WO2021138811A1 - 发射功率调整的方法、装置、终端、基站及存储介质 - Google Patents

发射功率调整的方法、装置、终端、基站及存储介质 Download PDF

Info

Publication number
WO2021138811A1
WO2021138811A1 PCT/CN2020/070736 CN2020070736W WO2021138811A1 WO 2021138811 A1 WO2021138811 A1 WO 2021138811A1 CN 2020070736 W CN2020070736 W CN 2020070736W WO 2021138811 A1 WO2021138811 A1 WO 2021138811A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
upper limit
uplink time
transmission power
uplink
Prior art date
Application number
PCT/CN2020/070736
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080090646.7A priority Critical patent/CN114902750A/zh
Priority to EP20911582.3A priority patent/EP4087331A4/en
Priority to PCT/CN2020/070736 priority patent/WO2021138811A1/zh
Publication of WO2021138811A1 publication Critical patent/WO2021138811A1/zh
Priority to US17/810,398 priority patent/US20220338136A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/44TPC being performed in particular situations in connection with interruption of transmission

Definitions

  • This application relates to the field of communications technology, and in particular to a method, device, terminal, base station, and storage medium for adjusting transmit power.
  • the Specific Absorption Rate is an index parameter that measures the intensity of electromagnetic radiation from the terminal to the human body.
  • the communication standards have strict index requirements for the SAR value of the electromagnetic radiation of the terminal.
  • the terminal capability of the maximum uplink time percentage (maxULdutycycle) is introduced, that is, when the terminal reports to the base station that it performs uplink transmission with the maximum transmit power on a certain frequency band, The maximum uplink time percentage that can be supported when the SAR requirements are met.
  • maxULdutycycle the maximum uplink time percentage that can be supported when the SAR requirements are met.
  • the reduced transmit power value is usually low, thereby affecting the uplink data transmission effect.
  • the embodiments of the present application provide a method, device, terminal, base station, and storage medium for adjusting transmit power.
  • the technical solution is as follows:
  • an embodiment of the present application provides a method for adjusting transmit power, the method is executed by a terminal, and the method includes:
  • the upper limit of the transmission power of the terminal is adjusted from the first upper limit of the transmission power to the second upper limit of the transmission power, the second upper limit of the transmission power is based on the first upper limit of the transmission power, the actual uplink time ratio and the first A maximum uplink time proportion corresponding to the upper limit of the transmit power is determined.
  • an embodiment of the present application provides a method for adjusting transmit power, the method is executed by a base station, and the method includes:
  • the upper limit of the transmission power of the terminal is adjusted from the first upper limit of the transmission power to the second upper limit of the transmission power, the second upper limit of the transmission power is based on the first upper limit of the transmission power, the actual uplink time ratio and the first A maximum uplink time proportion corresponding to the upper limit of the transmit power is determined.
  • an embodiment of the present application provides a device for adjusting transmit power, which is used in a terminal, and the device includes:
  • the actual proportion obtaining module is used to obtain the actual uplink time proportion
  • a power adjustment module configured to adjust the upper limit of transmission power of the terminal from a first upper limit of transmission power to a second upper limit of transmission power, the second upper limit of transmission power based on the first upper limit of transmission power and the actual uplink time The proportion and the proportion of the maximum uplink time corresponding to the first upper limit of transmit power are determined.
  • an embodiment of the present application provides a device for adjusting transmit power, which is used in a base station, and the device includes:
  • the actual proportion obtaining module is used to obtain the actual uplink time proportion of the terminal
  • a power adjustment module configured to adjust the upper limit of transmission power of the terminal from a first upper limit of transmission power to a second upper limit of transmission power, the second upper limit of transmission power based on the first upper limit of transmission power and the actual uplink time The proportion and the proportion of the maximum uplink time corresponding to the first upper limit of transmit power are determined.
  • an embodiment of the present application provides a terminal.
  • the terminal includes a processor, a memory, and a transceiver.
  • the memory stores a computer program, and the computer program is used to be executed by the processor to implement the foregoing The method of transmitting power adjustment.
  • an embodiment of the present application provides a base station.
  • the base station includes a processor, a memory, and a transceiver.
  • the memory stores a computer program, and the computer program is used to be executed by the processor to implement the foregoing The method of transmitting power adjustment.
  • an embodiment of the present application also provides a computer-readable storage medium, in which a computer program is stored, and the computer program is loaded and executed by a processor to implement the foregoing method for adjusting the transmission power.
  • an embodiment of the present application also provides a computer-readable storage medium, in which a computer program is stored, and the computer program is loaded and executed by a processor to implement the foregoing method for adjusting the transmission power.
  • the present application provides a computer program product, which when the computer program product runs on a terminal, causes the terminal to perform the above-mentioned method for adjusting the transmission power.
  • the present application provides a computer program product, which when the computer program product runs on a base station, causes the base station to perform the above-mentioned method for adjusting the transmission power.
  • the terminal can adjust the upper limit of the transmission power corresponding to the actual uplink time ratio, that is, the terminal can follow the actual The upper limit of the transmit power is appropriately adjusted.
  • the solution shown in this application can avoid excessively limiting the transmit power of the terminal, thereby improving the terminal’s transmit power. Uplink data transmission effect.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 2 exemplarily shows the corresponding relationship between the transmit power before and after the back-off and the line time slot ratio
  • FIG. 3 is a flowchart of a method for adjusting transmit power provided by an embodiment of the present application
  • FIG. 4 is a flowchart of a method for adjusting transmit power according to an embodiment of the present application
  • FIG. 5 is a flowchart of a method for adjusting transmit power provided by an embodiment of the present application
  • Fig. 6 is a block diagram of a device for adjusting transmit power provided by an embodiment of the present application.
  • FIG. 7 is a block diagram of a device for adjusting transmit power according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the network architecture may include: a terminal 10 and a base station 20.
  • the number of terminals 10 is usually multiple, and one or more terminals 10 may be distributed in a cell managed by each base station 20.
  • the terminal 10 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment (UE), mobile stations ( Mobile Station, MS), terminal device (terminal device), etc.
  • UE user equipment
  • MS Mobile Station
  • terminal device terminal device
  • the base station 20 is a device deployed in an access network to provide the terminal 20 with a wireless communication function.
  • the base station 20 may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • 5G NR 5th-Generation New Radio
  • gNodeB Or gNB With the evolution of communication technology, the name "base station” may change.
  • the above-mentioned devices for providing wireless communication functions for the terminal 20 are collectively referred to as a base station.
  • the "5G NR system" in the embodiments of the present disclosure may also be referred to as a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of the present disclosure may be applicable to the 5G NR system, and may also be applicable to the subsequent evolution system of the 5G NR system.
  • the SAR indicator is the average measured value over a period of time during the communication of the terminal in the frequency band below 6 GHz.
  • the SAR value is positively correlated with the transmission power and transmission time, that is, the higher the transmission power of the terminal, the higher the SAR value, the longer the uplink transmission time of the terminal, and the higher the SAR value.
  • the terminal In order to meet the SAR index, in a scheme, the terminal will use sensors (such as distance sensors) to detect the distance between the terminal and the human body, and perform power back-off when it detects that the terminal is close to the human body, so as to reduce the transmission power and avoid the SAR value. Exceeded.
  • sensors such as distance sensors
  • the terminal is close to the human body. Therefore, although this solution can effectively solve the problem of the SAR value exceeding the standard, it needs to be transmitted with a low transmission power for uplink transmission in many times, which causes the transmission power to be reduced. The loss is more serious, which seriously affects the uplink transmission effect.
  • the terminal reports to the base station the maximum uplink time ratio that it can support when it meets the SAR requirements when it performs uplink transmission at the maximum transmit power in a certain frequency band.
  • the maxULdutycycle capability is defined for the frequency band below 6GHz
  • the maxULdutycycle-EN-DC capability is defined for the non-standalone (NSA) HPUE.
  • the capability information reported by the terminal to the base station in the above solution is a maximum uplink time ratio supporting capability corresponding only to the maximum transmit power of the terminal.
  • the terminal's transmit power is lower than the maximum transmit power, the terminal can potentially accept scheduling with a higher proportion of uplink time while meeting the SAR.
  • the processing method in the above solution is that as long as the actual uplink time ratio of the terminal is higher than the maxULdutycycle, the 3dBm power level rollback is performed, which limits the terminal's transmit power capability.
  • FIG. 2 exemplarily shows a corresponding relationship diagram between the transmit power before and after the back-off and the ratio of the row time slot.
  • the maximum uplink time ratio corresponding to the terminal when the transmitting power P1 (such as 26 dBm) is Dutycycle1
  • the corresponding maximum uplink time ratio when the transmitting power is 23 dBm is 100%.
  • the terminal uses the above P1 as the upper limit of the transmit power to transmit uplink data, that is, when the terminal sends uplink data, it will control its own transmit power not to exceed P1; use P1 as the upper limit of the transmit power to transmit uplink data
  • the terminal can also obtain the actual uplink time ratio and compare the actual uplink time ratio with Dutycycle1.
  • the terminal directly adjusts the upper limit of the transmit power to support 100% P2 (that is, the lower 23dBm) of the uplink time is the proportion of the uplink time, and when the uplink data is subsequently sent, the uplink data is sent with P2 as the upper limit of the transmit power.
  • the terminal when the actual uplink time percentage of the terminal exceeds Dutycycle1, the terminal will have a 3dBm transmit power upper limit jump. At the same time, the maximum upstream time percentage will also have a jump from Dutycycle1 to 100%. As a result, the upper limit of the transmission power of the terminal is greatly restricted, which affects the uplink data transmission effect of the terminal.
  • FIG. 3 shows a flowchart of a method for adjusting transmit power provided by an embodiment of the present application.
  • the method can be applied to the terminal of the network architecture shown in FIG. 1.
  • the method may include the following steps:
  • Step 301 Obtain the actual uplink time percentage.
  • the actual percentage of uplink time is the percentage of time that the terminal actually performs uplink transmission within a predetermined time period before the current moment.
  • the above-mentioned proportion of uplink time refers to the proportion of the total time that the terminal actually performs uplink transmission according to the scheduling of the base station after the base station schedules the terminal to perform uplink transmission.
  • the aforementioned actual uplink time proportion may be the proportion of time that the terminal actually performs uplink transmission within a preset time period before the current moment.
  • the actual uplink time percentage in the above preset time period refers to the ratio of the time that the terminal transmits uplink in the preset time period according to the scheduling information of the base station to the total time of the preset time period.
  • the actual uplink time proportion in the preset time period before the current time may be counted.
  • Step 302 Adjust the upper limit of the transmission power of the terminal from the first upper limit of transmission power to the second upper limit of transmission power; the second upper limit of transmission power is based on the first upper limit of transmission power, the actual uplink time ratio and the first transmission The maximum uplink time proportion corresponding to the power upper limit is determined.
  • the upper limit of the transmit power of the terminal refers to the maximum transmit power that the terminal needs to follow when performing uplink transmission. In other words, when the terminal performs uplink transmission, it needs to control its transmission power not to exceed the currently set transmission power upper limit.
  • the terminal may adjust the upper limit of the transmit power according to the actual uplink time ratio before the current moment, such as the actual uplink time ratio in the above-mentioned preset time period; that is, different actual uplink time ratios.
  • the proportion of the uplink time can correspond to the different transmit power upper limits of the terminal.
  • the rule that the upper limit of the transmit power of the terminal changes with the actual uplink time ratio is non-linear.
  • the terminal after the current time, when the terminal continues to transmit uplink data, it will control the transmit power during uplink data transmission not to exceed the second upper transmit power limit until the power upper limit is updated again.
  • the solution shown in the embodiment of the present application obtains the actual uplink time proportion of the terminal before the current moment; according to the actual uplink time proportion, the first transmit power upper limit of the terminal corresponds to the first transmit power upper limit Determine the second upper limit of transmission power, and adjust the upper limit of the terminal’s transmission power from the first upper limit of transmission power to the second upper limit of the transmission power; in the above scheme, the terminal can correspond to the actual uplink time ratio.
  • the upper limit of the transmit power is adjusted, that is, the terminal can appropriately adjust the upper limit of the transmit power according to the actual value of the uplink time ratio.
  • the method shown in this application The solution can avoid excessively limiting the terminal's transmit power, thereby improving the terminal's uplink data transmission effect.
  • FIG. 4 shows a flowchart of a method for adjusting transmit power provided by an embodiment of the present application.
  • the method can be applied to the base station of the network architecture shown in FIG. 1.
  • the method may include the following steps:
  • Step 401 Obtain the actual uplink time percentage of the terminal.
  • the actual percentage of uplink time is the percentage of time that the terminal actually performs uplink transmission within a predetermined time period before the current moment.
  • the time of uplink transmission and downlink reception can be scheduled in real time or pre-scheduled by the base station.
  • the relevant information for the base station to schedule the time of the terminal's uplink transmission and downlink reception may be referred to as the above-mentioned uplink and downlink time configuration information.
  • the base station can use the uplink and downlink time configuration information to schedule the terminal's subsequent uplink transmission time and downlink reception time in real time when communicating with the terminal.
  • the terminal executes uplink data at the uplink transmission time according to the uplink and downlink time configuration information. Send, and perform downlink data reception during downlink reception time.
  • the base station may also use uplink and downlink time configuration information in advance to schedule the uplink time interval during which the terminal can subsequently perform uplink transmission and the downlink time interval during which downlink reception can be performed before data communication with the terminal.
  • the terminal selects an appropriate time to send in the uplink time interval.
  • the terminal can monitor in the downlink time interval and perform downlink reception when the downlink data is monitored.
  • the base station can record the uplink transmission time of the terminal, and collect statistics and obtain the actual uplink time proportion of the terminal. For example, the base station can count the proportion of the uplink time of the terminal in the preset time period before the current moment, that is, the proportion of the time that the terminal actually performs uplink transmission in the preset time period to the total time of the preset time period.
  • Step 402 Adjust the upper limit of transmission power of the terminal from the first upper limit of transmission power to a second upper limit of transmission power, and the second upper limit of transmission power is based on the first upper limit of transmission power, the actual uplink time ratio and the first transmission. The maximum uplink time proportion corresponding to the power upper limit is determined.
  • the base station may adjust the terminal's upper limit of transmission power from the first upper limit of transmission power to the second upper limit of transmission power after the preset period of time, and receive the terminal to transmit according to the second upper limit of transmission power. Upstream data.
  • the second upper limit of transmit power has a non-linear corresponding relationship with the actual uplink time ratio.
  • the base station side is similar to the terminal side, and will also determine the updated transmit power upper limit of the terminal according to the actual uplink time ratio of the terminal in the preset time period before the current moment, and according to the non-linear correspondence rule. (That is, the above-mentioned second upper limit of transmit power), so as to subsequently receive uplink data sent by the terminal according to the second upper limit of transmit power.
  • the base station obtains the actual uplink time proportion of the terminal; according to the actual uplink time proportion, the first transmit power upper limit of the terminal and the first transmit power upper limit corresponding to the maximum
  • the uplink time proportion determines the second upper limit of transmit power, and adjusts the upper limit of the terminal's transmit power from the first upper limit of transmit power to the second upper limit of transmit power; in the above scheme, the base station can determine the terminal corresponding to the actual uplink time proportion of the terminal
  • the upper limit of the transmit power of the terminal that is, the upper limit of the terminal’s transmit power can be appropriately adjusted according to the actual uplink time ratio.
  • this application The solution shown can avoid excessively limiting the terminal's transmit power, thereby improving the terminal's uplink data transmission effect.
  • the solutions shown in each embodiment of this application are applicable to the dual connection of NR SA, EN-DC, 5G NR and 4G radio access network (NR-Evolved-Universal Telecommunication Radio Access Terrestrial Radio Access Dual Connection, EN-DC) , Dual-connectivity (DC), carrier aggregation (CA), supplementary uplink (SUL), and other scenarios that solve problems such as SAR by reporting the maximum uplink capacity.
  • FIG. 5 shows a flowchart of a method for adjusting transmit power provided by an embodiment of the present application.
  • the method can be applied to the network architecture shown in FIG. 1, and is executed interactively by the terminal and the base station in FIG. 1.
  • the method can include the following steps:
  • Step 501 The terminal reports the terminal capability information to the base station, and the base station receives the terminal capability information.
  • the terminal capability information is used to indicate that the terminal has the ability to adjust the upper limit of the transmit power of the terminal according to the actual uplink time ratio.
  • the terminal when the terminal successfully accesses the base station, it can report its terminal capability information to the base station to inform the base station that it has the ability to adjust its own transmit power upper limit according to the actual uplink time ratio, so that the base station can follow up
  • the uplink and downlink scheduling can be performed based on the terminal capability information.
  • the terminal capability information reported by the terminal to the base station may trigger the base station to perform the subsequent step 502 and the steps after step 502.
  • the base station may not perform the subsequent step 502 if the terminal does not report the terminal capability information to the base station, or the terminal reports to the base station that it does not have the ability to adjust its own transmit power upper limit based on the actual uplink time ratio.
  • Step 502 The base station obtains the service requirements of the uplink and downlink services corresponding to the terminal, and obtains the proportion of the scheduled uplink time according to the service requirements.
  • the base station can execute the step of obtaining the service requirements of the uplink and downlink services corresponding to the terminal in response to the terminal capability information reported by the terminal.
  • the foregoing service requirements may include at least one of power requirements and delay requirements.
  • the power requirement is used to indicate the transmission power required to transmit the corresponding uplink or downlink service
  • the delay requirement is used to indicate the transmission delay required to transmit the corresponding uplink or downlink service.
  • the base station can determine the proportion of the uplink time to be scheduled for the terminal corresponding to the uplink and downlink services according to the service requirements of the uplink and downlink services corresponding to the terminal.
  • the terminal's uplink or downlink service requires a high power requirement.
  • the terminal is required to perform uplink transmission with a larger transmit power.
  • the base station can determine as The terminal schedules a small proportion of the uplink time, so that when the terminal performs subsequent power adjustments, the upper limit of the transmit power can be increased as much as possible while meeting the SAR requirements to meet the power requirements of the uplink and downlink services.
  • the base station can determine the terminal scheduling according to the power requirement, and the other A large proportion of the uplink time, so that when the terminal performs subsequent power adjustments, the upper limit of the transmit power can be reduced while meeting the SAR requirements to meet a larger proportion of the uplink time, thereby improving the uplink transmission efficiency.
  • the terminal's uplink or downlink service requires a high delay requirement.
  • the terminal and the base station are required to transmit with a small delay.
  • the base station It can be determined as the terminal scheduling according to the delay requirements, and a larger uplink time proportion, so that when the terminal adjusts the power later, the upper limit of the transmit power can be reduced to meet the larger uplink time when the SAR requirements are met. Accounted for, thereby improving the uplink transmission efficiency, thereby reducing the uplink transmission delay between the terminal and the base station.
  • the base station can determine the terminal scheduling according to the power requirement. A smaller proportion of the uplink time, so that when the terminal performs subsequent power adjustments, the upper limit of the transmit power can be increased as much as possible while meeting the SAR requirements, so as to improve the uplink transmission effect of the terminal.
  • Step 503 The base station generates uplink and downlink time configuration information according to the proportion of the scheduled uplink time.
  • the uplink and downlink time configuration information may be generated according to the above-mentioned scheduled uplink time proportion. That is, in the foregoing uplink and downlink time configuration information, the ratio of the uplink time of the terminal within the preset time period to the total time within the preset time period is the proportion of the uplink time scheduled above.
  • Step 504 The base station issues uplink and downlink time configuration information to the terminal, and correspondingly, the terminal receives the uplink and downlink time configuration information.
  • the uplink and downlink time configuration information is used to indicate the time configuration of uplink transmission and downlink reception of the terminal.
  • the uplink and downlink time configuration information may indicate the time configuration of uplink transmission and downlink reception of the terminal within a preset time period.
  • the base station when the base station dynamically schedules the uplink and downlink resources of the terminal, the base station can send the generated uplink and downlink time configuration information to the terminal. Accordingly, the terminal can receive the uplink and downlink resources issued by the base station. Travel time configuration information.
  • Step 505 The terminal and the base station perform uplink and downlink data transmission according to the foregoing uplink and downlink time configuration information.
  • the terminal after the terminal receives the above-mentioned uplink and downlink time configuration information, it can perform data transmission with the base station according to the uplink time and downlink time configured by the uplink and downlink time configuration information.
  • the terminal transmits uplink data to the base station within the uplink time configured by the uplink and downlink time configuration information; and, the terminal receives downlink data sent by the base station within the downlink time configured by the uplink and downlink time configuration information.
  • Step 506 The terminal obtains the actual uplink time percentage.
  • the actual percentage of uplink time is the percentage of time that the terminal actually performs uplink transmission within a predetermined period of time before the current moment.
  • the terminal can obtain the preset time period and the actual uplink time percentage.
  • the aforementioned preset time period is a time period commonly known by the base station and the terminal.
  • the preset time period may be a pre-defined time period.
  • it can be pre-defined in the terminal and the base station respectively, starting from the terminal accessing the base station, each fixed time period is regarded as a preset time period.
  • the foregoing preset time period may also be configured by the base station for the terminal.
  • the base station may issue preset time period configuration information to the terminal to indicate the start point and end point of the foregoing preset time period.
  • the base station may configure the preset time period for the terminal in a semi-static or dynamic manner.
  • the base station may send a preset time period configuration table to the terminal.
  • the preset time period configuration table may contain multiple time period lengths.
  • the base station may send time period length indication information to the terminal, and the terminal may indicate the time domain position of the channel/signal where the information is located according to the time period length, or according to the time domain position of other designated channels/signals.
  • the starting point of the preset time period is determined, and the length of the preset time period is determined from the preset time period configuration table according to the time period length indication information, and the above-mentioned preset time period is determined according to the start point of the preset time period and the length of the preset time period. Set the time period.
  • the base station may send time period length indication information to the terminal, and the time period length indication information may directly include the duration of the preset time period; the terminal may follow
  • the length of the time period indicates the time domain position of the channel/signal where the information is located, or, according to the time domain position of other designated channels/signals, the starting point of the preset time period is determined, and the preset time period is indicated according to the length of the time period. Set the duration of the time period and the starting point of the preset time period to determine the aforementioned preset time period.
  • the terminal after the terminal determines the above-mentioned preset time period, it can obtain statistics of the actual uplink time proportion within the above-mentioned preset time period.
  • Step 507 The terminal obtains the maximum uplink time proportion corresponding to the first transmit power upper limit.
  • the above-mentioned first upper limit of transmission power may be the upper limit of transmission power used by the terminal for uplink transmission between the current moments.
  • the foregoing first upper limit of transmit power may be an upper limit of transmit power used by the terminal when transmitting uplink data within the foregoing preset time period.
  • the above-mentioned first upper limit of transmission power is the upper limit of the transmission power used when the terminal transmits uplink data according to the above-mentioned uplink and downlink time configuration information.
  • the terminal may determine the maximum uplink time proportion corresponding to the first transmit power upper limit of the terminal according to the value of the first transmit power upper limit, where the maximum uplink time proportion refers to the terminal's transmit power When the power is the upper limit of the first transmit power, the maximum value of the uplink time ratio required by the terminal to meet the SAR requirement.
  • the terminal may preset the maximum uplink time proportion corresponding to each transmission power upper limit, and the terminal may query the corresponding maximum uplink time proportion according to the first transmit power upper limit.
  • the terminal may also calculate the corresponding maximum uplink time proportion according to a preset conversion relationship (such as a preset conversion formula) according to the first transmit power upper limit.
  • a preset conversion relationship such as a preset conversion formula
  • Step 508 The terminal determines a power adjustment value according to the actual uplink time ratio and the maximum uplink time ratio.
  • the first ratio is the maximum uplink time ratio and the maximum uplink time ratio.
  • the ratio between the actual uplink time is the maximum uplink time ratio.
  • the ratio between the aforementioned maximum uplink time ratio and the actual uplink time ratio refers to the ratio with the maximum uplink time ratio as the numerator and the actual uplink time ratio as the denominator.
  • the second ratio is the actual uplink time ratio and The ratio between the maximum upstream time proportions.
  • the ratio between the actual uplink time ratio and the maximum uplink time ratio refers to the ratio with the actual uplink time ratio as the numerator and the maximum uplink time ratio as the denominator.
  • Step 509 The terminal determines the second upper limit of transmission power based on the first upper limit of transmission power and the power adjustment value.
  • the sum of the first transmit power upper limit and the power adjustment value is determined as the second transmit power upper limit.
  • the difference between the first upper limit of transmit power and the power adjustment value is determined as the second upper limit of transmit power.
  • the updated terminal when the base station subsequently schedules the uplink time proportion for the terminal, the updated terminal can meet the electromagnetic wave absorption ratio SAR requirement when sending uplink data according to the second upper limit of transmit power.
  • the terminal may appropriately reduce or increase the upper limit of the transmit power according to the difference between the actual uplink time ratio and the maximum uplink time ratio, so as to meet the SAR requirements as much as possible. Take into account the proportion of uplink time and transmit power.
  • the above-mentioned method of obtaining the updated upper limit of the transmission power can be increased and decreased.
  • the terminal when the actual uplink time ratio is less than the maximum uplink time ratio, the terminal can appropriately increase the upper limit of the transmission power to ensure the transmission power of the terminal while meeting the SAR requirements, thereby Ensure the effect of uplink data transmission.
  • the terminal can appropriately determine a second upper transmit power upper limit that is higher than the first upper transmit power upper limit in the following manner:
  • the first ratio is processed through a logarithmic function to obtain the power increase value (that is, the above-mentioned power adjustment value); on the basis of the first transmit power upper limit Increase the power increase value to obtain the second upper limit of transmit power.
  • the terminal in order to increase the transmit power of the terminal as much as possible while meeting the SAR requirements, in this embodiment of the application, the terminal can compare the maximum uplink time ratio with the actual uplink time ratio.
  • the ratio between the logarithmic processing is performed to determine the power increase value, and on the basis of the first transmission power upper limit, combined with the power increase value to obtain the above-mentioned second transmission power upper limit moderately increased.
  • the above formula for increasing the power increase value on the basis of the first upper limit of transmission power to obtain the second upper limit of transmission power may be as follows:
  • realUplinkdutycycle is the actual uplink time percentage
  • maxUplinkdutycycle is the maximum uplink time percentage
  • P1 is the first transmit power upper limit.
  • the terminal when the actual uplink time ratio is greater than the maximum uplink time ratio, the terminal can appropriately lower the upper limit of the transmit power to ensure the data transmission rate first. At this time, the terminal can appropriately determine an updated upper limit of transmit power that is lower than the preset upper limit of transmit power in the following ways:
  • the second ratio is processed by a logarithmic function to obtain the power reduction value; the power reduction value is reduced on the basis of the first transmit power upper limit to obtain The second upper limit of transmit power.
  • the terminal can compare the actual uplink time ratio with the maximum
  • the ratio between the uplink time proportions is logarithmically processed to determine the power reduction value (that is, the above-mentioned power adjustment value), and on the basis of the first transmission power upper limit, combined with the power reduction value to obtain a moderate reduction, the above-mentioned second transmission Power limit.
  • the above formula for reducing the power reduction value on the basis of the preset upper limit of transmit power to obtain the updated upper limit of transmit power may be as follows:
  • the terminal calculates the logarithmic value of the ratio between the actual uplink time ratio and the maximum uplink time ratio with a base of 10, and subtracts 10 times the logarithm value from P1 to obtain the updated transmit power
  • the upper limit so as to appropriately adjust the upper limit of the terminal's transmit power when meeting the SAR requirements, avoid over-limiting the terminal's transmit power, thereby improving the terminal's uplink transmission effect.
  • Step 510 The terminal adjusts the upper limit of the transmission power from the first upper limit of the transmission power to the second upper limit of the transmission power.
  • the terminal After the terminal determines the above-mentioned second upper limit of transmission power, it can adjust the upper limit of the currently used transmission power from the first transmission power to the second upper limit of transmission power.
  • the terminal may also determine the power increase value or the power decrease value in step 508, and in step 510, directly add or subtract the above power increase value from the preset transmit power. Power reduction value, so as to realize the adjustment of the transmission power.
  • Step 511 The base station adjusts the upper limit of the transmit power of the terminal from the first upper limit of transmit power to the second upper limit of transmit power.
  • the base station side in addition to the terminal adjusting its own upper limit of transmission power, the base station side will also adjust the upper limit of the terminal’s transmission power to the aforementioned second transmission based on the actual uplink time ratio of the terminal before the current moment.
  • the upper power limit is used to better receive the uplink data sent by the terminal in the future.
  • the second upper limit of the transmission power may also be determined according to the actual uplink time proportion of the terminal in the preset time period.
  • the manner in which the base station determines the second transmit power upper limit according to the actual uplink time proportion of the terminal is similar to the manner in which the terminal determines the second transmit power upper limit in step 507 to step 508, and will not be repeated here.
  • Step 512 The terminal performs subsequent uplink data transmission according to the second upper limit of transmission power, and correspondingly, the base station receives the uplink data sent by the terminal according to the second upper limit of transmission power.
  • the terminal may send uplink data to the base station according to the adjusted second upper limit of transmit power, that is, after the preset time period, the terminal sends uplink data to the base station
  • the transmission power at the time does not exceed the second upper transmission power limit; correspondingly, when the base station receives the uplink data sent by the terminal, the receiving process can be optimized according to the second transmission power upper limit.
  • the base station may generate uplink and downlink time configuration information for the terminal and send it to the terminal according to the maximum uplink time proportion corresponding to the second transmit power upper limit. That is to say, the uplink and downlink time configuration information generated by the base station after the preset time period will try to make the terminal meet the SAR requirement under the condition of the updated transmit power upper limit.
  • the actual uplink time ratio of the terminal and the upper transmission power limit are processed together with non-linear processing, so that the terminal can schedule a higher uplink ratio when the transmission power is low, thereby increasing the uplink ratio of the terminal.
  • the maximum uplink time proportion corresponding to the second upper limit of transmission power may be determined by the terminal according to the second upper limit of transmission power after acquiring the second upper limit of transmission power and reported to the base station.
  • the maximum uplink time proportion corresponding to the second upper limit of transmit power may also be determined and saved by the base station after obtaining the second upper limit of transmit power according to the second upper limit of transmit power.
  • the solution shown in the embodiment of the present application obtains the actual uplink time proportion of the terminal; according to the actual uplink time proportion, the terminal's first transmit power upper limit and the first transmit power upper limit corresponding to the maximum uplink
  • the time proportion determines the second upper limit of transmit power, and adjusts the upper limit of the terminal's transmit power from the first upper limit of transmit power to the second upper limit of transmit power; in the above scheme, the terminal and the base station can correspond to the actual uplink time proportion of the terminal,
  • the upper limit of the terminal's transmit power is adjusted non-linearly, that is, the terminal and the base station can appropriately adjust the upper limit of the terminal's transmit power according to the value of the terminal's actual uplink time ratio.
  • the solution shown in this application can avoid excessively limiting the transmission power of the terminal, thereby improving the uplink data transmission effect of the terminal.
  • FIG. 6 shows a block diagram of a transmitting power adjustment apparatus provided by an embodiment of the present application.
  • the device has the function of realizing the above example of the method for adjusting the transmission power, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device can be the terminal described above, or it can be set in the terminal. As shown in Figure 6, the device may include:
  • the actual proportion obtaining module 610 is configured to obtain the actual uplink time proportion
  • the power adjustment module 620 is configured to adjust the transmission power upper limit of the terminal from a first transmission power upper limit to a second transmission power upper limit, and the second transmission power upper limit is based on the first transmission power upper limit and the actual uplink
  • the time-to-time ratio and the maximum uplink time-to-time ratio corresponding to the first upper transmit power upper limit are determined.
  • the device further includes:
  • the maximum proportion obtaining module is configured to obtain the maximum uplink time proportion
  • the power adjustment module 620 includes:
  • An adjustment value determining unit configured to determine a power adjustment value according to the actual uplink time ratio and the maximum uplink time ratio
  • a power upper limit determining unit is configured to determine the second upper limit of transmission power based on the first upper limit of transmission power and the power adjustment value.
  • the adjustment value determining unit is configured to perform logarithmic function processing on the first ratio if the actual uplink time ratio is less than the maximum uplink time ratio to obtain the Power adjustment value; the first ratio is the ratio between the maximum uplink time ratio and the actual uplink time ratio.
  • the power upper limit determining unit is configured to adjust the first transmit power upper limit to the power if the actual uplink time ratio is less than the maximum uplink time ratio. The sum of the values is determined as the second upper limit of transmit power.
  • the adjustment value determining unit is configured to perform logarithmic function processing on the second ratio if the actual uplink time ratio is greater than the maximum uplink time ratio to obtain the Power adjustment value; the second ratio is the ratio between the actual uplink time ratio and the maximum uplink time ratio.
  • the power upper limit determining unit is configured to adjust the first transmit power upper limit to the power if the actual uplink time ratio is less than the maximum uplink time ratio. The difference between the values is determined as the second upper limit of transmit power.
  • the device further includes:
  • the capability information reporting module is configured to report terminal capability information to the base station before the actual percentage acquisition module 610 acquires the actual uplink time percentage, where the terminal capability information is used to indicate that the terminal has a The ability to adjust the upper limit of the terminal's transmit power by the uplink time ratio and the maximum uplink time ratio.
  • the terminal in the proportion of uplink time scheduled for the terminal by the base station subsequently, the terminal satisfies the electromagnetic wave absorption ratio SAR requirement when transmitting uplink data according to the second upper limit of transmit power.
  • the device further includes:
  • the configuration information receiving module is configured to receive the uplink and downlink time configuration information issued by the base station before the actual proportion obtaining module 610 obtains the actual uplink time proportion, where the uplink and downlink time configuration information is used to indicate the Time configuration of the terminal's uplink transmission and downlink reception;
  • the base station obtains the service requirements of the uplink and downlink services corresponding to the terminal, obtains the proportion of the scheduled uplink time according to the service requirements, and obtains the proportion of the scheduled uplink time according to the proportion of the scheduled uplink time generate.
  • the service requirement includes at least one of a power requirement and a delay requirement.
  • the terminal obtains the actual uplink time ratio of the terminal before the current moment; according to the actual uplink time ratio, the terminal's first transmit power upper limit and the first transmit power upper limit
  • the corresponding maximum uplink time proportion determines the second upper transmit power upper limit, and adjusts the terminal's transmit power upper limit from the first transmit power upper limit to the second transmit power upper limit; in the above scheme, the terminal can correspond to the actual uplink time proportion, Adjust the upper limit of the transmit power, that is, the terminal can appropriately adjust the upper limit of the transmit power according to the actual value of the uplink time ratio.
  • this application shows The solution can avoid excessively limiting the terminal's transmit power, thereby improving the terminal's uplink data transmission effect.
  • FIG. 7 shows a block diagram of a transmitting power adjustment apparatus provided by an embodiment of the present application.
  • the device has the function of realizing the above example of the method for adjusting the transmission power, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device can be the base station described above, or it can be set in the base station. As shown in Figure 7, the device may include:
  • the actual proportion obtaining module 710 is configured to obtain the actual uplink time proportion of the terminal
  • the power adjustment module 720 is configured to adjust the upper limit of transmission power of the terminal from a first upper limit of transmission power to a second upper limit of transmission power, and the second upper limit of transmission power is based on the first upper limit of transmission power and the actual uplink
  • the time-to-time ratio and the maximum uplink time-to-time ratio corresponding to the first upper transmit power upper limit are determined.
  • the device further includes:
  • the service requirement obtaining module is configured to obtain the service requirements of the uplink and downlink services corresponding to the terminal before the actual ratio obtaining module 610 obtains the actual uplink time ratio of the terminal;
  • the actual proportion determining module is used to determine the proportion of the scheduled uplink time according to the service requirements
  • a scheduling information generating module configured to generate uplink and downlink time configuration information according to the proportion of the scheduled uplink time, where the uplink and downlink time configuration information is used to indicate the time configuration of uplink transmission and downlink reception of the terminal;
  • the configuration information issuing module is configured to issue the uplink and downlink time configuration information to the terminal.
  • the service requirement includes at least one of a power requirement and a delay requirement.
  • the service requirement obtaining module is configured to perform the step of obtaining the service requirements of the uplink and downlink services corresponding to the terminal in response to the terminal capability information reported by the terminal; the terminal capability The information is used to indicate that the terminal has the ability to adjust the upper limit of the transmit power of the terminal according to the actual uplink time ratio.
  • the base station obtains the actual uplink time proportion of the terminal; according to the actual uplink time proportion, the first transmit power upper limit of the terminal and the first transmit power upper limit corresponding to the maximum
  • the uplink time ratio determines the second upper limit of transmit power, and adjusts the upper limit of the terminal’s transmit power from the first upper limit of transmit power to the second upper limit of the transmit power; in the above scheme, the base station can determine the actual uplink time proportion of the terminal.
  • the upper limit of the terminal's transmit power that is, the upper limit of the terminal's transmit power can be appropriately adjusted according to the value of the terminal's actual uplink time ratio.
  • the solution shown in the present application can avoid excessively limiting the transmission power of the terminal, thereby improving the uplink data transmission effect of the terminal.
  • the device provided in the above embodiment realizes its functions, only the division of the above-mentioned functional modules is used as an example for illustration. In actual applications, the above-mentioned functions can be allocated by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • FIG. 8 shows a schematic structural diagram of a terminal 80 provided by an embodiment of the present application.
  • the terminal 80 may include: a processor 81, a receiver 82, a transmitter 83, a memory 84, and a bus 85.
  • the processor 81 includes one or more processing cores, and the processor 81 executes various functional applications and information processing by running software programs and modules.
  • the receiver 82 and the transmitter 83 may be implemented as a communication component, and the communication component may be a communication chip.
  • the communication chip can also be called a transceiver.
  • the memory 84 is connected to the processor 81 through a bus 85.
  • the memory 84 may be used to store a computer program, and the processor 81 is used to execute the computer program to implement each step executed by the terminal in the foregoing method embodiment.
  • the memory 84 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read-only memory (EEPROM), erasable programmable read-only memory (EPROM), static anytime access memory (SRAM), read-only memory (ROM), magnetic memory, flash memory, programmable read-only memory (PROM) .
  • the terminal includes a processor, a memory, and a transceiver (the transceiver may include a receiver and a transmitter, the receiver is used for receiving information, and the transmitter is used for sending information);
  • the processor is configured to obtain the actual uplink time percentage
  • the processor is configured to adjust the transmission power upper limit of the terminal from a first transmission power upper limit to a second transmission power upper limit, the second transmission power upper limit being based on the first transmission power upper limit and the actual uplink
  • the time-to-time ratio and the maximum uplink time-to-time ratio corresponding to the first upper transmit power upper limit are determined.
  • the processor is further configured to obtain the maximum uplink time proportion
  • the processor when the upper limit of the transmission power of the terminal is adjusted from the first upper limit of the transmission power to the second upper limit of the transmission power, the processor is specifically configured to:
  • the second upper limit of transmission power is determined.
  • the processor when determining the power adjustment value according to the actual uplink time ratio and the maximum uplink time ratio, is specifically configured to:
  • the first ratio is the maximum uplink time ratio and The ratio between the actual uplink time proportions.
  • the processor when the second transmission power upper limit is determined based on the first transmission power upper limit and the power adjustment value, the processor is specifically configured to:
  • the sum of the first transmit power upper limit and the power adjustment value is determined as the second transmit power upper limit.
  • the processor when determining the power adjustment value according to the actual uplink time ratio and the maximum uplink time ratio, is specifically configured to:
  • the second ratio is the actual uplink time ratio And the ratio of the maximum uplink time.
  • the processor when the second transmission power upper limit is determined based on the first transmission power upper limit and the power adjustment value, the processor is specifically configured to:
  • the difference between the first upper limit of transmit power and the power adjustment value is determined as the second upper limit of transmit power.
  • the transceiver is used for:
  • the processor Before the processor obtains the actual uplink time proportion, it reports terminal capability information to the base station, where the terminal capability information is used to indicate that the terminal has the ability to perform according to the actual uplink time proportion and the maximum uplink time. The ability to adjust the upper limit of the terminal's transmit power.
  • the transceiver is configured to meet the electromagnetic wave absorption ratio SAR requirement when the terminal transmits uplink data according to the second upper limit of transmit power under the uplink time proportion that is subsequently scheduled for the terminal by the base station.
  • the transceiver is further configured to receive the uplink and downlink time configuration information issued by the base station before the processor obtains the actual uplink time proportion, and the uplink and downlink time
  • the configuration information is used to indicate the time configuration of uplink transmission and downlink reception of the terminal;
  • the base station obtains the service requirements of the uplink and downlink services corresponding to the terminal, obtains the proportion of the scheduled uplink time according to the service requirements, and obtains the proportion of the scheduled uplink time according to the schedule. generate.
  • the service requirement includes at least one of a power requirement and a delay requirement.
  • FIG. 9 shows a schematic structural diagram of a base station 90 provided by an embodiment of the present application.
  • the base station 90 may include: a processor 91, a receiver 92, a transmitter 93, a memory 94 and a bus 95.
  • the processor 91 includes one or more processing cores, and the processor 91 executes various functional applications and information processing by running software programs and modules.
  • the receiver 92 and the transmitter 93 may be implemented as a communication component, and the communication component may be a communication chip.
  • the communication chip may also be called a transceiver.
  • the memory 94 is connected to the processor 91 through a bus 95.
  • the memory 94 may be used to store a computer program, and the processor 91 is used to execute the computer program to implement each step executed by the base station in the foregoing method embodiment.
  • the memory 94 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read-only memory (EEPROM), erasable programmable read-only memory (EPROM), static anytime access memory (SRAM), read-only memory (ROM), magnetic memory, flash memory, programmable read-only memory (PROM) .
  • the base station includes a processor, a memory, and a transceiver (the transceiver may include a receiver and a transmitter, the receiver is used for receiving information, and the transmitter is used for sending information);
  • the processor is configured to obtain the actual uplink time percentage of the terminal
  • the processor is further configured to adjust the upper limit of the transmission power of the terminal from a first upper limit of transmission power to a second upper limit of transmission power, where the second upper limit of transmission power is based on the first upper limit of transmission power and the actual The proportion of the uplink time and the proportion of the maximum uplink time corresponding to the first upper transmission power limit are determined.
  • the processor is further configured to obtain the service requirements of the uplink and downlink services corresponding to the terminal before obtaining the actual uplink time proportion of the terminal; and determine the scheduling according to the service requirements.
  • the uplink and downlink time configuration information is generated according to the scheduled uplink time share, and the uplink and downlink time configuration information is used to indicate the uplink transmission and downlink reception time configuration of the terminal;
  • the transceiver is also used to deliver the uplink and downlink time configuration information to the terminal.
  • the service requirement includes at least one of a power requirement and a delay requirement.
  • the processor when obtaining the service requirements of the uplink and downlink services corresponding to the terminal, the processor is configured to, in response to the terminal reporting terminal capability information, execute obtaining the corresponding terminal The steps of the service requirements of the uplink and downlink services; the terminal capability information is used to indicate that the terminal has the ability to adjust the upper limit of the transmission power of the terminal according to the actual uplink time ratio.
  • An embodiment of the present application also provides a computer-readable storage medium, in which a computer program is stored, and the computer program is loaded and executed by a processor to implement the foregoing method for adjusting the transmission power.
  • An embodiment of the present application also provides a computer-readable storage medium, in which a computer program is stored, and the computer program is loaded and executed by a processor to implement the foregoing method for adjusting the transmission power.
  • the present application also provides a computer program product, which when the computer program product runs on the terminal, causes the terminal to perform the above-mentioned method for adjusting the transmission power.
  • This application also provides a computer program product, which when the computer program product runs on a base station, causes the base station to perform the above-mentioned method for adjusting the transmission power.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种发射功率调整的方法、装置、终端、基站及存储介质,属于通信技术领域。所述方法包括:终端获取实际的上行时间占比;根据实际的上行时间占比,将终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,第二发射功率上限基于第一发射功率上限、实际的上行时间占比和第一发射功率上限对应的最大上行时间占比确定;在上述方案中,终端可以对应实际的上行时间占比,对发射功率上限进行调整,也就是说,终端能够按照实际的上行时间占比的值,对发射功率上限进行适度的调整,相对于直接进行大幅度的功率回退的调整方式,本申请所示的方案能够避免过于限制终端的发射功率,从而提高终端的上行数据传输效果。

Description

发射功率调整的方法、装置、终端、基站及存储介质 技术领域
本申请涉及通信技术领域,特别涉及一种发射功率调整的方法、装置、终端、基站及存储介质。
背景技术
在6GHz以下频段的通信中,电磁波吸收比值(Specific Absorption Rate,SAR)是衡量终端对人体电磁辐射强度的指标参量,通信标准中对终端电磁辐射的SAR值有严格的指标要求。
在相关技术中,从减少终端的辐射时间的角度考虑,引入了最大上行时间占比(maxULdutycycle)的终端能力,即终端向基站上报其在某个频段上以最大发射功率进行上行发送时,在满足SAR要求的情况下所能支持的最大上行时间占比,终端向基站进行上行传输时,如果实际的上行时间占比超过该最大上行时间占比,则终端将发射功率回退至可以满足任意上行时间占比下的SAR要求的发射功率。
上述相关技术的方案,为了满足任意上行时间占比下的SAR要求,降低后的发射功率值通常较低,从而影响上行数据传输效果。
发明内容
本申请实施例提供了一种发射功率调整的方法、装置、终端、基站及存储介质。所述技术方案如下:
一方面,本申请实施例提供了一种发射功率调整的方法,所述方法由终端执行,所述方法包括:
获取实际的上行时间占比;
将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
另一方面,本申请实施例提供了一种发射功率调整的方法,所述方法由基站执行,所述方法包括:
获取终端的实际的上行时间占比;
将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
再一方面,本申请实施例提供了一种发射功率调整的装置,用于终端中,所述装置包括:
实际占比获取模块,用于获取实际的上行时间占比;
功率调整模块,用于将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
再一方面,本申请实施例提供了一种发射功率调整的装置,用于基站中,所述装置包括:
实际占比获取模块,用于获取终端的实际的上行时间占比;
功率调整模块,用于将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
还一方面,本申请实施例提供了一种终端,所述终端包括处理器、存储器和收发器,所 述存储器存储有计算机程序,所述计算机程序用于被所述处理器执行,以实现上述发射功率调整的方法。
还一方面,本申请实施例提供了一种基站,所述基站包括处理器、存储器和收发器,所述存储器存储有计算机程序,所述计算机程序用于被所述处理器执行,以实现上述发射功率调整的方法。
又一方面,本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述发射功率调整的方法。
又一方面,本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述发射功率调整的方法。
又一方面,本申请提供了一种计算机程序产品,当计算机程序产品在终端上运行时,使得终端执行上述发射功率调整的方法。
又一方面,本申请提供了一种计算机程序产品,当计算机程序产品在基站上运行时,使得基站执行上述发射功率调整的方法。
本申请实施例提供的技术方案可以带来如下有益效果:
通过获取当前时刻之前终端的实际的上行时间占比;根据实际的上行时间占比、终端的第一发射功率上限和第一发射功率上限对应的最大上行时间占比确定第二发射功率上限,并将终端的发射功率上限由第一发射功率上限调整为第二发射功率上限;在上述方案中,终端可以对应实际的上行时间占比,对发射功率上限进行调整,也就是说,终端能够按照实际的上行时间占比的值,对发射功率上限进行适度的调整,相对于直接进行大幅度的功率回退的调整方式,本申请所示的方案能够避免过于限制终端的发射功率,从而提高终端的上行数据传输效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的网络架构的示意图;
图2示例性示出了回退前后的发射功率与行时隙占比之间的对应关系图;
图3是本申请一个实施例提供的发射功率调整的方法的流程图;
图4是本申请一个实施例提供的发射功率调整的方法的流程图;
图5是本申请一个实施例提供的发射功率调整的方法的流程图;
图6是本申请一个实施例提供的发射功率调整的装置的框图;
图7是本申请一个实施例提供的发射功率调整的装置的框图;
图8是本申请一个实施例提供的终端的结构示意图;
图9是本申请一个实施例提供的基站的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
请参考图1,其示出了本申请一个实施例提供的网络架构的示意图。该网络架构可以包括:终端10和基站20。
终端10的数量通常为多个,每一个基站20所管理的小区内可以分布一个或多个终端10。 终端10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,本申请实施例中,上面提到的设备统称为终端。
基站20是一种部署在接入网中用以为终端20提供无线通信功能的装置。基站20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在第五代移动通信新空口(5th-Generation New Radio,5G NR)系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端20提供无线通信功能的装置统称为基站。
本公开实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统。
SAR指标是终端在6GHz以下频段的通信中在一段时间内的平均测量值。通常来说,SAR值与发射功率以及发射时间成正相关,也就是说,终端的发射功率越高,SAR值也越高,终端的上行发射时间越长,SAR值也越高。
为了满足SAR指标,在一种方案中,终端会采用传感器(比如距离传感器)等来探知终端与人体的距离,并在探测到终端靠近人体时进行功率回退,以降低发射功率,规避SAR值超标。然而,由于用户在使用终端时,很多情况下会将终端靠近人体,因此,该方案虽然能够有效解决SAR值超标的问题,但是很多时间下需要以低发射功率进行上行发送,从而导致发射功率的损失较为严重,从而严重影响上行传输效果。
而在另外一种方案中,在独立组网NR(NR Standalone,NR SA)以及4G无线接入网与5G NR的双连接(Evolved-Universal Telecommunication Radio Access Terrestrial Radio Access-NR Dual Connection,EN-DC)等场景下,终端向基站上报给其在某个频段下以最大发射功率进行上行发送时,在满足SAR要求的情况下所能支持的最大上行时间占比,比如,在NR SA高功率UE(High Power UE,HPUE)中,对6GHz以下频段上定义了maxULdutycycle能力,而在非独立组网(Non-Standalone,NSA)HPUE中定义了maxULdutycycle-EN-DC能力等。当终端实际的上行时间占比超过该最大上行时间占比后,终端以3dBm功率等级回退(6GHz以下频段)的方式来减少SAR值。
然而,上述方案中终端上报给基站的能力信息为一个仅对应终端的最大发射功率的最大上行时间占比支持能力。当终端的发射功率低于最大发射功率时,终端潜在的可以在满足SAR的情况下,接受更高的上行时间占比的调度。而上述方案中的处理方式是只要终端实际的上行时间占比高于maxULdutycycle,则进行3dBm功率等级回退,限定了终端的发射功率能力。
比如,请参考图2,其示例性的示出了一种回退前后的发射功率与行时隙占比之间的对应关系图。
如图2所示,对于6GHz以下频段,终端在发射功率P1(如26dBm)时对应的最大上行时间占比为Dutycycle1,在发射功率为23dBm时对应的最大上行占比能力为100%。
在某一时刻,终端以上述P1为发射功率上限进行上行数据发送,也就是说,终端在发送上行数据时,将控制自身的发射功率不超过P1;在以P1为发射功率上限进行上行数据发送时,终端还可以获取实际的上行时间占比,并将实际的上行时间占比与Dutycycle1进行比较,当实际的上行时间占比超过了Dutycycle1时,终端将发射功率上限直接调整为可以支持100%的上行时间占比的P2(即较低的23dBm),并在后续发送上行数据时,以P2为发射功率上限进行上行数据发送。
在上述过程中,当终端的实际的上行时间占比超出Dutycycle1时,终端会存在一个3dBm的发射功率上限的跳变,同时最大上行时间占比也存在一个从Dutycycle1到100%的跳变,这就导致终端的发射功率上限收到较大的限制,从而影响终端的上行数据传输效果。
而本申请后续实施例提出了一种在满足SAR要求的情况下,根据终端的实际的上行时间占比,对终端的发射功率上限进行非线性调节的方案,可以在终端的实际的上行时间占比超出Dutycycle1但是不足100%时,适度的调节发射功率上限,避免过于限制终端的发射功率,从而提高终端的上行数据传输效果。
下面,将结合几个示例性实施例,对本申请技术方案进行介绍说明。
请参考图3,其示出了本申请一个实施例提供的发射功率调整的方法的流程图,该方法可应用于图1所示的网络架构的终端中,该方法可以包括如下几个步骤:
步骤301,获取实际的上行时间占比。
其中,该实际的上行时间占比是终端在当前时刻之前的预定时间长度内实际进行上行发送的时间占比。
上述的上行时间占比是指基站调度终端进行上行发送后,终端根据基站的调度实际进行上行发送的时间占总时间的比例。
可选的,上述实际的上行时间占比,可以是在当前时刻之前的预设时间段内,终端实际进行上行发送的时间占比。比如,上述预设时间段内的实际的上行时间占比,是指终端根据基站的调度信息在预设时间段内上行发送的时间,占预设时间段的总时间的比例。
在本申请实施例中,终端在与基站进行数据传输的过程中,可以统计当前时刻之前的预设时间段内的实际的上行时间占比。
步骤302,将该终端的发射功率上限由第一发射功率上限调整为第二发射功率上限;该第二发射功率上限基于该第一发射功率上限、该实际的上行时间占比和该第一发射功率上限对应的最大上行时间占比确定。
在本申请实施例中,终端的发射功率上限,是指终端在进行上行发送时所需要遵循的最大发射功率。也就是说,终端在进行上行发送时,需要控制其发射功率不超过当前设置的发射功率上限。
在本申请实施例中,终端可以根据当前时刻之前的实际的上行时间占比,比如上述预设时间段内的实际的上行时间占比,对发射功率上限进行调节;也就是说,不同的实际的上行时间占比,可以对应终端不同的发射功率上限。
可选的,终端的发射功率上限随着实际的上行时间占比发生变化的规律是非线性的。
在本申请实施例中,在当前时刻之后,终端继续进行上行数据发送时,将控制上行数据发送时的发射功率不超过上述第二发射功率上限,直至发生功率上限再次更新。
综上所述,本申请实施例所示的方案,通过获取当前时刻之前终端的实际的上行时间占比;根据实际的上行时间占比、终端的第一发射功率上限和第一发射功率上限对应的最大上行时间占比确定第二发射功率上限,并将终端的发射功率上限由第一发射功率上限调整为第二发射功率上限;在上述方案中,终端可以对应实际的上行时间占比,对发射功率上限进行调整,也就是说,终端能够按照实际的上行时间占比的值,对发射功率上限进行适度的调整,相对于直接进行大幅度的功率回退的调整方式,本申请所示的方案能够避免过于限制终端的发射功率,从而提高终端的上行数据传输效果。
请参考图4,其示出了本申请一个实施例提供的发射功率调整的方法的流程图,该方法可应用于图1所示的网络架构的基站中,该方法可以包括如下几个步骤:
步骤401,获取终端的实际的上行时间占比。
其中,该实际的上行时间占比是该终端在当前时刻之前的预定时间长度内实际进行上行发送的时间占比。
在本申请实施例中,终端与基站进行数据传输时,其上行发射和下行接收的时间可以由基站进行实时调度或者预调度。其中,基站对终端的行发射和下行接收的时间进行调度的相关信息即可以称为上述的上下行时间配置信息。
比如,基站可以在与终端进行数据通信时,实时的通过上下行时间配置信息,来调度终端后续的上行发射时间和下行接收时间,终端根据该上下行时间配置信息,在上行发射时间执行上行数据发送,并在下行接收时间执行下行数据接收。
或者,基站也可以在与终端进行数据通信之前,预先通过上下行时间配置信息,来调度终端后续可以进行上行发射的上行时间区间,以及可以进行下行接收的下行时间区间,后续需要上行发射时,终端在上行时间区间内选择合适的时机进行发送,当有下行接收需求时,终端可以在下行时间区间内进行监听,并在监听到的下行数据时进行下行接收。
基站在与终端进行数据传输的过程中,可以记录终端上行发送的时间,统计并获取终端的实际的上行时间占比。比如,基站可以统计终端在当前时刻之前的预设时间段内的上行时间占比,即终端在预设时间段内实际进行上行发送的时间,占预设时间段的总时间的比例。
步骤402,将该终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,该第二发射功率上限基于该第一发射功率上限、该实际的上行时间占比和该第一发射功率上限对应的最大上行时间占比确定。
在本申请实施例中,基站可以在该预设时间段之后,将该终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,并接收该终端按照该第二发射功率上限发送的上行数据。
可选的,第二发射功率上限与实际的上行时间占比成非线性的对应关系。
在本申请实施例中,基站侧与终端侧类似,也会根据当前时刻之前的预设时间段内终端的实际的上行时间占比,按照非线性的对应规则,确定终端更新后的发射功率上限(即上述第二发射功率上限),以便后续接收该终端按照该第二发射功率上限发送的上行数据。
综上所述,本申请实施例所示的方案,基站通过获取终端的实际的上行时间占比;根据实际的上行时间占比、终端的第一发射功率上限和第一发射功率上限对应的最大上行时间占比确定第二发射功率上限,并将终端的发射功率上限由第一发射功率上限调整为第二发射功率上限;在上述方案中,基站可以对应终端的实际的上行时间占比确定终端的发射功率上限,也就是说,能够按照实际的上行时间占比的值,对终端的发射功率上限进行适度的调整,相对于直接触发终端进行大幅度的功率回退的调整方式,本申请所示的方案能够避免过于限制终端的发射功率,从而提高终端的上行数据传输效果。
其中,本申请各个实施例所示的方案适用于NR SA、EN-DC、5G NR与4G无线接入网的双连接(NR-Evolved-Universal Telecommunication Radio Access Terrestrial Radio Access Dual Connection,EN-DC)、双链接(Dual-connectivity,DC)、载波聚合(carrier aggregation,CA)、补充的上行链路(supplementary uplink,SUL)等通过上报最大上行占比能力来解决SAR等问题的场景。
请参考图5,其示出了本申请一个实施例提供的发射功率调整的方法的流程图,该方法可应用于图1所示的网络架构中,由图1中的终端和基站交互执行,该方法可以包括如下几个步骤:
步骤501,终端向基站上报终端能力信息,基站接收该终端能力信息。
其中,所述终端能力信息用于指示所述终端具有根据实际的上行时间占比对终端的发射功率上限进行调整的能力。
在本申请实施例中,终端在成功接入基站时,可以向基站上报其终端能力信息,以通知基站其具有根据实际的上行时间占比对自身的发射功率上限进行调整的能力,以便基站后续在对终端进行上下行调度时,可以基于终端能力信息进行上下行调度。
可选的,上述终端向基站上报的终端能力信息,可以触发基站执行后续的步骤502以及步骤502之后的步骤。
可选的,如果终端没有向基站上报该终端能力信息,或者,终端向基站上报其不具有根据实际的上行时间占比对自身的发射功率上限进行调整的能力,则基站可以不执行后续步骤 502。
步骤502,基站获取终端对应的上行及下行业务的业务需求,根据业务需求获取调度的上行时间占比。
其中,基站可以响应于终端上报过该终端能力信息,执行获取终端对应的上行及下行业务的业务需求的步骤。
可选的,上述业务需求可以包括功率需求以及时延需求中的至少一种。
其中,功率需求用于指示传输相应的上行或下行业务所需要的发射功率;时延需求用于指示传输相应的上行或下行业务所需要的传输时延。
在本申请实施例中,基站可以根据终端对应的上行及下行业务的业务需求,确定对应该上行及下行业务,将要为终端调度的上行时间占比。
比如,当上述业务需求包括功率需求时,假设终端的上行或下行业务所需要的功率需求较高,比如,需要终端以较大的发射功率进行上行发送,此时,基站可以根据功率需求确定为终端调度的,一个较小的上行时间占比,这样终端在后续进行功率调整时,可以在满足SAR要求的情况下,尽可能的提高发射功率上限,以满足上行及下行业务的功率需求。
或者,假设终端的上行或下行业务所需要的功率需求较低,比如,只需要终端以较小的发射功率进行上行发送即可,此时,基站可以根据功率需求确定为终端调度的,一个较大的上行时间占比,这样终端后续进行功率调整时,可以在满足SAR要求的情况下,降低发射功率上限,以满足较大的上行时间占比,从而提高上行传输效率。
在比如,当上述业务需求包括时延需求时,假设终端的上行或下行业务所需要的时延需求较高,比如,需要终端与基站之间以较小的时延进行传输,此时,基站可以根据时延需求确定为终端调度的,一个较大的上行时间占比,这样终端在后续进行功率调整时,可以在满足SAR要求的情况下,降低发射功率上限,以满足较大的上行时间占比,从而提高上行传输效率,进而降低终端与基站之间的上行传输时延。
或者,假设终端的上行或下行业务所需要的时延需求较低,比如,可以允许终端与基站之间存在较大的上行时延,此时,基站可以根据功率需求确定为终端调度的,一个较小的上行时间占比,这样终端后续进行功率调整时,可以在满足SAR要求的情况下,尽可能的提高发射功率上限,以提高终端的上行传输效果。
步骤503,基站根据调度的上行时间占比生成上下行时间配置信息。
在本申请实施例中,基站后续调度终端在预设时间段内的上下行时域资源时,可以按照上述调度的上行时间占比生成上下行时间配置信息。也就是说,在上述上下行时间配置信息中,终端在预设时间段内的上行时间,占预设时间段内的总时间的比值为上述调度的上行时间占比。
步骤504,基站向终端下发上下行时间配置信息,相应的,终端接收该上下行时间配置信息。
其中,该上下行时间配置信息用于指示该终端的上行发射及下行接收的时间配置。比如,该上下行时间配置信息可以指示该终端在预设时间段内的上行发射及下行接收的时间配置。
在本申请实施例中,在基站对终端的上下行资源进行动态调度的情况下,基站可以将生成的上述上下行时间配置信息下发给终端,相应的,终端可以接收基站下发的该上下行时间配置信息。
步骤505,终端与基站根据上述上下行时间配置信息进行上下行数据传输。
在本申请实施例中,终端接收到上述的上下行时间配置信息后,即可以根据上下行时间配置信息所配置的上行时间和下行时间,与基站进行数据传输。
例如,终端在上述上下行时间配置信息所配置的上行时间内,向基站进行上行数据发送;以及,终端在在上述上下行时间配置信息所配置的下行时间内,接收基站发送的下行数据。
步骤506,终端获取实际的上行时间占比。
其中,该实际的上行时间占比是终端在当前时刻之前的预定时间长度内实际进行上行发 送的时间占比。
可选的,终端可以获取预设时间段,实际的上行时间占比。
在本申请实施例中,上述预设时间段是由基站和终端所共知的时间段。
其中,该预设时间段可以是预先定义的时间段。例如,可以在终端以及基站中分别预先定义,从终端接入基站开始,每固定时长的时间段作为一个预设时间段。
或者,上述预设时间段也可以由基站为终端配置,比如,基站可以向终端下发预设时间段配置信息,以指示上述预设时间段的起始点和结束点。
其中,上述预设时间段由基站为终端配置时,基站可以通过半静态或者动态的方式为终端配置预设时间段。
例如,在半静态配置的情况下,终端成功接入基站时,基站可以向终端发送预设时间段配置表,该预设时间段配置表中可以包含多种时间段长度,在基站与终端进行数据传输的过程中,基站可以向终端发送时间段长度指示信息,终端可以根据该时间段长度指示信息所在信道/信号的时域位置,或者,根据其它指定的信道/信号的时域位置,确定预设时间段的起始点,并根据该时间段长度指示信息从预设时间段配置表中确定预设时间段的时长,根据预设时间段的起始点和预设时间段的时长确定上述预设时间段。
或者,在动态配置的情况下,在基站与终端进行数据传输的过程中,基站可以向终端发送时间段长度指示信息,该时间段长度指示信息可以直接包含预设时间段的时长;终端可以根据该时间段长度指示信息所在信道/信号的时域位置,或者,根据其它指定的信道/信号的时域位置,确定预设时间段的起始点,并根据该时间段长度指示信息中包含的预设时间段的时长,以及预设时间段的起始点确定上述预设时间段。
在本申请实施例中,终端在确定出上述预设时间段之后,即可以统计得到上述预设时间段内的实际的上行时间占比。
步骤507,终端获取第一发射功率上限对应的最大上行时间占比。
其中,上述第一发射功率上限,可以是终端在当前时刻之间进行上行发送所使用的发射功率上限。
在一种可能的实现方式中,上述第一发射功率上限,可以是终端在上述预设时间段内进行上行数据发送时使用的发射功率上限。或者说,上述第一发射功率上限,是终端按照上述的上下行时间配置信息进行上行数据发送时使用的发射功率上限。
在本申请实施例中,终端可以根据第一发射功率上限的值,确定出终端在第一发射功率上限下对应的最大上行时间占比,其中,该最大上行时间占比,是指终端的发射功率为上述第一发射功率上限时,终端满足SAR要求的上行时间占比的最大值。
可选的,终端中可以预先设置各个发射功率上限分别对应的最大上行时间占比,终端可以根据第一发射功率上限,查询对应的最大上行时间占比。
或者,终端也可以根据预设的换算关系(比如预设的换算公式),根据第一发射功率上限计算得到对应的最大上行时间占比。
步骤508,终端根据该实际的上行时间占比和该最大上行时间占比,确定功率调整值。
可选的,若该实际的上行时间占比小于该最大上行时间占比,则对第一比值进行对数函数处理,得到该功率调整值;该第一比值是该最大上行时间占比与该实际的上行时间占比之间的比值。
其中,上述最大上行时间占比与该实际的上行时间占比之间的比值(即第一比值),是指以最大上行时间占比为分子,以实际的上行时间占比为分母的比值。
可选的,若该实际的上行时间占比大于该最大上行时间占比,则对第二比值进行对数函数处理,得到该功率调整值;该第二比值是该实际的上行时间占比与该最大上行时间占比之间的比值。
其中,上述实际的上行时间占比与该最大上行时间占比之间的比值(即第二比值),是指以实际的上行时间占比为分子,以最大上行时间占比为分母的比值。
步骤509,终端基于该第一发射功率上限和该功率调整值,确定该第二发射功率上限。
若该实际的上行时间占比小于该最大上行时间占比,则将该第一发射功率上限与该功率调整值的和确定为该第二发射功率上限。
若该实际的上行时间占比小于该最大上行时间占比,则将该第一发射功率上限与该功率调整值的差确定为该第二发射功率上限。
在本申请实施例中,在基站后续为终端调度的上行时间占比下,更新后的终端按照第二发射功率上限发送上行数据时可以满足电磁波吸收比值SAR要求。
在本申请实施例中,终端可以根据实际的上行时间占比与最大上行时间占比之间的差距,适度的对发射功率上限进行降低或者提升,以在满足SAR要求的情况下,尽可能的兼顾上行时间占比和发射功率。上述获取更新后的发射功率上限的方式可以有提升和降低两种。
第一,提升发射功率上限的情况。
在一种可能的实现方式中,当上述实际的上行时间占比小于最大上行时间占比时,终端可以适当的提高发射功率上限,以在满足SAR要求的情况下,保证终端的发射功率,从而保证上行数据传输效果。此时,终端可以通过以下方式来适度的确定一个相对于第一发射功率上限较高的第二发射功率上限:
响应于该实际的上行时间占比小于该最大上行时间占比,通过对数函数对第一比值进行处理,获得功率增加值(即上述功率调整值);在该第一发射功率上限的基础上增加该功率增加值,获得该第二发射功率上限。
在上述可能的实现方式中,为了在满足SAR要求的情况下,尽可能的提高终端的发射功率,在本申请实施例中,终端可以通过对最大上行时间占比与该实际的上行时间占比之间的比值进行对数处理,确定功率增加值,并在该第一发射功率上限的基础上,结合功率增加值得到适度提升的上述第二发射功率上限。
例如,上述在该第一发射功率上限的基础上增加该功率增加值,以获得第二发射功率上限的公式可以如下:
P1+10*lg(maxUplinkdutycycle/realUplinkdutycycle);
其中,realUplinkdutycycle为实际的上行时间占比,maxUplinkdutycycle为最大上行时间占比,P1为第一发射功率上限。通过上述公式,终端以10为底数对最大上行时间占比与该实际的上行时间占比之间的比值求对数值,并在第一发射功率上限P1的基础上增加10倍的对数值得到更新后的发射功率上限,从而实现在满足SAR要求的情况下,适度调整终端的发射功率上限,从而尽可能的提高终端的发射功率上限,从而提高终端的上行传输效果。
第二,降低发射功率上限的情况。
在另一种可能的实现方式中,当上述实际的上行时间占比大于最大上行时间占比时,终端可以适当的降低发射功率上限,以优先保证数据传输速率。此时,终端可以通过以下方式来适度的确定一个相对于预设发射功率上限较低的,更新后的发射功率上限:
响应于该实际的上行时间占比大于该最大上行时间占比,通过对数函数对第二比值进行处理,获得功率降低值;在该第一发射功率上限的基础上减少该功率降低值,获得该第二发射功率上限。
在上述可能的实现方式中,为了在满足SAR要求的情况下,尽可能的保证一个发射功率上限不被过度降低,在本申请实施例中,终端可以通过对实际的上行时间占比与该最大上行时间占比之间的比值进行对数处理,确定功率降低值(即上述功率调整值),并在该第一发射功率上限的基础上,结合功率降低值得到适度降低的,上述第二发射功率上限。
例如,上述在该预设发射功率上限的基础上减少该功率降低值,以获得更新后的发射功率上限的公式可以如下:
P1-10*lg(realUplinkdutycycle/maxUplinkdutycycle);
通过上述公式,终端以10为底数对实际的上行时间占比与该最大上行时间占比之间的比值求对数值,并在P1的基础上减去10倍的对数值得到更新后的发射功率上限,从而实现在 满足SAR要求的情况下,适度调整终端的发射功率上限,避免对终端的发射功率过于限制,从而提高终端的上行传输效果。
步骤510,终端将发射功率上限由第一发射功率上限调整为第二发射功率上限。
终端确定出上述第二发射功率上限之后,即可以将当前使用的发射功率上限由第一发射功率调整为第二发射功率上限。
在另一种可能的实现方式中,终端也可以在步骤508中确定功率增加值或者功率降低值,并在步骤510中,通过在预设发射功率上直接加上上述功率增加值或者减去上述功率降低值,从而实现发射功率的调整。
步骤511,基站将终端的发射功率上限由第一发射功率上限调整为第二发射功率上限。
在本申请实施例中,除了终端对自己的发射功率上限进行调整之外,基站侧也会根据当前时刻之前,终端的实际的上行时间占比,将终端的发射功率上限调整为上述第二发射功率上限,以便后续能够更好的接收终端发送的上行数据。
其中,基站将终端的发射功率上限调整为第二发射功率上限时,同样可以根据预设时间段内终端的实际的上行时间占比确定上述第二发射功率上限。
其中,基站根据终端的实际的上行时间占比确定第二发射功率上限的方式,与上述步骤507至步骤508中终端确定第二发射功率上限的方式类似,此处不再赘述。
步骤512,终端按照第二发射功率上限进行后续的上行数据发送,相应的,基站接收该终端按照该第二发射功率上限发送的上行数据。
在本申请实施例中,在上述预设时间段之后,终端可以按照调整后的第二发射功率上限,向基站发送上行数据,也就是说,在预设时间段之后,终端向基站发送上行数据时的发射功率不超过第二发射功率上限;相应的,基站在接收终端发送的上行数据时,可以按照该第二发射功率上限进行接收过程的优化。
可选的,在预设时间段之后,基站在为终端进行上下行调度时,可以根据第二发射功率上限对应的最大上行时间占比,为终端生成上下行时间配置信息并下发给终端,也就是说,基站在预设时间段之后生成的上下行时间配置信息将尽可能使得终端在更新后的发射功率上限的情况下满足SAR要求。本申请实施例通过将终端的实际的上行时间占比与发射功率上限一起进行非线性化处理,则终端在低发射功率时可以调度更高的上行占比,从而提高终端的上行占比。
其中,上述第二发射功率上限对应的最大上行时间占比,可以由终端在获取上述第二发射功率上限之后,根据该第二发射功率上限确定并上报给基站。
或者,上述第二发射功率上限对应的最大上行时间占比,也可以由基站在获取上述第二发射功率上限之后,根据该第二发射功率上限确定并保存。
综上所述,本申请实施例所示的方案,通过获取终端的实际的上行时间占比;根据实际的上行时间占比、终端的第一发射功率上限和第一发射功率上限对应的最大上行时间占比确定第二发射功率上限,并将终端的发射功率上限由第一发射功率上限调整为第二发射功率上限;在上述方案中,终端和基站可以对应终端的实际的上行时间占比,对终端的发射功率上限进行非线性的调整,也就是说,终端和基站能够按照终端的实际的上行时间占比的值,对终端的发射功率上限进行适度的调整,相对于直接进行大幅度的功率回退的调整方式,本申请所示的方案能够避免过于限制终端的发射功率,从而提高终端的上行数据传输效果。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图6,其示出了本申请一个实施例提供的发射功率调整的装置的框图。该装置具有实现上述发射功率调整的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端,也可以设置在终端中。如图6所示,该装置可以包括:
实际占比获取模块610,用于获取实际的上行时间占比;
功率调整模块620,用于将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
在一种示例性的方案中,所述装置还包括:
最大占比获取模块,用于获取所述最大上行时间占比;
所述功率调整模块620,包括:
调整值确定单元,用于根据所述实际的上行时间占比和所述最大上行时间占比,确定功率调整值;
功率上限确定单元,用于基于所述第一发射功率上限和所述功率调整值,确定所述第二发射功率上限。
在一种示例性的方案中,所述调整值确定单元,用于若所述实际的上行时间占比小于所述最大上行时间占比,则对第一比值进行对数函数处理,得到所述功率调整值;所述第一比值是所述最大上行时间占比与所述实际的上行时间占比之间的比值。
在一种示例性的方案中,所述功率上限确定单元,用于若所述实际的上行时间占比小于所述最大上行时间占比,则将所述第一发射功率上限与所述功率调整值的和确定为所述第二发射功率上限。
在一种示例性的方案中,所述调整值确定单元,用于若所述实际的上行时间占比大于所述最大上行时间占比,则对第二比值进行对数函数处理,得到所述功率调整值;所述第二比值是所述实际的上行时间占比与所述最大上行时间占比之间的比值。
在一种示例性的方案中,所述功率上限确定单元,用于若所述实际的上行时间占比小于所述最大上行时间占比,则将所述第一发射功率上限与所述功率调整值的差确定为所述第二发射功率上限。
在一种示例性的方案中,所述装置还包括:
能力信息上报模块,用于在所述实际占比获取模块610获取实际的上行时间占比之前,向所述基站上报终端能力信息,所述终端能力信息用于指示所述终端具有根据所述实际的上行时间占比及所述最大上行时间占比对所述终端的发射功率上限进行调整的能力。
在一种示例性的方案中,在所述基站后续为所述终端调度的上行时间占比下,所述终端按照所述第二发射功率上限发送上行数据时满足电磁波吸收比值SAR要求。
在一种示例性的方案中,所述装置还包括:
配置信息接收模块,用于在所述实际占比获取模块610获取实际的上行时间占比之前,接收所述基站下发的上下行时间配置信息,所述上下行时间配置信息用于指示所述终端的上行发射及下行接收的时间配置;
其中,所述上下行时间配置信息由所述基站获取所述终端对应的上行及下行业务的业务需求,根据所述业务需求获取调度的上行时间占比,并根据所述调度的上行时间占比生成。
在一种示例性的方案中,所述业务需求包括功率需求以及时延需求中的至少一种。
综上所述,本申请实施例所示的方案,终端通过获取当前时刻之前终端的实际的上行时间占比;根据实际的上行时间占比、终端的第一发射功率上限和第一发射功率上限对应的最大上行时间占比确定第二发射功率上限,并将终端的发射功率上限由第一发射功率上限调整为第二发射功率上限;在上述方案中,终端可以对应实际的上行时间占比,对发射功率上限进行调整,也就是说,终端能够按照实际的上行时间占比的值,对发射功率上限进行适度的调整,相对于直接进行大幅度的功率回退的调整方式,本申请所示的方案能够避免过于限制终端的发射功率,从而提高终端的上行数据传输效果。
请参考图7,其示出了本申请一个实施例提供的发射功率调整的装置的框图。该装置具有实现上述发射功率调整的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件 执行相应的软件实现。该装置可以是上文介绍的基站,也可以设置在基站中。如图7所示,该装置可以包括:
实际占比获取模块710,用于获取终端的实际的上行时间占比;
功率调整模块720,用于将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
在一种示例性的方案中,所述装置还包括:
业务需求获取模块,用于在所述实际占比获取模块610获取终端的实际的上行时间占比之前,获取所述终端对应的上行及下行业务的业务需求;
实际占比确定模块,用于根据所述业务需求确定调度的上行时间占比;
调度信息生成模块,用于根据所述调度的上行时间占比生成上下行时间配置信息,所述上下行时间配置信息用于指示所述终端的上行发射及下行接收的时间配置;
配置信息下发模块,用于向所述终端下发所述上下行时间配置信息。
在一种示例性的方案中,所述业务需求包括功率需求以及时延需求中的至少一种。
在一种示例性的方案中,所述业务需求获取模块,用于响应于所述终端上报过终端能力信息,执行获取所述终端对应的上行及下行业务的业务需求的步骤;所述终端能力信息用于指示所述终端具有根据所述实际的上行时间占比对所述终端的发射功率上限进行调整的能力。
综上所述,本申请实施例所示的方案,基站通过获取终端的实际的上行时间占比;根据实际的上行时间占比、终端的第一发射功率上限和第一发射功率上限对应的最大上行时间占比确定第二发射功率上限,并将终端的发射功率上限由第一发射功率上限调整为第二发射功率上限;在上述方案中,基站可以对应终端的实际的上行时间占比,确定终端的发射功率上限,也就是说,能够按照终端的实际的上行时间占比的值,对终端的发射功率上限进行适度的调整,相对于直接触发终端进行大幅度的功率回退的调整方式,本申请所示的方案能够避免过于限制终端的发射功率,从而提高终端的上行数据传输效果。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图8,其示出了本申请一个实施例提供的终端80的结构示意图。该终端80可以包括:处理器81、接收器82、发射器83、存储器84和总线85。
处理器81包括一个或者一个以上处理核心,处理器81通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器82和发射器83可以实现为一个通信组件,该通信组件可以是一块通信芯片。该通信芯片也可以称为收发器。
存储器84通过总线85与处理器81相连。
存储器84可用于存储计算机程序,处理器81用于执行该计算机程序,以实现上述方法实施例中的终端执行的各个步骤。
此外,存储器84可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,所述终端包括处理器、存储器和收发器(该收发器可以包括接收器 和发射器,接收器用于接收信息,发射器用于发送信息);
所述处理器,用于获取实际的上行时间占比;
所述处理器,用于将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
在一种示例性的方案中,所述处理器,还用于获取所述最大上行时间占比;
其中在将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限时,所述处理器,具体用于,
根据所述实际的上行时间占比和所述最大上行时间占比,确定功率调整值;
基于所述第一发射功率上限和所述功率调整值,确定所述第二发射功率上限。
在一种示例性的方案中,在根据所述实际的上行时间占比和所述最大上行时间占比,确定功率调整值时,所述处理器,具体用于,
若所述实际的上行时间占比小于所述最大上行时间占比,则对第一比值进行对数函数处理,得到所述功率调整值;所述第一比值是所述最大上行时间占比与所述实际的上行时间占比之间的比值。
在一种示例性的方案中,在基于所述第一发射功率上限和所述功率调整值,确定所述第二发射功率上限时,所述处理器,具体用于,
若所述实际的上行时间占比小于所述最大上行时间占比,则将所述第一发射功率上限与所述功率调整值的和确定为所述第二发射功率上限。
在一种示例性的方案中,在根据所述实际的上行时间占比和所述最大上行时间占比,确定功率调整值时,所述处理器,具体用于,
若所述实际的上行时间占比大于所述最大上行时间占比,则对第二比值进行对数函数处理,得到所述功率调整值;所述第二比值是所述实际的上行时间占比与所述最大上行时间占比之间的比值。
在一种示例性的方案中,在基于所述第一发射功率上限和所述功率调整值,确定所述第二发射功率上限时,所述处理器,具体用于,
若所述实际的上行时间占比小于所述最大上行时间占比,则将所述第一发射功率上限与所述功率调整值的差确定为所述第二发射功率上限。
在一种示例性的方案中,所述收发器,用于,
在所述处理器获取实际的上行时间占比之前,向所述基站上报终端能力信息,所述终端能力信息用于指示所述终端具有根据所述实际的上行时间占比及所述最大上行时间占比对所述终端的发射功率上限进行调整的能力。
所述收发器,用于,在所述基站后续为所述终端调度的上行时间占比下,所述终端按照所述第二发射功率上限发送上行数据时满足电磁波吸收比值SAR要求。
在一种示例性的方案中,所述收发器,还用于,在所述处理器获取实际的上行时间占比之前,接收所述基站下发的上下行时间配置信息,所述上下行时间配置信息用于指示所述终端的上行发射及下行接收的时间配置;
其中,所述上下行时间配置信息由所述基站获取所述终端对应的上行及下行业务的业务需求,根据所述业务需求获取调度的上行时间占比,并根据所述调度的上行时间占比生成。
在一种示例性的方案中,所述业务需求包括功率需求以及时延需求中的至少一种。
请参考图9,其示出了本申请一个实施例提供的基站90的结构示意图,该基站90可以包括:处理器91、接收器92、发射器93、存储器94和总线95。
处理器91包括一个或者一个以上处理核心,处理器91通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器92和发射器93可以实现为一个通信组件,该通信组件可以是一块通信芯片。该 通信芯片也可以称为收发器。
存储器94通过总线95与处理器91相连。
存储器94可用于存储计算机程序,处理器91用于执行该计算机程序,以实现上述方法实施例中的基站执行的各个步骤。
此外,存储器94可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,所述基站包括处理器、存储器和收发器(该收发器可以包括接收器和发射器,接收器用于接收信息,发射器用于发送信息);
所述处理器,用于获取终端的实际的上行时间占比;
所述处理器,还用于将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
在一种示例性的方案中,所述处理器,还用于在获取终端的实际的上行时间占比之前,获取所述终端对应的上行及下行业务的业务需求;根据所述业务需求确定调度的上行时间占比;根据所述调度的上行时间占比生成上下行时间配置信息,所述上下行时间配置信息用于指示所述终端的上行发射及下行接收的时间配置;
所述收发器,还用于向所述终端下发所述上下行时间配置信息。
在一种示例性的方案中,于,所述业务需求包括功率需求以及时延需求中的至少一种。
在一种示例性的方案中,在获取所述终端对应的上行及下行业务的业务需求时,所述处理器,用于响应于所述终端上报过终端能力信息,执行获取所述终端对应的上行及下行业务的业务需求的步骤;所述终端能力信息用于指示所述终端具有根据所述实际的上行时间占比对所述终端的发射功率上限进行调整的能力。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述发射功率调整的方法。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序由处理器加载并执行以实现上述发射功率调整的方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在终端上运行时,使得终端执行上述发射功率调整的方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在基站上运行时,使得基站执行上述发射功率调整的方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (32)

  1. 一种发射功率调整的方法,其特征在于,所述方法由终端执行,所述方法包括:
    获取实际的上行时间占比;
    将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述最大上行时间占比;
    其中,所述将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,包括:
    根据所述实际的上行时间占比和所述最大上行时间占比,确定功率调整值;
    基于所述第一发射功率上限和所述功率调整值,确定所述第二发射功率上限。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述实际的上行时间占比和所述最大上行时间占比,确定功率调整值,包括:
    若所述实际的上行时间占比小于所述最大上行时间占比,则对第一比值进行对数函数处理,得到所述功率调整值;所述第一比值是所述最大上行时间占比与所述实际的上行时间占比之间的比值。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述第一发射功率上限和所述功率调整值,确定所述第二发射功率上限,包括:
    若所述实际的上行时间占比小于所述最大上行时间占比,则将所述第一发射功率上限与所述功率调整值的和确定为所述第二发射功率上限。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述实际的上行时间占比和所述最大上行时间占比,确定功率调整值,包括:
    若所述实际的上行时间占比大于所述最大上行时间占比,则对第二比值进行对数函数处理,得到所述功率调整值;所述第二比值是所述实际的上行时间占比与所述最大上行时间占比之间的比值。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述第一发射功率上限和所述功率调整值,确定所述第二发射功率上限,包括:
    若所述实际的上行时间占比小于所述最大上行时间占比,则将所述第一发射功率上限与所述功率调整值的差确定为所述第二发射功率上限。
  7. 根据权利要求1所述的方法,其特征在于,所述获取实际的上行时间占比之前,还包括:
    向所述基站上报终端能力信息,所述终端能力信息用于指示所述终端具有根据所述实际的上行时间占比及所述最大上行时间占比对所述终端的发射功率上限进行调整的能力。
  8. 根据权利要求1所述的方法,其特征在于,在所述基站后续为所述终端调度的上行时间占比下,所述终端按照所述第二发射功率上限发送上行数据时满足电磁波吸收比值SAR要求。
  9. 根据权利要求1所述的方法,其特征在于,所述获取实际的上行时间占比之前,还包括:
    接收所述基站下发的上下行时间配置信息,所述上下行时间配置信息用于指示所述终端的上行发射及下行接收的时间配置;
    其中,所述上下行时间配置信息由所述基站获取所述终端对应的上行及下行业务的业务需求,根据所述业务需求获取调度的上行时间占比,并根据所述调度的上行时间占比生成。
  10. 根据权利要求9所述的方法,其特征在于,所述业务需求包括功率需求以及时延需 求中的至少一种。
  11. 一种发射功率调整的方法,其特征在于,所述方法由基站执行,所述方法包括:
    获取终端的实际的上行时间占比;
    将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
  12. 根据权利要求11所述的方法,其特征在于,所述获取终端的实际的上行时间占比之前,还包括:
    获取所述终端对应的上行及下行业务的业务需求;
    根据所述业务需求确定调度的上行时间占比;
    根据所述调度的上行时间占比生成上下行时间配置信息,所述上下行时间配置信息用于指示所述终端的上行发射及下行接收的时间配置;
    向所述终端下发所述上下行时间配置信息。
  13. 根据权利要求12所述的方法,其特征在于,所述业务需求包括功率需求以及时延需求中的至少一种。
  14. 根据权利要求12所述的方法,其特征在于,所述获取所述终端对应的上行及下行业务的业务需求,包括:
    响应于所述终端上报过终端能力信息,执行获取所述终端对应的上行及下行业务的业务需求的步骤;所述终端能力信息用于指示所述终端具有根据所述实际的上行时间占比对所述终端的发射功率上限进行调整的能力。
  15. 一种发射功率调整的装置,其特征在于,用于终端中,所述装置包括:
    实际占比获取模块,用于获取实际的上行时间占比;
    功率调整模块,用于将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    最大占比获取模块,用于获取所述最大上行时间占比;
    所述功率调整模块,包括:
    调整值确定单元,用于根据所述实际的上行时间占比和所述最大上行时间占比,确定功率调整值;
    功率上限确定单元,用于基于所述第一发射功率上限和所述功率调整值,确定所述第二发射功率上限。
  17. 根据权利要求16所述的装置,其特征在于,
    所述调整值确定单元,用于若所述实际的上行时间占比小于所述最大上行时间占比,则对第一比值进行对数函数处理,得到所述功率调整值;所述第一比值是所述最大上行时间占比与所述实际的上行时间占比之间的比值。
  18. 根据权利要求17所述的装置,其特征在于,
    所述功率上限确定单元,用于若所述实际的上行时间占比小于所述最大上行时间占比,则将所述第一发射功率上限与所述功率调整值的和确定为所述第二发射功率上限。
  19. 根据权利要求16所述的装置,其特征在于,
    所述调整值确定单元,用于若所述实际的上行时间占比大于所述最大上行时间占比,则对第二比值进行对数函数处理,得到所述功率调整值;所述第二比值是所述实际的上行时间占比与所述最大上行时间占比之间的比值。
  20. 根据权利要求19所述的装置,其特征在于,
    所述功率上限确定单元,用于若所述实际的上行时间占比小于所述最大上行时间占比,则将所述第一发射功率上限与所述功率调整值的差确定为所述第二发射功率上限。
  21. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    能力信息上报模块,用于在所述实际占比获取模块获取实际的上行时间占比之前,向所述基站上报终端能力信息,所述终端能力信息用于指示所述终端具有根据所述实际的上行时间占比及所述最大上行时间占比对所述终端的发射功率上限进行调整的能力。
  22. 根据权利要求15所述的装置,其特征在于,在所述基站后续为所述终端调度的上行时间占比下,所述终端按照所述第二发射功率上限发送上行数据时满足电磁波吸收比值SAR要求。
  23. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    配置信息接收模块,用于在所述实际占比获取模块获取实际的上行时间占比之前,接收所述基站下发的上下行时间配置信息,所述上下行时间配置信息用于指示所述终端的上行发射及下行接收的时间配置;
    其中,所述上下行时间配置信息由所述基站获取所述终端对应的上行及下行业务的业务需求,根据所述业务需求获取调度的上行时间占比,并根据所述调度的上行时间占比生成。
  24. 根据权利要求23所述的装置,其特征在于,所述业务需求包括功率需求以及时延需求中的至少一种。
  25. 一种发射功率调整的装置,其特征在于,用于基站中,所述装置包括:
    实际占比获取模块,用于获取终端的实际的上行时间占比;
    功率调整模块,用于将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
  26. 根据权利要求25所述的装置,其特征在于,所述装置还包括:
    业务需求获取模块,用于在所述实际占比获取模块获取终端的实际的上行时间占比之前,获取所述终端对应的上行及下行业务的业务需求;
    实际占比确定模块,用于根据所述业务需求确定调度的上行时间占比;
    调度信息生成模块,用于根据所述调度的上行时间占比生成上下行时间配置信息,所述上下行时间配置信息用于指示所述终端的上行发射及下行接收的时间配置;
    配置信息下发模块,用于向所述终端下发所述上下行时间配置信息。
  27. 根据权利要求26所述的装置,其特征在于,所述业务需求包括功率需求以及时延需求中的至少一种。
  28. 根据权利要求26所述的装置,其特征在于,
    所述业务需求获取模块,用于响应于所述终端上报过终端能力信息,执行获取所述终端对应的上行及下行业务的业务需求的步骤;所述终端能力信息用于指示所述终端具有根据所述实际的上行时间占比对所述终端的发射功率上限进行调整的能力。
  29. 一种终端,其特征在于,所述终端包括处理器、存储器和收发器;
    所述处理器,用于获取实际的上行时间占比;
    所述处理器,还用于将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
  30. 一种基站,其特征在于,所述基站包括处理器、存储器和收发器;
    所述处理器,用于获取终端的实际的上行时间占比;
    所述处理器,还用于将所述终端的发射功率上限由第一发射功率上限调整为第二发射功率上限,所述第二发射功率上限基于所述第一发射功率上限、所述实际的上行时间占比和所述第一发射功率上限对应的最大上行时间占比确定。
  31. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至10任一项所述的发射功率调整的方法。
  32. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求11至14任一项所述的发射功率调整的方法。
PCT/CN2020/070736 2020-01-07 2020-01-07 发射功率调整的方法、装置、终端、基站及存储介质 WO2021138811A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080090646.7A CN114902750A (zh) 2020-01-07 2020-01-07 发射功率调整的方法、装置、终端、基站及存储介质
EP20911582.3A EP4087331A4 (en) 2020-01-07 2020-01-07 METHOD AND APPARATUS FOR ADJUSTING TRANSMIT POWER, TERMINAL, BASE STATION AND STORAGE MEDIA
PCT/CN2020/070736 WO2021138811A1 (zh) 2020-01-07 2020-01-07 发射功率调整的方法、装置、终端、基站及存储介质
US17/810,398 US20220338136A1 (en) 2020-01-07 2022-07-01 Transmission power adjustment method and apparatus, terminal, base station and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070736 WO2021138811A1 (zh) 2020-01-07 2020-01-07 发射功率调整的方法、装置、终端、基站及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/810,398 Continuation US20220338136A1 (en) 2020-01-07 2022-07-01 Transmission power adjustment method and apparatus, terminal, base station and storage medium

Publications (1)

Publication Number Publication Date
WO2021138811A1 true WO2021138811A1 (zh) 2021-07-15

Family

ID=76788407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070736 WO2021138811A1 (zh) 2020-01-07 2020-01-07 发射功率调整的方法、装置、终端、基站及存储介质

Country Status (4)

Country Link
US (1) US20220338136A1 (zh)
EP (1) EP4087331A4 (zh)
CN (1) CN114902750A (zh)
WO (1) WO2021138811A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11924770B2 (en) * 2021-07-02 2024-03-05 Qualcomm Incorporated Enhanced uplink power control with lookahead

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584648A (zh) * 2012-08-03 2015-04-29 索尼移动通讯有限公司 由终端请求的由基站控制的终端传输节流
WO2015062024A1 (zh) * 2013-10-31 2015-05-07 华为技术有限公司 功率控制方法、用户设备和基站
CN108702709A (zh) * 2018-05-31 2018-10-23 北京小米移动软件有限公司 控制上行发射功率的方法和装置、基站及用户设备
US20190104476A1 (en) * 2017-10-02 2019-04-04 Lg Electronics Inc. Method for determining transmission power for uplink signal and a user equipment performing the method
CN110225575A (zh) * 2019-05-03 2019-09-10 华为技术有限公司 传输功率控制方法、相关设备及系统
WO2019218112A1 (zh) * 2018-05-14 2019-11-21 Oppo广东移动通信有限公司 一种终端功率等级的调整方法及装置、计算机存储介质
WO2019218806A1 (zh) * 2018-05-14 2019-11-21 Oppo广东移动通信有限公司 一种降低sar值的方法及装置、计算机存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10701643B2 (en) * 2017-02-03 2020-06-30 Telefonaktiebolaget Lm Ericsson (Publ) Maximum communication distance range adaptation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584648A (zh) * 2012-08-03 2015-04-29 索尼移动通讯有限公司 由终端请求的由基站控制的终端传输节流
WO2015062024A1 (zh) * 2013-10-31 2015-05-07 华为技术有限公司 功率控制方法、用户设备和基站
US20190104476A1 (en) * 2017-10-02 2019-04-04 Lg Electronics Inc. Method for determining transmission power for uplink signal and a user equipment performing the method
WO2019218112A1 (zh) * 2018-05-14 2019-11-21 Oppo广东移动通信有限公司 一种终端功率等级的调整方法及装置、计算机存储介质
WO2019218806A1 (zh) * 2018-05-14 2019-11-21 Oppo广东移动通信有限公司 一种降低sar值的方法及装置、计算机存储介质
CN108702709A (zh) * 2018-05-31 2018-10-23 北京小米移动软件有限公司 控制上行发射功率的方法和装置、基站及用户设备
CN110225575A (zh) * 2019-05-03 2019-09-10 华为技术有限公司 传输功率控制方法、相关设备及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "MPR for high power/high duty cycle transmission", 3GPP DRAFT; R4-1812409, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Chengdu, CN; 20181008 - 20181012, 28 September 2018 (2018-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051581144 *

Also Published As

Publication number Publication date
US20220338136A1 (en) 2022-10-20
EP4087331A4 (en) 2023-01-11
EP4087331A1 (en) 2022-11-09
CN114902750A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
JP7122458B2 (ja) リソース割当方法、端末、ネットワーク機器及びコンピュータ記憶媒体
CN102685868B (zh) 一种功率控制方法和装置
CN108064049B (zh) 一种上行波形获取、反馈方法、终端及基站
US20180110016A1 (en) System for boosting a network signal, and the method thereof
CN111279758B (zh) 上行数据传输方法、装置及计算机存储介质
US20210211999A1 (en) Power Determining Method and Apparatus
CN113316241B (zh) 无线通信的方法和终端设备
CN112867129B (zh) 功率余量上报发送方法和装置
US11665678B2 (en) Antenna configuration in a communication network
CN114270955B (zh) 通信方法及装置
WO2020210964A1 (zh) 无线通信方法、终端设备和网络设备
WO2021026934A1 (zh) 功率值确定方法、装置及系统
US20220338136A1 (en) Transmission power adjustment method and apparatus, terminal, base station and storage medium
WO2020051917A1 (zh) 一种时隙调度方法及终端、存储介质
CN111066350B (zh) 安全控制方法及装置
CN112804742B (zh) 发射功率配置方法、装置及系统、计算机存储介质
US20240154754A1 (en) Uplink Transmission Resource Scheduling Method, Base Station, User Equipment, and Communication System
CN104429123A (zh) 一种下行功率分配参数的通知方法及装置
WO2021088048A1 (zh) 用于功率回退的方法、终端设备以及网络设备
WO2020199298A1 (zh) 一种资源配置方法、网络设备、终端设备
EP3437214B1 (en) Systems and methods for determining an over power subscription adjustment for a radio equipment
WO2024027317A1 (zh) 通信方法和通信装置
WO2023245642A1 (zh) 无线通信方法、终端设备以及网络设备
CN113784427B (zh) 功率控制方法及装置
WO2021007870A1 (zh) 通信参数配置方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020911582

Country of ref document: EP

Effective date: 20220804