒的左臂SE1L和右臂SE1R。1) The left arm SE1L and the right arm SE1R of the E1 gene region shuttle plasmid were obtained by PCR using the Ad7 genome as a template.
SE1L的扩增:Amplification of SE1L:
SE1L-F:CCAGATATACGCGTGTATACTTAATTAACGGCATCAGAGCAGATTGTACTG(SEQ ID NO.45);SE1L-F: CCAGATATACGCGTGTATACTTAATTAACGGCATCAGAGCAGATTGTACTG (SEQ ID NO.45);
SE1L-R:GTTTAAACAAGATTTAAATGTAATCGAAACCTCCACGTAAACG(SEQ ID NO.46)。SE1L-R: GTTTAAACAAGATTTAAATGTAATCGAAACCTCCACGTAAACG (SEQ ID NO. 46).
SE1R的扩增:SE1R amplification:
SE1R-F:ATTTAAATCTTGTTTAAACGAATTCACTAGTGAGGCCCGATC(SEQ ID NO.47);SE1R-F: ATTTAAATCTTGTTTAAACGAATTCACTAGTGAGGCCCGATC (SEQ ID NO.47);
SE1R-R:GCCCAGTAGAAGCGCCGGTGTTAATTAACAAGTAGCTTGTCCTCAGCCAGG(SEQ ID NO.48)。SE1R-R: GCCCAGTAGAAGCGCCGGTGTTAATTAACAAGTAGCTTGTCCTCAGCCAGG (SEQ ID NO. 48).
2)构建携带E1基因区重组臂的穿梭质粒pSE1LR。2) Construct the shuttle plasmid pSE1LR carrying the recombination arm of the E1 gene region.
使用Bstz17I+SgraI双酶切质粒pVax回收质粒骨架,然后和上述PCR获得SE1L、SE1R使用Exnase酶进行三片段连接得到pSE1LR。The plasmid pVax was digested with Bstz17I+SgraI to recover the plasmid backbone, and then SE1L was obtained with the above PCR, and SE1R was ligated with three fragments using Exnase enzyme to obtain pSE1LR.
3)构建携带EGFP表达框的穿梭质粒pGK71-EGFP。3) Construct the shuttle plasmid pGK71-EGFP carrying the EGFP expression cassette.
以实验室保存的pGA1-EGFP质粒为模板,PCR扩增获得CMV-EGFP-BGH的表达框。Using the pGA1-EGFP plasmid stored in the laboratory as a template, the expression cassette of CMV-EGFP-BGH was obtained by PCR amplification.
扩增CMV-EGFP-BGH的引物序列:The primer sequence for amplifying CMV-EGFP-BGH:
CMV-EGFP-BGH-F:ACTAGTGAATTCGTTTACTAGTTATTAATAGTAATCAATTACGGG(SEQ ID NO.49);CMV-EGFP-BGH-F: ACTAGTGAATTCGTTTACTAGTTATTAATAGTAATCAATTACGGG (SEQ ID NO.49);
CMV-EGFP-BGH-R:CATTTAAATCTTGTTTCCTGCTATTGTCTTCCCAATC(SEQ ID NO.50);CMV-EGFP-BGH-R:CATTTAAATCTTGTTTCCTGCTATTGTCTTCCCAATC (SEQ ID NO.50);
PCR条件:95℃,3min;95℃,30s;60℃30s;72℃2min;cycles 30;72℃,5min;PCR conditions: 95℃, 3min; 95℃, 30s; 60℃30s; 72℃2min; cycles 30; 72℃, 5min;
pSE1LR使用PmeI酶切进行线性化,然后和PCR扩增获得的CMV-EGFP-BGH表达框使用Exnase酶进行连接得到pGK71-EGFP。pSE1LR was linearized by PmeI digestion, and then ligated with the CMV-EGFP-BGH expression box obtained by PCR amplification with Exnase enzyme to obtain pGK71-EGFP.
2.构建插入外源基因EGFP的腺病毒重组质粒pAd7ΔE1ΔE3(Orf2-6)-EGFP。2. Construct the adenovirus recombinant plasmid pAd7ΔE1ΔE3(Orf2-6)-EGFP into which the foreign gene EGFP is inserted.
pGK71-EGFP使用PacI进行线性化,pAd7ΔE1ΔE3(Orf2-6)使用PmeI酶切进行线性化,利用乙醇沉淀法回收上述两种酶切产物,共转化BJ5183感受态细胞进行重组,将氨苄平板进行抗性筛选,将筛选得到单克隆扩增后提取其质粒转化XL-Blue感受态细胞,提取质粒得到pAd7ΔE1ΔE3(Orf2-6)-EGFP,提取质粒进行酶切鉴定,pAd7ΔE1ΔE3(Orf2-6)-EGFP具体构建过程及大质粒的鉴定结果参见图13。pGK71-EGFP is linearized with PacI, pAd7ΔE1ΔE3 (Orf2-6) is linearized with PmeI digestion, the above two digestion products are recovered by ethanol precipitation, and the BJ5183 competent cells are co-transformed for recombination, and the ampicillin plate is resistant Screening, after screening the monoclonal amplification, the plasmid is extracted and transformed into XL-Blue competent cells, the plasmid is extracted to obtain pAd7ΔE1ΔE3(Orf2-6)-EGFP, and the plasmid is extracted and identified by restriction enzyme digestion. The specific construction of pAd7ΔE1ΔE3(Orf2-6)-EGFP Refer to Figure 13 for the process and the identification results of large plasmids.
六、复制缺陷型Ad7载体的拯救与生产6. Rescue and production of replication defective Ad7 vector
按照常规方法,pAd7ΔE1ΔE3(Orf2-6)和pAd7ΔE1ΔE3(Orf2-6)-EGFP以AsiSI线性化,乙醇沉淀回收,阳离子脂质体转染法转染293细胞,转染后4-6小时后,加入2毫升含5%胎牛血清的DMEM培养基,孵育7-10天,观察细胞病变;出毒后,收集细胞及培养上清,在37度水浴及液氮中反复冻融3次并离心去除细胞碎片,上清感染10厘米皿;2-3天后,收集细胞及培养上清,反复冻融3次并离心去除细胞碎片,上清感染10-15个15厘米皿;2-3天后,收集细胞,反复冻融3次并离心去除细胞碎片,上清加至氯化铯密度梯度离心管;4℃,35000转,离心4小时;吸出病毒条带,脱盐,分装;以OD260吸光度测定病毒粒子滴度,计算公式为:病毒浓度=OD260×稀释倍数×36/基因组长度(Kb);病毒储存液于-80℃冻存。复制缺陷型Ad7载体的生产及纯化结果如图14所示。According to the conventional method, pAd7ΔE1ΔE3(Orf2-6) and pAd7ΔE1ΔE3(Orf2-6)-EGFP were linearized with AsiSI, recovered by ethanol precipitation, and transfected into 293 cells by cationic liposome transfection method, 4-6 hours after transfection, added 2 ml of DMEM medium containing 5% fetal bovine serum, incubate for 7-10 days, observe the cell pathology; after the virus is found, collect the cells and culture supernatant, freeze and thaw them in a 37°C water bath and liquid nitrogen three times and remove them by centrifugation Cell debris, the supernatant infects 10 cm dishes; 2-3 days later, collect cells and culture supernatant, freeze-thaw three times and centrifuge to remove cell debris, supernatants infect 10-15 15 cm dishes; 2-3 days later, collect Cells were repeatedly frozen and thawed three times and centrifuged to remove cell debris. The supernatant was added to a cesium chloride density gradient centrifuge tube; 4°C, 35,000 rpm, centrifuged for 4 hours; virus bands were aspirated, desalted, and aliquoted; virus was determined by OD260 absorbance The particle titer, the calculation formula is: virus concentration=OD260×dilution factor×36/genome length (Kb); virus stock solution is frozen at -80°C. The results of the production and purification of the replication-defective Ad7 vector are shown in Figure 14.
七、复制缺陷型Ad7在293和A549细胞中复制能力测定7. Determination of replication ability of replication-deficient Ad7 in 293 and A549 cells
采用噬斑实验测定复制缺陷型Ad7载体在辅助细胞293和非辅助细胞A549中的复制能力。在6孔细胞板中接种293或者A549细胞,待到细胞密度接近100%时,将收获的的P1代Ad7ΔE1ΔE3(Orf2-6)-EGFP病毒原液梯度稀释后分别感染293或者A549细胞,每个病毒浓度做两个重复。病毒感染细胞2h后,吸去培养基,每孔铺上2ml左右的琼脂糖凝胶(含1ml 1.4%琼脂糖,1ml 1×MEM培养基,200ul BSA,1×青链霉素抗生素)。培养9-12天左右,利用荧光显微镜观察病毒携带的绿色荧光表达,并寻找病毒克隆的形成,拍照记录。结果如图15所示,Ad14ΔE1ΔE3(Orf2-6)-EGFP同时删除了E1和E3基因,只能在辅助细胞293中形成病毒噬斑,却无法在人正常的A549细胞形成病毒噬斑。以上结果表明复制缺陷型Ad7载体可在辅助细胞293中复制,却无法在人的正常细胞如A549细胞中复制,具有减毒表型。此外,复制缺陷型Ad7载体可在感染的细胞中表达携带的报告基因,运用于生物示踪系统中。The plaque experiment was used to determine the replication ability of the replication-deficient Ad7 vector in the helper cell 293 and the non-helper cell A549. Inoculate 293 or A549 cells in a 6-well cell plate. When the cell density approaches 100%, dilute the harvested P1 generation Ad7ΔE1ΔE3(Orf2-6)-EGFP virus stock solution and infect 293 or A549 cells respectively, each virus Do two repetitions for the concentration. After the virus infects the cells for 2 hours, aspirate the medium, and spread about 2ml agarose gel on each well (containing 1ml 1.4% agarose, 1ml 1×MEM medium, 200ul BSA, 1× penicillin antibiotic). Cultivate for about 9-12 days, use a fluorescence microscope to observe the green fluorescence expression carried by the virus, and look for the formation of virus clones, take pictures and record. The results are shown in Figure 15, Ad14ΔE1ΔE3(Orf2-6)-EGFP deleted both the E1 and E3 genes, and could only form viral plaques in the helper cell 293, but could not form viral plaques in normal human A549 cells. The above results indicate that the replication-deficient Ad7 vector can replicate in helper cells 293, but cannot replicate in human normal cells such as A549 cells, and has an attenuated phenotype. In addition, the replication-deficient Ad7 vector can express the reporter gene carried in the infected cells and be used in the biological tracing system.
实施例3 Ad4和Ad7二价疫苗制备Example 3 Preparation of Ad4 and Ad7 bivalent vaccine
1、疫苗保存1. Vaccine preservation
将采用氯化铯密度梯度力离心纯化的复制缺陷型Ad4、Ad7疫苗进行至Ad4的浓度为4×10 11vp/ml,Ad7的浓 度为4×10 11vp/ml,-80℃保存。 The replication-defective Ad4 and Ad7 vaccines purified by cesium chloride density gradient force centrifugation were carried out until the concentration of Ad4 was 4×10 11 vp/ml and the concentration of Ad7 was 4×10 11 vp/ml, and stored at -80°C.
2、Ad4和Ad7二价疫苗在猕猴中免疫原性评价2. Evaluation of the immunogenicity of Ad4 and Ad7 bivalent vaccines in rhesus monkeys
设计Ad4和Ad7四价疫苗在猕猴中免疫原性评价方案,如表1所示,按照设计的免疫方案对Ad4和Ad7二价疫苗的免疫原性进行评价。Ad4和Ad7二价疫苗(Ad4:2×10 10vp/ml,Ad7:2×10 10vp/ml)。 The immunogenicity evaluation protocol of Ad4 and Ad7 tetravalent vaccines in rhesus monkeys was designed. As shown in Table 1, the immunogenicity of Ad4 and Ad7 bivalent vaccines was evaluated according to the designed immunization protocol. Ad4 and Ad7 bivalent vaccines (Ad4: 2×10 10 vp/ml, Ad7: 2×10 10 vp/ml).
表1Table 1
Figure PCTCN2020106400-appb-000001
Figure PCTCN2020106400-appb-000001
选取成年恒河猴,分为2组,每组4只。采取肌注(手臂)免疫的方式,第1组免疫计Ad4和Ad7二价疫苗(实验组),第2组注射疫苗保存液(对照组)。免疫后第28天,静脉采血分离血清,测定抗Ad4和Ad7中和抗体。同时按上述方案第35天加强免疫;第49天(加强免疫2周),静脉取血并分离血清,测定抗Ad4和Ad7的中和抗体;此外我们采用加强免以后两周的血清进行了Ad3、Ad11、Ad14交叉中和抗体水平的测定。结果如图16所示,实验组初免后即可产生Ad4和Ad7的特异性中和抗体,加强后Ad4和Ad7的特异性中和抗体滴度显著提升。此外,我们检测该二价疫苗对于Ad3、Ad11、Ad14的交叉交叉保护,发现加强免疫两周后部分猕猴体内存在较高滴度的Ad3、Ad11和Ad14的中和抗体(如图17所示),证明该Ad4和Ad7二价疫苗对Ad3、Ad11和Ad14存在一定的交叉保护作用。MOCK对照组猕猴血清中Ad3、Ad4、Ad7和Ad55中和抗体呈阴性。我们分离了初免和加强免疫两周后猕猴全血,分离猕猴外周血单个核细胞(PBMC)进行ELISPOT分析,结果如图18所示,Ad4和Ad7初免后和加强免能够有效刺激猕猴机体产生较强的特异性细胞免疫应答。Select adult rhesus monkeys and divide them into 2 groups with 4 in each group. Intramuscular injection (arm) was used for immunization, the first group was immunometer Ad4 and Ad7 bivalent vaccine (experimental group), and the second group was injected with vaccine preservation solution (control group). On the 28th day after immunization, blood was collected from vein to separate serum, and anti-Ad4 and Ad7 neutralizing antibodies were determined. At the same time, boost the immunization on the 35th day according to the above scheme; on the 49th day (both 2 weeks of booster immunization), blood was taken intravenously and the serum was separated to determine the neutralizing antibodies against Ad4 and Ad7; in addition, we used the serum two weeks after the booster for Ad3 , Ad11, Ad14 cross-neutralizing antibody level determination. The results are shown in Figure 16, the experimental group can produce Ad4 and Ad7 specific neutralizing antibodies after the initial immunization, and the Ad4 and Ad7 specific neutralizing antibody titers are significantly increased after the boost. In addition, we tested the cross-protection of the bivalent vaccine against Ad3, Ad11, and Ad14, and found that there were higher titers of neutralizing antibodies against Ad3, Ad11 and Ad14 in some rhesus monkeys two weeks after the booster immunization (as shown in Figure 17) It proved that the Ad4 and Ad7 bivalent vaccine has a certain cross-protection effect on Ad3, Ad11 and Ad14. The neutralizing antibodies of Ad3, Ad4, Ad7 and Ad55 in the serum of rhesus monkeys in the MOCK control group were negative. We separated the whole blood of rhesus monkeys after two weeks of primary immunization and booster immunization, and isolated rhesus monkey peripheral blood mononuclear cells (PBMC) for ELISPOT analysis. The results are shown in Figure 18. Ad4 and Ad7 after primary immunization and booster immunization can effectively stimulate the macaque body Produce a strong specific cellular immune response.

Claims (10)

  1. 一种组合物,其包括复制缺陷型人4型腺病毒和7型腺病毒。A composition comprising replication-deficient human type 4 adenovirus and type 7 adenovirus.
  2. 根据权利要求1所述的组合物,其特征在于,所述复制缺陷型人4型腺病毒的E1、E3基因缺失,E4基因的部分编码框置换为人5型腺病毒E4基因的相应编码框。The composition according to claim 1, wherein the E1 and E3 genes of the replication-deficient human type 4 adenovirus are deleted, and part of the coding frame of the E4 gene is replaced with the corresponding coding frame of the human type 5 adenovirus E4 gene.
  3. 根据权利要求1所述的组合物,其特征在于,所述复制缺陷型人7型腺病毒的E1、E3基因缺失,E4基因的部分编码框置换为人5型腺病毒E4基因的相应编码框。The composition according to claim 1, wherein the E1 and E3 genes of the replication-deficient human adenovirus type 7 are deleted, and part of the coding frame of the E4 gene is replaced with the corresponding coding frame of the human type 5 adenovirus E4 gene.
  4. 根据权利要求2所述的组合物,其特征在于,所述E4基因的编码框包括Orf2、Orf3、Orf4和Orf6编码框。The composition according to claim 2, wherein the coding frame of the E4 gene comprises Orf2, Orf3, Orf4 and Orf6 coding frames.
  5. 根据权利要求3所述的组合物,其特征在于,所述E4基因的编码框包括Orf2、Orf3、Orf4和Orf6编码框。The composition according to claim 3, wherein the coding frame of the E4 gene comprises Orf2, Orf3, Orf4 and Orf6 coding frames.
  6. 根据权利要求1所述的组合物,其特征在于,至少有一所述复制缺陷型腺病毒的E1基因区域整合了外源基因表达框。The composition according to claim 1, wherein at least one E1 gene region of the replication-defective adenovirus integrates an expression cassette of a foreign gene.
  7. 根据权利要求6所述的组合物,其特征在于,所述外源基因表达框包含了可在人体中诱导免疫应答或产生生物报告分子或用于检测的追踪分子或调节基因功能或治疗性分子的核苷酸序列。The composition according to claim 6, wherein the exogenous gene expression cassette contains tracking molecules or regulating gene function or therapeutic molecules that can induce immune response in the human body or generate biological reporter molecules or used for detection. The nucleotide sequence.
  8. 根据权利要求1-7所述的组合物,其特征在于,所述复制缺陷型人4型腺病毒和复制缺陷型人7型腺病毒病毒颗粒数混合比例介于1:10到10:1之间。The composition according to claims 1-7, wherein the mixing ratio of the number of virus particles of the replication-defective human type 4 adenovirus and the replication-defective human type 7 adenovirus is between 1:10 and 10:1. between.
  9. 权利要求1-8所述的任一组合物在制备疫苗,检测试剂,调节基因功能的制剂或治疗药物中的应用。The use of any composition of claims 1-8 in the preparation of vaccines, detection reagents, preparations for regulating gene function, or therapeutic drugs.
  10. 权利要求1-9任一项所述的组合物还包括药学上可接受的佐剂、载体、稀释剂或赋形剂。The composition of any one of claims 1-9 further comprises a pharmaceutically acceptable adjuvant, carrier, diluent or excipient.
PCT/CN2020/106400 2020-01-08 2020-07-31 Bivalent adenovirus vaccine WO2021139147A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010016395.X 2020-01-08
CN202010016395.XA CN111166875A (en) 2020-01-08 2020-01-08 Adenovirus bivalent vaccine

Publications (1)

Publication Number Publication Date
WO2021139147A1 true WO2021139147A1 (en) 2021-07-15

Family

ID=70624047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106400 WO2021139147A1 (en) 2020-01-08 2020-07-31 Bivalent adenovirus vaccine

Country Status (2)

Country Link
CN (1) CN111166875A (en)
WO (1) WO2021139147A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111166875A (en) * 2020-01-08 2020-05-19 广州恩宝生物医药科技有限公司 Adenovirus bivalent vaccine
CN113908265B (en) * 2020-07-10 2024-03-15 上海市公共卫生临床中心 Human type 4 and type 7 adenovirus attenuated live vaccine and application thereof
CN112156181A (en) * 2020-09-29 2021-01-01 广州恩宝生物医药科技有限公司 Adenovirus quadrivalent vaccine
CN114150005B (en) * 2022-02-09 2022-04-22 广州恩宝生物医药科技有限公司 Adenovirus vector vaccine for prevention of SARS-CoV-2 Oncuronjorn strain

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083737A2 (en) * 2000-05-03 2001-11-08 University Of Guelph Porcine adenovirus type 5 vector and vaccine
WO2003039593A1 (en) * 2001-11-08 2003-05-15 Akzo Nobel N.V. Fowl adenovirus vaccine
CN104846013A (en) * 2015-04-15 2015-08-19 广州福宸生物技术有限公司 Replication-defective human adenovirus type 55 vector and preparation method and application thereof
CN106916851A (en) * 2017-03-01 2017-07-04 广州恩宝生物医药科技有限公司 Type adenovirus vector of a kind of replication deficient human 14 and its preparation method and application
CN109402066A (en) * 2018-10-18 2019-03-01 北京晨寰生物科技有限公司 One plant of 7 type adenovirus and its vaccine product of preparation
CN109504663A (en) * 2018-11-26 2019-03-22 中国人民解放军军事科学院军事医学研究院 A kind of Ad4/Ad7 type bivalent recombined adhenovirus and its application
CN110551757A (en) * 2019-06-26 2019-12-10 广州恩宝生物医药科技有限公司 Replication-defective recombinant human adenovirus type 4, and preparation method and application thereof
CN110616199A (en) * 2019-06-26 2019-12-27 广州恩宝生物医药科技有限公司 Replication-defective recombinant human 7-type adenovirus and preparation method and application thereof
CN110628726A (en) * 2019-09-30 2019-12-31 山东信得科技股份有限公司 Novel Muscovy duck adenovirus strain, bivalent inactivated vaccine and preparation method thereof
CN111166875A (en) * 2020-01-08 2020-05-19 广州恩宝生物医药科技有限公司 Adenovirus bivalent vaccine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083737A2 (en) * 2000-05-03 2001-11-08 University Of Guelph Porcine adenovirus type 5 vector and vaccine
WO2003039593A1 (en) * 2001-11-08 2003-05-15 Akzo Nobel N.V. Fowl adenovirus vaccine
CN104846013A (en) * 2015-04-15 2015-08-19 广州福宸生物技术有限公司 Replication-defective human adenovirus type 55 vector and preparation method and application thereof
CN106916851A (en) * 2017-03-01 2017-07-04 广州恩宝生物医药科技有限公司 Type adenovirus vector of a kind of replication deficient human 14 and its preparation method and application
CN109402066A (en) * 2018-10-18 2019-03-01 北京晨寰生物科技有限公司 One plant of 7 type adenovirus and its vaccine product of preparation
CN109504663A (en) * 2018-11-26 2019-03-22 中国人民解放军军事科学院军事医学研究院 A kind of Ad4/Ad7 type bivalent recombined adhenovirus and its application
CN110551757A (en) * 2019-06-26 2019-12-10 广州恩宝生物医药科技有限公司 Replication-defective recombinant human adenovirus type 4, and preparation method and application thereof
CN110616199A (en) * 2019-06-26 2019-12-27 广州恩宝生物医药科技有限公司 Replication-defective recombinant human 7-type adenovirus and preparation method and application thereof
CN110628726A (en) * 2019-09-30 2019-12-31 山东信得科技股份有限公司 Novel Muscovy duck adenovirus strain, bivalent inactivated vaccine and preparation method thereof
CN111166875A (en) * 2020-01-08 2020-05-19 广州恩宝生物医药科技有限公司 Adenovirus bivalent vaccine

Also Published As

Publication number Publication date
CN111166875A (en) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2021139147A1 (en) Bivalent adenovirus vaccine
US10760096B2 (en) Human type 55 replication defective adenovirus vector, method for preparing same and uses thereof
EP0736100B1 (en) Recombinant protein production in bovine adenovirus expression vector system
CN108025058B (en) Adenovirus polynucleotides and polypeptides
JP2020022459A (en) Simian (gorilla) adenovirus or adenoviral vectors and method of use thereof
JP5506736B2 (en) Bovine adenovirus type 3 genome
USRE40930E1 (en) Porcine adenovirus type 3 genome
CN110616199A (en) Replication-defective recombinant human 7-type adenovirus and preparation method and application thereof
WO2023151172A1 (en) Adenovirus vector vaccine for preventing sars-cov-2 omicron strain
CN110551757A (en) Replication-defective recombinant human adenovirus type 4, and preparation method and application thereof
WO2022068247A1 (en) Adenovirus quadrivalent vaccine
US20190388536A1 (en) Human Type 14 Replication Defective Adenovirus Vector and Preparation Method for Same and Applications Thereof
WO2022193552A1 (en) Adenovirus type 26 (ad26) vector-based vaccine for sars‑cov‑2, and preparation method therefor and application thereof
CN105274142A (en) Replicative recombinant human 55-type Adenovirus vector and preparation method and application thereof
WO2023024525A1 (en) Adenovirus vector vaccine for preventing original strain of sars-cov-2 and sars-cov-2 beta variant
WO2000026395A2 (en) Bovine cells expressing adenovirus essential functions for propagation of recombinant adenoviral vectors
Mozharovskaya et al. DEVELOPMENT AND CHARACTERIZATION OF A VECTOR SYSTEM BASED ON THE SIMIAN ADENOVIRUS TYPE 25
AU2002313129B2 (en) Bovine adenovirus type 3 genome
CN117821405A (en) Gene chimeric human adenovirus and construction method and application thereof
EP1104813A1 (en) Conditional replication of recombinant human adenovirus DNA carrying modified inverted terminal repeat sequences
EA045436B1 (en) ADENOVIRAL VECTORS AND WAYS OF THEIR APPLICATION
Elgadi Molecular cloning and restriction endonuclease analysis of bovine adenovirus type 3
Salmon Molecular cloning restriction enzyme analysis, bovine adenovirus type 2 genome
AU2004200229A1 (en) Porcine adenovirus type 3 genome

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 20912212

Country of ref document: EP

Kind code of ref document: A1