WO2021136364A1 - 一种气体净化处理装置和方法 - Google Patents
一种气体净化处理装置和方法 Download PDFInfo
- Publication number
- WO2021136364A1 WO2021136364A1 PCT/CN2020/141342 CN2020141342W WO2021136364A1 WO 2021136364 A1 WO2021136364 A1 WO 2021136364A1 CN 2020141342 W CN2020141342 W CN 2020141342W WO 2021136364 A1 WO2021136364 A1 WO 2021136364A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tio
- light
- gas
- reactor
- catalyst
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/75—Multi-step processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/007—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/864—Removing carbon monoxide or hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8678—Removing components of undefined structure
- B01D53/8687—Organic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/869—Multiple step processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/10—Oxidants
- B01D2251/104—Ozone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20707—Titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/2073—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/80—Type of catalytic reaction
- B01D2255/802—Photocatalytic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
- B01D2257/7027—Aromatic hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/708—Volatile organic compounds V.O.C.'s
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/91—Bacteria; Microorganisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/80—Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
- B01D2259/802—Visible light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/80—Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
- B01D2259/804—UV light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/80—Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
- B01D2259/806—Microwaves
Definitions
- This application relates to the field of gas processing technology, and in particular to a gas purification processing device and method.
- the device includes: a photo-oxidation reactor, in which a light source is arranged, the light source emits first light and a second light, and the photo-oxidation reactor is used to treat the gas under the irradiation of the first light Carry out the first-stage purification treatment; a catalytic ozone oxidation reactor, which is filled with an ozone oxidation catalyst and communicates with the photo-oxidation reactor for the second-stage purification treatment of the gas; A photocatalytic reactor, which is filled with a photocatalyst and is in communication with the catalytic ozone oxidation reactor, and is used to perform a third-stage purification treatment on the gas under the irradiation of the second light; Wherein, the photocatalytic reactor is arranged adjacent to the photooxidation reactor and separated by a light-transmitting component, so that the second light can pass through the light-transmitting component and enter the photocatalytic reactor.
- the first light is vacuum ultraviolet light; the second light is ultraviolet light.
- the photocatalyst is selected from the group consisting of TiO 2 catalyst, TiO 2 /SiO 2 composite catalyst, F/TiO 2 /SiO 2 composite catalyst, Bi/F/TiO 2 /SiO 2 composite catalyst, S/F/ One of TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst, Sn/S/F/TiO 2 composite catalyst, Sn/S/F/TiO 2 /SnO 2 composite catalyst Or multiple.
- the first light is vacuum ultraviolet light; the second light is ultraviolet light and visible light.
- the photocatalyst is selected from the group consisting of TiO 2 catalyst, TiO 2 /SiO 2 composite catalyst, F/TiO 2 /SiO 2 composite catalyst, Bi/F/TiO 2 /SiO 2 composite catalyst, S/F/ One of TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst, Sn/S/F/TiO 2 composite catalyst, Sn/S/F/TiO 2 /SnO 2 composite catalyst Or more and BiVO 4 catalyst; the BiVO 4 catalyst is filled in the photocatalytic reactor on the side far from the photooxidation reactor, the TiO 2 catalyst, TiO 2 /SiO 2 composite catalyst, F/TiO 2 /SiO 2 composite catalyst, Bi/F/TiO 2 /SiO 2 composite catalyst, S/F/TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst
- the ozone oxidation catalyst is selected from one or more of transition metal oxides, composite catalysts of transition metal oxides and molecular sieves.
- the ozone oxidation catalyst is selected from one or more of MnO 2 catalyst and MnO 2 /molecular sieve composite catalyst.
- the device further includes a microwave transmitter for exciting the light source to emit the first light and the second light.
- the device further includes a heated catalytic reactor, which is filled with a thermal catalyst and is in communication with the photocatalytic reactor for performing a fourth-stage purification process on the gas .
- the heating catalytic reactor is subjected to microwave heating by the microwave transmitter.
- the microwave transmitter emits microwaves into the photocatalytic reactor.
- a mounting bracket for installing the light source is provided in the photo-oxidation reactor.
- One aspect of the embodiments of this specification provides a gas purification processing method.
- the method includes: passing the gas into a photo-oxidation reactor, performing a first-stage purification treatment under first light irradiation to obtain a first mixed gas; passing the first mixed gas into a catalytic converter filled with an ozone oxidation catalyst A second-stage purification treatment is performed in the ozone oxidation reactor to obtain a second mixed gas; the second mixed gas is passed into a photocatalytic reactor filled with a photocatalyst, and the third-stage purification treatment is performed under the second light irradiation , The purified gas is obtained; wherein the first light and the second light come from the same light source.
- the first light is vacuum ultraviolet light; the second light is ultraviolet light.
- the photocatalyst is selected from the group consisting of TiO 2 catalyst, TiO 2 /SiO 2 composite catalyst, F/TiO 2 /SiO 2 composite catalyst, Bi/F/TiO 2 /SiO 2 composite catalyst, S/F/ One of TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst, Sn/S/F/TiO 2 composite catalyst, Sn/S/F/TiO 2 /SnO 2 composite catalyst Or multiple.
- the first light is vacuum ultraviolet light; the second light is ultraviolet light and visible light.
- the photocatalyst is selected from the group consisting of TiO 2 catalyst, TiO 2 /SiO 2 composite catalyst, F/TiO 2 /SiO 2 composite catalyst, Bi/F/TiO 2 /SiO 2 composite catalyst, S/F/ One of TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst, Sn/S/F/TiO 2 composite catalyst, Sn/S/F/TiO 2 /SnO 2 composite catalyst Or multiple and BiVO 4 catalysts.
- the ozone oxidation catalyst is selected from one or more of transition metal oxides, composite catalysts of transition metal oxides and molecular sieves.
- the ozone oxidation catalyst is selected from one or more of MnO 2 catalyst and MnO 2 /molecular sieve composite catalyst.
- the light source is excited by microwaves to emit the first light and the second light.
- the method further includes: passing the purified gas into a heated catalytic reactor filled with a thermal catalyst for fourth-stage purification.
- microwaves are used to heat the gas in the heated catalytic reactor.
- the third-stage purification treatment is carried out under the action of microwaves.
- the gas includes VOCs gas.
- the mineralization rate of toluene in the VOCs gas is above 92%.
- the gas includes one or more of bacteria, yeasts, viruses, molds, and dust mites.
- the method can purify one or more of the bacteria, yeasts, viruses, molds, and dust mites.
- the killing rate of any one of the bacteria, yeasts, viruses, molds, and dust mites at a certain volumetric space velocity is more than 90%.
- the volumetric space velocity includes 100-10000 h -1 .
- the volumetric air velocity has a negative correlation with the killing rate.
- Fig. 1 is a schematic structural diagram of an exemplary gas purification processing device shown in some embodiments of this specification;
- Figure 2 is a schematic structural diagram of an exemplary mounting bracket shown in some embodiments of this specification.
- Fig. 3 is a schematic structural diagram of an exemplary gas purification processing device shown in some other embodiments of this specification;
- FIG. 4 is a schematic structural diagram of an exemplary gas purification processing device shown in some other embodiments of this specification.
- Fig. 5 is a plan view of an exemplary gas purification processing device shown in still other embodiments of this specification.
- FIG. 6 is a flowchart of an exemplary gas purification processing method shown in some embodiments of this specification.
- Fig. 7 is a long-term operation experimental effect diagram of the exemplary gas purification treatment device shown in some other embodiments of this specification.
- Fig. 8 is a graph showing the change in the amount of toluene desorption and the amount of COx generated by the catalyst in-situ regeneration after long-term operation of the exemplary gas purification treatment device shown in some other embodiments of this specification.
- FIG. 9 is a performance effect diagram of toluene removal after the catalyst is regenerated in situ after long-term operation of the exemplary gas purification treatment device shown in some other embodiments of this specification.
- system is a method for distinguishing different components, elements, parts, parts, or assemblies of different levels.
- the words can be replaced by other expressions.
- Figure 1 is a schematic structural diagram of an exemplary gas purification processing device shown in some embodiments of this specification
- Figure 2 is a schematic structural diagram of an exemplary mounting bracket shown in some embodiments of this specification
- Figure 3 is a schematic diagram of an exemplary mounting bracket shown in some embodiments of this specification. The schematic diagram of the structure of an exemplary gas purification processing device is shown.
- the gas purification processing device may be used to purify the gas.
- purifying the gas may be to reduce or remove harmful components in the gas.
- the harmful component may be ozone, odor, VOCs gas, kitchen oil fume, and the like.
- VOCs gas mainly refers to various organic compounds with a boiling point of 50°C to 260°C at room temperature.
- VOCs gas mainly refers to organic compounds with a saturated vapor pressure greater than 70 Pa at normal temperature and a boiling point below 260° C. at normal pressure, or all organic compounds with a vapor pressure greater than or equal to 10 Pa and volatility at 20° C.
- VOCs may include non-methane hydrocarbons (NMHC), oxygen-containing organic compounds, halogenated hydrocarbons, nitrogen-containing organic compounds, sulfur-containing organic compounds, and the like.
- purifying the gas can also reduce or remove biological pollutants in the gas.
- biological contaminants may include bacteria, yeasts, viruses, molds, dust mites, and the like.
- purifying the gas can also reduce or remove impurities and biological pollutants in the gas at the same time.
- the gas purification processing device 100 may include a photo-oxidation reactor 110, a catalytic ozone oxidation reactor 120, a photo-catalytic reactor 130 and a microwave transmitter 140.
- the photo-oxidation reactor 110 may be used to perform a first-stage purification process on the gas.
- the outer shape of the photooxidation reactor 110 may include a hollow cylindrical shape, a hollow elliptical cylindrical shape, a hollow polygonal prism shape, a hollow spherical shape, or other shapes, which are not limited in this application.
- the photo-oxidation reactor 110 has a hollow reaction chamber 111, and the reaction chamber 111 is used to provide a reaction place for the first-stage purification process of the gas.
- the shape of the reaction chamber 111 may include a cylindrical shape, an elliptical cylindrical shape, a polygonal column shape, a spherical shape, or other shapes.
- the shape of the reaction chamber 111 may be the same as or different from the outer shape of the photo-oxidation reactor 110.
- the outer shape of the photooxidation reactor 110 is a polygonal prism, and the shape of the reaction chamber 111 may be a polygonal prism or a cylindrical shape.
- the shape of the photooxidation reactor 110 is cylindrical, the reaction cavity 111 is cylindrical, and the inner diameter (ie, the diameter of the reaction cavity) of the photooxidation reactor 110 may include 10-120mm. . More preferably, the inner diameter of the photo-oxidation reactor 110 may include 20-110 mm. More preferably, the inner diameter of the photo-oxidation reactor 110 may include 30-100 mm.
- the inner diameter of the photo-oxidation reactor 110 may include 40-90 mm. More preferably, the inner diameter of the photo-oxidation reactor 110 may include 50-80 mm. More preferably, the inner diameter of the photo-oxidation reactor 110 may include 55-75 mm. More preferably, the inner diameter of the photo-oxidation reactor 110 may include 60-70 mm.
- the height of the photo-oxidation reactor 110 can be set according to actual needs (for example, the flow rate or flow rate of the processing gas), which is not limited in this application. For example, the height of the photooxidation reactor 110 is 350 mm.
- the photo-oxidation reactor 110 may also be composed of multiple photo-oxidation units in parallel, and each photo-oxidation unit is equivalent to an independent photo-oxidation reactor. By connecting multiple photo-oxidation units in parallel, the gas purification treatment capacity can be increased.
- the reaction chamber 111 may include at least one gas inlet pipe and at least one gas outlet pipe.
- the positions of the at least one air inlet pipe and the at least one air outlet pipe can be set according to actual needs, which is not limited in this application.
- the lower end of the reaction chamber 111 is provided with at least one air inlet pipe 112 and the upper end is provided with at least one air outlet pipe 113.
- the lower end and the upper end of the reaction chamber 111 are respectively provided with at least one adapter, and are respectively connected to at least one inlet pipe 112 and at least one outlet pipe 113 through the adapter.
- the material of the air inlet pipe 112 and/or the air outlet pipe 113 may be polytetrafluoroethylene, polyvinyl chloride, stainless steel, carbon steel, or alloy.
- the cross section of the air inlet pipe 112 and/or the air outlet pipe 113 may be circular, square, or other polygonal shapes, which is not limited in this application.
- the size of the inlet pipe 112 and/or the outlet pipe 113 can be set according to requirements (for example, the flow rate of the gas to be processed), which is not limited in this application.
- the inlet pipe 112 and/or the outlet pipe 113 may be circular pipes with a diameter of 3 mm.
- the gas to be processed may be a gas that needs to be purified.
- the gas to be purified can be passed into the photo-oxidation reactor 110 for the first-stage purification treatment; the gas after the first-stage purification treatment can be discharged from the photo-oxidation reactor 110 through the outlet pipe 113 , Pass into other equipment (for example, catalytic ozone oxidation reactor 120) or directly discharged into the environment where the gas purification treatment device 100 is located.
- a light source 114 is provided in the reaction chamber 111, and the light source 114 can emit the first light and the second light.
- the first light may be vacuum ultraviolet light
- the second light may be ultraviolet light.
- the first light may be vacuum ultraviolet light
- the second light may be ultraviolet light and visible light.
- the photo-oxidation reactor 110 may perform a first-stage purification process on the gas under the irradiation of the first light.
- the side wall of the photo-oxidation reactor 110 is made of a light-transmitting material, so that the second light can penetrate the side wall of the photo-oxidation reactor 110 and irradiate the outside of the photo-oxidation reactor 410.
- the light-transmitting material may include organic glass, ceramic, polycarbonate (PC), and the like.
- the light source 114 may include an ultraviolet lamp (for example, a mercury lamp) for providing vacuum ultraviolet light, ultraviolet light, and visible light.
- the ultraviolet lamp may be a microwave electrodeless ultraviolet lamp.
- the microwave electrodeless ultraviolet lamp can emit the first light and the second light under the excitation of the microwave transmitter 140.
- the shape, size, and number of the ultraviolet lamps can be determined according to actual needs (for example, the parameters of the gas to be processed).
- the ultraviolet lamp may be two microwave electrodeless ultraviolet lamps with a diameter of 20 mm and a length of 300 mm. There are generally gaps between the multiple UV lamps and between the UV lamps and the photo-oxidation reactor 110 to facilitate gas circulation.
- the parameter of the gas to be treated may be the concentration of impurities or biological pollutants in the gas or the flow rate of the gas.
- the photo-oxidation reactor 110 is provided with a mounting bracket 115 for mounting the light source 114.
- the shape, number, and size of the mounting bracket 115 are related to the size and number of the light source 114, and this specification does not limit the shape and number of the mounting bracket 115.
- the mounting bracket 115 may include two "8"-shaped mounting plates 1151 and four supporting columns 1152 that are arranged oppositely, and the two "8"-shaped mounting plates 1151 are arranged oppositely, Two sets of through holes for installing the ultraviolet lamp are formed in cooperation, and the four support posts 1152 are arranged between the two "8"-shaped mounting plates 1151 to connect and support the two mounting plates 1151.
- the diameter of any through hole of the "8"-shaped mounting plate 1151 may be 21 mm, and both ends of the ultraviolet lamp may be sleeved and fixed on the through hole of the mounting plate 1151, respectively.
- the mounting plate 1151 and the supporting column 1152 may be made of quartz.
- the catalytic ozone oxidation reactor 120 can be used to perform a second-stage purification process on the gas.
- the shape of the catalytic ozonation reactor 120 may include a hollow cylinder, a hollow elliptic cylinder, a hollow polygonal prism, a hollow sphere, or other shapes, which are not limited in the present application.
- the catalytic ozone oxidation reactor 120 has a reaction chamber 121, and the reaction chamber 121 is used to provide a reaction place for the second-stage purification process of the gas.
- the shape of the reaction chamber 121 may include a hollow cylindrical shape, a hollow elliptical cylindrical shape, a hollow polygonal prism shape, a hollow spherical shape, or other shapes, which are not limited in this application.
- the hollow shape of the reaction chamber 121 is provided with a photo-oxidation reactor 110 and a photo-catalytic reactor 130.
- the size of the reaction chamber 121 can be set according to actual needs (for example, the flow or flow rate of the processing gas), which is not limited in this application.
- the volume of the reaction chamber 121 may be 0.1 m 3 .
- the shape of the reaction chamber 121 is a hollow cylinder, the difference between the outer diameter and the inner diameter of the reaction chamber 121 is 10 mm, and the height is 400 mm.
- the outer shape of the catalytic ozonation reactor 120 may include a cylindrical shape, an elliptical cylindrical shape, a polygonal column shape, a spherical shape, or other shapes.
- the shape of the reaction chamber 121 may include a cylindrical shape, an elliptical cylindrical shape, a polygonal column shape, a spherical shape, or other shapes.
- the catalytic ozone oxidation reactor 120 is separately arranged from the photo-oxidation reactor 110 and the photo-catalytic reactor 130.
- the reaction chamber 121 may include at least one gas inlet pipe and at least one gas outlet pipe.
- the positions of the at least one air inlet pipe and the at least one air outlet pipe can be set according to actual needs, which is not limited in this application.
- the upper end of the reaction chamber 121 is provided with at least one air inlet pipe 122 and the lower end is provided with at least one air outlet pipe 123.
- the lower end and the upper end of the reaction chamber 121 are respectively provided with at least one adapter, and are respectively connected to at least one inlet pipe 122 and at least one outlet pipe 123 through the adapter.
- the material of the air inlet pipe 122 and/or the air outlet pipe 123 may be polytetrafluoroethylene, polyvinyl chloride, stainless steel, carbon steel, or alloy.
- the cross section of the air inlet pipe 122 and/or the air outlet pipe 123 may be circular, square, or other polygonal shapes, which is not limited in this application.
- the size of the inlet pipe 122 and/or the outlet pipe 123 can be set according to requirements (for example, the flow rate of the gas to be processed), which is not limited in this application.
- the air inlet pipe 122 and/or the air outlet pipe 123 may be a circular pipe with a diameter of 3 mm.
- the inlet pipe 122 may be connected to the outlet pipe 113 to connect the catalytic ozone oxidation reactor 120 with the photo-oxidation reactor 110.
- the air inlet pipe 122 and the air outlet pipe 113 may be the same pipe, and both ends of the pipe are respectively connected to the catalytic ozone oxidation reactor 120 and the photo-oxidation reactor 110.
- the reaction chamber 121 is filled with an ozone oxidation catalyst.
- the ozone oxidation catalyst may be selected from at least one of transition metal oxides and composite catalysts of transition metal oxides and molecular sieves.
- the transition metal oxide may be at least one of transition metal oxides such as Mn, Fe, Co, Ni, V, Cu, Ce, and Ag.
- the ozone oxidation catalyst may be at least one of MnO 2 and a MnO 2 /molecular sieve composite catalyst. More preferably, the ozone oxidation catalyst may be a ⁇ -MnO 2 /molecular sieve composite catalyst.
- the ozone oxidation catalyst may be a ⁇ -MnO 2 /USY molecular sieve composite catalyst.
- the gas that has undergone the first-stage purification treatment can be passed into the catalytic ozone oxidation reactor 120, and the second-stage purification treatment is performed under the action of the ozone oxidation catalyst; the gas after the second-stage purification treatment passes through
- the gas outlet pipe 123 exits the catalytic ozone oxidation reactor 120, passes into other equipment (for example, the photocatalytic reactor 130), or directly discharges into the environment where the gas purification treatment device 100 is located.
- the photocatalytic reactor 130 may be used to perform a third-stage purification process on the gas.
- the outer shape of the photocatalytic reactor 130 may include a hollow cylindrical shape, a hollow elliptical cylindrical shape, a hollow polygonal prism shape, a hollow spherical shape, or other shapes, which are not limited in this application.
- the photocatalytic reactor 130 has a reaction chamber 131 which is used to provide a reaction place for the third-stage purification process of the gas.
- the shape of the reaction chamber 131 may include a hollow cylindrical shape, a hollow cylindrical shape, a hollow elliptical cylindrical shape, a hollow polygonal prism shape, a hollow spherical shape, or other shapes, which are not limited in the present application.
- the hollow shape of the reaction chamber 131 is provided with a photo-oxidation reactor 110.
- the size of the reaction chamber 131 can be set according to actual needs (for example, the flow or flow rate of the processing gas), which is not limited in this application.
- the reaction chamber 131 has a hollow cylindrical shape, and the difference between the outer diameter and the inner diameter may include 10-400 mm. More preferably, the difference between the outer diameter and the inner diameter of the reaction chamber 131 may include 20-350 mm.
- the difference between the outer diameter and the inner diameter of the reaction chamber 131 may include 30-300 mm. More preferably, the difference between the outer diameter and the inner diameter of the reaction chamber 131 may include 40-250 mm. More preferably, the difference between the outer diameter and the inner diameter of the reaction chamber 131 may include 50-200 mm. More preferably, the difference between the outer diameter and the inner diameter of the reaction chamber 131 may include 60-150 mm. More preferably, the difference between the outer diameter and the inner diameter of the reaction chamber 131 may include 70-130 mm. More preferably, the difference between the outer diameter and the inner diameter of the reaction chamber 131 may include 80-100 mm.
- the photocatalytic reactor 130 may also be arranged in a sleeve with the photooxidation reactor 110, that is, the photooxidation reactor 110 is arranged in the hollow cavity of the photocatalytic reactor 130.
- the photocatalytic reactor 130 and the photooxidation reactor 110 are separated by a light-transmitting component, so that the second light can pass through the light-transmitting component and enter the reaction cavity 131 of the photocatalytic reactor 130.
- the photocatalytic reactor 130 may be arranged adjacent to the photooxidation reactor 110 side by side.
- the photo-oxidation reactor 110 and the photo-catalytic reactor 130 are both quadrangular prisms, and the photo-catalytic reactor 130 is arranged on the left and/or right side of the photo-oxidation reactor 110, and the two are arranged side by side.
- the adjacent wall of the photo-oxidation reactor 110 is configured as a light-transmitting component, so that the second light can pass through the light-transmitting component and enter the reaction cavity 131 of the photocatalytic reactor 130.
- the reaction chamber 131 is filled with a photocatalyst.
- the composition of the photocatalyst may be related to the type of the second light.
- the second light is ultraviolet light.
- the photocatalyst may include TiO 2 catalyst, TiO 2 /SiO 2 composite catalyst, F/TiO 2 /SiO 2 composite catalyst, Bi/F/TiO 2 /SiO 2 composite catalyst, S/F/TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst, Sn/S/F/TiO 2 composite catalyst, Sn/S/F/TiO 2 /SnO 2 composite catalyst, one or more Kind.
- TiO2 catalyst, TiO2/SiO2 composite catalyst, F/TiO 2 /SiO 2 composite catalyst, Bi/F/TiO 2 /SiO 2 composite catalyst, S/F/TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst, Sn/S/F/TiO 2 composite catalyst, and Sn/S/F/TiO 2 /SnO 2 composite catalyst are filled in the reaction chamber 131 in the second light ( Under the irradiation of ultraviolet light with a wavelength less than or equal to 254 nm), the gas in the reaction chamber 131 is subjected to a third-stage purification process.
- the second light is ultraviolet light and visible light.
- the photocatalyst may also include one or both of a TiO 2 catalyst and a TiO 2 /SiO 2 composite catalyst and a BiVO 4 catalyst.
- the BiVO 4 catalyst is filled in the photocatalytic reactor 130 on the side away from the photooxidation reactor 110, the TiO 2 catalyst, the TiO 2 /SiO 2 composite catalyst, the F/TiO 2 /SiO 2 composite catalyst, and Bi /F/TiO 2 /SiO 2 composite catalyst, S/F/TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst, Sn/S/F/TiO 2 composite catalyst, Sn/ One or more of the S/F/TiO 2 /SnO 2 composite catalysts are filled in the photocatalytic reactor 130 on the side close to the photooxidation reactor 110.
- TiO 2 catalyst Under the second light (ultraviolet light and visible light with a wavelength less than or equal to 254nm), TiO 2 catalyst, TiO 2 /SiO 2 composite catalyst, F/TiO 2 /SiO 2 composite catalyst, Bi/F/TiO 2 /SiO 2 Composite catalyst, S/F/TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst, Sn/S/F/TiO 2 composite catalyst, Sn/S/F/TiO 2 / One or more of the SnO 2 composite catalysts can use the ultraviolet light in the second light to perform the third-stage purification treatment on the gas, while the BiVO 4 catalyst can use the visible light in the second light to perform the third-stage purification treatment on the gas.
- the reaction chamber 131 may include at least one gas inlet pipe and at least one gas outlet pipe.
- the positions of the at least one air inlet pipe and the at least one air outlet pipe can be set according to actual needs, which is not limited in this application.
- the lower end of the reaction chamber 131 is provided with at least one air inlet pipe 132 and the upper end is provided with at least one air outlet pipe 133.
- the material of the air inlet pipe 132 and/or the air outlet pipe 133 may be polytetrafluoroethylene, polyvinyl chloride, carbon steel or alloy.
- the cross section of the air inlet pipe 132 and/or the air outlet pipe 133 may be circular, square or other polygonal shapes, which is not limited in the present application.
- the size of the inlet pipe 132 and/or the outlet pipe 133 can be set according to requirements (for example, the flow rate of the gas to be processed), which is not limited in this application.
- the air inlet pipe 132 and/or the air outlet pipe 133 may be a circular pipe with a diameter of 3 mm.
- the inlet pipe 132 may be connected to the outlet pipe 123 to connect the photocatalytic reactor 130 with the catalytic ozone oxidation reactor 120.
- the air inlet pipe 132 and the air outlet pipe 123 may be the same pipe, and both ends of the pipe are respectively communicated with the catalytic ozone oxidation reactor 120 and the photocatalytic reactor 130.
- the second-stage purification process gas can be passed into the photocatalytic reactor 130, and the third-stage purification process is performed under the irradiation of the photocatalyst and the second light; after the third-stage purification process
- the microwave transmitter 140 may be used to excite the light source 114 to emit the first light and the second light.
- the first light may be vacuum ultraviolet light.
- the second light may be ultraviolet light, or ultraviolet light and visible light.
- the microwave transmitter 140 may be connected to the photo-oxidation reactor through a microwave magnetron 141 to excite the light source 114 to emit the first light and the second light.
- the microwave transmitter 140 can also be connected to the photocatalytic reactor 130 through a microwave magnetron 141, and the microwave emitted by the microwave transmitter 140 can excite the light source 114 to emit the first light and the second light. At the same time, light can also emit microwaves to the photocatalytic reactor 130 to enhance the activity of the photocatalyst.
- the microwave transmitter 140 can also be eliminated, and the ultraviolet lamp in the photooxidation reactor 110 adopts a conventional ultraviolet lamp to provide ultraviolet light of the required wavelength, for example, vacuum ultraviolet light with a wavelength of ⁇ 185nm and a vacuum ultraviolet light with a wavelength of ⁇ 254nm. UV light.
- the gas purification process using the purification processing device of this structure is similar to the method of gas purification processing using the gas purification processing device 100 shown in FIG. 1. For details, please refer to the description of FIG. 6, which will not be repeated here.
- the gas purification treatment device 100 may further include a heated catalytic reactor 150.
- the heated catalytic reactor 150 can be used to perform a fourth-stage purification process on the gas.
- the external shape of the heating catalytic reactor 150 may include a hollow cylindrical shape, a hollow elliptical cylindrical shape, a hollow polygonal prism shape, a hollow sphere, or other shapes, which are not limited in this application.
- the heated catalytic reactor 150 has a reaction chamber 151, and the reaction chamber 151 is used to provide a reaction site for the fourth-stage purification process of the gas.
- the shape of the reaction chamber 151 may include a cylindrical shape, an elliptical cylindrical shape, a polygonal column shape, a spherical shape, or other shapes, which is not limited in the present application.
- the shape of the reaction chamber 151 may be the same as the shape of the heating catalytic reactor 150, or may be different.
- the shape of the heating catalytic reactor 150 is a polygonal prism, and the shape of the reaction chamber 151 may be a polygonal prism or a cylindrical shape.
- the size of the reaction chamber 151 can be set according to actual needs (for example, the flow rate or flow rate of the processing gas), which is not limited in this application.
- the hollow shape of the reaction chamber 151 is provided with a photo-oxidation reactor 110 and a photo-catalytic reactor 130, and the heating catalytic reactor 150 is provided in the reaction chamber of the catalytic ozone oxidation reactor 120.
- the reaction chamber 151 may include at least one gas inlet pipe and at least one gas outlet pipe.
- the positions of the at least one air inlet pipe and the at least one air outlet pipe can be set according to actual needs, which is not limited in this application.
- the lower end of the reaction chamber 151 is provided with at least one air inlet pipe 152 and the lower end is provided with at least one air outlet pipe 153.
- the material of the air inlet pipe 152 and/or the air outlet pipe 153 may be polytetrafluoroethylene, polyvinyl chloride, carbon steel or alloy.
- the cross section of the air inlet pipe 152 and/or the air outlet pipe 153 may be circular, square, or other polygonal shapes, which is not limited in the present application.
- the size of the inlet pipe 152 and/or the outlet pipe 153 can be set according to requirements (for example, the flow rate of the gas to be processed), which is not limited in this application.
- the air inlet pipe 152 and/or the air outlet pipe 153 may be circular pipes with a diameter of 3 mm.
- the air inlet pipe 152 may be connected to the air outlet pipe 133 to communicate the photocatalytic reactor 130 with the heated catalytic reactor 150.
- the air inlet pipe 152 and the air outlet pipe 133 may be the same pipe, and both ends of the pipe are respectively communicated with the heating catalytic reactor 150 and the photocatalytic reactor 130.
- the gas after the third-stage purification treatment can be passed into the heating catalytic reactor 150 for the fourth-stage purification treatment; the gas after the fourth-stage purification treatment is discharged from the heating catalytic reactor through the outlet pipe 153 150. Pass into other equipment (for example, a purified gas storage tank), or directly discharge into the environment where the gas purification processing device 100 is located.
- the reaction chamber 151 is filled with a thermal catalyst.
- the thermal catalyst may be a Mn-containing catalyst.
- the thermal catalyst may be at least one of MnO, MnO 2 or other manganese oxides. More preferably, the thermal catalyst may be an ⁇ -MnO 2 catalyst.
- the microwave transmitter 140 may emit microwaves to heat the heating catalytic reactor 150 to provide heat for the fourth-stage purification process.
- the microwave transmitter 140 can also be connected to the heating catalytic reactor 150 through a microwave magnetron 141.
- the microwave emitted by the microwave transmitter 140 can excite the light source 114 to emit the first light and the second light, and at the same time , It is also possible to emit microwaves to the photocatalytic reactor 130 to enhance the activity of the photocatalyst, and to emit microwaves to the heating catalytic reactor 150 to heat the heating catalytic reactor 150.
- the gas purification processing device 100 may be composed of multiple gas purification processing units in parallel, and each gas purification processing unit is equivalent to an independent gas purification processing device. By connecting a plurality of gas purification processing units in series, the amount of gas purification processing can be increased.
- FIG. 4 is a schematic structural diagram of an exemplary gas purification processing device shown in still other embodiments of this specification
- FIG. 5 is a plan view of an exemplary gas purification processing device shown in still other embodiments of this specification.
- the embodiment of this specification provides a schematic structural diagram of another gas purification processing device.
- the other gas purification processing device 400 will be described in detail below with reference to FIGS. 4 and 5.
- the gas purification treatment device 400 may include a photo-oxidation reactor 410, a catalytic ozone oxidation reactor 420, a photo-catalytic reactor 430, a microwave transmitter (not shown in FIG. 4), and a heating catalytic reaction. ⁇ 440.
- the photo-oxidation reactor 410 can be used to perform a first-stage purification process on the gas.
- the photo-oxidation reactor 410 may include a plurality of hollow cylinders or polygonal prisms.
- the photooxidation reactor 410 includes 3 hollow cylinders.
- each hollow cylinder of the photo-oxidation reactor 410 includes a reaction chamber 411, and the reaction chamber 411 is used to provide a reaction place for the first-stage purification process of the gas.
- the photo-oxidation reactor 410 includes three reaction chambers 411. The shape of the reaction chamber 411 and the outer shape of the photo-oxidation reactor 410 may be the same or different.
- the shape of the photooxidation reactor 410 may be cylindrical, and the shape of the reaction chamber 411 may be cylindrical or polygonal.
- the outer shape of the photooxidation reactor 410 is cylindrical
- the shape of the reaction chamber 411 is cylindrical
- the inner diameter of the photooxidation reactor 410 (ie, the diameter of the reaction chamber 411) can be Including 10-120mm. More preferably, the inner diameter of the photo-oxidation reactor 410 may include 20-110 mm. More preferably, the inner diameter of the photo-oxidation reactor 410 may include 30-100 mm. More preferably, the inner diameter of the photo-oxidation reactor 410 may include 40-90 mm.
- the inner diameter of the photo-oxidation reactor 110 may include 50-80 mm. More preferably, the inner diameter of the photo-oxidation reactor 410 may include 60-70 mm.
- the height of the photo-oxidation reactor 410 can be set according to actual needs (for example, the flow rate or flow rate of the processing gas), which is not limited in this application.
- the height of the photooxidation reactor 410 is 1000 mm.
- the height of the photo-oxidation reactor 410 is 750 mm.
- the height of the photo-oxidation reactor 410 is 500 mm.
- the height of the photo-oxidation reactor 410 is 350 mm.
- the reaction chamber 411 may include at least one air inlet and at least one air outlet.
- the positions of the at least one air inlet and the at least one air outlet can be set according to actual needs, which is not limited in this application.
- the upper end of the reaction chamber 411 is provided with at least one air inlet and the lower end is provided with at least one air outlet.
- the cross section of the air inlet and/or the air outlet may be round, square or other polygonal shapes, which is not limited in the present application.
- the size of the air inlet and/or the air outlet can be set according to requirements (for example, the flow rate of the gas to be processed), which is not limited in this application.
- the air inlet and/or the air outlet may be a circular opening with a diameter of 3 mm.
- the gas to be purified can be passed into the photo-oxidation reactor 410 for the first-stage purification treatment; the gas after the first-stage purification treatment can be discharged from the photo-oxidation reactor 410 through the gas outlet, Pass into other equipment (for example, the catalytic ozone oxidation reactor 120) or directly discharge into the environment where the gas purification treatment device 400 is located.
- a light source (not shown in FIGS. 4 and 5) is provided in the reaction chamber 411, and the light source can emit the first light and the second light.
- the first light may be vacuum ultraviolet light
- the second light may be ultraviolet light.
- the first light may be vacuum ultraviolet light
- the second light may be ultraviolet light and visible light.
- the photo-oxidation reactor 410 may perform a first-stage purification process on the gas under the irradiation of the first light.
- the side wall of the photo-oxidation reactor 410 is made of a light-transmitting material, so that the second light can penetrate the side wall of the photo-oxidation reactor 410 and irradiate the outside of the photo-oxidation reactor 410.
- the light source may include an ultraviolet lamp for providing vacuum ultraviolet light, ultraviolet light, and visible light.
- the ultraviolet lamp may be a microwave electrodeless ultraviolet lamp.
- the microwave electrodeless ultraviolet lamp can emit the first light and the second light under the excitation of the microwave emitter.
- the shape, size, and number of the ultraviolet lamps can be determined according to actual needs (for example, the parameters of the gas to be processed, the height of the reaction chamber 411).
- the ultraviolet lamp may be three microwave electrodeless ultraviolet lamps, which are installed in the three reaction chambers 411, respectively.
- the parameter of the gas to be treated may be the concentration of impurities or biological pollutants in the gas or the flow rate of the gas.
- the catalytic ozone oxidation reactor 420 can be used to perform a second-stage purification process on the gas.
- the catalytic ozone oxidation reactor 420 is cubic.
- the top of the catalytic ozone oxidation reactor 420 is provided with a metal mesh, and the catalytic ozone oxidation reactor 420 is separated from the photocatalytic reactor 430 by the metal mesh.
- the material of the metal mesh may include stainless steel, carbon steel, alloy, and the like.
- three through holes are provided on the metal mesh for connecting with the outlet of the photo-oxidation reactor 410, so that the first mixed gas after the first-stage purification process flows into the catalytic ozone oxidation reactor 420.
- the positions and sizes of the three through holes on the metal mesh correspond to the positions and sizes of the three hollow cylinders of the photooxidation reactor 410 one-to-one.
- the three hollow cylinders of the photo-oxidation reactor 410 may be arranged to extend into the bottom of the catalytic ozone oxidation reactor 420, so that the first mixed gas can fully flow into the catalytic ozone oxidation reactor 420.
- the catalytic ozone oxidation reactor 420 has a reaction chamber 421, and the reaction chamber 421 is used to provide a reaction place for the second-stage purification process of the gas.
- the shape of the reaction chamber 421 is a cube.
- the size of the reaction chamber 421 can be set according to actual needs (for example, the flow or flow rate of the processing gas), which is not limited in this application.
- the volume of the reaction chamber 421 may be 0.1 m 3 .
- the reaction chamber 421 is filled with an ozone oxidation catalyst.
- an ozone oxidation catalyst For more information about the ozone oxidation catalyst, please refer to the description of FIGS. 1-3, which will not be repeated here.
- the photocatalytic reactor 430 can be used to perform a third-stage purification process on the gas.
- the photocatalytic reactor 430 may be a cube or an irregular cube.
- the photocatalytic reactor 430 is an irregular cube composed of two cubes of different sizes.
- a metal mesh is provided on the surface where the top small cube of the photocatalytic reactor 430 is located, and the photocatalytic reactor 430 is separated from the heating catalytic reactor 440 by the metal mesh.
- the metal mesh For more information about the metal mesh, please refer to the foregoing description, which will not be repeated here.
- the photocatalytic reactor 430 has a reaction chamber 431, and the reaction chamber 431 is used to provide a reaction place for the third-stage purification process of the gas.
- the shape of the reaction chamber 431 is a cube or an irregular cube.
- the size of the reaction chamber 431 can be set according to actual needs (for example, the flow or flow rate of the processing gas), which is not limited in this application.
- the photo-oxidation reactor 410 is disposed in the hollow reaction cavity 431 of the photo-catalytic reactor 430.
- the photocatalytic reactor 430 and the photooxidation reactor 410 are separated by the light-transmitting side wall of the photo-oxidation reactor 410, so that the second light can pass through the light-transmitting side wall and enter the photocatalytic reactor 430. Cavity 431.
- the reaction chamber 431 is filled with a photocatalyst.
- the composition of the photocatalyst may be related to the type of the second light.
- the second light is ultraviolet light.
- the photocatalyst may include TiO 2 catalyst, TiO 2 /SiO 2 composite catalyst, F/TiO 2 /SiO 2 composite catalyst, Bi/F/TiO 2 /SiO 2 composite catalyst, S/F/TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst, Sn/S/F/TiO 2 composite catalyst, Sn/S/F/TiO 2 /SnO 2 composite catalyst, one or more Kind.
- the second light ultraviolet light with a wavelength less than or equal to 254 nm
- the second light is ultraviolet light and visible light.
- the photocatalyst may also include one or both of a TiO 2 catalyst and a TiO 2 /SiO 2 composite catalyst and a BiVO 4 catalyst.
- the BiVO 4 catalyst is filled in the photocatalytic reactor 430 on the side away from the photooxidation reactor 410, TiO 2 catalyst, TiO 2 /SiO 2 composite catalyst, F/TiO 2 /SiO 2 composite catalyst, Bi /F/TiO 2 /SiO 2 composite catalyst, S/F/TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst, Sn/S/F/TiO 2 composite catalyst, Sn/ One or more of the S/F/TiO 2 /SnO 2 composite catalysts are filled in the photocatalytic reactor 430 on the side close to the photooxidation reactor 110.
- TiO 2 catalyst Under the second light (ultraviolet light and visible light with a wavelength less than or equal to 254nm), TiO 2 catalyst, TiO 2 /SiO 2 composite catalyst, F/TiO 2 /SiO 2 composite catalyst, Bi/F/TiO 2 /SiO 2 Composite catalyst, S/F/TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst, Sn/S/F/TiO 2 composite catalyst, Sn/S/F/TiO 2 / One or more of the SnO 2 composite catalysts can use the ultraviolet light in the second light to perform the third-stage purification treatment on the gas, while the BiVO 4 catalyst can use the visible light in the second light to perform the third-stage purification treatment on the gas.
- the photocatalytic reactor 430 is separated from the catalytic ozone oxidation reactor 420 and the heating catalytic reactor 440 by a metal mesh, and the gas after the second-stage purification treatment can be passed into the photocatalytic reactor 430, and the photocatalyst
- the third-stage purification treatment is performed under the irradiation of the second light; the gas after the third-stage purification treatment exits the photocatalytic reactor 430 through the gaps in the metal mesh, and enters the heated catalytic reactor 440.
- the heated catalytic reactor 440 may be used to perform a fourth-stage purification process on the gas.
- the external shape of the heated catalytic reactor 440 is cubic.
- the heating catalytic reactor 440 is two cubes distributed on both sides of the photocatalytic reactor 430.
- each cube of the heated catalytic reactor 440 includes a reaction chamber 441, and the reaction chamber 441 is used to provide a reaction place for the fourth-stage purification process of the gas.
- the heated catalytic reactor 440 includes two reaction chambers 441.
- the shape of the reaction chamber 441 is a cube.
- the shape of the reaction chamber 441 is the same as that of the heating catalytic reactor 440.
- the size of the reaction chamber 441 can be set according to actual needs (for example, the flow or flow rate of the processing gas), which is not limited in this application.
- the shape of the reaction chamber 441 and the outer shape of the heated catalytic reactor 440 may be the same or different.
- the shape of the heating catalytic reactor 440 may be a cube, and the shape of the reaction chamber 411 is a cube or a sphere.
- the reaction chamber 441 is filled with a thermal catalyst.
- the thermal catalyst may be a Mn-containing catalyst.
- the thermal catalyst may be at least one of MnO, MnO 2 or other manganese oxides. More preferably, the thermal catalyst may be a MnO 2 catalyst.
- the preparation of the catalyst reference can be made to the foregoing content, which is not repeated here.
- the reaction chamber 441 may include at least one air outlet.
- the position of at least one air outlet can be set according to actual needs, which is not limited in this application.
- the upper end of the reaction chamber 441 is provided with at least one air outlet (not shown in FIG. 4).
- the cross-section of the air outlet may be round, square or other polygonal shapes, which is not limited in this application.
- the size of the gas outlet can be set according to requirements (for example, the flow rate of the gas to be processed), which is not limited in this application.
- the air outlet may be a circular tube with a diameter of 3 mm.
- the photocatalytic reactor 430 is separated from the heating catalytic reactor 440 by a metal mesh, and the gas that has undergone the third-stage purification treatment can be passed into the heating catalytic reactor 440 for the fourth-stage purification treatment;
- the gas is discharged from the heated catalytic reactor 440 through the gas outlet, passed into other equipment (for example, a purified gas storage tank), or directly discharged into the environment where the gas purification processing device 400 is located.
- heating the catalytic reactor 440 please refer to the description of the heating catalytic reactor 150 in FIGS. 1-3, which will not be repeated here.
- the microwave emitter can be used to excite the light source to emit the first light and the second light.
- the first light may be vacuum ultraviolet light.
- the second light may be ultraviolet light, or ultraviolet light and visible light.
- the microwave transmitter may be connected to the outer wall of the photo-oxidation reactor 410 through a pipe to excite the light source to emit the first light and the second light.
- the microwave transmitter may also be connected to the outer wall of the photocatalytic reactor 430 through a pipe, so as to emit microwaves to the photocatalytic reactor 430 to enhance the activity of the photocatalyst.
- microwaves can enter the photo-oxidation reactor 410 through the photo-catalytic reactor 430 to excite the light source to emit the first light and the second light.
- the microwave transmitter 140 can also be eliminated, and the ultraviolet lamp in the photooxidation reactor 110 adopts a conventional ultraviolet lamp to provide ultraviolet light of the required wavelength, for example, vacuum ultraviolet light with a wavelength of ⁇ 185nm and a vacuum ultraviolet light with a wavelength of ⁇ 254nm. UV light.
- microwave transmitter 140 For more information about the microwave transmitter, please refer to the description of the microwave transmitter 140 in FIGS. 1-3, which will not be repeated here.
- the gas purification processing device 400 may be composed of multiple gas purification processing units in parallel, and each gas purification processing unit is equivalent to an independent gas purification processing device. By connecting a plurality of gas purification processing units in series, the amount of gas purification processing can be increased.
- Fig. 6 is a flowchart of an exemplary gas purification processing method according to some embodiments of the present specification.
- the method may be performed by one or more components in the gas purification processing device 100 or the gas purification processing device 400.
- the process 600 may be automatically performed by the control system.
- the process 600 may be implemented through control instructions, and the control system controls various components to complete the operations of the process 600 based on the control instructions.
- the process 600 may be performed semi-automatically.
- one or more operations of process 600 may be performed manually by an operator.
- one or more additional operations not described may be added, and/or one or more operations discussed herein may be deleted.
- the order of operations shown in FIG. 6 is not limitative.
- Step 610 Pass the gas into the photo-oxidation reactor, and perform a first-stage purification treatment under the first light irradiation to obtain a first mixed gas.
- the gas is a gas to be processed.
- the gas may include VOCs gas.
- VOCs gas may include non-methane hydrocarbons (Non-Methane Hydrocarbons, NMHC), oxygen-containing organic compounds, halogenated hydrocarbons, nitrogen-containing organic compounds, sulfur-containing organic compounds, and the like.
- NMHC Non-Methane Hydrocarbons
- oxygen-containing organic compounds oxygen-containing organic compounds
- halogenated hydrocarbons nitrogen-containing organic compounds
- sulfur-containing organic compounds sulfur-containing organic compounds
- the gas may include biological contaminants.
- the biological contaminants may include one or more of bacteria, yeasts, viruses, molds, and dust mites.
- the gas may include VOCs gas and biological pollutants. It can be understood that the process 500 described in the embodiment of this specification can purify VOCs gas, or purify one or more of bacteria, yeasts, viruses, molds, and dust mites. It can also purify VOCs at the same time. VOCs gas and one or more of bacteria, yeasts, viruses, molds and dust mites are purified.
- the flow rate and flow rate of the gas into the photo-oxidation reactor can be based on actual needs (for example, the mineralization rate of VOCs gas, the volume of the reaction chamber of the photo-oxidation reactor, or The gas processing capacity, etc.) are set, which is not limited in this application.
- the flow or flow rate of the gas can be set according to the volumetric space velocity.
- the volumetric space velocity is the ratio of the gas volume flow rate to the catalyst volume per unit time.
- the catalyst volume may be the volume of an ozone oxidation catalyst.
- the volumetric space velocity may include 100-10000 h -1 .
- the volumetric space velocity may include 500-9500h -1 .
- the volumetric space velocity may include 1000-9000h -1 .
- the volumetric space velocity may include 1500-8500h -1 .
- the volumetric space velocity may include 2000-8000h -1 .
- the volumetric space velocity may include 2500-7500h -1 .
- the volumetric space velocity may include 3000-7000h -1 .
- the volumetric space velocity may include 3500-6500h -1 .
- the volumetric space velocity may include 4000-6000h - 1 .
- the volumetric space velocity may include 4500-5500h -1 .
- the volumetric space velocity may include 4800-5300h -1 .
- the volumetric space velocity may include 5000-5100h -1 .
- the first light is vacuum ultraviolet light.
- the second light is ultraviolet light.
- the second light is ultraviolet light (eg, ultraviolet light at 254 nm) and visible light.
- the first light and the second light may be emitted from the same light source (e.g., light source 114).
- the light source is excited by microwaves to emit the first light and the second light.
- the microwave transmitter 140 may be activated to emit microwaves, and the excitation light source 114 may emit mixed light mainly composed of 185 nm vacuum ultraviolet light and 254 nm ultraviolet light and visible light.
- the first mixed gas may include carbon dioxide, carbon monoxide, water, benzoic acid, acetic acid, formic acid, benzaldehyde, benzene, phenol, 2-methylphenol, heptaldehyde, or the like.
- the first-stage purification treatment includes performing photolysis and photooxidation reactions of the gas to be treated under the action of the first light to obtain the first mixed gas.
- the gas to be treated containing VOCs and/or biological pollutants may be passed into the reaction chamber 111 in the photooxidation reactor 110 through the gas inlet pipe 112.
- O 2 in the gas to be treated produces strong oxidizing free radicals and ozone (O 3 ); at the same time, other components in the gas to be treated (for example, VOCs gas, bacteria , Yeasts, viruses, molds, dust mites, etc.) under the action of vacuum ultraviolet light with a wavelength of 185nm for photolysis and photooxidation, chain scission or ring opening is converted into small molecular organic substances such as aldehydes, ketones, acids or esters, or directly Mineralization is CO 2 , H 2 O and other inorganic substances; H 2 O and O 2 in the gas to be treated will produce strong oxidizing free radicals such as ⁇ OH, ⁇ O, after being irradiated with vacuum ultraviolet rays with a wavelength of 185nm. It can decompose the cell membrane of microorganisms, leading to the direct death of some bacteria, yeasts, viruses, molds, and dust mites, and finally obtain the first
- the first mixed gas obtained by the first-stage purification process can be discharged from the reaction chamber (for example, the reaction chamber 111) of the photooxidation reactor through the gas outlet pipe (for example, the gas outlet pipe 113).
- Step 620 Pass the first mixed gas into a catalytic ozone oxidation reactor filled with an ozone oxidation catalyst to perform a second-stage purification treatment to obtain a second mixed gas.
- the ozone oxidation catalyst may include at least one of transition metal oxides, composite catalysts of transition metal oxides and molecular sieves.
- the transition metal oxide may be at least one of transition metal oxides such as Mn, Fe, Co, Ni, V, Cu, Ce, and Ag.
- the ozone oxidation catalyst may be at least one of MnO 2 and a MnO 2 /molecular sieve composite catalyst. More preferably, the ozone oxidation catalyst may be a ⁇ -MnO 2 /molecular sieve composite catalyst.
- the ozone oxidation catalyst may be a ⁇ -MnO 2 /USY molecular sieve composite catalyst.
- the ⁇ -MnO 2 /USY molecular sieve composite catalyst can be prepared by the following steps: Put 0.3 g KMnO 4 and 1.7 g USY molecular sieve into a 250 mL beaker1, add 40 mL deionized water, and magnetically stir for 30 minutes; Weigh 0.055g of MnSO 4 ⁇ H 2 O into a 100mL beaker, add 40mL of deionized water to dissolve it, slowly pour it into the beaker 1, and then magnetically stir for 30 minutes, then transfer the solution to a 100mL Teflon reactor.
- the second mixed gas may include carbon dioxide, carbon monoxide, water, benzaldehyde, benzene, benzoic acid, heptaldehyde, benzyl alcohol, hexanol, hexanal, phenol, and the like.
- the second-stage purification treatment includes performing an ozone catalytic oxidation reaction on the first mixed gas under the action of an ozone oxidation catalyst to obtain the second mixed gas.
- the first mixed gas is passed into the reaction chamber 121 in the catalytic ozone oxidation reactor 120 filled with an ozone oxidation catalyst through the air inlet pipe 122.
- the ozone in the first mixed gas is decomposed to generate oxygen in the presence of the ⁇ -MnO 2 /USY molecular sieve composite catalyst. In this process, new ecological oxygen atoms are generated, which have strong oxidizing properties, and will also be generated in the presence of water vapor.
- the new ecological oxygen atoms and active free radicals such as ⁇ OH react with the cell walls and cell membranes of bacteria, yeasts, viruses, molds, dust mites, etc. in the first mixed gas, and the double bonds with their external lipids first occur. Redox reaction, and then oxidation of its important substances lipopolysaccharide and protein, etc., thereby changing the permeability of the biological wall, causing the key content of the bacteria to flow out, denature, and then die; then, the ozone can continue to interact with the inside of the microorganisms.
- the new ecological oxygen atoms and active free radicals such as ⁇ OH are converted into aldehydes, ketones, acids or esters, etc., as well as the undecomposed components in the first mixed gas after the first-stage purification treatment, as well as chain scission or ring opening.
- the small molecular organic matter further reacts, chain scission or ring opening generates smaller small molecular organic matter, or it is directly mineralized into CO 2 , H 2 O and other inorganic substances.
- the first mixed gas undergoes a second-stage purification treatment to finally obtain the second mixed gas.
- the second mixed gas obtained by the second-stage purification process may be discharged from the reaction chamber (for example, the reaction chamber 121) of the catalytic ozone oxidation reactor through the gas outlet pipe (for example, the gas outlet pipe 123).
- Step 630 Pass the second mixed gas into a photocatalytic reactor filled with a photocatalyst, and perform a third-stage purification process under the second light irradiation to obtain a purified gas.
- the purified gas may have components in the VOCs gas and/or biological pollutants lower than the first threshold or the mineralization rate higher than the second threshold.
- the first threshold is the maximum value when the composition of the gas meets the processing requirements.
- the second threshold is the minimum value when the composition of the gas meets the processing requirements.
- the second threshold is the mineralization rate of toluene in VOCs gas.
- the mineralization rate of toluene in the VOCs gas may be above 92%.
- the reaction cavity of the photocatalytic reactor is filled with a photocatalyst, and the composition of the photocatalyst may be related to the type of the second light.
- the second light is ultraviolet light (eg, 254 nm ultraviolet light).
- the photocatalyst may include TiO 2 catalyst, TiO 2 /SiO 2 composite catalyst, F/TiO 2 /SiO 2 composite catalyst, Bi/F/TiO 2 /SiO 2 composite catalyst, S/F/TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst, Sn/S/F/TiO 2 composite catalyst, Sn/S/F/TiO 2 /SnO 2 composite catalyst, one or more Kind.
- the TiO 2 /SiO 2 composite catalyst can be prepared by the following steps: weigh 25 g of silica sol into a 250 mL beaker, measure 3 mL of KH-570 into the beaker, and stir for 10 min; weigh 0.2 g of silica sol. Add sodium metaphosphate into the beaker, stir for 5 minutes, adjust the pH to 2; weigh 10g of the photocatalyst P25TiO 2 into the beaker, stir magnetically for 1 hour, dry at 80°C for 12 hours, grind and sieve solid particles of 40-60 mesh, that is It is a TiO 2 /SiO 2 composite catalyst.
- the second light is ultraviolet light (for example, ultraviolet light at 254 nm) and visible light.
- the photocatalyst may also include one or both of a TiO 2 catalyst and a TiO 2 /SiO 2 composite catalyst and a BiVO 4 catalyst.
- the BiVO 4 catalyst is filled in the photocatalytic reactor 130 on the side away from the photooxidation reactor 110, the TiO 2 catalyst, the TiO 2 /SiO 2 composite catalyst, the F/TiO 2 /SiO 2 composite catalyst, and Bi /F/TiO 2 /SiO 2 composite catalyst, S/F/TiO 2 /SiO 2 composite catalyst, S/Bi/F/TiO 2 /SiO 2 composite catalyst, Sn/S/F/TiO 2 composite catalyst, Sn/ One or more of the S/F/TiO 2 /SnO 2 composite catalysts are filled in the photocatalytic reactor 130 on the side close to the photooxidation reactor 110.
- the BiVO 4 catalyst can be prepared by the following steps: dissolving 5 mmol Bi(NO 3 ) 3 ⁇ 5H 2 O into 25 mL 4M HNO 3 solution, stirring at room temperature for 60 min; then adding 5 mmol NH 4 VO 3 Dissolve in 25mL 4M NaOH solution, and add the mixed solution to Bi(NO 3 ) 3 solution, stir for 1 hour and then add to the high temperature and high pressure reactor, hydrothermally at 190°C for 12 hours; wash with deionized water for 3-5 times After centrifugation to remove impurities, the yellow precipitate obtained is BiVO 4 ; BiVO 4 powder can be obtained by drying at 100°C for 6 hours, which is BiVO 4 catalyst.
- the third-stage purification treatment includes performing a photocatalytic reaction on the second mixed gas under the action of a photocatalyst, under the condition that the microwaves emitted by the microwave emitter provide heat, and under the irradiation of the second light, to obtain purification The treated gas.
- the second mixed gas is passed into the reaction chamber 131 in the photocatalytic reactor 130 filled with the photocatalyst through the gas inlet pipe 132.
- the light source 114 emits first light and second light, wherein the unused second light enters the reaction cavity 131 of the photocatalytic reactor 130 through the light-transmitting component (ie, the light-transmitting side wall) of the photo-oxidation reactor 110.
- the remaining bacteria, yeasts, viruses, molds, dust mites and other microorganisms' genetic material nucleic acids in the second mixed gas absorb the energy of the second light.
- Nucleic acid is an important genetic material of microorganisms. When it is irradiated by the second light, its tissue structure is destroyed. Thymine dimer (TT) is formed in DNA and uracil dimer (UU) is formed in RNA.
- the second mixed gas undergoes a third-stage purification process, and finally a purified gas is obtained.
- the purified gas may be discharged from the reaction chamber (for example, the reaction chamber 131) of the photocatalytic reactor through the gas outlet pipe (for example, the gas outlet pipe 133).
- the gas purification device can be directly discharged through the gas outlet pipe (eg, gas outlet pipe 133).
- the purified gas is passed to the next-stage purification processing device.
- the next-stage purification treatment device may be a heated catalytic reactor, and the heated catalytic reactor is filled with a thermal catalyst.
- the purified gas may be passed into a heated catalytic reactor filled with a thermal catalyst for the fourth-stage purification treatment.
- the thermal catalyst may be a Mn-containing catalyst.
- the thermal catalyst may be at least one of MnO, MnO 2 or other manganese oxides. More preferably, the thermal catalyst may be a MnO 2 catalyst.
- microwaves may be used to heat the gas in the heating catalytic reactor (ie, the purified gas).
- the fourth-stage purification treatment includes performing a thermal catalytic reaction on the purified gas in the presence of a thermal catalyst and under the action of microwaves emitted by a microwave transmitter to obtain a final purified gas.
- the purified gas passes through the gas inlet pipe 152 into the reaction chamber 151 in the heated catalytic reactor 150 filled with the thermal catalyst.
- the components in the third mixed gas are attached to the surface of the thermal catalyst.
- the thermal catalyst is heated by microwaves, so that the components in the third mixed gas are decomposed at high temperature and mineralized into CO. 2.
- Inorganic substances such as H 2 O.
- the remaining bacteria, yeasts, viruses, molds, dust mites and other microorganisms in the third mixed gas will destroy the proteins, nucleic acids and active substances in the cells under high temperature conditions, which will affect the life activities of microorganisms and achieve the purpose of sterilization. .
- the purified gas undergoes a fourth-stage purification process to obtain a final purified gas
- the finally purified gas may be discharged from the gas purification processing device through the gas outlet pipe.
- the mineralization rate of toluene in the VOCs gas is above 92%.
- the mineralization rate of toluene in the VOCs gas may be 93% or more.
- the mineralization rate of toluene in the VOCs gas may be above 94%.
- the mineralization rate of toluene in the VOCs gas may be 95% or more.
- the mineralization rate of toluene in the VOCs gas may be above 96%.
- the mineralization rate of toluene in the VOCs gas may be 97% or more.
- the mineralization rate of toluene in the VOCs gas may be 98% or more.
- the mineralization rate of toluene in the VOCs gas may be 99% or more.
- the mineralization rate of toluene in the VOCs gas may be 100% or more.
- the fourth-stage purification treatment may not be performed; if the third-stage purification process The treated gas does not meet the treatment requirements (that is, the mineralization rate of toluene in the VOCs gas is less than 92%), and a fourth-stage purification treatment is required.
- the killing rate of any one of bacteria, yeasts, viruses, molds, and dust mites at a certain volumetric space velocity is more than 90%.
- the killing rate of any one of bacteria, yeasts, viruses, molds, and dust mites may be 91% or more.
- the killing rate of any one of bacteria, yeasts, viruses, molds, and dust mites may be 92% or more.
- the killing rate of any one of bacteria, yeasts, viruses, molds, and dust mites may be 93% or more.
- the killing rate of any one of bacteria, yeasts, viruses, molds, and dust mites may be 94% or more.
- the killing rate of any one of bacteria, yeasts, viruses, molds, and dust mites may be 95% or more.
- the killing rate of any one of bacteria, yeasts, viruses, molds, and dust mites may be 96% or more.
- the killing rate of any one of bacteria, yeasts, viruses, molds, and dust mites may be 97% or more.
- the killing rate of any one of bacteria, yeasts, viruses, molds, and dust mites may be 98% or more.
- the killing rate of any one of bacteria, yeasts, viruses, molds, and dust mites may be 99% or more.
- the killing rate of any one of bacteria, yeasts, viruses, molds and dust mites may be 100%. It can be understood that if the gas after the third-stage purification treatment can meet the treatment requirements (that is, the killing rate is above 90%), the fourth-stage purification treatment may not be performed; if the gas after the third-stage purification treatment is not If the treatment requirements are met (that is, the killing rate is less than 90% or more), the fourth level of purification treatment is also required.
- the volumetric space velocity may be the volumetric space velocity in the catalytic ozone oxidation reactor.
- the volumetric space velocity may include 100-10000 h -1 .
- the volumetric space velocity may include 500-9500h -1 .
- the volumetric space velocity may include 1000-9000h -1 .
- the volumetric space velocity may include 1500-8500h -1 .
- the volumetric space velocity may include 2000-8000h -1 .
- the volumetric space velocity may include 2500-7500h - 1 .
- the volumetric space velocity may include 3000-7000h -1 .
- the volumetric space velocity may include 3500-6500h -1 .
- the volumetric space velocity may include 4000-6000h -1 .
- the volumetric space velocity may include 4500-5500h -1 .
- the volumetric space velocity may include 4800-5300h -1 .
- the volumetric space velocity may include 5000-5100h -1 .
- the volumetric space velocity has a negative correlation with the killing rate. Specifically, when the killing rate of any one of bacteria, yeasts, viruses, molds, and dust mites is less than 100%, the larger the volumetric space velocity, the smaller the killing rate, and the smaller the volumetric space velocity, the greater the killing rate. .
- the opening of the heating catalytic reactor can also be controlled according to the gas processing requirements. Specifically, if the vacuum ultraviolet photolysis and photooxidation, catalytic ozone oxidation and photocatalytic processes have been able to achieve complete mineralization, there is no need to start the heating catalytic reactor, for example, by disconnecting the heating catalytic reactor and the photocatalytic reactor outlet pipe The gas after the third-stage purification process is discharged through the outlet pipe of the photocatalytic reactor; if the vacuum ultraviolet photolysis and photooxidation, catalytic ozone oxidation and photocatalytic processes do not complete the gas treatment, the catalytic reactor will be heated It is connected with the photocatalytic reactor to start the heating catalytic reactor.
- step 640 can be added to perform a fourth-level purification process on the gas.
- the fourth-level purification process can be placed before step 610.
- the microwave transmitter 140 can be eliminated, and the ultraviolet lamp in the photooxidation reactor 110 adopts a conventional ultraviolet lamp to provide ultraviolet light of the required wavelength (vacuum ultraviolet light with a wavelength of ⁇ 185nm and ultraviolet light with a wavelength of ⁇ 254nm).
- the gas purification treatment using the purification treatment device of this structure is similar to the gas purification treatment method using the gas purification treatment device 100 shown in FIG. 1, including: passing the gas into the photooxidation reactor 110 at a wavelength less than or equal to 185nm Perform photolysis and photooxidation reactions (ie, first-stage purification treatment) under vacuum ultraviolet light irradiation to obtain a first mixed gas containing ozone; pass the first mixed gas into a catalytic ozone oxidation reactor 120 filled with an ozone oxidation catalyst Carry out the catalytic ozone oxidation reaction to obtain the second mixed gas (that is, the second-stage purification treatment); then pass the second mixed gas into the photocatalytic reactor 130 filled with photocatalyst, and irradiate the ultraviolet light with a wavelength less than or equal to 254nm Next, the photocatalytic reaction (that is, the third-stage purification treatment) is performed.
- the photocatalytic reaction that is, the third-stage purification treatment
- Application effect experiments include experimental group 1, experimental group 2, comparison group 11, comparison group 12, comparison group 21, and comparison group 22.
- Experimental group 1 and experimental group 2 used the photooxidation-catalytic ozonation-photocatalytic process to purify the gas, and the microwave power of experimental group 1 and experimental group 2 were different.
- the comparison group 11 and the comparison group 12 are subjected to gas purification treatment according to the photooxidation-catalytic ozonation process, and the microwave power of the comparison group 11 and the comparison group 12 are different.
- the comparison group 21 and the comparison group 22 are subjected to gas purification treatment according to the photo-oxidation-photocatalysis process, and the microwave power of the comparison group 21 and the comparison group 22 is different.
- the gas to be treated selected in the application effect experiment is: a toluene concentration of 20 ppm, a gas flow rate of 200 mL/min, an oxygen content of 21%, and a relative humidity of 70%. Because toluene is a more difficult component in VOCs gas, it is representative in gas purification treatment experiments.
- the degradation rate refers to the degree to which the components of the original gas decompose into other substances during the gas purification process.
- the mineralization rate refers to the degree to which organic carbon-containing components in the original gas are converted into inorganic carbon components during the gas purification process.
- the concentration of toluene in the gas before and after purification the concentration of CO and the concentration of CO 2 in the purified gas, and the degradation rate and mineralization rate of toluene are calculated according to the following formula to evaluate the toluene of each process Removal.
- c(C 7 H 8 ) in is the concentration of toluene before purification, ppm;
- c(C 7 H 8 ) out is the concentration of toluene after purification treatment, ppm.
- c(CO) out is the concentration of CO in the purified gas, ppm;
- c(CO 2 ) out is the concentration of CO 2 in the purified gas, ppm;
- c(CO) in is the concentration of CO in the gas before purification, ppm;
- c(CO 2 ) in is the concentration of CO 2 in the gas before purification, ppm;
- c(C 7 H 8 ) in is the concentration of toluene before purification, ppm.
- the toluene mineralization rate of the comparative group 11 using the photo-oxidation-catalytic ozonation process is 47.1%, and the toluene ore of the comparative group 21 using the photo-oxidation-photocatalytic process
- the toluene mineralization rate of experimental group 1 using the photo-oxidation-catalytic ozonation-photocatalytic composite process was 81.1%.
- the toluene mineralization rate was 83.3%.
- the experimental group 1 using the photo-oxidation-catalytic ozone oxidation-photocatalytic composite process for gas purification treatment has high treatment efficiency and high mineralization rate, that is, when the photo-oxidation-catalytic ozone oxidation-photocatalytic composite process is adopted, The conversion of toluene into CO and CO 2 is more efficient.
- the toluene mineralization rate of the comparative group 12 using the photo-oxidation-catalytic ozonation process is 39.5%
- the toluene of the comparative group 22 using the photo-oxidation-photocatalytic process The mineralization rate is 66.2%
- the toluene mineralization rate of experimental group 2 using the photo-oxidation-catalytic ozonation-photocatalytic composite process is 70.3%. It can be seen that when the photo-oxidation-catalytic ozone oxidation-photocatalytic composite process is used for gas purification treatment, the treatment efficiency is high and the mineralization rate is high. That is, when the photo-oxidation-catalytic ozone oxidation-photocatalytic composite process is adopted, toluene is converted into CO And CO 2 is more efficient.
- the toluene mineralization rate of the comparison group 11 with 228W power is 47.1%, and the comparison with 147.75W power
- the toluene mineralization rate of group 12 is 39.5%
- the toluene mineralization rate of the comparative group 21 using the photo-oxidation-photocatalytic process is 81.1% with the power of 228W and the comparative group using the power of 147.75W.
- the toluene mineralization rate of 22 is 66.2%; (3) The toluene mineralization rate of experimental group 1 with 228W power is 83.3% under the conditions of photooxidation-catalytic ozonation-photocatalytic composite process, and 147.75W is adopted. The toluene mineralization rate of experimental group 2 of the power is 70.3%. It can be seen that under any two or three composite processes, when 228W power is used for gas purification treatment, the treatment efficiency is high and the mineralization rate is high. It can be understood that higher energy is conducive to the generation of ultraviolet light and visible light, and stimulates the activity of the catalyst, making the conversion of toluene into CO and CO 2 more efficient.
- the parameters of the gas to be treated in the above-mentioned experimental groups are: toluene concentration of 5 ppm, gas flow rate of 200 mL/min, oxygen content of 21%, and relative humidity of 70%.
- Each experimental group was tested in the gas purification processing device 100.
- the results of the degradation rate and mineralization rate of each experimental group are shown in Table 2.
- the components and contents of the gas residues after the treatment of each experimental group are shown in Table 3.
- the components and contents of the gas residues after the treatment of each experimental group are passed into the GC-MS through the gas residues after the reaction of each experimental group is completed. (Gas Chromatography-Mass Spectrometer).
- the toluene mineralization rate of the experimental group F adopting the photo-oxidation-catalytic ozonation-photocatalytic process is 92.8%. This is because the photocatalytic process can affect the by-product ozone in the photo-oxidation process. And ultraviolet light (generally with a wavelength less than or equal to 254nm) with poor photolysis effect is reused, so the mineralization rate of toluene is increased to 92.8%, which improves the purification efficiency, and because ozone is used, the final exhaust gas purification treatment device is guaranteed There is no ozone in the gas, which ensures that there is no ozone leakage during the entire process.
- the sum of the toluene mineralization rate of experimental group A using a single photooxidation process, experimental group B of catalytic ozonation process, and experimental group C of photocatalytic process is 101.2%, while photooxidation-catalytic ozonation-light
- the toluene mineralization rate of experimental group F of the catalytic process is 92.8%, that is, the toluene mineralization rate of the combined photooxidation-catalytic ozonation-photocatalytic process is less than the sum of the toluene mineralization rates of the three single processes, which is mainly due to Ozone is completely purified in the catalytic ozone oxidation process section, so that the photocatalytic process does not have the synergistic contribution of the strong ozone oxidizing property, so that the mineralization rate of the photocatalytic process is less than the theoretical value, but the photooxidation-catalytic ozone oxidation-photocatalytic process is adopted
- the chain organic matter is only formic acid, and the proportion of benzoic acid is 83.5%.
- the gas residues after the photooxidation-catalytic ozonation process of the gas to be treated are benzene series and long-chain organics, of which benzaldehyde, benzoic acid and benzene account for a relatively large proportion, respectively 24.2%, 11.7% and 22.7%;
- the gas residues after the photooxidation-photocatalysis process of the gas to be treated are all benzene series, and benzoic acid and benzene account for a relatively large proportion, respectively 64.0% and 22.8% (6)
- the gas residues after the photooxidation-catalytic ozonation-photocatalytic composite process of the gas to be treated are basically benzene series, and there is a small amount of formic acid, and the proportion of benzoic acid is 72.6%.
- the photooxidation process helps to degrade toluene; in addition, during the degradation process of the gas to be treated, although the content of the original volatile organic pollutants (for example, toluene) is reduced after the decomposition, the product after decomposition ( For example, benzoic acid, benzene, etc.) are still hazardous organic pollutants. Therefore, only by increasing the mineralization rate of volatile organic pollutants in the gas treatment process, can organic carbon pollutants be truly converted into harmless inorganic pollutants. Carbon products (for example, CO or CO 2 ), otherwise it may cause more serious pollution and harm after being discharged. In addition, since the mineralization rate is calculated as the content of inorganic carbon products (for example, CO or CO 2 ) in the outlet gas, it can better characterize the gas treatment efficiency relative to the toluene degradation rate.
- the mineralization rate is calculated as the content of inorganic carbon products (for example, CO or CO 2 ) in the outlet gas, it can better characterize the gas treatment efficiency relative to the toluene degradation rate.
- the gas purification treatment device 100 is used to adopt a photo-oxidation-catalytic ozone oxidation-photocatalytic composite process.
- the microwave power is 147.75W
- the relative humidity is 70%
- the oxygen content is 21%
- the gas flow rate is 200mL/min
- the initial toluene is 147.75W.
- a long-term running experiment was carried out under the reaction condition of a concentration of 20 ppm to test the removal effect of toluene, and the results obtained are shown in Figure 7.
- the degradation rate of p-toluene remains stable, basically maintaining above 95%; the toluene mineralization rate only drops from the initial 70.3% to 67.4%, and remains stable. It is proved that the photo-oxidation-ozone catalytic oxidation-photocatalytic composite process system has a good gas purification treatment effect after regeneration.
- the possible beneficial effects of the embodiments of the present application include, but are not limited to: (1) The first light and the second light are generated by the microwave emitter emitting microwave to excite the ultraviolet lamp, and the first light is used for the first light in the photooxidation reactor. Stage purification treatment, and the third stage purification treatment using the second light passing through the light-transmitting component in the photocatalytic reactor, so that the gas purification treatment device can make multiple use of the light emitted by the ultraviolet lamp and improve the utilization rate of the light source , Save energy; (2) The emission of microwaves by the microwave transmitter can excite the ultraviolet lamp in the photo-oxidation reactor to produce the first light and the second light, which can enhance the activity of the photocatalyst in the photocatalytic reactor, and can also heat The catalytic reactor is heated, so a single microwave transmitter can be used to trigger the purification of the three reactors, which makes the gas purification treatment device more integrated, improves the gas purification efficiency, and reduces energy consumption; (3) photooxidation reaction The ozone generated in the
- the gas purification treatment has the functions of efficient use of ozone and zero leakage of ozone; (4) The gas purification treatment device is subjected to poisoning regeneration experiments, which shows that the specific in-situ regeneration ability of the catalyst in the gas purification treatment device after poisoning makes the gas purification treatment The device has better industrial application value; (5) By setting up a heating catalytic reactor, when the third-stage purification treatment gas does not meet the standard, the fourth-stage purification treatment is carried out to further ensure the gas treatment efficiency and treatment of the gas purification treatment device Capacity; (6) The gas purification and treatment device fully combines the single disinfection and sterilization technologies (vacuum ultraviolet disinfection and sterilization technology, ozone disinfection and sterilization technology, MnO 2 catalytic ozone disinfection and sterilization technology, TiO 2 photocatalytic disinfection and sterilization technology, MnO 2 thermal catalysis Disinfection and sterilization technology, etc.), can achieve a significant increase in disinfection and sterilization efficiency per unit energy
- the possible beneficial effects may be any one or a combination of the above, or any other beneficial effects that may be obtained.
- this application uses specific words to describe the embodiments of the application.
- “one embodiment”, “an embodiment”, and/or “some embodiments” mean a certain feature, structure, or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment”, or “one embodiment”, or “an alternative embodiment”, or “another embodiment” mentioned twice or more in different positions in this specification "Example” or “another embodiment” do not necessarily refer to the same embodiment.
- some features, structures, or characteristics in one or more embodiments of the present application can be appropriately combined.
- the content disclosed in this application can have many variations and improvements.
- the different system components described above are all realized by hardware devices, but they may also be realized only by software solutions. For example: installing the system on an existing server.
- the location information disclosed herein may be provided through a firmware, a combination of firmware/software, a combination of firmware/hardware, or a combination of hardware/firmware/software.
- All software or part of it may sometimes communicate through a network, such as the Internet or other communication networks.
- This type of communication can load software from one computer device or processor to another.
- a hardware platform loaded from a management server or host computer of a radiotherapy system to a computer environment, or other computer environment for realizing the system, or a system with similar functions related to providing information needed to determine the target structure parameters of a wheelchair.
- another medium that can transmit software elements can also be used as a physical connection between local devices, such as light waves, electric waves, electromagnetic waves, etc., to achieve propagation through cables, optical cables, or air.
- the physical media used for carrier waves, such as cables, wireless connections, or optical cables can also be considered as media that carry software.
- the tangible "storage” medium other terms referring to the computer or machine "readable medium” all refer to the medium that participates in the process of executing any instructions by the processor.
- the computer program codes required for the operation of each part of this application can be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C ++ , C # , VB. NET, Python, etc., conventional programming languages such as C language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages, etc.
- the program code can be run entirely on the user's computer, or run as an independent software package on the user's computer, or partly run on the user's computer and partly run on a remote computer, or run entirely on the remote computer or server.
- the remote computer can be connected to the user's computer through any network form, for example, a local area network (LAN) or a wide area network (WAN), or connected to an external computer (for example, via the Internet), or in a cloud computing environment, or as Service usage is like software as a service (SaaS).
- LAN local area network
- WAN wide area network
- Service usage is like software as a service (SaaS).
- numbers describing attributes and quantities are used. It should be understood that such numbers used in the description of the embodiments, in some examples, use the modifier "about”, “approximately” or “substantially” to modify . Unless otherwise stated, “approximately”, “approximately” or “substantially” indicates that the number is allowed to vary by ⁇ 20%.
- the numerical parameters used in the specification and claims are approximate values, and the approximate values can be changed according to the required characteristics of individual embodiments. In some embodiments, the numerical parameter should consider the prescribed effective digits and adopt the method of general digit retention. Although the numerical ranges and parameters used to confirm the breadth of the range in some embodiments of the present application are approximate values, in specific embodiments, the setting of such numerical values is as accurate as possible within the feasible range.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
一种气体净化处理装置(100)和方法。气体净化处理装置(100)包括:光氧化反应器(110)、催化臭氧氧化反应器(120)和光催化反应器(130);光氧化反应器(110)内设置光源(114),光源(114)发射第一光和第二光,光氧化反应器(110)用于在第一光的照射下对气体进行第一级净化处理;催化臭氧氧化反应器(120)内填充有臭氧氧化催化剂,且与光氧化反应器(110)连通,用于对气体进行第二级净化处理;光催化反应器(130)内填充有光催化剂,且与催化臭氧氧化反应器(120)连通,用于在第二光的照射下对气体进行第三级净化处理。光催化反应器(130)和光氧化反应器(110)相邻设置且通过透光组件分隔,使得第二光能够穿过透光组件进入光催化反应器(130)中。
Description
交叉引用
本申请要求2019年12月30日递交的申请号为201911396167.3的中国申请的优先权,其所有内容通过引用的方式包含于此。
本申请涉及气体处理技术领域,特别涉及一种气体净化处理装置和方法。
随着社会经济的不断发展,环境污染问题越来越受到人们的重视,人们的环保意识也在逐渐增强。例如,在工业上,通过制定一系列气体排放标准,对废气排放进行限制;在生活中,通过对室内空气进行净化,使得室内空气保持洁净。在气体净化过程中,净化后气体中有害成分的含量需要满足排放要求或生活要求。因此,有必要提供一种气体净化处理装置和方法。
发明内容
本说明书实施例的一个方面提供一种气体净化处理装置。所述装置包括:光氧化反应器,所述光氧化反应器内设置光源,所述光源发射第一光和第二光,所述光氧化反应器用于在所述第一光的照射下对气体进行第一级净化处理;催化臭氧氧化反应器,所述催化臭氧氧化反应器内填充有臭氧氧化催化剂,且与所述光氧化反应器连通,用于对所述气体进行第二级净化处理;光催化反应器,所述光催化反应器内填充有光催化剂,且与所述催化臭氧氧化反应器连通,用于在所述第二光的照射下对所述气体进行第三级净化处理;其中,所述光催化反应器与所述光氧化反应器相邻设置且通过透光组件分隔,使得所述第二光能够穿过所述透光组件进入所述光催化反应器中。
在一些实施例中,所述第一光为真空紫外光;所述第二光为紫外光。
在一些实施例中,所述光催化剂选自TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种。
在一些实施例中,所述第一光为真空紫外光;所述第二光为紫外光和可见光。
在一些实施例中,所述光催化剂选自TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种以及BiVO
4催化剂;所述BiVO
4催化剂填充在所述光催化反应器中远离所述光氧化反应器的一侧,所述TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种填充在所述光催化反应器中靠近所述光氧化反应器的一侧。
在一些实施例中,所述臭氧氧化催化剂选自过渡金属氧化物、过渡金属氧化物与分子筛的复合催化剂中的一种或多种。
在一些实施例中,臭氧氧化催化剂选自MnO
2催化剂、MnO
2/分子筛复合催化剂中的一种或多种。
在一些实施例中,所述装置还包括微波发射器,所述微波发射器用于激发所述光源发射所述第一光和所述第二光。
在一些实施例中,所述装置还包括加热催化反应器,所述加热催化反应器内填充有热催化剂,且与所述光催化反应器连通,用于对所述气体进行第四级净化处理。
在一些实施例中,所述加热催化反应器通过所述微波发射器进行微波加热。
在一些实施例中,所述微波发射器发射微波至所述光催化反应器内。
在一些实施例中,所述光氧化反应器内设置有用于安装所述光源的安装支架。
本说明书实施例的一个方面提供一种气体净化处理方法。所述方法包括:将气体通入光氧化反应器中,在第一光照射下进行第一级净化处理,得到第一混合气;将所述第一混合气通入填充有臭氧氧化催化剂的催化臭氧氧化反应器中进行第二级净化处理,得到第二混合气;将所述第二混合气通入填充有光催化剂的光催化反应器中,在第二光照射下进行第三级净化处理,得到净化处理后的气体;其中,所述第一光和所述第二光来自同一光源。
在一些实施例中,所述第一光为真空紫外光;所述第二光为紫外光。
在一些实施例中,所述光催化剂选自TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种。
在一些实施例中,所述第一光为真空紫外光;所述第二光为紫外光和可见光。
在一些实施例中,所述光催化剂选自TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种以及BiVO
4催化剂。
在一些实施例中,所述臭氧氧化催化剂选自过渡金属氧化物、过渡金属氧化物与分子筛的复合催化剂中的一种或多种。
在一些实施例中,臭氧氧化催化剂选自MnO
2催化剂、MnO
2/分子筛复合催化剂中的一种或多种。
在一些实施例中,所述光源由微波激发发射所述第一光和所述第二光。
在一些实施例中,所述方法还包括:将所述净化处理后的气体通入填充有 热催化剂的加热催化反应器中进行第四级净化处理。
在一些实施例中,对所述加热催化反应器中的气体使用微波进行加热。
在一些实施例中,所述第三级净化处理在微波作用下进行反应。
在一些实施例中,所述气体包括VOCs气体。
在一些实施例中,所述VOCs气体中甲苯的矿化率为92%以上。
在一些实施例中,所述气体包括细菌、酵母菌、病毒、霉菌、尘螨中的一种或多种。
在一些实施例中,所述方法能够对所述细菌、酵母菌、病毒、霉菌、尘螨中的一种或多种进行净化处理。
在一些实施例中,所述细菌、酵母菌、病毒、霉菌、尘螨中的任一种在一定体积空速下的杀灭率为90%以上。
在一些实施例中,所述体积空速包括100-10000h
-1。
在一些实施例中,在所述杀灭率小于100%时,所述体积空速与所述杀灭率成负相关的关系。
图1是本说明书一些实施例所示的示例性气体净化处理装置的结构示意图;
图2是本说明书一些实施例所示的示例性安装支架的结构示意图;
图3是本说明书又一些实施例所示的示例性气体净化处理装置的结构示意图;
图4是本说明书又一些实施例所示的示例性气体净化处理装置的结构示意图;
图5是本说明书又一些实施例所示的示例性气体净化处理装置的平视图;
图6是本说明书一些实施例所示的示例性气体净化处理方法的流程图;
图7是本说明书又一些实施例所示的示例性气体净化处理装置的长时间 运行实验效果图;
图8是本说明书又一些实施例所示的示例性气体净化处理装置的长时间运行后催化剂原位再生甲苯解吸量与COx生成量变化曲线图;以及
图9是本说明书又一些实施例所示的示例性气体净化处理装置的长时间运行后催化剂原位再生后去除甲苯的性能效果图。
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1是本说明书一些实施例所示的示例性气体净化处理装置的结构示意图;图2是本说明书一些实施例所示的示例性安装支架的结构示意图;图3是本说明书又一些实施例所示的示例性气体净化处理装置的结构示意图。
在一些实施例中,气体净化处理装置可以用于对气体进行净化处理。在本说明书实施例中,对气体进行净化处理可以是减少或去除气体中的有害成分。在一些实施例中,有害成分可以是臭氧、臭气、VOCs气体和厨房油烟等。在一些实施例中,VOCs气体主要是指常温下,沸点在50℃-260℃的各种有机化合物。在一些实施例中,VOCs气体主要是指常温下饱和蒸汽压大于70Pa、常压下沸点在260℃以下的有机化合物,或在20℃条件下,蒸汽压大于或者等于10Pa且具有挥发性的全部有机化合物。在一些实施例中,VOCs可以包括非甲烷碳氢化合物(Non-Methane HydroCarbons,NMHC)、含氧有机化合物、卤代烃、含氮有机化合物、含硫有机化合物等。
在本说明书实施例中,对气体进行净化处理也可以是减少或去除气体中的生物性污染物。在一些实施例中,生物性污染物可以包括细菌、酵母菌、病毒、霉菌、尘螨等。
在本说明书实施例中,对气体进行净化处理也可以是同时减少或去除气体中的杂质和生物性污染物。
下面将通过图1-3对气体净化处理装置100进行详细阐述。如图1所示,气体净化处理装置100可以包括光氧化反应器110、催化臭氧氧化反应器120、光催化反应器130和微波发射器140。
光氧化反应器110可以用于对气体进行第一级净化处理。在一些实施例中,光氧化反应器110的外形形状可以包括中空圆柱形、中空椭圆柱形、中空多棱柱形、中空球形,或其他形状,本申请对此不作限制。在一些实施例中,光氧化反应器110具有中空的反应腔111,反应腔111用于提供对气体进行第一级净化处理的反应场所。在一些实施例中,反应腔111的形状可以包括圆柱形、椭圆柱形、多棱柱形、球形,或其他形状。反应腔111的形状可以与光氧化反应器110的外形形状相同,也可以不同。例如,光氧化反应器110的外形形状为多棱柱,反应腔111的形状可以为多棱柱,也可以为圆柱形。在一些实施例中,如图1所示,光氧化反应器110的外形为圆柱型,反应腔111为圆柱形,光氧化反应 器110的内径(即,反应腔的直径)可以包括10-120mm。较为优选地,光氧化反应器110的内径可以包括20-110mm。较为优选地,光氧化反应器110的内径可以包括30-100mm。较为优选地,光氧化反应器110的内径可以包括40-90mm。较为优选地,光氧化反应器110的内径可以包括50-80mm。较为优选地,光氧化反应器110的内径可以包括55-75mm。较为优选地,光氧化反应器110的内径可以包括60-70mm。在一些实施例中,光氧化反应器110的高度可以根据实际需要(例如,处理气体的流量或流速)进行设置,本申请对此不作限制。例如,光氧化反应器110的高度为350mm。在一些实施例中,光氧化反应器110还可以由多个光氧化单元并联组成,每个光氧化单元相当于一个独立的光氧化反应器。通过将多个光氧化单元并联,可以提高气体的净化处理量。
在一些实施例中,反应腔111可以包括至少一个进气管和至少一个出气管。至少一个进气管和至少一个出气管的位置可以根据实际需要设置,本申请对此不作限制。在一些实施例中,反应腔111的下端设置有至少一个进气管112、上端设置有至少一个出气管113。在一些实施例中,反应腔111的下端和上端分别设置有至少一个转接头,通过转接头分别与至少一个进气管112和至少一个出气管113相连。在一些实施例中,进气管112和/或出气管113的材质可以是聚四氟乙烯、聚氯乙烯、不锈钢、碳钢或合金等。在一些实施例中,进气管112和/或出气管113的横截面可以为圆形、方形或其他多边形,本申请对此不作限制。进气管112和/或出气管113的尺寸可以根据需要(例如,待处理气体的流速)进行设置,本申请对此不作限制。例如,进气管112和/或出气管113可以为直径为3mm的圆形管。在本说明书中,待处理气体可以是需要被净化处理的气体。通过至少一个进气管112,可以将待净化处理的气体通入光氧化反应器110中进行第一级净化处理;经过第一级净化处理后的气体,可以通过出气管113排出光氧化反应器110,通入其他设备(例如,催化臭氧氧化反应器120)或直接排入气体净化处理装置100所处的环境中。
在一些实施例中,反应腔111内设有光源114,光源114可以发射第一光 和第二光。在一些实施例中,第一光可以为真空紫外光,第二光可以为紫外光。在一些实施例中,第一光可以为真空紫外光,第二光可以为紫外光和可见光。光氧化反应器110可以在第一光的照射下对气体进行第一级净化处理。光氧化反应器110的侧壁使用透光材料制作,使得第二光可以穿透光氧化反应器110的侧壁,照射到光氧化反应器410的外面。在一些实施例中,透光材料可以包括有机玻璃、陶瓷、聚碳酸酯(Polycarbonate,PC)等。
在一些实施例中,光源114可以包括紫外灯(例如,汞灯),用于提供真空紫外光、紫外光和可见光。在一些实施例中,紫外灯可以是微波无极紫外灯。微波无极紫外灯可以在微波发射器140的激发下发射第一光和第二光,关于微波发射器140的更多描述可以参见下述内容。紫外灯的形状、尺寸和数量可以根据实际需要(例如,待处理气体的参数)进行确定。例如,紫外灯可以是直径为20mm、长300mm的两根微波无极紫外灯。在多个紫外灯之间,以及紫外灯和光氧化反应器110之间一般存在间隙,便于气体流通。在一些实施例中,待处理气体的参数可以是气体中杂质或生物性污染物的浓度或者气体的流量。
在一些实施例中,光氧化反应器110内设置有用于安装光源114的安装支架115。安装支架115的形状、数量和尺寸与光源114的尺寸和数量有关,本说明书对安装支架115的形状和数量不作限制。在一些实施例中,如图2所示,安装支架115可以包括相对设置的两块“8”字型安装板1151和四根支撑柱1152,两块“8”字型安装板1151相对设置,配合形成两组用于安装紫外灯的通孔,四根支撑柱1152设置于两块“8”字型安装板1151之间,用于连接支撑两块安装板1151。在一些实施例中,“8”字型安装板1151的任一通孔的直径可以为21mm,紫外灯的两端可以分别套设固定于安装板1151的通孔上。在一些实施例中,安装板1151和支撑柱1152可以为石英材质。
催化臭氧氧化反应器120可以用于对气体进行第二级净化处理。在一些实施例中,催化臭氧氧化反应器120的外形形状可以包括中空圆柱形、中空椭圆柱形、中空多棱柱形、中空球形,或其他形状,本申请对此不作限制。在一些 实施例中,催化臭氧氧化反应器120具有反应腔121,反应腔121用于提供对气体进行第二级净化处理的反应场所。在一些实施例中,反应腔121的形状可以包括中空圆柱形、中空椭圆柱形、中空多棱柱形、中空球形,或其他形状,本申请对此不作限制。如图所示,反应腔121的中空形状内设置有光氧化反应器110和光催化反应器130。反应腔121的尺寸可以根据实际需要(例如,处理气体的流量或流速)进行设置,本申请对此不作限制。例如,反应腔121的体积可以为0.1m
3。又例如,反应腔121的形状为中空圆柱形时,反应腔121的外径与内径的差值为10mm、高度为400mm。
在一些实施例中,催化臭氧氧化反应器120的外形形状可以包括圆柱形、椭圆柱形、多棱柱形、球形,或其他形状。在一些实施例中,反应腔121的形状可以包括圆柱形、椭圆柱形、多棱柱形、球形,或其他形状。催化臭氧氧化反应器120与光氧化反应器110和光催化反应器130独立分开设置。
在一些实施例中,反应腔121可以包括至少一个进气管和至少一个出气管。至少一个进气管和至少一个出气管的位置可以根据实际需要设置,本申请对此不作限制。在一些实施例中,反应腔121的上端设置有至少一个进气管122、下端设置有至少一个出气管123。在一些实施例中,反应腔121的下端和上端分别设置有至少一个转接头,通过转接头分别与至少一个进气管122和至少一个出气管123相连。在一些实施例中,进气管122和/或出气管123的材质可以是聚四氟乙烯、聚氯乙烯、不锈钢、碳钢或合金等。在一些实施例中,进气管122和/或出气管123的横截面可以为圆形、方形或其他多边形,本申请对此不作限制。进气管122和/或出气管123的尺寸可以根据需要(例如,待处理气体的流速)进行设置,本申请对此不作限制。例如,进气管122和/或出气管123可以为直径为3mm的圆形管。在一些实施例中,进气管122可以与出气管113连接,以将催化臭氧氧化反应器120与光氧化反应器110连通。在一些实施例中,进气管122与出气管113可以为同一根管道,管道两端分别与催化臭氧氧化反应器120和光氧化反应器110连通。
在一些实施例中,反应腔121内填充有臭氧氧化催化剂。在一些实施例中,臭氧氧化催化剂可以选自过渡金属氧化物、过渡金属氧化物与分子筛的复合催化剂中的至少一种。在一些实施例中,过渡金属氧化物可以为Mn、Fe、Co、Ni、V、Cu、Ce、Ag等过渡金属的氧化物中的至少一种。优选地,臭氧氧化催化剂可以为MnO
2、MnO
2/分子筛复合催化剂中的至少一种。更为优选地,臭氧氧化催化剂可以为δ-MnO
2/分子筛复合催化剂。例如,臭氧氧化催化剂可以为δ-MnO
2/USY分子筛复合催化剂。
通过至少一个进气管122,可以将经过第一级净化处理的气体通入催化臭氧氧化反应器120中,在臭氧氧化催化剂作用下进行第二级净化处理;经过第二级净化处理后的气体通过出气管123排出催化臭氧氧化反应器120,通入其他设备(例如,光催化反应器130),或直接排入气体净化处理装置100所处的环境中。
光催化反应器130可以用于对气体进行第三级净化处理。在一些实施例中,光催化反应器130的外形形状可以包括中空圆柱形、中空椭圆柱形、中空多棱柱形、中空球形,或其他形状,本申请对此不作限制。在一些实施例中,光催化反应器130具有反应腔131,反应腔131用于提供对气体进行第三级净化处理的反应场所。在一些实施例中,反应腔131的形状可以包括中空柱形、中空圆柱形、中空椭圆柱形、中空多棱柱形、中空球形,或其他形状,本申请对此不作限制。反应腔131的中空形状内设置有光氧化反应器110。反应腔131的尺寸可以根据实际需要(例如,处理气体的流量或流速)进行设置,本申请对此不作限制。例如,反应腔131为中空圆柱形,其外径与内径的差值可以包括10-400mm。较为优选地,反应腔131的外径与内径的差值可以包括20-350mm。较为优选地,反应腔131的外径与内径的差值可以包括30-300mm。较为优选地,反应腔131的外径与内径的差值可以包括40-250mm。较为优选地,反应腔131的外径与内径的差值可以包括50-200mm。较为优选地,反应腔131的外径与内径的差值可以包括60-150mm。较为优选地,反应腔131的外径与内径的差值可以包括70- 130mm。较为优选地,反应腔131的外径与内径的差值可以包括80-100mm。
在一些实施例中,如图1所示,光催化反应器130也可以与光氧化反应器110套设设置,即光氧化反应器110设置于光催化反应器130的中空腔体内。在一些实施例中,光催化反应器130与光氧化反应器110通过透光组件分隔,使得第二光能够穿过该透光组件进入光催化反应器130的反应腔131中。在一些实施例中,光催化反应器130可以与光氧化反应器110并排相邻设置。例如,光氧化反应器110和光催化反应器130都为四棱柱体,光催化反应器130设置在光氧化反应器110的左侧和/或右侧,两者并排设置,光催化反应器130与光氧化反应器110相邻的壁设置为透光组件,使得第二光能够穿过该透光组件进入光催化反应器130的反应腔131中。
在一些实施例中,反应腔131内填充有光催化剂。光催化剂的组分可以与第二光的类型相关。
在一些实施例中,第二光为紫外光。在一些实施例中,光催化剂可以包括TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种。TiO2催化剂、TiO2/SiO2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种填充在反应腔131内,在第二光(波长小于或等于254nm的紫外光)的照射下,在反应腔131内对气体进行第三级净化处理。
在一些实施例中,第二光为紫外光和可见光。在一些实施例中,光催化剂还可以包括TiO
2催化剂和TiO
2/SiO
2复合催化剂中的一种或两种以及BiVO
4催化剂。在一些实施例中,BiVO
4催化剂填充在光催化反应器130中远离光氧化反应器110的一侧,TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催 化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种填充在光催化反应器130中靠近光氧化反应器110的一侧。在第二光(波长小于或等于254nm的紫外光和可见光)的照射下,TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种可以利用第二光中的紫外光对气体进行第三级净化处理,同时BiVO
4催化剂可以利用第二光中的可见光对气体进行第三级净化处理。
在一些实施例中,反应腔131可以包括至少一个进气管和至少一个出气管。至少一个进气管和至少一个出气管的位置可以根据实际需要设置,本申请对此不作限制。在一些实施例中,反应腔131的下端设置有至少一个进气管132、上端设置有至少一个出气管133。在一些实施例中,进气管132和/或出气管133的材质可以是聚四氟乙烯、聚氯乙烯、碳钢或合金等。在一些实施例中,进气管132和/或出气管133的横截面可以为圆形、方形或其他多边形,本申请对此不作限制。进气管132和/或出气管133的尺寸可以根据需要(例如,待处理气体的流速)进行设置,本申请对此不作限制。例如,进气管132和/或出气管133可以为直径为3mm的圆形管。在一些实施例中,进气管132可以与出气管123连接,以将光催化反应器130与催化臭氧氧化反应器120连通。在一些实施例中,进气管132与出气管123可以为同一根管道,管道两端分别与催化臭氧氧化反应器120和光催化反应器130连通。通过至少一个进气管132,可以将第二级净化处理的气体通入光催化反应器130中,在光催化剂和第二光的照射下进行第三级净化处理;经过第三级净化处理后的气体通过出气管133排出光催化反应器130,通入其他设备(例如,如图5所示的加热催化反应器150)或直接排入气体净化处理装置100所处的环境中。
微波发射器140可以用于激发光源114发射第一光和第二光。在一些实施例中,第一光可以为真空紫外光。在一些实施例中,第二光可以为紫外光,也 可以为紫外光和可见光。在一些实施例中,微波发射器140可以通过微波磁控管141与光氧化反应器相连,以激发光源114发射第一光和第二光。
在一些实施例中,如图1所示,微波发射器140还可以通过微波磁控管141与光催化反应器130相连,微波发射器140发射的微波可以激发光源114发射第一光和第二光,同时,还可以向光催化反应器130发射微波,增强光催化剂的活性。
在一些实施例中,也可以取消微波发射器140,光氧化反应器110内的紫外灯采用常规紫外灯,以提供所需波长的紫外光,例如,波长≤185nm的真空紫外光和波长≤254nm的紫外光。使用该结构的净化处理装置进行气体净化处理与采用图1所示气体净化处理装置100进行气体净化处理的方法类似,具体可以参见图6的描述,在此不作赘述。
在一些实施例中,如图3所示,气体净化处理装置100还可以包括加热催化反应器150。
加热催化反应器150可以用于对气体进行第四级净化处理。在一些实施例中,加热催化反应器150的外形形状可以包括中空圆柱形、中空椭圆柱形、中空多棱柱形、中空球形,或其他形状,本申请对此不作限制。在一些实施例中,加热催化反应器150具有反应腔151,反应腔151用于提供对气体进行第四级净化处理的反应场所。
在一些实施例中,反应腔151的形状可以包括圆柱形、椭圆柱形、多棱柱形、球形,或其他形状,本申请对此不作限制。反应腔151的形状可以与加热催化反应器150的外形形状相同,也可以不同。例如,加热催化反应器150的外形形状为多棱柱,反应腔151的形状可以为多棱柱形,也可以为圆柱形。反应腔151的尺寸可以根据实际需要(例如,处理气体的流量或流速)进行设置,本申请对此不作限制。如图3所示,反应腔151的中空形状内设置有光氧化反应器110和光催化反应器130,加热催化反应器150设置于催化臭氧氧化反应器120的反应腔内。
在一些实施例中,反应腔151可以包括至少一个进气管和至少一个出气管。至少一个进气管和至少一个出气管的位置可以根据实际需要设置,本申请对此不作限制。在一些实施例中,反应腔151的下端设置有至少一个进气管152、下端设置有至少一个出气管153。在一些实施例中,进气管152和/或出气管153的材质可以是聚四氟乙烯、聚氯乙烯、碳钢或合金等。在一些实施例中,进气管152和/或出气管153的横截面可以为圆形、方形或其他多边形,本申请对此不作限制。进气管152和/或出气管153的尺寸可以根据需要(例如,待处理气体的流速)进行设置,本申请对此不作限制。例如,进气管152和/或出气管153可以为直径为3mm的圆形管。在一些实施例中,进气管152可以与出气管133连接,以将光催化反应器130与加热催化反应器150连通。在一些实施例中,进气管152与出气管133可以为同一根管道,管道两端分别与加热催化反应器150和光催化反应器130连通。通过至少一个进气管152,可以将经过第三级净化处理的气体通入加热催化反应器150中进行第四级净化处理;经过第四级净化处理后的气体通过出气管153排出加热催化反应器150,通入其他设备(例如,净化气体储罐),或直接排入气体净化处理装置100所处的环境中。
在一些实施例中,反应腔151内填充有热催化剂。在一些实施例中,热催化剂可以是含Mn催化剂。优选地,热催化剂可以是MnO、MnO
2或其他锰氧化物中的至少一种。更为优选地,热催化剂可以是α-MnO
2催化剂。
在一些实施例中,微波发射器140可以发射微波对加热催化反应器150进行加热,以给第四级净化处理过程提供热量。在热催化剂存在下和微波发射器发射的微波提供热量的条件下,在加热催化反应器150中对经过第三级净化处理的气体进行第四级净化处理。具体地,如图3所示,微波发射器140还可以通过微波磁控管141与加热催化反应器150相连,微波发射器140发射的微波可以激发光源114发射第一光和第二光,同时,还可以向光催化反应器130发射微波以增强光催化剂的活性,以及向加热催化反应器150发射微波以对加热催化反应器150进行加热。
在一些实施例中,气体净化处理装置100可以由多个气体净化处理单元并联组成,每个气体净化处理单元相当于一个独立的气体净化处理装置。通过将多个气体净化处理单元串联,可以提高气体的净化处理量。
图4是本说明书又一些实施例所示的示例性气体净化处理装置的结构示意图;图5是本说明书又一些实施例所示的示例性气体净化处理装置的平视图。
本说明书实施例提供另一种气体净化处理装置的结构示意图,下面将通过图4和图5对另一种气体净化处理装置400进行详细阐述。如图4和图5所示,气体净化处理装置400可以包括光氧化反应器410、催化臭氧氧化反应器420、光催化反应器430、微波发射器(图4中未示出)和加热催化反应器440。
光氧化反应器410可以用于对气体进行第一级净化处理。在一些实施例中,光氧化反应器410可以包括多个中空圆柱体或多棱柱体。例如,如图4所示,光氧化反应器410包括3个中空圆柱体。在一些实施例中,光氧化反应器410的每一个中空圆柱体包括有反应腔411,反应腔411用于提供对气体进行第一级净化处理的反应场所。如图4所示,光氧化反应器410包括三个反应腔411。反应腔411的形状与光氧化反应器410的外形形状可以相同,也可以不同。例如,光氧化反应器410的外形形状可以为圆柱形,反应腔411的形状为圆柱形或多棱柱形。在一些实施例中,如图4所示,光氧化反应器410的外形形状为圆柱形,反应腔411的形状为圆柱形,光氧化反应器410的内径(即,反应腔411的直径)可以包括10-120mm。较为优选地,光氧化反应器410的内径可以包括20-110mm。较为优选地,光氧化反应器410的内径可以包括30-100mm。较为优选地,光氧化反应器410的内径可以包括40-90mm。较为优选地,光氧化反应器110的内径可以包括50-80mm。较为优选地,光氧化反应器410的内径可以包括60-70mm。在一些实施例中,光氧化反应器410的高度可以根据实际需要(例如,处理气体的流量或流速)进行设置,本申请对此不作限制。例如,光氧化反应器410的高度为1000mm。又例如,光氧化反应器410的高度为750mm。又例如,光氧化反应器410的高度为500mm。又例如,光氧化反应器410 的高度为350mm。
在一些实施例中,反应腔411可以包括至少一个进气口和至少一个出气口。至少一个进气口和至少一个出气口的位置可以根据实际需要设置,本申请对此不作限制。在一些实施例中,反应腔411的上端设置有至少一个进气口、下端设置有至少一个出气口。在一些实施例中,进气口和/或出气口的横截面可以为圆形、方形或其他多边形,本申请对此不作限制。进气口和/或出气口的尺寸可以根据需要(例如,待处理气体的流速)进行设置,本申请对此不作限制。例如,进气口和/或出气口可以为直径为3mm的圆形口。通过至少一个进气口,可以将待净化处理的气体通入光氧化反应器410中进行第一级净化处理;经过第一级净化处理后的气体,可以通过出气口排出光氧化反应器410,通入其他设备(例如,催化臭氧氧化反应器120)或直接排入气体净化处理装置400所处的环境中。
在一些实施例中,反应腔411内设有光源(图4和图5中未示出),光源可以发射第一光和第二光。在一些实施例中,第一光可以为真空紫外光,第二光可以为紫外光。在一些实施例中,第一光可以为真空紫外光,第二光可以为紫外光和可见光。光氧化反应器410可以在第一光的照射下对气体进行第一级净化处理。光氧化反应器410的侧壁使用透光材料制作,使得第二光可以穿透光氧化反应器410的侧壁,照射到光氧化反应器410的外面。关于透光才来的更多内容可以参见图1-3的相关说明。
在一些实施例中,光源可以包括紫外灯,用于提供真空紫外光、紫外光和可见光。在一些实施例中,紫外灯可以是微波无极紫外灯。微波无极紫外灯可以在微波发射器的激发下发射第一光和第二光。紫外灯的形状、尺寸和数量可以根据实际需要(例如,待处理气体的参数、反应腔411的高度)进行确定。例如,紫外灯可以是三根微波无极紫外灯,分别安装于3个反应腔411内。在一些实施例中,待处理气体的参数可以是气体中杂质或生物性污染物的浓度或者气体的流量。
关于光氧化反应器410的更多内容可以参见图1-3中关于光氧化反应器 110的描述,在此不作赘述。
催化臭氧氧化反应器420可以用于对气体进行第二级净化处理。在一些实施例中,如图4所示,催化臭氧氧化反应器420为立方体。催化臭氧氧化反应器420的顶部设置有金属网,通过该金属网将催化臭氧氧化反应器420与光催化反应器430分隔开。在一些实施例中,金属网的材质可以包括不锈钢、碳钢、合金等。在一些实施例中,金属网上开设有三个通孔,用于与光氧化反应器410的出口连接,使得经过第一级净化处理后的第一混合气流入催化臭氧氧化反应器420中。金属网上三个通孔的位置和大小与光氧化反应器410的三个中空圆柱体的位置和大小一一对应。在一些实施例中,可以将光氧化反应器410的三个中空圆柱体设置为伸入催化臭氧氧化反应器420的底部,使得第一混合气充分流入催化臭氧氧化反应器420中。
在一些实施例中,催化臭氧氧化反应器420具有反应腔421,反应腔421用于提供对气体进行第二级净化处理的反应场所。在一些实施例中,反应腔421的形状为立方体。反应腔421的尺寸可以根据实际需要(例如,处理气体的流量或流速)进行设置,本申请对此不作限制。例如,反应腔421的体积可以为0.1m
3。
在一些实施例中,反应腔421内填充有臭氧氧化催化剂。关于臭氧氧化催化剂的更多内容可以参见图1-3的描述,在此不作赘述。通过将光氧化反应器410的出口与催化臭氧氧化反应器420连接,可以将经过第一级净化处理的气体通入催化臭氧氧化反应器420中,在臭氧氧化催化剂作用下进行第二级净化处理;经过第二级净化处理后的气体通过金属网上的缝隙排出催化臭氧氧化反应器420,进入光催化反应器430中。
关于催化臭氧氧化反应器420的更多内容可以参见图1-3中关于催化臭氧氧化反应器120的描述,在此不作赘述。
光催化反应器430可以用于对气体进行第三级净化处理。在一些实施例中,光催化反应器430可以为立方体或不规则立方体。例如,如图4所示,光催 化反应器430为上下两个大小不同的立方体组成的不规则立方体。光催化反应器430的顶部小立方体所在的面上设置有金属网,通过该金属网将光催化反应器430与加热催化反应器440分隔开。关于金属网的更多内容可以参见前述描述,在此不作赘述。
在一些实施例中,光催化反应器430具有反应腔431,反应腔431用于提供对气体进行第三级净化处理的反应场所。在一些实施例中,反应腔431的形状为立方体或不规则立方体。反应腔431的尺寸可以根据实际需要(例如,处理气体的流量或流速)进行设置,本申请对此不作限制。
在一些实施例中,如图4所示,光氧化反应器410设置于光催化反应器430的中空反应腔431内。在一些实施例中,光催化反应器430与光氧化反应器410通过光氧化反应器410的透光侧壁分隔,使得第二光能够穿过该透光侧壁进入光催化反应器430的反应腔431中。
在一些实施例中,反应腔431内填充有光催化剂。光催化剂的组分可以与第二光的类型相关。
在一些实施例中,第二光为紫外光。在一些实施例中,光催化剂可以包括TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种。TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种填充在反应腔431内,在第二光(波长小于或等于254nm的紫外光)的照射下,在反应腔431内对气体进行第三级净化处理。
在一些实施例中,第二光为紫外光和可见光。在一些实施例中,光催化剂还可以包括TiO
2催化剂和TiO
2/SiO
2复合催化剂中的一种或两种以及BiVO
4催化剂。在一些实施例中,BiVO
4催化剂填充在光催化反应器430中远离光氧化反 应器410的一侧,TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种填充在光催化反应器430中靠近光氧化反应器110的一侧。在第二光(波长小于或等于254nm的紫外光和可见光)的照射下,TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种可以利用第二光中的紫外光对气体进行第三级净化处理,同时BiVO
4催化剂可以利用第二光中的可见光对气体进行第三级净化处理。
通过金属网将光催化反应器430与催化臭氧氧化反应器420和加热催化反应器440分隔,可以将经过第二级净化处理的气体通入光催化反应器430中,在光催化剂作用下和第二光的照射下进行第三级净化处理;经过第三级净化处理后的气体通过金属网上的缝隙排出光催化反应器430,进入加热催化反应器440中。
关于光催化反应器430的更多内容可以参见图1-3中关于光催化反应器130的描述,在此不作赘述。
加热催化反应器440可以用于对气体进行第四级净化处理。在一些实施例中,加热催化反应器440的外形形状为立方体。例如,如图4所示,加热催化反应器440为分布于光催化反应器430两侧的两个立方体。在一些实施例中,加热催化反应器440的每一个立方体包括有反应腔441,反应腔441用于提供对气体进行第四级净化处理的反应场所。如图4所示,加热催化反应器440包括两个反应腔441。
在一些实施例中,反应腔441的形状为立方体。反应腔441的形状与加热催化反应器440的外形形状相同。反应腔441的尺寸可以根据实际需要(例如,处理气体的流量或流速)进行设置,本申请对此不作限制。反应腔441的形 状与加热催化反应器440的外形形状可以相同,也可以不同。例如,加热催化反应器440的外形形状可以为立方体,反应腔411的形状为立方体或球体。
在一些实施例中,反应腔441内填充有热催化剂。在一些实施例中,热催化剂可以是含Mn催化剂。优选地,热催化剂可以是MnO、MnO
2或其他锰氧化物中的至少一种。更为优选地,热催化剂可以是MnO
2催化剂。关于催化剂的制备,可以参见前述内容,在此不作赘述。
在一些实施例中,反应腔441可以包括至少一个出气口。至少一个出气口的位置可以根据实际需要设置,本申请对此不作限制。在一些实施例中,反应腔441的上端设置有至少一个出气口(图4中未示出)。在一些实施例中,出气口的横截面可以为圆形、方形或其他多边形,本申请对此不作限制。出气口的尺寸可以根据需要(例如,待处理气体的流速)进行设置,本申请对此不作限制。例如,出气口可以为直径为3mm的圆形管。
通过金属网将光催化反应器430与加热催化反应器440分隔,可以将经过第三级净化处理的气体通入加热催化反应器440中进行第四级净化处理;经过第四级净化处理后的气体通过出气口排出加热催化反应器440,通入其他设备(例如,净化气体储罐),或直接排入气体净化处理装置400所处的环境中。
关于加热催化反应器440的更多内容可以参见图1-3中关于加热催化反应器150的描述,在此不作赘述。
微波发射器可以用于激发光源发射第一光和第二光。在一些实施例中,第一光可以为真空紫外光。在一些实施例中,第二光可以为紫外光,也可以为紫外光和可见光。在一些实施例中,微波发射器可以通过管道与光氧化反应器410的外壁相连,以激发光源发射第一光和第二光。
在一些实施例中,微波发射器还可以通过管道与光催化反应器430的外壁相连,以向光催化反应器430发射微波,增强光催化剂的活性。同时,微波可以通过光催化反应器430进入光氧化反应器410中,以激发光源发射第一光和第二光。
在一些实施例中,也可以取消微波发射器140,光氧化反应器110内的紫外灯采用常规紫外灯,以提供所需波长的紫外光,例如,波长≤185nm的真空紫外光和波长≤254nm的紫外光。
关于微波发射器的更多内容可以参见图1-3中关于微波发射器140的描述,在此不作赘述。
在一些实施例中,气体净化处理装置400可以由多个气体净化处理单元并联组成,每个气体净化处理单元相当于一个独立的气体净化处理装置。通过将多个气体净化处理单元串联,可以提高气体的净化处理量。
图6是根据本说明书一些实施例所示的示例性气体净化处理方法的流程图。该方法可以由气体净化处理装置100或气体净化处理装置400中的一个或多个组件执行。在一些实施例中,过程600可以由控制系统自动执行。例如,过程600可以通过控制指令实现,控制系统基于控制指令,控制各个组件完成过程600的各个操作。在一些实施例中,过程600可以半自动执行。例如,过程600的一个或多个操作可以由操作者手动执行。在一些实施例中,在完成过程600时,可以添加一个或以上未描述的附加操作,和/或删减一个或以上此处所讨论的操作。另外,图6中所示的操作的顺序并非限制性的。
步骤610,将气体通入光氧化反应器中,在第一光照射下进行第一级净化处理,得到第一混合气。
所述气体为待处理气体。在一些实施例中,所述气体可以包括VOCs气体。VOCs气体可以包括非甲烷碳氢化合物(Non-Methane HydroCarbons,NMHC)、含氧有机化合物、卤代烃、含氮有机化合物、含硫有机化合物等。例如,甲苯、苯甲醛、甲醛、乙苯、对二甲苯、邻二甲苯、苯甲酸和庚醛。在一些实施例中,所述气体可以包括生物性污染物。在一些实施例中,生物性污染物可以包括细菌、酵母菌、病毒、霉菌、尘螨中的一种或多种。在一些实施例中,所述气体可以包括VOCs气体和生物性污染物。可以理解,本说明书实施例中所述的过程500可以对VOCs气体进行净化处理,也可以对细菌、酵母菌、病毒、霉菌、尘螨中的 一种或多种进行净化处理,还可以同时对VOCs气体以及细菌、酵母菌、病毒、霉菌、尘螨中的一种或多种进行净化处理。
在一些实施例中,气体通入光氧化反应器(例如,光氧化反应器110)的流量和流速可以根据实际需要(例如,VOCs气体的矿化率、光氧化反应器的反应腔的容积或气体处理量等)进行设置,本申请对此不作限制。在一些实施例中,可以根据体积空速设置气体的流量或流速。体积空速为单位时间内气体体积流量与催化剂体积的比值。在一些实施例中,该催化剂体积可以是臭氧氧化催化剂的体积。在一些实施例中,体积空速可以包括100-10000h
-1。优选地,体积空速可以包括500-9500h
-1。优选地,体积空速可以包括1000-9000h
-1。优选地,体积空速可以包括1500-8500h
-1。优选地,体积空速可以包括2000-8000h
-1。优选地,体积空速可以包括2500-7500h
-1。优选地,体积空速可以包括3000-7000h
-1。优选地,体积空速可以包括3500-6500h
-1。优选地,体积空速可以包括4000-6000h
-
1。优选地,体积空速可以包括4500-5500h
-1。优选地,体积空速可以包括4800-5300h
-1。优选地,体积空速可以包括5000-5100h
-1。
在一些实施例中,第一光是真空紫外光。例如,185nm的真空紫外光。在一些实施例中,第二光是紫外光。例如,254nm的紫外光。在一些实施例中,第二光是紫外光(例如,254nm的紫外光)和可见光。第一光和第二光可以来自同一光源(例如,光源114)发射。在一些实施例中,光源由微波激发发射第一光和第二光。具体地,可以启动微波发射器140发射微波,以激发光源114发出以185nm真空紫外光和254nm紫外光为主的混合光以及可见光。
在一些实施例中,第一混合气可以包括二氧化碳、一氧化碳、水、苯甲酸、乙酸、甲酸、苯甲醛、苯、苯酚、2-甲基苯酚或庚醛等。
在一些实施例中,第一级净化处理包括在第一光的作用下,对待处理气体进行光解和光氧化反应,得到第一混合气。具体地,以图1所示的气体净化处理装置100为例,可以将含VOCs和/或生物性污染物的待处理气体通过进气管112通入光氧化反应器110中的反应腔111。在一些实施例中,在第一光的作用下, 待处理气体中的O
2产生强氧化性自由基和臭氧(O
3);同时待处理气体中的其他组分(例如,VOCs气体、细菌、酵母菌、病毒、霉菌、尘螨等)在波长185nm的真空紫外光的作用下进行光解和光氧化,断链或开环转化为醛、酮、酸或酯等小分子有机物,或直接被矿化为CO
2、H
2O等无机物;待处理气体中的H
2O和O
2经过波长在185nm真空紫外线照射后,会产生具有强氧化性的自由基,如·OH、·O,其可以将微生物的细胞膜分解,导致部分细菌、酵母菌、病毒、霉菌、尘螨直接死亡,最终得到含臭氧的第一混合气。
在一些实施例中,经第一级净化处理得到的第一混合气可以通过出气管(例如,出气管113)排出光氧化反应器的反应腔(例如,反应腔111)。
步骤620,将第一混合气通入填充有臭氧氧化催化剂的催化臭氧氧化反应器中进行第二级净化处理,得到第二混合气。
在一些实施例中,臭氧氧化催化剂可以包括臭氧氧化催化剂可以选自过渡金属氧化物、过渡金属氧化物与分子筛的复合催化剂中的至少一种。在一些实施例中,过渡金属氧化物可以为Mn、Fe、Co、Ni、V、Cu、Ce、Ag等过渡金属的氧化物中的至少一种。优选地,臭氧氧化催化剂可以为MnO
2、MnO
2/分子筛复合催化剂中的至少一种。更为优选地,臭氧氧化催化剂可以为δ-MnO
2/分子筛复合催化剂。例如,臭氧氧化催化剂可以为δ-MnO
2/USY分子筛复合催化剂。
在一些实施例中,δ-MnO
2/USY分子筛复合催化剂可以通过以下步骤进行制备:将0.3g KMnO
4和1.7g USY分子筛放入250mL烧杯①中,加入40mL去离子水,磁力搅拌30min;然后称量0.055g MnSO
4·H
2O放入100mL烧杯中,加入40mL去离子水溶解后,缓慢倒入烧杯①中,再磁力搅拌30min后,将溶液转移至100mL特氟龙反应釜中,在150~170℃水热反应24h;反应完成后冷却至室温,经抽滤、洗涤、80℃干燥2h、研磨、筛分出40~60目的固体颗粒,即为δ-MnO
2/USY分子筛复合催化剂。
在一些实施例中,第二混合气可以包括二氧化碳、一氧化碳、水、苯甲醛、苯、苯甲酸、庚醛、苯甲醇、己醇、己醛、苯酚等。
在一些实施例中,第二级净化处理包括在臭氧氧化催化剂的作用下,对第一混合气进行臭氧催化氧化反应,得到第二混合气。具体地,以图1所示的气体净化处理装置100为例,第一混合气通过进气管122通入填充有臭氧氧化催化剂的催化臭氧氧化反应器120中的反应腔121。第一混合气中臭氧在δ-MnO
2/USY分子筛复合催化剂存在下,分解生成氧气,在此过程中会生成新生态氧原子,其具有强氧化性,此外在水汽存在的条件下还会生成·OH等活性自由基。在一些实施例中,新生态氧原子以及·OH等活性自由基与第一混合气中的细菌、酵母菌、病毒、霉菌、尘螨等的细胞壁、细胞膜反应,先与其外部脂类双键发生氧化还原反应,再氧化其重要物质脂多糖和蛋白质等,从而改变生物壁的透过性,导致细菌内部的关键内容物流出、变性、继而死亡;接着,臭氧进入微生物内部后可以继续与其中的DNA、RNA、酶、蛋白质等生命物质发生氧化反应导致其发生不可逆的破坏,最终导致第一混合气中的细菌、酵母菌、病毒、霉菌、尘螨等部分死亡。在一些实施例中,新生态氧原子以及·OH等活性自由基与第一混合气中经第一级净化处理未分解的组分以及断链或开环转化为醛、酮、酸或酯等小分子有机物进一步反应,断链或开环生成更小的小分子有机物,或直接被矿化为CO
2、H
2O等无机物。第一混合气经过第二级净化处理,最终得到第二混合气。
在一些实施例中,经第二级净化处理得到的第二混合气可以通过出气管(例如,出气管123)排出催化臭氧氧化反应器的反应腔(例如,反应腔121)。
步骤630,将第二混合气通入填充有光催化剂的光催化反应器中,在第二光照射下进行第三级净化处理,得到净化处理后的气体。
净化处理后的气体可以为VOCs气体中的组分和/或生物性污染物的组分低于第一阈值或矿化率高于第二阈值。第一阈值是气体的组分达到处理要求时的最大值。第二阈值是气体的组分达到处理要求时的最小值。例如,第二阈值为VOCs气体中甲苯的矿化率。在一些实施例中,VOCs气体中甲苯的矿化率可以为92%以上。
光催化反应器的反应腔中填充有光催化剂,光催化剂的组分可以与第二光的类型相关。
在一些实施例中,第二光为紫外光(例如,254nm的紫外光)。在一些实施例中,光催化剂可以包括TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种。TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种填充在光催化反应器的反应腔(例如,反应腔131)内。在一些实施例中,TiO
2/SiO
2复合催化剂可以通过以下步骤进行制备:称取25g硅溶胶放入250mL烧杯中,量取3mL KH-570加入到烧杯中,搅拌10min;称取0.2g六偏磷酸钠加入到烧杯中,搅拌5min,调节pH为2;称取10g光催化剂P25TiO
2加入到烧杯中,磁力搅拌1h,80℃干燥12h,研磨、筛分出40~60目的固体颗粒,即为TiO
2/SiO
2复合催化剂。
在一些实施例中,第二光为紫外光(例如,254nm的紫外光)和可见光。在一些实施例中,光催化剂还可以包括TiO
2催化剂和TiO
2/SiO
2复合催化剂中的一种或两种以及BiVO
4催化剂。在一些实施例中,BiVO
4催化剂填充在光催化反应器130中远离光氧化反应器110的一侧,TiO
2催化剂、TiO
2/SiO
2复合催化剂、F/TiO
2/SiO
2复合催化剂、Bi/F/TiO
2/SiO
2复合催化剂、S/F/TiO
2/SiO
2复合催化剂、S/Bi/F/TiO
2/SiO
2复合催化剂、Sn/S/F/TiO
2复合催化剂、Sn/S/F/TiO
2/SnO
2复合催化剂中的一种或多种填充在光催化反应器130中靠近光氧化反应器110的一侧。在一些实施例中,BiVO
4催化剂可以通过以下步骤进行制备:将5mmol Bi(NO
3)
3·5H
2O溶解到25mL 4M HNO
3溶液中,在室温下搅拌60min;然后将5mmol NH
4VO
3溶解到25mL4M NaOH溶液中,并将该混合溶液加入到Bi(NO
3)
3溶液中,搅拌1h后加入到高温高压反应釜中,在190℃下水热12h;用去离子 水洗涤3-5次,然后离心以去除杂质,得到的黄色沉淀即为BiVO
4;在100℃下干燥6h即可得到BiVO
4粉末,即为BiVO
4催化剂。
在一些实施例中,第三级净化处理包括在光催化剂的作用下、微波发射器发射的微波提供热量的条件下以及第二光的照射下,对第二混合气进行光催化反应,得到净化处理后的气体。具体地,以图1所示的气体净化处理装置100为例,第二混合气通过进气管132通入填充有光催化剂的光催化反应器130中的反应腔131中。光源114发射第一光和第二光,其中,未被利用的第二光通过光氧化反应器110的透光组件(即,透光侧壁)进入光催化反应器130的反应腔131中。在第二光的作用下,第二混合气中残余的细菌、酵母菌、病毒、霉菌、尘螨等微生物的遗传物质核酸吸收第二光的能量。核酸作为微生物重要的遗传物质,当其被第二光照射后组织结构遭到破坏,在DNA形成了胸脲嘧啶二聚体(TT),在RNA形成了尿嘧啶二聚体(UU),导致其失去复制、转录能力,从而致其死亡。第二混合气中经第二级进化处理未分解的组分以及断链或开环转化为醛、酮、酸或酯等小分子有机物附着在光催化剂表面,在第二光作用下进行光催化反应,进一步断链或开环生成更小的小分子有机物,或直接被矿化为CO
2、H
2O等无机物。在一些实施例中,第二混合气经过第三级净化处理,最终得到净化处理后的气体。
在一些实施例中,净化处理后的气体可以通过出气管(例如,出气管133)排出光催化反应器的反应腔(例如,反应腔131)。
在一些实施例中,若净化处理后的气体中的组分已低于阈值(例如,甲苯矿化率达到100%),则可以通过出气管(例如,出气管133)直接排出气体净化装置。在一些实施例中,若净化处理后的气体中的组分高于阈值,则还需进行进一步处理。例如,将净化处理后的气体通入下一级净化处理装置。
在一些实施例中,下一级净化处理装置可以为加热催化反应器,加热催化反应器中填充有热催化剂。在一些实施例中,可以将净化处理后的气体通入填充有热催化剂的加热催化反应器中进行第四级净化处理。
在一些实施例中,热催化剂可以是含Mn催化剂。优选地,热催化剂可以是MnO、MnO
2或其他锰氧化物中的至少一种。更为优选地,热催化剂可以是MnO
2催化剂。
在一些实施例中,可以对加热催化反应器中的气体(即,净化处理后的气体)使用微波进行加热。
在一些实施例中,第四级净化处理包括在热催化剂的存在下和微波发射器发射的微波作用下,对净化处理后的气体进行热催化反应,得到最终净化的气体。具体地,以图3所示的气体净化处理装置100为例,净化处理后的气体通过进气管152通入填充有热催化剂的加热催化反应器150中的反应腔151。第三混合气中的组分附着在热催化剂表面,在微波发射器140发射的微波作用下,对热催化剂进行微波加热升温,使得第三混合气中的各组分高温分解,矿化为CO
2、H
2O等无机物。第三混合气中残余的细菌、酵母菌、病毒、霉菌、尘螨等微生物在高温条件下,细胞内的蛋白质、核酸、活性物质等被破坏,进而影响微生物的生命活动,从而达到杀菌的目的。
在一些实施例中,净化处理后的气体经过第四级净化处理得到最终净化的气体,最终净化的气体可以通过出气管排出气体净化处理装置。
在一些实施例中,经上述三级或四级净化处理后,VOCs气体中甲苯的矿化率为92%以上。优选地,VOCs气体中甲苯的矿化率可以为93%以上。优选地,VOCs气体中甲苯的矿化率可以为94%以上。优选地,VOCs气体中甲苯的矿化率可以为95%以上。优选地,VOCs气体中甲苯的矿化率可以为96%以上。优选地,VOCs气体中甲苯的矿化率可以为97%以上。优选地,VOCs气体中甲苯的矿化率可以为98%以上。优选地,VOCs气体中甲苯的矿化率可以为99%以上。优选地,VOCs气体中甲苯的矿化率可以为100%以上。可以理解,若经过第三级净化处理后的气体可以达到处理要求(即,VOCs气体中甲苯的矿化率为92%以上),则可以不进行第四级净化处理;若经过第三级净化处理后的气体未达到处理要求(即,VOCs气体中甲苯的矿化率小于92%),则还需要进行第四 级净化处理。
在一些实施例中,经过上述三级或四级净化处理后,细菌、酵母菌、病毒、霉菌、尘螨中的任一种在一定体积空速下的杀灭率为90%以上。优选地,细菌、酵母菌、病毒、霉菌、尘螨中的任一种的杀灭率可以为91%以上。优选地,细菌、酵母菌、病毒、霉菌、尘螨中的任一种的杀灭率可以为92%以上。优选地,细菌、酵母菌、病毒、霉菌、尘螨中的任一种的杀灭率可以为93%以上。优选地,细菌、酵母菌、病毒、霉菌、尘螨中的任一种的杀灭率可以为94%以上。优选地,细菌、酵母菌、病毒、霉菌、尘螨中的任一种的杀灭率可以为95%以上。优选地,细菌、酵母菌、病毒、霉菌、尘螨中的任一种的杀灭率可以为96%以上。优选地,细菌、酵母菌、病毒、霉菌、尘螨中的任一种的杀灭率可以为97%以上。优选地,细菌、酵母菌、病毒、霉菌、尘螨中的任一种的杀灭率可以为98%以上。优选地,细菌、酵母菌、病毒、霉菌、尘螨中的任一种的杀灭率可以为99%以上。优选地,细菌、酵母菌、病毒、霉菌、尘螨中的任一种的杀灭率可以为100%。可以理解,若经过第三级净化处理后的气体可以达到处理要求(即,杀灭率为90%以上),则可以不进行第四级净化处理;若经过第三级净化处理后的气体未达到处理要求(即,杀灭率小于90%以上),则还需要进行第四级净化处理。
该体积空速可以为催化臭氧氧化反应器中的体积空速。在一些实施例中,体积空速可以包括100-10000h
-1。优选地,体积空速可以包括500-9500h
-1。优选地,体积空速可以包括1000-9000h
-1。优选地,体积空速可以包括1500-8500h
-1。优选地,体积空速可以包括2000-8000h
-1。优选地,体积空速可以包括2500-7500h
-
1。优选地,体积空速可以包括3000-7000h
-1。优选地,体积空速可以包括3500-6500h
-1。优选地,体积空速可以包括4000-6000h
-1。优选地,体积空速可以包括4500-5500h
-1。优选地,体积空速可以包括4800-5300h
-1。优选地,体积空速可以包括5000-5100h
-1。在一些实施例中,细菌、酵母菌、病毒、霉菌、尘螨中的任一种杀灭率小于100%时,体积空速与杀灭率成负相关的关系。具体地,细菌、酵母菌、病毒、霉菌、尘螨中的任一种杀灭率小于100%时,体积空速越大、杀 灭率越小,体积空速越小、杀灭率越大。
由此可知,为了更好地对气体进行净化处理,可以使用较小的气体流量和较大的时间,以使得气体经三级或四级净化处理后,VOCs气体组分的矿化率更高、生物性污染物的杀灭率更高,净化处理的效果更好。
通过第四级净化处理,可以进一步保证气体的处理效果,实现更高的矿化率或完全矿化。为了节约能耗,也可根据气体的处理要求来控制加热催化反应器的开启。具体地,若真空紫外光光解和光氧化、催化臭氧氧化和光催化工艺已能实现完全矿化,则无需启动加热催化反应器,例如,可通过断开加热催化反应器与光催化反应器出气管的连通,使经第三级净化处理后的气体通过光催化反应器出气管排出;若真空紫外光光解和光氧化、催化臭氧氧化和光催化工艺对气体处理不完全时,再将加热催化反应器与光催化反应器连通,以启动加热催化反应器。
应当注意的是,上述有关过程600的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对过程600进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,可以增加步骤640,对气体进行第四级净化处理。又例如,可以将第四级净化处理放在步骤610前面。再例如,可以取消微波发射器140,光氧化反应器110内的紫外灯采用常规紫外灯,以提供所需波长的紫外光(波长≤185nm的真空紫外光和波长≤254nm的紫外光)。使用该结构的净化处理装置进行气体净化处理与采用图1所示气体净化处理装置100进行气体净化处理的方法类似,包括:将气体通入光氧化反应器110中,在波长小于或等于185nm的真空紫外光照射下进行光解和光氧化反应(即,第一级净化处理),得到含臭氧的第一混合气;将第一混合气通入填充有臭氧氧化催化剂的催化臭氧氧化反应器120中进行催化臭氧氧化反应,得第二混合气(即,第二级净化处理);再将第二混合气通入填充光催化剂的光催化反应器130中,在波长小于或等于254nm的紫外光照射下进行光催化反应(即,第三级净化处理)。
为了进一步验证气体净化处理装置的气体净化效果,进行了一系列应用效果实验。应用效果实验包括实验组1、实验组2、对比组11、对比组12、对比组21以及对比组22。实验组1和实验组2是按光氧化-催化臭氧氧化-光催化工艺对气体进行净化处理,实验组1和实验组2的微波功率不同。对比组11和对比组12是按光氧化-催化臭氧氧化工艺进行气体净化处理,对比组11和对比组12的微波功率不同。对比组21和对比组22是按光氧化-光催化工艺进行气体净化处理,对比组21和对比组22的微波功率不同。
应用效果实验中选用的待处理气体为:甲苯浓度20ppm,气体流量200mL/min,氧气含量21%,相对湿度70%。由于甲苯是VOCs气体中较难处理的组分,在气体净化处理实验中具有代表性。
降解率是指气体净化过程中,原气体的组分分解为其他物质的程度。矿化率是指气体净化过程中,原气体中的含有机碳的组分转化为无机碳组分的程度。
通过测试各应用效果实验净化处理前后气体中甲苯的浓度、净化后气体中CO的浓度和CO
2的浓度,并按照以下公式计算出甲苯的降解率和矿化率,以评价各工艺对甲苯的去除效果。
式中,c(C
7H
8)
in为净化处理前甲苯的浓度,ppm;
c(C
7H
8)
out为净化处理后甲苯的浓度,ppm。
式中,c(CO)
out为净化处理后气体中CO的浓度,ppm;
c(CO
2)
out为净化处理后气体中CO
2的浓度,ppm;
c(CO)
in为净化处理前气体中CO的浓度,ppm;
c(CO
2)
in为净化处理前气体中CO
2的浓度,ppm;
c(C
7H
8)
in为净化处理前甲苯的浓度,ppm。
通过采用以上方法进行气体净化处理效果测试,所得结果如下表1所示:
表1气体净化处理效果测试结果
如表1所示,在相同微波功率228W的条件下,采用光氧化-催化臭氧氧化工艺的对比组11的甲苯矿化率为47.1%、采用光氧化-光催化工艺的对比组21的甲苯矿化率为81.1%、采用光氧化-催化臭氧氧化-光催化复合工艺的实验组1的甲苯矿化率为83.3%。由此可知,采用光氧化-催化臭氧氧化-光催化复合工艺的实验组1进行气体净化处理时,处理效率高,矿化率高,即采用光氧化-催化臭氧氧化-光催化复合工艺时,甲苯转化为CO和CO
2的效率更高。
如表1所示,在相同微波功率147.75W的条件下,采用光氧化-催化臭氧氧化工艺的对比组12的甲苯矿化率为39.5%、采用光氧化-光催化工艺的对比组22的甲苯矿化率为66.2%、采用光氧化-催化臭氧氧化-光催化复合工艺的实验组2的甲苯矿化率为70.3%。由此可知,采用光氧化-催化臭氧氧化-光催化复合工艺进行气体净化处理时,处理效率高,矿化率高,即采用光氧化-催化臭氧氧化 -光催化复合工艺时,甲苯转化为CO和CO
2的效率更高。
如表1所示,在相同工艺条件下:(1)采用光氧化-催化臭氧氧化工艺的条件下,采用228W功率的对比组11的的甲苯矿化率为47.1%、采用147.75W功率的对比组12的的甲苯矿化率为39.5%;(2)采用光氧化-光催化工艺的条件下,采用228W功率的对比组21的的甲苯矿化率为81.1%、采用147.75W功率的对比组22的的甲苯矿化率为66.2%;(3)采用光氧化-催化臭氧氧化-光催化复合工艺的条件下,采用228W功率的实验组1的的甲苯矿化率为83.3%、采用147.75W功率的实验组2的的甲苯矿化率为70.3%。由此可知,在任意两种或三种复合工艺下,采用228W功率进行气体净化处理时,处理效率高,矿化率高。可以理解,较高的能量有利于产生紫外光和可见光,并激发催化剂的活性,使得甲苯转化为CO和CO
2的效率更高。
为了更好的说明光氧化-催化臭氧氧化-光催化复合工艺进行气体净化处理的效果,再次设计了以下对比实验组:(1)实验组A:微波功率147.75W,采用光氧化工艺;(2)实验组B:微波功率147.75W,采用催化臭氧氧化工艺,臭氧氧化催化剂0.15g;(3)实验组C:微波功率147.75W,采用光催化工艺;(4)实验组D:微波功率147.75W,采用光氧化-催化臭氧氧化工艺,臭氧氧化催化剂用量0.3g;(5)实验组E:微波功率147.75W,采用光氧化-光催化工艺;(6)实验组F:微波功率147.75W,采用光氧化-催化臭氧氧化-光催化复合工艺,臭氧氧化催化剂用量0.3g。上述各实验组中待处理气体参数为:甲苯浓度5ppm,气体流量200mL/min,氧气含量21%,相对湿度70%。各实验组均在气体净化处理装置100中测试完成。各实验组的降解率和矿化率的结果如表2所示。各实验组经处理后气体残余物组分和含量如表3所示,各实验组经处理后气体残余物组分和含量,通过将各实验组反应完成后的气体残余物通入GC-MS(气相色谱-质谱联用仪)中测定得到。
表2各实验组气体净化处理效果
表3各实验组气体净化后气体残余物组分及相对含量
如表2所示,经分析可知:(1)在同一反应条件下,采用单一光氧化工艺的实验组A中,甲苯的矿化率只有31.4%。与实验组A相比,采用光氧化-催化臭氧氧化工艺的实验组D和采用光氧化-光催化工艺的实验组E的甲苯矿化率分别为55.3%和81.5%。说明与单一工艺相比,采用光氧化-催化臭氧氧化和光 氧化-光催化的两工艺组合工艺存在协同作用,采用多级联用的净化处理工艺比单一工艺的矿化率更高,处理效果更好。(2)与实验组A相比,采用光氧化-催化臭氧氧化-光催化工艺的实验组F的甲苯矿化率为92.8%,这是由于光催化工艺可以对光氧化工艺中的副产物臭氧以及光解效果差的紫外光(一般为波长小于或等于254nm)再利用,因此甲苯的矿化率提高至92.8%,提高了净化效率,且由于臭氧被利用,保证了最终排出气体净化处理装置的气体中无臭氧,保证了整个工艺过程中无臭氧泄露。(3)采用单一光氧化工艺的实验组A、催化臭氧氧化工艺的实验组B和光催化工艺的实验组C的甲苯矿化率的加和为101.2%,而采用光氧化-催化臭氧氧化-光催化工艺的实验组F的甲苯矿化率为92.8%,即采用光氧化-催化臭氧氧化-光催化工艺复合的甲苯矿化率小于三个单一工艺的甲苯矿化率的加和,主要是由于臭氧在催化臭氧氧化工艺段被完全净化,使光催化工艺中没有了臭氧强氧化性的协同贡献,使得光催化工艺的矿化率小于理论值,但采用光氧化-催化臭氧氧化-光催化工艺复合处理得到的甲苯的矿化率更高。但结合表2和表1的实验测试结果可知:适当提高微波功率,可进一步提高甲苯矿化率。
如表3所示:(1)实验组A中待处理气体经光氧化工艺净化处理后气体残余物中有很多苯系物,其中苯甲醛和苯甲酸占比较大,分别为13.8%和40.6%,也有很多链状有机物,乙酸和甲酸占比较大,分别为19.9%和9.3%;(2)实验组B中待处理气体经催化臭氧氧化工艺处理后的气体残余物全部是苯系物,苯占比较大,苯占比为38.5%;(3)实验组C中待处理气体经光催化工艺处理后的气体残余物主要是苯系物,链状有机物只有甲酸,苯甲酸占比达到83.5%;(4)实验D中待处理气体经光氧化-催化臭氧氧化工艺处理后的气体残余物有苯系物和长链有机物,其中苯甲醛、苯甲酸及苯占比较大,分别为24.2%、11.7%及22.7%;(5)实验组E中待处理气体经光氧化-光催化工艺处理后的气体残余物全部为苯系物,苯甲酸和苯占比较大,分别为64.0%和22.8%;(6)实验组F中待处理气体经光氧化-催化臭氧氧化-光催化复合工艺处理后的气体残余物基本为苯 系物,还有少量甲酸,苯甲酸占比最大为72.6%。由此可知,光氧化工艺有助于降解甲苯;此外,待处理气体在进行降解处理过程中,虽然原来的挥发性有机污染物(例如,甲苯)分解后含量降低了,但是分解后的产物(例如,苯甲酸、苯等)依然是带有危害性的有机污染物,因此只有提高了气体处理过程中挥发性有机污染物的矿化率,才能将有机碳污染物真正转化为无害的无机碳产物(例如,CO或CO
2),否则排放后可能会造成更严重的污染和危害。此外,由于矿化率计算的为出口气体中无机碳产物(例如,CO或CO
2)的含量,相对于甲苯降解率,可以更好的表征气体处理效率。
另外,为了验证气体净化处理装置100在气体处理过程中的中毒与再生性能,在低矿化率情况下研究了光氧化-臭氧催化氧化-光催化复合工艺的中毒与再生情况。在一些实施例中,利用气体净化处理装置100,采用光氧化-催化臭氧氧化-光催化复合工艺,在微波功率147.75W,相对湿度70%、氧气含量21%、气体流量200mL/min、甲苯初始浓度20ppm的反应条件下进行长时间运行实验,测试甲苯的去除效果,所得结果如图7所示。
如图7所示,随着运行时间的延长,甲苯降解率略微降低,但仍保持在96%以上,而甲苯矿化率逐渐下降,在运行50h时,甲苯矿化率由最初的70.3%下降到45.6%。由此可知,光氧化-臭氧催化氧化-光催化复合工艺中的催化剂(例如,臭氧氧化催化剂或光催化剂)处于中毒状态。
在气体净化处理装置100运行50h后,停止通入甲苯,通入200mL/min的干空气,打开微波无极灯,进行催化剂原位再生,检测催化剂原位再生甲苯解吸量与COx(包括CO和CO2)生成量,所得结果如图8所示。
如图8所示,在前60min,出气管133处有少量甲苯,60min后出气管133处甲苯浓度几乎为零,COx的产量在20min内迅速上升,然后逐渐减少。说明催化剂原位再生完成。
为了研究气体净化处理装置100再生后降解甲苯的性能,进一步在相对湿度70%、氧气含量21%、微波功率147.75W、气体流量200mL/min、甲苯初 始浓度20ppm的条件下,再次进行实验,所得实验结果如图9所示。
如图9所示,再生后的气体净化处理装置100运行稳定后,对甲苯的降解率保持稳定,基本维持在95%以上;甲苯矿化率仅从最初的70.3%下降到67.4%,并维持稳定。证明该光氧化-臭氧催化氧化-光催化复合工艺系统再生后对气体的净化处理效果良好。
为了说明光氧化-催化臭氧氧化-光催化复合工艺对生物性污染物的净化处理效果,再次设计了以下实验:在湿度70%、氧气含量21%、微波功率147.75W、气体流量200mL/min(其中微生物气溶胶浓度为10
5CFU/m
3)的条件下,将该气体通入图1中的气体净化处理装置100中再次进行实验。经测量气体净化处理装置100出口处的大肠杆菌的含量,计算得到该净化处理装置100对大肠杆菌的消杀率可达95%。说明该光氧化-臭氧催化氧化-光催化复合工艺对生物性污染物的净化处理效果良好。
本申请实施例可能带来的有益效果包括但不限于:(1)通过微波发射器发射微波激发紫外灯产生第一光和第二光,并在光氧化反应器中利用第一光进行第一级净化处理,以及在光催化反应器中利用穿过透光组件的第二光进行第三级净化处理,使得该气体净化处理装置可以对紫外灯发射的光进行多重利用,提高了光源利用率、节约了能源;(2)通过微波发射器发射微波可以激发光氧化反应器中的紫外灯产生第一光和第二光、可以增强光催化反应器中光催化剂的活性,同时还可以对加热催化反应器进行加热,因此可利用单一微波发射器引发三个反应器的净化作用,使得气体净化处理装置的集成性更高,提高了气体净化效率、降低了能耗;(3)光氧化反应器中产生的臭氧,可以在催化臭氧氧化反应器中作为强氧化剂被利用,还可以在光催化反应器中作为强氧化剂被进一步利用,使得净化处理后的气体中无臭氧存在,该气体净化处理装置具有高效利用臭氧以及臭氧零泄露的功能;(4)通过对气体净化处理装置进行中毒再生实验,表明该气体净化处理装置中的催化剂在中毒后,具体原位再生能力,使得该气体净化处理装置具有更好的工业应用价值;(5)通过设置加热催化反应器, 在第三级净化处理的气体未达标时,进行第四级净化处理,进一步保证气体净化处理装置的气体处理效率和处理能力;(6)该气体净化处理装置充分复合了各单一消毒杀菌技术(真空紫外消毒杀菌技术、臭氧消毒杀菌技术、MnO
2催化臭氧消毒杀菌技术、TiO
2光催化消毒杀菌技术、MnO
2热催化消毒杀菌技术等),可实现单位能耗下消毒杀菌效率显著提高。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
以上内容描述了本申请和/或一些其他的示例。根据上述内容,本申请还可以做出不同的变形。本申请披露的主题能够以不同的形式和例子所实现,并且本申请可以被应用于大量的应用程序中。后文权利要求中所要求保护的所有应用、修饰以及改变都属于本申请的范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”、或“一个实施例”、或“一替代性实施例”、或“另一实施例”或“另一个实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
本领域技术人员能够理解,本申请所披露的内容可以出现多种变型和改进。例如,以上所描述的不同系统组件都是通过硬件设备所实现的,但是也可能只通过软件的解决方案得以实现。例如:在现有的服务器上安装系统。此外,这里所披露的位置信息的提供可能是通过一个固件、固件/软件的组合、固件/硬件的组合或硬件/固件/软件的组合得以实现。
所有软件或其中的一部分有时可能会通过网络进行通信,如互联网或其他通信网络。此类通信能够将软件从一个计算机设备或处理器加载到另一个。例如:从放射治疗系统的一个管理服务器或主机计算机加载至一个计算机环境的 硬件平台,或其他实现系统的计算机环境,或与提供确定轮椅目标结构参数所需要的信息相关的类似功能的系统。因此,另一种能够传递软件元素的介质也可以被用作局部设备之间的物理连接,例如光波、电波、电磁波等,通过电缆、光缆或者空气实现传播。用来载波的物理介质如电缆、无线连接或光缆等类似设备,也可以被认为是承载软件的介质。在这里的用法除非限制了有形的“储存”介质,其他表示计算机或机器“可读介质”的术语都表示在处理器执行任何指令的过程中参与的介质。
本申请各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C
++、C
#、VB.NET、Python等,常规程序化编程语言如C语言、Visual Basic、Fortran 2003、Perl、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,例如,局域网(LAN)或广域网(WAN)、或连接至外部计算机(例如通过因特网)、或在云计算环境中、或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至 一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述属性、数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档、物件等,特将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不限于本申请明确介绍和描述的实施例。
Claims (30)
- 一种气体净化处理装置,其中,所述装置包括:光氧化反应器,所述光氧化反应器内设置光源,所述光源发射第一光和第二光,所述光氧化反应器用于在所述第一光的照射下对气体进行第一级净化处理;催化臭氧氧化反应器,所述催化臭氧氧化反应器内填充有臭氧氧化催化剂,且与所述光氧化反应器连通,用于对所述气体进行第二级净化处理;光催化反应器,所述光催化反应器内填充有光催化剂,且与所述催化臭氧氧化反应器连通,用于在所述第二光的照射下对所述气体进行第三级净化处理;其中,所述光催化反应器与所述光氧化反应器相邻设置且通过透光组件分隔,使得所述第二光能够穿过所述透光组件进入所述光催化反应器中。
- 如权利要求1所述的装置,其中,所述第一光为真空紫外光;所述第二光为紫外光。
- 如权利要求2所述的装置,其中,所述光催化剂选自TiO 2催化剂、TiO 2/SiO 2复合催化剂、F/TiO 2/SiO 2复合催化剂、Bi/F/TiO 2/SiO 2复合催化剂、S/F/TiO 2/SiO 2复合催化剂、S/Bi/F/TiO 2/SiO 2复合催化剂、Sn/S/F/TiO 2复合催化剂、Sn/S/F/TiO 2/SnO 2复合催化剂中的一种或多种。
- 如权利要求1所述的装置,其中,所述第一光为真空紫外光;所述第二光为紫外光和可见光。
- 如权利要求4所述的装置,其中,所述光催化剂选自TiO 2催化剂、TiO 2/SiO 2复合催化剂、F/TiO 2/SiO 2复合催化剂、Bi/F/TiO 2/SiO 2复合催化剂、S/F/TiO 2/SiO 2复合催化剂、S/Bi/F/TiO 2/SiO 2复合催化剂、Sn/S/F/TiO 2复合催化剂、Sn/S/F/TiO 2/SnO 2复合催化剂中的一种或多种以及BiVO 4催化剂;所述BiVO 4催 化剂填充在所述光催化反应器中远离所述光氧化反应器的一侧,所述TiO 2催化剂、TiO 2/SiO 2复合催化剂、F/TiO 2/SiO 2复合催化剂、Bi/F/TiO 2/SiO 2复合催化剂、S/F/TiO 2/SiO 2复合催化剂、S/Bi/F/TiO 2/SiO 2复合催化剂、Sn/S/F/TiO 2复合催化剂、Sn/S/F/TiO 2/SnO 2复合催化剂中的一种或多种填充在所述光催化反应器中靠近所述光氧化反应器的一侧。
- 如权利要求1所述的装置,其中,所述臭氧氧化催化剂选自过渡金属氧化物、过渡金属氧化物与分子筛的复合催化剂中的一种或多种。
- 如权利要求6所述的装置,其中,所述臭氧氧化催化剂选自MnO 2催化剂、MnO 2/分子筛复合催化剂中的一种或多种。
- 如权利要求1所述的装置,其中,所述装置还包括微波发射器,所述微波发射器用于激发所述光源发射所述第一光和所述第二光。
- 如权利要求8所述的装置,其中,所述装置还包括加热催化反应器,所述加热催化反应器内填充有热催化剂,且与所述光催化反应器连通,用于对所述气体进行第四级净化处理。
- 如权利要求9所述的装置,其中,所述加热催化反应器通过所述微波发射器进行微波加热。
- 如权利要求8所述的装置,其中,所述微波发射器发射微波至所述光催化反应器内。
- 如权利要求1所述的装置,其中,所述光氧化反应器内设置有用于安装所述光源的安装支架。
- 一种气体净化处理方法,其中,所述方法包括:将气体通入光氧化反应器中,在第一光照射下进行第一级净化处理,得到第一混合气;将所述第一混合气通入填充有臭氧氧化催化剂的催化臭氧氧化反应器中进行第二级净化处理,得到第二混合气;将所述第二混合气通入填充有光催化剂的光催化反应器中,在第二光照射下进行第三级净化处理,得到净化处理后的气体;其中,所述第一光和所述第二光来自同一光源。
- 如权利要求13所述的方法,其中,所述第一光为真空紫外光;所述第二光为紫外光。
- 如权利要求14所述的方法,其中,所述光催化剂选自TiO 2催化剂、TiO 2/SiO 2复合催化剂、F/TiO 2/SiO 2复合催化剂、Bi/F/TiO 2/SiO 2复合催化剂、S/F/TiO 2/SiO 2复合催化剂、S/Bi/F/TiO 2/SiO 2复合催化剂、Sn/S/F/TiO 2复合催化剂、Sn/S/F/TiO 2/SnO 2复合催化剂中的一种或多种。
- 如权利要求13所述的方法,其中,所述第一光为真空紫外光;所述第二光为紫外光和可见光。
- 如权利要求16所述的方法,其中,所述光催化剂选自TiO 2催化剂、TiO 2/SiO 2复合催化剂、F/TiO 2/SiO 2复合催化剂、Bi/F/TiO 2/SiO 2复合催化剂、S/F/TiO 2/SiO 2复合催化剂、S/Bi/F/TiO 2/SiO 2复合催化剂、Sn/S/F/TiO 2复合催化剂、Sn/S/F/TiO 2/SnO 2复合催化剂中的一种或多种以及BiVO 4催化剂。
- 如权利要求13所述的方法,其中,所述臭氧氧化催化剂选自过渡金属 氧化物、过渡金属氧化物与分子筛的复合催化剂中的一种或多种。
- 如权利要求18所述的方法,其中,所述臭氧氧化催化剂选自MnO 2催化剂、MnO 2/分子筛复合催化剂中的一种或多种。
- 如权利要求13所述的方法,其中,所述光源由微波激发发射所述第一光和所述第二光。
- 如权利要求13所述的方法,其中,所述方法还包括:将所述净化处理后的气体通入填充有热催化剂的加热催化反应器中进行第四级净化处理。
- 如权利要求21所述的方法,其中,对所述加热催化反应器中的气体使用微波进行加热。
- 如权利要求13所述的方法,其中,所述第三级净化处理在微波作用下进行反应。
- 如权利要求13所述的方法,其中,所述气体包括VOCs气体。
- 如权利要求24所述的方法,其中,所述VOCs气体中甲苯的矿化率为92%以上。
- 如权利要求13所述的方法,其中,所述气体包括细菌、酵母菌、病毒、霉菌、尘螨中的一种或多种。
- 如权利要求26所述的方法,其中,所述方法能够对所述细菌、酵母菌、 病毒、霉菌、尘螨中的一种或多种进行净化处理。
- 如权利要求27所述的方法,其中,所述细菌、酵母菌、病毒、霉菌、尘螨中的任一种在一定体积空速下的杀灭率为90%以上。
- 如权利要求28所述的方法,其中,所述体积空速包括100-10000h -1。
- 如权利要求28所述的方法,其中,在所述杀灭率小于100%时,所述体积空速与所述杀灭率成负相关的关系。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/809,902 US20220331739A1 (en) | 2019-12-30 | 2022-06-30 | Devices and methods for gas purification treatment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911396167.3 | 2019-12-30 | ||
CN201911396167.3A CN110975560A (zh) | 2019-12-30 | 2019-12-30 | VOCs废气净化处理方法和装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/809,902 Continuation US20220331739A1 (en) | 2019-12-30 | 2022-06-30 | Devices and methods for gas purification treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021136364A1 true WO2021136364A1 (zh) | 2021-07-08 |
Family
ID=70079030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/141342 WO2021136364A1 (zh) | 2019-12-30 | 2020-12-30 | 一种气体净化处理装置和方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220331739A1 (zh) |
CN (1) | CN110975560A (zh) |
WO (1) | WO2021136364A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110975560A (zh) * | 2019-12-30 | 2020-04-10 | 哈尔滨工业大学(深圳) | VOCs废气净化处理方法和装置 |
CN113176350B (zh) * | 2021-03-29 | 2023-02-28 | 河北科技大学 | 微波-紫外线联用的VOCs废气催化燃烧评价装置 |
CN116265044B (zh) * | 2021-12-16 | 2024-06-18 | 中国科学院大连化学物理研究所 | 一种处理对二甲苯液相氧化残渣的方法 |
CN115888695A (zh) * | 2022-12-07 | 2023-04-04 | 哈尔滨工业大学(深圳) | 一种催化剂及其制备方法和应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6136186A (en) * | 1997-01-31 | 2000-10-24 | Lynntech, Inc. | Photocatalytic oxidation of organics using a porous titanium dioxide membrane and an efficient oxidant |
CN1330254A (zh) * | 2000-06-16 | 2002-01-09 | 东芝株式会社 | 冰箱及除臭装置 |
CN104857824A (zh) * | 2015-05-27 | 2015-08-26 | 中山大学 | 真空紫外光催化协同臭氧催化氧化的废气处理方法和装置 |
CN204672112U (zh) * | 2015-05-27 | 2015-09-30 | 中山大学 | 采用真空紫外光催化协同臭氧催化氧化的废气处理装置 |
CN207478275U (zh) * | 2017-10-12 | 2018-06-12 | 河北风华环保服务有限公司 | 紫外线光解处理voc废气的装置 |
CN108636107A (zh) * | 2018-05-21 | 2018-10-12 | 浙江工商大学 | 等离子体和紫外光协同催化剂降解废气的装置和方法 |
CN208161368U (zh) * | 2018-03-06 | 2018-11-30 | 重庆清禧环保科技有限公司 | 臭气处理系统 |
CN110975560A (zh) * | 2019-12-30 | 2020-04-10 | 哈尔滨工业大学(深圳) | VOCs废气净化处理方法和装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH105323A (ja) * | 1996-06-18 | 1998-01-13 | Toshimi Yoshida | 二酸化炭素分解装置の健康医療空調機並びに該装置に 用いる酸素還元システム及びその製造方法。 |
CN104906951A (zh) * | 2015-06-30 | 2015-09-16 | 北京化工大学 | 一种光生臭氧催化氧化去除挥发性有机物的方法及装置 |
CN107281918A (zh) * | 2017-08-22 | 2017-10-24 | 苏州碧峰环保科技有限公司 | 有机废气的多级催化氧化处理装置 |
CN110152481B (zh) * | 2019-04-11 | 2023-10-27 | 南京大学环境规划设计研究院集团股份公司 | 一种可原位再生的VOCs吸附光催化和臭氧协同净化方法及装置 |
CN211886179U (zh) * | 2019-12-30 | 2020-11-10 | 哈尔滨工业大学(深圳) | VOCs废气净化处理装置 |
-
2019
- 2019-12-30 CN CN201911396167.3A patent/CN110975560A/zh active Pending
-
2020
- 2020-12-30 WO PCT/CN2020/141342 patent/WO2021136364A1/zh active Application Filing
-
2022
- 2022-06-30 US US17/809,902 patent/US20220331739A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6136186A (en) * | 1997-01-31 | 2000-10-24 | Lynntech, Inc. | Photocatalytic oxidation of organics using a porous titanium dioxide membrane and an efficient oxidant |
CN1330254A (zh) * | 2000-06-16 | 2002-01-09 | 东芝株式会社 | 冰箱及除臭装置 |
CN104857824A (zh) * | 2015-05-27 | 2015-08-26 | 中山大学 | 真空紫外光催化协同臭氧催化氧化的废气处理方法和装置 |
CN204672112U (zh) * | 2015-05-27 | 2015-09-30 | 中山大学 | 采用真空紫外光催化协同臭氧催化氧化的废气处理装置 |
CN207478275U (zh) * | 2017-10-12 | 2018-06-12 | 河北风华环保服务有限公司 | 紫外线光解处理voc废气的装置 |
CN208161368U (zh) * | 2018-03-06 | 2018-11-30 | 重庆清禧环保科技有限公司 | 臭气处理系统 |
CN108636107A (zh) * | 2018-05-21 | 2018-10-12 | 浙江工商大学 | 等离子体和紫外光协同催化剂降解废气的装置和方法 |
CN110975560A (zh) * | 2019-12-30 | 2020-04-10 | 哈尔滨工业大学(深圳) | VOCs废气净化处理方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110975560A (zh) | 2020-04-10 |
US20220331739A1 (en) | 2022-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021136364A1 (zh) | 一种气体净化处理装置和方法 | |
CN205586822U (zh) | 光催化颗粒污染物处理装置 | |
WO2016115790A1 (zh) | 一种臭氧光催化反应器及水处理方法 | |
CN208482261U (zh) | 一种微波无极紫外光催化净化及同步分解臭氧装置 | |
CN105921011A (zh) | 一种采用无极紫外光催化氧化协同臭氧催化氧化净化空气污染物的方法及装置 | |
CN101590403A (zh) | 多功能耦合催化剂及其制备方法 | |
CN203155090U (zh) | 紫外光解废气除臭净化器 | |
CN211753826U (zh) | 一种基于臭氧和光触媒催化的便携式空气净化装置 | |
CN202460468U (zh) | 光催化有机废气净化器 | |
CN202113707U (zh) | 空气净化机 | |
CN204079539U (zh) | 一种用于再生水及雨水消毒的光催化消毒反应器 | |
CN103071165A (zh) | 一种液体杀菌消毒装置 | |
CN202983428U (zh) | 一种吸附式光催化微波协同氧化净化设备 | |
CN104478146A (zh) | 一种微波紫外光超声波膜过滤协同水净化联用装置 | |
CN204485521U (zh) | 电光催化反应器 | |
CN103214133B (zh) | 一种石墨烯净化污水组合装置 | |
CN211886179U (zh) | VOCs废气净化处理装置 | |
CN212039857U (zh) | 一种空气净化器 | |
CN210786887U (zh) | 一种对称双孔式紫外光催化处理工业废气的装置 | |
CN207546219U (zh) | 一种光触媒催化尾气的空气净化器 | |
CN113181768A (zh) | 一种空气净化装置及空气净化器 | |
CN208372827U (zh) | 挥发性有机废气处理系统 | |
CN201770512U (zh) | 紫外催化湿式氧化降解污染物的装置 | |
CN201257173Y (zh) | 纳米多联空气净化剂 | |
CN207591617U (zh) | 一种复合型光氧催化废气处理设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20910744 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20910744 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20910744 Country of ref document: EP Kind code of ref document: A1 |