WO2021138999A1 - 喷墨打印方法、装置、设备及计算机可读存储介质 - Google Patents

喷墨打印方法、装置、设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2021138999A1
WO2021138999A1 PCT/CN2020/078527 CN2020078527W WO2021138999A1 WO 2021138999 A1 WO2021138999 A1 WO 2021138999A1 CN 2020078527 W CN2020078527 W CN 2020078527W WO 2021138999 A1 WO2021138999 A1 WO 2021138999A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
organic light
moving distance
emitting device
current position
Prior art date
Application number
PCT/CN2020/078527
Other languages
English (en)
French (fr)
Inventor
杜中辉
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2021138999A1 publication Critical patent/WO2021138999A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/11Ink jet characterised by jet control for ink spray
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1202Dedicated interfaces to print systems specifically adapted to achieve a particular effect
    • G06F3/1218Reducing or saving of used resources, e.g. avoiding waste of consumables or improving usage of hardware resources

Definitions

  • the present invention relates to the technical field of inkjet printing, in particular to an inkjet printing method, device, equipment and computer readable storage medium.
  • OLED display devices mainly use vacuum semiconductor technology to prepare high-quality organic thin films.
  • this technology is difficult to achieve uniform preparation of OLED panels over 55 inches.
  • its lower material utilization rate and higher cost are the bottleneck restricting the large-scale development of OLED.
  • inkjet printing has the advantages of high material utilization rate, suitable for flexible processing, and patterned processing without masks. It has become the most potential for processing and preparing large-area flexible OLED displays. Screen film forming technology.
  • the quality of the film formation seriously affects the lighting effect of the device (brightness uniformity, lifetime, efficiency, etc.).
  • the "coffee ring" effect is a common phenomenon in the inkjet printing process, which can cause uneven deposition of functional materials, reduce the resolution of printed patterns, and weaken the performance of the prepared functional devices.
  • FIG. 1 is a schematic diagram of the principle of the ink droplet film forming process of the embodiment. As shown in Figure 1, when an ink droplet falls on the substrate or pixel, due to the shape of the ink droplet, that is, due to the formation of the surface tension curve, the central part and the volume sum of the relatively small volume and unit area of the ink droplet are caused.
  • the evaporation rate of the edge portion with a larger unit area is different, and therefore, the ink drying rate of the edge portion is faster.
  • the continuous volatilization of the solvent in the edge part the solid content distribution of the center part and the edge part become different, causing a concentration gradient difference, which causes the capillary compensation flow phenomenon of the solvent from the center part to the edge part.
  • This kind of flow will inevitably drive part of the solute to migrate to the edge part, resulting in the continuous increase of the solute mass in the edge part, and finally the formation of the coffee ring effect.
  • FIG. 2 is a schematic diagram of the principle of the ink droplet film forming process of the embodiment. As shown in Figure 2, the Marangoni flow is generated due to the tension gradient on the membrane surface, which transfers the solute from the edge to the middle area, resulting in the membrane surface "thick in the middle and thin at both ends".
  • the existing technical solutions include adding components to the solvent to control the volatilization speed of the solvent, adjusting the type and ratio of the solvent to control the surface tension of the solvent, and so on.
  • the above method can play a role in uniform film thickness to a certain extent.
  • additives such as surfactants often cause the performance of the device to decrease, so it is difficult to use them in the OLED structure.
  • the above method has a high printing cost and is not suitable for the production of large-size panels.
  • the above method needs to readjust the formula when selecting different inks.
  • the embodiments of the present invention provide an inkjet printing method, device, equipment, and computer-readable storage medium to solve the problem of uneven film thickness of printed organic light-emitting devices caused by capillary flow and Marangoni effect in the prior art, and device performance The problem of falling.
  • the embodiment of the present invention provides an inkjet printing method, including:
  • the movement distance of the print head of the inkjet printer is adjusted according to the current position.
  • adjusting the movement distance of the print head of the inkjet printer according to the current position includes:
  • adjusting the moving distance includes:
  • the farther the current position is from the central position of the organic light-emitting device thin film the greater the movement distance is adjusted.
  • the moving distance conforms to the following formula:
  • yn y1-(n-1) ⁇ y
  • the embodiment of the present invention also provides an inkjet printing device, including:
  • the acquisition module is used to acquire the current position of the print head of the inkjet printer
  • the adjustment module is used to adjust the movement distance of the print head of the inkjet printer according to the current position.
  • the adjustment module further includes:
  • a comparison unit for comparing the thickness of the central part with the thickness of the edge part to obtain a comparison result
  • the adjustment unit is configured to adjust the moving distance according to the comparison result.
  • the adjustment unit is also used for:
  • the moving distance is adjusted to be smaller;
  • the adjustment of the moving distance is greater when the current position is farther from the center position of the organic light emitting device film.
  • the embodiment of the present invention also provides an inkjet printing device, including:
  • At least one processor and a memory communicatively connected with the at least one processor; wherein the memory stores instructions executable by the one processor, and the instructions are executed by the at least one processor to enable The at least one processor executes the inkjet printing method described in the first aspect.
  • An embodiment of the present invention also provides a computer-readable storage medium on which computer instructions are stored, wherein the instructions are executed by a processor to implement the steps of the inkjet printing method described in the first aspect.
  • the embodiment of the present invention provides an inkjet printing method, which is applied to the organic light-emitting device film.
  • the current position of the print head of the inkjet printer is increased.
  • the current position adjusts the movement distance of the print head of the inkjet printer.
  • the function of this method is to control the thickness of the film surface by adjusting the movement distance of the print head of the inkjet printer.
  • the inkjet printing method in the embodiment of the present invention adjusts the moving distance according to the thickness of the center part and the thickness of the edge part of the film printed with the same moving distance, thereby preventing the problem of uneven film thickness caused by capillary flow and Marangoni effect.
  • the inkjet printing method in the embodiment of the present invention has low cost, and can prevent additives from affecting the performance of the device.
  • FIG. 1 is a schematic diagram of the principle of the ink droplet film forming process according to an embodiment.
  • Fig. 2 is a schematic diagram of the principle of the ink droplet film forming process in another embodiment.
  • Fig. 3 is a flowchart of an inkjet printing method according to an embodiment of the present invention.
  • Fig. 4 is a flowchart of another inkjet printing method according to an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a film surface change of an inkjet printing method according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a film surface change of an inkjet printing method according to an embodiment of the present invention.
  • Fig. 7 is a structural diagram of an inkjet printing device according to an embodiment of the present invention.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a support connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection can be a support connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • FIG. 1 is a schematic diagram of the principle of the ink droplet film forming process according to an embodiment.
  • the vapor field of the liquid droplet film surface is not uniform, and there is a capillary flow inside the deposited ink, which transfers the solute in the middle of the droplet to the edge, resulting in the "coffee ring effect".
  • the film surface is "thin in the middle and thick at both ends", and the film uniformity is poor.
  • FIG. 2 is a schematic diagram of the principle of the ink droplet film forming process in another embodiment.
  • the Marangoni flow is generated, which transfers the solute from the edge to the middle area.
  • the film surface may be "thick in the middle and thin at both ends".
  • the existing methods for improving the uniformity of film formation have one or more of the following problems: high cost, low efficiency, affecting device performance, and small application range.
  • the embodiment of the present invention provides an inkjet printing method, which is applied to a thin film of an organic light emitting device.
  • Fig. 3 is a flowchart of an inkjet printing method according to an embodiment of the present invention. As shown in Figure 3, the specific process of the inkjet printing method may be as follows:
  • the current position of the print head of the inkjet printer is the position of the print head of the inkjet printer relative to the printing area.
  • the specific method for obtaining the current position described above can be set according to the specific situation.
  • the corresponding printing area is determined according to the organic light emitting device film to be printed.
  • the printing process of an inkjet printer is as follows: the print head first prints the leftmost column of the above-mentioned area, and then the print head moves to the right and then prints the next column, and so on, to form an organic light-emitting device film.
  • the above-mentioned current position is the position in the above-mentioned printing area corresponding to the current printing column. According to the description of this embodiment, those skilled in the art can adopt other methods in the prior art to obtain the current position of the print head of the inkjet printer.
  • the printing process of the inkjet printer is: determining the corresponding printing area according to the organic light-emitting device film to be printed, and expressing the above-mentioned area with x-axis and y-axis coordinates.
  • the print head moves in the x-axis direction
  • the print table moves in the y-axis direction.
  • the current position is represented by the coordinates of the x-axis and y-axis.
  • the inkjet printer used in the embodiment of the present invention can be equipped with a nozzle with one row of nozzles, a nozzle with multiple rows of nozzles, nozzles with adjacent rows of nozzles staggered by a set interval, or other nozzles with the same characteristics.
  • S32 Adjust the movement distance of the print head of the inkjet printer according to the current position.
  • the movement distance of the inkjet printer print head is the relative movement distance of the inkjet printer print head and the inkjet printer print table corresponding to two consecutive inkjets by the inkjet printer print head.
  • the printing process of the inkjet printer is that the print head first prints the leftmost column of the above-mentioned area, then moves to the right and then prints the next column, and this is repeated to form an organic light-emitting device film.
  • the above moving distance is the moving distance of the print head to print two adjacent columns.
  • the printing process of the inkjet printer is as follows: the print head first prints the leftmost column of the above-mentioned area. After that, the printing table moves to the right, and the printing head prints the next column. This is repeated to form an organic light-emitting device thin film.
  • the above-mentioned moving distance is the moving distance of the printing table corresponding to the two adjacent columns of the printing head.
  • the above-mentioned printing station can also be replaced with a substrate, which is not limited in this application.
  • this application provides an inkjet printing method, which is applied to organic light-emitting device films. Compared with the traditional inkjet printing method, it increases the acquisition of the current position of the inkjet printer print head and adjusts it according to the current position. The movement distance of the print head of the inkjet printer. The function of this method is to control the pitch of the ink droplets by adjusting the movement distance of the print head of the inkjet printer, thereby controlling the thickness of the film surface.
  • the inkjet printing method provided by the embodiments of the present invention can flexibly control the thickness of different positions on the film surface according to actual needs, and then prepare a film with uniform thickness or a film with varying thickness. film.
  • Fig. 4 is a flowchart of another inkjet printing method according to an embodiment of the present invention. As shown in Figure 4, the specific process of the inkjet printing method may be as follows:
  • the above-mentioned same movement distance is the relative movement distance of the inkjet printer print head and the inkjet printer print table corresponding to the inkjet printer print head for two consecutive inkjets.
  • the printing process of the inkjet printer is that the print head first prints the leftmost column of the above-mentioned area, then moves to the right and then prints the next column, and this is repeated to form an organic light-emitting device film.
  • the same moving distance mentioned above is the moving distance of the print head to print two adjacent columns.
  • the printing process of the inkjet printer is as follows: the print head first prints the leftmost column of the above-mentioned area. After that, the printing table moves to the right, and the printing head prints the next column. This is repeated to form an organic light-emitting device thin film.
  • the above-mentioned same moving distance is the moving distance of the printing table corresponding to the two adjacent columns of the print head.
  • the above-mentioned printing station can also be replaced with a substrate, which is not limited in this application.
  • the same moving distance mentioned above can be set according to specific conditions. For example, it can be set according to the ink drop size, ink density, and ink composition ratio. Continuous printing using the same moving distance can form a thin film.
  • the thickness of the central part and the thickness of the edge part may be selected as specific numerical values, or may be numerical ranges.
  • the comparison result includes that the thickness of the central part is greater than, equal to, or less than the thickness of the edge part. In a specific embodiment, the comparison result includes the difference between the thickness of the center portion and the thickness of the edge portion.
  • the current position of the print head of the inkjet printer is the position of the print head of the inkjet printer relative to the printing area.
  • the specific method for obtaining the current position described above can be set according to the specific situation.
  • the corresponding printing area is determined according to the organic light emitting device film to be printed.
  • the printing process of an inkjet printer is as follows: the print head first prints the leftmost column of the above-mentioned area, and then the print head moves to the right and then prints the next column, and so on, to form an organic light-emitting device film.
  • the above-mentioned current position is the position in the above-mentioned printing area corresponding to the current printing column.
  • the movement distance of the inkjet printer print head is the relative movement distance of the inkjet printer print head and the inkjet printer print table corresponding to two consecutive inkjets by the inkjet printer print head.
  • the printing process of the inkjet printer is that the print head first prints the leftmost column of the above-mentioned area, then moves to the right and then prints the next column, and this is repeated to form an organic light-emitting device film.
  • the above moving distance is the moving distance of the print head to print two adjacent columns.
  • the printing process of the inkjet printer is as follows: the print head first prints the leftmost column of the above-mentioned area. After that, the printing table moves to the right, and the printing head prints the next column. This is repeated to form an organic light-emitting device thin film.
  • the above-mentioned moving distance is the moving distance of the printing table corresponding to the two adjacent columns of the printing head.
  • the above-mentioned printing station can also be replaced with a substrate, which is not limited in this application.
  • adjusting the moving distance includes: when the thickness of the central part is greater than the thickness of the edge part, when the current position is farther from the central position of the organic light emitting device film, the adjusting moving distance is smaller. When the thickness of the central part is smaller than the thickness of the edge part, when the current position is farther from the central position of the organic light emitting device film, the adjustment movement distance is larger. When the thickness of the center part is equal to the thickness of the edge part, the moving distance is fixed.
  • the change range of the moving distance can be set according to specific conditions. For example, it can be set according to the ink drop size, ink density, and ink composition ratio. Continuous printing using this moving distance can form a thin film.
  • the increase or decrease of the adjacent movement distance is preferably a fixed value.
  • the size of the moving distance is preferably symmetrical with respect to the center line of the organic light emitting device thin film.
  • this application provides an inkjet printing method.
  • the method aims at two common problems of uneven film thickness caused by capillary flow and Marangoni effect, and increases the thickness of the central part and the thickness of the edge part of the first organic light emitting device film printed with the same moving distance. By comparing the thickness of the central part and the thickness of the edge part, it is possible to determine what kind of problem exists. Furthermore, the moving distance is adjusted in a targeted manner to improve the uniformity of film formation.
  • the use of adding components to the solvent to control the volatilization speed of the solvent, adjust the type and ratio of the solvent to control the surface tension of the solvent to improve the uniformity of film formation this embodiment can avoid changing the ink composition to cause device performance Decline.
  • controlling the volatilization speed of the solvent by controlling the temperature this embodiment can avoid the influence of the temperature on the performance of the device, and at the same time, the effect of adjusting the thickness of the film is better.
  • the adjustment movement distance when the thickness of the central part is greater than the thickness of the edge part, when the current position is farther from the central position of the organic light emitting device film, the adjustment movement distance is smaller. Or, when the thickness of the central part is smaller than the thickness of the edge part, the longer the current position is from the central position of the organic light-emitting device film, the greater the adjustment movement distance.
  • Fig. 5 is a schematic diagram of a film surface change of an inkjet printing method according to an embodiment of the present invention. As shown in Figure 5, in a specific embodiment, when the thickness of the central part is greater than the thickness of the edge part, the formula for calculating the movement distance is:
  • yn y1-(n-1) ⁇ y
  • the value of n can be set according to specific conditions.
  • the corresponding printing area is determined according to the organic light emitting device film to be printed.
  • the printing process of an inkjet printer is as follows: the print head first prints the leftmost column of the above-mentioned area, and then the print head moves to the right and then prints the next column, and so on, to form an organic light-emitting device film.
  • the number of print head movements is 30, n is half of the number of print head movements, and n is 15.
  • the range of values for y and ⁇ y satisfies, 0.0005 ⁇ y/y ⁇ 0.05; 0.4 ⁇ y ⁇ 1.6. It can prevent the movement pitch from being too large to cause insufficient continuous printing to form a thin film.
  • the uniformly changing moving distance can effectively improve the uniformity of the film surface while ensuring continuous printing to form a thin film.
  • Fig. 6 is a schematic diagram of a film surface change of an inkjet printing method according to an embodiment of the present invention. As shown in Fig. 6, in a specific embodiment, when the thickness of the central part is less than the thickness of the edge part, the calculation formula of the moving distance is:
  • the value of n can be set according to specific conditions.
  • the corresponding printing area is determined according to the organic light emitting device film to be printed.
  • the printing process of an inkjet printer is as follows: the print head first prints the leftmost column of the above-mentioned area, and then the print head moves to the right and then prints the next column, and so on, to form an organic light-emitting device film.
  • the number of print head moves is 31, n is half of the number of print head moves, and n is 16.
  • the range of values for y and ⁇ y satisfies, 0.0005 ⁇ y/y ⁇ 0.05; 0.4 ⁇ y ⁇ 1.6. It can prevent the movement pitch from being too large to cause insufficient continuous printing to form a thin film.
  • the uniformly changing moving distance can effectively improve the uniformity of the film surface while ensuring continuous printing to form a thin film.
  • the embodiments of the invention also provide an inkjet printing device, which is used to implement the above-mentioned embodiments and preferred implementations, and the descriptions that have been described will not be repeated.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • This embodiment provides an inkjet printing device. As shown in FIG. 7, it includes an acquisition module 71, which is configured to acquire the current position of the print head of the inkjet printer station; and an adjustment module 72, which is configured to adjust the printing of the inkjet printer station according to the current position. The moving distance of the head.
  • the adjustment module 72 further includes: an acquiring unit configured to acquire the thickness of the center portion and the thickness of the edge portion of the first organic light emitting device film printed by the print head of the inkjet printer station using the same moving distance; and a comparison unit, It is set to compare the thickness of the center part with the thickness of the edge part to obtain the comparison result; the adjustment unit is set to adjust the moving distance according to the comparison result.
  • the adjustment unit is further configured to: when the thickness of the central part is greater than the thickness of the edge part, when the current position is farther from the central position of the organic light emitting device film, the moving distance is adjusted to be smaller Or, when the thickness of the central portion is less than the thickness of the edge portion, the greater the adjustment of the moving distance is when the current position is farther from the central position of the organic light-emitting device film.
  • the embodiment of the present invention also provides a non-transitory computer storage medium, the computer storage medium stores computer-executable instructions, and the computer-executable instructions can execute the inkjet printing method in any of the foregoing method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), and a random access memory (Random Access Memory).
  • Memory RAM
  • flash memory Flash Memory
  • hard disk Hard Disk Drive, abbreviation: HDD
  • SSD solid-state hard disk
  • the storage medium may also include a combination of the foregoing types of memories.
  • the invention solves the problem of uneven film surface thickness caused by capillary flow and Marangoni effect when ink-jet printing organic device films.
  • the inkjet printing method in the embodiment of the present invention has low cost and can prevent additives from affecting device performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种喷墨打印方法、装置、设备及计算机可读存储介质。该方法应用于有机发光器件薄膜,包括:获取喷墨打印机打印头的当前位置(S31);根据当前位置调整所述喷墨打印机打印头的移动距离(S32)。该方法能够通过调整喷墨打印机打印头的移动距离来控制膜面厚度,从而可以防止毛细流动和马兰戈尼效应引起的膜面厚度不均匀的问题。与现有的通过调整溶剂的种类和配比控制膜面厚度相比,降低了成本,并且可避免添加物影响器件性能。

Description

喷墨打印方法、装置、设备及计算机可读存储介质 技术领域
本发明涉及喷墨打印技术领域,具体涉及一种喷墨打印方法、装置、设备及计算机可读存储介质。
背景技术
目前OLED显示器件主要采用真空半导体技术制备高质量有机薄膜。但是该技术很难实现55寸以上OLED面板的均匀制备。同时其较低的材料利用率和较高的成本是制约OLED大规模发展的瓶颈。喷墨打印作为一种非接触式的印刷技术,具有材料利用率高、适用于柔性加工、无需掩模板也能实现图案化的加工等优点,成为最有潜力用于加工制备大面积柔性OLED显示屏的成膜技术。
采用喷墨打印工艺制备OLED发光面板时,成膜质量严重影响器件的点亮效果(亮度均匀性、寿命、效率等)。“咖啡环”效应是喷墨打印过程中一种常见的现象,它会导致功能材料的不均匀沉积,降低打印图案的分辨率以及削弱所制备功能器件的性能。“咖啡环”效应的形成主要是由于三相接触线钉扎,球冠状液滴边缘挥发速率大,溶液由中间向边缘补充,溶质粒子(量子点)被带到边缘沉积,最终形成“咖啡环”。图1为实施例的墨滴成膜过程原理示意图。如图1所示,当墨滴滴落到基板或像素内后,由于墨滴形状的原因,即由于表面张力变化曲线的形成,导致墨滴中体积和单位面积比较小的中心部分与体积和单位面积比较大的边缘部分的蒸发速率不同,因此,边缘部分的墨水的干燥速率更快。随着边缘部分的溶剂的不断挥发,导致中心部分和边缘部分的固含量分布变得不同,使其存在一个浓度梯度差,从而引起溶剂从中心部分向边缘部分的毛细补偿流动现象,溶剂的这种流动势必带动部分溶质也向边缘部分迁移,导致边缘部分的溶质量不断增加,最终导致咖啡环效应的形成。
除此之外,马兰戈尼效应也是喷墨打印过程中一种常见的现象。出现马兰戈尼效应的原因是表面张力大的液体对其周围表面张力小的液体的拉力强,产生表面张力梯度;使液体从表面张力低向张力高的方向流动。图2为实施例的墨滴成膜过程原理示意图。如图2所示,由于膜面的张力梯度导致马兰戈尼流动产生,将溶质从边缘迁移至中间区域,导致膜面“中间厚,两端薄”。
为解决上述问题,现有的解决技术方案包括在溶剂中添加成分控制溶剂的挥发速度、调整溶剂的种类和配比控制溶剂的表面张力等。一般来说,上述方法可以在一定程度上起到均匀薄膜厚度的作用。然而对于OLED来说,表面活性剂等添加物往往会造成器件性能的下降,因此难以在OLED结构中使用。同时上述方法打印成本高,不适用于大尺寸面板的生产。此外,上述方法在选用不同的墨水时需要重新调整配方。
因此,在保证器件性能的前提下,如何采用喷墨打印技术制备高均匀、高精度的OLED产品,成为了本领域技术人员亟待解决的技术问题和始终研究的重点。
技术问题
本发明实施例提供了一种喷墨打印方法、装置、设备及计算机可读存储介质,以解决现有技术中由于毛细流动和马兰戈尼效应导致打印的有机发光器件薄膜厚度不均匀,器件性能下降的问题。
技术解决方案
为此,本发明实施例提供了如下技术方案:
本发明实施例提供了一种喷墨打印方法,包括:
获取喷墨打印机打印头的当前位置;
根据所述当前位置调整所述喷墨打印机打印头的移动距离。
进一步地,根据所述当前位置调整所述喷墨打印机打印头的移动距离包括:
获取所述喷墨打印机打印头采用相同移动距离打印的第一有机发光器件薄膜的中心部分厚度和边缘部分厚度;
比较所述中心部分厚度与所述边缘部分厚度,得到比较结果;
根据所述比较结果,调整所述移动距离。
进一步地,根据所述比较结果,调整所述移动距离包括:
当所述中心部分厚度大于所述边缘部分厚度时,所述当前位置距离有机发光器件薄膜中心位置越远则调整所述移动距离越小;或者,
当所述中心部分厚度小于所述边缘部分厚度时,所述当前位置距离有机发光器件薄膜中心位置越远则调整所述移动距离越大。
进一步地,所述中心部分厚度大于所述边缘部分厚度时,所述移动距离符合如下公式:
yn=y1-(n-1)Δy;
其中,所述当前位置距离有机发光器件薄膜中心位置由远及近的移动距离依次为:y1、y2……yn,n为大于1的整数;Δy为第一预设值;ny1+n(n-1)/2 Δy=L;0.0005≤Δy/y≤0.05 ;0.4≤y≤1.6;L为所述有机发光器件薄膜宽度,y为所述相同移动距离。
进一步地,所述中心部分厚度小于所述边缘部分厚度时,所述符合如下公式:
yn=y1+(n-1)Δy;
其中,所述当前位置距离有机发光器件薄膜中心位置由远及近的移动距离依次为:y1、y2……yn,n为大于1的整数;Δy为第二预设值;ny1+n(n-1)/2 Δy=L;0.0005≤Δy/y≤0.05 ;0.4≤y≤1.6;L为所述有机发光器件薄膜宽度,y为所述相同移动距离。
本发明实施例还提供了一种喷墨打印装置,包括:
获取模块,用于获取喷墨打印机打印头的当前位置;
调整模块,用于根据所述当前位置调整所述喷墨打印机打印头的移动距离。
进一步地,所述调整模块还包括:
获取单元,用于获取所述喷墨打印机打印头采用相同移动距离打印的第一有机发光器件薄膜的中心部分厚度和边缘部分厚度;
比较单元,用于比较所述中心部分厚度与所述边缘部分厚度,得到比较结果;
调整单元,用于根据所述比较结果,调整所述移动距离。
进一步地,调整单元还用于:
在所述中心部分厚度大于所述边缘部分厚度时,当所述当前位置距离有机发光器件薄膜中心位置越远则调整所述移动距离越小;或者,
在所述中心部分厚度小于所述边缘部分厚度时,当所述当前位置距离有机发光器件薄膜中心位置越远则调整所述移动距离越大。
本发明实施例还提供了一种喷墨打印设备,包括:
至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述第一方面所述的喷墨打印方法。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现上述第一方面所述的喷墨打印方法的步骤。
有益效果
本发明的有益效果为:本发明实施例提供了一种喷墨打印方法,应用于有机发光器件薄膜,与传统的喷墨打印方法相比,增加了获取喷墨打印机打印头的当前位置,根据当前位置调整喷墨打印机打印头的移动距离。该方法的作用是通过调整喷墨打印机打印头的移动距离来控制膜面厚度。本发明实施例中的喷墨打印方法根据采用相同移动距离打印的薄膜的中心部分厚度和边缘部分厚度调整移动距离,从而可以防止毛细流动和马兰戈尼效应引起的膜面厚度不均匀的问题。与现有的通过调整溶剂的种类和配比控制膜面厚度相比,本发明实施例中的喷墨打印方法成本低,而且可避免添加物影响器件性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例的墨滴成膜过程原理示意图。
图2为另一个实施例的墨滴成膜过程原理示意图。
图3为根据本发明实施例的一种喷墨打印方法流程图。
图4为根据本发明实施例的另一种喷墨打印方法流程图。
图5为根据本发明实施例的喷墨打印方法膜面变化示意图。
图6为根据本发明实施例的喷墨打印方法膜面变化示意图。
图7为根据本发明实施例的喷墨打印装置结构图。
本发明的实施方式
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是支撑连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
采用喷墨打印工艺制备OLED发光面板时,毛细流动、马兰戈尼效应等因素会影响成膜的均匀性。图1为一个实施例的墨滴成膜过程原理示意图。如图1所示,喷墨打印过程中,液滴膜面挥发气场不均匀,沉积墨水内部存在毛细流动,该流动将液滴中间溶质迁移至边缘,导致“咖啡环效应”产生。成膜时,膜面存在 “中间薄,两端厚”的情况,膜均匀性较差。图2为另一个实施例的墨滴成膜过程原理示意图。如图2所示,喷墨打印过程中,由于膜面表面张力梯度的存在,导致马兰戈尼流动的产生,将溶质从边缘迁移至中间区域。成膜时,膜面存在“中间厚,两端薄”的情况。现有的用于提高成膜均匀性的方法存在一种或几种下述问题:成本高、效率低、影响器件性能、适用范围小。本发明实施例提供了一种喷墨打印方法,应用于有机发光器件薄膜。该喷墨打印方法可用于置备液晶电视、手机、数字相机、平板电脑、计算机、电子纸、导航仪等具有显示功能的产品的显示屏。图3为根据本发明实施例的一种喷墨打印方法流程图。如图3所示,该喷墨打印方法的具体流程可以如下:
S31:获取喷墨打印机打印头的当前位置。
本实施例中,喷墨打印机打印头的当前位置为喷墨打印机打印头相对于打印区域的位置。上述当前位置的具体获取方法可根据具体情况设置。例如,根据待打印的有机发光器件薄膜确定对应的打印区域。喷墨打印机的打印过程为:打印头先打印上述区域最左边的一列,之后打印头向右移动再打印下一列,如此反复,形成有机发光器件薄膜。上述当前位置为当前打印列对应的上述打印区域中的位置。本领域技术人员根据该实施例的描述,可以采用现有技术中其他的方式来实现获取喷墨打印机打印头的当前位置。
在一个具体的实施方式中,喷墨打印机的打印过程为:根据待打印的有机发光器件薄膜确定对应的打印区域,用x轴和y轴坐标表示上述区域。打印头沿x轴方向移动,打印台沿y轴方向移动。当前位置通过x轴和y轴的坐标表示。
本发明实施例中采用的喷墨打印机可以配设一列喷嘴的喷头、多列喷嘴的喷头、邻接行喷嘴错开设定间距的喷头或其他特性相同的喷头。
S32:根据当前位置调整喷墨打印机打印头的移动距离。
本实施例中,喷墨打印机打印头的移动距离为喷墨打印机打印头连续两次喷墨对应的喷墨打印机打印头和喷墨打印机打印台的相对移动距离。
在一个具体的实施方式中,喷墨打印机的打印过程为,打印头先打印上述区域最左边的一列,之后向右移动再打印下一列,如此反复,形成有机发光器件薄膜。上述移动距离为打印头打印相邻两列的移动距离。
在一个具体的实施方式中,喷墨打印机的打印过程为:打印头先打印上述区域最左边的一列。之后打印台向右移动,打印头再打印下一列。如此反复,形成有机发光器件薄膜。上述移动距离为打印头打印相邻两列对应的打印台的移动距离。上述打印台也可以替换为衬底,本申请对此不作限定。
区别于现有技术,本申请提供了一种喷墨打印方法,应用于有机发光器件薄膜,与传统的喷墨打印方法相比,增加了获取喷墨打印机打印头的当前位置,根据当前位置调整喷墨打印机打印头的移动距离。该方法的作用是通过调整喷墨打印机打印头的移动距离能够控制墨滴的间距,进而控制膜面厚度。与现有技术中,移动距离固定的喷墨打印方法相比,本发明实施例提供的喷墨打印方法能够根据实际需求灵活控制膜面不同位置的厚度,进而置备厚度均匀的薄膜或厚度变化的薄膜。
图4为根据本发明实施例的另一种喷墨打印方法流程图。如图4所示,该喷墨打印方法的具体流程可以如下:
S41:获取喷墨打印机打印头采用相同移动距离打印的第一有机发光器件薄膜的中心部分厚度和边缘部分厚度。
本实施例中,上述相同移动距离为喷墨打印机打印头连续两次喷墨对应的喷墨打印机打印头和喷墨打印机打印台的相对移动距离。
在一个具体的实施方式中,喷墨打印机的打印过程为,打印头先打印上述区域最左边的一列,之后向右移动再打印下一列,如此反复,形成有机发光器件薄膜。上述相同移动距离为打印头打印相邻两列的移动距离。
在一个具体的实施方式中,喷墨打印机的打印过程为:打印头先打印上述区域最左边的一列。之后打印台向右移动,打印头再打印下一列。如此反复,形成有机发光器件薄膜。上述相同移动距离为打印头打印相邻两列对应的打印台的移动距离。上述打印台也可以替换为衬底,本申请对此不作限定。
上述相同的移动距离根据可根据具体情况设置。例如根据墨滴大小、墨水浓度和墨水的成分配比来设置。采用该相同移动距离连续打印能够形成薄膜。
本实施例中,中心部分厚度和边缘部分厚度可选为具体数值,也可以是数值范围。
S42:比较中心部分厚度与边缘部分厚度,得到比较结果。
本实施例中,比较结果包括中心部分厚度大于、等于或小于边缘部分厚度。在一个具体实施方式中,比较结果包括中心部分厚度与边缘部分厚度的差值。
S43:获取喷墨打印机打印头的当前位置。
本实施例中,喷墨打印机打印头的当前位置为喷墨打印机打印头相对于打印区域的位置。上述当前位置的具体获取方法可根据具体情况设置。例如,根据待打印的有机发光器件薄膜确定对应的打印区域。喷墨打印机的打印过程为:打印头先打印上述区域最左边的一列,之后打印头向右移动再打印下一列,如此反复,形成有机发光器件薄膜。上述当前位置为当前打印列对应的上述打印区域中的位置。
S44:根据当前位置和比较结果调整喷墨打印机打印头的移动距离。
本实施例中,喷墨打印机打印头的移动距离为喷墨打印机打印头连续两次喷墨对应的喷墨打印机打印头和喷墨打印机打印台的相对移动距离。
在一个具体的实施方式中,喷墨打印机的打印过程为,打印头先打印上述区域最左边的一列,之后向右移动再打印下一列,如此反复,形成有机发光器件薄膜。上述移动距离为打印头打印相邻两列的移动距离。
在一个具体的实施方式中,喷墨打印机的打印过程为:打印头先打印上述区域最左边的一列。之后打印台向右移动,打印头再打印下一列。如此反复,形成有机发光器件薄膜。上述移动距离为打印头打印相邻两列对应的打印台的移动距离。上述打印台也可以替换为衬底,本申请对此不作限定。
在一个具体实施方式中,根据比较结果,调整移动距离包括:在中心部分厚度大于边缘部分厚度时,当当前位置距离有机发光器件薄膜中心位置越远则调整移动距离越小。在中心部分厚度小于边缘部分厚度时,当当前位置距离有机发光器件薄膜中心位置越远则调整移动距离越大。在中心部分厚度等于边缘部分厚度时,移动距离固定不变。
本实施例中,移动距离的变化范围可根据具体情况设置。例如根据墨滴大小、墨水浓度和墨水的成分配比来设置。采用该移动距离连续打印能够形成薄膜。相邻移动距离的增加值或减小值优选为固定值。移动距离的大小优选相对于有机发光器件薄膜的中线对称。
区别于现有技术,本申请提供了一种喷墨打印方法。该方法针对由毛细流动和马兰戈尼效应引起的两种常见的膜面厚度不均匀的问题,增加了获取采用相同移动距离打印的第一有机发光器件薄膜的中心部分厚度和边缘部分厚度。通过比较上述中心部分厚度和边缘部分厚度能够确定存在哪种问题。进而有针对性地调整移动距离,提高成膜的均匀性。与现有技术中,采用在溶剂中添加成分控制溶剂的挥发速度、调整溶剂的种类和配比控制溶剂的表面张力提高成膜的均匀性相比,本实施例可避免改变墨水成分导致器件性能的下降。与现有技术中,通过控制温度控制控制溶剂的挥发速度相比,本实施例可避免温度对器件性能的影响,同时对膜面厚度的调整效果更好。
在一个具体的实施方式中,在中心部分厚度大于边缘部分厚度时,当当前位置距离有机发光器件薄膜中心位置越远则调整移动距离越小。或者,在中心部分厚度小于边缘部分厚度时,当当前位置距离有机发光器件薄膜中心位置越远则调整移动距离越大。本实施例是针对图1和图2两种膜面不均匀问题的解决方案。
图5为根据本发明实施例的喷墨打印方法膜面变化示意图。如图5所示,在一个具体的实施方式中,中心部分厚度大于边缘部分厚度时,移动距离计算公式为:
yn=y1-(n-1)Δy;
其中,当前位置距离有机发光器件薄膜中心位置由远及近的移动距离依次为:y1、y2……yn,n为大于1的整数;Δy为第一预设值;ny1+n(n-1)/2 Δy=L;0.0005≤Δy/y≤0.05 ;0.4≤y≤1.6;L为有机发光器件薄膜宽度,y为相同移动距离。
本实施例中,n的取值可根据具体情况设置。例如,根据待打印的有机发光器件薄膜确定对应的打印区域。喷墨打印机的打印过程为:打印头先打印上述区域最左边的一列,之后打印头向右移动再打印下一列,如此反复,形成有机发光器件薄膜。打印头的移动次数为30,n为打印头移动次数的一半,n为15。
本实施例中,y和Δy的取值范围满足,0.0005≤Δy/y≤0.05 ;0.4≤y≤1.6。能够防止移动间距过大导致连续打印不够形成薄膜。通过均匀变化的移动距离能够在保证连续打印形成薄膜的前提下,有效提高膜面的均匀性。
图6为根据本发明实施例的喷墨打印方法膜面变化示意图。如图6所示,在一个具体的实施方式中,中心部分厚度小于边缘部分厚度时,移动距离的计算公式为:
yn=y1+(n-1)Δy;
其中,当前位置距离有机发光器件薄膜中心位置由远及近的移动距离依次为:y1、y2……yn,n为大于1的整数;Δy为第二预设值;ny1+n(n-1)/2 Δy=L;0.0005≤Δy/y≤0.05 ;0.4≤y≤1.6;L为有机发光器件薄膜宽度,y为相同移动距离。
本实施例中,n的取值可根据具体情况设置。例如,根据待打印的有机发光器件薄膜确定对应的打印区域。喷墨打印机的打印过程为:打印头先打印上述区域最左边的一列,之后打印头向右移动再打印下一列,如此反复,形成有机发光器件薄膜。打印头的移动次数为31,n为打印头移动次数的一半向上取整,n为16。
本实施例中,y和Δy的取值范围满足,0.0005≤Δy/y≤0.05 ;0.4≤y≤1.6。能够防止移动间距过大导致连续打印不够形成薄膜。通过均匀变化的移动距离能够在保证连续打印形成薄膜的前提下,有效提高膜面的均匀性。
发明实施例还提供了一种喷墨打印装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
本实施例提供一种喷墨打印装置,如图7所示,包括获取模块71,设置为获取喷墨打印机台打印头的当前位置;调整模块72,设置为根据当前位置调整喷墨打印机台打印头的移动距离。
在一个具体的实施方式中,调整模块72还包括:获取单元,设置为获取喷墨打印机台打印头采用相同移动距离打印的第一有机发光器件薄膜的中心部分厚度和边缘部分厚度;比较单元,设置为比较中心部分厚度与边缘部分厚度,得到比较结果;调整单元,设置为根据比较结果,调整移动距离。
在一个具体的实施方式中,调整单元还设置为:在所述中心部分厚度大于所述边缘部分厚度时,当所述当前位置距离有机发光器件薄膜中心位置越远则调整所述移动距离越小;或者,在所述中心部分厚度小于所述边缘部分厚度时,当所述当前位置距离有机发光器件薄膜中心位置越远则调整所述移动距离越大。
上述各个模块的更进一步的功能描述与上述对应实施例相同,在此不再赘述。
本发明实施例还提供了一种非暂态计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的喷墨打印方法方法。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。
工业实用性
本发明解决了喷墨打印有机器件薄膜时,由于毛细流动和马兰戈尼效应引起的膜面厚度不均匀的问题。本发明实施例中的喷墨打印方法成本低,而且可避免添加物影响器件性能。

Claims (10)

  1. 一种喷墨打印方法,应用于有机发光器件薄膜,其中,包括:
    获取喷墨打印机打印头的当前位置;
    根据所述当前位置调整所述喷墨打印机打印头的移动距离。
  2. 根据权利要求1所述的喷墨打印方法,其中,根据所述当前位置调整所述喷墨打印机打印头的移动距离包括:
    获取所述喷墨打印机打印头采用相同移动距离打印的第一有机发光器件薄膜的中心部分厚度和边缘部分厚度;
    比较所述中心部分厚度与所述边缘部分厚度,得到比较结果;
    根据所述比较结果,调整所述移动距离。
  3. 根据权利要求2所述的喷墨打印方法,其中,根据所述比较结果,调整所述移动距离包括:
    当所述中心部分厚度大于所述边缘部分厚度时,所述当前位置距离有机发光器件薄膜中心位置越远则调整所述移动距离越小;或者,
    当所述中心部分厚度小于所述边缘部分厚度时,所述当前位置距离有机发光器件薄膜中心位置越远则调整所述移动距离越大。
  4. 根据权利要求3所述的喷墨打印方法,其中,所述中心部分厚度大于所述边缘部分厚度时,所述移动距离符合如下公式:
    yn=y1-(n-1)Δy;
    其中,所述当前位置距离有机发光器件薄膜中心位置由远及近的移动距离依次为:y1、y2……yn,n为大于1的整数;Δy为第一预设值;ny1+n(n-1)/2 Δy=L;0.0005≤Δy/y≤0.05 ;0.4≤y≤1.6;L为所述有机发光器件薄膜宽度,y为所述相同移动距离。
  5. 根据权利要求3所述的喷墨打印方法,其中,所述中心部分厚度小于所述边缘部分厚度时,所述移动距离符合如下公式:
    yn=y1+(n-1)Δy;
    其中,所述当前位置距离有机发光器件薄膜中心位置由远及近的移动距离依次为:y1、y2……yn,n为大于1的整数;Δy为第二预设值;ny1+n(n-1)/2 Δy=L;0.0005≤Δy/y≤0.05 ;0.4≤y≤1.6;L为所述有机发光器件薄膜宽度,y为所述相同移动距离。
  6. 一种喷墨打印装置,其中,包括:
    获取模块,用于获取喷墨打印机打印头的当前位置;
    调整模块,用于根据所述当前位置调整所述喷墨打印机打印头的移动距离。
  7. 根据权利要求6所述的喷墨打印装置,其中,所述调整模块还包括:
    获取单元,用于获取所述喷墨打印机打印头采用相同移动距离打印的第一有机发光器件薄膜的中心部分厚度和边缘部分厚度;
    比较单元,用于比较所述中心部分厚度与所述边缘部分厚度,得到比较结果;
    调整单元,用于根据所述比较结果,调整所述移动距离。
  8. 根据权利要求7所述的喷墨打印装置,其中,调整单元还用于:
    当所述中心部分厚度大于所述边缘部分厚度时,所述当前位置距离有机发光器件薄膜中心位置越远则调整所述移动距离越小;或者,
    当所述中心部分厚度小于所述边缘部分厚度时,所述当前位置距离有机发光器件薄膜中心位置越远则调整所述移动距离越大。
  9. 一种喷墨打印设备,其中,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述权利要求1-5中任一项所述的喷墨打印方法。
  10. 一种计算机可读存储介质,其上存储有计算机指令,其中,该指令被处理器执行时实现上述权利要求1-5中任一所述喷墨打印方法的步骤。
PCT/CN2020/078527 2020-01-09 2020-03-10 喷墨打印方法、装置、设备及计算机可读存储介质 WO2021138999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010021001.X 2020-01-09
CN202010021001.XA CN111137013B (zh) 2020-01-09 2020-01-09 喷墨打印方法、装置、设备及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021138999A1 true WO2021138999A1 (zh) 2021-07-15

Family

ID=70524304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078527 WO2021138999A1 (zh) 2020-01-09 2020-03-10 喷墨打印方法、装置、设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111137013B (zh)
WO (1) WO2021138999A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115366547B (zh) * 2021-08-19 2023-12-01 广东聚华印刷显示技术有限公司 补偿溶剂体积确定方法、喷墨打印控制方法及系统
CN114005946B (zh) * 2021-09-06 2024-01-19 上海和辉光电股份有限公司 一种有机膜层结构及其制备方法
CN114237527B (zh) * 2021-12-21 2022-06-24 北京博示电子科技有限责任公司 一种打印方法、装置、电子设备及计算机可读存储介质
CN114073874B (zh) * 2022-01-19 2022-04-08 赛灵药业科技集团股份有限公司北京分公司 一种基于恒古骨伤愈合剂的硅藻土过滤方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130004669A1 (en) * 2010-03-03 2013-01-03 Hiroshi Mataki Pattern transfer method and apparatus
CN107967126A (zh) * 2017-06-13 2018-04-27 广东聚华印刷显示技术有限公司 打印头自动补正方法、装置、存储介质及其计算机设备
CN108346679A (zh) * 2017-08-18 2018-07-31 广东聚华印刷显示技术有限公司 印刷显示器件的制备方法
CN108807670A (zh) * 2017-05-03 2018-11-13 京东方科技集团股份有限公司 一种薄膜的制备方法、阵列基板的制备方法及显示面板
CN110165055A (zh) * 2018-09-20 2019-08-23 合肥鑫晟光电科技有限公司 有机薄膜图案的制作方法及有机薄膜图案、阵列基板及显示装置
CN110355019A (zh) * 2018-04-09 2019-10-22 细美事有限公司 利用喷墨头的药液供应方法
JP2019217669A (ja) * 2018-06-19 2019-12-26 パナソニックIpマネジメント株式会社 印刷方法および印刷装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107379804B (zh) * 2017-07-31 2023-01-06 华南理工大学 一种大面积高均匀性薄膜喷墨打印方法及打印系统
CN207825736U (zh) * 2017-12-05 2018-09-07 华南理工大学 一种点状图形喷墨打印系统
CN110423516B (zh) * 2018-09-04 2022-04-19 广东聚华印刷显示技术有限公司 墨水及其制备方法和气敏传感器薄膜
CN109830513B (zh) * 2019-01-30 2021-03-16 合肥京东方光电科技有限公司 一种阵列基板及其制备方法和显示面板
CN109920825B (zh) * 2019-03-14 2022-04-12 京东方科技集团股份有限公司 像素界定结构及其制作方法、显示面板及显示装置
CN110421984B (zh) * 2019-08-17 2020-05-19 深圳市汉森软件有限公司 往复式扫描打印控制方法、装置、设备及存储介质
CN110614863B (zh) * 2019-09-06 2022-05-24 华南理工大学 一种实现喷墨打印均匀图案阵列的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130004669A1 (en) * 2010-03-03 2013-01-03 Hiroshi Mataki Pattern transfer method and apparatus
CN108807670A (zh) * 2017-05-03 2018-11-13 京东方科技集团股份有限公司 一种薄膜的制备方法、阵列基板的制备方法及显示面板
CN107967126A (zh) * 2017-06-13 2018-04-27 广东聚华印刷显示技术有限公司 打印头自动补正方法、装置、存储介质及其计算机设备
CN108346679A (zh) * 2017-08-18 2018-07-31 广东聚华印刷显示技术有限公司 印刷显示器件的制备方法
CN110355019A (zh) * 2018-04-09 2019-10-22 细美事有限公司 利用喷墨头的药液供应方法
JP2019217669A (ja) * 2018-06-19 2019-12-26 パナソニックIpマネジメント株式会社 印刷方法および印刷装置
CN110165055A (zh) * 2018-09-20 2019-08-23 合肥鑫晟光电科技有限公司 有机薄膜图案的制作方法及有机薄膜图案、阵列基板及显示装置

Also Published As

Publication number Publication date
CN111137013B (zh) 2020-12-25
CN111137013A (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2021138999A1 (zh) 喷墨打印方法、装置、设备及计算机可读存储介质
CN104260554B (zh) 喷墨打印方法及设备、显示基板的制作方法
US20060292291A1 (en) System and methods for inkjet printing for flat panel displays
CN105774279A (zh) 一种喷墨打印方法及oled显示装置的制作方法
US10566397B2 (en) Ink jet printing first and second materials to form a pixel defining layer having groove
WO2021031414A1 (zh) 显示面板的制备方法及其功能层的制备方法
KR101174878B1 (ko) 인쇄 방법 및 인쇄 장치
US20220392967A1 (en) Display substrate, fabrication method therefor, and display apparatus
CN104317110B (zh) 一种转印版
CN108010946A (zh) 一种像素界定层、阵列基板及显示装置
US11037998B2 (en) Pixel defining layer, pixel structure, display panel and display device
CN110421988B (zh) 喷墨控制方法和系统、喷墨打印设备
CN107093681A (zh) 一种像素界定层制备方法、像素界定层及显示面板
CN110459690A (zh) 显示基板及其制备方法、显示装置、喷墨打印的方法
CN111730988B (zh) 喷墨打印装置及方法
CN109148533A (zh) 一种有机发光二极管显示器
CN109119444A (zh) 一种显示基板及其制造方法
CN111146255B (zh) 显示面板、显示面板的制备方法和显示装置
CN108428808A (zh) 有机电致发光基板的制作方法
Funamoto et al. 27.5: Late News Paper: A 130‐ppi, Full‐Color Polymer OLED Display Fabricated Using an Ink‐jet Process
JP6464577B2 (ja) 有機elディスプレイパネルの製造方法および製造装置
CN107068916A (zh) 一种oled面板发光层的制作方法
CN207425922U (zh) 一种印刷oled显示屏的阳极基板结构
WO2021212586A1 (zh) 显示面板及显示面板的制备方法
CN111613649A (zh) 一种显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911531

Country of ref document: EP

Kind code of ref document: A1