WO2021138997A1 - 一种背光源驱动方法、背光源驱动电路及背光源驱动装置 - Google Patents

一种背光源驱动方法、背光源驱动电路及背光源驱动装置 Download PDF

Info

Publication number
WO2021138997A1
WO2021138997A1 PCT/CN2020/078352 CN2020078352W WO2021138997A1 WO 2021138997 A1 WO2021138997 A1 WO 2021138997A1 CN 2020078352 W CN2020078352 W CN 2020078352W WO 2021138997 A1 WO2021138997 A1 WO 2021138997A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
driving
backlight
backlight source
Prior art date
Application number
PCT/CN2020/078352
Other languages
English (en)
French (fr)
Inventor
唐时炯
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/649,666 priority Critical patent/US11017732B1/en
Publication of WO2021138997A1 publication Critical patent/WO2021138997A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness

Definitions

  • the present invention relates to the technical field of backlight driving. More specifically, the present invention relates to a backlight driving method, a backlight driving circuit and a backlight driving device.
  • the conventional driving scheme for mini LEDs (mini LEDs) used as backlights is to form a driving circuit based on each independent device.
  • the specific driving method is to control the working state of each driving circuit in the row driving and column driving modes, using thin film transistors.
  • the characteristics of (TFT, Thin Film Transistor) drive the mini light-emitting diodes on the glass substrate, thereby realizing the brightness control of the mini light-emitting diodes, as shown in Figure 3 of the accompanying drawings in the specification.
  • the embodiments of the present invention provide a backlight source driving method, a backlight source driving circuit and a backlight source driving device, which solve the backlight source caused by excessive conventional driving lines from the aspects of the backlight source driving strategy and the structure of the backlight source driving module.
  • the driver board takes up too much space, the backlight driving strategy is too complex, and the reliability is poor, so as to solve the existing backlight driving schemes that the driving strategy is too complicated and the driving circuit takes up too much space.
  • the cost of the backlight driving scheme is excessive. High question,
  • the embodiment of the present invention provides a backlight driving method, which includes a first driving signal processing step, a second driving signal processing step, and a backlight driving step; wherein,
  • the first driving signal processing step includes:
  • Step 10 Decode the first driving signal into a first TTL level signal
  • Step 11 Adjust the first TTL level signal to a first synchronization signal by registering the first TTL level signal
  • Step 12 Convert the first synchronization signal into a first control signal by performing level conversion processing on the first synchronization signal
  • the second driving signal processing step includes:
  • Step 20 Decode the second drive signal into a second TTL level signal
  • Step 21 Adjust the second TTL level signal to a second synchronization signal by registering the second TTL level signal
  • Step 22 Convert the second synchronization signal into a second control signal by performing level conversion processing on the second synchronization signal
  • Step 23 Convert the second control signal into a third control signal by performing digital-to-analog conversion processing on the second control signal;
  • the backlight driving step includes: driving the backlight by using the first control signal and the third control signal.
  • the method further includes the step of acquiring the first driving signal and the second driving signal through a low-voltage differential signal interface before processing the first driving signal and the second driving signal.
  • the backlight source is driven by using the first control signal and the third control signal in a subfield control manner.
  • the first control signal is used as the row driving signal of the active matrix of the backlight source
  • the third control signal is used as the row driving signal of the active matrix of the backlight source.
  • the embodiment of the present invention also provides a backlight source drive circuit, which includes one or at least two spliced backlight drive modules, the backlight drive module includes a first processing module, a second processing module, and a drive control module ;
  • the first processing module includes a first signal decoding module, a first register module and a first conversion module
  • the second processing module includes a second signal decoding module, a second register module, a second conversion module and a third conversion Module
  • the first signal decoding module is configured to decode the first drive signal into a first TTL level signal
  • the first registration module is configured to adjust the first TTL level signal to a first synchronization signal by registering the first TTL level signal;
  • the first conversion module is configured to convert the first synchronization signal into a first control signal by performing level conversion processing on the first synchronization signal;
  • the second signal decoding module is configured to decode the second drive signal into a second TTL level signal
  • the second registration module is configured to adjust the second TTL level signal to a second synchronization signal by registering the second TTL level signal;
  • the second conversion module is configured to convert the second synchronization signal into a second control signal by performing level conversion processing on the second synchronization signal;
  • the third conversion module is configured to convert the second control signal into a third control signal by performing digital-to-analog conversion processing on the second control signal;
  • the driving control module is configured to use the first control signal and the third control signal to drive the backlight source.
  • the backlight driving module further includes a low-voltage differential signal interface module, and the low-voltage differential signal interface module is configured to obtain the first driving signal and the second driving signal to be processed.
  • the backlight driving module is a backlight driving module formed by flip-chip film packaging.
  • the backlight source is a mini light emitting diode backlight source
  • the backlight driving module is bonded to the mini light emitting diode backlight source through a flip chip film packaging method.
  • first register module and the second register module are both bidirectional shift registers.
  • An embodiment of the present invention also provides a backlight source driving device, which includes any of the above-mentioned backlight source driving circuits.
  • the embodiment of the present invention innovatively optimizes the backlight driving strategy, and the data stream decoding part, the shift register part, the level conversion part and other functional units are effectively processed through the flip-chip film packaging process. Integration, thereby avoiding the problem of a large number of independent components in the backlight driving device, greatly simplifying the backlight driving circuit, and thus greatly reducing the space occupied by the backlight driving board, making the backlight driving cost lower and reliable It is stronger, which completely solves many problems existing in the existing backlight source driving scheme.
  • the embodiments of the present invention are particularly suitable for mini light-emitting diodes (Mini LEDs) with excellent performance, and provide a better solution to the backlight driving problem of the mini light-emitting diodes. Therefore, the embodiments of the present invention are easy to promote and widely application.
  • FIG. 1 is a schematic flowchart of a backlight driving method.
  • FIG. 2 is a schematic diagram of the structure of the backlight driving module.
  • FIG. 3 is a schematic diagram of the structure and composition of a conventional backlight driving module.
  • FIG. 1 is a schematic flowchart of a backlight source driving method. As shown in FIG. 1, this embodiment specifically discloses a backlight source driving method. This embodiment can be understood as a backlight module driving method for realizing effective driving and control of light-emitting diodes (especially mini light-emitting diodes).
  • the backlight driving method includes a first driving signal processing step, a second driving signal processing step, and a backlight driving step.
  • the data provided by the front end (such as the device processor or the control controller) is obtained through the low-voltage differential signal interface, that is, this embodiment uses the low-voltage
  • the differential signal interface obtains the first driving signal and the second driving signal of the data.
  • the first driving signal is generally a scan (SCAN) control signal
  • the scan control signal specifically includes CPV (Clock Pulse Vertical, the vertical movement of the gate) signal, DIO1 (gate enable pulse) signal and OE (Output Enable, output control of the gate) signal, etc.
  • the second control signal can be a data (DATA) control signal
  • the data control signal includes STB1 (strobe, strobe) signal and DIO2 (gate start pulse) signal, etc.
  • the first driving signal processing step includes:
  • Step 10 First, this embodiment decodes the first driving signal into a first TTL (Transistor Transistor Logic, transistor-transistor logic) level signal, so that the signal can be processed by a subsequent functional module (such as a register module).
  • TTL Transistor Transistor Logic, transistor-transistor logic
  • Step 11 Secondly, the first TTL level signal is adjusted to the first synchronization signal by registering the first TTL level signal. In this embodiment, the first TTL level signal can be shifted and registered.
  • the first synchronization signal is converted into a first control signal by performing level conversion processing on the first synchronization signal.
  • the first control signal can be a digital control signal, which can be used to control whether the corresponding mini light-emitting diode is turned on , That is, control to turn on or off the corresponding mini light-emitting diode.
  • the level signal VGH, Driver Output High
  • TFT turn-off level signal VGL, Driver Output Low
  • the second driving signal processing step can be executed at the same time as or different from the first driving signal processing step, and the specific execution strategy can be selected reasonably and wisely according to the needs of the actual display device and the real-time performance.
  • the second driving signal processing step includes:
  • Step 20 Decode the second driving signal into a second TTL (Transistor Transistor Logic, transistor-transistor logic) level signal, so that the signal can be processed by a subsequent functional module (such as a register module).
  • TTL Transistor Transistor Logic, transistor-transistor logic
  • Step 21 Adjust the second TTL level signal to a second synchronization signal by registering the second TTL level signal.
  • the second TTL level signal can be shifted and registered.
  • Step 22 Convert the second synchronization signal into a second control signal by performing level conversion processing on the second synchronization signal.
  • Step 23 Convert the second control signal into a third control signal by performing digital-to-analog conversion processing on the second control signal, that is, the third control signal is an analog control signal, which can be controlled indirectly or directly according to the specific value of the analog quantity Corresponding to the brightness of the mini LED.
  • the backlight source driving step includes: this embodiment uses the first control signal and the third control signal to drive the backlight source; specifically, as shown in FIG. 1, the scanning signals 1 ⁇ N are used to control the switches of each mini light-emitting diode, and the data signal 1 ⁇ M is used to control the brightness of each mini light-emitting diode.
  • the embodiment of the present invention can better realize the driving of the backlight module Function to achieve reliable control of the display device and bring an excellent experience to the user who uses the display device.
  • the embodiment of the present invention also applies sub-field control technology.
  • the backlight source driving step the backlight source is driven by the first control signal and the third control signal and through the sub-field control method.
  • the specific execution procedure of the subfield control is selected according to requirements, and the details are not described in the embodiment of the present invention.
  • the first control signal can be used as the active matrix (Active-matrix) of the backlight.
  • the third control signal can be used as a column drive signal of the active matrix (Active-matrix, referred to as AM) of the backlight source.
  • each frame of data often contains multiple subfields. Take 8 subfields and a refresh frequency of 120Hz as an example.
  • the thin film transistor at the corresponding point When the row switch of the thin film transistor (TFT, Thin Film Transistor) at the corresponding point is turned on and the data is ready , The thin film transistor at the corresponding point will be charged or discharged.
  • Each subfield corresponds to a different length of time, and the gate voltage of the thin film transistor corresponds to the current of the mini LED.
  • the change in the gate voltage of the thin film transistor causes the current of the mini LED to change.
  • the current change of the mini light-emitting diode controls the brightness change of the mini light-emitting diode.
  • the embodiments of the present invention are suitable for mini LEDs (Mini LEDs) with outstanding characteristics such as light weight, high brightness, long life, low power consumption, self-luminescence, small size, fast response speed, and stronger controllability. Therefore, the embodiments of the present invention have very large market application prospects.
  • first”, “second”, “third”, etc. are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first”, “second”, and “third” may explicitly or implicitly include one or more features.
  • "a plurality of” means two or more than two, unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense.
  • it may be a fixed connection or an optional Disassembled connection, or integrated; it can be mechanical connection or electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction relationship between two components, unless otherwise There are clear limits.
  • the specific meanings of the above-mentioned terms in the embodiments of the present invention can be understood according to specific situations.
  • the word "exemplary” is used to mean “serving as an example, illustration, or illustration.” Any embodiment described as “exemplary” in the embodiments of the present invention is not necessarily construed as being more preferable or advantageous than other embodiments.
  • the embodiments of the present invention list details for the purpose of explanation. It should be understood that those of ordinary skill in the art may realize that the embodiments of the present invention can be implemented even without using these specific details. In other examples, well-known structures and processes will not be described in detail, so as to avoid unnecessary details to obscure the description of the embodiments of the present invention. Therefore, the embodiments of the present invention are not intended to be limited to the illustrated embodiments, but should be consistent with the widest scope that conforms to the principles and features disclosed in the embodiments of the present invention.
  • FIG. 1 is a schematic flowchart of a backlight source driving method. As shown in FIG. 1, this embodiment specifically discloses a backlight source driving method. This embodiment can be understood as a backlight module driving method for realizing effective driving and control of light-emitting diodes (especially mini light-emitting diodes).
  • the backlight driving method includes a first driving signal processing step, a second driving signal processing step, and a backlight driving step.
  • the data provided by the front end (such as the device processor or the control controller) is obtained through the low-voltage differential signal interface, that is, this embodiment uses the low-voltage
  • the differential signal interface obtains the first driving signal and the second driving signal of the data.
  • the first driving signal is generally a scan (SCAN) control signal
  • the scan control signal specifically includes CPV (Clock Pulse Vertical, the vertical movement of the gate) signal, DIO1 (gate enable pulse) signal and OE (Output Enable, output control of the gate) signal, etc.
  • the second control signal can be a data (DATA) control signal
  • the data control signal includes STB1 (strobe, strobe) signal and DIO2 (gate start pulse) signal, etc.
  • the first driving signal processing step includes:
  • Step 10 First, this embodiment decodes the first driving signal into a first TTL (Transistor Transistor Logic, transistor-transistor logic) level signal, so that the signal can be processed by a subsequent functional module (such as a register module).
  • TTL Transistor Transistor Logic, transistor-transistor logic
  • Step 11 Secondly, the first TTL level signal is adjusted to the first synchronization signal by registering the first TTL level signal. In this embodiment, the first TTL level signal can be shifted and registered.
  • the first synchronization signal is converted into a first control signal by performing level conversion processing on the first synchronization signal.
  • the first control signal can be a digital control signal, which can be used to control whether the corresponding mini light-emitting diode is turned on , That is, control to turn on or off the corresponding mini light-emitting diode.
  • the level signal VGH, Driver Output High
  • TFT turn-off level signal VGL, Driver Output Low
  • the second driving signal processing step can be executed at the same time as or different from the first driving signal processing step, and the specific execution strategy can be selected reasonably and wisely according to the needs of the actual display device and the real-time performance.
  • the second driving signal processing step includes:
  • Step 20 Decode the second driving signal into a second TTL (Transistor Transistor Logic, transistor-transistor logic) level signal, so that the signal can be processed by a subsequent functional module (such as a register module).
  • TTL Transistor Transistor Logic, transistor-transistor logic
  • Step 21 Adjust the second TTL level signal to a second synchronization signal by registering the second TTL level signal.
  • the second TTL level signal can be shifted and registered.
  • Step 22 Convert the second synchronization signal into a second control signal by performing level conversion processing on the second synchronization signal.
  • Step 23 Convert the second control signal to a third control signal by performing digital-to-analog conversion processing on the second control signal, that is, the third control signal is an analog control signal, which can be controlled indirectly or directly according to the specific value of the analog quantity Corresponding to the brightness of the mini LED.
  • the backlight source driving step includes: this embodiment uses the first control signal and the third control signal to drive the backlight source; specifically, as shown in FIG. 1, the scanning signals 1 ⁇ N are used to control the switches of each mini light-emitting diode, and the data signal 1 ⁇ M is used to control the brightness of each mini light-emitting diode.
  • the embodiment of the present invention can better realize the driving of the backlight module Function to achieve reliable control of the display device and bring an excellent experience to the user who uses the display device.
  • the embodiment of the present invention also applies sub-field control technology.
  • the backlight source driving step the backlight source is driven by the first control signal and the third control signal and through the sub-field control method.
  • the specific execution procedure of the subfield control is selected according to requirements, and the details are not described in the embodiment of the present invention.
  • the first control signal can be used as the active matrix (Active-matrix) of the backlight.
  • the third control signal can be used as a column drive signal of the active matrix (Active-matrix, referred to as AM) of the backlight source.
  • each frame of data often contains multiple subfields. Take 8 subfields and a refresh frequency of 120Hz as an example.
  • the thin film transistor at the corresponding point When the row switch of the thin film transistor (TFT, Thin Film Transistor) at the corresponding point is turned on and the data is ready , The thin film transistor at the corresponding point will be charged or discharged.
  • Each subfield corresponds to a different length of time, and the gate voltage of the thin film transistor corresponds to the current of the mini LED.
  • the change in the gate voltage of the thin film transistor causes the current of the mini LED to change.
  • the current change of the mini light-emitting diode controls the brightness change of the mini light-emitting diode.
  • the embodiments of the present invention are suitable for mini LEDs (Mini LEDs) with outstanding characteristics such as light weight, high brightness, long life, low power consumption, self-luminescence, small size, fast response speed, and stronger controllability. Therefore, the embodiments of the present invention have very large market application prospects.
  • this embodiment specifically provides a backlight source driving circuit that can implement the backlight source driving method in the first embodiment.
  • This embodiment is equivalent to providing one or more subfield control devices.
  • Source matrix Active-matrix, abbreviated as AM
  • miniLED mini LED
  • the above-mentioned drive chip is specifically an IC chip (ie integrated circuit chip, full name Integrated Circuit Chip)
  • the backlight drive circuit includes one or at least two spliced backlight drive modules, and the spliced adjacent backlight drive modules can be connected through the interface shown in the figure, the interface 1 and Interface 2 is used for data transmission and power supply.
  • the backlight drive module integrates independent devices on the basis of the functions of the traditional solution. Please refer to Figure 2 in conjunction with Figure 1.
  • Figure 2 is the backlight drive module. Schematic diagram of the structural composition. As long as the interface 1 of one connecting board is connected to the interface 2 of the other connecting board, multiple backlight drive modules can be spliced in order along the direction that has been designed, such as left and right or up and down; the backlight drive module It includes a first processing module, a second processing module, and a drive control module; specifically, the first processing module includes a first signal decoding module, a first registering module, and a first conversion module, a first signal decoding module, a first registering module, and The first conversion module can be connected in sequence, the second processing module includes a second signal decoding module, a second register module, a second conversion module, and a third conversion module, the second signal decoding module, the second register module, the second conversion module, and The third conversion module can be connected in sequence; it should be understood that the above-menti
  • Figure 3 is a schematic diagram of the structural composition of a traditional backlight drive module. Compared with the multiple scattered and large space-consuming backlight drive devices in Figure 3, this embodiment can provide a brand new technical solution.
  • the data stream decoding part, the shift register part, and the level conversion part are effectively integrated through the flip-chip film packaging process, thereby avoiding a large number of independent units in the backlight driving device.
  • the problem of the device greatly simplifies the backlight drive circuit, which can greatly reduce the space occupied by the backlight drive board, so that the backlight drive cost is lower, the reliability is stronger, and the application range is wider, so as to completely solve the existing backlight
  • Many problems in the source drive scheme are described in detail as follows.
  • the first signal decoding module is set to decode the first drive signal into the first TTL (full name Transistor Transistor Logic (transistor-transistor logic) level signal, and then send the first TTL level signal to the first register module.
  • TTL full name Transistor Transistor Logic
  • the first registration module is configured to adjust the first TTL level signal to a first synchronization signal by registering the first TTL level signal, and then send the first synchronization signal to the first conversion module.
  • the above-mentioned first register module is a bidirectional shift register.
  • the first conversion module is configured to convert the first synchronization signal into a first control signal by performing level conversion processing on the first synchronization signal.
  • the level signal VGH, Driver Output High
  • VGL, Driver Output via TFT Low
  • the second signal decoding module is set to decode the second drive signal into a second TTL (full name Transistor Transistor Logic (transistor-transistor logic) level signal, and then send the second TTL level signal to the second register module.
  • TTL full name Transistor Transistor Logic
  • the second registration module is configured to adjust the second TTL level signal to a second synchronization signal by registering the second TTL level signal, and then send the second synchronization signal to the second conversion module.
  • the above-mentioned second register module is a bidirectional shift register.
  • the second conversion module is configured to convert the second synchronization signal into a second control signal by performing level conversion processing on the second synchronization signal, and after the conversion is completed, send the second control signal to the third conversion module .
  • the third conversion module is configured to convert the second control signal into a third control signal by performing digital-to-analog conversion processing on the second control signal.
  • data can be adjusted.
  • the output voltage amplitude that is, the voltage amplitude of the third control signal is adjusted, so that the mini LED current corresponding to the voltage amplitude can be changed, so that more brightness value adjustments can be achieved.
  • the driving control module is configured to use the first control signal and the third control signal to drive the backlight source.
  • the scan signals 1 ⁇ N are used to control the switches of each mini LED
  • the data signals 1 ⁇ M are used to control the brightness of each mini LED.
  • the backlight drive module also includes a low-voltage differential signal interface module.
  • the low-voltage differential signal interface module of the embodiment of the present invention is a miniLVDS (mini low-voltage differential signal interface) integrated on the screen drive board (TCON), which is set to obtain The first driving signal and the second driving signal to be processed, and the acquired first driving signal and the second driving signal are used as the data source of the subsequent first processing module, second processing module, and driving control module.
  • miniLVDS mini low-voltage differential signal interface
  • the backlight driving module of the present embodiment adopts a chip on film (COF, which is called Chip On Flex or Chip On Flex).
  • COF chip On Flex
  • On Film the backlight drive module formed by the packaging method.
  • This packaging method combines the various functional modules (including the first signal decoding module, the first register module, the first conversion module, the second signal decoding module, the second register module, and the second signal decoding module).
  • the conversion module and the third conversion module) are integrated together, which greatly saves the space of the backlight source driving module, and the cost of this method is lower and does not increase the cost of bonding (bonding).
  • the backlight source is a mini light emitting diode (miniLED) backlight source
  • the backlight driving module adopts a chip on film (COF), which is called Chip On Flex or Chip On Flex. On Film) packaging is bonded to a mini LED (miniLED) backlight
  • at least one backlight driving module is bonded to an Active-matrix (AM) mini LED (miniLED) On the glass substrate to realize the driving of the mini light-emitting diodes of the backlight module.
  • COF chip on film
  • mini LED miniLED
  • at least one backlight driving module is bonded to an Active-matrix (AM) mini LED (miniLED) On the glass substrate to realize the driving of the mini light-emitting diodes of the backlight module.
  • AM Active-matrix
  • This embodiment is based on the same inventive concept as the second embodiment described above, and specifically provides a backlight source driving device that includes any backlight source driving circuit provided in the second embodiment above.
  • the backlight driving device can be used for the display screens of various terminals, such as mobile phones, tablet computers, notebook computers, desktop computers, smart watches, smart bracelets and other terminals with display screens.
  • the present invention solves the problems of excessively large backlight source driving board space, too complicated backlight source driving strategy, and poor reliability caused by excessive conventional driving lines from the backlight source driving strategy and the structure of the backlight source driving module. It greatly simplifies the backlight drive circuit, which can greatly reduce the space occupied by the backlight drive board, make the backlight drive lower and more reliable, and completely solve many problems existing in the existing backlight drive solutions. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Abstract

一种背光源驱动方法、背光源驱动电路及背光源驱动装置,驱动方法包括第一驱动信号处理步骤、第二驱动信号处理步骤及背光源驱动步骤;驱动电路包括背光驱动模组,背光驱动模组包括第一处理模块、第二处理模块及驱动控制模块,第一处理模块包括第一信号解码模块、第一寄存模块及第一转换模块,第二处理模块包括第二信号解码模块、第二寄存模块、第二转换模块及第三转换模块;驱动装置包括上述电路。优化了背光源驱动策略,极大地简化了背光源驱动线路,进而能够极大地降低背光源驱动板占用的空间,使背光源驱动成本更低、可靠性更强,彻底地解决了现有背光源驱动方案存在的诸多问题。

Description

一种背光源驱动方法、背光源驱动电路及背光源驱动装置 技术领域
本发明涉及背光驱动技术领域,更为具体来说,本发明为一种背光源驱动方法、背光源驱动电路及背光源驱动装置。
背景技术
作为背光源的迷你发光二极管(miniLED)的常规驱动方案是:基于各独立的器件构成驱动线路,具体驱动方法为在行驱动和列驱动的方式下分别控制各个驱动线路的工作状态,利用薄膜晶体管(TFT,Thin Film Transistor)的特性驱动玻璃基板上的迷你发光二极管,从而实现了对迷你发光二极管的亮度控制,如说明书附图的图3所示。
但是,常规的背光源驱动方案中的驱动线路往往会随着迷你发光二极管的数量和密度的增加而明显地增多,过多的驱动线路导致驱动策略变得过于复杂,诸多的驱动线路中必然包含大量的独立器件,大量的独立器件导致驱动板占用更多的空间,更多的空间占用和更复杂的驱动策略导致了背光源最终的驱动成本非常高。
因此,如何优化背光源驱动策略、简化背光源驱动线路,进而有效地降低背光源驱动的投入成本,成为了本领域技术人员亟待解决的技术问题和始终研究的重点。
技术问题
本发明实施例提供了一种背光源驱动方法、背光源驱动电路及背光源驱动装置,从背光源驱动策略、背光源驱动模组的结构两方面解决了常规的驱动线路过多导致的背光源驱动板空间占用过大、背光源驱动策略过于复杂及可靠性较差等问题,以解决现有背光源驱动方案存在的驱动策略过于复杂、驱动线路占用空间过大导致的背光源驱动方案成本过高的问题,
技术解决方案
为此,本发明实施例提供了如下技术方案:
本发明实施例提供了一种背光源驱动方法,该方法包括第一驱动信号处理步骤、第二驱动信号处理步骤及背光源驱动步骤;其中,
第一驱动信号处理步骤包括:
步骤10,将第一驱动信号解码为第一TTL电平信号;
步骤11,通过对所述第一TTL电平信号进行寄存处理的方式将所述第一TTL电平信号调整为第一同步信号;
步骤12,通过对所述第一同步信号进行电平转换处理的方式将所述第一同步信号转换为第一控制信号;
第二驱动信号处理步骤包括:
步骤20,将第二驱动信号解码为第二TTL电平信号;
步骤21,通过对所述第二TTL电平信号进行寄存处理的方式将所述第二TTL电平信号调整为第二同步信号;
步骤22,通过对所述第二同步信号进行电平转换处理的方式将所述第二同步信号转换为第二控制信号;
步骤23,通过对所述第二控制信号进行数模转换处理的方式将所述第二控制信号转换为第三控制信号;
背光源驱动步骤包括:利用所述第一控制信号和所述第三控制信号对背光源进行驱动。
进一步地,所述方法还包括如下步骤,在对所述第一驱动信号和所述第二驱动信号进行处理前,通过低压差分信号接口获取所述第一驱动信号和所述第二驱动信号。
进一步地,在所述背光源驱动步骤中,利用所述第一控制信号和所述第三控制信号且通过子场控制方式对背光源进行驱动。
进一步地,在通过子场控制方式对背光源进行驱动时,将所述第一控制信号作为背光源的有源矩阵的行驱动信号,将所述第三控制信号作为背光源的有源矩阵的列驱动信号。
本发明实施例还提供了一种背光源驱动电路,该电路包括一个或至少两个相拼接的背光驱动模组,所述背光驱动模组包括第一处理模块、第二处理模块及驱动控制模块;所述第一处理模块包括第一信号解码模块、第一寄存模块及第一转换模块,所述第二处理模块包括第二信号解码模块、第二寄存模块、第二转换模块及第三转换模块;
所述第一信号解码模块,设置为将第一驱动信号解码为第一TTL电平信号;
所述第一寄存模块,设置为通过对所述第一TTL电平信号进行寄存处理的方式将所述第一TTL电平信号调整为第一同步信号;
所述第一转换模块,设置为通过对所述第一同步信号进行电平转换处理的方式将所述第一同步信号转换为第一控制信号;
所述第二信号解码模块,设置为将第二驱动信号解码为第二TTL电平信号;
所述第二寄存模块,设置为通过对所述第二TTL电平信号进行寄存处理的方式将所述第二TTL电平信号调整为第二同步信号;
所述第二转换模块,设置为通过对所述第二同步信号进行电平转换处理的方式将所述第二同步信号转换为第二控制信号;
所述第三转换模块,设置为通过对所述第二控制信号进行数模转换处理的方式将所述第二控制信号转换为第三控制信号;
所述驱动控制模块,设置为利用所述第一控制信号和所述第三控制信号对背光源进行驱动。
进一步地,所述背光驱动模组还包括低压差分信号接口模块,所述低压差分信号接口模块设置为获取待处理的所述第一驱动信号和所述第二驱动信号。
进一步地,所述背光驱动模组为通过覆晶薄膜封装方式形成的背光驱动模组。
进一步地,所述背光源为迷你发光二极管背光源,所述背光驱动模组通过覆晶薄膜封装方式键合在所述迷你发光二极管背光源上。
进一步地,所述第一寄存模块和所述第二寄存模块均为双向移位寄存器。
本发明实施例还提供了一种背光源驱动装置,所述背光源驱动装置包括上述任一种背光源驱动电路。
有益效果
本发明的有益效果为:本发明实施例创新地对背光源驱动策略进行了优化,并且通过覆晶薄膜封装工艺将数据流解码部分、移位寄存器部分及电平转换部分等功能单元进行有效地集成,从而避免了背光源驱动装置中存在大量的独立器件的问题,极大地简化了背光源驱动线路,进而能够极大地降低背光源驱动板占用的空间,使背光源驱动成本更低、可靠性更强,从而彻底地解决了现有背光源驱动方案存在的诸多问题。
经过大量的测试表明:本发明实施例特别适用于具有优良性能的迷你发光二极管(MiniLED),为迷你发光二极管的背光驱动问题提供了较好的解决方案,所以本发明实施例便于推广和广泛地应用。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对各个实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明实施例的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据本发明实施例下面具体描述中的这些附图获得其他的附图。
图1为背光源驱动方法的流程示意图。
图2为背光驱动模组的结构组成示意图。
图3为传统的背光驱动模组的结构组成示意图。
本发明的最佳实施方式
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
请参阅图1,图1为背光源驱动方法的流程示意图。如图1所示,本实施例具体公开了一种背光源驱动方法,本实施例可理解为背光模组驱动方法,用于实现对发光二极管(特别是迷你发光二极管)的有效驱动以及控制,该背光源驱动方法包括第一驱动信号处理步骤、第二驱动信号处理步骤以及背光源驱动步骤。
首先,本实施例在对第一驱动信号和第二驱动信号进行处理前,通过低压差分信号接口获取前端(比如设备处理器或控控制器)提供的数据(data),即本实施例通过低压差分信号接口获取数据第一驱动信号和第二驱动信号,更为具体来说,第一驱动信号一般为扫描(SCAN)控制信号,扫描控制信号具体包括CPV(Clock Pulse Vertical,栅的纵向移动)信号、DIO1(栅极启动脉冲)信号及OE(Output Enable,栅的输出控制)信号等等;第二控制信号可为数据(DATA)控制信号,数据控制信号包括STB1(strobe,选通)信号及DIO2(栅极启动脉冲)信号等。而对于第一驱动信号和第二驱动信号的具体处理过程,请参阅下述的说明和解释。
第一驱动信号处理步骤包括:
步骤10,首先,本实施例将第一驱动信号解码为第一TTL(全称Transistor Transistor Logic,晶体管-晶体管逻辑)电平信号,从而使该信号能够被后续功能模块(如寄存模块)处理。
步骤11,其次,通过对第一TTL电平信号进行寄存处理的方式将第一TTL电平信号调整为第一同步信号,本实施例可对第一TTL电平信号进行移位寄存处理。
步骤12,再次,通过对第一同步信号进行电平转换处理的方式将第一同步信号转换为第一控制信号,第一控制信号可为数字控制信号,可用于控制相应迷你发光二极管是否导通,即控制打开或关闭相应迷你发光二极管。需要指出的是,本实施例在电平转换处理过程中,能够通过TFT开启电平信号(VGH,Driver Output High)或TFT关闭电平信号(VGL,Driver Output Low)进行控制,从而完成对相应的迷你发光二极管进行通断控制。
应当理解的是,第二驱动信号处理步骤能够与第一驱动信号处理步骤同时或不同时执行,具体执行策略可根据实际显示设备的需要和实时性能进行合理而明智的选择。
第二驱动信号处理步骤包括:
步骤20,将第二驱动信号解码为第二TTL(全称Transistor Transistor Logic,晶体管-晶体管逻辑)电平信号,以使该信号能够被后续功能模块(如寄存模块)处理。
步骤21,通过对第二TTL电平信号进行寄存处理的方式将第二TTL电平信号调整为第二同步信号,本实施例能够对第二TTL电平信号进行移位寄存处理。
步骤22,通过对第二同步信号进行电平转换处理的方式将第二同步信号转换为第二控制信号。
步骤23,通过对第二控制信号进行数模转换处理的方式将第二控制信号转换为第三控制信号,即第三控制信号为模拟控制信号,可根据模拟量的具体值大小间接或直接控制相应迷你发光二极管的亮度。
背光源驱动步骤包括:本实施例利用第一控制信号和第三控制信号对背光源进行驱动;具体地,如图1所示,扫描信号1~N用于控制各迷你发光二极管开关,数据信号1~M用于控制各迷你发光二极管亮度,通过同时控制各迷你发光二极管是否导通以及对导通的迷你发光二极管亮度的精细控制,本发明实施例能够较好地实现对背光模组的驱动功能,实现对显示设备可靠的控制,为使用该显示设备的用户带来绝佳的使用体验。
作为较佳的技术方案,本发明实施例还将子场控制技术进行了应用,在背光源驱动步骤中,利用第一控制信号和第三控制信号且通过子场控制方式对背光源进行驱动,子场控制具体执行程序根据需求选择,本发明实施例不再赘述。
作为优化的技术方案,对于具体背光模组(即背光源),本实施例在通过子场控制方式对背光源进行驱动时,可将第一控制信号作为背光源的有源矩阵(Active-matrix,简称AM)的行驱动信号,可将第三控制信号作为背光源的有源矩阵(Active-matrix,简称AM)的列驱动信号。而且,具体实施显示屏驱动时,每帧数据往往包含多个子场,以8个子场、刷新频率120Hz为例,当相应点薄膜晶体管(TFT,Thin Film Transistor)的行开关打开并且数据已准备好,就会对相应点的薄膜晶体管进行充电或放电,每个子场对应的时间长度不同,而且薄膜晶体管栅极电压会对应迷你发光二极管电流,薄膜晶体管栅极电压变化导致迷你发光二极管电流变化,而迷你发光二极管电流变化控制该迷你发光二极管亮度变化。能够理解的是,本发明实施例适用于具有重量轻、亮度高、寿命长、功耗低、自发光、尺寸小、响应速度快以及可控性更强等显著特点的迷你发光二极管(MiniLED),所以本发明实施例具有非常大的市场应用前景。
本发明的实施方式
下面结合说明书附图对本发明各实施例提供的一种背光源驱动方法、背光源驱动电路及背光源驱动装置的技术方案进行清楚、完整地描述,显然地,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例的描述中,需理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,所以不能理解为对本发明实施例的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能将其理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或隐含地包括一个或者更多个特征。在本发明实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明实施例中的具体含义。
在本发明实施例中,“示例性”一词用来表示“用作例子、例证或说明”。本发明实施例中被描述为“示例性”的任何实施例不一定被解释为比其它实施例更优选或更具优势。为了使本领域任何技术人员能够实现和使用本发明实施例,给出了以下描述。在以下描述中,本发明实施例为了解释的目的而列出了细节。应当明白的是,本领域普通技术人员可以认识到,即使在不使用这些特定细节的情况下也可以实现本发明实施例。在其它的实例中,不会对公知的结构和过程进行详细阐述,以避免不必要的细节使本发明实施例的描述变得晦涩。因此,本发明实施例并非旨在限于所示的实施例,而是应与符合本发明实施例所公开的原理和特征的最广范围相一致。
实施例一:
请参阅图1,图1为背光源驱动方法的流程示意图。如图1所示,本实施例具体公开了一种背光源驱动方法,本实施例可理解为背光模组驱动方法,用于实现对发光二极管(特别是迷你发光二极管)的有效驱动以及控制,该背光源驱动方法包括第一驱动信号处理步骤、第二驱动信号处理步骤以及背光源驱动步骤。
首先,本实施例在对第一驱动信号和第二驱动信号进行处理前,通过低压差分信号接口获取前端(比如设备处理器或控控制器)提供的数据(data),即本实施例通过低压差分信号接口获取数据第一驱动信号和第二驱动信号,更为具体来说,第一驱动信号一般为扫描(SCAN)控制信号,扫描控制信号具体包括CPV(Clock Pulse Vertical,栅的纵向移动)信号、DIO1(栅极启动脉冲)信号及OE(Output Enable,栅的输出控制)信号等等;第二控制信号可为数据(DATA)控制信号,数据控制信号包括STB1(strobe,选通)信号及DIO2(栅极启动脉冲)信号等。而对于第一驱动信号和第二驱动信号的具体处理过程,请参阅下述的说明和解释。
第一驱动信号处理步骤包括:
步骤10,首先,本实施例将第一驱动信号解码为第一TTL(全称Transistor Transistor Logic,晶体管-晶体管逻辑)电平信号,从而使该信号能够被后续功能模块(如寄存模块)处理。
步骤11,其次,通过对第一TTL电平信号进行寄存处理的方式将第一TTL电平信号调整为第一同步信号,本实施例可对第一TTL电平信号进行移位寄存处理。
步骤12,再次,通过对第一同步信号进行电平转换处理的方式将第一同步信号转换为第一控制信号,第一控制信号可为数字控制信号,可用于控制相应迷你发光二极管是否导通,即控制打开或关闭相应迷你发光二极管。需要指出的是,本实施例在电平转换处理过程中,能够通过TFT开启电平信号(VGH,Driver Output High)或TFT关闭电平信号(VGL,Driver Output Low)进行控制,从而完成对相应的迷你发光二极管进行通断控制。
应当理解的是,第二驱动信号处理步骤能够与第一驱动信号处理步骤同时或不同时执行,具体执行策略可根据实际显示设备的需要和实时性能进行合理而明智的选择。
第二驱动信号处理步骤包括:
步骤20,将第二驱动信号解码为第二TTL(全称Transistor Transistor Logic,晶体管-晶体管逻辑)电平信号,以使该信号能够被后续功能模块(如寄存模块)处理。
步骤21,通过对第二TTL电平信号进行寄存处理的方式将第二TTL电平信号调整为第二同步信号,本实施例能够对第二TTL电平信号进行移位寄存处理。
步骤22,通过对第二同步信号进行电平转换处理的方式将第二同步信号转换为第二控制信号。
步骤23,通过对第二控制信号进行数模转换处理的方式将第二控制信号转换为第三控制信号,即第三控制信号为模拟控制信号,可根据模拟量的具体值大小间接或直接控制相应迷你发光二极管的亮度。
背光源驱动步骤包括:本实施例利用第一控制信号和第三控制信号对背光源进行驱动;具体地,如图1所示,扫描信号1~N用于控制各迷你发光二极管开关,数据信号1~M用于控制各迷你发光二极管亮度,通过同时控制各迷你发光二极管是否导通以及对导通的迷你发光二极管亮度的精细控制,本发明实施例能够较好地实现对背光模组的驱动功能,实现对显示设备可靠的控制,为使用该显示设备的用户带来绝佳的使用体验。
作为较佳的技术方案,本发明实施例还将子场控制技术进行了应用,在背光源驱动步骤中,利用第一控制信号和第三控制信号且通过子场控制方式对背光源进行驱动,子场控制具体执行程序根据需求选择,本发明实施例不再赘述。
作为优化的技术方案,对于具体背光模组(即背光源),本实施例在通过子场控制方式对背光源进行驱动时,可将第一控制信号作为背光源的有源矩阵(Active-matrix,简称AM)的行驱动信号,可将第三控制信号作为背光源的有源矩阵(Active-matrix,简称AM)的列驱动信号。而且,具体实施显示屏驱动时,每帧数据往往包含多个子场,以8个子场、刷新频率120Hz为例,当相应点薄膜晶体管(TFT,Thin Film Transistor)的行开关打开并且数据已准备好,就会对相应点的薄膜晶体管进行充电或放电,每个子场对应的时间长度不同,而且薄膜晶体管栅极电压会对应迷你发光二极管电流,薄膜晶体管栅极电压变化导致迷你发光二极管电流变化,而迷你发光二极管电流变化控制该迷你发光二极管亮度变化。能够理解的是,本发明实施例适用于具有重量轻、亮度高、寿命长、功耗低、自发光、尺寸小、响应速度快以及可控性更强等显著特点的迷你发光二极管(MiniLED),所以本发明实施例具有非常大的市场应用前景。
实施例二:
与实施例一基于相同的发明构思,本实施例具体提供了一种能够实现实施例一中的背光源驱动方法的背光源驱动电路,本实施例相当于提供了一块或多块子场控制有源矩阵(Active-matrix,简称AM)迷你发光二极管(miniLED)的驱动芯片,多块驱动芯片可通过拼接或集成的方式连接在一起,上述驱动芯片具体为IC芯片(即集成电路芯片,全称Integrated Circuit Chip),更为具体来说,该背光源驱动电路包括一个或者至少两个相拼接的背光驱动模组,相拼接的相邻背光驱动模组之间可通过图示接口连接,接口1和接口2用于数据传输和供电,该背光驱动模组在具有传统的方案的功能基础上对各独立器件进行了集成,请结合图1的同时再参阅图2,图2为背光驱动模组的结构组成示意图,只要将一块连接板的接口1与另一块连接板的接口2相连,即可以实现多个背光驱动模组沿左右或上下等已实现设计的方向顺次拼接;该背光驱动模组包括第一处理模块、第二处理模块及驱动控制模块;具体地,第一处理模块包括第一信号解码模块、第一寄存模块及第一转换模块,第一信号解码模块、第一寄存模块及第一转换模块可依次连接,第二处理模块包括第二信号解码模块、第二寄存模块、第二转换模块及第三转换模块,第二信号解码模块、第二寄存模块、第二转换模块及第三转换模块可以依次连接;应当理解的是,上述第一处理模块、第二处理模块及驱动控制模块以及各模块包含的子模块均集成在一块IC芯片(即集成电路芯片,全称Integrated Circuit Chip)上,图3为传统的背光驱动模组的结构组成示意图,与图3中的多条分散的、占用空间较大的背光源驱动装置相比,本实施例能够提供一种全新的技术方案,如图1、2所示,通过覆晶薄膜封装工艺将数据流解码部分、移位寄存器部分及电平转换部分等功能单元进行有效地集成,从而避免了背光源驱动装置中存在大量的独立器件的问题,极大地简化了背光源驱动线路,进而能够极大地降低背光源驱动板占用的空间,使背光源驱动成本更低、可靠性更强、适用范围更广,以彻底解决现有背光源驱动方案存在的诸多问题,具体说明如下。
第一信号解码模块,设置为将第一驱动信号解码为第一TTL(全称Transistor Transistor Logic,晶体管-晶体管逻辑)电平信号,然后将第一TTL电平信号送到第一寄存模块。
第一寄存模块,设置为通过对第一TTL电平信号进行寄存处理的方式将第一TTL电平信号调整为第一同步信号,再将第一同步信号送至第一转换模块。作为较佳的技术方案,上述的第一寄存模块为双向移位寄存器。
第一转换模块,设置为通过对第一同步信号进行电平转换处理的方式将第一同步信号转换为第一控制信号。本实施例在第一转换模块的工作过程中,即在第一转换模块的电平转换处理过程中,可以通过TFT开启电平信号(VGH,Driver Output High)对相应迷你发光二极管进行开启控制或通过TFT关闭电平信号(VGL,Driver Output Low)对相应迷你发光二极管进行关闭控制。
第二信号解码模块,设置为将第二驱动信号解码为第二TTL(全称Transistor Transistor Logic,晶体管-晶体管逻辑)电平信号,然后将第二TTL电平信号送到第二寄存模块。
第二寄存模块,设置为通过对第二TTL电平信号进行寄存处理的方式将第二TTL电平信号调整为第二同步信号,再将第二同步信号送至第二转换模块。作为较佳的技术方案,上述的第二寄存模块为双向移位寄存器。
第二转换模块,设置为通过对第二同步信号进行电平转换处理的方式将第二同步信号转换为第二控制信号,在转换完成后,再将该第二控制信号发送至第三转换模块。
第三转换模块,设置为通过对第二控制信号进行数模转换处理的方式将第二控制信号转换为第三控制信号,在对第二控制信号转换的过程中,可实现调整数据(data)输出电压幅度,即调整第三控制信号的电压幅度,从而能够改变对该电压幅度相对应的迷你发光二极管(miniLED)电流,从而能够达到更多的亮度值调整。
驱动控制模块,设置为利用第一控制信号和第三控制信号对背光源进行驱动。具体地,如图1所示,扫描信号1~N用于控制各迷你发光二极管开关,数据信号1~M用于控制各迷你发光二极管亮度,通过同时控制各迷你发光二极管是否导通以及对导通的迷你发光二极管亮度的精细控制,本发明实施例能够较好地实现对背光模组的驱动功能,以实现对显示设备极佳的控制,为使用该显示设备的用户带来绝佳的使用体验。
本实施例中,背光驱动模组还包括低压差分信号接口模块,本发明实施例的低压差分信号接口模块为集成在屏驱动板(TCON)上的miniLVDS(迷你低压差分信号接口),设置为获取待处理的第一驱动信号和第二驱动信号,并且将获取的第一驱动信号和第二驱动信号作为后续第一处理模块、第二处理模块和驱动控制模块的数据来源。
作为本发明实施例的核心改进点或创新点之一,本实施例的背光驱动模组为通过覆晶薄膜(COF,其全称为Chip On Flex或Chip On Film)封装方式形成的背光驱动模组,这种封装方式将各个功能模块(包括第一信号解码模块、第一寄存模块、第一转换模块、二信号解码模块、第二寄存模块、第二转换模块及第三转换模块)集成在一起,极大地节省了背光源驱动模组空间,而且该方式成本较低、不会额外增加键合(bonding)成本。
本实施例中,背光源为迷你发光二极管(miniLED)背光源,背光驱动模组通过覆晶薄膜(COF,其全称为Chip On Flex或Chip On Film)封装方式键合在迷你发光二极管(miniLED)背光源上;本实施例至少一个背光驱动模组键合(bonding)在有源矩阵(Active-matrix,简称AM)迷你发光二极管(miniLED)的玻璃基板上,从而实现对背光模组的迷你发光二极管的驱动。
实施例三:
本实施例与上述的实施例二基于相同的发明构思,其具体提供了一种背光源驱动装置,该背光源驱动装置包括上述实施例二中所提供的任一种背光源驱动电路。该背光源驱动装置可用于多种终端的显示屏,比如手机、平板电脑、笔记本电脑、台式电脑、智能手表、智能手环等具有显示屏的终端。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明实施例实质内容上所作的任何修改、等同替换和简单改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明从背光源驱动策略、背光源驱动模组的结构两方面解决了常规的驱动线路过多导致的背光源驱动板空间占用过大、背光源驱动策略过于复杂及可靠性较差等问题,极大地简化了背光源驱动线路,进而能够极大地降低背光源驱动板占用的空间,使背光源驱动成本更低、可靠性更强,从而彻底地解决了现有背光源驱动方案存在的诸多问题。

Claims (10)

  1. 一种背光源驱动方法,其中,该方法包括第一驱动信号处理步骤、第二驱动信号处理步骤及背光源驱动步骤;其中,
    第一驱动信号处理步骤包括:
    步骤10,将第一驱动信号解码为第一TTL电平信号;
    步骤11,通过对所述第一TTL电平信号进行寄存处理的方式将所述第一TTL电平信号调整为第一同步信号;
    步骤12,通过对所述第一同步信号进行电平转换处理的方式将所述第一同步信号转换为第一控制信号;
    第二驱动信号处理步骤包括:
    步骤20,将第二驱动信号解码为第二TTL电平信号;
    步骤21,通过对所述第二TTL电平信号进行寄存处理的方式将所述第二TTL电平信号调整为第二同步信号;
    步骤22,通过对所述第二同步信号进行电平转换处理的方式将所述第二同步信号转换为第二控制信号;
    步骤23,通过对所述第二控制信号进行数模转换处理的方式将所述第二控制信号转换为第三控制信号;
    背光源驱动步骤包括:利用所述第一控制信号和所述第三控制信号对背光源进行驱动。
  2. 根据权利要求1所述的背光源驱动方法,其中,所述方法还包括如下步骤,在对所述第一驱动信号和所述第二驱动信号进行处理前,通过低压差分信号接口获取所述第一驱动信号和所述第二驱动信号。
  3. 根据权利要求1或2所述的背光源驱动方法,其中,在所述背光源驱动步骤中,利用所述第一控制信号和所述第三控制信号且通过子场控制方式对背光源进行驱动。
  4. 根据权利要求3所述的背光源驱动方法,其中,在通过子场控制方式对背光源进行驱动时,将所述第一控制信号作为背光源的有源矩阵的行驱动信号,将所述第三控制信号作为背光源的有源矩阵的列驱动信号。
  5. 一种背光源驱动电路,其中,该电路包括一个或至少两个相拼接的背光驱动模组,所述背光驱动模组包括第一处理模块、第二处理模块及驱动控制模块;所述第一处理模块包括第一信号解码模块、第一寄存模块及第一转换模块,所述第二处理模块包括第二信号解码模块、第二寄存模块、第二转换模块及第三转换模块;
    所述第一信号解码模块,设置为将第一驱动信号解码为第一TTL电平信号;
    所述第一寄存模块,设置为通过对所述第一TTL电平信号进行寄存处理的方式将所述第一TTL电平信号调整为第一同步信号;
    所述第一转换模块,设置为通过对所述第一同步信号进行电平转换处理的方式将所述第一同步信号转换为第一控制信号;
    所述第二信号解码模块,设置为将第二驱动信号解码为第二TTL电平信号;
    所述第二寄存模块,设置为通过对所述第二TTL电平信号进行寄存处理的方式将所述第二TTL电平信号调整为第二同步信号;
    所述第二转换模块,设置为通过对所述第二同步信号进行电平转换处理的方式将所述第二同步信号转换为第二控制信号;
    所述第三转换模块,设置为通过对所述第二控制信号进行数模转换处理的方式将所述第二控制信号转换为第三控制信号;
    所述驱动控制模块,设置为利用所述第一控制信号和所述第三控制信号对背光源进行驱动。
  6. 根据权利要求5所述的背光源驱动电路,其中,所述背光驱动模组还包括低压差分信号接口模块,所述低压差分信号接口模块设置为获取待处理的所述第一驱动信号和所述第二驱动信号。
  7. 根据权利要求5或6所述的背光源驱动电路,其中,所述背光驱动模组为通过覆晶薄膜封装方式形成的背光驱动模组。
  8. 根据权利要求5所述的背光源驱动电路,其中,所述背光源为迷你发光二极管背光源,所述背光驱动模组通过覆晶薄膜封装方式键合在所述迷你发光二极管背光源上。
  9. 根据权利要求5所述的背光源驱动电路,其中,所述第一寄存模块和所述第二寄存模块均为双向移位寄存器。
  10. 一种背光源驱动装置,其中,该装置包括权利要求5中所述的背光源驱动电路。
     
PCT/CN2020/078352 2020-01-09 2020-03-09 一种背光源驱动方法、背光源驱动电路及背光源驱动装置 WO2021138997A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/649,666 US11017732B1 (en) 2020-01-09 2020-03-09 Backlight driving method, backlight driving circuit, and backlight driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010021101.2 2020-01-09
CN202010021101.2A CN111179816B (zh) 2020-01-09 2020-01-09 一种背光源驱动方法、背光源驱动电路及背光源驱动装置

Publications (1)

Publication Number Publication Date
WO2021138997A1 true WO2021138997A1 (zh) 2021-07-15

Family

ID=70656240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078352 WO2021138997A1 (zh) 2020-01-09 2020-03-09 一种背光源驱动方法、背光源驱动电路及背光源驱动装置

Country Status (2)

Country Link
CN (1) CN111179816B (zh)
WO (1) WO2021138997A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120075356A1 (en) * 2010-09-23 2012-03-29 Chia-Chun Liu Integrated backlight driving chip and led backlight device
CN104332140A (zh) * 2014-10-28 2015-02-04 深圳创维-Rgb电子有限公司 用于区域调光的背光驱动系统及区域调光方法
CN105761681A (zh) * 2014-12-18 2016-07-13 深圳Tcl数字技术有限公司 屏幕的窗口显示方法及装置
CN107633818A (zh) * 2016-07-18 2018-01-26 群创光电股份有限公司 背光驱动装置及包含其的显示器
CN108597458A (zh) * 2018-04-26 2018-09-28 深圳Tcl新技术有限公司 Local dimming背光驱动电路、装置及液晶显示设备
CN109192149A (zh) * 2018-10-31 2019-01-11 京东方科技集团股份有限公司 背光驱动装置及其驱动方法、背光模组及显示装置
CN110299113A (zh) * 2019-05-09 2019-10-01 京东方科技集团股份有限公司 一种背光驱动系统、背光驱动方法和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098055B (zh) * 2010-12-28 2014-05-21 上海磁浮交通发展有限公司 一种数据波特率自适应数模转换装置
CN102651205A (zh) * 2012-05-24 2012-08-29 上海大学 一种用于白光led直下式动态背光的控制方法
CN105304053B (zh) * 2015-11-25 2018-06-29 深圳市华星光电技术有限公司 时序控制芯片内起始信号控制方法、芯片及显示面板
CN109126917B (zh) * 2018-10-09 2020-04-10 京东方科技集团股份有限公司 微流控芯片及其驱动方法
CN209515173U (zh) * 2018-12-10 2019-10-18 西安诺瓦星云科技股份有限公司 显示控制卡及显示屏控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120075356A1 (en) * 2010-09-23 2012-03-29 Chia-Chun Liu Integrated backlight driving chip and led backlight device
CN104332140A (zh) * 2014-10-28 2015-02-04 深圳创维-Rgb电子有限公司 用于区域调光的背光驱动系统及区域调光方法
CN105761681A (zh) * 2014-12-18 2016-07-13 深圳Tcl数字技术有限公司 屏幕的窗口显示方法及装置
CN107633818A (zh) * 2016-07-18 2018-01-26 群创光电股份有限公司 背光驱动装置及包含其的显示器
CN108597458A (zh) * 2018-04-26 2018-09-28 深圳Tcl新技术有限公司 Local dimming背光驱动电路、装置及液晶显示设备
CN109192149A (zh) * 2018-10-31 2019-01-11 京东方科技集团股份有限公司 背光驱动装置及其驱动方法、背光模组及显示装置
CN110299113A (zh) * 2019-05-09 2019-10-01 京东方科技集团股份有限公司 一种背光驱动系统、背光驱动方法和显示装置

Also Published As

Publication number Publication date
CN111179816A (zh) 2020-05-19
CN111179816B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
US10692439B2 (en) OLED display panel and OLED display device
JP4982028B2 (ja) 液晶表示装置及びその駆動方法
WO2021082793A1 (zh) 显示面板及其驱动方法、显示装置
CN111243496B (zh) 一种像素电路及其驱动方法、显示装置
WO2020093424A1 (zh) 显示面板的驱动选择电路、显示面板及显示装置
CN201681587U (zh) 双面液晶显示设备
WO2021223268A1 (zh) 背光模组、显示面板及电子装置
CN109935195B (zh) 硅基oled产品
CN107564474A (zh) 一种触控面板及触摸屏
KR20070119953A (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
JP2006309246A (ja) 集積回路と、それを用いた平板表示装置
CN111599318B (zh) 显示装置及其驱动方法
US11978408B2 (en) Backlight unit, control method thereof, and liquid crystal display device
Wu et al. 41‐1: Invited Paper: Active matrix mini‐LED backlights for 1000PPI VR LCD
WO2023092749A1 (zh) 背光驱动电路及显示装置
US11017732B1 (en) Backlight driving method, backlight driving circuit, and backlight driving device
US11443689B1 (en) Light-emitting element control circuit, display panel and display device
US7123233B2 (en) Display device
CN208477893U (zh) 一种硅基驱动基板和oled显示器
US7358955B2 (en) Liquid crystal display for mobile phone
WO2021212565A1 (zh) 背光分区驱动模组、背光装置及显示装置
WO2021138997A1 (zh) 一种背光源驱动方法、背光源驱动电路及背光源驱动装置
WO2020206805A1 (zh) 一种显示面板及其驱动方法
WO2021253397A1 (zh) 显示模组和显示装置
JP2002162948A (ja) 表示装置及びその駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912162

Country of ref document: EP

Kind code of ref document: A1