WO2021136253A1 - 用于控制可变物理参数的功能装置及方法 - Google Patents

用于控制可变物理参数的功能装置及方法 Download PDF

Info

Publication number
WO2021136253A1
WO2021136253A1 PCT/CN2020/140745 CN2020140745W WO2021136253A1 WO 2021136253 A1 WO2021136253 A1 WO 2021136253A1 CN 2020140745 W CN2020140745 W CN 2020140745W WO 2021136253 A1 WO2021136253 A1 WO 2021136253A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement value
physical parameter
range
application
clock time
Prior art date
Application number
PCT/CN2020/140745
Other languages
English (en)
French (fr)
Inventor
钟国诚
Original Assignee
钟国诚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911418652.6A external-priority patent/CN113126481A/zh
Priority claimed from CN202011556362.0A external-priority patent/CN113126539A/zh
Application filed by 钟国诚 filed Critical 钟国诚
Priority to US17/788,866 priority Critical patent/US20230039885A1/en
Priority to CN202080091312.1A priority patent/CN115398351A/zh
Publication of WO2021136253A1 publication Critical patent/WO2021136253A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/0255Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system the criterion being a time-optimal performance criterion

Definitions

  • the present disclosure relates to a functional device, and particularly to a functional device and method for controlling a variable physical parameter.
  • a control device can generate a control signal to control a physical parameter application unit included in a functional device.
  • the function device uses the control signal to control the physical parameter application unit.
  • the physical parameter application unit can use at least one of a mechanical energy, an electrical energy, and a light energy, and can be an electric motor for an access control, a relay for an electric power control, and an energy conversion One of the energy converters.
  • the functional device can obtain a measurement value provided based on a clock time.
  • the functional device may require an improved mechanism to effectively use the measured value and thereby effectively control the physical parameter application unit.
  • U.S. Patent No. 2015/0357887 A1 discloses a product specification setting device and a fan engine equipped with it.
  • U.S. Patent No. 7,411,505 Announcement B2 discloses a switch state and radio frequency identification tag.
  • An object of the present disclosure is to provide a functional device that effectively controls a variable physical parameter by relying on a control signal and a measurement value provided according to a clock time.
  • An embodiment of the present disclosure is to provide a functional device for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target state.
  • the functional device includes a timer and a processing unit.
  • the timer senses a clock time to generate a sensing signal, wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range.
  • the processing unit is coupled to the timer and obtains a measurement value in response to the sensing signal, and the processing unit checks a first mathematical value between the measurement value and the application range of the measurement value. It is determined that the variable physical parameter is in the physical parameter target state under the condition that the clock time enters the clock time application interval.
  • Another embodiment of the present disclosure is to provide a method for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target state.
  • the method includes the following steps: sensing a clock time to generate a sensing signal, wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range; responding to the sensing signal , Obtain a measurement value; and under the condition that a situation in which the clock time enters the clock time application interval is determined by checking a first mathematical relationship between the measurement value and the measurement value application range , Making the variable physical parameter in the physical parameter target state.
  • the functional device includes a timer and a processing unit.
  • the timer senses a clock time to generate a sensing signal, wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range.
  • the processing unit is coupled to the timer to obtain a measurement value in response to the sensing signal, and the processing unit checks a mathematical relationship between the measurement value and the application range of the measurement value.
  • the variable physical parameter is placed in the physical parameter target state under the condition of determining the clock time application interval in which the clock time is currently located.
  • Another embodiment of the present disclosure is to provide a method for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target state.
  • the method includes the following steps: sensing a clock time to generate a sensing signal, wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range; responding to the sensing signal , Obtain a measurement value; and under the condition that the clock time application interval in which the clock time is currently located is determined by checking a mathematical relationship between the measurement value and the measurement value application range, The variable physical parameter is in the physical parameter target state.
  • Figure 1 is a schematic diagram of a control system in various embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • Fig. 3 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • FIG. 4 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • Fig. 5 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 6 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 7 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 8 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 9 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 10 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 11 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 12 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 13 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 14 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 15 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 16 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 17 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 18 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • FIG. 19 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • FIG. 20 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • Fig. 21 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 22 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 23 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 24 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 25 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 26 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 27 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 28 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 29 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • FIG. 30 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • Fig. 31 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 32 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • FIG. 33 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • FIG. 33 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • Fig. 34 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 35 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 36 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 37 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 38 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • FIG. 39 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • Fig. 40 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 41 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • FIG. 42 is a schematic diagram showing an implementation structure of the control system shown in FIG. 1.
  • FIG. 42 is a schematic diagram showing an implementation structure of the control system shown in FIG. 1.
  • FIG. 43 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • Fig. 44 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • FIG. 45 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • Fig. 46 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 47 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 48 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 49 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 50 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 51 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 52 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • FIG. 53 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • FIG. 53 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • Fig. 54 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 55 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 56 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 57 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 58 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 59 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • Fig. 60 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.
  • FIG. 1 is a schematic diagram of a control system 901 in various embodiments of the present disclosure.
  • the control system 901 includes a functional device 130 for controlling a variable physical parameter QU1A.
  • the variable physical parameter QU1A is characterized based on a physical parameter target state JE1U.
  • the functional device 130 includes a timer 342 and a processing unit 331.
  • the timer 342 senses a clock time TH1A to generate a sensing signal SY81.
  • the clock time TH1A is characterized based on a clock time application interval HR1EU represented by a measurement value application range RQ1U.
  • the processing unit 331 is coupled to the timer 342 to obtain a measurement value NY81 in response to the sensing signal SY81, and the processing unit 331 checks the measurement value NY81 and the measurement value application range RQ1U A mathematical relationship between KQ81 determines that the variable physical parameter QU1A is in the physical parameter target state JE1U under the condition of the clock time application interval HR1EU where the clock time TH1A is currently located.
  • FIG. 2 is a schematic diagram of an implementation structure 9011 of the control system 901 shown in FIG. 1.
  • FIG. 3 is a schematic diagram of an implementation structure 9012 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9011 and the implementation structure 9012 includes the functional device 130.
  • the functional device 130 further includes a receiving unit 337 coupled to the processing unit 331, and a physical parameter application unit 335 coupled to the processing unit 331.
  • the functional device 130 is a control target device.
  • the physical parameter application unit 335 is a functional target.
  • the clock time TH1A is further characterized based on a clock time designated interval HR1ET that is different from the clock time application interval HR1EU.
  • the clock time designation interval HR1ET is earlier than the clock time application interval HR1EU.
  • the processing unit 331 obtains the measurement value NY81 due to the control signal SC81 in response to the sensing signal SY81.
  • the control signal SC81 plays a role of instructing the clock time designated interval HR1ET.
  • the control device 212 is one of a mobile device and a remote controller. Under the condition that the control device 212 is the remote controller, the control signal SC81 is an optical signal.
  • the function device 130 uses the timer 342 to check a time relationship KT81 between the clock time TH1A and the clock time application interval HR1EU based on the control signal SC81.
  • the sensing signal SY81 is a clock time signal.
  • the measured value NY81 is a specific count value.
  • the receiving unit 337 receives the control signal SC81 from the control device 212 via a wireless link, or the control signal SC81 is a radio signal .
  • the timer 342 complies with a timer specification FT21.
  • the measurement value application range RQ1U is defaulted based on the timer specification FT21.
  • the timer specification FT21 includes a full measurement value range FK8E for representing a full measurement value range QK8E.
  • the measurement value application range RQ1U is equal to a part of the full measurement value range QK8E.
  • the measurement value NY81 is obtained in a designated measurement value format HH95.
  • the measurement value application range RQ1U is preset based on the timer specification FT21 in the designated measurement value format HH95.
  • the clock time application interval HR1EU is a clock time candidate interval.
  • the measurement value application range RQ1U is a candidate range of the measurement time value.
  • the clock time designated interval HR1ET is a clock time target interval.
  • the designated measurement value format HH95 is a designated count value format.
  • the measurement value application range RQ1U has an application range limit value pair DQ1U, and is represented by a measurement value application range code EL1U.
  • the application range limit value is preset for DQ1U.
  • the processing unit 331 responds to the control signal SC81 to obtain the application range limit value pair DQ1U and the measurement value application range code EL1U, and compares the measurement value NY81 with the obtained application range limit value Check the mathematical relationship KQ81 for DQ1U.
  • the physical parameter target state JE1U is represented by a physical parameter target state code EW1U.
  • the physical parameter application unit 335 has the variable physical parameter QU1A.
  • the variable physical parameter QU1A is currently in a physical parameter application state JE1T.
  • the application range limit value pair DQ1U is a candidate range limit value pair.
  • the measurement value application range code EL1U is a measurement time value candidate range code.
  • the processing unit 331 determines the clock time application interval HR1EU in which the clock time TH1A is currently located by checking the mathematical relationship KQ81, the processing unit 331 is based on the obtained The measurement value application range code EL1U is used to obtain the physical parameter target status code EW1U, and based on the obtained physical parameter target status code EW1U, a check is performed for checking the variable physical parameter QU1A and the physical parameter A physical parameter relationship between the target state JE1U KD9U and a physical parameter relationship check control GX8U.
  • the processing unit 331 determines the physical parameter target state JE1U and the physical parameter application state by executing the physical parameter relationship check control GX8U Under the condition of a physical parameter state difference DT81 between JE1T, the processing unit 331 executes a signal generation control GY85 based on the obtained physical parameter target state code EW1U to generate an operation signal SG85, and sends it to the physical parameter
  • the parameter application unit 335 transmits the operation signal SG85.
  • the operation signal SG85 is one of a function signal and a control signal.
  • the physical parameter application unit 335 responds to the operation signal SG85 to cause the variable physical parameter QU1A to enter the physical parameter target state JE1U from the physical parameter application state JE1T.
  • the processing unit 331 determines the clock time application interval HR1EU in which the clock time TH1A is currently located by checking the mathematical relationship KQ81, the processing unit 331 executes a data storage control operation GM8U, so The data storage control operation GM8U is used to cause a clock time application interval code UF8U representing the determined clock time application interval HR1EU to be stored.
  • the variable physical parameter QU1A and the clock time TH1A belong to a physical parameter type TU11 and a clock time type TQ11, respectively. For example, the physical parameter type TU11 is different from the clock time type TQ11.
  • FIG. 4 is a schematic diagram of an implementation structure 9013 of the control system 901 shown in FIG. 1.
  • FIG. 5 is a schematic diagram of an implementation structure 9014 of the control system 901 shown in FIG. 1.
  • FIG. 6 is a schematic diagram of an implementation structure 9015 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9013, the implementation structure 9014, and the implementation structure 9015 includes the functional device 130.
  • the functional device 130 includes the processing unit 331, the timer 342 coupled to the processing unit 331, the receiving unit 337 coupled to the processing unit 331, and an input coupled to the processing unit 331
  • the unit 380 and the physical parameter application unit 335 coupled to the processing unit 331.
  • the timer 342 complies with a timer specification FT21.
  • the measurement value application range RQ1U is defaulted based on the timer specification FT21.
  • the timer specification FT21 includes a full measurement value range FK8E for representing a full measurement value range QK8E.
  • the measurement value application range RQ1U is equal to a first part of the full measurement value range QK8E.
  • the processing unit 331 is configured to execute a measurement application function FA81 related to the clock time application interval HR1EU.
  • the measurement application function FA81 complies with a measurement application function specification GAL8 related to the clock time application interval HR1EU.
  • the measurement application function FA81 is a physical parameter control function.
  • the measurement application function specification GAL8 is a physical parameter control function specification.
  • the processing unit 331 responds to the sensing signal SY81 to obtain the measurement value NY81 in a designated measurement value format HH95.
  • the specified measurement value format HH95 is characterized based on a specified number of bits UY95.
  • the clock time TH1A is further characterized based on a rated clock time interval HR1E.
  • the rated clock time interval HR1E is represented by a rated measurement value range HR1N, and includes a plurality of different clock time reference intervals HR1E1, HR1E2, ... represented by a plurality of different measurement value reference ranges RQ11, RQ12, ... .
  • the rated clock time interval HR1E is evenly divided to form the multiple different clock time reference intervals HR1E1, HR1E2,....
  • the rated measurement value range HR1N is a rated measurement time value range.
  • the multiple different measurement value reference ranges RQ11, RQ12,... are multiple measurement time value reference ranges, and they are all defaulted based on the timer specification FT21.
  • the multiple different clock time reference intervals HR1E1, HR1E2,... include the clock time application interval HR1EU.
  • the measurement application function specification GAL8 includes the timer specification FT21, a rated clock time interval for representing the rated clock time interval HR1E, GA8HE, and a clock time application for representing the clock time application interval HR1EU The interval represents GA8HU.
  • the rated measurement value range HR1N is equal to at least a second part of the full measurement value range QK8E, based on one of the timer specification FT21, the measurement application function specification GAL8, and a first data encoding rule WX8HE It is preset with the specified measurement value format HH95, has a rated range limit value pair DP1A, and contains the multiple different measurement value references represented by multiple different measurement value reference range codes EL11, EL12, ... Range RQ11, RQ12,....
  • the rated range limit value pair DP1A is preset using the specified measurement value format HH95, and the multiple different measurement value reference ranges RQ11, RQ12, ... include the measurement value application range RQ1U.
  • the first data encoding rule WX8HE is used to convert the rated clock time interval to GA8HE, and is formulated based on the timer specification FT21.
  • the multiple different measurement value reference range codes EL11, EL12, ... are multiple measurement time value reference range codes, respectively.
  • the measurement value application range RQ1U is represented by a measurement value application range code EL1U included in the plurality of different measurement value reference range codes EL11, EL12, ..., and has an application range limit value pair DQ1U is preset based on one of the timer specification FT21, the measurement application function specification GAL8, and a second data encoding rule WX8HU using the specified measurement value format HH95.
  • the multiple different measurement value reference range codes EL11, EL12,... are all defaulted based on the measurement application function specification GAL8.
  • the second data encoding rule WX8HU is used to convert the clock time application interval to GA8HU, and is formulated based on the timer specification FT21.
  • the application range limit value pair DQ1U includes a first application range limit value DQ15 and a second application range limit value DQ16 relative to the first application range limit value DQ15.
  • the function device 130 further includes a storage unit 332 coupled to the processing unit 331 and includes a trigger application unit 387 coupled to the processing unit 331.
  • the storage unit 332 stores the default rating range limit value pair DP1A and a variable clock time interval code UF8A.
  • the variable clock time interval code UF8A is equal to a specific measurement value range selected from the multiple different measurement value reference range codes EL11, EL12, ... Code EL14.
  • the specific measurement value range code EL14 indicates a specific clock time interval HR1E4 previously determined based on a sensing operation ZT81.
  • the specific clock time interval HR1E4 is selected from the multiple different clock time reference intervals HR1E1, HR1E2,....
  • the sensing operation ZT81 performed by the timer 342 is used to sense the clock time TH1A.
  • the specific measurement value range code EL14 is assigned to the variable clock time interval code UF8A.
  • the trigger application unit 387 responds to the trigger event JQ81 to enable the processing unit 331 to receive an operation request signal SJ81.
  • the processing unit 331 obtains an operation reference data code XV81 from the storage unit 332 in response to the operation request signal SJ81, and executes the operation by running a data determination program NK8A.
  • a data of the operation reference data code XV81 determines AK8A to determine the measurement value application range code EL1U selected from the plurality of different measurement value reference range codes EL11, EL12, ...
  • the operation reference data code XV81 is the same as an allowable reference data code that is defaulted based on the measurement application function specification GAL8.
  • the data determination program NK8A is constructed based on the measurement application function specification GAL8.
  • the data determination AK8A is one of a first data determination operation AK81 and a second data determination operation AK82. Under the condition that the operation reference data code XV81 is obtained by accessing the variable clock time interval code UF8A stored in the storage unit 332 to be the same as the specific measurement value range code EL14, yes The data determination AK8A of the first data determination operation AK81 determines the measurement value application range code EL1U based on the obtained specific measurement value range code EL14.
  • the first data determination operation AK81 is a first scientific calculation MC81 using the obtained specific measurement value range code EL14.
  • the determined measurement value application range code EL1U is the same as or different from the obtained specific measurement value range code EL14.
  • the operation reference data code XV81 is obtained by accessing the rated range limit value pair DP1A stored in the storage unit 332 to obtain the same conditions as the preset rated range limit value pair DP1A
  • the data of the second data determination operation AK82 determines that AK8A is determined from the multiple data by performing a second scientific calculation MD81 that uses the measured value NY81 and the obtained rated range limit value to DP1A.
  • the measurement value application range code EL1U is selected from among the four different measurement value reference range codes EL11, EL12, ... to determine the measurement value application range code EL1U.
  • the second scientific calculation MD81 is executed based on a specific empirical formula XS81.
  • the specific empirical formula XS81 is formulated in advance based on the preset rated range limit value DP1A and the multiple different measurement value reference range codes EL11, EL12,...
  • the processing unit 331 obtains the application range limit value pair DQ1U based on the determined measurement value application range code EL1U, and based on the measurement value NY81 and the obtained application range limit A data comparison CF81 between the value pair DQ1U checks the mathematical relationship KQ81 to make a logical decision PQ81 whether the measurement value NY81 is within the selected measurement value application range RQ1U. Under the condition that the logical decision PQ81 is affirmative, the processing unit 331 determines the clock time application interval HR1EU in which the clock time TH1A is currently located.
  • the processing unit 331 determines the current clock time TH1A by making the logical decision PQ81.
  • the processing unit 331 is based on one between the variable clock time interval code UF8A equal to the specific measurement value range code EL14 and the determined measurement value application range code EL1U
  • the code difference DG81 uses the storage unit 332 to assign the determined measurement value application range code EL1U to the variable clock time interval code UF8A.
  • the input unit 380 includes a button 3801.
  • the physical parameter application unit 335 has the variable physical parameter QU1A.
  • the variable physical parameter QU1A is further characterized based on a specific physical parameter state JE16 that is different from the physical parameter target state JE1U.
  • the input unit 380 receives an input using the button 3801 The user inputs and operates BQ82.
  • the processing unit 331 transmits to the physical parameter application unit 335 a parameter for causing the variable physical parameter QU1A to leave the physical parameter target state JE1U to enter the specific physical parameter state JE16 An operation signal SG87.
  • a method ML80 for controlling a variable physical parameter QU1A is disclosed.
  • the variable physical parameter QU1A is characterized based on a physical parameter target state JE1U.
  • the method ML80 includes the following steps: sensing a clock time TH1A to generate a sensing signal SY81, wherein the clock time TH1A is characterized based on a clock time application interval HR1EU represented by a measurement value application range RQ1U; In response to the sensing signal SY81, a measurement value NY81 is obtained; and in the clock time application interval HR1EU where the clock time TH1A is currently located by checking the measurement value NY81 and the measurement value application range RQ1U Under the condition that a mathematical relationship KQ81 is determined, the variable physical parameter QU1A is in the physical parameter target state JE1U.
  • the clock time TH1A is further characterized based on a clock time designated interval HR1ET that is different from the clock time application interval HR1EU.
  • the clock time designation interval HR1ET is earlier than the clock time application interval HR1EU.
  • the method ML80 further includes the following steps: providing a timer 342, wherein the step of sensing the clock time TH1A is performed by using the timer 342; and receiving a control signal SC81 from a control device 212, wherein The control signal SC81 plays a role of instructing the clock time designated interval HR1ET.
  • the control device 212 is one of a mobile device and a remote controller. Under the condition that the control device 212 is the remote controller, the control signal SC81 is an optical signal. For example, under the condition that the control device 212 is the mobile device, the control signal SC81 is received from the control device 212 via a wireless link, or the control signal SC81 is a radio signal.
  • the step of obtaining the measurement value NY81 includes a sub-step: after the control signal SC81 is received, the measurement value NY81 is obtained because the control signal SC81 responds to the sensing signal SY81.
  • the timer 342 complies with a timer specification FT21.
  • the measurement value application range RQ1U is defaulted based on the timer specification FT21.
  • the timer specification FT21 includes a full measurement value range FK8E for representing a full measurement value range QK8E.
  • the measurement value application range RQ1U is equal to a part of the full measurement value range QK8E.
  • the measurement value NY81 is obtained in a designated measurement value format HH95.
  • the measurement value application range RQ1U is preset based on the timer specification FT21 in the designated measurement value format HH95.
  • the measurement value application range RQ1U has an application range limit value pair DQ1U, and is represented by a measurement value application range code EL1U.
  • the application range limit value is preset for DQ1U.
  • the method ML80 further includes the following steps: in response to the control signal SC81, obtaining the application range limit value pair DQ1U and the measurement value application range code EL1U; and by comparing the measurement value NY81 with the obtained To apply the range limit value to DQ1U, check the mathematical relationship KQ81.
  • the physical parameter target state JE1U is represented by a physical parameter target state code EW1U.
  • the variable physical parameter QU1A is currently in a physical parameter application state JE1T.
  • the step of making the variable physical parameter QU1A in the physical parameter target state JE1U includes the following sub-steps: the clock time application interval HR1EU in which the clock time TH1A is currently located is checked by the mathematical relationship KQ81.
  • the physical parameter target status code EW1U is obtained based on the obtained measurement value application range code EL1U; and the physical parameter target status code EW1U is obtained based on the obtained physical parameter target status code EW1U for checking the variable
  • a physical parameter relationship KD9U between the physical parameter QU1A and the physical parameter target state JE1U is checked and controlled GX8U.
  • the step of making the variable physical parameter QU1A in the physical parameter target state JE1U further includes the following sub-steps: when the physical parameter application state JE1T is different from the physical parameter target state JE1U and the physical parameter target state JE1U and Under the condition that a physical parameter state difference DT81 between the physical parameter application states JE1T is determined by executing the physical parameter relationship check control GX8U, a signal is executed based on the obtained physical parameter target state code EW1U A control GY85 is generated to generate an operation signal SG85; and in response to the operation signal SG85, the variable physical parameter QU1A enters the physical parameter target state JE1U from the physical parameter application state JE1T.
  • the method ML80 further includes a step of performing a data storage control operation GM8U under the condition that the clock time application interval HR1EU in which the clock time TH1A is currently located is determined by checking the mathematical relationship KQ81, so The data storage control operation GM8U is used to cause a clock time application interval code UF8U representing the determined clock time application interval HR1EU to be stored.
  • the variable physical parameter QU1A and the clock time TH1A belong to a physical parameter type TU11 and a clock time type TQ11, respectively.
  • the physical parameter type TU11 is different from the clock time type TQ11.
  • the method ML80 further includes the following steps: providing a timer 342, wherein the step of sensing the clock time TH1A is performed by using the timer 342; and executing the clock time A measurement application function FA81 related to the application range HR1EU.
  • the timer 342 complies with a timer specification FT21.
  • the measurement value application range RQ1U is defaulted based on the timer specification FT21.
  • the timer specification FT21 includes a full measurement value range FK8E for representing a full measurement value range QK8E.
  • the measurement value application range RQ1U is equal to a first part of the full measurement value range QK8E.
  • the measurement application function FA81 complies with a measurement application function specification GAL8 related to the clock time application interval HR1EU.
  • the measurement value NY81 is obtained in a designated measurement value format HH95.
  • the specified measurement value format HH95 is characterized based on a specified number of bits UY95.
  • the clock time TH1A is further characterized based on a rated clock time interval HR1E.
  • the rated clock time interval HR1E is represented by a rated measurement value range HR1N, and includes a plurality of different clock time reference intervals HR1E1, HR1E2, ... represented by a plurality of different measurement value reference ranges RQ11, RQ12, ... .
  • the multiple different clock time reference intervals HR1E1, HR1E2,... include the clock time application interval HR1EU.
  • the measurement application function specification GAL8 includes the timer specification FT21, a rated clock time interval for representing the rated clock time interval HR1E, GA8HE, and a clock time application for representing the clock time application interval HR1EU The interval represents GA8HU.
  • the rated measurement value range HR1N is equal to at least a second part of the full measurement value range QK8E, based on one of the timer specification FT21, the measurement application function specification GAL8, and a first data encoding rule WX8HE It is preset with the specified measurement value format HH95, has a rated range limit value pair DP1A, and contains the multiple different measurement value references represented by multiple different measurement value reference range codes EL11, EL12, ... Range RQ11, RQ12,....
  • the rated range limit value pair DP1A is preset using the specified measurement value format HH95.
  • the first data encoding rule WX8HE is used to convert the rated clock time interval to GA8HE, and is formulated based on the timer specification FT21.
  • the measurement value application range RQ1U is represented by a measurement value application range code EL1U included in the plurality of different measurement value reference range codes EL11, EL12, ..., has an application range limit value pair DQ1U, and is based on the One of the timer specification FT21, the measurement application function specification GAL8, and a second data encoding rule WX8HU is preset using the specified measurement value format HH95.
  • the multiple different measurement value reference range codes EL11, EL12,... are all defaulted based on the measurement application function specification GAL8.
  • the second data encoding rule WX8HU is used to convert the clock time application interval to GA8HU, and is formulated based on the timer specification FT21.
  • the application range limit value pair DQ1U includes a first application range limit value DQ15 and a second application range limit value DQ16 relative to the first application range limit value DQ15.
  • the method ML80 further includes the following steps: providing a storage space SU11; and storing the preset rating range limit value pair DP1A and a variable clock time interval code in the storage space SU11 UF8A.
  • the variable clock time interval code UF8A is equal to a specific measurement value range code EL14 selected from the multiple different measurement value reference range codes EL11, EL12,...
  • the specific measurement value range code EL14 indicates a specific clock time interval HR1E4 previously determined based on a sensing operation ZT81.
  • the specific clock time interval HR1E4 is selected from the multiple different clock time reference intervals HR1E1, HR1E2,....
  • the sensing operation ZT81 performed by the timer 342 is used to sense the clock time TH1A.
  • the specific measurement value range code EL14 is assigned to the variable clock time interval code UF8A.
  • the method ML80 further includes the following steps: in response to the trigger event JQ81, receiving an operation request signal SJ81; under the condition that the trigger event JQ81 occurs, responding to the operation request signal SJ81 to obtain an operation request signal SJ81 from the storage space SU11 Operation reference data code XV81; and by running a data determination program NK8A to execute a data determination AK8A using the operation reference data code XV81 to determine the selection from the multiple different measurement value reference range codes EL11, EL12, ...
  • the measurement value application range code EL1U is used to select the measurement value application range RQ1U from the plurality of different measurement value reference ranges RQ11, RQ12, ....
  • the operation reference data code XV81 is the same as an allowable reference data code that is defaulted based on the measurement application function specification GAL8.
  • the data determination program NK8A is constructed based on the measurement application function specification GAL8.
  • the data determination AK8A is one of a first data determination operation AK81 and a second data determination operation AK82.
  • the data determination AK8A of the first data determination operation AK81 determines the measurement value application range code EL1U based on the obtained specific measurement value range code EL14.
  • the first data determination operation AK81 is a first scientific calculation MC81 using the obtained specific measurement value range code EL14, and the determined measurement value application range code EL1U is the same as or different from the obtained measurement value range code EL1U.
  • the specific measurement value range code is EL14.
  • the operation reference data code XV81 is obtained by accessing the rated range limit value pair DP1A stored in the storage space SU11 to obtain the same conditions as the preset rated range limit value pair DP1A
  • the data of the second data determination operation AK82 determines that AK8A is determined from the multiple data by performing a second scientific calculation MD81 that uses the measured value NY81 and the obtained rated range limit value to DP1A.
  • the measurement value application range code EL1U is selected from among the four different measurement value reference range codes EL11, EL12, ... to determine the measurement value application range code EL1U.
  • the second scientific calculation MD81 is executed based on a specific empirical formula XS81.
  • the specific empirical formula XS81 is formulated in advance based on the preset rated range limit value DP1A and the multiple different measurement value reference range codes EL11, EL12,...
  • the method ML80 further includes the following steps: based on the determined measurement value application range code EL1U, obtaining the application range limit value pair DQ1U; based on the measurement value NY81 and the obtained A data comparison between the application range limit value and DQ1U CF81, check the mathematical relationship KQ81 to make a logical decision PQ81 whether the measurement value NY81 is within the selected measurement value application range RQ1U; and Under the condition that the logical decision PQ81 is affirmative, the clock time application interval HR1EU in which the clock time TH1A is currently located is determined.
  • the method ML80 further includes a step: when the specific measurement value range code EL14 is different from the determined measurement value application range code EL1U and the clock time TH1A is currently in the clock time application interval HR1EU by Under the condition that the logical decision PQ81 is determined, based on the one between the variable clock time interval code UF8A equal to the specific measurement value range code EL14 and the determined measurement value application range code EL1U
  • the code difference DG81 is used to assign the determined measurement value application range code EL1U to the variable clock time interval code UF8A.
  • the variable physical parameter QU1A is further characterized based on a specific physical parameter state JE16 that is different from the physical parameter target state JE1U.
  • the method ML80 further includes the following steps: providing a button 3801; under the condition that the variable physical parameter QU1A is caused to be in the physical parameter target state JE1U by checking the first mathematical relationship KQ81; A user input operation BQ82 of the button 3801; and in response to the user input operation BQ82, a user input operation BQ82 is generated for causing the variable physical parameter QU1A to leave the physical parameter target state JE1U to enter the specific physical parameter state JE16 Operation signal SG87.
  • FIG. 6 is a schematic diagram of the implementation structure 9015 of the control system 901 shown in FIG. 1.
  • the implementation structure 9015 includes a functional device 130 for controlling a variable physical parameter QU1A.
  • the variable physical parameter QU1A is characterized based on a physical parameter target state JE1U.
  • the functional device 130 includes a timer 342 and a processing unit 331.
  • the timer 342 senses a clock time TH1A to generate a sensing signal SY81.
  • the clock time TH1A is characterized based on a clock time application interval HR1EU represented by a measurement value application range RQ1U.
  • the processing unit 331 is coupled to the timer 342 to obtain a measurement value NY81 in response to the sensing signal SY81, and the processing unit 331 checks the measurement value NY81 and the measurement value application range RQ1U A first mathematical relationship between KQ81 determines that the clock time TH1A enters the clock time application interval HR1EU under the condition of JP81, the variable physical parameter QU1A is in the physical parameter target state JE1U.
  • the functional device 130 further includes a receiving unit 337 coupled to the processing unit 331 and a physical parameter application unit 335 coupled to the processing unit 331.
  • the clock time TH1A is further characterized based on a clock time designated interval HR1ET that is different from the clock time application interval HR1EU.
  • the clock time designation interval HR1ET is earlier than the clock time application interval HR1EU.
  • the control signal SC81 plays a role of instructing the clock time designated interval HR1ET.
  • the control device 212 is one of a mobile device and a remote controller. Under the condition that the control device 212 is the remote controller, the control signal SC81 is an optical signal.
  • the receiving unit 337 receives the control signal SC81 from the control device 212 via a wireless link, or the control signal SC81 is a radio signal .
  • the processing unit 331 checks a second mathematical relationship KQ82 between the measurement value sequence JY81 and the measurement value application range RQ1U to determine whether the clock time TH1A enters from the clock time designated interval HR1ET.
  • a logic of the clock time application interval HR1EU determines PR81.
  • the entered clock time application interval HR1EU is determined under the condition that the logic decision PR81 is affirmative.
  • the timer 342 complies with a timer specification FT21.
  • the measurement value application range RQ1U is defaulted based on the timer specification FT21.
  • the timer specification FT21 includes a full measurement value range FK8E for representing a full measurement value range QK8E.
  • the measurement value application range RQ1U is equal to a part of the full measurement value range QK8E.
  • the measurement value NY81 is obtained in a designated measurement value format HH95.
  • the measurement value application range RQ1U is preset based on the timer specification FT21 in the designated measurement value format HH95.
  • the measurement value application range RQ1U has an application range limit value pair DQ1U, and is represented by a measurement value application range code EL1U.
  • the application range limit value is preset for DQ1U.
  • the processing unit 331 responds to the control signal SC81 to obtain the application range limit value pair DQ1U and the measurement value application range code EL1U, and compares the measurement value NY81 with the obtained application range limit value Check the first mathematical relationship KQ81 for DQ1U.
  • the physical parameter target state JE1U is represented by a physical parameter target state code EW1U.
  • the physical parameter application unit 335 has the variable physical parameter QU1A.
  • the variable physical parameter QU1A is currently in a physical parameter application state JE1T.
  • the processing unit 331 determines the entered clock time application interval HR1EU by checking the first mathematical relationship KQ81, the processing unit 331 applies the range code EL1U based on the obtained measurement value.
  • Obtain the physical parameter target state code EW1U and execute a physical parameter relationship for checking the variable physical parameter QU1A and the physical parameter target state JE1U based on the obtained physical parameter target state code EW1U
  • a physical parameter relation check of KD9U controls GX8U.
  • the processing unit 331 determines the physical parameter target state JE1U and the physical parameter application state by executing the physical parameter relationship check control GX8U Under the condition of a physical parameter state difference DT81 between JE1T, the processing unit 331 executes a signal generation control GY85 based on the obtained physical parameter target state code EW1U to generate an operation signal SG85, and sends it to the physical parameter
  • the parameter application unit 335 transmits the operation signal SG85.
  • the physical parameter application unit 335 responds to the operation signal SG85 to cause the variable physical parameter QU1A to enter the physical parameter target state JE1U from the physical parameter application state JE1T.
  • the processing unit 331 determines the entered clock time application interval HR1EU by checking the first mathematical relationship KQ81, the processing unit 331 performs a data storage control operation GM8U, and the data storage control Operation GM8U is used to cause a clock time application interval code UF8U representing the determined clock time application interval HR1EU to be stored.
  • the variable physical parameter QU1A and the clock time TH1A belong to a physical parameter type TU11 and a clock time type TQ11, respectively.
  • the physical parameter type TU11 is different from the clock time type TQ11.
  • the timer 342 complies with a timer specification FT21.
  • the measurement value application range RQ1U is defaulted based on the timer specification FT21.
  • the timer specification FT21 includes a full measurement value range FK8E for representing a full measurement value range QK8E.
  • the measurement value application range RQ1U is equal to a first part of the full measurement value range QK8E.
  • the processing unit 331 is configured to execute a measurement application function FA81 related to the clock time application interval HR1EU.
  • the measurement application function FA81 complies with a measurement application function specification GAL8 related to the clock time application interval HR1EU.
  • the processing unit 331 responds to the sensing signal SY81 to obtain the measurement value NY81 in a designated measurement value format HH95.
  • the specified measurement value format HH95 is characterized based on a specified number of bits UY95.
  • the clock time TH1A is further characterized based on a rated clock time interval HR1E.
  • the rated clock time interval HR1E is represented by a rated measurement value range HR1N, and includes a plurality of different clock time reference intervals HR1E1, HR1E2, ... represented by a plurality of different measurement value reference ranges RQ11, RQ12, ... .
  • the multiple different clock time reference intervals HR1E1, HR1E2,... include the clock time application interval HR1EU.
  • the measurement application function specification GAL8 includes the timer specification FT21, a rated clock time interval for representing the rated clock time interval HR1E, GA8HE, and a clock time application for representing the clock time application interval HR1EU The interval represents GA8HU.
  • the rated measurement value range HR1N is equal to at least a second part of the full measurement value range QK8E, based on the timer specification FT21, the measurement application function specification GAL8, and a first data encoding rule
  • WX8HE is preset using the specified measurement value format HH95, has a rated range limit value pair DP1A, and includes the reference range codes EL11, EL12,...represented by multiple different measurement values. Multiple reference ranges for different measurement values RQ11, RQ12,....
  • the rated range limit value pair DP1A is preset using the specified measurement value format HH95.
  • the multiple different measurement value reference ranges RQ11, RQ12, ... include the measurement value application range RQ1U.
  • the first data encoding rule WX8HE is used to convert the rated clock time interval to GA8HE, and is formulated based on the timer specification FT21.
  • the measurement value application range RQ1U is represented by a measurement value application range code EL1U included in the plurality of different measurement value reference range codes EL11, EL12, ..., has an application range limit value pair DQ1U, and is based on the One of the timer specification FT21, the measurement application function specification GAL8, and a second data encoding rule WX8HU is preset using the specified measurement value format HH95.
  • the multiple different measurement value reference range codes EL11, EL12,... are all defaulted based on the measurement application function specification GAL8.
  • the second data encoding rule WX8HU is used to convert the clock time application interval to GA8HU, and is formulated based on the timer specification FT21.
  • the application range limit value pair DQ1U includes a first application range limit value DQ15 and a second application range limit value DQ16 relative to the first application range limit value DQ15.
  • the functional device 130 further includes a storage unit 332 coupled to the processing unit 331 and includes a trigger application unit 387 coupled to the processing unit 331.
  • the storage unit 332 stores the default rating range limit value pair DP1A and a variable clock time interval code UF8A.
  • the variable clock time interval code UF8A is equal to a specific measurement value range selected from the multiple different measurement value reference range codes EL11, EL12, ... Code EL14.
  • the specific measurement value range code EL14 indicates a specific clock time interval HR1E4 previously determined based on a sensing operation ZT81.
  • the specific clock time interval HR1E4 is selected from the multiple different clock time reference intervals HR1E1, HR1E2,....
  • the sensing operation ZT81 performed by the timer 342 is used to sense the clock time TH1A.
  • the specific measurement value range code EL14 is assigned to the variable clock time interval code UF8A.
  • the trigger application unit 387 responds to the trigger event JQ81 to enable the processing unit 331 to receive an operation request signal SJ81.
  • the processing unit 331 obtains an operation reference data code XV81 from the storage unit 332 in response to the operation request signal SJ81, and executes the operation by running a data determination program NK8A.
  • a data of the operation reference data code XV81 determines AK8A to determine the measurement value application range code EL1U selected from the plurality of different measurement value reference range codes EL11, EL12, ...
  • the operation reference data code XV81 is the same as an allowable reference data code that is defaulted based on the measurement application function specification GAL8.
  • the data determination program NK8A is constructed based on the measurement application function specification GAL8.
  • the data determination AK8A is one of a first data determination operation AK81 and a second data determination operation AK82. Under the condition that the operation reference data code XV81 is obtained by accessing the variable clock time interval code UF8A stored in the storage unit 332 to be the same as the specific measurement value range code EL14, yes The data determination AK8A of the first data determination operation AK81 determines the measurement value application range code EL1U based on the obtained specific measurement value range code EL14.
  • the first data determination operation AK81 is a first scientific calculation MC81 using the obtained specific measurement value range code EL14.
  • the determined measurement value application range code EL1U is the same as or different from the obtained specific measurement value range code EL14.
  • the operation reference data code XV81 is obtained by accessing the rated range limit value pair DP1A stored in the storage unit 332 to obtain the same conditions as the preset rated range limit value pair DP1A
  • the data of the second data determination operation AK82 determines that AK8A is determined from the multiple data by performing a second scientific calculation MD81 that uses the measured value NY81 and the obtained rated range limit value to DP1A.
  • the measurement value application range code EL1U is selected from among the four different measurement value reference range codes EL11, EL12, ... to determine the measurement value application range code EL1U.
  • the second scientific calculation MD81 is executed based on a specific empirical formula XS81.
  • the specific empirical formula XS81 is formulated in advance based on the preset rated range limit value DP1A and the multiple different measurement value reference range codes EL11, EL12,...
  • the processing unit 331 obtains the application range limit value pair DQ1U based on the determined measurement value application range code EL1U, and based on the measurement value NY81 and the obtained application range limit A data comparison CF81 between the value pair DQ1U checks the first mathematical relationship KQ81 to make a logical decision PQ81 whether the measurement value NY81 is within the selected measurement value application range RQ1U. Under the condition that the logical decision PQ81 is affirmative, the processing unit 331 determines the situation JP81. For example, the situation JP81 is a specific situation.
  • the processing unit 331 determines the entered clock time application interval HR1EU by making the logical decision PQ81 Under the condition, the processing unit 331 uses all the codes based on a code difference DG81 between the variable clock time interval code UF8A equal to the specific measurement value range code EL14 and the determined measurement value application range code EL1U.
  • the storage unit 332 assigns the determined measurement value application range code EL1U to the variable clock time interval code UF8A.
  • the input unit 380 includes a button 3801.
  • the physical parameter application unit 335 has the variable physical parameter QU1A.
  • the variable physical parameter QU1A is further characterized based on a specific physical parameter state JE16 that is different from the physical parameter target state JE1U.
  • the input unit 380 receives an input using the button 3801 The user inputs and operates BQ82.
  • the processing unit 331 transmits to the physical parameter application unit 335 a parameter for causing the variable physical parameter QU1A to leave the physical parameter target state JE1U to enter the specific physical parameter state JE16 An operation signal SG87.
  • a method ML82 for controlling a variable physical parameter QU1A is disclosed.
  • the variable physical parameter QU1A is characterized based on a physical parameter target state JE1U.
  • the method includes the following steps: sensing a clock time TH1A to generate a sensing signal SY81, wherein the clock time TH1A is characterized based on a clock time application interval HR1EU represented by a measurement value application range RQ1U; response The sensing signal SY81 obtains a measurement value NY81; and when the clock time TH1A enters the clock time application interval HR1EU, JP81 checks that the measurement value NY81 is between the measurement value application range RQ1U Under the condition that a first mathematical relationship KQ81 is determined, the variable physical parameter QU1A is in the physical parameter target state JE1U.
  • FIG. 7 is a schematic diagram of an implementation structure 9016 of the control system 901 shown in FIG. 1.
  • FIG. 8 is a schematic diagram of an implementation structure 9017 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9016 and the implementation structure 9017 includes the control device 212 and the function device 130.
  • the functional device 130 includes the processing unit 331, the timer 342, the storage unit 332, the physical parameter application unit 335, and the receiving unit 337.
  • the timer 342, the storage unit 332, the physical parameter application unit 335, and the receiving unit 337 are all controlled by the processing unit 331.
  • the physical parameter application unit 335 is located at one of the inside of the function device 130 and the outside of the function device 130.
  • the receiving unit 337 receives the control signal SC81 that functions to indicate the physical parameter application state JE1T from the control device 212.
  • the processing unit 331 causes the variable physical parameter QU1A to be in the physical parameter application state JE1T based on the control signal SC81.
  • the clock time designation interval HR1ET is adjacent to the clock time application interval HR1EU, and is represented by a measurement value designation range RQ1T, and has a start limit time HR1ET1 and an end limit time relative to the start limit time HR1ET1 HR1ET2.
  • the measurement value specified range RQ1T has a specified range limit value pair DQ1T, and is represented by a measurement value specified range code EL1T.
  • the measurement value specified range RQ1T is a measurement time value target range.
  • the measurement value designated range code EL1T is a time value target range code.
  • the specified range limit value pair DQ1T is a target range limit value pair.
  • the control signal SC81 plays a role of instructing the clock time designated interval HR1ET.
  • the processing unit 331 controls the timer 342 in response to the control signal SC81 so that the timer 342 measures the clock time TH1A according to the start limit time HR1ET1.
  • the processing unit 331 causes the variable physical parameter QU1A to be in the physical parameter application state JE1T within the clock time designated interval HR1ET based on the control signal SC81.
  • the physical parameter application status JE1T is represented by a physical parameter application status code EW1T.
  • the control signal SC81 serves to indicate the physical parameter application state JE1T by transmitting one of the physical parameter application status code EW1T and the measured value target range code EM1T, and by transmitting the designated The range limit value for DQ1T functions to indicate at least one of the clock time designation interval HR1ET and the measurement value designation range RQ1T.
  • the processing unit 331 obtains the physical parameter application state code EW1T and the specified range limit value pair DQ1T from the control signal SC81, and applies the state code EW1T based on the obtained physical parameter to make the variable physical parameter
  • the parameter QU1A is in the physical parameter application state JE1T within the designated interval HR1ET of the clock time.
  • the function device 130 includes the trigger application unit 387.
  • the trigger event JQ81 occurs.
  • the trigger event JQ81 occurs in response to the control signal SC81.
  • the processing unit 331 responds to the trigger event JQ81 to execute a scientific calculation ME81 using the obtained specified range limit value pair DQ1T to obtain the application range limit value pair DQ1U, and check the mathematical relationship KQ81 by comparing the measured value NY81 with the obtained application range limit value pair DQ1U.
  • the trigger event JQ81 is related to the trigger application unit 387, and is one of a trigger action event, a user input event, a signal input event, a state change event, and an integer overflow event.
  • the trigger application unit 387 provides the operation request signal SJ81 to the processing unit 331 in response to the trigger event JQ81, and thereby enables the processing unit 331 to receive the operation request signal SJ81.
  • the processing unit 331 executes the scientific calculation ME81 in response to the operation request signal SJ81 to obtain the application range limit value pair DQ1U in order to check the difference between the variable physical parameter QU1A and the physical parameter target state JE1U
  • the physical parameter relationship is KD9U.
  • the variable physical parameter QU1A is characterized based on a plurality of different physical parameter reference states JE11, JE12,...
  • the multiple different physical parameter reference states JE11, JE12, ... include the physical parameter application state JE1T and the physical parameter target state JE1U, and are respectively represented by multiple different physical parameter reference state codes EW11, EW12, ....
  • the physical parameter target state JE1U is the same or different from the physical parameter application state JE1T.
  • the physical parameter target state JE1T is predetermined according to a physical parameter target range RD1ET.
  • the physical parameter target state JE1U is predetermined according to a physical parameter target range RD1EU.
  • the multiple different physical parameter reference states JE11, JE12,... are respectively predetermined according to multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the physical parameter target range RD1EU is a physical parameter candidate range.
  • the variable physical parameter QU1A is characterized based on the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the multiple different physical parameter reference ranges RD1E1, RD1E2, ... are respectively represented by multiple different measured value reference ranges RN11, RN12, ..., and include the physical parameter target range RD1ET and the physical parameter target range RD1EU.
  • the physical parameter target range RD1ET and the physical parameter target range RD1EU are respectively represented by a measured value target range RN1T and a measured value target range RN1U.
  • the multiple different measurement value reference ranges RN11, RN12, ... are respectively represented by multiple different measurement value reference range codes EM11, EM12, ..., and include the measurement value target range RN1T and the measurement value target range RN1U.
  • the multiple different measurement value reference range codes EM11, EM12, ... include a measurement value target range code EM1T and a measurement value target range code EM1U, and are respectively the same as the multiple different physical parameter reference status codes EW11, EW12, ....
  • the multiple different physical parameter reference state codes EW11, EW12, ... include the physical parameter application state code EW1T and the physical parameter target state code EW1U, and are preset.
  • the measured value target range code EM1T and the measured value target range code EM1U are respectively the same as the physical parameter application state code EW1T and the physical parameter target state code EW1U.
  • the clock time designated interval HR1ET and the clock time application interval HR1EU respectively have a designated time length LH8T and an application time length LH8U that is the same as the designated time length LH8T.
  • the specified time length LH8T and the application time length LH8U are respectively represented by a measurement time length value VH8T and a measurement time length value VH8U.
  • the measurement time length value VH8U is the same as the measurement time length value VH8T.
  • the measurement time length value VH8T and the measurement time length value VH8U are both preset based on the timer specification FT21 using the specified measurement value format HH95.
  • the clock time application interval HR1EU has a relative interval position LE81 relative to the clock time designated interval HR1ET.
  • the relative interval position LE81 is represented by a relative value VL81.
  • the processing unit 331 obtains the relative value VL81 in response to the operation request signal SJ81.
  • the scientific calculation ME81 performs a subtraction operation ZF81 on the obtained specified range limit value on DQ1T to obtain the measurement time length value VH8U, and uses the obtained relative value VL81 and the obtained measurement time
  • the length value VH8U and the obtained specified range limit value pair DQ1T are used to obtain the application range limit value pair DQ1U.
  • the storage unit 332 stores the physical parameter application state code EW1T stored based on the preset measurement value designation range code EL1T.
  • the processing unit 331 obtains the measurement value specified range code EL1T by executing a scientific calculation MH81 using the obtained specified range limit value pair DQ1T, and performs the specified range code EL1T based on the obtained measurement value.
  • the stored physical parameter application status code EW1T is obtained from the storage unit 332.
  • FIG. 9 is a schematic diagram of an implementation structure 9018 of the control system 901 shown in FIG. 1.
  • FIG. 10 is a schematic diagram of an implementation structure 9019 of the control system 901 shown in FIG. 1.
  • FIG. 11 is a schematic diagram of an implementation structure 9020 of the control system 901 shown in FIG. 1.
  • FIG. 12 is a schematic diagram of an implementation structure 9021 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9018, the implementation structure 9019, the implementation structure 9020, and the implementation structure 9021 includes the control device 212 and the ⁇ Functional device 130.
  • the functional device 130 includes the processing unit 331, the timer 342, the physical parameter application unit 335, and the storage unit 332.
  • the timer 342, the physical parameter application unit 335, and the storage unit 332 are all controlled by the processing unit 331.
  • the timer 342 is controlled by the processing unit 331 and used to measure the clock time TH1A.
  • the timer 342 is configured to comply with the timer specification FT21.
  • the variable physical parameter QU1A is related to the clock time TH1A.
  • the clock time TH1A is characterized based on a plurality of different clock time reference intervals HR1E1, HR1E2,....
  • the multiple different clock time reference intervals HR1E1, HR1E2,... are respectively represented by multiple different measurement value reference ranges RQ11, RQ12,..., and are arranged based on a default time reference interval sequence QB81.
  • the multiple different measurement value reference ranges RQ11, RQ12,... Are arranged based on the default time reference interval sequence QB81. For example, the multiple different measurement value reference ranges RQ11, RQ12,... Are multiple time value reference ranges.
  • the multiple different measurement value reference ranges RQ11, RQ12, ... are all preset based on the timer specification FT21 using a specified measurement value format HH95, and are respectively composed of multiple different measurement value reference range codes EL11, EL12, ...Represented.
  • the specified measurement value format HH95 is a specified count value format.
  • the multiple different measurement value reference range codes EL11, EL12, ... are multiple measurement time value reference range codes, respectively.
  • the storage unit 332 has multiple different memory locations YS81, YS82,..., and stores multiple physical parameter designation range codes UQ11, UQ12,... in the multiple different memory locations YS81, YS82,..., respectively.
  • the multiple physical parameter specified range codes UQ11, UQ12, ... are respectively equal to multiple physical parameter specified status codes.
  • the multiple physical parameter designation state codes respectively represent multiple physical parameter designation states related to the variable physical parameter QU1A.
  • the multiple different clock time reference intervals HR1E1, HR1E2,... are respectively represented by multiple clock time reference interval codes.
  • the plurality of clock time reference interval codes are configured to be respectively equal to the plurality of different measurement value reference range codes EL11, EL12, .... Therefore, the multiple different measurement value reference range codes EL11, EL12,... are configured to respectively indicate the multiple different clock time reference intervals HR1E1, HR1E2,....
  • the designated measurement value format HH95 is characterized based on the designated number of bits UY95.
  • the multiple different measurement value reference range codes EL11, EL12, ... include a measurement value designated range code EL1T and a measurement value application range code EL1U.
  • the multiple different clock time reference intervals HR1E1, HR1E2,... include a clock time designated interval HR1ET and a clock time application interval HR1EU.
  • the measurement value designation range code EL1T and the measurement value application range code EL1U are configured to indicate the clock time designation interval HR1ET and the clock time application interval HR1EU, respectively.
  • the multiple different measurement value reference ranges RQ11, RQ12,... include a measurement value designated range RQ1T and a measurement value application range RQ1U.
  • the clock time designation interval HR1ET and the clock time application interval HR1EU are respectively represented by the measurement value designation range RQ1T and the measurement value application range RQ1U.
  • the plurality of different memory locations YS81, YS82, ... are respectively identified based on the plurality of different measurement value reference range codes EL11, EL12, ....
  • the multiple different memory locations YS81, YS82,... are respectively identified based on multiple memory addresses AS81, AS82,..., or are identified by the multiple memory addresses AS81, AS82,..., respectively.
  • the multiple memory addresses AS81, AS82,... are preset based on the multiple different measurement value reference range codes EL11, EL12,..., respectively.
  • the clock time TH1A is further characterized based on a rated clock time interval HR1E.
  • the rated clock time interval HR1E includes the multiple different clock time reference intervals HR1E1, HR1E2,..., and is represented by a rated measurement value range HR1N.
  • the rated measurement value range HR1N includes the multiple different measurement value reference ranges RQ11, RQ12, ..., and is defined by the designated measurement value format HH95 based on the rated clock time interval HR1E and the timer specification FT21 Preset.
  • the rated clock time interval HR1E is equal to 24 hours.
  • the rated measurement value range HR1N is a rated time value range.
  • the measurement application function specification GAL8 includes a rated clock time interval representing GA8HE and a clock time reference interval representing GA8HR.
  • the rated clock time interval representation GA8HE is used to indicate the rated clock time interval HR1E.
  • the clock time reference interval representation GA8HR is used to indicate the multiple different clock time reference intervals HR1E1, HR1E2,...
  • the rated measurement value range HR1N is equal to at least a second part of the full measurement value range QK8E, and is based on one of the timer specification FT21, the measurement application function specification GAL8, and the first data encoding rule WX8HE
  • the specified measurement value format HH95 is preset.
  • the first data encoding rule WX8HE is used to convert the rated clock time interval to GA8HE, and is formulated based on the timer specification FT21.
  • the rated measurement value range HR1N is preset by performing a data encoding operation ZX8HE using the first data encoding rule WX8HE.
  • the multiple different measurement value reference ranges RQ11, RQ12,... are based on one of the timer specification FT21, the measurement application function specification GAL8, and a data encoding rule WX8HR to use the specified measurement value format HH95. Preset.
  • the data encoding rule WX8HR is used to convert the clock time reference interval to GA8HR, and is formulated based on the timer specification FT21.
  • the multiple different measurement value reference ranges RQ11, RQ12,... are preset by performing a data encoding operation ZX8HR using the data encoding rule WX8HR.
  • the plurality of physical parameter designation range codes UQ11, UQ12, ... are configured to be stored based on the plurality of different measurement value reference range codes EL11, EL12, ... respectively, and include a physical parameter target Range code UQ1T and a physical parameter target range code UQ1U.
  • the multiple physical parameter designated range codes UQ11, UQ12,... are all selected from the multiple different physical parameter reference status codes EW11, EW12,....
  • the physical parameter target range code UQ1U is a physical parameter candidate range code.
  • the physical parameter target range code UQ1T represents a physical parameter target range RD1ET that the variable physical parameter QU1A is expected to be within the clock time designated interval HR1ET, and is configured to specify the range code EL1T based on the measured value It is stored in a memory location YS8T.
  • the memory location YS8T is identified based on a memory address AS8T.
  • the multiple different measurement value reference range codes EL11, EL12,... are all defaulted based on the measurement application function specification GAL8.
  • the physical parameter target range code UQ1T is equal to the preset physical parameter application state code EW1T.
  • the physical parameter target range code UQ1U is the same as the physical parameter application status code EW1U.
  • the physical parameter target range code UQ1U represents a physical parameter target range RD1EU that the variable physical parameter QU1A is expected to be within the clock time application interval HR1EU, and is configured to apply the range code EL1U based on the measurement value It is stored in a memory location YS8U.
  • the memory location YS8U is identified based on a memory address AS8U.
  • the physical parameter target range RD1ET and the physical parameter target range RD1EU are both selected from the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the clock time application interval HR1EU is adjacent to the clock time designated interval HR1ET.
  • the physical parameter target range code UQ1U is the same as the physical parameter target status code EW1U.
  • the physical parameter target range RD1EU has a default physical parameter target range limit ZD1U1 and a default physical parameter target range limit ZD1U2 relative to the default physical parameter target range limit ZD1U1.
  • the physical parameter target range code UQ1T is equal to the preset physical parameter application status code EW1T.
  • the control signal SC81 conveys the default measurement value designation range code EL1T.
  • the processing unit 331 obtains the transmitted measurement value specified range code EL1T from the control signal SC81, obtains the memory address AS8T based on the obtained measurement value specified range code EL1T, and obtains the memory address AS8T based on the obtained measurement value specified range code EL1T.
  • the memory address AS8T is used to access the physical parameter target range code UQ1T stored in the memory location YS8T to obtain one of the physical parameter target range code UQ1T and the preset physical parameter application status code EW1T One. For example, there is a preset time interval between the clock time designated interval HR1ET and the clock time application interval HR1EU.
  • the control signal SC81 transmits the preset measurement value designation range code EL1T to indirectly Play the role of indicating the physical parameter application status JE1T.
  • the receiving unit 337 receives the control signal SC81, the variable physical parameter QU1A is in a physical parameter application state JE1L.
  • the processing unit 331 executes a physical parameter relationship KD9T for checking a physical parameter relationship KD9T between the variable physical parameter QU1A and the physical parameter application state JE1T based on the obtained physical parameter application status code EW1T Check the control GX8T.
  • control signal SC81 transmits the preset measurement value designation range code EL1T to indicate at least one of the clock time designation interval HR1ET and the measurement value designation range RQ1T, and By playing the role of indicating the clock time designated interval HR1ET, it plays the role of indicating the physical parameter application state JE1T.
  • the processing unit 331 determines the physical parameter application state JE1T and the physical parameter application state JE1T by executing the physical parameter relationship check control GX8T Under the condition of a physical parameter state difference DT8T between the physical parameter application states JE1L, the processing unit 331 executes a signal generation control GY81 based on the obtained physical parameter application state code EW1T to generate an operation signal SG81 , And transmit the operation signal SG81 to the physical parameter application unit 335.
  • the physical parameter application unit 335 responds to the operation signal SG81 to cause the variable physical parameter QU1A to enter the physical parameter application state JE1T from the physical parameter application state JE1L.
  • the variable physical parameter QU1A enters the physical parameter application state JE1T by entering the physical parameter target range RD1ET.
  • the processing unit 331 executes a data storage control operation GM8T based on the obtained measurement value designation range code EL1T, and the data storage control operation GM8T is used to cause a clock time application interval representing the clock time designation interval HR1ET
  • the code UF8T is stored.
  • the clock time application interval code UF8T is the same as the obtained measurement value designation range code EL1T.
  • the data storage control operation GM8T assigns the clock time application interval code UF8T to the variable clock time interval code UF8A by using the storage unit 332.
  • the storage unit 332 stores a variable physical parameter range code UN8A.
  • the processing unit 331 determines the physical parameter state difference DT8T by executing the physical parameter relationship check control GX8T, the processing The unit 331 assigns one of the obtained physical parameter target range code UQ1T and the obtained physical parameter application status code EW1T to the variable physical parameter range code UN8A by using the storage unit 332 .
  • the timer 342 is configured to represent the clock time designation interval HR1ET by using the measurement value designation range RQ1T, and is configured to represent the clock time designation interval HR1ET by using the measurement value application range RQ1U
  • the clock time application interval HR1EU The control signal SC81 further conveys the measured time length value VH8T representing the specified time length LH8T and a clock reference time value NR81 representing a clock reference time TR81.
  • the clock reference time TR81 is close to a current time.
  • a time difference between the clock reference time TR81 and the current time is within a preset time length.
  • the clock reference time value NR81 is preset in the designated measurement value format HH95 based on the clock reference time TR81 and the timer specification FT21.
  • the measurement value designated range RQ1T has the designated range limit value pair DQ1T.
  • the specified range limit value pair DQ1T includes a specified range limit value DQ13 and a specified range limit value DQ14 relative to the specified range limit value DQ13.
  • the specified range limit value DQ13 and the specified range limit value DQ14 are a start range limit value and an end range limit value, respectively.
  • the specified range limit value DQ13 is equal to the clock reference time value NR81.
  • the control signal SC81 conveys a control information CG81.
  • the control information CG81 includes the measurement value designation range code EL1T, the clock reference time value NR81, and the measurement time length value VH8T.
  • the measurement application function specification GAL8 includes a clock time representing GA8TR.
  • the clock time representation GA8TR is used to represent the clock reference time TR81.
  • the clock reference time value NR81 is preset in the specified measurement value format HH95 based on the clock time representation GA8TR, the timer specification FT21, and a data encoding operation ZX8TR for converting the clock time representation GA8TR .
  • the control device 212 includes an operating unit 297.
  • the processing unit 331 obtains the measurement value designation range code EL1T, the clock reference time value NR81, and the clock reference time value NR81 from the control signal SC81 in response to the control signal SC81.
  • the operating unit 297 is configured to obtain the default measurement value designation range code EL1T, the preset clock reference time value NR81, and the preset measurement time length value VH8T, and based on all
  • the obtained clock reference time value NR81, the obtained measurement value designation range code EL1T, and the obtained measurement time length value VH8T are used to output the control signal SC81 for conveying the control information CG81.
  • the processing unit 331 causes the timer 342 to start within a start time TT82 based on the obtained clock reference time value NR81, and thereby causes the timer 342 to start in the Within the activation time TT82, a sensing signal SY80 is generated by sensing the clock time TH1A.
  • the sensing signal SY80 is a clock time signal.
  • the sensing signal SY80 is an initial time signal, and transmits a measurement value NY80 in the specified measurement value format HH95.
  • the measured value NY80 is an initial count value.
  • the measured value NY80 is equal to the clock reference time value NR81.
  • the timer 342 is configured to have a variable count value NY8A. Under the condition that the receiving unit 337 receives the control signal SC81 conveying the clock reference time value NR81 from the control device 212, the processing unit 331 activates the control signal SC81 based on the obtained clock reference time value NR81. The timer 342 executes a counting operation BD81 for the measurement application function FA81 to change the variable count value NY8A.
  • the variable count value NY8A is configured to be equal to the measurement value NY80 within the start time TT82, and is provided in the specified measurement value format HH95.
  • the measured value NY80 is configured to be the same as the obtained clock reference time value NR81.
  • the processing unit 331 Under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1ET based on the control signal SC81, the processing unit 331 reaches an operating time TY81 based on the counting operation BD81. Within the operating time TY81, the timer 342 senses the clock time TH1A to cause the variable count value NY8A to be equal to a measurement value NY81, and thereby generates a sensing for conveying the measurement value NY81 Signal SY81. For example, the operating time TY81 is a designated time.
  • the trigger application unit 387 provides the operation request signal SJ81 to the processing unit 331 in response to the trigger event JQ81, and thereby causes the processing unit 331 to receive the operation request signal SJ81.
  • the processing unit 331 responds to the operation request signal SJ81 to obtain the measurement value NY81 from the sensing signal SY81 in the specified measurement value format HH95 within the operation time TY81, and obtains the measurement value NY81 during the operation time TY81
  • To obtain or determine the measurement value application range code EL1U by executing a scientific calculation MH85 using the obtained measurement value designation range code EL1T in order to check the variable physical parameter QU1A and the physical parameter target
  • the physical parameter relationship between states JE1U is KD9U.
  • the measurement value designated range RQ1T has the designated range limit value pair DQ1T.
  • the specified range limit value pair DQ1T includes the specified range limit value DQ13 and the specified range limit value DQ14 relative to the specified range limit value DQ13.
  • the measurement value specified range RQ1T and the specified range limit value pair DQ1T are preset based on the clock time specified interval HR1ET and the timer specification FT21 in the specified measurement value format HH95.
  • the measurement value application range RQ1U has the application range limit value pair DQ1U.
  • the application range limit value pair DQ1U includes the first application range limit value DQ15 and the second application range limit value DQ16 relative to the first application range limit value DQ15.
  • the measurement value application range RQ1U and the application range limit value pair DQ1U are preset based on the clock time application interval HR1EU and the timer specification FT21 in the specified measurement value format HH95.
  • the measurement application function specification GAL8 includes a clock time designated interval representing GA8HT and a clock time application interval representing GA8HU.
  • the clock time designated interval representation GA8HT is used to indicate the clock time designated interval HR1ET.
  • the clock time application interval indicates that GA8HU is used to indicate the clock time application interval HR1EU.
  • the measurement value specified range RQ1T and the specified range limit value pair DQ1T are based on the clock time specified interval representation GA8HT, the timer specification FT21 and a data encoding operation for converting the clock time specified interval representation GA8HT ZX8HT is preset using the specified measurement value format HH95.
  • the measurement value application range RQ1U and the application range limit value pair DQ1U are based on the clock time application interval representing GA8HU, the timer specification FT21, and a data encoding operation for converting the clock time application interval representing GA8HU ZX8HU is preset using the specified measurement value format HH95.
  • the processing unit 331 determines the measurement value application range code EL1U within the operating time TY81 based on the control signal SC81 in order to check the variable physical parameter QU1A and the physical parameter The physical parameter relationship KD9U between the target states JE1U. For example, the processing unit 331 determines the measurement value application range code EL1U within the operation time TY81 based on the control signal SC81 in response to the operation request signal SJ81. The processing unit 331 determines the relative value VL81 within the operating time TY81, and uses the determined relative value VL81, the obtained measurement time length value VH8T and the obtained The clock refers to a scientific calculation ME85 of the time value NR81 to obtain the application range limit value pair DQ1U.
  • the processing unit 331 determines the relative value VL81 within the operating time TY81 in response to the operation request signal SJ81, and specifies based on the determined relative value VL81 and the obtained measurement value
  • the range code EL1T is used to determine the measurement value application range code EL1U.
  • the processing unit 331 checks the mathematical relationship KQ81 based on the data comparison CF81 between the obtained measurement value NY81 and the obtained application range limit value pair DQ1U to determine whether the measurement value NY81 is PQ81 is determined for the logic within the selected measurement value application range RQ1U. Under the condition that the logical decision PQ81 is affirmative, the processing unit 331 determines the clock time application interval HR1EU in which the clock time TH1A is currently located.
  • the processing unit 331 determines that the clock time TH1A is currently in by making the logical decision PQ81 Under the condition of the clock time application interval HR1EU, the processing unit 331 is based on the difference between the variable clock time interval code UF8A equal to the measurement value designation range code EL1T and the determined measurement value application range code EL1U One code difference between DG83 to execute the data storage control operation GM8U.
  • the data storage control operation GM8U uses the storage unit 332 to assign the determined measurement value application range code EL1U to the variable clock time interval code UF8A.
  • the physical parameter target range code UQ1U is equal to the preset physical parameter target status code EW1U.
  • the processing unit 331 responds to the operation request signal SJ81 to determine the measurement value application range code EL1U based on the control signal SC81.
  • the processing unit 331 determines the clock time application interval HR1EU in which the clock time TH1A is currently located by making the logical decision PQ81, the processing unit 331 is based on the determined measurement value Apply the range code EL1U to obtain the memory address AS8U, and access the physical parameter target range code UQ1U stored in the memory location YS8U based on the obtained memory address AS8U to obtain the physical parameter target range One of the code UQ1U and the preset physical parameter target status code EW1U.
  • the processing unit 331 checks the mathematical relationship KQ81, the variable physical parameter QU1A is in the physical parameter application state JE1T.
  • the processing unit 331 executes the physical parameter relationship KD9U for checking the physical parameter relationship KD9U between the variable physical parameter QU1A and the physical parameter target state JE1U based on the obtained physical parameter target state code EW1U.
  • Parameter relationship check control GX8U is the physical parameter relationship check control
  • the processing unit 331 determines the physical parameter target state JE1U and the physical parameter application state by executing the physical parameter relationship check control GX8U Under the condition of the physical parameter state difference DT81 between JE1T, the processing unit 331 executes the signal generation control GY85 based on the obtained physical parameter target state code EW1U to generate the operation signal SG85, and sends The physical parameter application unit 335 transmits the operation signal SG85.
  • the physical parameter application unit 335 responds to the operation signal SG85 to cause the variable physical parameter QU1A to enter the physical parameter target state JE1U from the physical parameter application state JE1T.
  • the variable physical parameter QU1A enters the physical parameter target state JE1U by entering the physical parameter target range RD1EU.
  • the processing unit 331 determines the physical parameter state difference DT81 by executing the physical parameter relationship check control GX8U, the processing The unit 331 assigns one of the obtained physical parameter target range code UQ1U and the obtained physical parameter target status code EW1U to the variable physical parameter range code UN8A by using the storage unit 332 .
  • the control device 212 includes the operating unit 297 and a state change detector 475 coupled to the operating unit 297.
  • the multiple physical parameter designated range codes UQ11, UQ12, ... belong to a physical parameter designated range code type TS81.
  • the physical parameter specified range code type TS81 is identified by a physical parameter specified range code type identifier HS81.
  • the physical parameter designation range code type identifier HS81 is preset.
  • the memory address AS8T is preset based on the preset physical parameter specified range code type identifier HS81 and the preset measured value specified range code EL1T.
  • the memory address AS8U is preset based on the preset physical parameter designation range code type identifier HS81 and the preset measurement value application range code EL1U.
  • the state change detector 475 is used to cause the operating unit 297 to transmit the control signal SC81 to the receiving unit 337.
  • the operating unit 297 Before the receiving unit 337 receives the control signal SC81, the operating unit 297 is configured to obtain the default physical parameter target range code UQ1T and the preset physical parameter designated range code type identifier HS81 And the preset measurement value specified range code EL1T, and the memory address AS8T is obtained based on the obtained physical parameter specified range code type identifier HS81 and the obtained measurement value specified range code EL1T in advance .
  • the operating unit 297 provides a write request message WS8T to the receiving unit 337 based on the acquired physical parameter target range code UQ1T and the acquired memory address AS8T.
  • the write request information WS8T includes the acquired physical parameter target range code UQ1T and the acquired memory address AS8T.
  • the receiving unit 337 receives the write request information WS8T from the operating unit 297.
  • the processing unit 331 obtains the included physical parameter target range code UQ1T and the included memory address AS8T from the received write request information WS8T, and based on the obtained physical parameter target range code UQ1T and the obtained memory address AS8T are used to use the storage unit 332 to store the obtained physical parameter target range code UQ1T in the memory location YS8T.
  • the operating unit 297 is configured to obtain the physical parameter target range code UQ1U and the preset measurement value application range code EL1U, and based on the obtained The physical parameter designation range code type identifier HS81 and the obtained measurement value application range code EL1U are used to obtain the memory address AS8U.
  • the processing unit 331 provides a write request message WS8U to the receiving unit 337 based on the acquired physical parameter target range code UQ1U and the acquired memory address AS8U.
  • the write request information WS8U includes the acquired physical parameter target range code UQ1U and the acquired memory address AS8U.
  • the receiving unit 337 receives the write request information WS8U from the operating unit 29.
  • the processing unit 331 obtains the included physical parameter target range code UQ1U and the included memory address AS8U from the received write request information WS8U, and based on the obtained physical parameter target range code UQ1U and the obtained memory address AS8U use the storage unit 332 to store the obtained physical parameter target range code UQ1U in the memory location YS8U.
  • FIG. 13 is a schematic diagram of an implementation structure 9022 of the control system 901 shown in FIG. 1.
  • FIG. 14 is a schematic diagram of an implementation structure 9023 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9022 and the implementation structure 9023 includes the control device 212 and the function device 130.
  • the functional device 130 includes an operating unit 397, the physical parameter application unit 335, the storage unit 332, and a sensing unit 334 coupled to the processing unit 331.
  • the operating unit 397 includes the processing unit 331, the receiving unit 337, and the timer 342.
  • the receiving unit 337, the timer 342, the physical parameter application unit 335, the storage unit 332, and the sensing unit 334 are all controlled by the processing unit 331.
  • the variable physical parameter QU1A is further characterized based on a physical parameter target range RD1ET and a physical parameter application range RD1EL different from the physical parameter target range RD1ET.
  • the physical parameter application range RD1EL is represented by a measurement value application range RN1L.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN81.
  • the processing unit 331 obtains a measurement value VN81 in response to the sensing signal SN81.
  • the measured value VN81 is a measured value of a physical parameter.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate the sensing signal SN81.
  • the processing unit 331 determines the value of the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located by checking a mathematical relationship KV81 between the measurement value VN81 and the measurement value application range RN1L. Under conditions, the processing unit 331 causes the variable physical parameter QU1A to enter the physical parameter target range RD1ET based on the control signal SC81. For example, under the condition that the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located, the processing unit 331 applies the physical parameter to the physical parameter application unit based on the control signal SC81 335 transmits an operation signal SG81. The operation signal SG81 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET from the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.
  • the clock time designated interval HR1ET is related to the physical parameter target range RD1ET.
  • the control signal SC81 functions to indicate the physical parameter target range RD1ET by indicating the clock time designated interval HR1ET.
  • the control signal SC81 transmits the measurement value designation range code EL1T to enable the processing unit 331 to obtain the physical parameter application status code EW1T to indicate the physical parameter target range RD1ET.
  • the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located, the processing unit 331 determines the physical parameter target range RD1ET and the physical parameter target range RD1ET based on the control signal SC81 A range difference DB81 between the physical parameter application ranges RD1EL is used to transmit the operation signal SG81 to the physical parameter application unit 335.
  • the physical parameter application state JE1T is predetermined according to the physical parameter target range RD1ET.
  • the operation signal SG81 is used to cause the variable physical parameter QU1A to enter the physical parameter application state JE1T.
  • the clock time designation interval HR1ET is adjacent to the clock time application interval HR1EU. Under the condition that the clock time TH1A is in the clock time designated interval HR1ET, the variable physical parameter QU1A is in one of the physical parameter target range RD1ET and the physical parameter application state JE1T.
  • the processing unit 331 responds to the control signal SC81 to start the timer 342 so that the timer 342 senses the clock time TH1A within the clock time designated interval HR1ET, and applies it at the clock time The clock time TH1A is sensed within the interval HR1EU.
  • the physical parameter target range RD1ET is represented by a measured value target range RN1T.
  • the control signal SC81 functions to indicate the physical parameter target range RD1ET by functioning to indicate the measurement value target range RN1T.
  • the processing unit 331 determines a range difference DS81 between the measurement value target range RN1T and the measurement value application range RN1L based on the control signal SC81 to determine the range difference DB81.
  • the processing unit 331 determines the range difference DB81 by executing the physical parameter relationship check control GX8T.
  • the physical parameter relationship check control GX8T includes a check operation BV81 for checking the mathematical relationship KV81 between the measurement value VN81 and the measurement value application range RN1L.
  • the sensing unit 334 coupled to the operating unit 397 senses the variable physical parameter QU1A to generate the sensing signal SN81. Under the condition that the operating unit 397 receives the control signal SC81, the operating unit 397 obtains the measured value VN81 in response to the sensing signal SN81. Under the condition that the operating unit 397 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located by checking the mathematical relationship KV81, the operating unit 397 performs an operation based on the control signal SC81 This causes the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the physical parameter target range RD1EU is represented by a measured value target range RN1U.
  • the control signal SC81 is used to make the function device 130 execute the physical parameter relationship check control GX8U.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN85.
  • the processing unit 331 obtains a measurement value VN85 in response to the sensing signal SN85.
  • the processing unit 331 determines or obtains the physical parameter target range code UQ1U based on the control signal SC81, the processing unit 331 performs a check based on the determined physical parameter target range code UQ1U A check operation BV86 of a mathematical relationship KV86 between the measurement value VN85 and a measurement value indicating range RN1G.
  • the measurement value indication range RN1G is equal to one of the measurement value target range RN1T and the measurement value target range RN1U.
  • the processing unit 331 determines a range difference DB86 between the physical parameter target range RD1ET and the physical parameter target range RD1EU based on the checking operation BV86, the processing unit 331 is based on the determined
  • the physical parameter target range code UQ1U is used to execute the signal generation control GY85 to generate the operation signal SG85.
  • the operation signal SG85 is used to control the physical parameter application unit 335 so that the variable physical parameter QU1A enters the physical parameter target state JE1U from the physical parameter application state JE1T within the clock time application interval HR1EU .
  • the processing unit 331 determines the range difference DB86 by executing the physical parameter relationship check control GX8U.
  • the physical parameter relationship check control GX8U includes the check operation BV86 for checking the mathematical relationship KV86 between the measurement value VN85 and the measurement value indication range RN1G.
  • the processing unit 331 checks a physical parameter relationship KD8U between the variable physical parameter QU1A and the physical parameter target range RD1EU by checking the mathematical relationship KV86.
  • FIG. 15 is a schematic diagram of an implementation structure 9024 of the control system 901 shown in FIG. 1.
  • FIG. 16 is a schematic diagram of an implementation structure 9025 of the control system 901 shown in FIG. 1.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to a sensing signal generated by the sensing unit 334 to generate HF81.
  • the measurement value VN81 is obtained by the processing unit 331 in a designated measurement value format HH81.
  • the measurement value target range RN1T and the measurement value application range RN1L are both preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the specified measurement value format HH81.
  • the measurement value target range RN1T and the measurement value application range RN1L are both preset based on the sensor measurement range indication GW8R and the sensor sensitivity indication GW81 in the specified measurement value format HH81.
  • the measurement value target range RN1T and the measurement value application range RN1L have a target range limit value pair DN1T and an application range limit value pair DN1L, respectively.
  • the control signal SC81 conveys the target range limit value pair DN1T, the application range limit value pair DN1L and a handle CC1T.
  • the handle CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 transmits the target range limit value pair DN1T to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET.
  • the functional device 130 further includes a transmission unit 384 coupled to the processing unit 331.
  • the transmission unit 384 is controlled by the processing unit 331.
  • the processing unit 331 obtains the application range limit value pair DN1L from the control signal SC81, and checks the mathematical relationship KV81 by comparing the measured value VN81 with the obtained application range limit value pair DN1L.
  • a logical decision PB81 is made whether the measurement value VN81 is within the measurement value application range RN1L. Under the condition that the logical decision PB81 is affirmative, the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.
  • the processing unit 331 obtains the target range limit value pair DN1T from the control signal SC81. Under the condition that the processing unit 331 determines that the variable physical parameter QU1A is currently in the physical parameter application range RD1EL, the processing unit 331 compares the obtained target range limit value to DN1T and the obtained The application range limit value pair DN1L to check a range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L to make the obtained target range limit value pair DN1T and the obtained A logical decision PY81 is whether the application range limit value of DN1L is equal to DN1L.
  • the processing unit 331 recognizes that the range relationship KE8A is a range difference relationship to determine the range difference DS81.
  • the processing unit 331 obtains the handle CC1T from the control signal SC81.
  • the processing unit 331 executes a signal generation control GY81 based on the obtained handle CC1T to generate a signal for causing the variable physical parameter QU1A to enter the An operation signal SG81 of the physical parameter target range RD1ET.
  • the operation signal SG81 is one of a function signal and a control signal.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN82 .
  • the processing unit 331 responds to the sensing signal SN82 within a specified time TG82 after the operating time TF81 to obtain a measurement value VN82 in the specified measurement value format HH81.
  • the processing unit 331 determines the physical parameter in which the variable physical parameter QU1A is currently located by comparing the measured value VN82 with the obtained target range limit value pair DN1T within the specified time TG82 Under the condition of the target range RD1ET, the processing unit 331 causes the transmission unit 384 to transmit a control response signal SE81 in response to the control signal SC81 to the control device 212 based on the measurement value VN82, and perform a data storage Control operation GU81.
  • the control response signal SE81 delivers the measured value VN82.
  • the data storage control operation GU81 is used to cause a physical parameter target range code UN8T representing the determined physical parameter target range RD1ET to be recorded.
  • the data storage control operation GU81 is a guarantee operation.
  • the processing unit 331 assigns the physical parameter target range code UN8T to the variable physical parameter range code UN8A in the storage space SU11 by executing the data storage control operation GU81.
  • the timer 342 is used to measure the clock time TH1A in the timing operation mode WU21.
  • the variable physical parameter QU1A is related to a variable time length LF8A.
  • the timer 342 is used to measure the variable time length LF8A in a fixed time operation mode WU11 different from the timing operation mode WU21.
  • the variable time length LF8A is characterized based on a reference time length LJ8V.
  • the reference time length LJ8V is represented by a measured time length value CL8V.
  • the measurement time length value CL8V is defaulted based on the timer specification FT21.
  • the variable physical parameter QU1A is characterized based on a physical parameter target state JE1V and a physical parameter target state JE1W different from the physical parameter target state JE1V.
  • the physical parameter target state JE1V is the same or different from the physical parameter target state JE1U.
  • the physical parameter target state JE1V is represented by a physical parameter target state code EW1V.
  • the receiving unit 337 receives a control signal SC88 from the control device 212.
  • the control signal SC88 conveys the measurement time length value CL8V and the physical parameter target status code EW1V.
  • the multiple different physical parameter reference states JE11, JE12, ... include the physical parameter target state JE1V and the physical parameter target state JE1W.
  • the processing unit 331 obtains the measurement time length value CL8V and the physical parameter target status code EW1V from the control signal SC88, and stops the timer 342 in response to the control signal SC88, based on the obtained measurement
  • the timer 342 is restarted by the time length value CL8V, and the timer 342 is operated in the timing operation mode WU11 by restarting the timer 342.
  • the timer 342 is restarted to start an application time length LT8V matching the reference time length LJ8V, and in the timing operation mode WU11 by performing a counting operation BC8V for the application time length LT8V To go through the application time length LT8V to reach a specific time TJ8T.
  • the processing unit 331 causes the variable physical parameter QU1A to be in the physical parameter target state JE1V within the application time length LT8V based on the obtained physical parameter target state code EW1V. Under the condition that the processing unit 331 reaches the specific time TJ8T, the processing unit 331 executes within the specific time TJ8T for causing the variable physical parameter QU1A to leave the physical parameter target state JE1V to enter A signal of the physical parameter target state JE1W generates operation BY89.
  • the multiple different physical parameter reference ranges RD1E1, RD1E2,... include a physical parameter target range RD1EV and a physical parameter target range RD1EW that is different from the physical parameter target range RD1EV.
  • the physical parameter target state JE1V and the physical parameter target state JE1W are respectively predetermined according to the physical parameter target range RD1EV and the physical parameter target range RD1EW.
  • the processing unit 331 generates an operation signal SG89 for causing the variable physical parameter QU1A to leave the physical parameter target state JE1V to enter the physical parameter target state JE1W by performing the signal generation operation BY89 , And transmit the operation signal SG89 to the physical parameter application unit 335.
  • the receiving unit 337 under the condition that the variable physical parameter QU1A is in the physical parameter target state JE1U within the clock time application interval HR1EU by checking the mathematical relationship KQ81, the receiving unit 337 A control signal SC8H is received from the control device 212.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN8H.
  • the timer 342 senses the clock time TH1A to generate a sensing signal SY8H.
  • the processing unit 331 responds to the sensing signal SN8H to obtain a measurement value VN8H in the specified measurement value format HH81, and responds to the sensing signal SY8H to obtain a measurement value NY8H in the specified measurement value format HH95.
  • the processing unit 331 uses the measured value VN8H and the measured value NY8H in response to the control signal SC8H so that the transmission unit 384 transmits a control response signal SE8H in response to the control signal SC8H to the control device 212 .
  • the control response signal SE8H conveys the measured value VN8H and the measured value NY8H, and is used by the control device 212 to perform a correlation with at least one of the variable physical parameter QU1A and the clock time TH1A A specific actual operation.
  • the control device 212 receives the control response signal SE8H, obtains the measured value VN8A and the measured value NY8H from the received control response signal SE8H, and displays and displays the measured value VN8H based on the obtained measured value VN8H.
  • a measurement information LZ8H related to the variable physical parameter QU1A is displayed, and a measurement information LX8H related to the clock time TH1A is displayed based on the obtained measurement value NY8H.
  • FIG. 17 is a schematic diagram of an implementation structure 9026 of the control system 901 shown in FIG. 1.
  • FIG. 18 is a schematic diagram of an implementation structure 9027 of the control system 901 shown in FIG. 1.
  • FIG. 19 is a schematic diagram of an implementation structure 9028 of the control system 901 shown in FIG. 1.
  • FIG. 20 is a schematic diagram of an implementation structure 9029 of the control system 901 shown in FIG. 1.
  • FIG. 21 is a schematic diagram of an implementation structure 9030 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9026, the implementation structure 9027, the implementation structure 9028, the implementation structure 9029 and the implementation structure 9030 The structure includes the control device 212 and the function device 130.
  • the functional device 130 includes the operation unit 397, the physical parameter application unit 335, the storage unit 332, and the sensing unit 334 coupled to the processing unit 331.
  • the operating unit 397 includes the processing unit 331, the timer 342, the receiving unit 337, an input unit 380 coupled to the processing unit 331, a display unit 382 coupled to the processing unit 331, And a transmission unit 384 coupled to the processing unit 331.
  • the physical parameter application unit 335, the storage unit 332, the sensing unit 334, the timer 342, the receiving unit 337, the input unit 380, the display unit 382, and the transmission unit 384 All are controlled by the processing unit 331.
  • the physical parameter application unit 335 is installed inside the functional device 130 or outside the functional device 130.
  • the processing unit 331 is configured to execute a measurement application function FA81 related to the physical parameter application range RD1EL, and includes an output component 338 coupled to the physical parameter application unit 335.
  • the measurement application function FA81 is configured to comply with a measurement application function specification GAL8 related to the physical parameter application range RD1EL.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to a sensing signal generated by the sensing unit 334 to generate HF81.
  • the processing unit 331 responds to the sensing signal SN81 to obtain the measurement value VN81 in a designated measurement value format HH81.
  • the specified measurement value format HH81 is characterized based on a specified number of bits UY81.
  • the sensing unit 334 senses the variable physical parameter QU1A to execute the sensing signal dependent on the sensor sensitivity YW81 to generate HF81, so The sensing signal generating HF81 is used to generate the sensing signal SN81.
  • the processing unit 331 uses the output component 338 to output for causing the variable physical parameter QU1A to enter the physical The operation signal SG81 of the parameter target range RD1ET.
  • the variable physical parameter QU1A is further characterized based on a rated physical parameter range RD1E.
  • the rated physical parameter range RD1E is represented by a rated measurement value range RD1N, and includes a plurality of different physical parameter reference ranges RD1E1, RD1E2, ... represented by a plurality of different measurement value reference ranges RN11, RN12, ... .
  • the physical parameter target range RD1ET and the physical parameter application range RD1EL are both included in the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the measurement application function specification GAL8 includes the sensor specification FU11, a rated physical parameter range representation GA8E for representing the rated physical parameter range RD1E, and a physical parameter application range representing the physical parameter application range RD1EL Represents GA8L.
  • the rated measurement value range RD1N is based on the rated physical parameter range representing GA8E, the sensor measurement range representing GW8R, and a data encoding operation ZX81 for converting the rated physical parameter range representing GA8E to use the specified measurement value format HH81 is preset, has a rated range limit value pair DD1A, and includes the multiple different measurement value reference ranges RN11, RN12, ... represented by multiple different measurement value reference range codes EM11, EM12, ... respectively.
  • the rated range limit value pair DD1A is preset using the specified measurement value format HH81.
  • the rated measurement value range RD1N and the rated range limit value pair DD1A are preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the designated measurement value format HH81.
  • the measurement value target range RN1T is represented by a measurement value target range code EM1T included in the plurality of different measurement value reference range codes EM11, EM12, ...; thereby, the measurement value target
  • the range code EM1T is configured to indicate the physical parameter target range RD1ET.
  • the multiple different measurement value reference range codes EM11, EM12, ... are all defaulted based on the measurement application function specification GAL8.
  • the control signal SC81 transmits the measurement value target range code EM1T to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET.
  • the measured value target range code EM1T is equal to the physical parameter application status code EW1T.
  • the measurement value application range RN1L is represented by a measurement value application range code EM1L included in the multiple different measurement value reference range codes EM11, EM12, ..., and has an application range limit value pair DN1L; thereby
  • the measurement value application range code EM1L is configured to indicate the physical parameter application range RD1EL.
  • the application range limit value pair DN1L is based on the physical parameter application range representing GA8L, the sensor measurement range representing GW8R, and a data encoding operation ZX82 for converting the physical parameter application range representing GA8L to use the designated
  • the measured value format HH81 is preset.
  • the measurement value application range RN1L is preset using the specified measurement value format HH81 based on the physical parameter application range representation GA8L, the sensor measurement range representation GW8R, and the data encoding operation ZX82.
  • the storage unit 332 stores the default rating range limit value pair DD1A and a variable physical parameter range code UN8A.
  • the control signal SC81 further conveys the rated range limit value pair DD1A.
  • the variable physical parameter range code UN8A is equal to a specific measurement value range code EM14 selected from the multiple different measurement value reference range codes EM11, EM12,...
  • the specific measurement value range code EM14 indicates a specific physical parameter range RD1E4 previously determined by the processing unit 331 based on a sensing operation ZS81.
  • the specific physical parameter range RD1E4 is selected from the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the sensing operation ZS81 performed by the sensing unit 334 is used to sense the variable physical parameter QU1A.
  • the specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.
  • the processing unit 331 obtains the specific measurement value range code EM14 before the receiving unit 337 receives the control signal SC81. Under the condition that the processing unit 331 determines the specific physical parameter range RD1E4 based on the sensing operation ZS81 before the receiving unit 337 receives the control signal SC81, the processing unit 331 uses the storage The unit 332 assigns the obtained specific measurement value range code EM14 to the variable physical parameter range code UN8A.
  • the specific measurement value range code EM14 represents a specific measurement value range configured to represent the specific physical parameter range RD1E4.
  • the specific measurement value range is preset in the specified measurement value format HH81 based on one of the sensor measurement range representation GW8R and the sensor specification FU11.
  • the sensing unit 334 performs a sensing signal generation dependent on the sensor sensitivity YW81 by performing the sensing operation ZS81 to generate a sensing signal.
  • the processing unit 331 Before the receiving unit 337 receives the control signal SC81, the processing unit 331 receives the sensing signal, responds to the sensing signal to obtain a specific measurement value in the specified measurement value format HH81, and executes A specific check operation for checking a mathematical relationship between the specific measurement value and the specific measurement value range. Under the condition that the processing unit 331 determines the specific physical parameter range RD1E4 in which the variable physical parameter QU1A is located based on the specific checking operation, the processing unit 331 uses the storage unit 332 to store all the parameters. The obtained specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.
  • the processing unit 331 responds to a specific sensing operation for sensing the variable physical parameter QU1A to determine whether the processing unit 331 uses the storage unit 332 to change the variable physical parameter range code UN8A.
  • the specific sensing operation is performed by the sensing unit 334.
  • the processing unit 331 responds to the control signal SC81 to obtain one of the control signal SC81 and the storage unit 332 Obtain an operation reference data code XU81, and execute a data determination AA8A using the operation reference data code XU81 by running a data determination program NA8A to determine the selection of reference range codes EM11, EM12, and EM12 from the multiple different measurement values.
  • the measurement value application range code EM1L of ... so as to select the measurement value application range RN1L from the plurality of different measurement value reference ranges RN11, RN12, ....
  • the operation reference data code XU81 is the same as an allowable reference data code that is defaulted based on the measurement application function specification GAL8.
  • the data determination program NA8A is constructed based on the measurement application function specification GAL8.
  • the data determination AA8A is one of a data determination operation AA81 and a data determination operation AA82.
  • the data determination AA8A of the data determination operation AA81 determines the measurement value application range code EM1L based on the obtained specific measurement value range code EM14. For example, the determined measurement value application range code EM1L is the same as or different from the obtained specific measurement value range code EM14.
  • the operation reference data code XU81 is obtained from one of the control signal SC81 and the storage unit 332 and is the same as the preset rated range limit value pair DD1A, it is the data
  • the data of the determination operation AA82 determines that AA8A is determined from the plurality of different measurement value reference range codes EM11, EM12 by performing a scientific calculation MR81 using the measurement value VN81 and the obtained rated range limit value pair DD1A. Select the measurement value application range code EM1L to determine the measurement value application range code EM1L.
  • the scientific calculation MR81 is executed based on a specific empirical formula XR81.
  • the specific empirical formula XR81 is formulated in advance based on the preset rated range limit value pair DD1A and the multiple different measurement value reference range codes EM11, EM12,...
  • the specific empirical formula XR81 is formulated in advance based on the measurement application function specification GAL8.
  • the processing unit 331 obtains the application range limit value pair DN1L based on the determined measurement value application range code EM1L, and based on the measurement value VN81 and the obtained application range limit A data comparison CD81 between the value pair DN1L checks the mathematical relationship KV81 to make a logical decision PB81 whether the measurement value VN81 is within the selected measurement value application range RN1L. Under the condition that the logical decision PB81 is affirmative, the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.
  • the processing unit 331 obtains the measurement value target range code EM1T from the control signal SC81. Under the condition that the processing unit 331 determines that the variable physical parameter QU1A is currently in the physical parameter application range RD1EL, the processing unit 331 compares the obtained measurement value target range code EM1T with the determined target range code EM1T The measurement value application range code EM1L is used to check a range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L to make the obtained measurement value target range code EM1T and the determined PZ81 is determined by a logic of whether the measurement value application range code EM1L is equal. Under the condition that the logic decision PZ81 is negative, the processing unit 331 recognizes that the range relationship KE8A is a range difference relationship to determine the range difference DS81.
  • the processing unit 331 determines that the variable physical parameter QU1A is currently in the physical parameter application range RD1EL
  • the processing unit 331 compares the measured value target range code EM1T and The determined measurement value application range code EM1L is used to check a range relationship KE9A between the physical parameter target range RD1ET and the physical parameter application range RD1EL to make the physical parameter target range RD1ET and the physical parameter A logic of whether the application range RD1EL is equal or not determines PZ91.
  • the processing unit 331 recognizes that the range relationship KE9A is a range difference relationship to determine the range difference DB81. Under the condition that the logical decision PZ81 is negative, the logical decision PZ91 is negative.
  • the application range limit value pair DN1L includes an application range limit value DN15 of the measurement value application range RN1L and an application range limit value DN16 relative to the application range limit value DN15.
  • the function device 130 further includes a physical parameter application unit 335 coupled to the output component 338.
  • the physical parameter application unit 335 has the variable physical parameter QU1A.
  • the sensing unit 334 is coupled to the physical parameter application unit 335.
  • the processing unit 331 uses the output component 338 to enable the physical parameter application unit 335 to perform a specific functional operation ZH81 related to the variable physical parameter QU1A.
  • the specific function operation ZH81 is used to cause a trigger event EQ81 to occur, and is a spatial movement operation.
  • the control device 212 responds to the trigger event EQ81 to output the control signal SC81.
  • the The processing unit 331 makes the logical decision PB81 to be affirmative by comparing the measured value VN81 with the obtained application range limit value pair DN1L.
  • the processing unit 331 compares the measurement value VN81 with the obtained application range limit The value is DN1L to make the logical decision PB81 to become affirmative.
  • the measurement application function specification GAL8 further includes a physical parameter representing GA8T1.
  • the physical parameter representation GA8T1 is used to represent a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the storage unit 332 has a memory location YM8L and a memory location YX8T different from the memory location YM8L, stores the application range limit value pair DN1L in the memory location YM8L, and stores a handle in the memory location YX8T CC1T.
  • the memory location YM8L is identified based on the preset measurement value application range code EM1L.
  • the memory location YX8T is identified based on the preset measurement value target range code EM1T.
  • the handle CC1T is preset based on the physical parameter representation GA8T1 and a data encoding operation ZX91 for converting the physical parameter representation GA8T1.
  • the application range limit value pair DN1L and the handle CC1T are respectively stored by the storage unit 332 based on the preset measurement value application range code EM1L and the preset measurement value target range code EM1T .
  • the processing unit 331 executes a data acquisition AD8A using the determined measurement value application range code EM1L by running a data acquisition program ND8A to obtain the application range limit value pair DN1L.
  • the data acquisition AD8A is one of a data acquisition operation AD81 and a data acquisition operation AD82.
  • the data acquisition program ND8A is constructed based on the measurement application function specification GAL8.
  • the data acquisition operation AD81 uses the storage unit 332 based on the determined measurement value application range code EM1L to access the application range limit value pair DN1L stored in the memory location YM8L to obtain the application The range limit is DN1L.
  • the data acquisition operation AD82 relies on one of the control signal SC81 and the storage unit 332 to acquire the rated range limit value pair DD1A, and uses the determined measurement value application range code EM1L and A scientific calculation MZ81 of the obtained rated range limit value pair DD1A is used to obtain the application range limit value pair DN1L.
  • the rated range limit value pair DD1A includes a rated range limit value DD11 of the rated measurement value range RD1N and a rated range limit value DD12 relative to the rated range limit value DD11, and is based on the rated physical parameter
  • the range represents GA8E
  • the sensor measurement range represents GW8R
  • the data encoding operation ZX81 is preset using the specified measurement value format HH81.
  • the processing unit 331 uses the storage unit 332 based on the obtained measurement value target range code EM1T to access the storage location stored in the memory location
  • the handle CC1T of the YX8T executes a signal for the measurement application function FA81 based on the accessed handle CC1T to generate a control GY81 to control the output component 338.
  • the output component 338 responds to the signal generation control GY81 to perform a signal generation operation BY81 for the measurement application function FA81 to generate an operation signal SG81, and the operation signal SG81 is used to control the physical parameter application unit 335 To cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the operating unit 397 includes the processing unit 331, the receiving unit 337, the timer 342, and the output component 338 coupled to the processing unit 331.
  • the output component 338 is located outside the processing unit 331 and is controlled by the processing unit 331.
  • the processing unit 331 executes the signal generation control GY81 for controlling the output component 338 to provide a control signal SF81 to the output component 338.
  • the output component 338 performs the signal generation operation BY81 for the measurement application function FA81 in response to the control signal SF81 to generate the operation signal SG81, and transmits the operation signal to the physical parameter application unit 335 SG81.
  • the control device 212 is an external device.
  • the multiple different measurement value reference ranges RN11, RN12,... Have a total number of reference ranges NT81.
  • the total number of reference ranges NT81 is defaulted based on the measurement application function specification GAL8.
  • the processing unit 331 responds to the control signal SC81 to obtain the total reference range number NT81.
  • the scientific calculation MR81 further uses the obtained total reference range number NT81.
  • the scientific calculation MZ81 further uses the obtained total reference range number NT81. For example, the total number of reference ranges is greater than or equal to two.
  • the physical parameter application unit 335 responds to the operation signal SG81 to change the variable physical parameter QU1A from a specific physical parameter QU17 to a specific physical parameter QU18.
  • the specific physical parameter QU17 is within the physical parameter application range RD1EL; and the specific physical parameter QU18 is within the physical parameter target range RD1ET.
  • the measurement application function specification GAL8 further includes a physical parameter candidate range representation GA8T for representing the physical parameter target range RD1ET.
  • the measurement value target range RN1T is a first part of the rated measurement value range RD1N, and has a target range limit value pair DN1T.
  • the target range limit value pair DN1T is based on the physical parameter candidate range representing GA8T, the sensor measurement range representing GW8R, and a data encoding operation ZX83 for converting the physical parameter candidate range representing GA8T to use the designated
  • the measured value format HH81 is preset.
  • the measurement value target range RN1T is preset based on the physical parameter candidate range representation GA8T, the sensor measurement range representation GW8R, and the data encoding operation ZX83 using the specified measurement value format HH81.
  • the measurement value application range RN1L is a second part of the rated measurement value range RD1N.
  • the physical parameter target range RD1ET and the physical parameter application range RD1EL are separate or adjacent. Under the condition that the physical parameter target range RD1ET and the physical parameter application range RD1EL are separated, the measured value target range RN1T and the measured value application range RN1L are separated. Under the condition that the physical parameter target range RD1ET and the physical parameter application range RD1EL are adjacent, the measurement value target range RN1T and the measurement value application range RN1L are adjacent.
  • the measurement value application range code EM1L is configured to be equal to an integer.
  • the rated range limit value DD12 is greater than the rated range limit value DD11.
  • the relative value VA11 is equal to a calculation result of the rated range limit value DD12 minus the rated range limit value DD11.
  • the application range limit value pair DN1L is determined based on the rated range limit value DD11, the rated range limit value DD12, the integer, and a ratio of the relative value VA11 to the total reference range number NT81. Preset.
  • the scientific calculation MZ81 uses one of the rated range limit value DD11, the rated range limit value DD12, the integer, the ratio, and any combination thereof.
  • the storage unit 332 further has a memory location YM8T different from the memory location YX8T, and stores the target range limit value pair DN1T in the memory location YM8T.
  • the memory location YM8T is identified based on the preset measurement value target range code EM1T.
  • the sensing unit 334 senses the variable physical parameter QU1A to execute a sensing signal dependent on the sensor sensitivity YW81 to generate HF82, so The sensing signal generating HF82 is used to generate the sensing signal SN82.
  • the processing unit 331 responds to the sensing signal SN82 within a specified time TG82 after the operating time TF81 to obtain a measurement value VN82 in the specified measurement value format HH81.
  • the processing unit 331 uses the storage unit 332 to access the target range limit value pair DN1T stored in the memory location YM8T based on the obtained measurement value target range code EM1T, and compares the result
  • the measured value VN82 and the accessed target range limit value pair DN1T are used to check a mathematical relationship KV91 between the measured value VN82 and the measured value target range RN1T to determine whether the measured value VN82 is in A logic within the measurement target range RN1T determines PB91.
  • the processing unit 331 determines the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located within the specified time TG82, and generates an affirmative operation report RL81 , And cause the transmission unit 384 to output a control response signal SE81 that transmits the positive operation report RL81, whereby the control response signal SE81 is used to cause the control device 212 to obtain the positive operation report RL81.
  • the positive operation report RL81 indicates an operation situation EP81 in which the variable physical parameter QU1A successfully enters the physical parameter target range RD1ET.
  • the processing unit 331 responds to the control signal SC81 by causing the transmission unit 384 to generate the control response signal SE81.
  • the processing unit 331 causes the control response signal SE81 to further transmit the obtained measurement value VN82 based on the obtained measurement value VN82.
  • the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the processing unit 331 determines the variable physical value by making the logical decision PB91 Under the condition that the parameter QU1A is currently in the physical parameter target range RD1ET, the processing unit 331 is based on the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target A code difference DF81 between the range codes EM1T uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the display unit 382 displays a status indicator LB81.
  • the state indicator LB81 is used to indicate that the variable physical parameter QU1A is configured in a specific state XJ81 within the specific physical parameter range RD1E4.
  • the processing unit 331 determines where the variable physical parameter QU1A is currently located by making the logical decision PB91 Under the condition of the physical parameter target range RD1ET, the processing unit 331 further causes the display unit 382 to change the status indicator LB81 to a status indicator LB82 based on the code difference DF81.
  • the state indicator LB82 is used to indicate that the variable physical parameter QU1A is configured in a specific state XJ82 within the physical parameter target range RD1ET.
  • the control signal SC81 is one of an electrical signal SP81 and an optical signal SQ81.
  • the receiving unit 337 includes a receiving component 3371 and a receiving component 3372.
  • the receiving component 3371 is coupled to the processing unit 331. Under the condition that the control signal SC81 is the electrical signal SP81, the receiving component 3371 causes the processing unit 331 to obtain the control information CG81 by receiving the electrical signal SP81 that transmits a control information CG81.
  • the control information CG81 includes the measurement value designation range code EL1T.
  • the processing unit 331 obtains the preset measurement value target range code EM1T based on the measurement value designation range code EL1T of the control information CG81.
  • the control information CG81 further includes the measurement value target range code EM1T.
  • the receiving component 3371 and the receiving component 3372 are two-input components respectively.
  • the receiving component 3372 is coupled to the processing unit 331. Under the condition that the control signal SC81 is the optical signal SQ81, the receiving component 3372 receives the optical signal SQ81 for delivering an encoded image FY81. For example, the coded image FY81 represents the control information CG81.
  • the input unit 380 is coupled to the processing unit 331 and includes a button 3801. Under the condition that the variable physical parameter QU1A is configured within the physical parameter target range RD1ET based on the control signal SC81, the input unit 380 receives a user input operation BQ81 using the button 3801, and In response to the user input operation BQ81, the processing unit 331 receives an operation request signal SJ91.
  • the processing unit 331 determines a specific input code UW81 in response to the operation request signal SJ91.
  • the input unit 380 provides the operation request signal SJ91 to the processing unit 331 in response to the user input operation BQ81 using the button 3801, and thereby causes the processing unit 331 to receive the operation request signal SJ91.
  • the specific input code UW81 is selected from the multiple different measurement value reference range codes EM11, EM12,...
  • the receiving component 3372 senses the encoded image FY81 to determine an encoded data DY81, and decodes the encoded data DY81 to Provide the control information CG81 to the processing unit 331.
  • the variable physical parameter range code UN8A is equal to the preset measurement value target range code EM1T.
  • the processing unit 331 responds to the operation request signal SJ91 to obtain the measurement value target range code EM1T from the variable physical parameter range code UN8A.
  • the processing unit 331 is based on the variable physical parameter equal to the obtained measurement value target range code EM1T
  • a code difference DX81 between the range code UN8A and the specific input code UW81 to use the output component 338 causes the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the multiple different A specific physical parameter range RD1E5 in the physical parameter reference ranges RD1E1, RD1E2,...
  • the button 3801 receives the user input operation BQ81.
  • the specific physical parameter range RD1E5 is represented by a specific physical parameter range code UN85.
  • the processing unit 331 causes the output component 338 to transmit an operation signal to the physical parameter application unit 335 based on the code difference DX81 SG82.
  • the operation signal SG82 is used to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5.
  • the input unit 380 receives a user input operation BQ8A using the button 3801, and responds The user inputs and operates BQ8A to provide an operation request signal SJ9A to the processing unit 331.
  • the button 3801 receives the user input operation BQ8A so that the input unit 380 receives the user input operation BQ8A.
  • the processing unit 331 responds to the operation request signal SJ9A to cause the output component 338 to transmit an operation signal SG8A to the physical parameter application unit 335.
  • the operation signal SG8A is used to cause the variable physical parameter QU1A to leave the specific physical parameter range RD1E5 to enter a specific physical parameter range RD1EA included in the plurality of different physical parameter reference ranges RD1E1, RD1E2,...
  • the specific physical parameter range RD1EA is the same as the physical parameter target range RD1ET.
  • the sensing unit 334 senses the variable physical parameter QU1A in a restraining condition FR81 to provide the sensing signal SN81 to the processing unit 331.
  • the constraint condition FR81 is that the variable physical parameter QU1A is equal to a specific physical parameter QU15 included in the rated physical parameter range RD1E.
  • the processing unit 331 estimates the specific physical parameter QU15 based on the sensing signal SN81 to obtain the measured value VN81.
  • the processing unit 331 recognizes that the measurement value VN81 is within the measurement value application range RN1L
  • the sensing unit 334 is characterized based on the sensor sensitivity YW81 related to the sensing signal generation HF81, and is configured to comply with the sensor specification FU11.
  • the sensor specification FU11 includes the sensor sensitivity indication GW81 for indicating the sensor sensitivity YW81, and the sensor measurement range indication GW8R for indicating the sensor measurement range RB8E.
  • the rated physical parameter range RD1E is configured to be the same as the sensor measurement range RB8E, or configured to be a part of the sensor measurement range RB8E.
  • the sensor measurement range RB8E is related to a physical parameter sensing performed by the sensing unit 334.
  • the sensor measurement range means that GW8R is provided based on a first default measurement unit.
  • the first default measurement unit is one of a metric measurement unit and an imperial measurement unit.
  • the measurement value target range RN1U and the multiple different measurement value reference ranges RN11, RN12, ... are based on one of the sensor measurement range representation GW8R and the sensor specification FU11 to use the specified measurement value format HH81 is preset.
  • the rated measurement value range RD1N and the rated range limit value pair DD1A are based on the rated physical parameter range representing GA8E, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the data encoding operation ZX81
  • the measurement value application range RN1L and the application range limit value pair DN1L are both used based on the physical parameter application range representation GA8L, the sensor measurement range representation GW8R, the sensor sensitivity representation GW81, and the data encoding operation ZX82.
  • the specified measurement value format HH81 is preset.
  • the measurement value target range RN1T and the target range limit value pair DN1T are used based on the physical parameter candidate range representing GA8T, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the data encoding operation ZX83.
  • the specified measurement value format HH81 is preset.
  • the rated physical parameter range represents GA8E
  • the physical parameter application range represents GA8L
  • the physical parameter represents GA8T1
  • the physical parameter candidate range represents GA8T are all provided based on a second default measurement unit.
  • the second default measurement unit is one of a metric measurement unit and an imperial measurement unit, and is the same as or different from the first default measurement unit.
  • the variable physical parameter QU1A is further characterized based on the sensor measurement range RB8E.
  • the sensor measurement range represents GW8R
  • the rated physical parameter range represents GA8E
  • the physical parameter application range represents GA8L
  • the physical parameter candidate range represents GA8T
  • the physical parameter represents GA8T1 are all decimal data types.
  • the measured value VN81, the measured value VN82, the rated range limit value pair DD1A, the application range limit value pair DN1L, the target range limit value pair DN1T, and the handle CC1T all belong to the binary data type , And are all suitable for computer processing.
  • the sensor specification FU11 and the measurement application function specification GAL8 are both defaulted.
  • the receiving unit 337 before the receiving unit 337 receives the control signal SC81, the receiving unit 337 receives a write request message WN8L including the default application range limit value pair DN1L and a memory address AM8L .
  • the memory location YM8L is identified based on the memory address AM8L; and the memory address AM8L is preset based on the preset measurement value application range code EM1L.
  • the processing unit 331 uses the storage unit 332 in response to the write request information WN8L to store the application range limit value pair DN1L of the write request information WN8L in the memory location YM8L.
  • the receiving unit 337 receives a write request message WC8T including the default handle CC1T and a memory address AX8T.
  • the memory location YX8T is identified based on the memory address AX8T; and the memory address AX8T is preset based on the preset measurement value target range code EM1T.
  • the processing unit 331 uses the storage unit 332 to store the handle CC1T of the write request information WC8T in the memory location YX8T in response to the write request information WC8T.
  • the function device 130 is used to control the variable physical parameter QU1A by generating an operation signal SG81.
  • the variable physical parameter QU1A is characterized based on the physical parameter target range RD1ET represented by the measurement value target range RN1T and the physical parameter application range RD1EL represented by the measurement value application range RN1L.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN81. Under the condition that the receiving unit 337 receives a control signal SC81 that functions to indicate the measurement value target range RN1T, the processing unit 331 responds to the sensing signal SN81 to obtain a measurement value VN81.
  • the processing unit 331 determines the value of the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located by checking a mathematical relationship KV81 between the measurement value VN81 and the measurement value application range RN1L. Under conditions, the processing unit 331 determines a range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L based on the control signal SC81 to determine a range relationship KE8A for causing the variable physical parameter Whether the operation signal SG81 of QU1A entering the physical parameter target range RD1ET is to be generated by the output component 338 is a reasonable decision PW81.
  • the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located by checking the mathematical relationship KV81, the processing unit 331 is based on the control signal SC81 determines a range relationship KE9A between the physical parameter target range RD1ET and the physical parameter application range RD1EL to make the reasonable decision PW81.
  • the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located, the processing unit 331 obtains the target range by comparing The limit value pair DN1T and the obtained application range limit value pair DN1L are checked to check the range relationship KE8A to determine whether the obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L The same logic determines PY81.
  • the processing unit 331 recognizes that the range relationship KE8A is a range difference relationship to make the reasonable decision PW81 to be affirmative. Under the condition that the reasonable decision PW81 is affirmative, the processing unit 331 executes a signal generation control GY81 based on the obtained handle CC1T to cause the output component 338 to generate the variable physical parameter QU1A An operation signal SG81 entering the physical parameter target range RD1ET.
  • the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located, the processing unit 331 compares the measured value obtained The target range code EM1T and the determined measurement value application range code EM1L are used to check the range relationship KE8A to determine whether the obtained measurement value target range code EM1T and the determined measurement value application range code EM1L The same logic determines PZ81. Under the condition that the logical decision PZ81 is negative, the processing unit 331 recognizes that the range relationship KE8A is a range difference relationship to make the reasonable decision PW81 to be affirmative.
  • the processing unit 331 determines that the variable physical parameter QU1A is currently in the physical parameter application range RD1EL
  • the processing unit 331 compares the measured value target range code EM1T and The determined measurement value application range code EM1L is used to check the range relationship KE9A between the physical parameter target range RD1ET and the physical parameter application range RD1EL to make the physical parameter target range RD1ET and the physical parameter application range RD1EL.
  • the logic of whether the physical parameter application range RD1EL is equal or not determines PZ91.
  • the processing unit 331 determines the range difference DB81 by recognizing that the range relationship KE9A is a range difference relationship to make the reasonable decision PW81 to be affirmative . Under the condition that the logical decision PZ81 is negative, the logical decision PZ91 is negative.
  • the processing unit 331 uses the storage unit 332 to access the storage unit 332 stored in the memory location YX8T based on the obtained measurement value target range code EM1T Handle CC1T.
  • the processing unit 331 executes a signal generation control GY81 for the measurement application function FA81 based on the accessed handle CC1T.
  • the output component 338 responds to the signal generation control GY81 to perform a signal generation operation BY81 for the measurement application function FA81 to generate an operation signal SG81.
  • the operation signal SG81 is used to control the physical parameter application unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the multiple different physical parameter reference states JE11, JE12,... include the specific physical parameter state JE16.
  • the specific physical parameter state JE16 is represented by a specific physical parameter state code EW16.
  • the multiple different physical parameter reference status codes EW11, EW12, ... include the specific physical parameter status code EW16.
  • the multiple different physical parameter reference ranges RD1E1, RD1E2,... include a specific physical parameter range RD1E6 that is different from the physical parameter target range RD1EU.
  • the specific physical parameter state JE16 is predetermined according to the specific physical parameter range RD1E6.
  • the input unit 380 provides the operation request signal SJ92 to the processing unit 331 in response to the user input operation BQ82 using the button 3801, and thereby causes the processing unit 331 to receive the operation request signal SJ92.
  • the processing unit 331 determines a specific input code UW82 in response to the operation request signal SJ92.
  • the specific input code UW82 is selected from the multiple different physical parameter reference status codes EW11, EW12,...
  • the specific input code UW82 is selected from the multiple different measurement value reference range codes EM11, EM12,...
  • the variable physical parameter range code UN8A is equal to the preset physical parameter target status code EW1U.
  • the processing unit 331 responds to the operation request signal SJ92 to obtain the physical parameter target status code EW1U from the variable physical parameter range code UN8A.
  • the specific physical parameter range RD1E6 is represented by a specific physical parameter range code UN86.
  • the processing unit 331 is based on the measurement value target equal to the obtained measurement value.
  • a code difference DX82 between the variable physical parameter range code UN8A of the range code EM1U and the specific input code UW82 uses the output component 338 to make the output component 338 generate the operation signal SG87.
  • the operation signal SG87 is used to cause the variable physical parameter QU1A to leave the physical parameter target state JE1U to enter the specific physical parameter state JE16.
  • the output component 338 transmits the operation signal SG87 to the physical parameter application unit 335.
  • the physical parameter application unit 335 responds to the operation signal SG87 to cause the variable physical parameter QU1A to leave the physical parameter target state JE1U to enter the specific physical parameter state JE16.
  • the input unit 380 receives the used A user input operation of the button 3801 BQ8B, and in response to the user input operation BQ8B, an operation request signal SJ9B is provided to the processing unit 331.
  • the button 3801 receives the user input operation BQ8B so that the input unit 380 receives the user input operation BQ8B.
  • the processing unit 331 responds to the operation request signal SJ9B to cause the output component 338 to transmit an operation signal SG8B to the physical parameter application unit 335.
  • the operation signal SG8B is used to cause the variable physical parameter QU1A to leave the specific physical parameter range RD1E6 (or the specific physical parameter state JE16) to enter the reference range RD1E1, RD1E2, and ...In a specific physical parameter range RD1EB (or a specific physical parameter state JE1B).
  • the specific physical parameter range RD1EB is the same as the physical parameter target range RD1EU.
  • the specific physical parameter state JE1B is predetermined according to the specific physical parameter range RD1EB.
  • FIG. 22 is a schematic diagram of an implementation structure 9031 of the control system 901 shown in FIG. 1.
  • FIG. 23 is a schematic diagram of an implementation structure 9032 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9031 and the implementation structure 9032 includes the control device 212 and the function device 130.
  • the functional device 130 includes the operating unit 397, the sensing unit 334, the physical parameter application unit 335, and the storage unit 332.
  • the operation unit 397 includes the processing unit 331, the receiving unit 337, the input unit 380, and the transmission unit 384.
  • the receiving unit 337 includes the receiving component 3371 and the receiving component 3372.
  • the transmission unit 384 includes a transmission component 3842 and a transmission component 3843.
  • the sensing unit 334, the physical parameter application unit 335, the storage unit 332, the receiving component 3371, the receiving component 3372, the input unit 380, the transmission component 3842, and the transmission component 3843 All are coupled to the processing unit 331 and are controlled by the processing unit 331.
  • the processing unit 331 includes the output component 338.
  • the output component 338 is coupled to the physical parameter application unit 335.
  • the processing unit 331 executes the signal generation control GY81 based on the obtained handle CC1T within the operation time TF81.
  • the output component 338 responds to the signal generation control GY81 to execute the signal generation operation BY81 for the measurement application function FA81 to generate the operation signal SG81 within the operation time TF81.
  • the operation signal SG81 is a control signal.
  • the output component 338 transmits the operation signal SG81 to the physical parameter application unit 335.
  • the physical parameter application unit 335 responds to the operation signal SG81 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the operation signal SG81 is one of a pulse width modulation signal, a potential quasi signal, a driving signal, and a command signal.
  • the processing unit 331 determines the positive operation report RL81 and causes The transmission unit 384 generates the control response signal SE81 that transmits the positive operation report RL81 and the measurement value VN82.
  • the control response signal SE81 is one of an electrical signal LP81 and an optical signal LQ81.
  • the transmission component 3842 is a transmitter.
  • the transmission component 3843 is a light emitting component.
  • the transmission component 3842 and the transmission component 3843 are two output components respectively.
  • the processing unit 331 determines the current state of a physical parameter of the variable physical parameter QU1A within the physical parameter target range RD1ET by checking the mathematical relationship KV91, and thereby identifies the variable physical parameter.
  • a physical parameter relationship KD8T between the parameter QU1A and the physical parameter target range RD1ET is a physical parameter intersection relationship of the variable physical parameter QU1A currently within the physical parameter target range RD1ET.
  • the processing unit 331 checks one of the physical parameter relationship KD8T and the physical parameter relationship KD9T by checking the mathematical relationship KV91.
  • the processing unit 331 under the condition that the transmission component 3842 is configured to generate the control response signal SE81, the processing unit 331 causes the transmission component 3842 to report to all users based on the determined positive operation report RL81.
  • the control device 212 transmits the electric signal LP81 for transmitting the positive operation report RL81.
  • the processing unit 331 causes the transmission component 3843 to generate and transmit the positive operation report RL81 based on the determined positive operation report RL81
  • the light emitting component is a display component.
  • the optical signal LQ81 conveys an encoded image FZ81 representing the affirmative operation report RL81.
  • the encoded image FZ81 is a barcode image.
  • the electrical signal LP81 is a radio signal.
  • the light signal LQ81 is an infrared signal.
  • control device 212 is identified by a control device identifier HAOT.
  • the control signal SC81 further conveys the control device identifier HAOT.
  • the processing unit 331 obtains the control device identifier HA0T from the control signal SC81 in response to the control signal SC81, and based on the obtained control device identifier HA0T and the determined positive operation report RL81
  • the transmission component 3842 is caused to transmit to the control device 212 the electrical signal LP81 that transmits the positive operation report RL81.
  • the operating unit 297 of the control device 212 is configured to communicate with the operating unit 397 by wire or wirelessly; therefore, the operating unit 297 is configured to wire to the operating unit 397.
  • the control signal SC81 is transmitted ground or wirelessly.
  • the receiving unit 337 receives the control signal SC81 from the control device 212 in a wired or wireless manner.
  • the control signal SC81 is one of the electrical signal SP81 and the optical signal SQ81.
  • the receiving component 3371 is a receiver, and receives the electrical signal SP81 from the control device 212 under the condition that the control signal SC81 is the electrical signal SP81.
  • the receiving component 3372 is a reader, and receives the optical signal SQ81 for conveying the encoded image FY81 from the control device 212 under the condition that the control signal SC81 is the optical signal SQ81.
  • the encoded image FY81 is a barcode image.
  • the electrical signal SP81 is a radio signal.
  • the optical signal SQ81 is an infrared signal.
  • the physical parameter application unit 335 has the variable physical parameter QU1A.
  • the receiving unit 337 further includes a receiving component 3374.
  • the receiving component 3374 is coupled to the processing unit 331, is controlled by the processing unit 331, and receives from the control device 212 under the condition that the variable physical parameter QU1A is provided by the control device 212 A physical parameter signal SB81.
  • the physical parameter application unit 335 receives the physical parameter signal SB81 from the receiving component 3374.
  • the processing unit 331 uses the output component 338 to cause the physical parameter application unit 335 to use the physical parameter signal SB81 to form the variable physical parameter QU1A depending on the physical parameter signal SB81.
  • the receiving component 3374 is a receiving component.
  • the control device 212 transmits the physical parameter signal SB81 to the receiving component 3374 in a wired or wireless manner.
  • the receiving component 3371, the receiving component 3372, and the receiving component 3374 are three-input components, respectively.
  • the physical parameter target range RD1ET has a default physical parameter target range limit ZD1T1 and a default physical parameter target range limit ZD1T2 relative to the default physical parameter target range limit ZD1T1.
  • the target range limit value pair DN1T includes a target range limit value DN17 of the measured value target range RN1T and a target range limit value DN18 relative to the target range limit value DN17.
  • the default physical parameter target range limit ZD1T1 is represented by the target range limit value DN17.
  • the default physical parameter target range limit ZD1T2 is represented by the target range limit value DN18.
  • the physical parameter application range RD1EL has a preset physical parameter application range limit ZD1L1 and a preset physical parameter application range limit ZD1L2 relative to the preset physical parameter application range limit ZD1L1.
  • the preset physical parameter application range limit ZD1L1 is represented by the application range limit value DN15.
  • the preset physical parameter application range limit ZD1L2 is represented by the application range limit value DN16.
  • the trigger event EQ81 is a state change event.
  • the control device 212 includes an operating unit 297 and a state change detector 475 coupled to the operating unit 297.
  • the state change detector 475 is one of a limit detector and an edge detector.
  • the limit detector is a limit switch 485.
  • the state change detector 475 is configured to detect the arrival of a characteristic physical parameter related to a default characteristic physical parameter UL81 to the ZL82.
  • the default characteristic physical parameter UL81 is a default limit position.
  • the characteristic physical parameter reaching ZL82 is a limit position reaching.
  • the physical parameter application unit 335 includes a physical parameter application area AJ11.
  • the physical parameter application area AJ11 has a variable physical parameter QG1A.
  • the variable physical parameter QG1A is dependent on the variable physical parameter QU1A, and is characterized based on the default characteristic physical parameter UL81.
  • the physical parameter application area AJ11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area.
  • the default characteristic physical parameter UL81 is related to the variable physical parameter QU1A.
  • the receiving unit 337 Before the receiving unit 337 receives the control signal SC81, the receiving unit 337 receives a control signal SC80 from the operating unit 297. In response to the received control signal SC80, the processing unit 331 executes a signal generation control GY80 for controlling the output component 338. The output component 338 generates an operation signal SG80 for controlling the variable physical parameter QU1A in response to the signal generation control GY80. The physical parameter application unit 335 receives the operation signal SG80 from the output component 338, and executes the specific function operation ZH81 related to the variable physical parameter QU1A in response to the received operation signal SG80.
  • the specific function operation ZH81 is used to control the variable physical parameter QG1A, and cause the trigger event EQ81 to occur by changing the variable physical parameter QG1A.
  • the variable physical parameter QG1A is configured to be in a variable physical state XA8A.
  • the operation unit 397 is controlled by the control device 212 so that the physical parameter application unit 335 executes the specific function operation ZH81.
  • the state change detector 475 generates a trigger signal SX8A in response to the specific function operation ZH81.
  • the specific functional operation ZH81 causes the variable physical parameter QG1A to reach the default characteristic physical parameter UL81 to form the characteristic physical parameter.
  • the parameter reaches ZL82, and the variable physical state XA8A is changed from a non-characteristic physical parameter reaching state XA81 to an actual characteristic physical parameter reaching state XA82 by forming the characteristic physical parameter reaching ZL82.
  • the state change detector 475 generates the trigger signal SX8A in response to the characteristic physical parameter reaching the ZL82.
  • the actual characteristic physical parameter reaching state XA82 is characterized based on the default characteristic physical parameter UL81.
  • the state change detector 475 responds to a state change event in which the variable physical parameter QG1A is changed from the non-characteristic physical parameter reaching state XA81 to the actual characteristic physical parameter reaching state XA82 to generate the trigger signal SX8A .
  • the state change detector 475 is a trigger application unit.
  • the trigger event EQ81 is the state change event in which the variable physical parameter QG1A enters the actual characteristic physical parameter arrival state XA82.
  • the operating unit 297 receives the trigger signal SX8A, and generates the control signal SC81 in response to the received trigger signal SX8A.
  • the characteristic physical parameter reaching ZL82 is equal to a variable space position and the variable physical parameter QG1A reaches a value equal to a default limit position.
  • a limit position of the default characteristic physical parameter UL81 is reached.
  • the trigger signal SX8A is an operation request signal.
  • the operating unit 297 obtains a control application code UA8T that includes at least one of the target range limit value pair DN1T and the measured value target range code EM1T in response to the received trigger signal SX8A, and is based on The control application code UA8T is used to generate the control signal SC81 that transmits at least one of the target range limit value pair DN1T and the measured value target range code EM1T.
  • the physical parameter application unit 335 forms the variable physical parameter QG1A in the physical parameter application area AJ11 by executing the specific functional operation ZH81 caused based on the variable physical parameter QU1A. Under the condition that the physical parameter application area AJ11 is coupled to the state change detector 475, the state change detector 475 detects that the characteristic physical parameter reaches the ZL82.
  • variable physical parameter QU1A is a first variable electrical parameter, a first variable mechanical parameter, a first variable optical parameter, a first variable temperature, a first variable Variable voltage, a first variable current, a first variable electric power, a first variable resistor, a first variable capacitor, a first variable inductance, a first variable frequency, a first Clock time, a first variable time length, a first variable brightness, a first variable light intensity, a first variable volume, a first variable data flow, a first variable amplitude, a first A variable space position, a first variable displacement, a first variable sequence position, a first variable angle, a first variable space length, a first variable distance, a first variable translation speed , One of a first variable angular velocity, a first variable acceleration, a first variable force, a first variable pressure, and a first variable mechanical power.
  • the operating unit 397 is configured to execute the measurement application function FA81 related to the variable physical parameter QU1A by relying on the control signal SC81.
  • the functional device 130 is one of a plurality of application devices.
  • the measurement application function FA81 is one of a plurality of specific control functions, and the plurality of specific control functions include a light control function, a force control function, an electric control function, a magnetic control function, and any combination thereof.
  • the multiple application devices include a control target device, a relay, a control switch device, a motor, a lighting device, a door, a vending machine, an energy converter, a load device, a timing device, a toy, An electrical appliance, a printing device, a display device, a mobile device, a speaker, and any combination thereof.
  • the physical parameter application unit 335 is one of multiple application targets and is configured to perform a specific application function.
  • the specific application function is one of multiple physical parameter application functions, and the multiple physical parameter application functions include a light use function, a force use function, an electricity use function, a magnetic use function, and any combination thereof.
  • the multiple application targets include an electronic component, an actuator, a resistor, a capacitor, an inductor, a relay, a control switch, a transistor, a motor, a lighting unit, an energy conversion unit, and a load Unit, time unit, a printing unit, a display target, a speaker, and any combination thereof.
  • the physical parameter application unit 335 is a physically implementable functional unit.
  • variable physical parameter QU1A and the variable physical parameter QG1A belong to a physical parameter type TU11 and a physical parameter type TU1G, respectively.
  • the physical parameter type TU11 is the same as or different from the physical parameter type TU1G.
  • the default characteristic physical parameter UL81 belongs to the physical parameter type TU1G.
  • the physical parameter application unit 335 further includes a physical parameter formation area AU11 having the variable physical parameter QU1A.
  • the physical parameter application area AJ11 is coupled to the physical parameter forming area AU11.
  • the specific function operation ZH81 is used to drive the physical parameter application area AJ11 to form the characteristic physical parameter to ZL82.
  • the physical parameter formation area AU11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area.
  • the physical parameter type TU11 is different from a time type.
  • the variable physical parameter QG1A is a variable electrical parameter, a variable mechanical parameter, a variable optical parameter, a variable temperature, a variable voltage, a variable current, a variable electric power, a variable Variable resistance, one variable capacitor, one variable inductance, one variable frequency, one clock time, one variable time length, one variable brightness, one variable light intensity, one variable volume, one variable amount of data , A variable amplitude, a variable space position, a variable displacement, a variable sequence position, a variable angle, a variable space length, a variable distance, a variable translation speed, a variable angular velocity, One of a variable acceleration, a variable force, a variable pressure, and a variable mechanical power.
  • the variable physical parameter QU1A is the same as or different from the variable physical parameter QG1A.
  • FIG. 24 is a schematic diagram of an implementation structure 9033 of the control system 901 shown in FIG. 1.
  • FIG. 25 is a schematic diagram of an implementation structure 9034 of the control system 901 shown in FIG. 1.
  • FIG. 26 is a schematic diagram of an implementation structure 9035 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9033, the implementation structure 9034, and the implementation structure 9035 includes the control device 212 and the function device 130.
  • the functional device 130 includes the operating unit 397, the sensing unit 334, the physical parameter application unit 335, and the storage unit 332.
  • the operation unit 397 includes the processing unit 331, the receiving unit 337, the display unit 382, and the transmission unit 384.
  • the receiving unit 337, the display unit 382, the transmission unit 384, the sensing unit 334, the physical parameter application unit 335, and the storage unit 332 are all controlled by the processing unit 331.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate the sensing signal SN81. For example, under the condition that the receiving unit 337 receives the control signal SC81, the sensing unit 334 senses the variable physical parameter QU1A to generate the sensing signal SN81. After the processing unit 331 executes the signal generation control GY81 to use the output component 338 to generate the operation signal SG81 within the operation time TF81, the sensing unit 334 senses the The physical parameter QU1A is changed to generate the sensing signal SN82.
  • the sensing unit 334 is a time sensing unit, an electrical parameter sensing unit, a mechanical parameter sensing unit, an optical parameter sensing unit, a temperature sensing unit, a humidity sensing unit, One of a motion sensing unit and a magnetic parameter sensing unit.
  • the sensing unit 334 includes a sensing component 3341 coupled to the processing unit 331 and uses the sensing component 3341 to generate the sensing signal SN81 and the sensing signal SN82.
  • the sensing component 3341 belongs to a sensor type 7341 and is one of the first plurality of application sensors.
  • the first plurality of application sensors includes a first voltage sensor, a first current sensor, a first resistance sensor, a first capacitance sensor, a first inductance sensor, a first accelerometer, and a first gyroscope , A first pressure transducer, a first strain gauge, a first timer, a first light detector, a first temperature sensor and a first humidity sensor.
  • the sensing component 3341 generates a sensing signal component SN811.
  • the sensing signal SN81 includes the sensing signal component SN811.
  • the sensing unit 334 further includes a sensing component 3342 coupled to the processing unit 331 and uses the sensing component 3342 to generate the sensing signal SN81 and the sensing signal SN82.
  • the sensing component 3342 belongs to a sensor type 7342 and is one of the second plurality of application sensors.
  • the sensor type 7342 is different from or independent of the sensor type 7341.
  • the second plurality of application sensors includes a second voltage sensor, a second current sensor, a second resistance sensor, a second capacitance sensor, a second inductance sensor, a second accelerometer, and a second gyroscope , A second pressure transducer, a second strain gauge, a second timer, a second light detector, a second temperature sensor and a second humidity sensor.
  • the sensing component 3342 generates a sensing signal component SN812.
  • the sensing signal SN81 further includes the sensing signal component SN812.
  • the sensing unit 334 belongs to a sensor type 734.
  • the sensor type 734 is related to the sensor type 7341 and the sensor type 7342.
  • the sensing unit 334, the sensing component 3341, and the sensing component 3342 are an electric power sensing unit, a voltage sensor, and a current sensor, respectively.
  • the sensing unit 334, the sensing component 3341, and the sensing component 3342 are an inertial measurement unit, an accelerometer, and a gyroscope, respectively.
  • the variable physical parameter QU1A depends on a variable physical parameter JA1A and a variable physical parameter JB1A different from the variable physical parameter JA1A.
  • the variable physical parameter QU1A, the variable physical parameter JA1A, and the variable physical parameter JB1A are respectively a variable electric power, a variable voltage, and a variable current, and belong to a first physical parameter.
  • the second physical parameter type and the third physical parameter type are different or independent.
  • the first physical parameter type depends on the second physical parameter type and the third physical parameter type.
  • the sensing component 3341 senses the variable physical parameter JA1A to generate the sensing signal component SN811.
  • the sensing component 3342 senses the variable physical parameter JB1A to generate the sensing signal component SN812.
  • the processing unit 331 receives the sensing signal component SN811 and the sensing signal component SN812. Under the condition that the receiving unit 337 receives the control signal SC81, the processing unit 331 responds to the sensing signal component SN811 and the sensing signal component SN812 to obtain the measurement value VN81. For example, the processing unit 331 obtains a measurement value VN811 in response to the sensing signal component SN811, obtains a measurement value VN812 in response to the sensing signal component SN812, and uses the measurement value VN811 and the A scientific calculation MY81 of the measured value VN812 is used to obtain the measured value VN81. The scientific calculation MY81 is predetermined based on the first physical parameter type, the second physical parameter type, and the third physical parameter type.
  • Each physical parameter of the variable physical parameter JA1A and the variable physical parameter JB1A is a variable electrical parameter, a variable mechanical parameter, a variable optical parameter, a variable temperature, a variable voltage, One variable current, one variable electric power, one variable resistor, one variable capacitor, one variable inductance, one variable frequency, one clock time, one variable time length, one variable brightness, one variable Light intensity, a variable volume, a variable amount of data, a variable amplitude, a variable space position, a variable displacement, a variable sequence position, a variable angle, a variable space length, a variable One of distance, a variable translation speed, a variable angular velocity, a variable acceleration, a variable force, a variable pressure, and a variable mechanical power.
  • the sensing unit 334 is configured to comply with the sensor specification FU11.
  • the sensing unit 334 generates the sensing signal SN81 by executing the sensing signal generation HF81 dependent on the sensor sensitivity YW81.
  • the physical parameter application unit 335 includes the physical parameter formation area AU11 having the variable physical parameter QU1A. Under the condition that the receiving unit 337 receives the control signal SC81 and the variable physical parameter QU1A exists in the physical parameter formation area AU11, the sensing unit 334 senses the variable physical parameter QU1A to The sensing signal SN81 is generated.
  • the sensing unit 334 is coupled to the physical parameter formation area AU11, or is located in the physical parameter formation area AU11.
  • the processing unit 331 receives the sensing signal SN81, and obtains the measurement value VN81 in the designated measurement value format HH11 by processing the received sensing signal SN81.
  • the processing unit 331 performs a check for the mathematical relationship between the measurement value VN81 and the measurement value application range RN1L by comparing the measurement value VN81 with the obtained application range limit value pair DN1L
  • a check operation BV81 of KV81, and the logical decision PB81 is made based on the check operation BV81.
  • the processing unit 331 processes the received sensing signal SN81 to obtain a measurement value sequence JN81 including the measurement value VN81.
  • the processing unit 331 performs a mathematical procedure for checking the measurement value sequence JN81 and the measurement value application range RN1L by comparing the measurement value sequence JN81 with the obtained application range limit value pair DN1L.
  • a check operation of the relationship KV85 is BV85.
  • the processing unit 331 makes the logical decision PB81 based on the check operation BV85.
  • the inspection operation BV85 includes the inspection operation BV81.
  • the processing unit 331 under the condition that the processing unit 331 recognizes that the measurement value VN81 is an allowable value VG81 within the measurement value application range RN1L based on the data comparison CD81, the processing unit 331 makes the logic Decide PB81 to be affirmative.
  • the processing unit 331 under the condition that the processing unit 331 recognizes that the mathematical relationship KV81 is a numerical intersection relationship KW81, the processing unit 331 makes the logical decision PB81 to become affirmative.
  • the processing unit 331 responds to the control signal SC81 to obtain the measurement value target range code EM1T from the control signal SC81.
  • the processing unit 331 performs a verification operation ZU81 related to the variable physical parameter QU1A within the specified time TG82 after the operation time TF81.
  • the processing unit 331 uses the storage unit 332 to store the obtained
  • the measurement value target range code EM1T is assigned to the variable physical parameter range code UN8A.
  • the verification operation ZU81 responds to the sensing signal SN82 within the designated time TG82 after the operation time TF81 to obtain the measured value VN82 in the designated measured value format HH81.
  • the verification operation ZU81 obtains the target range limit value pair DN1T based on the obtained measurement value target range code EM1T, and compares the measurement value VN82 with the obtained target range limit value pair DN1T.
  • the mathematical relationship KV91 between the measured value VN82 and the measured value target range RN1T is checked to make the logical decision PB91 whether the measured value VN82 is within the measured value target range RN1T. Under the condition that the logical decision PB91 is affirmative, the verification operation ZU81 determines the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located, or determines the physical parameter that the variable physical parameter QU1A enters Parameter target range RD1ET.
  • the processing unit 331 determines the physical parameter in which the variable physical parameter QU1A is currently located based on the verification operation ZU81 Under the condition of the target range RD1ET, the processing unit 331 is based on the code between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T
  • the difference DF81 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the processing unit 331 determines that the variable physical parameter QU1A is currently in the physical parameter target range RD1ET based on the verification operation ZU81 within the specified time TG82.
  • the processing unit 331 performs a data comparison CE8T between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T.
  • the processing unit 331 determines the difference between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T based on the data comparison CE8T Under the condition of the code difference DF81, the processing unit 331 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the processing unit 331 determines the code difference DF81 based on the data comparison CE8T
  • the processing unit 331 executes the data storage control operation GU81, and the data storage control operation GU81 is used to cause a representative
  • the determined physical parameter target range code UN8T of the physical parameter target range RD1ET is recorded by the storage unit 332.
  • the physical parameter target range code UN8T is equal to the obtained measured value target range code EM1T.
  • the data storage control operation GU81 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the display unit 382 displays the status indication LB81.
  • the state indication LB81 is used to indicate that the variable physical parameter QU1A is configured in the specific state XJ81 within the specific physical parameter range RD1E4.
  • the processing unit 331 is configured to obtain the specific measurement value range code EM14, and cause the display based on the obtained specific measurement value range code EM14 Unit 382 displays the status indication LB81.
  • the processing unit 331 determines the code difference DF81 based on the data comparison CE8T
  • the processing unit 331 causes the display unit 382 to display the code difference DF81 based on the obtained measurement value target range code EM1T
  • the status indication LB81 changes to the status indication LB82.
  • the status indicator LB82 is used to indicate that the variable physical parameter QU1A is currently in the specific status XJ82 within the physical parameter target range RD1ET.
  • both the physical parameter target range RD1ET and the physical parameter application range RD1EL are included in the multiple different physical parameter reference ranges RD1E1, RD1E2,...
  • the physical parameter target range RD1ET is the same or different from the physical parameter application range RD1EL.
  • the variable physical parameter QU1A is further characterized based on a physical parameter candidate range RD1E2.
  • the physical parameter candidate range RD1E2 is different from the physical parameter application range RD1EL, and is the same as or different from the physical parameter target range RD1ET.
  • the physical parameter application range RD1EL is a physical parameter candidate range.
  • the physical parameter target range RD1ET is configured to correspond to a corresponding physical parameter range RY1ET.
  • the rated physical parameter range RD1E is equal to a range combination of the physical parameter target range RD1ET and the corresponding physical parameter range RY1ET, and includes the physical parameter application range RD1EL and the physical parameter candidate range RD1E2.
  • the measurement value target range RN1T is configured to correspond to a corresponding measurement value range RX1T.
  • the rated measurement value range RD1N is equal to a range combination of the measurement value target range RN1T and the corresponding measurement value range RX1T.
  • the corresponding physical parameter range RY1ET is represented by the corresponding measurement value range RX1T.
  • the corresponding measurement value range RX1T is preset in the designated measurement value format HH81 based on one of the sensor measurement range representation GW8R and the sensor specification FU11.
  • Both the measurement value target range RN1T and the measurement value application range RN1L are included in the multiple different measurement value reference ranges RN11, RN12,...
  • the measurement value target range RN1T is the same as or different from the measurement value application range RN1L.
  • the physical parameter candidate range RD1E2 is represented by a measurement value candidate range RN12.
  • the measurement value candidate range RN12 is different from the measurement value application range RN1L, and is the same as or different from the measurement value target range RN1T.
  • the rated measurement value range RD1N includes the measurement value application range RN1L and the measurement value candidate range RN12.
  • the measurement value candidate range RN12 is preset based on the physical parameter candidate range RD1E2 and the rated measurement value range RD1N.
  • the measurement value application range RN1L is a measurement value candidate range.
  • the rated measurement value range RD1N is preset in the designated measurement value format HH81 based on the rated physical parameter range representation GA8E, the sensor measurement range representation GW8R, and the rated physical parameter range representation GA8E.
  • the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are separate or adjacent. Under the condition that the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are separated, the measurement value application range RN1L and the measurement value candidate range RN12 are separated. Under the condition that the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are adjacent, the measurement value application range RN1L and the measurement value candidate range RN12 are adjacent.
  • the multiple different physical parameter reference ranges RD1E1, RD1E2,... include the physical parameter candidate ranges RD1E2, which are represented by the multiple different measurement value reference ranges RN11, RN12,..., and are referenced by multiple physical parameters, respectively Represented by the range code.
  • the measurement value candidate range RN12 is represented by a measurement value candidate range code EM12 and has a candidate range limit value pair DN1B, whereby the measurement value candidate range code EM12 is configured to indicate the physical parameter candidate range RD1E2.
  • the candidate range limit value pair DN1B includes a candidate range limit value DN13 and a candidate range limit value DN14 relative to the candidate range limit value DN13.
  • the measurement value candidate range code EM12 and the candidate range limit value pair DN1B are both preset.
  • the multiple different measurement value reference range codes EM11, EM12, ... include the preset measurement value candidate range codes EM12.
  • the multiple physical parameter reference range codes are configured to be respectively equal to the multiple different measurement value reference range codes EM11, EM12,...
  • the trigger application function specification GAL8 further includes a physical parameter candidate range representation GA82 for representing the physical parameter candidate range RD1E2.
  • the measurement value candidate range RN12 and the candidate range limit value pair DN1B are preset based on the sensor specification FU11 using the specified measurement value format HH81.
  • the measurement value candidate range RN12 and the candidate range limit value pair DN1B are both based on the physical parameter candidate range representing GA82, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and for converting the
  • the candidate range of physical parameters indicates that a data encoding operation ZX84 of GA82 is preset using the specified measurement value format HH81.
  • the measurement application function specification GAL8 is used to represent the rated physical parameter range RD1E and the multiple different physical parameter reference ranges RD1E1, RD1E2,...
  • the rated measurement value range RD1N, the rated range limit value pair DD1A, the multiple different measurement value reference ranges RN11, RN12,..., and the multiple different measurement value reference range codes EM11, EM12,... are all based on The measurement application function specification GAL8 is defaulted.
  • the measurement application function FA81 is selected from a number of different physical parameter control functions.
  • the storage unit 332 stores the measurement application function specification GAL8.
  • the processing unit 331 presets the rated range limit value pair DD1A, the application range limit value pair DN1L, the target range limit value pair DN1T, and the candidate range limit value according to the measurement application function specification GAL8. To DN1B,....
  • the sensing signal SN81 includes sensing data. For example, the sensing data belongs to the binary data type.
  • the processing unit 331 obtains the measurement value VN81 in the designated measurement value format HH81 based on the sensing data.
  • the operating unit 397 is configured to rely on the control signal SC81 to execute the measurement application function FA81.
  • the processing unit 331 makes the logical decision PB81 whether the measurement value VN81 is within the measurement value application range RN1L based on the check operation BV81 for the measurement application function FA81. Under the condition that the logical decision PB81 is affirmative, the processing unit 331 checks the range relationship KE8A by comparing the obtained target range limit value pair DN1T with the obtained application range limit value pair DN1L To make the reasonable decision PW81.
  • the processing unit 331 executes the signal generation control GY81 based on the obtained handle CC1T to cause the output component 338 to generate a signal for causing the variable
  • the physical parameter QU1A enters the operation signal SG81 of the physical parameter target range RD1ET.
  • the processing unit 331 determines the reference range selected from the multiple different measurement values by executing a scientific calculation MR82 using the determined measurement value application range code EM1L
  • the measurement value candidate range codes EM11, EM12, ... are coded EM12 so as to select the measurement value candidate range RN12 from the plurality of different measurement value reference ranges RN11, RN12, ....
  • the processing unit 331 obtains the candidate range limit value pair DN1B based on the determined measurement value candidate range code EM12, and obtains the candidate range limit value pair DN1B based on the measurement value VN81 and the obtained candidate range limit value pair DN1B.
  • a data comparison CD82 is used to check a mathematical relationship KV82 between the measurement value VN81 and the selected measurement value candidate range RN12 to determine whether the measurement value VN81 is within the selected measurement value candidate range RN12
  • a logic within determines PB82 Under the condition that the logical decision PB82 is affirmative, the processing unit 331 determines the physical parameter candidate range RD1E2 in which the variable physical parameter QU1A is currently located.
  • the processing unit 331 checks the measured value target by comparing the obtained measured value target range code EM1T with the determined measured value candidate range code EM12 A range relationship KE8B between the range RN1T and the selected measurement value candidate range RN12 to determine whether the obtained measurement value target range code EM1T and the determined measurement value candidate range code EM12 are equal Logic determines PZ82. Under the condition that the logical decision PZ82 is negative, the processing unit 331 uses the output component 338 to generate the operation signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the processing unit 331 compares the obtained measurement value target range code EM1T with the determined measurement value candidate range code EM12 to check the physical A range relationship KE9B between the parameter target range RD1ET and the selected physical parameter candidate range RD1E2 is used to make a logical decision PZ92 whether the physical parameter target range RD1ET and the selected physical parameter candidate range RD1E2 are equal .
  • the processing unit 331 uses the output component 338 to generate the variable physical parameter QU1A by identifying the range relationship KE9B as a range difference relationship.
  • the logical decision PZ92 is negative.
  • the input unit 380 receives the user input operation BQ81, And in response to the user input operation BQ81, an input data DH81 is provided to the processing unit 331.
  • the processing unit 331 performs a data encoding operation EA81 on the input data DH81 to determine the specific input code UW81.
  • the processing unit 331 performs a check operation ZP81 for the measurement application function FA81 to determine whether the determined specific input code UW81 is equal to the variable physical parameter range code. UN8A.
  • the processing unit 331 uses the storage unit 332 to read the variable physical value equal to the measurement value target range code EM1T.
  • Parameter range code UN8A and perform the check operation ZP81 for checking an arithmetic relationship KP81 between the determined specific input code UW81 and the read measured value target range code EM1T.
  • the check operation ZP81 is configured to compare the determined specific input code UW81 and the read measurement value target range code EM1T by executing a data comparison CE81 for the measurement application function FA81 to determine Whether the determined specific input code UW81 and the read measured value target range code EM1T are different.
  • the processing unit 331 determines between the determined specific input code UW81 and the variable physical parameter range code UN8A equal to the obtained measured value target range code EM1T by performing the data comparison CE81 Under the condition of the code difference DX81, the processing unit 331 causes the output component 338 to perform a signal generation operation BY82 for the measurement application function FA81 to generate an operation signal SG82.
  • the operation signal SG82 is one of a function signal and a control signal.
  • the output component 338 transmits the operation signal SG82 to the physical parameter application unit 335.
  • the physical parameter application unit 335 responds to the operation signal SG82 to cause the variable physical parameter QU1A to enter the corresponding physical parameter range RY1ET from the physical parameter target range RD1ET.
  • the operation signal SG82 is one of a pulse width modulation signal, a potential quasi signal, a driving signal, and a command signal.
  • the physical parameter application unit 335 responds to the operation signal SG82 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the multiple different physical parameter reference ranges RD1E1, RD1E2,... The specific physical parameter range in RD1E5.
  • the plurality of different measurement value reference range codes EM11, EM12, ... include a specific measurement value range code EM15 that is different from the measurement value target range code EM1T.
  • the specific measurement value range code EM15 is configured to indicate the specific physical parameter range RD1E5.
  • the processing unit 331 determines the code difference DX81 by performing the data comparison CE81, and uses the output in response to determining the code difference DX81
  • the component 338 generates the operation signal SG82.
  • the physical parameter application unit 335 responds to the operation signal SG82 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5 included in the corresponding physical parameter range RY1ET .
  • the processing unit 331 performs a verification operation related to the variable physical parameter QU1A within a specified time.
  • the processing unit 331 determines the specific physical parameter range RD1E5 into which the variable physical parameter QU1A enters based on the verification operation, the processing unit 331 will be equal to the value of the specific measurement value range code EM15.
  • the determined specific input code UW81 is assigned to the variable physical parameter range code UN8A.
  • the specific physical parameter range RD1E5 is equal to one of the physical parameter application range RD1EL and the physical parameter target range RD1EU.
  • the input unit 380 receives The user input operation BQ82, and in response to the user input operation BQ82, an input data DH82 is provided to the processing unit 331.
  • the processing unit 331 performs a data encoding operation EA82 on the input data DH82 to determine the specific input code UW82.
  • FIG. 27 is a schematic diagram of an implementation structure 9036 of the control system 901 shown in FIG. 1.
  • FIG. 28 is a schematic diagram of an implementation structure 9037 of the control system 901 shown in FIG. 1.
  • FIG. 29 is a schematic diagram of an implementation structure 9038 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9036, the implementation structure 9037, and the implementation structure 9038 includes the control device 212 and the function device 130.
  • the functional device 130 includes the operating unit 397, the sensing unit 334, the physical parameter application unit 335, and the storage unit 332.
  • the operating unit 397 includes the processing unit 331, the receiving unit 337, and the transmitting unit 384.
  • the storage unit 332 has the memory location YM8L, and stores the application range limit value pair DN1L in the memory location YM8L.
  • the memory location YM8L is identified based on the preset measurement value application range code EM1L.
  • the memory location YM8L is identified based on the memory address AM8L, or is identified by the memory address AM8L.
  • the storage unit 332 has the memory location YM8T and the memory location YX8T different from the memory location YM8T, stores the target range limit value pair DN1T in the memory location YM8T, and stores it in the memory location YX8T
  • the handle CC1T For example, the memory location YM8T and the memory location YX8T are both identified based on the preset measurement value target range code EM1T.
  • the handle CC1T is preset based on the designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the memory location YM8T is identified based on a memory address AM8T, or is identified by the memory address AM8T.
  • the memory location YX8T is identified based on the memory address AX8T, or is identified by the memory address AX8T.
  • the memory location YM8L is different from the memory location YX8T.
  • the storage unit 332 further has a memory location YM82 and a memory location YX82 different from the memory location YM82.
  • the candidate range limit value pair DN1B is stored in the memory location YM82, and a memory location YX82 is stored in the memory location YX82.
  • the handle CC12 is preset based on a designated physical parameter QD12 within the physical parameter candidate range RD1E2.
  • the measurement application function specification GAL8 includes a physical parameter representation GA812, and the physical parameter representation GA812 is used to indicate the designated physical parameter QD12 within the physical parameter target range RD1E2.
  • the handle CC12 is preset based on the physical parameter representation GA812 and a data encoding operation ZX92 for converting the physical parameter representation GA812.
  • the memory location YM82 is identified based on the memory address AM82, or is identified by the memory address AM82.
  • the memory location YX82 is identified based on the memory address AX82, or is identified by the memory address AX82.
  • the storage unit 332 further has a memory location YX8L, and stores a handle CC1L in the memory location YX8L.
  • the memory location YX8L is identified based on a memory address AX8L, or is identified by the memory address AX8L.
  • the handle CC1L is preset based on a designated physical parameter QD1L within the physical parameter application range RD1EL.
  • the application range limit value pair DN1L, the target range limit value pair DN1T, and the candidate range limit value pair DN1B all belong to a measurement range limit data code type TN81.
  • the measurement range limit data code type TN81 is identified by a measurement range limit data code type identifier HN81.
  • the handle CC1T and the handle CC12 both belong to a handle type TC81.
  • the handle type TC81 is identified by a handle type identifier HC81. Both the measurement range limit data code type identifier HN81 and the handle type identifier HC81 are preset.
  • the memory address AM8L is preset based on the preset measurement value application range code EM1L and the preset measurement range limit data code type identifier HN81.
  • the memory address AX8L is preset based on the preset measurement value application range code EM1L and the preset handle type identifier HC81.
  • the memory address AX8T is preset based on the preset measurement value target range code EM1T and the preset handle type identifier HC81.
  • the third memory address AM8T is preset based on the preset measurement value target range code EM1T and the preset measurement range limit data code type identifier HN81.
  • the memory address AM82 is preset based on the preset measurement value candidate range code EM12 and the preset measurement range limit data code type identifier HN81.
  • the memory address AX82 is preset based on the preset measurement value candidate range code EM12 and the preset handle type identifier HC81.
  • the processing unit 331 determines the measurement value application range code EM1L in response to the control signal SC81, and obtains the preset measurement range limit data code type identifier in response to the control signal SC81 HN81, obtain the memory address AM8L based on the determined measurement value application range code EM1L and the obtained measurement range limit data code type identifier HN81, and use all the memory address AM8L based on the obtained memory address AM8L
  • the storage unit 332 accesses the application range limit value pair DN1L stored in the memory location YM8L to obtain the application range limit value pair DN1L.
  • the processing unit 331 checks the mathematical relationship KV81 based on the data comparison CD81 between the measurement value VN81 and the obtained application range limit value pair DN1L to determine whether the measurement value VN81 is at The logical decision PB81 within the selected measurement value application range RN1L is determined, and the physical parameter application range RD1EL of the variable physical parameter QU1A is determined under the condition that the logical decision PB81 is affirmative.
  • the processing unit 331 determines the condition of a physical parameter of the variable physical parameter QU1A currently within the physical parameter application range RD1EL, and thereby identifies the A physical parameter relationship KD8L between the variable physical parameter QU1A and the physical parameter application range RD1EL is a physical parameter intersection relationship of the variable physical parameter QU1A currently in the physical parameter application range RD1EL.
  • the processing unit 331 checks the physical parameter relationship KD8L by checking the mathematical relationship KV81.
  • the processing unit 331 obtains the preset handle type identifier HC81 in response to the control signal SC81, and obtains the measured value target range code EM1T from the control signal SC81. Under the condition that the processing unit 331 determines the range difference DS81, the processing unit 331 obtains the memory address based on the obtained measured value target range code EM1T and the obtained handle type identifier HC81 AX8T, and use the storage unit 332 to access the handle CC1T stored in the memory location YX8T based on the obtained memory address AX8T.
  • the processing unit 331 causes the output component 338 to perform the signal generation operation BY81 for the measurement application function FA81 based on the accessed handle CC1T to generate the operation signal SG81, the operation signal SG81 It is used to control the physical parameter application unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the processing unit 331 obtains the third memory address AM8T based on the obtained measurement value target range code EM1T and the obtained measurement range limit data code type identifier HN81, and based on the obtained first memory address AM8T.
  • the memory address AM8T is used to use the storage unit 332 to access the target range limit value pair DN1T stored in the memory location YM8T to obtain the target range limit value pair DN1T.
  • the processing unit 331 checks the mathematical relationship KV91 between the measured value VN82 and the measured value target range RN1T by comparing the measured value VN82 with the obtained target range limit value pair DN1T.
  • the logical decision PB91 to find out whether the measured value VN82 is within the measured value target range RN1T.
  • one of the receiving component 3371 and the receiving component 3372 receives the preset application range limit value pair DN1L and The default write request information WN8L of the memory address AM8L.
  • one of the receiving component 3371 and the receiving component 3372 receives the write request information WN8L from the control device 212 in advance.
  • the processing unit 331 uses the storage unit 332 in response to the write request information WN8L to store the application range limit value pair DN1L of the write request information WN8L in the memory location YM8L.
  • one of the receiving component 3371 and the receiving component 3372 receives all information including the preset handle CC1T and the default memory address AX8T.
  • the write request information WC8T For example, one of the receiving component 3371 and the receiving component 3372 receives the write request information WC8T from the control device 212 in advance.
  • the processing unit 331 uses the storage unit 332 to store the handle CC1T of the write request information WC8T in the memory location YX8T in response to the write request information WC8T.
  • one of the receiving component 3371 and the receiving component 3372 receives the default application target threshold pair DN1T and the preset first Three memory address AM8T a write request information WN8T.
  • one of the receiving component 3371 and the receiving component 3372 receives the write request information WN8T from the control device 212 in advance.
  • the processing unit 331 uses the storage unit 332 to store the application target threshold pair DN1T of the write request information WN8T in the memory location YM8T in response to the write request information WN8T.
  • the storage unit 332 further has a memory location YN81, and stores the rated range limit value pair DD1A in the memory location YN81.
  • the memory location YN81 is identified based on a memory address AN81, or is identified by the memory address AN81. For example, the memory address AN81 is defaulted.
  • the receiving unit 337 receives the control signal SC81
  • one of the receiving component 3371 and the receiving component 3372 receives the preset rated range limit value pair DD1A and the default memory A write request information WD81 of the address AN81.
  • one of the receiving component 3371 and the receiving component 3372 receives the write request information WD81 from the control device 212 in advance.
  • the processing unit 331 uses the storage unit 332 to store the rated range limit value pair DD1A of the write request information WD81 in the memory location YN81 in response to the write request information WD81.
  • the processing unit 331 obtains the memory address AM82 based on the determined measurement value candidate range code EM12 and the obtained measurement range limit data code type identifier HN81, and based on the obtained The memory address AM82 is used to use the storage unit 332 to access the candidate range limit value pair DN1B stored in the memory location YM82 to obtain the candidate range limit value pair DN1B.
  • the specific physical parameter range RD1E5 is represented by a specific measurement value range RN15.
  • the specific measurement value range RN15 has a specific range limit value pair DN1E.
  • the storage unit 332 further has a memory location YM85 and a memory location YX85 different from the memory location YM85.
  • the memory location YM85 is identified based on a memory address AM85, and is preset based on the specific measurement value range code EM15 and the measurement range limit data code type identifier HN81.
  • the memory location YX85 is identified based on a memory address AX85, and is preset based on the specific measurement value range code EM15 and the handle type identifier HC81.
  • the storage unit 332 stores the specific range limit value pair DN1E in the memory location YM85, and stores a handle CC15 in the memory location YX85.
  • the specific range limit value pair DN1E is configured to represent the specific physical parameter range RD1E5, and belongs to the measurement range limit data code type TN81.
  • the handle CC15 belongs to the handle type TC81 and is preset based on a designated physical parameter QD5T within the specific physical parameter range RD1E5.
  • the obtained target range code of the measured value is EM1T.
  • the processing unit 331 determines the code difference DX81 by performing the data comparison CE11. Under the condition that the processing unit 331 determines the code difference DX81, the processing unit 331 is based on the determined specific input code UW81 that is equal to the preset specific measurement value range code EM15 and the obtained all The handle type identifier HC81 is used to obtain the memory address AX85.
  • the processing unit 331 uses the storage unit 332 to access the handle CC15 stored in the memory location YX85 based on the obtained memory address AX85, and causes the storage unit 332 to access the handle CC15 stored in the memory location YX85 based on the accessed handle CC15.
  • the output component 338 performs the signal generation operation BY82 for the measurement application function FA81 to generate the operation signal SG82, and the operation signal SG82 is used to control the physical parameter application unit 335 to cause the variable
  • the physical parameter QU1A enters the specific physical parameter range RD1E5 included in the corresponding physical parameter range RY1ET.
  • the sensing unit 334 senses the operation signal SG82.
  • the variable physical parameter QU1A generates a sensing signal SN83.
  • the processing unit 331 responds to the sensing signal SN83 at a specified time TG83 after the operating time TF82 to obtain a measurement value VN83.
  • the processing unit 331 is configured to obtain the determined specific input code UW81 equal to the preset specific measurement value range code EM15 and the obtained measurement range limit data code type identifier HN81.
  • the memory address AM85 is used, and the storage unit 332 is used to access the specific range limit value pair DN1E stored in the memory location YM85 based on the obtained memory address AM85.
  • the processing unit 331 checks a mathematical relationship KV83 between the measurement value VN83 and the specific measurement value range RN15 by comparing the measurement value VN83 with the obtained specific range limit value pair DN1E to determine Under the condition of the specific physical parameter range RD1E5 that the variable physical parameter QU1A is currently in, the processing unit 331 is based on the variable physical parameter range code UN8A and the specific measurement value range code EM15 equal to the preset. A code difference between the determined specific input code UW81 is used for the storage unit 332 to assign the determined specific input code UW81 to the variable physical parameter range code UN8A.
  • the processing unit 331 determines the current state of a physical parameter of the variable physical parameter QU1A within the specific physical parameter range RD1E5 by checking the mathematical relationship KV83, and thereby identifies the variable physical parameter.
  • a physical parameter relationship KD85 between the parameter QU1A and the specific physical parameter range RD1E5 is a physical parameter intersection relationship of the variable physical parameter QU1A currently within the specific physical parameter range RD1E5.
  • the processing unit 331 checks the physical parameter relationship KD85 by checking the mathematical relationship KV83.
  • FIG. 30 is a schematic diagram of an implementation structure 9039 of the control system 901 shown in FIG. 1.
  • FIG. 31 is a schematic diagram of an implementation structure 9040 of the control system 901 shown in FIG. 1.
  • FIG. 32 is a schematic diagram of an implementation structure 9041 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9039, the implementation structure 9040, and the implementation structure 9041 includes the control device 212 and the function device 130.
  • the functional device 130 includes the operating unit 397, the sensing unit 334, the physical parameter application unit 335, and the storage unit 332.
  • the operating unit 397 includes the processing unit 331, the timer 342, the receiving unit 337, and the transmitting unit 384.
  • the control signal SC81 received by the receiving unit 337 conveys the control information CG81
  • the control information CG81 includes a certain time operation mode code CP21, the measurement value designation range code EL1T, and the control information CG81.
  • the timing operation mode code CP21 represents the timing operation mode WU21 in which the timer 342 operates.
  • the processing unit 331 obtains the control information CG81 from the control signal SC81, and starts the timer 342 based on the obtained timing operation mode code CP21 so that the timer 342 operates in the timing operation Mode WU21.
  • the timer 342 senses the clock time TH1A in the timing operation mode WU21.
  • the timing operation mode WU21 is characterized based on the plurality of different clock time reference intervals HR1E1, HR1E2,....
  • the processing unit 331 determines the range difference DS81 based on the control signal SC81, the processing unit 331 causes the output component 338 to perform the signal generation operation BY81 based on the obtained handle CC1T
  • the signal generation operation BY81 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the processing unit 331 obtains the measured value target range code EM1T and the target range limit value pair DN1T from the received control signal SC81.
  • the processing unit 331 determines by comparing the measurement value VN82 with the obtained target range limit value pair DN1T
  • the processing unit 331 is based on the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained variable physical parameter range code UN8A
  • the code difference DF81 between the measurement value target range codes EM1T uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the processing unit 331 compares the measured value VN82 with the obtained target range limit value pair DN1T to determine that the variable physical parameter QU1A is currently within the physical parameter target range RD1ET.
  • Parameter condition and by this it is recognized that a physical parameter relationship KD8T between the variable physical parameter QU1A and the physical parameter target range RD1ET is the current variable physical parameter QU1A within the physical parameter target range RD1ET Intersection of physical parameters.
  • the processing unit 331 checks the physical parameter relationship KD8T by comparing the measured value VN82 with the obtained target range limit value pair DN1T.
  • the processing unit 331 responds to the control signal SC81 to perform a check operation BV51 for checking a mathematical relationship KV51 between the measurement value VN81 and the measurement value target range RN1T. Under the condition that the processing unit 331 determines the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently located based on the checking operation BV51, the processing unit 331 is based on the control signal SC81.
  • the signal generation control GY81 is executed within the operation time TF81 to transmit the operation signal SG81 to the physical parameter application unit 335.
  • the operation signal SG81 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET from the corresponding physical parameter range RY1ET where the variable physical parameter QU1A is currently located.
  • the control signal SC81 conveys the target range limit value pair DN1T, the rated range limit value pair DD1A and the handle CC1T.
  • the processing unit 331 obtains the target range limit value pair DN1T from the control signal SC81, and performs the inspection operation BV51 by comparing the measured value VN81 with the obtained target range limit value pair DN1T.
  • a logical decision PB51 is made whether the measurement value VN81 is within the corresponding measurement value range RX1T. Under the condition that the logical decision PB51 is affirmative, the processing unit 331 determines the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently located.
  • the processing unit 331 obtains the handle CC1T from the control signal SC81, and executes the signal generation control GY81 based on the obtained handle CC1T.
  • the output component 338 generates the operation signal SG81 in response to the signal generation control GY81.
  • the control signal SC81 transmits the measurement value target range code EM1T, obtains the measurement value target range code EM1T from the control signal SC81, and obtains the measurement value target range code EM1T from the obtained measurement value target range code EM1T.
  • the storage unit 332 obtains the stored handle CC1T.
  • the processing unit 331 obtains the rated range limit value pair DD1A from the control signal SC81, and performs execution by comparing the measured value VN81 with the obtained rated range limit value pair DD1A A check operation BM51 for checking a mathematical relationship KM51 between the measurement value VN81 and the rated measurement value range RD1N.
  • the processing unit 331 makes the logical decision PB51 based on the inspection operation BV51 and the inspection operation BM51.
  • the physical parameter relationship inspection control GX8T includes the inspection operation BV51 and the inspection operation BM51.
  • the processing unit 331 responds to the sensing signal SN82 within the designated time TG82 after the operating time TF81 to obtain the measured value VN82 in the designated measured value format HH81.
  • the processing unit 331 checks all the difference between the measured value VN82 and the measured value target range RN1T by comparing the measured value VN82 with the target range limit value pair DN1T obtained from the control signal SC81.
  • the mathematical relationship KV91 is used to make the logical decision PB91 whether the measured value VN82 is within the measured value target range RN1T.
  • the processing unit 331 determines the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located within the specified time TG82, and causes the transmission unit to 384 transmits the obtained control response signal SE81 of the measured value VN82 to the operating unit 297.
  • the variable physical parameter QU1A is characterized based on the physical parameter target range RD1ET and a physical parameter application range RD1EJ different from the physical parameter target range RD1ET, and the physical parameter target range One of RD1ET and the physical parameter application range RD1EJ is represented by a measurement value indication range RN1H.
  • the processing unit 331 determines the condition of the physical parameter application range RD1EJ that the variable physical parameter QU1A is currently in by checking a mathematical relationship KH81 between the measurement value VN81 and the measurement value indication range RN1H Next, the processing unit 331 causes the variable physical parameter QU1A to enter the physical parameter target range RD1ET from the physical parameter application range RD1EJ.
  • the physical parameter application range RD1EJ is equal to one of the corresponding physical parameter range RY1ET and the physical parameter application range RC1EL.
  • the physical parameter application range RD1EJ is represented by the measurement value indication range RN1H; the measurement value indication range RN1H is equal to the measurement value application range RN1L; and the mathematical relationship KH81 is equal to the mathematical relationship KV81.
  • the physical parameter application range RD1EJ corresponds to the physical parameter target range RD1ET and is equal to the corresponding physical parameter range RY1ET; the corresponding physical parameter range RY1ET is determined by The corresponding measurement value range RX1T is represented; the physical parameter target range RD1ET is represented by the measurement value indication range RN1H; the measurement value indication range RN1H is equal to the measurement value target range RN1T; and the mathematical relationship KH81 Equal to the mathematical relationship KV51.
  • the variable physical parameter QU1A is related to a variable time length LF8A, and is characterized based on a physical parameter target range RD1EV.
  • the physical parameter target range RD1EV is indicated by a physical parameter target range code UN1V.
  • the timer 342 is used to sense or measure the variable time length LF8A in a timed operation mode WU11 different from the timing operation mode WU21.
  • the timing operation mode WU11 is represented by a timing operation mode code CP11 that is different from the timing operation mode code CP21.
  • the variable time length LF8A is characterized based on a reference time length LJ8V.
  • the reference time length LJ8V is represented by a measured time length value CL8V.
  • the measurement time length value CL8V is preset based on the reference time length LJ8V and the timer specification FT21 in a designated measurement value format HH91.
  • the specified measurement value format HH91 is characterized based on a specified number of bits UY91.
  • the receiving unit 337 receives a control signal SC88 from the control device 212.
  • the specified measurement value format HH91 is a specified count value format.
  • the control signal SC88 conveys the timing operation mode code CP11, the physical parameter target range code UN1V, the measurement time length value CL8V, and a handle CC1V.
  • the handle CC1V is preset based on a designated physical parameter QD1V within the physical parameter target range RD1EV.
  • the control signal SC88 serves to indicate at least one of the physical parameter target range RD1EV and the physical parameter target state JE1V by transmitting the physical parameter target range code UN1V.
  • the processing unit 331 is configured to obtain the timing operation mode code CP11, the physical parameter target range code UN1V, the measurement time length value CL8V, and the handle CC1V from the control signal SC88 .
  • the processing unit 331 stops the timer 342 based on the obtained timing operation mode code CP11, restarts the timer 342 based on the obtained measurement time length value CL8V, and restarts all
  • the timer 342 is used to make the timer 342 operate in the timing operation mode WU11.
  • the timer 342 is restarted to start an application time length LT8V that matches the reference time length LJ8V.
  • the timer 342 senses the variable time length LF8A to experience the application time length LT8V by performing a counting operation BC8V for the application time length LT8V in the timing operation mode WU11.
  • the timing operation mode WU11 is characterized based on the reference time length LJ8V.
  • the processing unit 331 experiences the application time length LT8V based on the counting operation BC8V to reach a specific time TJ8V.
  • the application time length LT8V has an end time TZ8V.
  • the specific time TJ8V is adjacent to the end time TZ8V.
  • the control signal SC88 conveys a control information CG88.
  • the control information CG88 includes the timing operation mode code CP11, the physical parameter target range code UN1V, the measurement time length value CL8V, and the handle CC1V.
  • the processing unit 331 is configured to obtain the control information CG88 from the control signal SC88.
  • the processing unit 331 responds to the obtained control information CG88 to make the variable physical parameter QU1A in the physical parameter target range RD1EV within the application time length LT8V.
  • the measurement application function specification GAL8 includes a time length representing GA8KV.
  • the time length representation GA8KV is used to represent the reference time length LJ8V.
  • the time length value CL8V is preset based on the time length representation GA8KV, the timer specification FT21, and a data encoding operation ZX8KV for converting the time length representation GA8KV to the specified measurement value format HH91 Assume.
  • the physical parameter target range RD1EV is configured to correspond to a corresponding physical parameter range RY1EV.
  • the rated physical parameter range RD1E is equal to a range combination of the physical parameter target range RD1EV and the corresponding physical parameter range RY1EV.
  • the processing unit 331 causes the timer 342 to operate in the timing operation mode WU11 based on the obtained timing operation mode code CP11.
  • the processing unit 331 causes the timer 342 to execute the counting operation BC8V in the timing operation mode WU11 based on the obtained measurement time length value CL8V.
  • the processing unit 331 Under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1EV based on the control signal SC81, the processing unit 331 reaches the specific time TJ8V based on the counting operation BC8V , And cause the output component 338 to perform the signal generation operation BY89 within the specific time TJ8V, and the signal generation operation BY89 is used to cause the variable physical parameter QU1A to leave the physical parameter target range RD1EV to enter The corresponding physical parameter range RY1EV.
  • the processing unit 331 experiences the application time based on the counting operation BC8V Length LT8V to reach the specific time TJ8V.
  • the processing unit 331 performs a scientific calculation MK81 using the obtained physical parameter target range code UN1V within the specific time TJ8V to obtain a value different from the obtained physical parameter target range code UN1V.
  • the physical parameter target range code is UN1W.
  • the physical parameter target range RD1EW is represented by the physical parameter target range code UN1W.
  • the physical parameter target range code UN1W indicates the physical parameter target state JE1W.
  • control device 212 determines the measurement time length value CL8V based on the reference time length LJ8V and the timer specification FT21, and outputs the control signal SC88 based on the determined measurement time length value CL8V .
  • the control information CG88 further includes the measurement time length value CL8V.
  • the control signal SC88 is used to cause the variable physical parameter QU1A to have the application time length LT8V that matches the reference time length LJ8V within the physical parameter target range RD1EV.
  • the physical parameter target range code UN1W is the same as the measured value candidate range code EM12.
  • variable physical parameter range code UN8A is equal to the physical parameter target status code EW1U.
  • the processing unit 331 is based on the control signal SC88
  • a code difference DX88 between the physical parameter target range code UN1V and the physical parameter target status code EW1U of the variable physical parameter range code UN8A generates an operation signal SG88, and sends it to the physical parameter application unit 335 transmits the operation signal SG88.
  • the operation signal SG88 is used to make the variable physical parameter QU1A in the physical parameter target range RD1EV.
  • the processing unit 331 obtains based on the obtained measured value candidate range code EM12 (or the obtained physical parameter target range code UN1W) and the obtained handle type identifier HC81 The memory address AX82.
  • the processing unit 331 uses the storage unit 332 to read the handle CC12 stored in the memory location YX82 based on the acquired memory address AX82, and executes based on the read handle CC12 A signal for controlling the output component 338 is generated to control GY89.
  • the output component 338 responds to the signal generation control GY89 to execute the signal generation operation BY89 for the measurement application function FA81 to generate the operation signal SG89, and the operation signal SG89 is used to control the physical parameter application
  • the unit 335 causes the variable physical parameter QU1A to enter the physical parameter target range RD1EW included in the corresponding physical parameter range RY1EV.
  • the operation signal SG89 is one of a function signal and a control signal.
  • the physical parameter target range RD1EW is one of the physical parameter application range RD1ET, the physical parameter target range RD1EU, and the physical parameter candidate range RD1E2, and is different from the physical parameter target range RD1EV.
  • the processing unit 331 causes the timer 342 to perform the counting operation BC8V to reach the end time TZ8V based on the obtained measurement time length value CL8V.
  • the timer 342 transmits an interrupt request signal UH8V to the processing unit 331 to reach the specific time TJ8V.
  • the processing unit 331 responds to the interrupt request signal UH8V within the specific time TJ8V to execute the scientific calculation MK81 using the obtained physical parameter target range code UN1V to obtain the physical parameter that is different from the obtained physical parameter target range code UN1V.
  • the physical parameter target range code UN1W of the parameter target range code UN1V The physical parameter target range code UN1W of the parameter target range code UN1V.
  • the processing unit 331 recognizes the specific time TJ8V by receiving the interrupt request signal UH8V from the timer 342, and thereby experiences the application time length LT8V.
  • the specific time TJ8V is adjacent to the end time TZ8V.
  • variable physical parameter QU1A is characterized based on the rated physical parameter range RD1E.
  • the rated physical parameter range RD1E includes the physical parameter target range RD1ET, the physical parameter application range RD1EL, and the physical parameter candidate range RD1E2, and is represented by the rated measurement value range RD1N.
  • the rated measurement value range RD1N includes the measurement value target range RN1T, the measurement value application range RN1L, and the measurement value candidate range RN12.
  • the physical parameter target range RD1ET, the physical parameter application range RD1EL, and the physical parameter candidate range RD1E2 are respectively represented by the measurement value target range RN1T, the measurement value application range RN1L, and the measurement value candidate range RN12 .
  • the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are different.
  • the physical parameter target range RD1ET is the same or different from the physical parameter application range RD1EL.
  • the physical parameter target range RD1ET is the same or different from the physical parameter candidate range RD1E2.
  • the measurement value application range RN1L and the measurement value candidate range RN12 are different.
  • the measurement value target range RN1T is the same as or different from the measurement value application range RN1L.
  • the measurement value target range RN1T is the same or different from the measurement value candidate range RN12.
  • the rated physical parameter range RD1E of the variable physical parameter QU1A includes the multiple different physical parameter reference ranges RD1E1, RD1E2,...
  • the multiple different physical parameter reference ranges RD1E1, RD1E2,... include the physical parameter target range RD1ET, the physical parameter application range RD1EL, and the physical parameter candidate range RD1E2.
  • the variable physical parameter QU1A is in one of a plurality of different reference states based on the plurality of different physical parameter reference ranges RD1E1, RD1E2,....
  • the multiple different reference states include a first reference state, a second reference state, and a third reference state, whereby the variable physical parameter QU1A is characterized by a variable current state.
  • the variable current state is one of the multiple different reference states.
  • the first reference state and the second reference state are complementary. Under the condition that the variable physical parameter QU1A is within the physical parameter application range RD1EL, the variable physical parameter QU1A is in the first reference state. Under the condition that the variable physical parameter QU1A is within the physical parameter candidate range RD1E2, the variable physical parameter QU1A is in the second reference state. Under the condition that the variable physical parameter QU1A is within the physical parameter target range RD1ET, the variable physical parameter QU1A is in the third reference state. The third reference state is the same or different from the first reference state. The third reference state is the same or different from the second reference state.
  • the handle CC1T conveyed by the control signal SC81 and the handle CC1T stored by the storage unit 332 are preset based on the designated physical parameter QD1T within the physical parameter target range RD1ET .
  • the processing unit 331 determines the range difference DS81, the processing unit 331 causes the output component 338 to execute the signal generation for the measurement application function FA81 based on the obtained handle CC1T. Operate BY81 to generate the operation signal SG81.
  • the physical parameter application unit 335 responds to the operation signal SG81 to cause the variable physical parameter QU1A to change from a current state to the third reference state, or responds to the operation signal SG81 to cause the variable physical parameter QU1A changes from a specific physical parameter QU17 to a specific physical parameter QU18.
  • the current state is one of the first reference state and the second reference state.
  • the specific physical parameter QU17 is within the physical parameter application range RD1EL or within the physical parameter candidate range RD1E2.
  • the specific physical parameter QU18 is within the physical parameter target range RD1ET.
  • the specific physical parameter QU17 is within the corresponding physical parameter range RY1ET.
  • the multiple different reference states respectively cause the physical parameter application unit 335 to be in multiple different functional states.
  • the multiple different functional states are different and include a first functional state, a second functional state, and a third functional state.
  • the first functional state and the second functional state are complementary.
  • the physical parameter application unit 335 Under the condition that the variable physical parameter QU1A is within the physical parameter application range RD1EL, the physical parameter application unit 335 is in the first functional state.
  • the physical parameter application unit 335 Under the condition that the variable physical parameter QU1A is within the physical parameter candidate range RD1E2, the physical parameter application unit 335 is in the second functional state.
  • the physical parameter application unit 335 Under the condition that the variable physical parameter QU1A is within the physical parameter target range RD1ET, the physical parameter application unit 335 is in the third functional state.
  • the third functional state is the same or different from the first functional state.
  • the third functional state is the same or different from the second functional state.
  • the measurement value target range code EM1T is a measurement value reference range number.
  • the measurement value target range RN1T is arranged in the rated measurement value range RD1N based on the measurement value target range code EM1T.
  • the measurement value application range code EM1L is a measurement value reference range number.
  • the measurement value application range RN1L is arranged in the rated measurement value range RD1N based on the measurement value application range code EM1L.
  • the measurement value candidate range code EM12 is a measurement value reference range number.
  • the measurement value candidate range RN12 is arranged in the rated measurement value range RD1N based on the measurement value candidate range code EM12.
  • the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter application range RD1EL is the relatively high physical parameter range and the corresponding physical parameter range.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high voltage range and a relatively low voltage range, respectively.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high current range and a relatively low current range, respectively.
  • the variable physical parameter QU1A is the first variable resistance
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high resistance range and a relatively low resistance range, respectively.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high brightness range and a relatively low brightness range, respectively.
  • the relatively high physical parameter range and the relatively low physical parameter range are respectively a relatively high light intensity range and a relatively low light intensity range .
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high volume range and a relatively low volume range, respectively.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high angular velocity range and a relatively low angular velocity range, respectively.
  • the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RD1E2 is the relatively high physical parameter range and the relatively low physical parameter range.
  • the other of the parameter range For example, the physical parameter application range RD1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RD1E2 is the relatively high physical parameter range and the relatively low physical parameter range.
  • the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RD1E4 is the relatively high physical parameter range and the relatively low physical parameter range.
  • the other of the parameter range For example, the physical parameter range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RD1E4 is the relatively high physical parameter range and the relatively low physical parameter range.
  • the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RD1E5 is the relatively high physical parameter range and the relatively low physical parameter range. The other of the parameter range.
  • the physical parameter application unit 335 under the condition that the functional device 130 is a relay, is a control switch. Under the condition that the physical parameter application unit 335 is the control switch, the control switch has a variable switch state and is in one of an on state and an off state based on the variable physical parameter QU1A one.
  • the variable switch state is equal to one of the on state and the off state, and the on state and the off state are complementary.
  • the on state is one of the first functional state and the second functional state
  • the off state is the other of the first functional state and the second functional state.
  • the processing unit 331 Under the condition that the processing unit 331 determines the range difference DS81, the processing unit 331 recognizes that the variable current state is a specific state different from the third reference state, and thereby generates the operation signal SG81.
  • the physical parameter application unit 335 responds to the operation signal SG81 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET, so the variable current state is changed to the third reference state.
  • the processing unit 331 determines the code difference DX81, the processing unit 331 uses the output component 338 to generate the operation signal SG82.
  • the physical parameter application unit 335 responds to the operation signal SG82 to cause the variable physical parameter QU1A to enter the specific physical parameter range RD1E5 included in the corresponding physical parameter range RY1ET from the physical parameter target range RD1ET; Therefore, under the condition that the specific physical parameter range RD1E5 is equal to the physical parameter candidate range RD1E2, the variable current state is changed to the second reference state.
  • variable physical parameter QU1A is the first variable current.
  • the physical parameter application range RD1EL, the physical parameter candidate range RD1E2, and the physical parameter target range RD1ET are respectively a first current reference range, a second current reference range, a third current reference range, and a fourth current Reference range.
  • the handle CC1L is preset based on a first designated current within the first current reference range.
  • the handle CC12 is preset based on a second designated current within the second current reference range.
  • the handle CC1T is preset based on a third specified current within the third current reference range.
  • the handle CC1V is preset based on a fourth designated current within the fourth current reference range.
  • the measurement time length value CL8V is preset in the designated measurement value format HH91 based on the time length representation GA8KV, the timer specification FT21, and the data encoding operation ZX8KV.
  • the processing unit 331 obtains the measurement time length value CL8V from the control signal SC88, and causes the timer 342 to perform the counting operation BC8V based on the obtained measurement time length value CL8V.
  • the processing unit 331 Under the condition that the first variable current is configured to be within the fourth current reference range based on the control signal SC88, the processing unit 331 experiences the application time length based on the counting operation BC8V LT8V reaches the specific time TJ8V, whereby the first variable current is maintained within the fourth current reference range within the application time length LT8V related to the counting operation BC8V.
  • the physical parameter application range RD1EL, the physical parameter candidate range RD1E2, and the physical parameter target range RD1ET are respectively a first rotational speed reference range
  • the physical parameter application range RD1EL, the physical parameter candidate range RD1E2, and the physical parameter target range RD1ET are respectively a first temperature reference range and a first temperature reference range.
  • FIG. 33 is a schematic diagram of an implementation structure 9042 of the control system 901 shown in FIG. 1.
  • the implementation structure 9042 includes the control device 212, the function device 130, and a server 280.
  • the control device 212 is linked to the server 280.
  • the functional device 130 includes the operating unit 397, the sensing unit 334, the physical parameter application unit 335, and the storage unit 332.
  • the operation unit 397 includes the processing unit 331, the receiving unit 337, the transmission unit 384, and a timer 340 coupled to the processing unit 331.
  • the timer 340 is controlled by the processing unit 331.
  • the receiving component 3374 included in the receiving unit 337 is coupled to the processing unit 331, and under the condition that the variable physical parameter QU1A is provided by the control device 212
  • the physical parameter signal SB81 is received from the control device 212.
  • the physical parameter application unit 335 receives the physical parameter signal SB81 from the receiving component 3374.
  • the processing unit 331 causes the physical parameter application unit 335 to use the physical parameter signal SB81 to form the variable physical parameter QU1A that depends on the physical parameter signal SB81.
  • the control device 212 includes the operating unit 297, a storage unit 250 coupled to the operating unit 297, and a sensing unit 560 coupled to the operating unit 297.
  • the operating unit 297 performs one of a reading operation BR81 and a sensing operation BZ81 to output the physical parameter signal SB81.
  • the reading operation BR81 reads a physical parameter data record DU81 stored in one of the storage unit 250 and the server 280.
  • the sensing unit 560 senses a variable physical parameter QL1A by performing the sensing operation BZ81 to cause the operation unit 297 to output the physical parameter signal SB81.
  • the sensing unit 560 is controlled by the operating unit 297 to sense the variable physical parameter QL1A.
  • variable physical parameter QU1A belongs to the physical parameter type TU11.
  • the variable physical parameter QL1A belongs to a physical parameter type TL11.
  • the physical parameter type TU11 is the same as or different from the physical parameter type TL11.
  • the control device 212 is in an application environment EX81. One of the control device 212 and the application environment EX81 has the variable physical parameter QL1A.
  • the physical parameter data record DU81 is provided in advance based on a variable physical parameter QY1A.
  • the variable physical parameter QY1A belongs to the physical parameter type TL11.
  • the physical parameter type TU11 is different from a time type.
  • the physical parameter application unit 335 includes a driving circuit 3355 and a physical parameter forming part 3351 coupled to the driving circuit 3355.
  • the physical parameter forming part 3351 is used to form the variable physical parameter QU1A, and includes the physical parameter forming area AU11.
  • the driving circuit 3355 is coupled to the receiving component 3374 and the output component 338, and is controlled by the processing unit 331 through the output component 338.
  • the driving circuit 3355 receives the physical parameter signal SB81 from the receiving component 3374, receives the operation signal SG81 from the output component 338, and responds to the operation signal SG81 to process the physical parameter signal SB81 to output a Drive signal SL81.
  • the physical parameter forming part 3351 receives the driving signal SL81, and responds to the driving signal SL81 to make the variable physical parameter QU1A within the physical parameter target range RD1ET. For example, under the condition that the reasonable decision PW81 is affirmative, the processing unit 331 causes the output component 338 to perform the signal generation operation BY81 for the measurement application function FA81 to provide the operation signal SG81 to all ⁇ drive circuit 3355.
  • the driving circuit 3355 drives the physical parameter forming part 3351 in response to the operation signal SG81 to make the variable physical parameter QU1A enter the physical parameter target range RD1ET.
  • the rated measurement value range RD1N is configured to have a plurality of different measurement value reference ranges RN11, RN12,....
  • the multiple different measurement value reference ranges RN11, RN12, ... have a total number of reference ranges NT81, and include the measurement value target range RN1T.
  • the total number of reference ranges NT81 is preset.
  • the storage unit 332 stores the rated range limit value pair DD1A.
  • the processing unit 331 is configured to obtain the total reference range number NT81 from one of the control signal SC81 and the storage unit 332, obtain the measured value target range code EM1T from the control signal SC81, and In response to the control signal SC81, the rated range limit value pair DD1A is obtained from the storage unit 332.
  • the processing unit 331 executes the scientific calculation MR81 based on the measurement value VN81, the obtained total reference range number NT81, and the obtained rated range limit value pair DD1A to obtain the result from the plurality of different measurements.
  • the measurement value application range code EM1L is selected from the value reference range codes EM11, EM12, ... to determine the measurement value application range code EM1L.
  • the scientific calculation MR81 is pre-constructed based on the preset total reference range number NT81 and the preset rated range limit value pair DD1A.
  • the processing unit 331 executes the scientific calculation MZ81 based on the determined measurement value application range code EM1L, the obtained total reference range number NT81, and the obtained rated range limit value pair DD1A
  • the limit value of the application range is DN1L.
  • the scientific calculation MZ81 is pre-constructed based on the preset total reference range number NT81 and the preset rated range limit value pair DD1A.
  • the processing unit 331 generates a control GY81 in response to the signal executed within the operation time TF81 to cause the timer 340 to perform a counting operation BE81.
  • the processing unit 331 arrives at the designated time TG82 based on the counting operation BE81, and obtains the measured value VN82 in response to the sensing signal SN82 at the designated time TG82.
  • the variable physical parameter QL1A is a second variable electrical parameter, a second variable mechanical parameter, a second variable optical parameter, a second variable temperature, a second variable voltage, a second Variable current, a second variable electric power, a second variable resistor, a second variable capacitor, a second variable inductance, a second variable frequency, a second clock time, a second Variable time length, a second variable brightness, a second variable light intensity, a second variable volume, a second variable data flow, a second variable amplitude, a second variable spatial position, A second variable displacement, a second variable sequence position, a second variable angle, a second variable space length, a second variable distance, a second variable translation speed, a second variable One of angular velocity, a second variable acceleration, a second variable force, a second variable pressure, and a second variable mechanical power.
  • the variable physical parameter QY1A is a third variable electrical parameter, a third variable mechanical parameter, a third variable optical parameter, a third variable temperature, a third variable voltage, a third Variable current, a third variable electric power, a third variable resistor, a third variable capacitor, a third variable inductance, a third variable frequency, a third clock time, a third Variable time length, a third variable brightness, a third variable light intensity, a third variable volume, a third variable data flow, a third variable amplitude, a third variable spatial position, A third variable displacement, a third variable sequence position, a third variable angle, a third variable space length, a third variable distance, a third variable translation speed, a third variable One of angular velocity, a third variable acceleration, a third variable force, a third variable pressure, and a third variable mechanical power.
  • FIG. 34 is a schematic diagram of an implementation structure 9043 of the control system 901 shown in FIG. 1.
  • FIG. 35 is a schematic diagram of an implementation structure 9044 of the control system 901 shown in FIG. 1.
  • FIG. 36 is a schematic diagram of an implementation structure 9045 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9043, the implementation structure 9044, and the implementation structure 9045 includes the control device 212, the function device 130, and the server 280 .
  • the functional device 130 includes the operating unit 397, the sensing unit 334, the physical parameter application unit 335, and the storage unit 332.
  • the operation unit 397 includes the processing unit 331, the receiving unit 337, the input unit 380, the transmission unit 384, the timer 342 coupled to the processing unit 331, and the timer 342 coupled to the processing unit 331.
  • control device 212, the function device 130, and the server 280 are all coupled to a network 410.
  • the control device 212 is linked to the server 280 through the network 410.
  • the functional device 130 includes the operating unit 397, the sensing unit 334, the physical parameter application unit 335, and the storage unit 332.
  • the operating unit 397 includes the processing unit 331, the receiving unit 337, and the transmitting unit 384.
  • the control device 212 transmits the control signal SC81 to the function device 130 through the network 410.
  • the function device 130 transmits the control response signal SE81 to the control device 212 through the network 410.
  • the operating unit 397 includes a communication interface unit 386 coupled to the processing unit 331.
  • the processing unit 331 is coupled to the network 410 through the communication interface unit 386.
  • the communication interface unit 386 is controlled by the processing unit 230 and includes the transmission component 3842 coupled to the processing unit 331 and the receiving component 3371 coupled to the processing unit 331.
  • the processing unit 331 is coupled to the server 280 through the communication interface unit 386 and the network 410.
  • the communication interface unit 386 is one of a wired communication interface unit and a wireless communication interface unit.
  • the receiving unit 337, the transmitting unit 384, the timer 342, the timer 343, the sensing unit 334, the physical parameter application unit 335, the storage unit 332, and the communication interface unit All 386 are controlled by the processing unit 331.
  • the timer 343 of the trigger application unit 387 controls GD81 in response to a time related to the processing unit 331 and causes the integer overflow The incident happened.
  • the processing unit 331 executes the time control GD81 for controlling the timer 343 in response to the control signal SC81.
  • the timer 343 responds to the time control GD81 to form the integer overflow event.
  • the receiving unit 337 when the receiving unit 337 receives the control signal SC81, the physical parameter target range code UQ1T is equal to the preset measurement value target range code EM1T.
  • the control signal SC81 conveys the default measurement value designation range code EL1T.
  • the processing unit 331 obtains the transmitted measurement value specified range code EL1T from the control signal SC81, obtains the memory address AS8T based on the obtained measurement value specified range code EL1T, and obtains the memory address AS8T based on the obtained measurement value specified range code EL1T.
  • the memory address AS8T is used to access the physical parameter target range code UQ1T stored in the memory location YS8T to obtain the preset measurement value target range code EM1T.
  • the control signal SC81 starts by transmitting the preset measurement value designation range code EL1T To indicate the role of the measurement value target range RN1T.
  • the processing unit 331 executes the data acquisition AD8A using the obtained measurement value target range code EM1T to obtain the target range limit value pair DN1T.
  • the processing unit 331 determines the physical parameter application range in which the variable physical parameter QU1A is currently located by comparing the measured value VN81 with the obtained application range limit value pair DN1L Under the condition of RD1EL, the processing unit 331 checks the measurement value target range RN1T and the measurement value by comparing the obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L The range relationship KE8A between the application ranges RN1L is used to make the logical decision PY81 whether the obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L are equal.
  • the processing unit 331 identifies the range relationship KE8A as the range difference relationship to determine the range difference DS81. For example, the processing unit 331 obtains the predetermined application range limit value pair DN1L based on the determined measurement value application range code EM1L. For example, the processing unit 331 determines the range difference DB81 between the physical parameter target range RD1ET and the physical parameter application range RD1EL by determining the range difference DS81.
  • the processing unit 331 determines the physical parameter application range in which the variable physical parameter QU1A is currently located by comparing the measured value VN81 with the obtained application range limit value pair DN1L Under the condition of RD1EL, the processing unit 331 generates the obtained measurement value target range code EM1T by comparing the obtained measurement value target range code EM1T with the determined measurement value application range code EM1L The logic determining whether or not the determined measurement value application range code EM1L is equal to PZ81 is determined. Under the condition that the logic decision PZ81 is negative, the processing unit 331 identifies the range relationship KE8A as the range difference relationship to determine the range difference DS81.
  • the processing unit 331 determines at least one of the range difference DS81 and the range difference DB81, the processing unit 331 executes the operation for generating the operation signal SG81 within the operation time TF81
  • the signal is generated to control GY81.
  • the operation signal SG81 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET which is the same as the physical parameter target range RD1ET.
  • the processing unit 331 performs the verification operation ZU81 related to the variable physical parameter QU1A within the designated time TG82 after the operation time TF81.
  • the processing unit 331 determines the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located based on the verification operation ZU81 within the specified time TG82, the processing unit 331 executes equal to
  • the data comparison between the variable physical parameter range code UN8A of the specific measurement value range code EM14 and the obtained measurement value target range code EM1T is CE8T.
  • the processing unit 331 determines the difference between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T based on the data comparison CE8T Under the condition of the code difference DF81, the processing unit 331 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the processing unit 331 performs calculation based on the counting operation BD81
  • the operating time TY81 is reached.
  • the timer 342 senses the clock time TH1A to cause the variable count value NY8A to be equal to the measurement value NY81, thereby generating the transmission of the measurement value NY81 Sensing signal SY81.
  • the trigger application unit 387 provides the operation request signal SJ81 to the processing unit 331 in response to the trigger event JQ81, and thereby causes the processing unit 331 to receive the operation request signal SJ81.
  • the processing unit 331 responds to the operation request signal SJ81 to obtain the measurement value NY81 from the sensing signal SY81 in the specified measurement value format HH95 within the operation time TY81, and obtains the measurement value NY81 during the operation time TY81
  • the measurement value application range code EL1U is used to check the obtained measurement value NY81 and the measurement value
  • the trigger application unit 387 is one of the receiving unit 337, the input unit 380, the display unit 382, the sensing unit 334, and the timer 343.
  • the measurement value designated range RQ1T has the designated range limit value pair DQ1T.
  • the specified range limit value pair DQ1T includes the specified range limit value DQ13 and the specified range limit value DQ14 relative to the specified range limit value DQ13.
  • the measurement value specified range RQ1T and the specified range limit value pair DQ1T are preset based on the clock time specified interval HR1ET and the timer specification FT21 in the specified measurement value format HH95.
  • the measurement value application range RQ1U has the application range limit value pair DQ1U.
  • the application range limit value pair DQ1U includes the first application range limit value DQ15 and the second application range limit value DQ16 relative to the first application range limit value DQ15.
  • the measurement value application range RQ1U and the application range limit value pair DQ1U are preset based on the clock time application interval HR1EU and the timer specification FT21 in the specified measurement value format HH95.
  • the physical parameter target range code UQ1U is equal to one of the preset measured value target range code EM1U and the preset physical parameter target state code EW1U.
  • the storage unit 332 stores the specified range limit value pair DQ1T and the application range limit value pair DQ1U.
  • the specified range limit value pair DQ1T and the application range limit value pair DQ1U are stored in the storage unit 332 based on the measurement value specified range code EL1T and the measurement value application range code EL1U, respectively.
  • the default physical parameter target state code EW1U is equal to the preset measurement value target range code EM1U.
  • the processing unit 331 is configured to obtain the application range limit value pair DQ1U from the storage unit 332 based on the obtained measurement value application range code EL1U within the operating time TY81, and compare all The obtained measurement value NY81 and the obtained application range limit value pair DQ1U are used to perform a check operation ZQ81 for checking the mathematical relationship KQ81 between the measurement value NY81 and the measurement value application range RQ1U .
  • the processing unit 331 determines the clock time application interval HR1EU that the clock time TH1A is currently in based on the checking operation ZQ81 within the operating time TY81, the processing unit 331 is based on the obtained The measurement value applies the range code EL1U to obtain the memory address AS8U, and within the operating time TY81 based on the obtained memory address AS8U to access the physical parameters stored in the memory location YS8U
  • the target range code UQ1U is used to obtain the physical parameter target range code UQ1U.
  • the processing unit 331 determines based on the check operation ZQ81 that the clock time TH1A is currently within the clock time application interval HR1EU, and thereby identifies the clock time TH1A and the clock time A time relationship between the application intervals HR1EU is a time intersection relationship of the clock time TH1A currently within the clock time application interval HR1EU. Under the condition that the processing unit 331 obtains the physical parameter target range code UQ1U from the memory location YS8U, the processing unit 331 performs a check for the measurement application function FA81 within the operating time TY81 Operate ZP85 to determine whether the obtained physical parameter target range code UQ1U is equal to the variable physical parameter range code UN8A.
  • the processing unit 331 under the condition that the processing unit 331 obtains the physical parameter target range code UQ1U from the memory location YS8U, the processing unit 331 uses the storage unit 332 to read the value equal to the The variable physical parameter range code UN8A of the measured value target range code EM1T, and execute a check for checking the obtained physical parameter target range code UQ1U and the read measured value target range code EM1T.
  • the arithmetic relation KP85 is the checking operation ZP85.
  • the check operation ZP85 is configured to compare the obtained physical parameter target range code UQ1U with the read measured value target range code EM1T by executing a data comparison CE85 for the measurement application function FA81 To determine whether the obtained physical parameter target range code UQ1U and the read measured value target range code EM1T are different.
  • the processing unit 331 determines the obtained physical parameter target range code UQ1U and the variable physical parameter range code UN8A equal to the obtained measured value target range code EM1T by performing the data comparison CE85 Under the condition of a code difference between DX85, the processing unit 331 causes the output component 338 to perform a signal generation operation BY85 for the measurement application function FA81 within the operation time TY81 to generate an operation signal SG85.
  • the operation signal SG85 is a control signal.
  • the output component 338 transmits the operation signal SG85 to the physical parameter application unit 335.
  • the physical parameter application unit 335 responds to the operation signal SG85 to cause the variable physical parameter QU1A to enter the corresponding physical parameter range RY1ET from the physical parameter target range RD1ET.
  • the physical parameter application unit 335 responds to the The operation signal SG85 causes the variable physical parameter QU1A to enter the physical parameter target range RD1EU that is the same as the physical parameter candidate range RD1E2.
  • the storage unit 332 has a memory location YX8U that is different from the memory location YX8T, and stores a handle CC1U in the memory location YX8U.
  • the memory location YX8U is identified based on a memory address AX8U.
  • the memory address AX8U is preset according to the preset physical parameter target state code EW1U.
  • the handle CC1U is preset based on a designated physical parameter QD1U within the physical parameter target range RD1EU.
  • the processing unit 331 determines the code difference DX85, the processing unit 331 obtains the physical parameter target range code UQ1U that is equal to the preset physical parameter target status code EW1U. Said memory address AX8U.
  • the processing unit 331 uses the storage unit 332 to access the handle CC1U stored in the memory location YX8U based on the obtained memory address AX8U to obtain the handle CC1U, and at the operating time Based on the accessed handle CC1U in the TY81, the output component 338 is caused to perform the signal generation operation BY85 for the measurement application function FA81 to generate the operation signal SG85.
  • the operation signal SG85 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1EU from the physical parameter target range RD1ET.
  • the input unit 380 includes the button 3801 and a button 3802.
  • the button 3801 is located at a spatial position LD91.
  • the button 3801 is located at a spatial position LD92 that is different from the spatial position LD91.
  • the button 3801 is related to the default physical parameter target range limit ZD1T1; the button 3802 It is related to the default physical parameter target range limit ZD1T2; and the input unit 380 receives a user input operation BQ81.
  • the user input operation BQ81 uses one of the button 3801 and the button 3802.
  • the input unit 380 provides the operation request signal SJ91 to the processing unit 331 in response to the user input operation BQ81 using the button 3801.
  • the processing unit 331 responds to the operation request signal SJ91 to cause the output component 338 to transmit the operation signal SG82 to the physical parameter application unit 335.
  • the operation signal SG82 is used to cause the variable physical parameter QU1A to pass the default physical parameter target range limit ZD1T1 to enter the specific physical parameter range RD1E5.
  • the input unit 380 provides an operation request signal SJ71 to the processing unit 331 in response to the user input operation BQ81 using the button 3802.
  • the processing unit 331 responds to the operation request signal SJ71 to cause the output component 338 to transmit an operation signal SG72 to the physical parameter application unit 335.
  • the operation signal SG72 is used to cause the variable physical parameter QU1A to pass the default physical parameter target range limit ZD1T2 to enter a specific physical parameter range included in the plurality of different physical parameter reference ranges RD1E1, RD1E2,... RD2E5.
  • the specific physical parameter range RD2E5 is different from each range of the physical parameter target range RD1ET and the specific physical parameter range RD1E5.
  • the button 3801 is related to the default physical parameter target range limit ZD1U1; the button 3802 is related to the default physical parameter target range limit ZD1U2; and the input unit 380 receives a user input operation BQ82.
  • the user input operation BQ82 uses one of the button 3801 and the button 3802.
  • the input unit 380 provides the operation request signal SJ92 to the processing unit 331 in response to the user input operation BQ82 using the button 3801.
  • the processing unit 331 responds to the operation request signal SJ92 to cause the output component 338 to transmit the operation signal SG87 to the physical parameter application unit 335.
  • the operation signal SG87 is used to cause the variable physical parameter QU1A to pass the default physical parameter target range limit ZD1U1 to enter the specific physical parameter range RD1E6.
  • the input unit 380 provides an operation request signal SJ72 to the processing unit 331 in response to the user input operation BQ82 using the button 3802.
  • the processing unit 331 responds to the operation request signal SJ72 to cause the output component 338 to transmit an operation signal SG77 to the physical parameter application unit 335.
  • the operation signal SG77 is used to cause the variable physical parameter QU1A to pass the default physical parameter target range limit ZD1U2 to enter a specific physical parameter range included in the plurality of different physical parameter reference ranges RD1E1, RD1E2,... RD2E6.
  • the specific physical parameter range RD2E6 is different from each range of the physical parameter target range RD1EU and the specific physical parameter range RD1E6.
  • FIG. 37 is a schematic diagram of an implementation structure 9046 of the control system 901 shown in FIG. 1.
  • FIG. 38 is a schematic diagram of an implementation structure 9047 of the control system 901 shown in FIG. 1.
  • FIG. 39 is a schematic diagram of an implementation structure 9048 of the control system 901 shown in FIG. 1.
  • FIG. 40 is a schematic diagram of an implementation structure 9049 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9046, the implementation structure 9047, the implementation structure 9048, and the implementation structure 9049 includes the control device 212 and the ⁇ Functional device 130.
  • the control device 212 includes the operating unit 297 and the state change detector 475.
  • the functional device 130 includes the operation unit 397, the storage unit 332, the sensing unit 334, the physical parameter application unit 335, and a physical parameter application unit 735.
  • the operation unit 397 includes the processing unit 331, the receiving unit 337, the transmission unit 384, and the output component 338 coupled to the processing unit 331.
  • the output component 338 is located outside the processing unit 331 and is controlled by the processing unit 331.
  • the physical parameter application unit 735 is a functional target.
  • the state change detector 475 is a trigger application unit, and provides the trigger signal SX8A to the operation unit 297 in response to the trigger event EQ81.
  • the trigger signal SX8A is an operation request signal.
  • the function device 130 further includes a physical parameter application unit 735 coupled to the operation unit 397 and a multiplexer 363 coupled to the operation unit 397.
  • the physical parameter application unit 735 is coupled to the output component 338 and includes a physical parameter formation area AU21.
  • the physical parameter formation area AU21 has a variable physical parameter QU2A.
  • the multiplexer 363 has an input terminal 3631, an input terminal 3632, a control terminal 363C, and an output terminal 363P.
  • the control terminal 363C is coupled to the processing unit 331.
  • the physical parameter application unit 735 is a physically implementable functional unit and has a functional structure similar to the physical parameter application unit 335.
  • the physical parameter application unit 735 is provided in one of the inside of the function device 130 and the outside of the function device 130.
  • the input terminal 3631 is coupled to the physical parameter formation area AU11.
  • the input terminal 3632 is coupled to the physical parameter formation area AU21.
  • the output terminal 363P is coupled to the sensing unit 334.
  • the variable physical parameter QU1A and the variable physical parameter QU2A are a fourth variable electrical parameter and a fifth variable electrical parameter, respectively.
  • the fourth variable electrical parameter and the fifth variable electrical parameter are a fourth variable voltage and a fifth variable voltage, respectively.
  • the second functional relationship is equal to one of a second on-state relationship and a second off-state relationship.
  • the sensing unit 334 is configured to sense the variable physical parameter QU1A through the output terminal 363P and the input terminal 3631, It is coupled to the physical parameter formation area AU11 through the output terminal 363P and the input terminal 3631.
  • the sensing unit 334 is configured to sense the variable physical parameter QU2A through the output terminal 363P and the input terminal 3632, It is coupled to the physical parameter formation area AU21 through the output terminal 363P and the input terminal 3632.
  • the multiplexer 363 is controlled by the processing unit 331 and is an analog multiplexer.
  • the sensing unit 334 senses the variable physical parameter QU1A through the multiplexer 363 at an operating time TX81, and passes the multiplexer at an operating time TX82 that is different from the operating time TX81. 363 to sense the variable physical parameter QU2A.
  • the storage unit 332, the sensing unit 334, the multiplexer 363, the physical parameter application unit 335, and the physical parameter application unit 735 are all coupled to the operating unit 397 and are all subject to The processing unit 331 controls.
  • the control device 212 and the function device 130 are separate or in contact.
  • the operation unit 397 and the physical parameter application unit 335 are separated or in contact.
  • the operation unit 397 and the physical parameter application unit 735 are separated or in contact.
  • the operating unit 397 and the sensing unit 334 are separated or in contact.
  • the control device 212 is used to control the variable physical parameter QU2A.
  • the physical parameter application unit 335 is identified by an application unit identifier HA2T.
  • the physical parameter application unit 735 is identified by an application unit identifier HA22.
  • the physical parameter application unit 335 and the physical parameter application unit 735 are respectively located in different spatial positions, and both are coupled to the processing unit 331 by being coupled to the output component 338.
  • the application unit identifier HA2T and the application unit identifier HA22 are both defaulted based on the measurement application function specification GAL8.
  • the control signal SC81 further conveys at least one of the application unit identifier HA2T and the application unit identifier HA22.
  • the receiving unit 337 receives the control signal SC81 from the operating unit 297. Under the condition that the control signal SC81 conveys the application unit identifier HA2T, the processing unit 331 responds to the control signal SC81 to select the physical parameter application unit 335 for control. Under the condition that the control signal SC81 conveys the application unit identifier HA22, the processing unit 331 responds to the control signal SC81 to select the physical parameter application unit 735 for control.
  • the application unit identifier HA2T is a first functional unit number.
  • the application unit identifier HA22 is a second functional unit number.
  • the physical parameter application unit 335 and the physical parameter application unit 735 are separated or separated by a material layer 70U provided between the physical parameter application unit 335 and the physical parameter application unit 735 .
  • the physical parameter application unit 335, the material layer 70U, and the physical parameter application unit 735 are all coupled to a supporting medium 70M.
  • the functional device 130 includes the material layer 70U, or the material layer 70U is disposed outside the functional device 130.
  • the functional device 130 includes the supporting medium 70M, or the supporting medium 70M is disposed outside the functional device 130.
  • the supporting medium 70M is coupled to the operating unit 397.
  • the processing unit 331 under the condition that the control signal SC81 conveys the application unit identifier HA2T, responds to the control signal SC81 to obtain the application unit identifier HA2T from the control signal SC81 , And cause the sensing unit 334 to sense the variable physical parameter QU1A based on the obtained application unit identifier HA2T, and thereby receive the sensing signal SN81 from the sensing unit 334.
  • the processing unit 331 obtains the measurement value VN81 in the specified measurement value format HH81 based on the received sensing signal SN81, and causes the output component 338 to be based on the obtained application unit identifier HA2T. At least one of the operation signal SG81, the operation signal SG82, the operation signal SG85, the operation signal SG87, the operation signal SG88, and the operation signal SG89 is transmitted to the physical parameter application unit 335.
  • the processing unit 331 responds to the control signal SC81 to provide a control signal SD81 to the control terminal 363C based on the obtained application unit identifier HA2T.
  • the control signal SD81 is a selection control signal and functions as an instruction to the input terminal 3631.
  • the multiplexer 363 responds to the control signal SD81 to cause the first functional relationship between the input terminal 3631 and the output terminal 363P to be equal to the first conduction relationship.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate the sensing signal SN81, so the processing unit 331 receives The sensing unit 334 receives the sensing signal SN81.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate the sensing signal SN85, so the processing unit 331 receives The sensing unit 334 receives the sensing signal SN85.
  • the storage unit 332 has the storage space SU11.
  • the storage unit 332 further stores the rated range limit value pair DD1A, the variable physical parameter range code UN8A, and the target range limit in the storage space SU11 based on the default application unit identifier HA2T.
  • the processing unit 331 further uses the storage unit 332 to access the rated range limit value pair DD1A, the variable physical parameter range code UN8A, and the target range based on the obtained application unit identifier HA2T. Any one of the threshold value pair DN1T, the handle CC1T, the candidate range threshold value pair DN1B, and the handle CC12.
  • the first memory address AM8T is based on the default application unit identifier HA2T, the preset measurement value target range code EM1T, and the preset measurement range limit data code type
  • the identifier HN81 is preset.
  • the processing unit 331 uses the obtained application unit identifier HA2T, the obtained measurement value target range code EM1T, and the obtained measurement range limit data code type identifier HN81 in response to the control signal SC81.
  • To obtain the first memory address AM8T and use the storage unit 332 based on the obtained first memory address AM8T to access the target range limit value pair stored in the first memory location YM8T DN1T to obtain the target range limit value pair DN1T.
  • the memory address AX8T is preset based on the default application unit identifier HA2T, the preset measurement value target range code EM1T, and the preset handle type identifier HC81.
  • the processing unit 331 determines that the variable physical parameter QU1A is currently in the corresponding physical parameter range RY1ET, the processing unit 331 is based on the obtained application unit identifier HA2T and the obtained The measured value target range code EM1T and the obtained handle type identifier HC81 are used to obtain the memory address AX8T, and based on the obtained memory address AX8T, the storage unit 332 is used to access the storage unit 332 stored in the The handle CC1T in the memory location YX8T is used to obtain the handle CC1T.
  • the storage unit 332 further stores the measurement time length value CL8V, the clock reference time value NR81, and the measurement time length value VH8T so that the storage space SU11 further has the measurement time length value CL8V, The clock reference time value NR81 and the measured time length value VH8T.
  • the processing unit 331 responds to the control signal SC88 to obtain the measurement time length value CL8V from the storage space SU11.
  • the processing unit 331 causes the storage unit 332 to store the clock reference time value NR81 and the measurement time length value VH8T based on the default measurement value designation range code EL1T.
  • the control signal SC81 conveys the measurement value designated range code EL1T.
  • the processing unit 331 obtains the measurement value designation range code EL1T from the control signal SC81, and accesses the clock stored in the storage space SU11 based on the obtained measurement value designation range code EL1T
  • the reference time value NR81 and the measured time length value VH8T are used to obtain the clock reference time value NR81 and the measured time length value VH8T.
  • the processing unit 331 executes the scientific calculation ME85 based on the obtained measurement time length value VH8T and the obtained clock reference time value NR81 to obtain the application range limit value pair DQ1U.
  • the processing unit 331 under the condition that the processing unit 331 determines that the variable physical parameter QU1A is currently in the corresponding physical parameter range RY1ET, the processing unit 331 is based on the obtained application unit identifier HA2T And the obtained handle CC1T to execute the signal generation control GY81 for controlling the output component 338.
  • the output component 338 performs the signal generation operation BY81 for the measurement application function FA81 to generate the operation signal SG81, and causes the output component 338 to apply the physical parameter
  • the unit 335 transmits the operation signal SG81.
  • the operation signal SG81 is used to control the physical parameter application unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the processing unit 331 provides a control signal SF81 to the output component 338 by executing the signal generation control GY81.
  • the output component 338 performs the signal generation operation BY81 in response to the control signal SF81 to generate the operation signal SG81.
  • the processing unit 331 determines the physical parameter application state JE1L that the variable physical parameter QU1A is currently in based on the physical parameter relationship check control GX8T, the processing unit 331 operates at the operating time TF81
  • the signal generation control GY81 for controlling the output component 338 is executed based on the obtained application unit identifier HA2T and the obtained handle CC1T.
  • the physical parameter application state JE1L is predetermined based on the physical parameter application range RD1EL.
  • the output component 338 includes an output terminal 338P and an output terminal 338Q.
  • the output terminal 338P is coupled to the physical parameter application unit 335.
  • the output terminal 338P is coupled to the physical parameter application unit 735.
  • the output terminal 338P and the output terminal 338Q are respectively located at different spatial positions.
  • the default application unit identifier HA2T is configured to indicate the output terminal 338P.
  • the default application unit identifier HA22 is configured to indicate the output terminal 338Q.
  • the control signal SC81 transmits the application unit identifier HA2T configured to indicate the output terminal 338P to enable the processing unit 331 to select the physical parameter application unit 335 for control.
  • the signal generation control GY81 functions to instruct the output terminal 338P, and is used to cause the output component 338 to receive the control signal SF81.
  • the control signal SF81 plays a role of instructing the output terminal 338P.
  • the output component 338 responds to one of the signal generation control GY81 and the control signal SF81 to perform the signal generation operation BY81 using the output terminal 338P to transmit the operation to the physical parameter application unit 335 Signal SG81.
  • the processing unit 331 determines the physical parameter application state JE1T that the variable physical parameter QU1A is currently in based on the physical parameter relationship check control GX8U, the processing unit 331
  • the signal generation control GY85 for controlling the output component 338 is executed based on the obtained application unit identifier HA2T and the obtained handle CC1U within the operation time TY81.
  • the output component 338 responds to the signal generation control GY85 to perform the signal generation operation BY85 for the measurement application function FA81 to generate the operation signal SG85, and cause the output component 338 to apply the physical parameter
  • the unit 335 transmits the operation signal SG85.
  • the processing unit 331 provides a control signal SF85 to the output component 338 by executing the signal generation control GY85.
  • the output component 338 performs the signal generation operation BY85 in response to the control signal SF85 to generate the operation signal SG85.
  • the operation signal SG85 is used to control the physical parameter application unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1EU from the physical parameter target range RD1ET.
  • the signal generation control GY85 functions to instruct the output terminal 338P, and is used to cause the output component 338 to receive the control signal SF85.
  • the control signal SF85 functions to indicate the output terminal 338P.
  • the output component 338 responds to one of the signal generation control GY85 and the control signal SF85 to perform the signal generation operation BY85 using the output terminal 338P to transmit the operation to the physical parameter application unit 335 Signal SG85.
  • the receiving unit 337 receives a control signal SC97 from the control device 212.
  • the control signal SC97 conveys the application unit identifier HA22.
  • the processing unit 331 responds to the control signal SC97 to obtain the application unit identifier HA22 from the control signal SC97, and based on the obtained application unit identifier HA22
  • the application unit identifier HA22 provides a control signal SD82 to the control terminal 363C.
  • the control signal SD82 is a selection control signal, which functions as an instruction to the input terminal 3632, and is different from the control signal SD81.
  • the control signal SC97 is the control signal SC81.
  • the processing unit 331 responds to the control signal SC81 to obtain the application unit identifier HA22 from the control signal SC81.
  • the multiplexer 363 responds to the control signal SD82 to cause the second functional relationship between the input terminal 3632 and the output terminal 363P to be equal to the second conduction relationship.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN91.
  • the processing unit 331 receives the sensing signal SN91 from the sensing unit 334, and obtains a measurement value VN91 in the designated measurement value format HH81 based on the received sensing signal SN91.
  • the control signal SC97 transmits the application unit identifier HA22 configured to indicate the output terminal 338Q to enable the processing unit 331 to select the physical parameter application unit 735 for control.
  • the processing unit 331 executes a signal generation control GY97 for controlling the output component 338 based on the obtained measurement value VN91 and the obtained application unit identifier HA22.
  • the signal generation control GY97 functions to indicate the output terminal 338Q, and is used to cause the output component 338 to receive a control signal SF97.
  • the control signal SF97 functions to indicate the output terminal 338Q.
  • the output component 338 responds to one of the signal generation control GY97 and the control signal SF97 to perform a signal generation operation BY97 using the output terminal 338Q to transmit an operation signal SG97 to the physical parameter application unit 735 .
  • the operation signal SG97 is used to control the variable physical parameter QU2A, and is one of a function signal and a control signal.
  • the processing unit 331 provides the control signal SF97 to the output component 338 by executing the signal generation control GY97.
  • the output component 338 performs the signal generation operation BY97 in response to the control signal SF97 to generate the operation signal SG97.
  • FIG. 41 is a schematic diagram of an implementation structure 9050 of the control system 901 shown in FIG. 1.
  • the implementation structure 9050 includes the functional device 130 and the control device 212 for controlling the functional device 130.
  • the functional device 130 has the variable physical parameter QU1A related to the clock time TH1A.
  • the variable physical parameter QU1A is characterized based on the physical parameter target range RD1ET.
  • the clock time TH1A is characterized based on the clock time designation interval HR1ET.
  • the clock time designation interval HR1ET is related to the physical parameter target range RD1ET.
  • the control device 212 for controlling the variable physical parameter QU1A includes a sensing unit 260 and the operating unit 297.
  • the sensing unit 260 senses a variable physical parameter QP1A to generate a sensing signal SM81.
  • the variable physical parameter QP1A is characterized based on a physical parameter application range RC1EL represented by a measurement value application range RM1L.
  • the operating unit 297 is coupled to the sensing unit 260. Under the condition that the trigger event EQ81 occurs, the operating unit 297 obtains a measurement value VM81 in response to the sensing signal SM81.
  • the operating unit 297 determines the condition of the physical parameter application range RC1EL that the variable physical parameter QP1A is currently in by checking a mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L Next, the operation unit 297 generates the control signal SC81 that functions to indicate the clock time designation interval HR1ET.
  • the measurement value VM81 is a physical parameter measurement value.
  • the control signal SC81 is used to control the functional device 130 to cause the variable physical parameter QU1A to be in the physical parameter target range RD1ET within the clock time designated interval HR1ET.
  • the clock time TH1A is further characterized based on the clock time application interval HR1EU adjacent to the clock time designated interval HR1ET.
  • the variable physical parameter QU1A is characterized based on the physical parameter target range RD1EU.
  • the clock time application interval HR1EU is related to the physical parameter target range RD1EU.
  • the control signal SC81 is used to control the functional device 130 to cause the variable physical parameter QU1A to be in the physical parameter target range RD1EU within the clock time application interval HR1EU.
  • FIG. 42 is a schematic diagram of an implementation structure 9051 of the control system 901 shown in FIG. 1.
  • FIG. 43 is a schematic diagram of an implementation structure 9052 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9051 and the implementation structure 9052 includes the functional device 130 and the control device 212.
  • the sensing unit 260 is configured to comply with a sensor specification FQ11 related to the measurement value application range RM1L.
  • the sensor specification FQ11 includes a sensor measurement range representation GQ8R for representing a sensor measurement range RA8E, and a sensor sensitivity representation GQ81 for representing a sensor sensitivity YQ81.
  • the sensor sensitivity YQ81 is related to a sensing signal generated by the sensing unit 260 to generate HE81.
  • the variable physical parameter QU1A is controlled by the timer 342 and characterized based on the physical parameter target range RD1ET.
  • the timer 342 senses the clock time TH1A, and conforms to the timer specification FT21 related to the clock time designated interval HR1ET.
  • the clock time designation interval HR1ET is represented by the measurement value designation range RQ1T.
  • the timer specification FT21 includes the full measurement value range representation FK8E for representing the full measurement value range QK8E.
  • the specified measurement value range RQ1T is equal to a part of the full measurement value range QK8E.
  • the variable physical parameter QU1A is further controlled by the sensing unit 334.
  • the sensing unit 334 senses the variable physical parameter QU1A, and conforms to the sensor specification FU11 related to the physical parameter target range RD1ET.
  • the physical parameter target range RD1ET is represented by the measured value target range RN1T.
  • the sensor specification FU11 includes the sensor measurement range representation GW8R for representing the sensor measurement range RB8E, and the sensor sensitivity representation GW81 for representing the sensor sensitivity YW81.
  • the sensor sensitivity YW81 is the same as or different from the sensor sensitivity YQ81.
  • the measurement value target range RN1T is preset based on the sensor measurement range representation GW8R, and has the target range limit value pair DN1T.
  • the measurement value VM81 is obtained by the operation unit 297 in a designated measurement value format HQ81.
  • the variable physical parameter QP1A is further characterized based on a physical parameter candidate range RC1E2 that is different from the physical parameter application range RC1EL.
  • the measurement value application range RM1L and a measurement value candidate range RM12 representing the physical parameter candidate range RC1E2 are based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11 to use the specified measurement value format HQ81 is preset.
  • the measurement value application range RM1L and the measurement value candidate range RM12 are both preset based on the sensor measurement range indication GQ8R and the sensor sensitivity indication GQ81 in the specified measurement value format HQ81.
  • the measurement value specified range RQ1T is defaulted based on the timer specification FT21, has the specified range limit value pair DQ1T, and is represented by a measurement value specified range code EL1T.
  • the control signal SC81 transmits the measurement value designated range code EL1T, the designated range limit value pair DQ1T, the physical parameter application status code EW1T, and the handle CC1T, and is used to cause the possible
  • the variable physical parameter QU1A is in the physical parameter target range RD1ET within the designated interval HR1ET of the clock time.
  • the handle CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 transmits the specified range limit value pair DQ1T to indicate at least one of the measurement value specified range RQ1T and the clock time specified interval HR1ET.
  • the control signal SC81 transmits the measurement value designation range code EL1T to indicate at least one of the measurement value designation range RQ1T and the clock time designation interval HR1ET.
  • the measurement value application range RM1L has an application range limit value pair DM1L.
  • the application range limit value is preset for DM1L.
  • the operating unit 297 obtains the application range limit value pair DM1L in response to the trigger event EQ81, and checks the mathematical relationship KA81 by comparing the measurement value VM81 with the obtained application range limit value pair DM1L .
  • the measurement value candidate range RM12 has a candidate range limit value pair DM1B.
  • the candidate range limit value is preset for DM1B.
  • the operating unit 297 responds to the trigger event EQ81 to obtain the preset candidate range limit value pair DM1B.
  • the operation unit 297 includes a trigger application unit 281.
  • the trigger event EQ81 is related to the trigger application unit 281.
  • the trigger application unit 281 generates an operation request signal SX81 in response to the trigger event EQ81.
  • the operation unit 297 obtains the measurement value VM81 based on the sensing signal SM81 in response to the operation request signal SX81, and obtains the application range limit value pair DM1L in response to the operation request signal SX81.
  • the physical parameter application range RC1EL is configured to correspond to a corresponding physical parameter range RW1EL outside the physical parameter application range RC1EL.
  • the operating unit 297 determines the corresponding physical parameter range RW1EL in which the variable physical parameter QP1A is currently located by checking the mathematical relationship KA81, the operating unit 297 executes the measurement value VM81 and the corresponding physical parameter range RW1EL.
  • the obtained limit value of the reference range compares CA91 with a data between DM1B.
  • the operating unit 297 determines the physical parameter candidate range RC1E2 in which the variable physical parameter QP1A is currently located based on the data comparison CA91, the operating unit 297 generates a signal for controlling the variable physical parameter A control signal SC82 of QU1A, the control signal SC82 is different from the control signal SC81.
  • the operating unit 297 determines the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located by checking the mathematical relationship KA81.
  • the operating unit 297 is configured to obtain the measurement
  • the value designation range code EL1T, the designated range limit value pair DQ1T, the physical parameter application status code EW1T, and a control data code CK8T of the handle CC1T, are executed based on the control data code CK8T for generating the control
  • a signal of the signal SC81 generates a control GS81, and executes a data storage control operation GT81, which is used to cause a physical parameter application range code UM8L representing the determined physical parameter application range RC1EL to be recorded.
  • variable physical parameter QU1A and the variable physical parameter QP1A belong to the physical parameter type TU11 and a physical parameter type TP11, respectively.
  • the physical parameter type TU11 is the same as or different from the physical parameter type TP11.
  • the data storage control operation GT81 is a guarantee operation.
  • the clock time designated interval HR1ET has the designated time length LH8T.
  • the specified time length LH8T is represented by the measured time length value VH8T.
  • the control signal SC81 further conveys the measurement time length value VH8T.
  • the delivered specified range limit value pair DQ1T and the delivered measurement time length value VH8T are used to enable the functional device 130 to obtain the application range limit value pair DQ1U; therefore, the control signal SC81 is used to make
  • the functional device 130 checks the time relationship KT81 between the clock time TH1A and the clock time application interval HR1EU, and is used to control the functional device 130 to cause the variable physical parameter QU1A to be at the clock time
  • the application range HR1EU is in the physical parameter target range RD1EU.
  • control signal SC81 further conveys the target range limit value pair DN1T.
  • the control signal SC81 transmits the target range limit value pair DN1T to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET.
  • the control data code CK8T further includes the measurement time length value VH8T and the target range limit value pair DN1T.
  • FIG. 44 is a schematic diagram of an implementation structure 9053 of the control system 901 shown in FIG. 1.
  • FIG. 45 is a schematic diagram of an implementation structure 9054 of the control system 901 shown in FIG. 1.
  • FIG. 46 is a schematic diagram of an implementation structure 9055 of the control system 901 shown in FIG. 1.
  • FIG. 47 is a schematic diagram of an implementation structure 9056 of the control system 901 shown in FIG. 1.
  • FIG. 48 is a schematic diagram of an implementation structure 9057 of the control system 901 shown in FIG. 1.
  • FIG. 49 is a schematic diagram of an implementation structure 9058 of the control system 901 shown in FIG. 1.
  • FIG. 44 is a schematic diagram of an implementation structure 9053 of the control system 901 shown in FIG. 1.
  • FIG. 45 is a schematic diagram of an implementation structure 9054 of the control system 901 shown in FIG. 1.
  • FIG. 46 is a schematic diagram of an implementation structure 9055 of the control system 901 shown in FIG. 1.
  • FIG. 47 is a schematic diagram of an implementation
  • FIG. 50 is a schematic diagram of an implementation structure 9059 of the control system 901 shown in FIG. 1.
  • the implementation structure 9052, the implementation structure 9053, the implementation structure 9054, the implementation structure 9055, and the Each of the implementation structure 9056, the implementation structure 9057, the implementation structure 9058, and the implementation structure 9059 includes the control device 212 and the function device 130.
  • variable physical parameter QU1A and the variable physical parameter QP1A are respectively formed at an actual position LD81 and an actual position LC81 different from the actual position LD81.
  • the operating unit 297 is configured to execute a measurement application function FB81 related to the physical parameter application range RC1EL, and includes a processing unit 230 coupled to the sensing unit 260, and a processing unit 230 coupled to the processing unit 230 The transmission unit 240 and a display unit 460 coupled to the processing unit 230.
  • the measurement application function FB81 is configured to comply with a measurement application function specification GBL8 related to the physical parameter application range RC1EL.
  • the measurement application function FB81 is a trigger application function.
  • the measurement application function specification GBL8 is a trigger application function specification.
  • the transmission unit 240 is an output unit.
  • the sensing unit 260 is configured to comply with a sensor specification FQ11 related to the measurement value application range RM1L.
  • the sensor specification FQ11 includes a sensor measurement range representation GQ8R for representing a sensor measurement range RA8E, and a sensor sensitivity representation GQ81 for representing a sensor sensitivity YQ81.
  • the sensor sensitivity YQ81 is related to a sensing signal generated by the sensing unit 260 to generate HE81.
  • the sensing unit 260 senses the variable physical parameter QP1A to perform the sensing signal generation HE81 dependent on the sensor sensitivity YQ81, and the sensing signal generation HE81 is used to generate the sensing signal SM81.
  • the variable physical parameter QU1A is controlled by the timer 342.
  • the timer 342 complies with the timer specification FT21 related to the clock time designated interval HR1ET.
  • the clock time designation interval HR1ET is represented by the measurement value designation range RQ1T.
  • the timer specification FT21 includes the full measurement value range representation FK8E for representing the full measurement value range QK8E.
  • the specified measurement value range RQ1T is equal to a part of the full measurement value range QK8E.
  • the variable physical parameter QU1A is controlled by the sensing unit 334.
  • the sensing unit 334 is configured to comply with the sensor specification FU11 related to the measurement value target range RN1T.
  • the sensor specification FU11 includes the sensor measurement range representation GW8R for representing the sensor measurement range RB8E, and the sensor sensitivity representation GW81 for representing the sensor sensitivity YW81.
  • the sensor sensitivity YW81 is the same as or different from the sensor sensitivity YQ81.
  • the processing unit 230 responds to the sensing signal SM81 to obtain the measurement value VM81 in a designated measurement value format HQ81.
  • the specified measurement value format HQ81 is characterized based on a specified number of bits UX81.
  • the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter application range RC1EL, the processing unit 230 causes the transmission unit 240 to generate the control signal SC81.
  • the variable physical parameter QP1A is further characterized based on a rated physical parameter range RC1E.
  • the rated physical parameter range RC1E is represented by a rated measurement value range RC1N, and includes a plurality of different physical parameter reference ranges RC1E1, RC1E2, ... represented by a plurality of different measurement value reference ranges RM11, RM12, ... .
  • the multiple different physical parameter reference ranges RC1E1, RC1E2,... include the physical parameter application range RC1EL.
  • the measurement application function specification GBL8 includes the timer specification FT21, the sensor specification FQ11, a rated physical parameter range for representing the rated physical parameter range RC1E, GB8E, and a physical parameter application range for representing the physical parameter range.
  • a physical parameter application range of RC1EL represents GB8L.
  • the physical parameter target range RD1ET is represented by a physical parameter candidate range representation GA8T. For example, the physical parameter candidate range indicates that GA8T is preset.
  • the rated measurement value range RC1N is based on the rated physical parameter range representing GB8E, the sensor measurement range representing GQ8R, and a data encoding operation ZR81 for converting the rated physical parameter range representing GB1E to use the specified measurement value format HQ81 is preset, has a rated range limit value pair DC1A, and includes the multiple different measurement value reference ranges RM11, RM12, ... represented by multiple different measurement value reference range codes EH11, EH12, ... respectively.
  • the rated range limit value pair DC1A is preset using the specified measurement value format HQ81.
  • the rated measurement value range RC1N and the rated range limit value pair DC1A are preset based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11 in the designated measurement value format HQ81.
  • the multiple different measurement value reference ranges RM11, RM12, ... include the measurement value application range RM1L.
  • the measurement value application range RM1L is represented by a measurement value application range code EH1L included in the plurality of different measurement value reference range codes EH11, EH12, ..., and has an application range limit value pair DM1L; thereby
  • the measurement value application range code EH1L is configured to indicate the physical parameter application range RC1EL.
  • the multiple different measurement value reference range codes EH11, EH12,... are all defaulted based on the measurement application function specification GBL8.
  • the application range limit value pair DM1L includes an application range limit value DM15 of the measurement value application range RM1L and an application range limit value DM16 relative to the application range limit value DM15, and is expressed based on the physical parameter application range GB8L, the sensor measurement range representation GQ8R, and a data encoding operation ZR82 for converting the physical parameter application range representation GB8L are preset using the specified measurement value format HQ81.
  • the measurement value application range RM1L is preset based on the physical parameter application range representation GB8L, the sensor measurement range representation GQ8R, and the data encoding operation ZR82 using the specified measurement value format HQ81.
  • the measurement value target range RN1T is preset based on the physical parameter candidate range representing GA8T, the sensor measurement range representing GQ8R, and a data encoding operation ZX83 for converting the physical parameter candidate range representing GA8T, and is preset by all
  • the target range code of the measured value is represented by EM1T.
  • the control device 212 further includes a storage unit 250 coupled to the processing unit 230 and includes a trigger application unit 281 coupled to the processing unit 230.
  • the storage unit 250 stores the default rated range limit value pair DC1A and a variable physical parameter range code UM8A.
  • the measured value target range RN1T has a target range limit value pair DN1T.
  • the variable physical parameter range code UM8A is equal to the reference range codes EH11, EH12, and EH11 selected from the multiple different measurement values. ...
  • a specific measurement value range code EH14 indicates a specific physical parameter range RC1E4 previously determined by the processing unit 230 based on a sensing operation ZM81.
  • the specific physical parameter range RC1E4 is selected from the multiple different physical parameter reference ranges RC1E1, RC1E2,....
  • the sensing operation ZM81 performed by the sensing unit 260 is used to sense the variable physical parameter QP1A.
  • the specific measurement value range code EH14 is assigned to the variable physical parameter range code UM8A.
  • the processing unit 230 obtains the specific measurement value range code EH14. Under the condition that the processing unit 230 determines the specific physical parameter range RC1E4 based on the sensing operation ZM81 before the trigger event EQ81 occurs, the processing unit 230 uses the storage unit 250 to store all the parameters.
  • the obtained specific measurement value range code EH14 is assigned to the variable physical parameter range code UM8A.
  • the specific measurement value range code EH14 represents a specific measurement value range configured to represent the specific physical parameter range RC1E4.
  • the specific measurement value range is preset based on the sensor measurement range representation GQ8R in the specified measurement value format HQ81.
  • the sensing unit 260 performs a sensing signal generation dependent on the sensor sensitivity YQ81 by performing the sensing operation ZM81 to generate a sensing signal.
  • the processing unit 230 receives the sensing signal, and responds to the sensing signal to obtain a specific measurement value in the specified measurement value format HQ81, and executes a method for checking the specific measurement value.
  • the processing unit 230 uses the storage unit 250 to store all the parameters.
  • the obtained specific measurement value range code EH14 is assigned to the variable physical parameter range code UM8A.
  • the processing unit 230 determines whether the processing unit 230 uses the storage unit 250 to change the variable physical parameter range code UM8A in response to a specific sensing operation for sensing the variable physical parameter QP1A.
  • the specific sensing operation is performed by the sensing unit 260.
  • the trigger application unit 281 responds to the trigger event EQ81 to provide an operation request signal SX81 to the processing unit 230, thereby enabling the processing unit 230 to receive the operation request signal SX81.
  • the processing unit 230 obtains an operation reference data code XK81 from the storage unit 250 in response to the operation request signal SX81, and executes the operation by running a data determination program NE8A.
  • a data of the operation reference data code XK81 determines AE8A to determine the measurement value application range code EH1L selected from the multiple different measurement value reference range codes EH11, EH12, ... so as to refer to the multiple different measurement values Select the measurement value application range RM1L from the ranges RM11, RM12,...
  • the operation reference data code XK81 is the same as an allowable reference data code that is defaulted based on the measurement application function specification GBL8.
  • the data determination program NE8A is constructed based on the measurement application function specification GBL8.
  • the data determination AE8A is one of a data determination operation AE81 and a data determination operation AE82. Under the condition that the operation reference data code XK81 is obtained by accessing the variable physical parameter range code UM8A stored in the storage unit 250 to be the same as the specific measurement value range code EH14, yes
  • the data determination AE8A of the data determination operation AE81 determines the measurement value application range code EH1L based on the obtained specific measurement value range code EH14. For example, the determined measurement value application range code EH1L is the same as or different from the obtained specific measurement value range code EH14.
  • the operation reference data code XK81 is obtained by accessing the rated range limit value pair DC1A stored in the storage unit 250 to obtain the same conditions as the preset rated range limit value pair DC1A
  • the data of the data determination operation AE82 determines that AE8A obtains from the multiple different measurement values by performing a scientific calculation MF81 using the measurement value VM81 and the obtained rated range limit value pair DC1A
  • the measurement value application range code EH1L is selected from the reference range codes EH11, EH12, ... to determine the measurement value application range code EH1L.
  • the scientific calculation MF81 is executed based on a specific empirical formula XP81.
  • the specific empirical formula XP81 is formulated in advance based on the preset rated range limit value pair DC1A and the multiple different measurement value reference range codes EH11, EH12,... For example, the specific empirical formula XP81 is formulated in advance based on the measurement application function specification GBL8.
  • the processing unit 230 obtains the application range limit value pair DM1L based on the determined measurement value application range code EH1L, and obtains the application range limit value pair DM1L based on the measurement value VM81 and the obtained application range limit value pair DM1L.
  • a data comparison CA81 checks the mathematical relationship KA81 to make a logical decision PH81 whether the measurement value VM81 is within the selected measurement value application range RM1L. Under the condition that the logical decision PH81 is affirmative, the processing unit 230 determines the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located.
  • the The processing unit 230 makes the logical decision PH81 by comparing the measured value VM81 with the obtained application range limit value pair DM1L to become affirmative.
  • the processing unit 230 compares the measurement value VM81 with the obtained application range limit Value pair DM1L to make the logical decision PH81 to become affirmative.
  • the control device 212 has the variable physical parameter QP1A.
  • the variable physical parameter QU1A exists in the functional device 130.
  • the trigger event EQ81 is one of a trigger action event, a user input event, a signal input event, a state change event, an identification medium occurrence event, and an integer overflow event, and is applied to the measurement application Function FB81.
  • the receiving unit 337 receives a control signal SC80 from the transmission unit 240.
  • the processing unit 331 executes a signal generation control GY80 for controlling the output component 338.
  • the output component 338 generates an operation signal SG80 for controlling the variable physical parameter QU1A in response to the signal generation control GY80.
  • the physical parameter application unit 335 receives the operation signal SG80 from the output component 338, and executes the specific function operation ZH81 related to the variable physical parameter QU1A in response to the received operation signal SG80.
  • the functional device 130 is configured to execute the specific functional operation ZH81 related to the variable physical parameter QU1A.
  • the specific function operation ZH81 is used to cause the triggering event to occur.
  • the measurement application function FB81 is related to a memory unit 25Y1.
  • the measurement value designation range RQ1T is represented by the measurement value designation range code EL1T; thereby, the measurement value designation range code EL1T is configured to indicate the clock time designation interval HR1ET.
  • the measurement value designation range code EL1T is defaulted based on the measurement application function specification GBL8.
  • the memory unit 25Y1 has a memory location PM8L and a memory location PV8L different from the memory location PM8L, the application range limit value pair DM1L is stored in the memory location PM8L, and a control is stored in the memory location PV8L Data code CK8T.
  • the memory location PM8L and the memory location PV8L are both identified based on the preset measurement value application range code EH1L.
  • the control data code CK8T includes the measurement value designated range code EL1T.
  • the application range limit value pair DM1L and the control data code CK8T are stored by the memory unit 25Y1 based on the preset measurement value application range code EH1L.
  • the control data code CK8T further includes the measurement value target range code EM1T.
  • the processing unit 230 executes a data acquisition AF8A using the determined measurement value application range code EH1L by running a data acquisition program NF8A to obtain the application range limit value pair DM1L.
  • the data acquisition AF8A is one of a data acquisition operation AF81 and a data acquisition operation AF82.
  • the data acquisition program NF8A is constructed based on the measurement application function specification GBL8.
  • the data acquisition operation AF81 uses the memory unit 25Y1 based on the determined measurement value application range code EH1L to access the application range limit value pair DM1L stored in the memory location PM8L to obtain the application
  • the range limit is DM1L.
  • the data acquisition operation AF82 obtains the preset rated range limit value pair DC1A by reading the rated range limit value pair DC1A stored in the storage unit 250, and is determined by performing use
  • the measurement value application range code EH1L and a scientific calculation MG81 of the obtained rated range limit value pair DC1A are used to obtain the application range limit value pair DM1L.
  • the rated range limit value pair DC1A includes a rated range limit value DC11 of the rated measurement value range RC1N and a rated range limit value DC12 relative to the rated range limit value DC11, and is based on the rated physical parameter
  • the range represents GB8E
  • the sensor measurement range represents GQ8R
  • the data encoding operation ZR81 is preset using the specified measurement value format HQ81.
  • the processing unit 230 executes the use of the determined measurement value application range A data of code EH1L obtains AG8A to obtain a control application code UA8T.
  • the data acquisition AG8A is one of a data acquisition operation AG81 and a data acquisition operation AG82.
  • the data acquisition operation AG81 uses the memory unit 25Y1 based on the determined measurement value application range code EH1L to access the control data code CK8T stored in the memory location PV8L to obtain the control data equal to The control application code UA8T of the code CK8T.
  • the data acquisition operation AG82 obtains the value equal to the preset measurement value designated range code EL1T by executing a scientific calculation MQ81 using the determined measurement value application range code EH1L and the mathematical relationship KY81. Control application code UA8T.
  • the processing unit 230 executes a signal generation control GS81 for the measurement application function FB81 within an operating time TD81 based on the obtained control application code UA8T to control the transmission unit 240.
  • the transmission unit 240 responds to the signal generation control GS81 to execute a signal generation operation BS81 for the measurement application function FB81 to generate the control signal SC81.
  • the control signal SC81 serves to indicate at least one of the measurement value designation range RQ1T and the clock time designation interval HR1ET by transmitting the measurement value designation range code EL1T, and is used to cause the
  • the variable physical parameter QU1A is in the physical parameter target range RD1ET within the designated interval HR1ET of the clock time.
  • the control signal SC81 conveys the control information CG81.
  • the processing unit 230 causes the transmission unit 240 to generate the control information CG81 based on the obtained control application code UA8T.
  • the multiple different physical parameter reference ranges RC1E1, RC1E2, ... further include a physical parameter candidate range RC1E2 that is different from the physical parameter application range RC1EL.
  • the multiple different measurement value reference ranges RM11, RM12,... Have a total reference range number NS81, and further include a measurement value candidate range RM12 representing the physical parameter candidate range RC1E2.
  • the measurement application function specification GBL8 further includes a physical parameter candidate range representation GB82 for representing the physical parameter candidate range RC1E2.
  • the measurement value candidate range RM12 is represented by a measurement value candidate range code EH12 that is different from the measurement value application range code EH1L, has a candidate range limit value pair DM1B, and is configured to represent the physical parameter candidate range RC1E2 ; With this, the measurement value candidate range code EH12 is configured to indicate the physical parameter candidate range RC1E2.
  • the candidate range limit value pair DM1B uses the specified physical parameter candidate range representation GB82, the sensor measurement range representation GQ8R, and a data encoding operation ZR83 for converting the physical parameter candidate range representation GB82.
  • the measured value format HQ81 is preset.
  • the measurement value candidate range RM12 is preset in the specified measurement value format HQ81 based on the physical parameter candidate range representation GB82, the sensor measurement range representation GQ8R, and the data encoding operation ZR83.
  • the total number of reference ranges NS81 is defaulted based on the measurement application function specification GBL8.
  • the processing unit 230 obtains the total reference range number NS81 in response to the trigger event EQ81.
  • the scientific calculation MF81 further uses the obtained total reference range number NS81.
  • the scientific calculation MG81 further uses the obtained total reference range number NS81. For example, the total number of reference ranges NS81 is greater than or equal to 2.
  • the clock time designation interval HR1ET is adjacent to the clock time application interval HR1EU, and has the start limit time HR1ET1 and the end limit time HR1ET2 relative to the start limit time HR1ET1.
  • the functional device 130 receives the control signal SC81, obtains the measurement value specified range code EL1T and the measurement value target range code EM1T from the received control signal SC81, and specifies the range based on the obtained measurement value
  • the code EL1T is used to start the timer 342, thereby enabling the timer 342 to measure the clock time TH1A according to the start limit time HR1ET1.
  • the functional device 130 causes the variable physical parameter QU1A to be in the physical parameter target range RD1ET within the clock time designated interval HR1ET based on the obtained measurement value target range code EM1T.
  • the control signal SC81 conveys a piece of control information CG81 determined based on the control application code UA8T.
  • the control information CG81 includes the measurement value designation range code EL1T and the measurement value target range code EM1T.
  • the control information CG81 includes the specified range limit value pair DQ1T, the target range limit value pair DN1T, and the handle CC1T.
  • the measurement value application range RM1L is a first part of the rated measurement value range RC1N.
  • the measurement value candidate range RM12 is a second part of the rated measurement value range RC1N.
  • the physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are separate or adjacent. Under the condition that the physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are separated, the measurement value application range RM1L and the measurement value candidate range RM12 are separated. Under the condition that the physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are adjacent, the measurement value application range RM1L and the measurement value candidate range RM12 are adjacent.
  • the measurement value application range code EH1L is configured to be equal to an integer.
  • the rated range limit value DC12 is greater than the rated range limit value DC11.
  • the relative value VC11 is equal to a calculation result of the rated range limit value DC12 minus the rated range limit value DC11.
  • the application range limit value pair DM1L is determined based on the rated range limit value DC11, the rated range limit value DC12, the integer, and a ratio of the relative value VC11 to the total reference range number NS11 Preset.
  • the scientific calculation MG81 uses one of the rated range limit value DC11, the rated range limit value DC12, the integer, the ratio, and any combination thereof.
  • the processing unit 230 determines the selected value by executing a fourth scientific calculation MF12 using the determined measurement value application range code EH1L
  • the measurement value candidate range codes EH12 of the plurality of different measurement value reference range codes EH11, EH12, ... are used to select the measurement value candidate range RM12 from the plurality of different measurement value reference ranges RM11, RM12, ....
  • the processing unit 230 obtains the candidate range limit value pair DM1B based on the determined measurement value candidate range code EH12, and obtains the candidate range limit value pair DM1B based on the measurement value VM81 and the obtained candidate range limit value pair DM1B.
  • a data comparison CA91 to check a mathematical relationship KA91 between the measurement value VM81 and the selected measurement value candidate range RM12 to determine whether the measurement value VM81 is within the selected measurement value candidate range RM12
  • a logic within determines PH91. Under the condition that the logical decision PH91 is affirmative, the processing unit 230 determines the physical parameter candidate range RC1E2 in which the variable physical parameter QP1A is currently located.
  • the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter candidate range RC1E2, the processing unit 230 causes the transmission unit 240 to execute a measurement application function FB81.
  • the signal generating operation BS91 generates a control signal SC82 for controlling the variable physical parameter QU1A.
  • the control signal SC82 is different from the control signal SC81 and functions to indicate the clock time reference interval HR1E2.
  • the processing unit 230 determines where the variable physical parameter QP1A is currently located by making the logical decision PH81 Under the condition of the physical parameter application range RC1EL, the processing unit 230 is based on the difference between the variable physical parameter range code UM8A equal to the specific measurement value range code EH14 and the determined measurement value application range code EH1L
  • a code difference DA81 uses the storage unit 250 to assign the determined measurement value application range code EH1L to the variable physical parameter range code UM8A.
  • the processing unit 230 is based on the code difference DA81 determines that it is the trigger event EQ81 of the state change event.
  • the operating unit 297 further includes a response area AC1, a reader 220, and a receiving unit 270.
  • the response area AC1 is used to execute the measurement application function FB81.
  • the reader 220 is coupled to the response area AC1.
  • the receiving unit 270 is coupled to the processing unit 230 and is controlled by the processing unit 230.
  • the processing unit 230 Under the condition that the trigger event EQ81 is the occurrence event of the identification medium and the processing unit 230 recognizes an identification medium 310 appearing in the response area AC1 through the reader 220, the processing unit 230
  • the measurement value VM81 is obtained based on the sensing signal SM81.
  • the trigger event EQ81 is an occurrence event of the identification medium related to the identification medium 310 and the reader 220.
  • the display unit 460 displays a status indication LA81.
  • the state indication LA81 is used to indicate that the variable physical parameter QP1A is configured in a specific state XH81 within the specific physical parameter range RC1E4.
  • the processing unit 230 determines where the variable physical parameter QP1A is currently located by making the logical decision PH81 Under the condition of the physical parameter application range RC1EL, the processing unit 230 further causes the display unit 460 to change the status indicator LA81 to a status indicator LA82 based on the code difference DA81.
  • the state indication LA82 is used to indicate that the variable physical parameter QP1A is configured in a specific state XH82 within the physical parameter application range RC1EL.
  • the processing unit 230 responds to the control response signal SE81 to execute a specific actual operation BJ81 related to the variable physical parameter QU1A.
  • the processing unit 230 obtains the transmitted measurement value VN82 from the control response signal SE81, and based on the obtained measurement value VN82, causes the display unit 460 to display the same value as the obtained measurement value VN82.
  • the specific actual operation BJ81 is a display control operation using the obtained measured value VN82.
  • the processing unit 230 causes the display unit 460 to display the measurement information LZ82 by performing the display control operation.
  • control response signal SE81 transmits the measured value VN82 and the positive operation report RL81.
  • the processing unit 230 obtains the transmitted measurement value VN82 and the transmitted positive operation report RL81 from the control response signal SE81.
  • the specific actual operation BJ81 uses at least one of the obtained measurement value VN82 and the obtained affirmative operation report RL81 to cause the display unit 460 to display the obtained measurement value VN82 and the obtained measurement value VN82 and the obtained positive operation report RL81.
  • the sensing unit 260 senses the variable physical parameter QP1A to generate a sensing signal SM82. For example, after the operating time TD81, the sensing unit 260 senses the variable physical parameter QP1A to perform a sensing signal that depends on the sensor sensitivity YQ81 to generate HE82, and the sensing signal generates HE82 for generating HE82. To generate the sensing signal SM82.
  • the processing unit 230 responds to the sensing signal SM82 within a specified time TE82 after the operating time TD81 to obtain a measurement value VM82 in the specified measurement value format HQ81.
  • the processing unit 230 obtains the reference range codes EH11, EH12 included in the plurality of different measurement values by executing a scientific calculation MF83 using the determined measurement value application range code EH1L within the specified time TE82. ,...
  • a specific measurement value range code EH17 is different from the determined measurement value application range code EH1L, and represents a specific measurement value range RM17 included in the plurality of different measurement value reference ranges RM11, RM12, ... .
  • the specific measurement value range RM17 represents a specific physical parameter range RC1E7 included in the plurality of different physical parameter reference ranges RC1E1, RC1E2,...
  • the processing unit 230 performs a check operation BA83 for checking a mathematical relationship KA83 between the measurement value VM82 and the specific measurement value range RM17 based on the specific measurement value range code EH17.
  • the processing unit 230 determines that the variable physical parameter QP1A is currently in the specific physical parameter range RC1E7 based on the checking operation BA83 within the specified time TE82.
  • the processing unit 230 causes the transmission unit 240 to generate a control signal SC83 for controlling the variable physical parameter QU1A, and uses the storage unit 250 to assign the specific measurement value range code EH17 to the variable
  • the physical parameter range code is UM8A.
  • the control signal SC83 is different from the control signal SC81, and functions to indicate a specific clock time interval HR1E7.
  • the multiple different clock time reference intervals HR1E1, HR1E2,... include the specific clock time interval HR1E7.
  • the sensing unit 260 senses the variable physical parameter QP1A in a restraining condition FP81 to provide the sensing signal SM81 to the processing unit 230.
  • the constraint condition FP81 is that the variable physical parameter QP1A is equal to a specific physical parameter QP15 included in the rated physical parameter range RC1E.
  • the processing unit 230 estimates the specific physical parameter QP15 based on the sensing signal SM81 to obtain the measured value VM81.
  • the processing unit 230 recognizes that the measurement value VM81 is within the measurement value application range RM1L An allowable value to identify the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L as a numerical intersection relationship, and thereby determine where the variable physical parameter QP1A is currently located
  • the application range of the physical parameters is RC1EL.
  • the processing unit 230 causes the transmission unit 240 to transmit the control signal SC8H to the receiving unit 337 in response to a trigger event EQ8H.
  • the trigger event EQ8H is related to the control device 212.
  • the control signal SC8H conveys a control information CJ8H.
  • the receiving unit 337 receives from the transmission unit 240
  • the control signal SC8H is received.
  • the processing unit 331 obtains the control information CJ8H from the control signal SC8H.
  • the processing unit 331 uses the sensing signal SN8H to obtain the measurement value VN8H in the specified measurement value format HH81 in response to the control information CJ8H, and uses the sensing signal SY8H in response to the control information CJ8H
  • the measurement value NY8H is obtained in the specified measurement value format HH95.
  • the processing unit 331 causes the transmission unit 384 to transmit the control response signal SE8H to the receiving unit 270 based on the obtained measurement value VN8H and the obtained measurement value NY8H.
  • the receiving unit 270 receives the control response signal SE8H from the transmitting unit 384.
  • the control response signal SE8H conveys the measured value VN8H and the measured value NY8H, and is used by the control device 212 to perform a correlation with at least one of the variable physical parameter QU1A and the clock time TH1A A specific actual operation.
  • the processing unit 230 obtains the measurement value VN8A and the measurement value NY8H from the received control response signal SE8H, and based on the obtained measurement value VN8H, causes the display unit 460 to display and The measurement information LZ8H related to the variable physical parameter QU1A is changed, and the display unit 460 is made to display the measurement information LX8H related to the clock time TH1A based on the obtained measurement value NY8H.
  • the processing unit 230 performs the specific actual operation using the obtained measurement value VN8H and the obtained measurement value NY8H to make the display unit 460 perform a display operation.
  • the display operation displays the measurement information LZ8H and the measurement information LX8H.
  • the operating unit 297 includes a trigger application unit 28H coupled to the processing unit 230.
  • the trigger event EQ8H is related to the trigger application unit 28H, and is one of a trigger action event, a user input event, a signal input event, a state change event, and an occurrence event of the identification medium.
  • the trigger application unit 28H responds to the trigger event EQ8H to provide an operation request signal SX8H to the processing unit 230, thereby enabling the processing unit 230 to receive the operation request signal SX8H.
  • the processing unit 230 obtains the control information CJ8H in response to the operation request signal SX8H, and causes the transmission unit 240 to transmit the control information CJ8H to the function device 130 based on the obtained control information CJ8H.
  • the control signal SC8H for example, the trigger application unit 28H is one of the reader 220 and the sensing unit 260.
  • the sensing unit 260 is characterized based on the sensor sensitivity YQ81 related to the sensing signal generation HE81, and is configured to comply with the sensor specification FQ11.
  • the sensor specification FQ11 includes the sensor sensitivity representation GQ81 for representing the sensor sensitivity YQ81, and the sensor measurement range representation GQ8R for representing the sensor measurement range RA8E.
  • the rated physical parameter range RC1E is configured to be the same as the sensor measurement range RA8E, or is configured to be a part of the sensor measurement range RA8E.
  • the sensor measurement range RA8E is related to a physical parameter sensing performed by the first sensing unit 260.
  • the sensor measurement range means that GQ8R is provided based on a first default measurement unit.
  • the first default measurement unit is one of a metric measurement unit and an English measurement unit.
  • the rated measurement value range RC1N, the rated range limit value pair DC1A, the measurement value application range RM1L, the application range limit value pair DM1L, the measurement value candidate range RM12, the candidate range limit value pair DM1B And the multiple different measurement value reference ranges RM11, RM12,... are preset based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11 in the specified measurement value format HQ81.
  • the rated measurement value range RC1N and the rated range limit value pair DC1A are based on the rated physical parameter range representing GB8E, the sensor measurement range representing GQ8R, the sensor sensitivity representing GQ81, and the data encoding operation ZR81
  • the measurement value application range RM1L and the application range limit value pair DM1L are all based on the physical parameter application range representation GB8L, the sensor measurement range representation GQ8R, the sensor sensitivity representation GQ81, and the data encoding operation ZR82.
  • the specified measurement value format HQ81 is preset.
  • the measurement value candidate range RM12 and the candidate range limit value pair DM1B are used based on the physical parameter candidate range representing GB82, the sensor measurement range representing GQ8R, the sensor sensitivity representing GQ81, and the data encoding operation ZR83.
  • the specified measurement value format HQ81 is preset.
  • the rated physical parameter range represents GB8E
  • the physical parameter application range represents GB8L
  • the physical parameter candidate range represents GA8T
  • the physical parameter candidate range represents GB82 are provided based on a second default measurement unit.
  • the second default measurement unit is one of a metric measurement unit and an imperial measurement unit, and is the same as or different from the first default measurement unit.
  • the physical parameter target range RD1ET is configured to be a part of the sensor measurement range RB8E.
  • the variable physical parameter QP1A is further characterized based on the sensor measurement range RA8E.
  • the sensor measurement range represents GQ8R
  • the rated physical parameter range represents GB8E
  • the physical parameter application range represents GB8L
  • the physical parameter candidate range represents GA8T
  • the physical parameter candidate range represents GB82
  • the sensor measurement The range indicates that GW8R belongs to the decimal data type.
  • the measurement value VM81, the measurement value VM82, the rated range limit value pair DC1A, the application range limit value pair DM1L, the target range limit value pair DN1T, and the candidate range limit value pair DM1B all belong to all
  • the binary data types mentioned above are all suitable for computer processing.
  • the sensor specification FQ11, the sensor specification FU11, and the measurement application function specification GBL8 are all defaulted.
  • the memory location PM8L is identified based on a memory address FM8L.
  • the memory address FM8L is preset based on the preset measurement value application range code EH1L.
  • the memory location PV8L is identified based on a memory address FV8L.
  • the memory address FV8L is preset based on the preset measurement value application range code EH1L.
  • the processing unit 230 is configured to obtain the default measurement value application range code EH1L, the preset application range limit value pair DM1L, and the default control data Code CK8T, based on the obtained measurement value application range code EH1L to obtain the memory address FM8L, and based on the obtained application range limit value pair DM1L and the obtained memory address FM8L to cause the operation
  • the unit 297 provides a write request information WB8L including the obtained application range limit value pair DM1L and the obtained memory address FM8L.
  • the write request information WB8L is used to cause the memory unit 25Y1 to store the delivered application range limit value pair DM1L in the memory location PM8L.
  • the processing unit 230 obtains the memory address FV8L based on the obtained measurement value application range code EH1L, and based on the obtained control data code CK8T and the obtained control data code EH1L.
  • the memory address FV8L causes the operating unit 297 to provide a write request information WA8L including the acquired control data code CK8T and the acquired memory address FV8L.
  • the write request information WA8L is used to cause the memory unit 25Y1 to store the delivered control data code CK8T in the memory location PV8L.
  • the control device 212 is coupled to a server 280.
  • the identification medium 310 is one of an electronic label 350, a barcode medium 360, and a biometric identification medium 370.
  • One of the electronic tag 350, the storage unit 250, and the server 280 includes the memory unit 25Y1.
  • the storage unit 250 has a storage space SS11.
  • the storage space SS11 has the variable physical parameter range code UM8A, the rated range limit value pair DC1A, and the total reference range number NS81.
  • the rated physical parameter range RC1E includes a specific physical parameter QP15 and is represented by the rated measurement value range RC1N.
  • the sensing unit 260 senses the variable physical parameter QP1A in the restraint condition FP81 to provide the sensing signal SM81 to the processing unit 230.
  • the constraint condition FP81 is that the variable physical parameter QP1A is equal to the specific physical parameter QP15.
  • the processing unit 230 estimates the specific physical parameter QP15 based on the sensing signal SM81 to obtain the measured value VM81.
  • the identification medium 310 records the application range limit value pair DM1L and the control data code CK8T.
  • the reader 220 is the trigger application unit 281, and responds to the trigger event EQ81 related to the identification medium 310 to provide the operation request signal SX81 to the processing unit 230, thereby enabling all
  • the processing unit 230 receives the operation request signal SX81.
  • the processing unit 230 responds to the operation request signal SX81 to make the reader 220 read the recorded application range limit value pair DM1L and the recorded control data code CK8T, and thereby pass the The reader 220 obtains the recorded application range limit value pair DM1L and the recorded control data code CK8T from the identification medium 310.
  • FIG. 51 is a schematic diagram of an implementation structure 9060 of the control system 901 shown in FIG. 1.
  • the implementation structure 9060 includes the control device 212, the function device 130, and the server 280.
  • the control device 212 is linked to the server 280.
  • the control device 212 is configured to control the variable physical parameter QU1A existing in the functional device 130 by relying on the trigger event EQ81, and includes the operating unit 297 and the sensing unit 260.
  • the operating unit 297 includes the processing unit 230, the receiving unit 270, and the transmitting unit 240.
  • the processing unit 230 is coupled to the server 280.
  • the control device 212 is installed in the application environment EX81.
  • the variable physical parameter QP1A exists in a physical parameter formation area AT11.
  • One of the control device 212 and the application environment EX81 has the variable physical parameter QP1A.
  • the sensing unit 260 is coupled to the physical parameter formation area AT11 having the variable physical parameter QP1A.
  • the variable physical parameter QU1A exists in the physical parameter formation area AU11.
  • the physical parameter formation area AT11 is adjacent to the control device 212.
  • the sensing unit 260 includes the physical parameter formation area AT11.
  • the physical parameter formation area AU11 and the physical parameter formation area AT11 are separate and are respectively formed at the actual position LD81 and the actual position LC81; thereby, the variable physical parameter QU1A and the physical parameter are formed separately.
  • the variable physical parameters QP1A are respectively formed at the actual position LD81 and the actual position LC81 which is different from the actual position LD81.
  • the physical parameter formation area AT11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area.
  • the physical parameter formation area AU11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area.
  • the processing unit 230 responds to the trigger event EQ81 to cause the variable physical parameter QP1A to be formed in the physical parameter formation area AT11.
  • the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81.
  • the physical parameter formation area AT11 is a user interface area.
  • the functional device 130 includes the operating unit 397, the sensing unit 334 coupled to the operating unit 397, and a physical parameter application unit 335 coupled to the operating unit 397.
  • the physical parameter application unit 335 is controlled by the operation unit 397 and includes the physical parameter formation area AU11 having the variable physical parameter QU1A.
  • the variable physical parameter QU1A is further characterized based on a rated physical parameter range RD1E including the physical parameter target range RD1ET.
  • the rated physical parameter range RD1E is represented by a rated measurement value range RD1N, and includes a plurality of different physical parameter reference ranges RD1E1, RD1E2, ... represented by a plurality of different measurement value reference ranges RN11, RN12, ....
  • the multiple different physical parameter reference ranges RD1E1, RD1E2,... include the physical parameter target range RD1ET and a physical parameter candidate range RD1E2.
  • the rated measurement value range RD1N includes the multiple different measurement value reference ranges RN11, RN12, ..., and is based on the rated physical parameter range representing GB8E, the sensor measurement range representing GQ8R, and used to convert the rated physical parameter
  • the range indicates that the data encoding operation ZR81 of GB8E is preset using the specified measurement value format HQ81.
  • the multiple different measurement value reference ranges RN11, RN12, ... include the measurement value target range RN1T and a measurement value candidate range RN12 representing the physical parameter candidate range RD1E2.
  • the measurement value candidate range RN12 is represented by a measurement value candidate range code EM12 and has a candidate range limit value pair DN1B, whereby the measurement value candidate range code EM12 is configured to indicate the physical parameter candidate range RD1E2.
  • the variable physical parameter QU1A is configured to be within a specific physical parameter range RD1E4.
  • the specific physical parameter range RD1E4 is included in the multiple different physical parameter reference ranges RD1E1, RD1E2,...
  • the triggering event caused by the functional device 130 is a state change event.
  • the control device 212 further includes a state change detector 475 coupled to the processing unit 230.
  • the state change detector 475 is one of a limit detector and an edge detector.
  • the limit detector is a limit switch 485.
  • the state change detector 475 is configured to detect the arrival of a characteristic physical parameter related to a default characteristic physical parameter UL81 to the ZL82.
  • the physical parameter application unit 335 includes a physical parameter application area AJ11.
  • the physical parameter application area AJ11 has a variable physical parameter QG1A.
  • the variable physical parameter QG1A is dependent on the variable physical parameter QU1A and is characterized based on the default characteristic physical parameter UL81.
  • the physical parameter application area AJ11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area.
  • the default characteristic physical parameter UL81 is related to the variable physical parameter QU1A.
  • the operation unit 397 causes the physical parameter application unit 335 to execute the specific function operation ZH81 related to the variable physical parameter QU1A.
  • the specific function operation ZH81 is used to control the variable physical parameter QG1A, and cause the trigger event EQ81 to occur by changing the variable physical parameter QG1A.
  • the variable physical parameter QG1A is configured to be in a variable physical state XA8A.
  • the operation unit 397 is controlled by the control device 212 so that the physical parameter application unit 335 executes the specific function operation ZH81.
  • the rated measurement value range RD1N has a rated range limit value pair DD1A.
  • the specific functional operation ZH81 causes the variable physical parameter QG1A to reach the default
  • the characteristic physical parameter UL81 forms the characteristic physical parameter reaching ZL82
  • the variable physical state XA8A is changed from a non-characteristic physical parameter reaching state XA81 to an actual characteristic physical parameter reaching ZL82 by forming the characteristic physical parameter reaching ZL82 State XA82.
  • the state change detector 475 generates a trigger signal SX8A in response to the characteristic physical parameter reaching the ZL82.
  • the actual characteristic physical parameter reaching state XA82 is characterized based on the default characteristic physical parameter UL81.
  • the state change detector 475 responds to a state change event in which the variable physical parameter QG1A is changed from the non-characteristic physical parameter reaching state XA81 to the actual characteristic physical parameter reaching state XA82 to generate the trigger signal SX8A .
  • the receiving unit 270 is coupled to the state change detector 475.
  • the trigger event EQ81 is the state change event in which the variable physical parameter QG1A enters the actual characteristic physical parameter arrival state XA82.
  • One of the receiving unit 270 and the processing unit 230 receives the trigger signal SX8A.
  • the processing unit 230 obtains the control application code UA8T in response to the received trigger signal SX8A, and executes the measurement application within the operation time TD81 based on the obtained control application code UA8T
  • the signal generation control GS81 of the function FB81 causes the transmission unit 240 to generate the control signal SC81.
  • the state change detector 475 is a trigger application unit, and provides the trigger signal SX8A to the processing unit 230 in response to the characteristic physical parameter reaching the ZL82.
  • the trigger signal SX8A is an operation request signal.
  • the characteristic physical parameter reaching ZL82 is equal to a variable space position and the variable physical parameter QG1A reaches a value equal to a default limit position.
  • a limit position of the default characteristic physical parameter UL81 is reached.
  • the physical parameter application unit 335 forms the variable physical parameter QG1A in the physical parameter application area AJ11 by executing the specific functional operation ZH81 caused based on the variable physical parameter QU1A.
  • the state change detector 475 detects that the characteristic physical parameter reaches the ZL82.
  • the processing unit 230 uses the sensing signal SM81 to obtain the measurement value VM81 in response to the received trigger signal SX8A.
  • the processing unit 230 determines the value of the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located by checking the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L.
  • the processing unit 230 executes the data acquisition AG8A using the determined measurement value application range code EH1L to obtain the control application code UA8T, and causes the control application code UA8T to cause all the results based on the obtained control application code UA8T.
  • the transmission unit 240 generates or transmits the control signal SC81.
  • the control signal SC81 functions to indicate at least one of the measurement value designation range RQ1T and the clock time designation interval HR1ET.
  • the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81. For example, under the condition that the trigger event EQ81 occurs, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81. After the processing unit 230 executes the signal generation control GS81 to cause the transmission unit 240 to generate the control signal SC81 within the operation time TD81, the sensing unit 260 senses the variable The physical parameter QP1A is used to generate the sensing signal SM82.
  • the sensing unit 260 is a time sensing unit, an electrical parameter sensing unit, a mechanical parameter sensing unit, an optical parameter sensing unit, a temperature sensing unit, a humidity sensing unit, One of a motion sensing unit and a magnetic parameter sensing unit.
  • the sensing unit 260 includes a sensing component 261 coupled to the processing unit 230, and uses the sensing component 261 to generate the sensing signal SM81 and the sensing signal SM82.
  • the sensing component 261 is one of a plurality of application sensors.
  • the multiple application sensors include a voltage sensor, a current sensor, a resistance sensor, a capacitance sensor, an inductance sensor, an accelerometer, a gyroscope, a pressure transducer, a strain gauge, a timer, a Light detector, a temperature sensor and a humidity sensor.
  • the sensing component 261 generates a sensing signal component.
  • the first sensing signal SM81 includes the sensing signal component.
  • FIG. 52 is a schematic diagram of an implementation structure 9061 of the control system 901 shown in FIG. 1.
  • the implementation structure 9061 includes the control device 212, the function device 130, and the server 280.
  • the control device 212 is a computing device, a communication device, a user device, a mobile device, a remote control, an electronic device, a portable device, a desktop device, a relative fixed device, a fixed device, a One of smart phones and any combination thereof.
  • the electronic volume label 350 is one of a passive electronic volume label, an active electronic volume label, a semi-active electronic volume label, a wireless electronic volume label and a wired electronic volume label.
  • the control device 212 transmits the control signal SC81 to the function device 130 through an actual link between the transmission unit 240 and the operation unit 397.
  • the actual link is one of a wired link and a wireless link.
  • control signal SC81 is one of the electrical signal SP81 and the optical signal SQ81.
  • the transmission unit 240 includes a transmission component 450, a transmission component 452 and a transmission component 455.
  • the transmission component 450 is coupled to the processing unit 230, and is used to output the electrical signal SP81 under the condition that the control signal SC81 is the electrical signal SP81.
  • the display unit 460 displays the status indication LA81.
  • the processing unit 230 determines where the variable physical parameter QP1A is currently located by making the logical decision PH81 Under the condition of the physical parameter application range RC1EL, the processing unit 230 causes the display unit 460 to change the status indication LA81 to the status indication LA82 based on the code difference DA81.
  • the transmission component 450, the transmission component 452, and the transmission component 455 are three output components, respectively.
  • the display unit 460 is coupled to the processing unit 230 and is used to display measurement information LY81 related to the measurement value VM81.
  • the processing unit 230 obtains the transmitted measurement value VN82 from the control response signal SE81, and causes the display unit 460 to display the measurement value VN82 related to the obtained measurement value VN82 according to the obtained measurement value VN82.
  • the control signal SC81 is the optical signal SQ81
  • the transmission component 452 is configured to output the optical signal SQ81.
  • the transmission component 455 is coupled to the processing unit 230.
  • the processing unit 230 is configured to cause the transmission component 455 to transmit a physical parameter signal SB81 to the functional device 130.
  • the variable physical parameter QU1A is formed based on the physical parameter signal SB81.
  • the electrical signal SP81 is a radio signal.
  • the optical signal SQ81 is an infrared signal.
  • control device 212 is coupled to the server 280 and further includes a physical parameter forming unit 290 coupled to the sensing unit 260.
  • the physical parameter forming unit 290 generates the variable physical parameter QP1A.
  • the operating unit 297 further includes an input unit 440.
  • the input unit 440 is coupled to the processing unit 230 and is controlled by the processing unit 230.
  • one of the input unit 440 and the display unit 460 includes a user interface area AP11.
  • the receiving unit 270 is coupled to the processing unit 230 for receiving the control response signal SE81, and includes a receiving component 2701 and a receiving component 2702.
  • the receiving component 2701 and the receiving component 2702 are both coupled to the processing unit 230.
  • the control response signal SE81 is one of an electrical signal LP81 and an optical signal LQ81.
  • the receiving component 2701 is configured to receive the electrical signal LP81.
  • the receiving component 2702 is a reader.
  • the receiving component 2702 is configured to receive the optical signal LQ81.
  • one of the electronic tag 350, the storage unit 250, and the server 280 includes the memory unit 25Y1.
  • the electrical signal LP81 is a radio signal.
  • the light signal LQ81 is an infrared signal.
  • the receiving component 2701 and the receiving component 2702 are two input components respectively.
  • the control signal SC81 is the optical signal SQ81.
  • the control response signal SE81 is the optical signal LQ81.
  • the trigger event EQ81 is a user input event in which the sensing unit 260 receives a user input operation BU83.
  • the sensing unit 260 responds to the user input operation BU83 to enable the processing unit 230 to receive the sensing signal SM81.
  • the processing unit 230 obtains the measured value VM81 in response to the sensing signal SM81.
  • One of the application environment EX81, the sensing unit 260, the input unit 440, the display unit 460, and the physical parameter forming unit 290 has the physical parameter forming area AT11.
  • the processing unit 230 causes the physical parameter formation area AT11 to have the variable physical parameter QP1A by executing a specific function operation BH82 for the measurement application function FB81, and thereby causes the sensing unit 260
  • the variable physical parameter QP1A in the restraint condition FP81 is sensed.
  • One of the electronic tag 350, the storage unit 250, and the server 280 includes the memory unit 25Y1.
  • the sensing unit 260, the storage unit 250, the input unit 440, the transmission component 450, the transmission component 455, the display unit 460, the receiving component 2701, the receiving component 2702, and the The physical parameter forming unit 290 is controlled by the processing unit 230.
  • one of the sensing unit 260, the input unit 440, and the display unit 460 includes the physical parameter formation area AT11.
  • the variable physical parameter QP1A is a fourth variable electrical parameter, a fourth variable mechanical parameter, a fourth variable optical parameter, a fourth variable temperature, a fourth variable voltage, and a fourth variable electrical parameter.
  • the physical parameter application range RC1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RC1E4 is the relatively high physical parameter range and the physical parameter range. The other one of the relatively low physical parameter ranges.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high voltage range and a relatively low voltage range, respectively.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high current range and a relatively low current range, respectively.
  • the variable physical parameter QP1A is the fourth variable resistor
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high resistance range and a relatively low resistance range, respectively.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high position range and a relatively low position range, respectively.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high pressure range and a relatively low pressure range, respectively.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high length range and a relatively low length range, respectively.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high angular velocity range and a relatively low angular velocity range, respectively.
  • the physical parameter application range RC1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RC1E2 is the relatively high physical parameter range and the relatively low physical parameter range.
  • the other of the parameter range For example, the physical parameter application range RC1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RC1E7 is the relatively high physical parameter range and the relatively low physical parameter range.
  • the physical parameter candidate range RC1E2 is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RC1E3 is the relatively high physical parameter range and the relatively low physical parameter range.
  • the other of the parameter range For example, the physical parameter application range RC1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RC1E3 is the relatively high physical parameter range and the relatively low physical parameter range.
  • variable physical parameter QP1A under the condition that the variable physical parameter QP1A is within the physical parameter application range RC1EL, the variable physical parameter QP1A is in a first reference state. Under the condition that the variable physical parameter QP1A is within the specific physical parameter range RC1E4, the variable physical parameter QP1A is in a second reference state. Under the condition that the variable physical parameter QP1A is within the physical parameter candidate range RC1E2, the variable physical parameter QP1A is in a third reference state. Under the condition that the variable physical parameter QP1A is within the specific physical parameter range RC1E7, the variable physical parameter QP1A is in a fourth reference state. The first reference state is the same or different from the second reference state. The second reference state is different from the third reference state. The first reference state is different from the fourth reference state.
  • the measurement value application range code EH1L is a measurement value reference range number.
  • the measurement value application range RM1L is arranged in the rated measurement value range RC1N based on the measurement value application range code EH1L.
  • the measurement value candidate range code EH12 is a measurement value reference range number.
  • the measurement value candidate range RM12 is arranged in the rated measurement value range RC1N based on the measurement value candidate range code EH12.
  • the measurement value designation range code EL1T is a measurement value reference range number.
  • the measurement value designation range RQ1T is arranged in the rated measurement value range HR1N based on the measurement value designation range code EL1T.
  • the measurement value target range code EM1T is a measurement value reference range number.
  • the measurement value target range RN1T is arranged in the rated measurement value range RD1N based on the measurement value target range code EM1T.
  • variable physical parameter QP1A is the second variable voltage.
  • the physical parameter application range RC1EL, the specific physical parameter range RC1E4, and the physical parameter candidate range RD1E2 are a first voltage reference range, a second voltage reference range, and a third voltage reference range, respectively.
  • the physical parameter application range RC1EL, the specific physical parameter range RC1E4, and the physical parameter candidate range RD1E2 are respectively a first The displacement reference range, a second displacement reference range and a third displacement reference range.
  • the physical parameter application range RC1EL, the specific physical parameter range RC1E4, and the physical parameter candidate range RD1E2 are respectively a first clock The time reference range, a second clock time reference range, and a third clock time reference range.
  • the operating unit 297 includes a communication interface unit 246 coupled to the processing unit 230.
  • the processing unit 230 is coupled to the network 410 through the communication interface unit 246.
  • the communication interface unit 246 is controlled by the processing unit 230 and includes the transmission component 450 coupled to the processing unit 230 and the receiving component 2701 coupled to the processing unit 230.
  • the processing unit 230 is coupled to the server 280 through the communication interface unit 246 and the network 410, and enables the communication interface unit 246 to communicate to the communication interface unit 386 via the network 410 wired or wirelessly.
  • the communication interface unit 246 is linked to the communication interface unit 386 through the actual link.
  • control signal SC81 and the control response signal SE81 are two radio signals respectively. Under the condition that the control device 212 is the remote controller, the control signal SC81 and the control response signal SE81 are two optical signals respectively.
  • the communication interface unit 246 is configured to communicate with the communication interface unit 386 wiredly or wirelessly.
  • the processing unit 331 is coupled to the server 280 through the communication interface unit 386 and the network 410, and enables the communication interface unit 386 to communicate to the communication interface unit 246 via the network 410 wired or wirelessly.
  • the control response signal SE81 is transmitted ground.
  • the actual link is one of a wired link and a wireless link.
  • the communication interface unit 246 is one of a wired communication interface unit and a wireless communication interface unit.
  • the communication interface unit 386 receives the control signal SC81, the control signal SC82, the control signal SC83, the control signal SC88, and the control signal SC81, the control signal SC82, the control signal SC83, the control signal SC88, and the control signal SC81, the control signal SC82, the control signal SC83, the control signal SC88, and the control signal SC81, the control signal SC82, the control signal SC83, the control signal SC88, and the control signal SC81, the control signal SC82, the control signal SC83, the control signal SC88, and the control signal SC81, the control signal SC82, the control signal SC83, the control signal SC88, and the communication interface unit 246 via the actual link. Any signal of the control signal SC97.
  • the communication interface unit 246 receives the control response signal SE81 from the communication interface unit 386 through the actual link wired or wireless
  • the communication interface unit 246 is configured to communicate with the communication interface unit 386 wirelessly.
  • the network 410 is a wireless network.
  • the processing unit 230 causes the communication interface unit 246 to transmit the control signal SC81, the control signal SC82, the control signal SC83, the control signal SC88, and the communication interface unit 386 to the communication interface unit 386 through the wireless network. Any signal of the control signal SC97.
  • the processing unit 331 causes the communication interface unit 386 to transmit the control response signal SE81 to the communication interface unit 246 via the wireless network.
  • FIG. 53 is a schematic diagram of an implementation structure 9062 of the control system 901 shown in FIG. 1.
  • FIG. 54 is a schematic diagram of an implementation structure 9063 of the control system 901 shown in FIG. 1.
  • FIG. 55 is a schematic diagram of an implementation structure 9064 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9062, the implementation structure 9063, and the implementation structure 9064 includes the control device 212, the function device 130, and the server 280 .
  • the control device 212 is linked to the server 280.
  • the control device 212 is used to control the variable physical parameter QU1A existing in the function device 130, and includes the operating unit 297 and the sensing unit 260.
  • the operating unit 297 includes the processing unit 230, the receiving unit 270 coupled to the processing unit 230, the input unit 440 and the transmission unit 240 coupled to the processing unit 230, and is coupled to the processing unit 230.
  • the server 280 includes the processing unit 230, the receiving unit 270 coupled to the processing
  • the measurement application function FB81 is related to the memory unit 25Y1.
  • the memory unit 25Y1 stores the control data code CK8T.
  • the control data code CK8T is one of a control information code CM82, a control information code CM83, a control information code CM84, and a control information code CM85.
  • the control information CG81 is one of a control data information CN82, a control data information CN83, a control data information CN84, and a control data information CN85.
  • the control signal SC81 is a command signal SW82 for transmitting the control data information CN82.
  • the control information code CM82 and the control data information CN82 both include the measured value target range code EM1T.
  • the control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the measurement value target range code EM1T, and is used to cause the variable physical parameter QU1A to enter the measurement value target range RN1T. Represents the physical parameter target range RD1ET.
  • the control signal SC81 is a command signal SW83 for transmitting the control data information CN83.
  • the control information code CM83 and the control data information CN83 both include the target range limit value pair DN1T, the rated range limit value pair DD1A, and the handle CC1T.
  • the control information code CM83 and the control data information CN83 both further include the measurement value target range code EM1T.
  • the control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the target range limit value pair DN1T, and is used to cause the variable physical parameter QU1A to enter the measurement value target range RN1T. Represents the physical parameter target range RD1ET.
  • the control signal SC81 is a command signal SW84 for transmitting the control data information CN84.
  • the control information code CM84 and the control data information CN84 both include the specified range limit value pair DQ1T.
  • the control signal SC81 transmits the specified range limit value pair DQ1T to indicate at least one of the measurement value specified range RQ1T and the clock time specified interval HR1ET.
  • the function device 130 stores the physical parameter target range code UQ1T.
  • the control signal SC81 is a command signal SW85 for transmitting the control data information CN85.
  • the control information code CM85 and the control data information CN85 both include the measurement value designated range code EL1T, the clock reference time value NR81, and the measurement time length value VH8T.
  • the specified range limit value pair DQ1T includes the clock reference time value NR81.
  • the measurement value designation range code EL1T is preset.
  • the control signal SC81 enables the calculation of the specified range limit value pair DQ1T by transmitting the measurement time length value VH8T, and is used to cause the variable physical parameter QP1A to be in the same position within the clock time application interval HR1EU.
  • the control signal SC81 transmits the preset measurement value designation range code EL1T to indicate
  • the measurement value target range RN1T is used to cause the variable physical parameter QU1A to be in the physical parameter target range RD1ET represented by the measurement value target range RN1T within the clock time designated interval HR1ET.
  • the operation unit 397 includes the timer 342.
  • the timer 342 is used to measure the clock time TH1A, and is configured to comply with the timer specification FT21.
  • the variable physical parameter QU1A is related to the clock time TH1A.
  • the clock time TH1A is characterized based on a clock reference time TR81.
  • the clock reference time TR81 is equal to the start limit time HR1ET1.
  • the trigger event EQ81 occurs at a trigger time TT81.
  • the trigger time TT81 is a current time.
  • the clock reference time value NR81 is preset in the designated measurement value format HH95 based on the clock reference time TR81 and the timer specification FT21.
  • a time difference between the clock reference time TR81 and the trigger time TT81 is within a preset time length.
  • Both the timer specification FT81 and the timer specification FT21 are defaulted.
  • the designated measurement value format HH95 is characterized based on the designated number of bits UY95.
  • the clock time TH1A is characterized based on the clock time designation interval HR1ET.
  • the clock time designation interval HR1ET includes the clock reference time TR81 and is represented by the measurement value designation range RQ1T.
  • the measurement value specified range RQ1T is preset based on the timer specification FT21 in the specified measurement value format HH95.
  • the measurement value designation range code EL1T is configured to indicate the clock time designation interval HR1ET, and is defaulted based on the measurement application function specification GBL8.
  • the physical parameter target range code UQ1T represents the physical parameter target range RD1ET that the variable physical parameter QU1A is expected to be in within the clock time designated interval HR1ET.
  • the physical parameter target range RD1ET is selected from the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the sensing unit 260 senses the clock time TH1A to generate the sensing signal SM81, and serves as a Timer.
  • the measurement value application range code EH1L is the same as the measurement value designation range code EL1T.
  • the processing unit 230 executes the data determination AE8A in response to the trigger event EQ81 to determine the measurement value application range code EH1L that is the same as the measurement value designation range code EL1T.
  • the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter application range RC1EL, the processing unit 230 executes all operations using the determined measurement value application range code EH1L.
  • the data acquisition AG8A obtains the control application code UA8T which is the same as the control data code CK8T.
  • the processing unit 230 causes the transmission unit 240 to perform the signal generation operation BS81 based on the obtained control data code CK8T to generate the clock reference time value NR81 obtained and the obtained measurement
  • the time length value VH8T and the obtained measurement value specify the control signal SC81 of the range code EL1T.
  • the physical parameter control function specification GBL8 includes a clock time representing GB8TR.
  • the clock time representation GB8TR is used to represent the clock reference time TR81.
  • the clock reference time value NR81 is preset based on the clock time representation GB8TR, the timer specification FT21, and a data encoding operation ZR8TR for converting the clock time representation GB8TR to the designated measurement value format HH95.
  • the clock time representation GB8TR is the same as the clock time representation GA8TR.
  • the memory unit 25Y1 stores a control data code CK8V.
  • the control data code CK8V includes the timing operation mode code CP11, the physical parameter target range code UN1V, the measurement time length value CL8V, and the handle CC1V.
  • the processing unit 230 responds to a trigger event EQ88 to access
  • the control data code CK8V obtains the control data code CK8V, and the transmission unit 240 transmits the control signal SC88 to the receiving unit 337 based on the accessed control data code CK8V.
  • the control signal SC88 conveys the control information CG88.
  • the operating unit 297 includes a trigger application unit 288 coupled to the processing unit 230.
  • the trigger event EQ88 is related to the trigger application unit 288, and is one of a trigger action event, a user input event, a signal input event, a state change event, and an occurrence event of the identification medium.
  • the trigger application unit 288 responds to the trigger event EQ88 to provide an operation request signal SX88 to the processing unit 230, thereby enabling the processing unit 230 to receive the operation request signal SX88.
  • the processing unit 230 responds to the operation request signal SX88 to access the control data code CK8V to obtain the control data code CK8V.
  • the trigger application unit 288 is one of the reader 220, the receiving unit 270, the input unit 440, the display unit 460, and the sensing unit 260.
  • the trigger application unit 28H related to the trigger event EQ8H is one of the reader 220, the receiving unit 270, the input unit 440, the display unit 460, and the sensing unit 260. one.
  • the trigger application unit 288 includes the user interface area AP11 having the electrical application target WJ11, and receives a first user input operation using the electrical application target WJ11 to cause the trigger event EQ88 to occur, And in response to the first user input operation (or the trigger event EQ88), the operation request signal SX88 is provided to the processing unit 230.
  • the trigger application unit 28H includes the user interface area AP11 with the electrical application target WJ11, and receives a second user input operation using the electrical application target WJ11 to cause the trigger event EQ8H to occur, And in response to the second user input operation (or the trigger event EQ8H), the operation request signal SX8H is provided to the processing unit 230.
  • the operation unit 397 includes the timer 342.
  • the timer 342 is used to measure the variable time length LF8A, and is configured to comply with the timer specification FT21.
  • the control data code CK8V and the control information CG88 both include the measurement time length value CL8V.
  • the processing unit 230 sets the time length value CL8V in a designated measurement value format HH91 based on the reference time length LJ8V and the timer specification FT21, and causes the control data code CK8V to be obtained based on the obtained control data code CK8V.
  • the transmission unit 240 performs a signal generation operation BS88 to generate the control signal SC88 that transmits the measurement time length value CL8V.
  • the specified measurement value format HH91 is characterized based on a specified number of bits UY91.
  • the measurement application function specification GBL8 includes a time length representation GB8KV.
  • the time length representation GB8KV is used to represent the reference time length LJ8V.
  • the measurement time length value CL8V is based on the time length representation GB8KV, the timer specification FT21, and a data encoding operation ZR8KV for converting the time length representation GB8KV to use the specified measurement value format HH91.
  • the storage unit 250 stores the control data code CK8V including the time length value CL8V.
  • the processing unit 230 is configured to obtain the control data code CK8V from the storage unit 250.
  • the time length indicates that GB8KV is the same as the time length indicates GA8KV.
  • the function device 130 includes the storage unit 332 coupled to the operation unit 397.
  • the storage unit 332 has a memory location YM8T and a memory location YX8T different from the memory location YM8T.
  • the memory location YM8T is identified based on a memory address AM8T.
  • the memory location YX8T is identified based on a memory address AX8T.
  • the memory address AM8T and the memory address AX8T are preset based on the preset measurement value target range code EM1T.
  • the processing unit 230 relies on the user interface area AP11 to obtain an input data DJ81 from the input unit 440, and performs a data encoding operation EJ81 on the input data DJ81 to determine the default
  • the target range limit value pair DN1T is configured to obtain the default measurement value target range code EM1T, and the memory address AM8T is obtained based on the obtained measurement value target range code EM1T.
  • the input unit 440 receives a user input operation JV81 for operating the user interface area AP11, and responds to the user input operation JV81 to provide the input data DJ81 to the processing unit 230.
  • the processing unit 230 causes the transmission unit 240 to provide a write request message WN8T to WN8T based on the determined target range limit value pair DN1T and the acquired memory address AM8T.
  • the operating unit 397 The write request information WN8T includes the determined target range limit value pair DN1T and the acquired memory address AM8T.
  • the operation unit 397 responds to the write request information WN8T to cause the storage unit 332 to store the target range limit value pair DN1T in the memory location YM8T.
  • the processing unit 230 before the trigger event EQ81 occurs, relies on the user interface area AP11 to obtain an input data DJ82 from the input unit 440, and performs a data encoding on the input data DJ82 Operate EJ82 to determine the preset handle CC1T, and obtain the memory address AX8T based on the obtained measured value target range code EM1T.
  • the input unit 440 receives a user input operation JV82 for operating the user interface area AP11, and responds to the user input operation JV82 to provide the input data DJ82 to the processing unit 230.
  • the processing unit 230 causes the transmission unit 240 to provide the write request information WC8T to the operation based on the determined handle CC1T and the acquired memory address AX8T Unit 397.
  • the write request information WC8T includes the determined handle CC1T and the acquired memory address AX8T.
  • the operating unit 397 responds to the write request information WC8T to cause the storage unit 332 to store the handle CC1T in the memory location YX8T.
  • the storage unit 332 further has a memory location YN81.
  • the memory location YN81 is identified based on a memory address AN81.
  • the memory address AN81 is defaulted.
  • the processing unit 230 relies on the user interface area AP11 to obtain an input data DJ83 from the input unit 440, and performs a data encoding operation EJ83 on the input data DJ83 to determine the preset
  • the set of the rated range limit value pair DD1A is configured to obtain the default memory address AN81.
  • the input unit 440 receives a user input operation JV83 for operating the user interface area AP11, and responds to the user input operation JV83 to provide the input data DJ83 to the processing unit 230.
  • the processing unit 230 causes the transmission unit 240 to provide the write request information WD81 based on the determined rated range limit value pair DD1A and the acquired memory address AN81.
  • the write request information WD81 includes the determined rating range limit value pair DD1A and the acquired memory address AN81.
  • the operation unit 397 responds to the write request information WD81 to cause the storage unit 332 to store the rated range limit value pair DD1A in the memory location YN81.
  • FIG. 56 is a schematic diagram of an implementation structure 9065 of the control system 901 shown in FIG. 1.
  • FIG. 57 is a schematic diagram of an implementation structure 9066 of the control system 901 shown in FIG. 1.
  • FIG. 58 is a schematic diagram of an implementation structure 9067 of the control system 901 shown in FIG. 1.
  • FIG. 59 is a schematic diagram of an implementation structure 9068 of the control system 901 shown in FIG. 1.
  • each of the implementation structure 9065, the implementation structure 9066, the implementation structure 9067, and the implementation structure 9068 includes the control device 212, The functional device 130 and the server 280 are described.
  • the control device 212 is linked to the server 280.
  • the control device 212 is configured to control the variable physical parameter QU1A existing in the functional device 130 by relying on the trigger event EQ81, and includes the operating unit 297 and the sensing unit 260.
  • the operation unit 297 includes the processing unit 230, the receiving unit 270, the input unit 440, and the transmission unit 240.
  • the processing unit 230 is coupled to the server 280.
  • the functional device 130 includes the operation unit 397, the physical parameter application unit 335, the sensing unit 334, a physical parameter application unit 735, and a multiplexer 363.
  • the operating unit 397 has an output terminal 338P and an output terminal 338Q.
  • the output terminal 338P and the output terminal 338Q are respectively located at different spatial positions.
  • the physical parameter application unit 335, the sensing unit 334, the physical parameter application unit 735, and the multiplexer 363 are all coupled to the operation unit 397.
  • the output terminal 338P is coupled to the physical parameter application unit 335.
  • the physical parameter application unit 735 includes a physical parameter formation area AU21 and is coupled to the output terminal 338Q.
  • the physical parameter formation area AU21 has a variable physical parameter QU2A.
  • the physical parameter application unit 735 is a physically implementable functional unit and has a functional structure similar to the physical parameter application unit 335.
  • the sensing unit 334 is used for sensing one of a plurality of actual physical parameters through the multiplexer 363.
  • the multiple actual physical parameters include the variable physical parameter QU1A and the variable physical parameter QU2A.
  • the control device 212 is used to control the variable physical parameter QU2A.
  • the multiplexer 363 has an input terminal 3631, an input terminal 3632, a control terminal 363C, and an output terminal 363P.
  • the control terminal 363C is coupled to the operating unit 397.
  • the input terminal 3631 is coupled to the physical parameter formation area AU11.
  • the input terminal 3632 is coupled to the physical parameter formation area AU21.
  • the output terminal 363P is coupled to the sensing unit 334.
  • the variable physical parameter QU1A and the variable physical parameter QU2A are a fifth variable electrical parameter and a sixth variable electrical parameter, respectively.
  • the fifth variable electrical parameter and the sixth variable electrical parameter are a fifth variable voltage and a sixth variable voltage, respectively.
  • the first functional relationship is equal to one of a first on relationship and a first off relationship.
  • the second functional relationship is equal to one of a second on-state relationship and a second off-state relationship.
  • the sensing unit 334 is configured to sense the variable physical parameter QU1A through the output terminal 363P and the input terminal 3631, It is coupled to the physical parameter formation area AU11 through the output terminal 363P and the input terminal 3631.
  • the sensing unit 334 is configured to sense the variable physical parameter QU2A through the output terminal 363P and the input terminal 3632, It is coupled to the physical parameter formation area AU21 through the output terminal 363P and the input terminal 3632.
  • the multiplexer 363 is controlled by the operating unit 397 and is an analog multiplexer.
  • one of the control device 212 and the application environment EX81 has a physical parameter formation area AT21.
  • the physical parameter formation area AT21 has a variable physical parameter QP2A.
  • the control device 212 further includes a multiplexer 263 coupled to the processing unit 230.
  • the multiplexer 263 has an input terminal 2631, an input terminal 2632, a control terminal 263C, and an output terminal 263P.
  • the control terminal 263C is coupled to the processing unit 230.
  • the input terminal 2631 is coupled to the physical parameter formation area AT11.
  • the input terminal 2632 is coupled to the physical parameter formation area AT21.
  • the output terminal 263P is coupled to the sensing unit 260.
  • the variable physical parameter QP1A and the variable physical parameter QP2A are a seventh variable electrical parameter and an eighth variable electrical parameter, respectively.
  • the seventh variable electrical parameter and the eighth variable electrical parameter are a seventh variable voltage and an eighth variable voltage, respectively.
  • the third functional relationship is equal to one of a third on relationship and a third off relationship.
  • the fourth functional relationship is equal to one of a fourth on relationship and a fourth off relationship.
  • the sensing unit 260 is configured to sense the variable physical parameter QP1A through the output terminal 263P and the input terminal 2631, It is coupled to the physical parameter formation area AT11 through the output terminal 263P and the input terminal 2631.
  • the sensing unit 260 is configured to sense the variable physical parameter QP2A through the output terminal 263P and the input terminal 2632, It is coupled to the physical parameter formation area AT21 through the output terminal 263P and the input terminal 2632.
  • the multiplexer 263 is controlled by the processing unit 230 and is an analog multiplexer.
  • the sensing unit 260 senses the variable physical parameter QP1A through the multiplexer 263 at an operating time TB81, and passes the multiplexer at an operating time TB82 that is different from the operating time TB81.
  • the device 263 senses the variable physical parameter QP2A.
  • the physical parameter application unit 335 is identified by an application unit identifier HA2T.
  • the physical parameter application unit 735 is identified by an application unit identifier HA22.
  • the physical parameter application unit 335 and the physical parameter application unit 735 are located at different spatial positions, and are coupled to the operating unit 397.
  • the application unit identifier HA2T and the application unit identifier HA22 are both defaulted based on the measurement application function specification GBL8.
  • the control signal SC81 further transmits the application unit identifier HA2T.
  • the operation unit 397 receives the control signal SC81 from the control device 212.
  • the operating unit 397 selects the physical parameter application unit 335 for control in response to the control signal SC81.
  • the application unit identifier HA2T is configured to indicate the output terminal 338P, and is a first functional unit number.
  • the application unit identifier HA22 is configured to indicate the output terminal 338Q, and is a second functional unit number.
  • the control device 212 further includes an electricity usage target 285 coupled to the processing unit 230 and an electricity usage target 286 coupled to the processing unit 230.
  • the electricity usage target 285 is identified by an electricity usage target identifier HZ2T, and is an electricity usage unit.
  • the electricity usage target 286 is identified by an electricity usage target identifier HZ22 and is an electricity usage unit.
  • the electricity use target identifier HZ2T and the electricity use target identifier HZ22 are both defaulted based on the measurement application function specification GBL8.
  • the processing unit 230 Under the condition that the trigger event EQ81 relies on the power usage target 285 to occur, the processing unit 230 responds to the trigger event EQ81 to select the physical parameter application unit 335 for control. Under the condition that the trigger event EQ81 relies on the power usage target 286 to occur, the processing unit 230 responds to the trigger event EQ81 to select the physical parameter application unit 735 for control.
  • the storage unit 250 has a memory location XC9T and a memory location XC92
  • the application unit identifier HA2T is stored in the memory location XC9T
  • the application unit identifier is stored in the memory location XC92 ⁇ HA22.
  • the memory location XC9T is identified by a memory address EC9T, or is identified based on the memory address EC9T.
  • the memory address EC9T is preset based on the power usage target identifier HZ2T; thereby, the power usage target 285 is related to the application unit identifier HA2T.
  • the memory location XC92 is identified by a memory address EC92, or is identified based on the memory address EC92.
  • the memory address EC92 is preset based on the power usage target identifier HZ22; thereby, the power usage target 286 is related to the application unit identifier HA22.
  • the trigger event EQ81 occurs depending on the power usage target 285 and causes the processing unit 230 to receive an operation request signal SZ91. Under the condition that the trigger event EQ81 relies on the power usage target 285 to occur, the processing unit 230 responds to the operation request signal SZ91 to obtain the measured value VM81 and the power usage target identifier HZ2T, and based on The obtained electric use target identifier HZ2T is used to obtain the application unit identifier HA2T.
  • the processing unit 230 causes the transmission unit 240 to transmit at least one of the control signal SC81, the control signal SC82, and the control signal SC83 to the operation unit 397 based on the obtained application unit identifier HA2T. one.
  • the trigger event EQ81 is a user input event in which the input unit 440 receives a user input operation JU91.
  • the input unit 440 provides the operation request signal SZ91 to the processing unit 230 in response to the trigger event EQ81 which is the user input event, and thereby causes the processing unit 230 to receive the operation request signal SZ91 .
  • the input unit 440 relies on the power usage target 285 to provide the operation request signal SZ91 to the processing unit 230.
  • the processing unit 230 responds to the operation request signal SZ91 to provide a control signal SV81 to the control terminal 263C.
  • control signal SV81 is a selection control signal and functions as an instruction to the input terminal 2631.
  • the multiplexer 263 responds to the control signal SV81 to cause the third functional relationship between the input terminal 2631 and the output terminal 263P to be equal to the third conduction relationship.
  • the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81.
  • the processing unit 230 receives the sensing signal SM81 from the sensing unit 260, and obtains the measurement value VM81 in the designated measurement value format HQ81 based on the received sensing signal SM81.
  • the electricity usage target 285 and the electricity usage target 286 are configured to correspond to the physical parameter application unit 335 and the physical parameter application unit 735, respectively, are coupled to the processing unit 230, and are located in different locations. Spatial location.
  • the input unit 440 receives the user input operation JU91 for selecting the power usage target 285 to cause the trigger event EQ81 to occur.
  • the input unit 440 generates the operation request signal SZ91 in response to the user input operation JU91.
  • the processing unit 230 receives the operation request signal SZ91, uses the sensing signal SM81 to obtain the measurement value VM81 in response to the operation request signal SZ91, and executes a data acquisition AF9C in response to the operation request signal SZ91 To obtain the power usage target identifier HZ2T.
  • the storage unit 250 includes the storage space SS11.
  • the storage space SS11 has the preset rated range limit value pair DC1A, the variable physical parameter range code UM8A, the electricity use target identifier HZ2T, the electricity use target identifier HZ22, and the application Unit identifier HA2T.
  • the processing unit 230 is configured to obtain the memory address EC9T based on the obtained power usage target identifier HZ2T, and to access the memory address EC9T based on the obtained memory address EC9T.
  • the application unit identifier HA2T of the memory location XC9T is used to obtain the application unit identifier HA2T.
  • the processing unit 230 determines the value of the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located by checking the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L.
  • the processing unit 230 executes the signal generation control GS81 based on the obtained application unit identifier HA2T and the accessed control data code CK8T to cause the transmission unit 240 to generate the control signal SC81, and cause the transmission unit 240 to transmit the control signal SC81 to the operation unit 397.
  • control signal SC81 conveys the application unit identifier HA2T.
  • control signal SC81 conveys the application unit identifier HA2T and the measurement value target range code EM1T.
  • the operation unit 397 obtains the measurement value target range code EM1T and the application unit identifier HA2T from the control signal SC81 in response to the control signal SC81.
  • the operation unit 397 performs the signal generation operation using the output terminal 338P based on the obtained measurement value target range code EM1T and the obtained application unit identifier HA2T
  • BY81 transmits an operation signal SG81 to the physical parameter application unit 335.
  • the physical parameter application unit 335 responds to the operation signal SG81 to cause the variable physical parameter QU1A to be in the physical parameter target range RD1ET.
  • the operation unit 397 responds to the control signal SC81 to receive the control signal
  • the SC81 obtains the application unit identifier HA2T and the measured value target range code EM1T, and provides a control signal SD81 to the control terminal 363C based on the obtained application unit identifier HA2T.
  • the control signal SD81 is a selection control signal and functions as an instruction to the input terminal 3631.
  • the multiplexer 363 responds to the control signal SD81 to cause the first functional relationship between the input terminal 3631 and the output terminal 363P to be equal to the first conduction relationship.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN81.
  • the operating unit 397 receives the sensing signal SN81 from the sensing unit 334, and obtains a measurement value VN81 based on the received sensing signal SN81. In the third specific case, the operation unit 397 executes the usage based on the obtained measurement value VN81, the obtained measurement value target range code EM1T, and the obtained application unit identifier HA2T.
  • the signal at the output terminal 338P generates operation BY81 to transmit the operation signal SG81 to the physical parameter application unit 335.
  • the storage space SS11 further has a memory location PF9T.
  • the storage unit 250 stores the preset power usage target identifier HZ2T in the memory location PF9T.
  • the memory location PF9T is identified by a memory address FF9T, or is identified based on the memory address FF9T.
  • the memory address FF9T is defaulted.
  • the power usage target 285 is coupled to the memory location PF9T through the processing unit 230.
  • the operation request signal SZ91 transmits an input data DJ91.
  • the data acquisition AF9C is one of a data acquisition operation AF95 and a data acquisition operation AF96.
  • the data acquisition operation AF95 accesses the power use target identifier HZ2T stored in the memory location PF9T by using the default memory address PF2T to obtain the preset power use target identifier HZ2T.
  • the data acquisition operation AF96 processes the input data DJ91 based on a default data derivation rule YU91 to obtain the preset power usage target identifier HZ2T.
  • the input unit 440 causes the processing unit 230 to receive a trigger event that occurs when the input unit 440 receives a user input operation JU92 for selecting the power usage target 286. Operation request signal SZ92.
  • the processing unit 230 obtains a measurement value VM91 and the power usage target identifier HZ22 in response to the operation request signal SZ92, and obtains the application unit identifier HA22 based on the obtained power usage target identifier HZ22 .
  • the processing unit 230 causes the transmission unit 240 to transmit a control signal SC97 to the operation unit 397 based on the obtained measurement value VM91 and the obtained application unit identifier HA22.
  • the control signal SC97 is used to control the variable physical parameter QU2A and convey the application unit identifier HA22.
  • the input unit 440 responds to the user input operation JU92 for selecting the power usage target 286 to provide the operation request signal SZ92 to the processing unit 230, thereby causing the processing unit 230 to receive the The operation request signal SZ92.
  • the processing unit 230 responds to the operation request signal SZ92 to provide a control signal SV82 to the control terminal 263C.
  • the control signal SV82 is a selection control signal, which functions as an instruction to the input terminal 2632, and is different from the control signal SV81.
  • the multiplexer 263 responds to the control signal SV82 to cause the fourth functional relationship between the input terminal 2632 and the output terminal 263P to be equal to the fourth conduction relationship.
  • the sensing unit 260 senses the variable physical parameter QP2A to generate a sensing signal SM91.
  • the processing unit 230 receives the sensing signal SM91 from the sensing unit 260, and obtains the measurement value VM91 based on the received sensing signal SM91.
  • the operating unit 397 obtains the application unit identifier HA22 from the control signal SC97 in response to the control signal SC97, and provides a control signal based on the obtained application unit identifier HA22 SD82 to the control terminal 363C.
  • the control signal SD82 is a selection control signal and functions as an instruction to the input terminal 3632.
  • the multiplexer 363 responds to the control signal SD82 to cause the second functional relationship between the input terminal 3632 and the output terminal 363P to be equal to the second conduction relationship.
  • the sensing unit 334 senses the variable physical parameter QU2A to generate a sensing signal SN91.
  • the operating unit 397 receives the sensing signal SN91 from the sensing unit 334, and obtains a measurement value VN91 based on the received sensing signal SN91.
  • the operation unit 397 performs a signal generation operation BY97 using the output terminal 338Q based on the obtained measurement value VN91 and the obtained application unit identifier HA22 to transmit a signal to the physical parameter application unit 735 Operation signal SG97.
  • the operation signal SG97 is used to control the variable physical parameter QU2A.
  • the user input operation JU81 is one of the user input operation JU91 and the user input operation JU92.
  • the trigger event EQ81 is a user input event for the input unit 440 to receive the user input operation JU92 for selecting the power usage target 286.
  • the processing unit 230 responds to the user input operation JU91 to cause the transmission unit 240 to send the operation unit 397 to the operation unit 397.
  • the control signal SC81 is transmitted.
  • the processing unit 230 responds to the user input operation JU92 to cause the transmission unit 240 to send the operation unit 397 to the operation unit 397.
  • the control signal SC97 is transmitted.
  • the user interface area AP11 has the power usage target 285 and the power usage target 286.
  • the user input operation JU91 is performed by the user 295.
  • the power usage target 285 is one of a third sensing target and a third display target.
  • the input unit 440 includes the electricity usage target 285.
  • the display unit 460 includes the power usage target 285.
  • the third sensing target is a third button target.
  • the third display target is a third icon target.
  • the power usage target 286 is one of a fourth sensing target and a fourth display target. Under the condition that the electricity usage target 286 is the fourth sensing target, the input unit 440 includes the electricity usage target 286. Under the condition that the power usage target 286 is the fourth display target, the display unit 460 includes the power usage target 286. For example, the fourth sensing target is a fourth button target. The third display target is a fourth icon target.
  • the operating unit 297 further includes a pointing device 441.
  • the input unit 440 includes the pointing device 441.
  • the input unit 440 is the pointing device 441.
  • the power usage target 285 receives the user input operation JU91 to cause the input unit 440 to provide the operation request signal SZ91 To the processing unit 230.
  • the pointing device 441 receives the user input operation JU91 for selecting the power usage target 285 to cause the pointing device 441
  • the operation request signal SZ91 is provided to the processing unit 230.
  • the user input operation JU91 is configured to rely on the pointing device 441 and the selection tool YJ81 to select the power usage target 285.
  • the selection tool YJ81 is a cursor.
  • the preset rated range limit value pair DC1A and the variable physical parameter range code UM8A are further stored in the storage space SS11 based on the default application unit identifier HA2T in.
  • the processing unit 230 further uses the storage unit 250 based on the application unit identifier HA2T to access any one of the preset rated range limit value pair DC1A and the variable physical parameter range code UM8A .
  • the preset application range limit value pair DM1L, the default control data code CK8T, and the preset candidate range limit value pair DM1B are all further based on the default application unit identifier HA2T.
  • the processing unit 230 further uses the memory unit 25Y1 based on the application unit identifier HA2T to access the preset application range limit value pair DM1L, the default control data code CK8T and the preset Any of the candidate range thresholds of DM1B.
  • Both the preset application range limit value pair DM1L and the preset candidate range limit value pair DM1B are configured to belong to a measurement range limit data code type TM81.
  • the measurement range limit data code type TM81 is identified by a measurement range limit data code type identifier HM81.
  • the measurement range limit data code type identifier HM81 is preset.
  • the default control data code CK8T is configured to belong to a control data code type TK81.
  • the control data code type TK81 is identified by a control data code type identifier HK81.
  • the control data code type identifier HK81 is preset.
  • the memory address FM8L is preset based on the default application unit identifier HA2T, the preset measurement value application range code EH1L, and the preset measurement range limit data code type identifier HM81. Assume.
  • the processing unit 230 obtains the application unit identifier HA2T in response to the trigger event EQ81.
  • the data acquisition operation AF81 obtains the memory address based on the obtained application unit identifier HA2T, the determined measurement value application range code EH1L, and the obtained measurement range limit data code type identifier HM81.
  • FM8L and use the memory unit 25Y1 to access the preset application range limit value pair DM1L stored in the memory location PM8L based on the obtained memory address FM8L.
  • the memory address FV8L is preset based on the default application unit identifier HA2T, the preset measurement value application range code EH1L, and the default control data code type identifier HK81.
  • the processing unit 230 determines the physical parameter application range RC1EL that the variable physical parameter QP1A is currently in, the processing unit 230 is based on the obtained application unit identifier HA2T and the determined
  • the measurement value application range code EH1L and the obtained control data code type identifier HK81 are used to obtain the memory address FV8L, and based on the obtained memory address FV8L, the memory unit 25Y1 is used to access the memory unit 25Y1 that is stored in The control data code CK8T of the memory location PV8L.
  • FIG. 60 is a schematic diagram of an implementation structure 9069 of the control system 901 shown in FIG. 1.
  • the implementation structure 9069 includes the control device 212, the function device 130, and the server 280.
  • the control device 212 is linked to the server 280.
  • the control device 212 is configured to control the variable physical parameter QU1A existing in the functional device 130 by relying on the trigger event EQ81, and includes the operating unit 297 and the sensing unit 260.
  • the operation unit 297 includes the processing unit 230, the receiving unit 270, the input unit 440, and the transmission unit 240.
  • the processing unit 230 is coupled to the server 280.
  • the operating unit 297 includes a timer 545 coupled to the processing unit 230, an electrical application target WJ11 coupled to the processing unit 230, and a certain time coupled to the processing unit 230 ⁇ 546.
  • the timer 545 is used to measure the clock time TH1A, and is configured to comply with a timer specification FW22.
  • the timer 545 is controlled by the processing unit 230 to sense the clock time TH1A to generate a sensing signal SK91.
  • the sensing signal SK91 is a clock time signal.
  • the user interface area AP11 has the electrical application target WJ11.
  • the electronic application target WJ11 is one of a fifth button target and a fifth icon target.
  • the electrical application target WJ11 is an electrical application unit.
  • the sensing unit 260 Under the condition that the sensing unit 260 is configured to be the same as the timer 545, the sensing signal SM81 is configured to be the same as the sensing signal SK91, and the sensor specification FQ11 is configured to be the same as all.
  • the timer specification FW22, and the variable physical parameter QP1A is configured to be the same as the clock time TH1A.
  • the memory unit 25Y1 stores the control data code CK8T which is the same as the control information code CM85.
  • the measurement value application range code EH1L is the same as the measurement value designation range code EL1T.
  • the timer specification FW22 is defaulted.
  • the trigger event EQ81 is the user input event of the input unit 440 receiving the user input operation JU81.
  • the user input operation JU81 is used to select the electrical application target WJ11.
  • the input unit 440 provides the operation request signal SZ81 to the processing unit 230 in response to the trigger event EQ81, and thereby enables the processing unit 230 to receive the operation request signal SZ81.
  • the processing unit 230 responds to the operation request signal SZ81 to use the sensing signal SK91 to obtain the measurement value VM81.
  • the sensing signal SK91 which is the clock time signal, transmits a measurement value NP91 in a designated measurement value format HQ92.
  • the measured value NP91 is a specific count value.
  • the specified measurement value format HQ92 is characterized based on a specified number of bits UX92, and is a specified count value format.
  • the trigger application unit 281 provides the operation request signal SX81 to the processing unit 230 in response to the trigger event EQ81, and thereby enables the processing unit 230 to receive the operation request signal SX81.
  • the processing unit 230 obtains the control application code UA8T in response to the operation request signal SX81, and causes the transmission unit 240 to transmit the control application code UA8T to the function device 130 based on the obtained control application code UA8T.
  • the control application code UA8T includes or is the control data code CK8T.
  • the trigger application unit 281 is the state change detector 475, the reader 220, the receiving unit 270, the input unit 440, the display unit 460, the sensing unit 260, and the One of the timers 546.
  • the trigger event EQ81 is one of a trigger action event, a user input event, a signal input event, a state change event, an identification medium occurrence event, and an integer overflow event.
  • the timer 546 of the trigger application unit 281 controls GE81 in response to a time related to the processing unit 230 and causes the integer overflow The incident happened.
  • the processing unit 230 is configured to execute the time control GE81 for controlling the timer 546.
  • the timer 546 generates the integer overflow event in response to the time control GE81.
  • the processing unit 230 uses the sensing signal SK91 to obtain the measurement value VM81 equal to the measurement value NP91.
  • the processing unit 230 executes the data determination AE8A in response to the trigger event EQ81 to determine the measurement value application range code EH1L that is the same as the measurement value designation range code EL1T.
  • the processing unit 230 determines the value of the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located by checking the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L. Under conditions, the processing unit 230 obtains the control application code UA8T that is the same as the control information code CM85 from the memory unit 25Y1 based on the determined measurement value application range code EH1L.
  • the specified measurement value format HQ81 is configured to be the same as the specified measurement value format HQ92.
  • the control information code CM85 includes the preset measurement value designation range code EL1T, the preset clock reference time value NR81, and the preset measurement time length value VH8T.
  • the processing unit 230 executes the signal generation control GS81 for the measurement application function FB81 within the operating time TD81 to cause the transmission unit 240 to generate a transport station.
  • the control data information CN85 includes the preset measurement value designation range code EL1T, the preset clock reference time value NR81, and the preset measurement time length value VH8T.
  • the control signal SC81 transmits the preset measurement value designation range code EL1T to indicate The function of at least one of the measurement value designation range RQ1T and the clock time designation interval HR1ET.
  • the input unit 440 includes the user interface area AP11 and the electronic application target WJ11 (or the fifth button target) arranged in the user interface area AP11.
  • the display unit 460 includes the user interface area AP11 and the electronic application target WJ11 (or the fifth icon target) set in the user interface area AP11.
  • the input unit 440 includes a touch screen 4401.
  • the touch screen 4401 includes the user interface area AP11 and the electronic application target WJ11 (or the fifth button target) set in the user interface area AP11, and receives the user input operation JU81.
  • the electrical application target WJ11 of the touch screen 4401 receives the user input operation JU81.
  • the touch screen 4401 is any one of the trigger application unit 281, the trigger application unit 288, and the trigger application unit 28H. Under the condition that the touch screen 4401 is the trigger application unit 281, the touch screen 4401 responds to the user input operation JU81 (or the trigger event EQ81) to provide the operation request signal SX81 to The processing unit 230.
  • the functional device 130 includes the operating unit 397, the functional unit 335, and the storage unit 332.
  • the timer 342 included in the operating unit 397 is used to measure the clock time TH1A, and is configured to comply with the timer specification FT21.
  • the variable physical parameter QU1A is related to the clock time TH1A.
  • the clock time TH1A is characterized based on a clock time designated interval HR1ET.
  • the clock time designation interval HR1ET is represented by a measurement value designation range RQ1T.
  • the measurement value designation range code EL1T is configured to indicate the clock time designation interval HR1ET.
  • the storage unit 332 has a memory location YS8T, and stores the physical parameter target range code UQ1T in the memory location YS8T.
  • the physical parameter target range code UQ1T represents a physical parameter target range RD1ET that the variable physical parameter QU1A is expected to be within the clock time designated interval HR1ET, and is configured to specify the range code EL1T based on the measured value Is stored in the memory location YS8T.
  • the memory location YS8T is identified based on a memory address AS8T.
  • the memory address AS8T is preset based on the measurement value designation range code EL1T.
  • the physical parameter target range RD1ET is selected from the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the operating unit 397 when the operating unit 397 receives the control signal SC81, the physical parameter target range code UQ1T is equal to the preset measurement value target range code EM1T.
  • the control signal SC81 conveys the default measurement value designation range code EL1T.
  • the operating unit 397 obtains the transmitted measurement value specified range code EL1T from the control signal SC81, obtains the memory address AS8T based on the obtained measurement value specified range code EL1T, and obtains the memory address AS8T based on the obtained measured value specified range code EL1T.
  • the memory address AS8T is used to access the physical parameter target range code UQ1T stored in the memory location YS8T to obtain the preset measurement value target range code EM1T.
  • the operation unit 397 executes the signal generation operation BY81 for the measurement application function FA81 based on the obtained measurement value target range code EM1T to transmit the operation signal SG81 to the physical parameter application unit 335.
  • the physical parameter application unit 335 responds to the operation signal SG81 to cause the variable physical parameter QU1A to be in the physical parameter target range RD1ET.
  • the operating unit 397 obtains the delivered clock reference time value NR81 from the control signal SC81, and causes the timer 342 to start within a starting time TT82 based on the obtained clock reference time value NR81, This causes the timer 342 to generate a sensing signal SY80 within the start time TT82.
  • the sensing signal SY80 is an initial time signal, and transmits a measurement value NY80 in the specified measurement value format HH95.
  • the measurement value NY80 is configured to be the same as the clock reference time value NR81.
  • AD8A, AF8A, AF9C, AG8A data acquisition
  • AP11 User interface area
  • AT11, AT21, AU11, AU21 physical parameter formation area
  • CA81, CA91, CD81, CD82, CE81, CE85, CE8T data comparison
  • CC12, CC15, CC1L, CC1T, CC1U, CC1V handle
  • CM82, CM83, CM84, CM85 control information code
  • DC11, DC12, DD11, DD12 rated range limit value
  • DM15, DM16, DN15, DN16 application range limit value
  • DM1L, DN1L, DQ1L pair of application range limit values
  • DN1E A pair of limit values for a specific range
  • EW11, EW12 physical parameter reference status code
  • EW1U, EW1V physical parameter target status code
  • GA812, GA8T1 physical parameter representation
  • GA8L, GB8L physical parameter application range indication
  • GA8KV, GB8KV time length representation
  • GAL8, GBL8 Measurement application function specifications
  • GQ81, GW81 sensor sensitivity display
  • GQ8R, GW8R sensor measurement range indication
  • GX8T, GX8U physical parameter relationship check control
  • HA22, HA2T Application unit identifier
  • HH81, HH91, HH95, HQ81, HQ92 Specify the measurement value format
  • HM81 Measuring range limit data code type identifier
  • HR1E1, HR1E2 Clock time reference interval
  • HZ22, HZ2T Electric use target identifier
  • KD85, KD8L, KD8T, KD8U, KD9T, KD9U physical parameter relationship
  • LA81, LA82 Status indication
  • LD91, LD92 spatial location
  • NA8A, NE8A, NK8A data determination program
  • ND8A, NF8A data acquisition program
  • QD12, QD1L, QD1T, QD5T specify physical parameters
  • RA8E, RB8E sensor measuring range
  • RC1E2 physical parameter reference range, physical parameter candidate range
  • RD1E2 physical parameter reference range, physical parameter candidate range
  • RD1ET, RD1EU, RD1EV, RD1EW target range of physical parameters
  • RM12 Reference range of measured value, candidate range of measured value
  • RM1L, RN1L measurement value application range
  • RN1G, RN1H measurement value indication range
  • RN1T, RN1U target range of measured values
  • RQ11, RQ12 Reference range of measured value
  • RW1EL, RY1ET, RY1EV Corresponding physical parameter range
  • RX1T Corresponding measurement value range
  • TL11, TP11, TU11, TU1G physical parameter types
  • VA11, VC11, VL81 relative value
  • VH8T, VH8U measurement time length value
  • YM8L, YM8T, YX8T memory location
  • YQ81, YW81 sensor sensitivity
  • YS81, YS82, YS8T, YS8U memory location
  • ZD1L1, ZD1L2 preset physical parameter application range limits

Abstract

一种用于控制可变物理参数(QU1A)的功能装置(130)包含定时器(342)和处理单元(331),其中可变物理参数(QU1A)基于物理参数目标状态(JE1U)而被特征化。定时器(342)感测时钟时间(TH1A)以产生感测信号(SY81),其中时钟时间()TH1A基于由测量值应用范围(RQ1U)所代表的时钟时间应用区间(HR1EU)而被特征化。处理单元(331)耦合于定时器(342),响应感测信号(SY81)来获得测量值(NY81),并在处理单元(331)藉由检查测量值(NY81)和测量值应用范围(RQ1U)之间的数学关系(KQ81)而确定时钟时间(TH1A)目前所处于的时钟时间应用区间(HR1EU)的条件下使可变物理参数(QU1A)处于物理参数目标状态(JE1U)。

Description

用于控制可变物理参数的功能装置及方法 技术领域
本公开是关于一功能装置,并特别是关于用于控制一可变物理参数的功能装置及方法。
背景技术
一控制装置能够产生一控制信号以控制包含于一功能装置中的一物理参数应用单元。所述功能装置使用所述控制信号以控制所述物理参数应用单元。所述物理参数应用单元能够使用一机械能、一电能和一光能的至少其中之一,并能够是用于一门禁管制的一电动机、用于一电力控制的一继电器、和用于一能量转换的一能量转换器的其中之一。为了有效地控制所述物理参数应用单元,所述功能装置能够获得基于一时钟时间而被提供的一测量值。所述功能装置可能需要一改良的机制以有效地使用所述测量值,并藉此有效地控制所述物理参数应用单元。
美国第2015/0357887 A1号公开专利公开一种制品规格设定装置及具备其之风扇发动机。美国第7,411,505 B2号公告专利公开一种开关状态及射频标识标签。
发明内容
本公开的一目的在于提供一种依靠一控制信号和根据一时钟时间而被提供的一测量值而有效地控制一可变物理参数的功能装置。
本公开的一实施例在于提供一种用于控制一可变物理参数的功能装置,其中所述可变物理参数基于一物理参数目标状态而被特征化。所述功能装置包含一定时器和一处理单元。所述定时器感测一时钟时间以产生一感测信号,其中所述时钟时间基于由一测量值应用范围所代表的一时钟时间应用区间而被特征化。所述处理单元耦合于所述定时器,响应所述感测信号来获得一测量值,并在所述处理单元藉由检查所述测量值和所述测量值应用范围之间的一第一数学关系而确定所述时钟时间进入所述时钟时间应用区间的一情况的条件下使所述可变物理参数处于所述物理参数目标状态。
本公开的另一实施例在于提供一种用于控制一可变物理参数的方法,其中所述可变物理参数基于一物理参数目标状态而被特征化。所述方法包含下列步骤:感测一时钟时间以产生一感测信号,其中所述时钟时间基于由一测量值应用范围所代表的一时钟时间应用区间而被特征化;响应所述感测信号,获得一测量值;以及在所述时钟时间进入所述时钟时间应用区间的一情况藉由检查所述测量值和所述测量值应用范围之间的一第一数学关系 而被确定的条件下,使所述可变物理参数处于所述物理参数目标状态。
本公开的另一实施例在于提供一种用于控制一可变物理参数的功能装置,其中所述可变物理参数基于一物理参数目标状态而被特征化。所述功能装置包含一定时器和一处理单元。所述定时器感测一时钟时间以产生一感测信号,其中所述时钟时间基于由一测量值应用范围所代表的一时钟时间应用区间而被特征化。所述处理单元耦合于所述定时器,响应所述感测信号来获得一测量值,并在所述处理单元藉由检查所述测量值和所述测量值应用范围之间的一数学关系而确定所述时钟时间目前所处于的所述时钟时间应用区间的条件下使所述可变物理参数处于所述物理参数目标状态。
本公开的另一实施例在于提供一种用于控制一可变物理参数的方法,其中所述可变物理参数基于一物理参数目标状态而被特征化。所述方法包含下列步骤:感测一时钟时间以产生一感测信号,其中所述时钟时间基于由一测量值应用范围所代表的一时钟时间应用区间而被特征化;响应所述感测信号,获得一测量值;以及在所述时钟时间目前所处于的所述时钟时间应用区间藉由检查所述测量值和所述测量值应用范围之间的一数学关系而被确定的条件下,使所述可变物理参数处于所述物理参数目标状态。
附图说明
本公开得藉由下列附图之详细说明,俾得更深入之了解︰
图1︰为在本公开各式各样实施例中一控制系统的示意图。
图2︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图3︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图4︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图5︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图6︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图7︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图8︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图9︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图10︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图11︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图12︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图13︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图14︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图15︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图16︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图17︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图18︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图19︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图20︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图21︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图22︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图23︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图24︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图25︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图26︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图27︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图28︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图29︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图30︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图31︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图32︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图33︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图34︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图35︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图36︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图37︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图38︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图39︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图40︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图41︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图42︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图43︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图44︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图45︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图46︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图47︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图48︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图49︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图50︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图51︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图52︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图53︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图54︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图55︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图56︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图57︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图58︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图59︰为绘示于图1中的所述控制系统的一实施结构的示意图。
图60︰为绘示于图1中的所述控制系统的一实施结构的示意图。
具体实施方式
请参阅图1,其为在本公开各式各样实施例中一控制系统901的示意图。所述控制系统901包含用于控制一可变物理参数QU1A的一功能装置130。例如,所述可变物理参数QU1A基于一物理参数目标状态JE1U而被特征化。所述功能装置130包含一定时器342和一处理单元331。所述定时器342感测一时钟时间TH1A以产生一感测信号SY81。例如,所述时钟时间TH1A基于由一测量值应用范围RQ1U所代表的一时钟时间应用区间HR1EU而被特征化。
所述处理单元331耦合于所述定时器342,响应所述感测信号SY81来获得一测量值NY81,并在所述处理单元331藉由检查所述测量值NY81和所述测量值应用范围RQ1U之间的一数学关系KQ81而确定所述时钟时间TH1A目前所处于的所述时钟时间应用区间HR1EU的条件下使所述可变物理参数QU1A处于所述物理参数目标状态JE1U。
请参阅图2和图3。图2为绘示于图1中的所述控制系统901的一实施结构9011的示意图。图3为绘示于图1中的所述控制系统901的一实施结构9012的示意图。如图2和图3所示,所述实施结构9011和所述实施结构9012的每一结构包含所述功能装置130。在一些实施例中,所述功能装置130进一步包含耦合于所述处理单元331的一接收单元 337、和耦合于所述处理单元331的一物理参数应用单元335。例如,所述功能装置130是一控制目标装置。所述物理参数应用单元335是一功能目标。
所述时钟时间TH1A进一步基于不同于所述时钟时间应用区间HR1EU的一时钟时间指定区间HR1ET而被特征化。例如,所述时钟时间指定区间HR1ET早于所述时钟时间应用区间HR1EU。在所述接收单元337从一控制装置212接收一控制信号SC81之后,所述处理单元331由于所述控制信号SC81来响应所述感测信号SY81而获得所述测量值NY81。例如,所述控制信号SC81起到指示所述时钟时间指定区间HR1ET的作用。所述控制装置212是一移动装置和一遥控器的其中之一。在所述控制装置212是所述遥控器的条件下,所述控制信号SC81是一光信号。所述功能装置130基于所述控制信号SC81来使用所述定时器342以检查所述时钟时间TH1A和所述时钟时间应用区间HR1EU之间的一时间关系KT81。例如,所述感测信号SY81是一时钟时间信号。所述测量值NY81是一特定计数值。例如,在所述控制装置212是所述移动装置的条件下,所述接收单元337从所述控制装置212通过一无线链接而接收所述控制信号SC81,或所述控制信号SC81是一无线电信号。
所述定时器342符合一定时器规格FT21。例如,所述测量值应用范围RQ1U基于所述定时器规格FT21而被默认。所述定时器规格FT21包含用于表示一全测量值范围QK8E的一全测量值范围表示FK8E。例如,所述测量值应用范围RQ1U等于所述全测量值范围QK8E的一部分。所述测量值NY81以一指定测量值格式HH95而被获得。所述测量值应用范围RQ1U基于所述定时器规格FT21来用所述指定测量值格式HH95而被预设。例如,所述时钟时间应用区间HR1EU是一时钟时间候选区间。所述测量值应用范围RQ1U是一测量时间值候选范围。所述时钟时间指定区间HR1ET是一时钟时间目标区间。所述指定测量值格式HH95是一指定计数值格式。
所述测量值应用范围RQ1U具有一应用范围界限值对DQ1U,并由一测量值应用范围码EL1U所代表。例如,所述应用范围界限值对DQ1U被预设。所述处理单元331响应所述控制信号SC81来获得所述应用范围界限值对DQ1U和所述测量值应用范围码EL1U,并藉由比较所述测量值NY81和所获得的所述应用范围界限值对DQ1U来检查所述数学关系KQ81。所述物理参数目标状态JE1U由一物理参数目标状态代码EW1U所代表。所述物理参数应用单元335具有所述可变物理参数QU1A。例如,所述可变物理参数QU1A目前处于一物理参数应用状态JE1T。所述应用范围界限值对DQ1U是一候选范围界限值对。所述测量值应用范围码EL1U是一测量时间值候选范围码。
在一些实施例中,在所述处理单元331藉由检查所述数学关系KQ81而确定所述时钟时间TH1A目前所处于的所述时钟时间应用区间HR1EU的条件下,所述处理单元331基于 所获得的所述测量值应用范围码EL1U来获得所述物理参数目标状态代码EW1U,并基于所获得的所述物理参数目标状态代码EW1U来执行用于检查所述可变物理参数QU1A和所述物理参数目标状态JE1U之间的一物理参数关系KD9U的一物理参数关系检查控制GX8U。
在所述物理参数应用状态JE1T不同于所述物理参数目标状态JE1U且所述处理单元331藉由执行所述物理参数关系检查控制GX8U而确定所述物理参数目标状态JE1U和所述物理参数应用状态JE1T之间的一物理参数状态差异DT81的条件下,所述处理单元331基于所获得的所述物理参数目标状态代码EW1U来执行一信号产生控制GY85以产生一操作信号SG85,并向所述物理参数应用单元335传输所述操作信号SG85。例如,所述操作信号SG85是一功能信号和一控制信号的其中之一。
所述物理参数应用单元335响应所述操作信号SG85来使所述可变物理参数QU1A从所述物理参数应用状态JE1T进入所述物理参数目标状态JE1U。在所述处理单元331藉由检查所述数学关系KQ81而确定所述时钟时间TH1A目前所处于的所述时钟时间应用区间HR1EU的条件下,所述处理单元331执行一数据存储控制操作GM8U,所述数据存储控制操作GM8U用于导致代表所确定的所述时钟时间应用区间HR1EU的一时钟时间应用区间码UF8U被存储。所述可变物理参数QU1A和所述时钟时间TH1A分别属于一物理参数类型TU11和一时钟时间类型TQ11。例如,所述物理参数类型TU11不同于所述时钟时间类型TQ11。
请参阅图4、图5和图6。图4为绘示于图1中的所述控制系统901的一实施结构9013的示意图。图5为绘示于图1中的所述控制系统901的一实施结构9014的示意图。图6为绘示于图1中的所述控制系统901的一实施结构9015的示意图。如图4、图5和图6所示,所述实施结构9013、所述实施结构9014和所述实施结构9015的每一结构包含所述功能装置130。所述功能装置130包含所述处理单元331、耦合于所述处理单元331的所述定时器342、耦合于所述处理单元331的所述接收单元337、耦合于所述处理单元331的一输入单元380、和耦合于所述处理单元331的所述物理参数应用单元335。
在一些实施例中,所述定时器342符合一定时器规格FT21。例如,所述测量值应用范围RQ1U基于所述定时器规格FT21而被默认。所述定时器规格FT21包含用于表示一全测量值范围QK8E的一全测量值范围表示FK8E。例如,所述测量值应用范围RQ1U等于所述全测量值范围QK8E的一第一部分。所述处理单元331被配置以执行与所述时钟时间应用区间HR1EU相关的一测量应用功能FA81。所述测量应用功能FA81符合与所述时钟时间应用区间HR1EU相关的一测量应用功能规格GAL8。例如,所述测量应用功能FA81是一物理参数控制功能。所述测量应用功能规格GAL8是一物理参数控制功能规格。
所述处理单元331响应所述感测信号SY81来以一指定测量值格式HH95获得所述测量 值NY81。例如,所述指定测量值格式HH95基于一指定比特数目UY95而被特征化。所述时钟时间TH1A进一步基于一额定时钟时间区间HR1E而被特征化。例如,所述额定时钟时间区间HR1E由一额定测量值范围HR1N所代表,并包含由多个不同测量值参考范围RQ11、RQ12、…所分别代表的多个不同时钟时间参考区间HR1E1、HR1E2、…。例如,所述额定时钟时间区间HR1E被均匀地分割以形成所述多个不同时钟时间参考区间HR1E1、HR1E2、…。所述额定测量值范围HR1N是一额定测量时间值范围。所述多个不同测量值参考范围RQ11、RQ12、…是多个测量时间值参考范围,并皆基于所述定时器规格FT21而被默认。
所述多个不同时钟时间参考区间HR1E1、HR1E2、…包含所述时钟时间应用区间HR1EU。所述测量应用功能规格GAL8包含所述定时器规格FT21、用于表示所述额定时钟时间区间HR1E的一额定时钟时间区间表示GA8HE、和用于表示所述时钟时间应用区间HR1EU的一时钟时间应用区间表示GA8HU。
所述额定测量值范围HR1N等于所述全测量值范围QK8E的至少一第二部分,基于所述定时器规格FT21、所述测量应用功能规格GAL8和一第一数据编码规则WX8HE的其中之一来用所述指定测量值格式HH95而被预设,具有一额定范围界限值对DP1A,并包含由多个不同测量值参考范围码EL11、EL12、…所分别代表的所述多个不同测量值参考范围RQ11、RQ12、…。
例如,所述额定范围界限值对DP1A用所述指定测量值格式HH95而被预设,且所述多个不同测量值参考范围RQ11、RQ12、…包含所述测量值应用范围RQ1U。所述第一数据编码规则WX8HE用于转换所述额定时钟时间区间表示GA8HE,并基于所述定时器规格FT21而被制定。例如,所述多个不同测量值参考范围码EL11、EL12、…分别是多个测量时间值参考范围码。
在一些实施例中,所述测量值应用范围RQ1U由包含于所述多个不同测量值参考范围码EL11、EL12、…中的一测量值应用范围码EL1U所代表,具有一应用范围界限值对DQ1U,并基于所述定时器规格FT21、所述测量应用功能规格GAL8和一第二数据编码规则WX8HU的其中之一来用所述指定测量值格式HH95而被预设。例如,所述多个不同测量值参考范围码EL11、EL12、…皆基于所述测量应用功能规格GAL8而被默认。所述第二数据编码规则WX8HU用于转换所述时钟时间应用区间表示GA8HU,并基于所述定时器规格FT21而被制定。所述应用范围界限值对DQ1U包含一第一应用范围界限值DQ15和相对于所述第一应用范围界限值DQ15的一第二应用范围界限值DQ16。
所述功能装置130进一步包含耦合于所述处理单元331的一存储单元332,并包含耦合于所述处理单元331的一触发应用单元387。所述存储单元332存储所默认的所述额定 范围界限值对DP1A和一可变时钟时间区间码UF8A。当与所述触发应用单元387相关的一触发事件JQ81发生时,所述可变时钟时间区间码UF8A等于选择自所述多个不同测量值参考范围码EL11、EL12、…的一特定测量值范围码EL14。例如,所述特定测量值范围码EL14指示基于一感测操作ZT81而被先前确定的一特定时钟时间区间HR1E4。所述特定时钟时间区间HR1E4选择自所述多个不同时钟时间参考区间HR1E1、HR1E2、…。由所述定时器342所执行的所述感测操作ZT81用于感测所述时钟时间TH1A。
在所述触发事件JQ81发生之前,所述特定测量值范围码EL14被指定到所述可变时钟时间区间码UF8A。所述触发应用单元387响应所述触发事件JQ81来使所述处理单元331接收一操作请求信号SJ81。在所述触发事件JQ81发生的条件下,所述处理单元331响应所述操作请求信号SJ81来从所述存储单元332获得一操作参考数据码XV81,并藉由运行一数据确定程序NK8A来执行使用所述操作参考数据码XV81的一数据确定AK8A以确定选择自所述多个不同测量值参考范围码EL11、EL12、…的所述测量值应用范围码EL1U以便从所述多个不同测量值参考范围RQ11、RQ12、…中选择所述测量值应用范围RQ1U。所述操作参考数据码XV81相同于基于所述测量应用功能规格GAL8而被默认的一可允许参考数据码。所述数据确定程序NK8A基于所述测量应用功能规格GAL8而被建构。
所述数据确定AK8A是一第一数据确定操作AK81和一第二数据确定操作AK82的其中之一。在所述操作参考数据码XV81藉由接入被存储在所述存储单元332中的所述可变时钟时间区间码UF8A而被获得以相同于所述特定测量值范围码EL14的条件下,是所述第一数据确定操作AK81的所述数据确定AK8A基于所获得的所述特定测量值范围码EL14来确定所述测量值应用范围码EL1U。例如,所述第一数据确定操作AK81是使用所获得的所述特定测量值范围码EL14的一第一科学计算MC81。所确定的所述测量值应用范围码EL1U相同或不同于所获得的所述特定测量值范围码EL14。
在所述操作参考数据码XV81藉由接入被存储在所述存储单元332中的所述额定范围界限值对DP1A而被获得以相同于所预设的所述额定范围界限值对DP1A的条件下,是所述第二数据确定操作AK82的所述数据确定AK8A藉由执行使用所述测量值NY81和所获得的所述额定范围界限值对DP1A的一第二科学计算MD81来从所述多个不同测量值参考范围码EL11、EL12、…中选择所述测量值应用范围码EL1U以确定所述测量值应用范围码EL1U。例如,所述第二科学计算MD81基于一特定经验公式XS81而被执行。所述特定经验公式XS81基于所预设的所述额定范围界限值对DP1A和所述多个不同测量值参考范围码EL11、EL12、…而被预先制定。
在一些实施例中,所述处理单元331基于所确定的所述测量值应用范围码EL1U来获 得所述应用范围界限值对DQ1U,并基于所述测量值NY81和所获得的所述应用范围界限值对DQ1U之间的一数据比较CF81来检查所述数学关系KQ81以做出所述测量值NY81是否为于所选择的所述测量值应用范围RQ1U之内的一逻辑决定PQ81。在所述逻辑决定PQ81是肯定的条件下,所述处理单元331确定所述时钟时间TH1A目前所处于的所述时钟时间应用区间HR1EU。
在所述特定测量值范围码EL14不同于所确定的所述测量值应用范围码EL1U且所述处理单元331藉由做出所述逻辑决定PQ81而确定所述时钟时间TH1A目前所处于的所述时钟时间应用区间HR1EU的条件下,所述处理单元331基于等于所述特定测量值范围码EL14的所述可变时钟时间区间码UF8A和所确定的所述测量值应用范围码EL1U之间的一码差异DG81来使用所述存储单元332以将所确定的所述测量值应用范围码EL1U指定到所述可变时钟时间区间码UF8A。
所述输入单元380包含一按钮3801。所述物理参数应用单元335具有所述可变物理参数QU1A。所述可变物理参数QU1A进一步基于不同于所述物理参数目标状态JE1U的一特定物理参数状态JE16而被特征化。在所述处理单元331藉由检查所述第一数学关系KQ81而导致所述可变物理参数QU1A处于所述物理参数目标状态JE1U的条件下,所述输入单元380接收使用所述按钮3801的一用户输入操作BQ82。所述处理单元331响应所述用户输入操作BQ82来向所述物理参数应用单元335传输用于导致所述可变物理参数QU1A离开所述物理参数目标状态JE1U以进入所述特定物理参数状态JE16的一操作信号SG87。
请参阅图1、图2、图3、图4、图5和图6。一种用于控制一可变物理参数QU1A的方法ML80被公开。例如,所述可变物理参数QU1A基于一物理参数目标状态JE1U而被特征化。所述方法ML80包含下列步骤:感测一时钟时间TH1A以产生一感测信号SY81,其中所述时钟时间TH1A基于由一测量值应用范围RQ1U所代表的一时钟时间应用区间HR1EU而被特征化;响应所述感测信号SY81,获得一测量值NY81;以及在所述时钟时间TH1A目前所处于的所述时钟时间应用区间HR1EU藉由检查所述测量值NY81和所述测量值应用范围RQ1U之间的一数学关系KQ81而被确定的条件下,使所述可变物理参数QU1A处于所述物理参数目标状态JE1U。
在一些实施例中,所述时钟时间TH1A进一步基于不同于所述时钟时间应用区间HR1EU的一时钟时间指定区间HR1ET而被特征化。例如,所述时钟时间指定区间HR1ET早于所述时钟时间应用区间HR1EU。所述方法ML80进一步包含下列步骤:提供一定时器342,其中感测所述时钟时间TH1A的步骤藉由使用所述定时器342而被执行;以及从一控制装置212接收一控制信号SC81,其中所述控制信号SC81起到指示所述时钟时间指定区间HR1ET的 作用。所述控制装置212是一移动装置和一遥控器的其中之一。在所述控制装置212是所述遥控器的条件下,所述控制信号SC81是一光信号。例如,在所述控制装置212是所述移动装置的条件下,所述控制信号SC81从所述控制装置212通过一无线链接而被接收,或所述控制信号SC81是一无线电信号。
获得所述测量值NY81的步骤包含一子步骤:在所述控制信号SC81被接收之后,由于所述控制信号SC81来响应所述感测信号SY81而获得所述测量值NY81。所述定时器342符合一定时器规格FT21。例如,所述测量值应用范围RQ1U基于所述定时器规格FT21而被默认。所述定时器规格FT21包含用于表示一全测量值范围QK8E的一全测量值范围表示FK8E。例如,所述测量值应用范围RQ1U等于所述全测量值范围QK8E的一部分。所述测量值NY81以一指定测量值格式HH95而被获得。
所述测量值应用范围RQ1U基于所述定时器规格FT21来用所述指定测量值格式HH95而被预设。所述测量值应用范围RQ1U具有一应用范围界限值对DQ1U,并由一测量值应用范围码EL1U所代表。例如,所述应用范围界限值对DQ1U被预设。所述方法ML80进一步包含下列步骤:响应所述控制信号SC81,获得所述应用范围界限值对DQ1U和所述测量值应用范围码EL1U;以及藉由比较所述测量值NY81和所获得的所述应用范围界限值对DQ1U,检查所述数学关系KQ81。
在一些实施例中,所述物理参数目标状态JE1U由一物理参数目标状态代码EW1U所代表。所述可变物理参数QU1A目前处于一物理参数应用状态JE1T。使所述可变物理参数QU1A处于所述物理参数目标状态JE1U的步骤包含下列子步骤:在所述时钟时间TH1A目前所处于的所述时钟时间应用区间HR1EU藉由检查所述数学关系KQ81而被确定的条件下,基于所获得的所述测量值应用范围码EL1U来获得所述物理参数目标状态代码EW1U;以及基于所获得的所述物理参数目标状态代码EW1U,执行用于检查所述可变物理参数QU1A和所述物理参数目标状态JE1U之间的一物理参数关系KD9U的一物理参数关系检查控制GX8U。
使所述可变物理参数QU1A处于所述物理参数目标状态JE1U的步骤进一步包含下列子步骤:在所述物理参数应用状态JE1T不同于所述物理参数目标状态JE1U且所述物理参数目标状态JE1U和所述物理参数应用状态JE1T之间的一物理参数状态差异DT81藉由执行所述物理参数关系检查控制GX8U而被确定的条件下,基于所获得的所述物理参数目标状态代码EW1U来执行一信号产生控制GY85以产生一操作信号SG85;以及响应所述操作信号SG85,使所述可变物理参数QU1A从所述物理参数应用状态JE1T进入所述物理参数目标状态JE1U。
所述方法ML80进一步包含一步骤:在所述时钟时间TH1A目前所处于的所述时钟时间 应用区间HR1EU藉由检查所述数学关系KQ81而被确定的条件下,执行一数据存储控制操作GM8U,所述数据存储控制操作GM8U用于导致代表所确定的所述时钟时间应用区间HR1EU的一时钟时间应用区间码UF8U被存储。所述可变物理参数QU1A和所述时钟时间TH1A分别属于一物理参数类型TU11和一时钟时间类型TQ11。例如,所述物理参数类型TU11不同于所述时钟时间类型TQ11。
在一些实施例中,所述方法ML80进一步包含下列步骤:提供一定时器342,其中感测所述时钟时间TH1A的步骤藉由使用所述定时器342而被执行;以及执行与所述时钟时间应用区间HR1EU相关的一测量应用功能FA81。所述定时器342符合一定时器规格FT21。例如,所述测量值应用范围RQ1U基于所述定时器规格FT21而被默认。所述定时器规格FT21包含用于表示一全测量值范围QK8E的一全测量值范围表示FK8E。例如,所述测量值应用范围RQ1U等于所述全测量值范围QK8E的一第一部分。
所述测量应用功能FA81符合与所述时钟时间应用区间HR1EU相关的一测量应用功能规格GAL8。所述测量值NY81以一指定测量值格式HH95而被获得。例如,所述指定测量值格式HH95基于一指定比特数目UY95而被特征化。所述时钟时间TH1A进一步基于一额定时钟时间区间HR1E而被特征化。例如,所述额定时钟时间区间HR1E由一额定测量值范围HR1N所代表,并包含由多个不同测量值参考范围RQ11、RQ12、…所分别代表的多个不同时钟时间参考区间HR1E1、HR1E2、…。所述多个不同时钟时间参考区间HR1E1、HR1E2、…包含所述时钟时间应用区间HR1EU。
所述测量应用功能规格GAL8包含所述定时器规格FT21、用于表示所述额定时钟时间区间HR1E的一额定时钟时间区间表示GA8HE、和用于表示所述时钟时间应用区间HR1EU的一时钟时间应用区间表示GA8HU。所述额定测量值范围HR1N等于所述全测量值范围QK8E的至少一第二部分,基于所述定时器规格FT21、所述测量应用功能规格GAL8和一第一数据编码规则WX8HE的其中之一来用所述指定测量值格式HH95而被预设,具有一额定范围界限值对DP1A,并包含由多个不同测量值参考范围码EL11、EL12、…所分别代表的所述多个不同测量值参考范围RQ11、RQ12、…。例如,所述额定范围界限值对DP1A用所述指定测量值格式HH95而被预设。所述多个不同测量值参考范围RQ11、RQ12、…包含所述测量值应用范围RQ1U。所述第一数据编码规则WX8HE用于转换所述额定时钟时间区间表示GA8HE,并基于所述定时器规格FT21而被制定。
所述测量值应用范围RQ1U由包含于所述多个不同测量值参考范围码EL11、EL12、…中的一测量值应用范围码EL1U所代表,具有一应用范围界限值对DQ1U,并基于所述定时器规格FT21、所述测量应用功能规格GAL8和一第二数据编码规则WX8HU的其中之一来用 所述指定测量值格式HH95而被预设。例如,所述多个不同测量值参考范围码EL11、EL12、…皆基于所述测量应用功能规格GAL8而被默认。所述第二数据编码规则WX8HU用于转换所述时钟时间应用区间表示GA8HU,并基于所述定时器规格FT21而被制定。所述应用范围界限值对DQ1U包含一第一应用范围界限值DQ15和相对于所述第一应用范围界限值DQ15的一第二应用范围界限值DQ16。
在一些实施例中,所述方法ML80进一步包含下列步骤:提供一存储空间SU11;以及在所述存储空间SU11中存储所预设的所述额定范围界限值对DP1A和一可变时钟时间区间码UF8A。当一触发事件JQ81发生时,所述可变时钟时间区间码UF8A等于选择自所述多个不同测量值参考范围码EL11、EL12、…的一特定测量值范围码EL14。例如,所述特定测量值范围码EL14指示基于一感测操作ZT81而被先前确定的一特定时钟时间区间HR1E4。所述特定时钟时间区间HR1E4选择自所述多个不同时钟时间参考区间HR1E1、HR1E2、…。由所述定时器342所执行的所述感测操作ZT81用于感测所述时钟时间TH1A。
在所述触发事件JQ81发生之前,所述特定测量值范围码EL14被指定到所述可变时钟时间区间码UF8A。所述方法ML80进一步包含下列步骤:响应所述触发事件JQ81,接收一操作请求信号SJ81;在所述触发事件JQ81发生的条件下,响应所述操作请求信号SJ81来从所述存储空间SU11获得一操作参考数据码XV81;以及藉由运行一数据确定程序NK8A来执行使用所述操作参考数据码XV81的一数据确定AK8A,确定选择自所述多个不同测量值参考范围码EL11、EL12、…的所述测量值应用范围码EL1U以便从所述多个不同测量值参考范围RQ11、RQ12、…中选择所述测量值应用范围RQ1U。所述操作参考数据码XV81相同于基于所述测量应用功能规格GAL8而被默认的一可允许参考数据码。
在一些实施例中,所述数据确定程序NK8A基于所述测量应用功能规格GAL8而被建构。所述数据确定AK8A是一第一数据确定操作AK81和一第二数据确定操作AK82的其中之一。在所述操作参考数据码XV81藉由接入被存储在所述存储空间SU11中的所述可变时钟时间区间码UF8A而被获得以相同于所述特定测量值范围码EL14的条件下,是所述第一数据确定操作AK81的所述数据确定AK8A基于所获得的所述特定测量值范围码EL14来确定所述测量值应用范围码EL1U。例如,所述第一数据确定操作AK81是使用所获得的所述特定测量值范围码EL14的一第一科学计算MC81,且所确定的所述测量值应用范围码EL1U相同或不同于所获得的所述特定测量值范围码EL14。
在所述操作参考数据码XV81藉由接入被存储在所述存储空间SU11中的所述额定范围界限值对DP1A而被获得以相同于所预设的所述额定范围界限值对DP1A的条件下,是所述第二数据确定操作AK82的所述数据确定AK8A藉由执行使用所述测量值NY81和所获得的 所述额定范围界限值对DP1A的一第二科学计算MD81来从所述多个不同测量值参考范围码EL11、EL12、…中选择所述测量值应用范围码EL1U以确定所述测量值应用范围码EL1U。例如,所述第二科学计算MD81基于一特定经验公式XS81而被执行。所述特定经验公式XS81基于所预设的所述额定范围界限值对DP1A和所述多个不同测量值参考范围码EL11、EL12、…而被预先制定。
在一些实施例中,所述方法ML80进一步包含下列步骤:基于所确定的所述测量值应用范围码EL1U,获得所述应用范围界限值对DQ1U;基于所述测量值NY81和所获得的所述应用范围界限值对DQ1U之间的一数据比较CF81,检查所述数学关系KQ81以做出所述测量值NY81是否为于所选择的所述测量值应用范围RQ1U之内的一逻辑决定PQ81;以及在所述逻辑决定PQ81是肯定的条件下,确定所述时钟时间TH1A目前所处于的所述时钟时间应用区间HR1EU。
所述方法ML80进一步包含一步骤:在所述特定测量值范围码EL14不同于所确定的所述测量值应用范围码EL1U且所述时钟时间TH1A目前所处于的所述时钟时间应用区间HR1EU藉由做出所述逻辑决定PQ81而被确定的条件下,基于等于所述特定测量值范围码EL14的所述可变时钟时间区间码UF8A和所确定的所述测量值应用范围码EL1U之间的一码差异DG81来将所确定的所述测量值应用范围码EL1U指定到所述可变时钟时间区间码UF8A。
所述可变物理参数QU1A进一步基于不同于所述物理参数目标状态JE1U的一特定物理参数状态JE16而被特征化。所述方法ML80进一步包含下列步骤:提供一按钮3801;在所述可变物理参数QU1A藉由检查所述第一数学关系KQ81而被导致处于所述物理参数目标状态JE1U的条件下,接收使用所述按钮3801的一用户输入操作BQ82;以及响应所述使用者输入操作BQ82,产生用于导致所述可变物理参数QU1A离开所述物理参数目标状态JE1U以进入所述特定物理参数状态JE16的一操作信号SG87。
请参阅图6。图6为绘示于图1中的所述控制系统901的所述实施结构9015的示意图。如图6所示,所述实施结构9015包含用于控制一可变物理参数QU1A的一功能装置130。例如,所述可变物理参数QU1A基于一物理参数目标状态JE1U而被特征化。所述功能装置130包含一定时器342和一处理单元331。所述定时器342感测一时钟时间TH1A以产生一感测信号SY81。例如,所述时钟时间TH1A基于由一测量值应用范围RQ1U所代表的一时钟时间应用区间HR1EU而被特征化。
所述处理单元331耦合于所述定时器342,响应所述感测信号SY81来获得一测量值NY81,并在所述处理单元331藉由检查所述测量值NY81和所述测量值应用范围RQ1U之间 的一第一数学关系KQ81而确定所述时钟时间TH1A进入所述时钟时间应用区间HR1EU的一情况JP81的条件下使所述可变物理参数QU1A处于所述物理参数目标状态JE1U。
请参阅图2、图3、图4、图5和图6。在一些实施例中,所述功能装置130进一步包含耦合于所述处理单元331的一接收单元337、和耦合于所述处理单元331的一物理参数应用单元335。所述时钟时间TH1A进一步基于不同于所述时钟时间应用区间HR1EU的一时钟时间指定区间HR1ET而被特征化。例如,所述时钟时间指定区间HR1ET早于所述时钟时间应用区间HR1EU。在所述接收单元337从一控制装置212接收一控制信号SC81之后,所述处理单元331由于所述控制信号SC81来响应所述感测信号SY81而获得包含所述测量值NY81的一测量值序列JY81。例如,所述控制信号SC81起到指示所述时钟时间指定区间HR1ET的作用。所述控制装置212是一移动装置和一遥控器的其中之一。在所述控制装置212是所述遥控器的条件下,所述控制信号SC81是一光信号。例如,在所述控制装置212是所述移动装置的条件下,所述接收单元337从所述控制装置212通过一无线链接而接收所述控制信号SC81,或所述控制信号SC81是一无线电信号。
所述处理单元331藉由检查所述测量值序列JY81和所述测量值应用范围RQ1U之间的一第二数学关系KQ82而做出所述时钟时间TH1A是否从所述时钟时间指定区间HR1ET进入所述时钟时间应用区间HR1EU的一逻辑决定PR81。在所述逻辑决定PR81是肯定的条件下确定所进入的所述时钟时间应用区间HR1EU。所述定时器342符合一定时器规格FT21。例如,所述测量值应用范围RQ1U基于所述定时器规格FT21而被默认。所述定时器规格FT21包含用于表示一全测量值范围QK8E的一全测量值范围表示FK8E。例如,所述测量值应用范围RQ1U等于所述全测量值范围QK8E的一部分。
所述测量值NY81以一指定测量值格式HH95而被获得。所述测量值应用范围RQ1U基于所述定时器规格FT21来用所述指定测量值格式HH95而被预设。所述测量值应用范围RQ1U具有一应用范围界限值对DQ1U,并由一测量值应用范围码EL1U所代表。例如,所述应用范围界限值对DQ1U被预设。所述处理单元331响应所述控制信号SC81来获得所述应用范围界限值对DQ1U和所述测量值应用范围码EL1U,并藉由比较所述测量值NY81和所获得的所述应用范围界限值对DQ1U来检查所述第一数学关系KQ81。所述物理参数目标状态JE1U由一物理参数目标状态代码EW1U所代表。
在一些实施例中,所述物理参数应用单元335具有所述可变物理参数QU1A。例如,所述可变物理参数QU1A目前处于一物理参数应用状态JE1T。在所述处理单元331藉由检查所述第一数学关系KQ81而确定所进入的所述时钟时间应用区间HR1EU的条件下,所述处理单元331基于所获得的所述测量值应用范围码EL1U来获得所述物理参数目标状态代码 EW1U,并基于所获得的所述物理参数目标状态代码EW1U来执行用于检查所述可变物理参数QU1A和所述物理参数目标状态JE1U之间的一物理参数关系KD9U的一物理参数关系检查控制GX8U。
在所述物理参数应用状态JE1T不同于所述物理参数目标状态JE1U且所述处理单元331藉由执行所述物理参数关系检查控制GX8U而确定所述物理参数目标状态JE1U和所述物理参数应用状态JE1T之间的一物理参数状态差异DT81的条件下,所述处理单元331基于所获得的所述物理参数目标状态代码EW1U来执行一信号产生控制GY85以产生一操作信号SG85,并向所述物理参数应用单元335传输所述操作信号SG85。所述物理参数应用单元335响应所述操作信号SG85来使所述可变物理参数QU1A从所述物理参数应用状态JE1T进入所述物理参数目标状态JE1U。
在所述处理单元331藉由检查所述第一数学关系KQ81而确定所进入的所述时钟时间应用区间HR1EU的条件下,所述处理单元331执行一数据存储控制操作GM8U,所述数据存储控制操作GM8U用于导致代表所确定的所述时钟时间应用区间HR1EU的一时钟时间应用区间码UF8U被存储。所述可变物理参数QU1A和所述时钟时间TH1A分别属于一物理参数类型TU11和一时钟时间类型TQ11。例如,所述物理参数类型TU11不同于所述时钟时间类型TQ11。
在一些实施例中,所述定时器342符合一定时器规格FT21。例如,所述测量值应用范围RQ1U基于所述定时器规格FT21而被默认。所述定时器规格FT21包含用于表示一全测量值范围QK8E的一全测量值范围表示FK8E。例如,所述测量值应用范围RQ1U等于所述全测量值范围QK8E的一第一部分。所述处理单元331被配置以执行与所述时钟时间应用区间HR1EU相关的一测量应用功能FA81。所述测量应用功能FA81符合与所述时钟时间应用区间HR1EU相关的一测量应用功能规格GAL8。
所述处理单元331响应所述感测信号SY81来以一指定测量值格式HH95获得所述测量值NY81。例如,所述指定测量值格式HH95基于一指定比特数目UY95而被特征化。所述时钟时间TH1A进一步基于一额定时钟时间区间HR1E而被特征化。例如,所述额定时钟时间区间HR1E由一额定测量值范围HR1N所代表,并包含由多个不同测量值参考范围RQ11、RQ12、…所分别代表的多个不同时钟时间参考区间HR1E1、HR1E2、…。所述多个不同时钟时间参考区间HR1E1、HR1E2、…包含所述时钟时间应用区间HR1EU。所述测量应用功能规格GAL8包含所述定时器规格FT21、用于表示所述额定时钟时间区间HR1E的一额定时钟时间区间表示GA8HE、和用于表示所述时钟时间应用区间HR1EU的一时钟时间应用区间表示GA8HU。
在一些实施例中,所述额定测量值范围HR1N等于所述全测量值范围QK8E的至少一第二部分,基于所述定时器规格FT21、所述测量应用功能规格GAL8和一第一数据编码规则WX8HE的其中之一来用所述指定测量值格式HH95而被预设,具有一额定范围界限值对DP1A,并包含由多个不同测量值参考范围码EL11、EL12、…所分别代表的所述多个不同测量值参考范围RQ11、RQ12、…。例如,所述额定范围界限值对DP1A用所述指定测量值格式HH95而被预设。所述多个不同测量值参考范围RQ11、RQ12、…包含所述测量值应用范围RQ1U。所述第一数据编码规则WX8HE用于转换所述额定时钟时间区间表示GA8HE,并基于所述定时器规格FT21而被制定。
所述测量值应用范围RQ1U由包含于所述多个不同测量值参考范围码EL11、EL12、…中的一测量值应用范围码EL1U所代表,具有一应用范围界限值对DQ1U,并基于所述定时器规格FT21、所述测量应用功能规格GAL8和一第二数据编码规则WX8HU的其中之一来用所述指定测量值格式HH95而被预设。例如,所述多个不同测量值参考范围码EL11、EL12、…皆基于所述测量应用功能规格GAL8而被默认。所述第二数据编码规则WX8HU用于转换所述时钟时间应用区间表示GA8HU,并基于所述定时器规格FT21而被制定。所述应用范围界限值对DQ1U包含一第一应用范围界限值DQ15和相对于所述第一应用范围界限值DQ15的一第二应用范围界限值DQ16。
在一些实施例中,所述功能装置130进一步包含耦合于所述处理单元331的一存储单元332,并包含耦合于所述处理单元331的一触发应用单元387。所述存储单元332存储所默认的所述额定范围界限值对DP1A和一可变时钟时间区间码UF8A。当与所述触发应用单元387相关的一触发事件JQ81发生时,所述可变时钟时间区间码UF8A等于选择自所述多个不同测量值参考范围码EL11、EL12、…的一特定测量值范围码EL14。例如,所述特定测量值范围码EL14指示基于一感测操作ZT81而被先前确定的一特定时钟时间区间HR1E4。所述特定时钟时间区间HR1E4选择自所述多个不同时钟时间参考区间HR1E1、HR1E2、…。由所述定时器342所执行的所述感测操作ZT81用于感测所述时钟时间TH1A。
在所述触发事件JQ81发生之前,所述特定测量值范围码EL14被指定到所述可变时钟时间区间码UF8A。所述触发应用单元387响应所述触发事件JQ81来使所述处理单元331接收一操作请求信号SJ81。在所述触发事件JQ81发生的条件下,所述处理单元331响应所述操作请求信号SJ81来从所述存储单元332获得一操作参考数据码XV81,并藉由运行一数据确定程序NK8A来执行使用所述操作参考数据码XV81的一数据确定AK8A以确定选择自所述多个不同测量值参考范围码EL11、EL12、…的所述测量值应用范围码EL1U以便从所述多个不同测量值参考范围RQ11、RQ12、…中选择所述测量值应用范围RQ1U。所述 操作参考数据码XV81相同于基于所述测量应用功能规格GAL8而被默认的一可允许参考数据码。所述数据确定程序NK8A基于所述测量应用功能规格GAL8而被建构。
在一些实施例中,所述数据确定AK8A是一第一数据确定操作AK81和一第二数据确定操作AK82的其中之一。在所述操作参考数据码XV81藉由接入被存储在所述存储单元332中的所述可变时钟时间区间码UF8A而被获得以相同于所述特定测量值范围码EL14的条件下,是所述第一数据确定操作AK81的所述数据确定AK8A基于所获得的所述特定测量值范围码EL14来确定所述测量值应用范围码EL1U。例如,所述第一数据确定操作AK81是使用所获得的所述特定测量值范围码EL14的一第一科学计算MC81。所确定的所述测量值应用范围码EL1U相同或不同于所获得的所述特定测量值范围码EL14。
在所述操作参考数据码XV81藉由接入被存储在所述存储单元332中的所述额定范围界限值对DP1A而被获得以相同于所预设的所述额定范围界限值对DP1A的条件下,是所述第二数据确定操作AK82的所述数据确定AK8A藉由执行使用所述测量值NY81和所获得的所述额定范围界限值对DP1A的一第二科学计算MD81来从所述多个不同测量值参考范围码EL11、EL12、…中选择所述测量值应用范围码EL1U以确定所述测量值应用范围码EL1U。例如,所述第二科学计算MD81基于一特定经验公式XS81而被执行。所述特定经验公式XS81基于所预设的所述额定范围界限值对DP1A和所述多个不同测量值参考范围码EL11、EL12、…而被预先制定。
在一些实施例中,所述处理单元331基于所确定的所述测量值应用范围码EL1U来获得所述应用范围界限值对DQ1U,并基于所述测量值NY81和所获得的所述应用范围界限值对DQ1U之间的一数据比较CF81来检查所述第一数学关系KQ81以做出所述测量值NY81是否为于所选择的所述测量值应用范围RQ1U之内的一逻辑决定PQ81。在所述逻辑决定PQ81是肯定的条件下,所述处理单元331确定所述情况JP81。例如,所述情况JP81是一特定情况。
在所述特定测量值范围码EL14不同于所确定的所述测量值应用范围码EL1U且所述处理单元331藉由做出所述逻辑决定PQ81而确定所进入的所述时钟时间应用区间HR1EU的条件下,所述处理单元331基于等于所述特定测量值范围码EL14的所述可变时钟时间区间码UF8A和所确定的所述测量值应用范围码EL1U之间的一码差异DG81来使用所述存储单元332以将所确定的所述测量值应用范围码EL1U指定到所述可变时钟时间区间码UF8A。
所述输入单元380包含一按钮3801。所述物理参数应用单元335具有所述可变物理参数QU1A。所述可变物理参数QU1A进一步基于不同于所述物理参数目标状态JE1U的一特定物理参数状态JE16而被特征化。在所述处理单元331藉由检查所述第一数学关系KQ81而 导致所述可变物理参数QU1A处于所述物理参数目标状态JE1U的条件下,所述输入单元380接收使用所述按钮3801的一用户输入操作BQ82。所述处理单元331响应所述用户输入操作BQ82来向所述物理参数应用单元335传输用于导致所述可变物理参数QU1A离开所述物理参数目标状态JE1U以进入所述特定物理参数状态JE16的一操作信号SG87。
请参阅图6。一种用于控制一可变物理参数QU1A的方法ML82被公开。例如,所述可变物理参数QU1A基于一物理参数目标状态JE1U而被特征化。所述方法包含下列步骤:感测一时钟时间TH1A以产生一感测信号SY81,其中所述时钟时间TH1A基于由一测量值应用范围RQ1U所代表的一时钟时间应用区间HR1EU而被特征化;响应所述感测信号SY81,获得一测量值NY81;以及在所述时钟时间TH1A进入所述时钟时间应用区间HR1EU的一情况JP81藉由检查所述测量值NY81和所述测量值应用范围RQ1U之间的一第一数学关系KQ81而被确定的条件下,使所述可变物理参数QU1A处于所述物理参数目标状态JE1U。
请参阅图7和图8。图7为绘示于图1中的所述控制系统901的一实施结构9016的示意图。图8为绘示于第1图中的所述控制系统901的一实施结构9017的示意图。如图7和图8所示,所述实施结构9016和所述实施结构9017的每一结构包含所述控制装置212和所述功能装置130。所述功能装置130包含所述处理单元331、所述定时器342、所述存储单元332、所述物理参数应用单元335和所述接收单元337。所述定时器342、所述存储单元332、所述物理参数应用单元335和所述接收单元337皆受所述处理单元331控制。例如,所述物理参数应用单元335位于所述功能装置130的内部和所述功能装置130的外部的其中之一。
在一些实施例中,所述接收单元337从所述控制装置212接收起到指示所述物理参数应用状态JE1T的作用的所述控制信号SC81。所述处理单元331基于所述控制信号SC81来使所述可变物理参数QU1A处于所述物理参数应用状态JE1T。所述时钟时间指定区间HR1ET相邻于所述时钟时间应用区间HR1EU,并由一测量值指定范围RQ1T所代表,并具有一开始界限时间HR1ET1和相对于所述开始界限时间HR1ET1的一结束界限时间HR1ET2。所述测量值指定范围RQ1T具有一指定范围界限值对DQ1T,并由一测量值指定范围码EL1T所代表。例如,所述测量值指定范围RQ1T是一测量时间值目标范围。所述测量值指定范围码EL1T是一时间值目标范围码。所述指定范围界限值对DQ1T是一目标范围界限值对。
所述控制信号SC81起到指示所述时钟时间指定区间HR1ET的作用。所述处理单元331响应所述控制信号SC81来控制所述定时器342以使所述定时器342根据所述开始界限时间HR1ET1来测量所述时钟时间TH1A。例如,所述处理单元331基于所述控制信号SC81来使所述可变物理参数QU1A在所述时钟时间指定区间HR1ET之内处于所述物理参数应用 状态JE1T。
在一些实施例中,所述物理参数应用状态JE1T由一物理参数应用状态代码EW1T所代表。所述控制信号SC81藉由输送所述物理参数应用状态代码EW1T和所述测量值目标范围码EM1T的其中之一来起到指示所述物理参数应用状态JE1T的作用,并藉由输送所述指定范围界限值对DQ1T来起到指示所述时钟时间指定区间HR1ET和所述测量值指定范围RQ1T的至少其中之一的作用。所述处理单元331从所述控制信号SC81获得所述物理参数应用状态代码EW1T和所述指定范围界限值对DQ1T,并基于所获得的所述物理参数应用状态代码EW1T来使所述可变物理参数QU1A在所述时钟时间指定区间HR1ET之内处于所述物理参数应用状态JE1T。
所述功能装置130包含所述触发应用单元387。在所述接收单元337从所述控制装置212接收所述控制信号SC81之后,所述触发事件JQ81发生。例如,所述触发事件JQ81响应所述控制信号SC81而发生。在所述触发事件JQ81发生的条件下,所述处理单元331响应所述触发事件JQ81来执行使用所获得的所述指定范围界限值对DQ1T的一科学计算ME81以获得所述应用范围界限值对DQ1U,并藉由比较所述测量值NY81和所获得的所述应用范围界限值对DQ1U来检查所述数学关系KQ81。
例如,所述触发事件JQ81相关于所述触发应用单元387,并是一触发作用事件、一用户输入事件、一信号输入事件、一状态改变事件和一整数溢位事件的其中之一。所述触发应用单元387响应所述触发事件JQ81来提供所述操作请求信号SJ81到所述处理单元331,并藉此使所述处理单元331接收所述操作请求信号SJ81。所述处理单元331响应所述操作请求信号SJ81来执行所述科学计算ME81以获得所述应用范围界限值对DQ1U以便检查检查所述可变物理参数QU1A和所述物理参数目标状态JE1U之间的所述物理参数关系KD9U。
在一些实施例中,所述可变物理参数QU1A基于多个不同物理参数参考状态JE11、JE12、…而被特征化。所述多个不同物理参数参考状态JE11、JE12、…包含所述物理参数应用状态JE1T和所述物理参数目标状态JE1U,并分别由多个不同物理参数参考状态代码EW11、EW12、…所代表。例如,所述物理参数目标状态JE1U相同或不同于所述物理参数应用状态JE1T。所述物理参数目标状态JE1T根据一物理参数目标范围RD1ET而被预先确定。所述物理参数目标状态JE1U根据一物理参数目标范围RD1EU而被预先确定。所述多个不同物理参数参考状态JE11、JE12、…分别根据多个不同物理参数参考范围RD1E1、RD1E2、…而被预先确定。例如,所述物理参数目标范围RD1EU是一物理参数候选范围。
所述可变物理参数QU1A基于所述多个不同物理参数参考范围RD1E1、RD1E2、…而被特征化。所述多个不同物理参数参考范围RD1E1、RD1E2、…分别由多个不同测量值参考范 围RN11、RN12、…所代表,并包含所述物理参数目标范围RD1ET和所述物理参数目标范围RD1EU。所述物理参数目标范围RD1ET和所述物理参数目标范围RD1EU分别由一测量值目标范围RN1T和一测量值目标范围RN1U所代表。所述多个不同测量值参考范围RN11、RN12、…分别由多个不同测量值参考范围码EM11、EM12、…所代表,并包含所述测量值目标范围RN1T和所述测量值目标范围RN1U。
所述多个不同测量值参考范围码EM11、EM12、…包含一测量值目标范围码EM1T和一测量值目标范围码EM1U,并分别相同于所述多个不同物理参数参考状态代码EW11、EW12、…。例如,所述多个不同物理参数参考状态代码EW11、EW12、…包含所述物理参数应用状态代码EW1T和所述物理参数目标状态代码EW1U,并被预设。所述测量值目标范围码EM1T和所述测量值目标范围码EM1U分别相同于所述物理参数应用状态代码EW1T和所述物理参数目标状态代码EW1U。
在一些实施例中,所述时钟时间指定区间HR1ET和所述时钟时间应用区间HR1EU分别具有一指定时间长度LH8T和相同于所述指定时间长度LH8T的一应用时间长度LH8U。所述指定时间长度LH8T和所述应用时间长度LH8U分别由一测量时间长度值VH8T和一测量时间长度值VH8U所代表。例如,所述测量时间长度值VH8U相同于所述测量时间长度值VH8T。所述测量时间长度值VH8T和所述测量时间长度值VH8U皆基于所述定时器规格FT21来用所述指定测量值格式HH95而被预设。
所述时钟时间应用区间HR1EU具有相对于所述时钟时间指定区间HR1ET的一相对区间位置LE81。所述相对区间位置LE81由一相对值VL81所代表。例如,在所述时钟时间应用区间HR1EU相邻于所述时钟时间指定区间HR1ET的条件下,所述相对值VL81等于1。所述处理单元331响应所述操作请求信号SJ81来获得所述相对值VL81。所述科学计算ME81对于所获得的所述指定范围界限值对DQ1T执行一减法运算ZF81以获得所述测量时间长度值VH8U,并使用所获得的所述相对值VL81、所获得的所述测量时间长度值VH8U和所获得的所述指定范围界限值对DQ1T来获得所述应用范围界限值对DQ1U。
例如,所述存储单元332存储基于所预设的所述测量值指定范围码EL1T而被存储的所述物理参数应用状态代码EW1T。所述处理单元331藉由执行使用所获得的所述指定范围界限值对DQ1T的一科学计算MH81来获得所述测量值指定范围码EL1T,并基于所获得的所述测量值指定范围码EL1T来从所述存储单元332获得所存储的所述物理参数应用状态代码EW1T。
请参阅图9、图10、图11和图12。图9为绘示于第1图中的所述控制系统901的一实施结构9018的示意图。图10为绘示于图1中的所述控制系统901的一实施结构9019 的示意图。图11为绘示于图1中的所述控制系统901的一实施结构9020的示意图。图12为绘示于图1中的所述控制系统901的一实施结构9021的示意图。如图9、图10、图11和图12所示,所述实施结构9018、所述实施结构9019、所述实施结构9020和所述实施结构9021的每一结构包含所述控制装置212和所述功能装置130。所述功能装置130包含所述处理单元331、所述定时器342、所述物理参数应用单元335和所述存储单元332。所述定时器342、所述物理参数应用单元335和所述存储单元332皆受所述处理单元331控制。
在一些实施例中,所述定时器342受所述处理单元331控制,并用于测量所述时钟时间TH1A。所述定时器342被配置以符合所述定时器规格FT21。所述可变物理参数QU1A相关于所述时钟时间TH1A。所述时钟时间TH1A基于多个不同时钟时间参考区间HR1E1、HR1E2、…而被特征化。所述多个不同时钟时间参考区间HR1E1、HR1E2、…分别由多个不同测量值参考范围RQ11、RQ12、…所代表,并基于一默认时间参考区间顺序QB81而被排列。所述多个不同测量值参考范围RQ11、RQ12、…基于所述默认时间参考区间顺序QB81而被排列。例如,所述多个不同测量值参考范围RQ11、RQ12、…是多个时间值参考范围。
所述多个不同测量值参考范围RQ11、RQ12、…皆基于所述定时器规格FT21来用一指定测量值格式HH95而被预设,并分别由多个不同测量值参考范围码EL11、EL12、…所代表。例如,所述指定测量值格式HH95是一指定计数值格式。所述多个不同测量值参考范围码EL11、EL12、…分别是多个测量时间值参考范围码。所述存储单元332具有多个不同内存位置YS81、YS82、…,并在所述多个不同内存位置YS81、YS82、…分别存储多个物理参数指定范围码UQ11、UQ12、…。例如,所述多个物理参数指定范围码UQ11、UQ12、…分别等于多个物理参数指定状态代码。所述多个物理参数指定状态代码分别代表与所述可变物理参数QU1A相关的多个物理参数指定状态。
所述多个不同时钟时间参考区间HR1E1、HR1E2、…分别由多个时钟时间参考区间码所代表。例如,所述多个时钟时间参考区间码被配置以分别等于所述多个不同测量值参考范围码EL11、EL12、…。因此,所述多个不同测量值参考范围码EL11、EL12、…被配置以分别指示所述多个不同时钟时间参考区间HR1E1、HR1E2、…。例如,所述指定测量值格式HH95基于所述指定比特数目UY95而被特征化。
所述多个不同测量值参考范围码EL11、EL12、…包含一测量值指定范围码EL1T和一测量值应用范围码EL1U。所述多个不同时钟时间参考区间HR1E1、HR1E2、…包含一时钟时间指定区间HR1ET和一时钟时间应用区间HR1EU。所述测量值指定范围码EL1T和所述测量值应用范围码EL1U被配置以分别指示所述时钟时间指定区间HR1ET和所述时钟时间应 用区间HR1EU。所述多个不同测量值参考范围RQ11、RQ12、…包含一测量值指定范围RQ1T和一测量值应用范围RQ1U。所述时钟时间指定区间HR1ET和所述时钟时间应用区间HR1EU分别由所述测量值指定范围RQ1T和所述测量值应用范围RQ1U所代表。
在一些实施例中,所述多个不同内存位置YS81、YS82、…分别基于所述多个不同测量值参考范围码EL11、EL12、…而被标识。例如,所述多个不同内存位置YS81、YS82、…分别基于多个内存地址AS81、AS82、…而被标识,或分别由所述多个内存地址AS81、AS82、…所标识。所述多个内存地址AS81、AS82、…分别基于所述多个不同测量值参考范围码EL11、EL12、…而被预设。
例如,所述时钟时间TH1A进一步基于一额定时钟时间区间HR1E而被特征化。所述额定时钟时间区间HR1E包含所述多个不同时钟时间参考区间HR1E1、HR1E2、…,并由一额定测量值范围HR1N所代表。所述额定测量值范围HR1N包含所述多个不同测量值参考范围RQ11、RQ12、…,并基于所述额定时钟时间区间HR1E和所述定时器规格FT21来用所述指定测量值格式HH95而被预设。例如,所述额定时钟时间区间HR1E等于24小时。所述额定测量值范围HR1N是一额定时间值范围。
例如,所述测量应用功能规格GAL8包含一额定时钟时间区间表示GA8HE和一时钟时间参考区间表示GA8HR。所述额定时钟时间区间表示GA8HE用于表示所述额定时钟时间区间HR1E。所述时钟时间参考区间表示GA8HR用于表示所述多个不同时钟时间参考区间HR1E1、HR1E2、…。所述额定测量值范围HR1N等于所述全测量值范围QK8E的至少一第二部分,并基于所述定时器规格FT21、所述测量应用功能规格GAL8和所述第一数据编码规则WX8HE的其中之一来用所述指定测量值格式HH95而被预设。所述第一数据编码规则WX8HE用于转换所述额定时钟时间区间表示GA8HE,并基于所述定时器规格FT21而被制定。例如,所述额定测量值范围HR1N藉由执行使用所述第一数据编码规则WX8HE的一数据编码操作ZX8HE而被预设。
所述多个不同测量值参考范围RQ11、RQ12、…基于所述定时器规格FT21、所述测量应用功能规格GAL8和一数据编码规则WX8HR的其中之一来用所述指定测量值格式HH95而被预设。所述数据编码规则WX8HR用于转换所述时钟时间参考区间表示GA8HR,并基于所述定时器规格FT21而被制定。例如,所述多个不同测量值参考范围RQ11、RQ12、…藉由执行使用所述数据编码规则WX8HR的一数据编码操作ZX8HR而被预设。
在一些实施例中,所述多个物理参数指定范围码UQ11、UQ12、…被配置以分别基于所述多个不同测量值参考范围码EL11、EL12、…而被存储,并包含一物理参数目标范围码UQ1T和一物理参数目标范围码UQ1U。所述多个物理参数指定范围码UQ11、UQ12、…皆选 择自所述多个不同物理参数参考状态代码EW11、EW12、…。例如,物理参数目标范围码UQ1U是一物理参数候选范围码。
所述物理参数目标范围码UQ1T代表所述可变物理参数QU1A被期望在所述时钟时间指定区间HR1ET内处于的一物理参数目标范围RD1ET,并被配置以基于所述测量值指定范围码EL1T而被存储在一内存位置YS8T。所述内存位置YS8T基于一内存地址AS8T而被标识。所述多个不同测量值参考范围码EL11、EL12、…皆基于所述测量应用功能规格GAL8而被默认。例如,所述物理参数目标范围码UQ1T等于所预设的所述物理参数应用状态代码EW1T。所述物理参数目标范围码UQ1U相同于所述物理参数应用状态代码EW1U。
所述物理参数目标范围码UQ1U代表所述可变物理参数QU1A被期望在所述时钟时间应用区间HR1EU内处于的一物理参数目标范围RD1EU,并被配置以基于所述测量值应用范围码EL1U而被存储在一内存位置YS8U。所述内存位置YS8U基于一内存地址AS8U而被标识。所述物理参数目标范围RD1ET和所述物理参数目标范围RD1EU皆选择自所述多个不同物理参数参考范围RD1E1、RD1E2、…。例如,所述时钟时间应用区间HR1EU相邻于所述时钟时间指定区间HR1ET。所述物理参数目标范围码UQ1U相同于所述物理参数目标状态代码EW1U。所述物理参数目标范围RD1EU具有一默认物理参数目标范围界限ZD1U1和相对于所述默认物理参数目标范围界限ZD1U1的一默认物理参数目标范围界限ZD1U2。
在一些实施例中,当所述接收单元337接收所述控制信号SC81时,所述物理参数目标范围码UQ1T等于所预设的所述物理参数应用状态代码EW1T。所述控制信号SC81输送所默认的所述测量值指定范围码EL1T。所述处理单元331从所述控制信号SC81获得所输送的所述测量值指定范围码EL1T,基于所获得的所述测量值指定范围码EL1T来获得所述内存地址AS8T,并基于所获得的所述内存地址AS8T来接入被存储在所述内存位置YS8T的所述物理参数目标范围码UQ1T以获得所述物理参数目标范围码UQ1T和所预设的所述物理参数应用状态代码EW1T的其中之一。例如,所述时钟时间指定区间HR1ET和所述时钟时间应用区间HR1EU之间具有一预设时间间隔。
例如,在所述物理参数目标范围码UQ1T等于所预设的所述物理参数应用状态代码EW1T的条件下,所述控制信号SC81藉由输送所预设的所述测量值指定范围码EL1T来间接起到指示所述物理参数应用状态JE1T的作用。当所述接收单元337接收所述控制信号SC81时,所述可变物理参数QU1A处于一物理参数应用状态JE1L。所述处理单元331基于所获得的所述物理参数应用状态代码EW1T来执行用于检查所述可变物理参数QU1A和所述物理参数应用状态JE1T之间的一物理参数关系KD9T的一物理参数关系检查控制GX8T。例如,所述控制信号SC81藉由输送所预设的所述测量值指定范围码EL1T来起到指示所述时钟时 间指定区间HR1ET和所述测量值指定范围RQ1T的至少其中之一的作用,并藉由起到指示所述时钟时间指定区间HR1ET的作用来起到指示所述物理参数应用状态JE1T的作用。
在一些实施例中,在所述物理参数应用状态JE1L不同于所述物理参数应用状态JE1T且所述处理单元331藉由执行所述物理参数关系检查控制GX8T而确定所述物理参数应用状态JE1T和所述物理参数应用状态JE1L之间的一物理参数状态差异DT8T的条件下,所述处理单元331基于所获得的所述物理参数应用状态代码EW1T来执行一信号产生控制GY81以产生一操作信号SG81,并向所述物理参数应用单元335传输所述操作信号SG81。所述物理参数应用单元335响应所述操作信号SG81来使所述可变物理参数QU1A从所述物理参数应用状态JE1L进入所述物理参数应用状态JE1T。例如,所述可变物理参数QU1A藉由进入所述物理参数目标范围RD1ET来进入所述物理参数应用状态JE1T。
所述处理单元331基于所获得的所述测量值指定范围码EL1T来执行一数据存储控制操作GM8T,所述数据存储控制操作GM8T用于导致代表所述时钟时间指定区间HR1ET的一时钟时间应用区间码UF8T被存储。例如,所述时钟时间应用区间码UF8T相同于所获得的所述测量值指定范围码EL1T。所述数据存储控制操作GM8T藉由使用所述存储单元332来将所述时钟时间应用区间码UF8T指定到所述可变时钟时间区间码UF8A。
例如,所述存储单元332存储一可变物理参数范围码UN8A。在所述物理参数应用状态JE1L不同于所述物理参数应用状态JE1T且所述处理单元331藉由执行所述物理参数关系检查控制GX8T而确定所述物理参数状态差异DT8T的条件下,所述处理单元331藉由使用所述存储单元332来将所获得的所述物理参数目标范围码UQ1T和所获得的所述物理参数应用状态代码EW1T的其中之一指定到所述可变物理参数范围码UN8A。
在一些实施例中,所述定时器342被配置以藉由使用所述测量值指定范围RQ1T来代表所述时钟时间指定区间HR1ET,并被配置以藉由使用所述测量值应用范围RQ1U来代表所述时钟时间应用区间HR1EU。所述控制信号SC81进一步输送代表所述指定时间长度LH8T的所述测量时间长度值VH8T和代表一时钟参考时间TR81的一时钟参考时间值NR81。例如,所述时钟参考时间TR81接近一目前时间。例如,所述时钟参考时间TR81与所述目前时间的一时间差异在一预设时间长度内。所述时钟参考时间值NR81基于所述时钟参考时间TR81和所述定时器规格FT21来以所述指定测量值格式HH95而被预设。
所述测量值指定范围RQ1T具有所述指定范围界限值对DQ1T。所述指定范围界限值对DQ1T包含一指定范围界限值DQ13和相对于所述指定范围界限值DQ13的一指定范围界限值DQ14。例如,所述指定范围界限值DQ13和所述指定范围界限值DQ14分别是一开始范围界限值和一结束范围界限值。所述指定范围界限值DQ13等于所述时钟参考时间值NR81。
所述控制信号SC81输送一控制信息CG81。所述控制信息CG81包含所述测量值指定范围码EL1T、所述时钟参考时间值NR81和所述测量时间长度值VH8T。例如,所述测量应用功能规格GAL8包含一时钟时间表示GA8TR。所述时钟时间表示GA8TR用于表示所述时钟参考时间TR81。所述时钟参考时间值NR81基于所述时钟时间表示GA8TR、所述定时器规格FT21和用于转换所述时钟时间表示GA8TR的一数据编码操作ZX8TR来以所述指定测量值格式HH95而被预设。
所述控制装置212包含一操作单元297。所述处理单元331响应所述控制信号SC81来从所述控制信号SC81获得所述测量值指定范围码EL1T、所述时钟参考时间值NR81和所述时钟参考时间值NR81。例如,所述操作单元297被配置以获得所默认的所述测量值指定范围码EL1T、所预设的所述时钟参考时间值NR81和所预设的所述测量时间长度值VH8T,并基于所获得的所述时钟参考时间值NR81、所获得的所述测量值指定范围码EL1T和所获得的所述测量时间长度值VH8T来输出输送所述控制信息CG81的所述控制信号SC81。
在一些实施例中,所述处理单元331基于所获得的所述时钟参考时间值NR81来导致所述定时器342在一启动时间TT82之内启动,并藉此导致所述定时器342在所述启动时间TT82之内藉由感测所述时钟时间TH1A来产生一感测信号SY80。例如,所述感测信号SY80是一时钟时间信号。所述感测信号SY80是一初始时间信号,并以所述指定测量值格式HH95输送一测量值NY80。例如,所述测量值NY80是一初始计数值。例如,所述测量值NY80等于所述时钟参考时间值NR81。
例如,所述定时器342被配置以具有一可变计数值NY8A。在所述接收单元337从所述控制装置212接收输送所述时钟参考时间值NR81的所述控制信号SC81的条件下,所述处理单元331基于所获得的所述时钟参考时间值NR81来启动所述定时器342以执行用于所述测量应用功能FA81的一计数操作BD81以改变所述可变计数值NY8A。所述可变计数值NY8A在所述启动时间TT82之内被配置以等于所述测量值NY80,并以所述指定测量值格式HH95而被提供。例如,所述测量值NY80被配置以相同于所获得的所述时钟参考时间值NR81。
在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET之内的条件下,所述处理单元331基于所述计数操作BD81来到达一操作时间TY81。在所述操作时间TY81之内,所述定时器342感测所述时钟时间TH1A以导致所述可变计数值NY8A等于一测量值NY81,并藉此产生输送所述测量值NY81的一感测信号SY81。例如,所述操作时间TY81是一指定时间。
例如,所述触发应用单元387响应所述触发事件JQ81来提供所述操作请求信号SJ81 到所述处理单元331,并藉此使所述处理单元331接收所述操作请求信号SJ81。所述处理单元331响应所述操作请求信号SJ81来在所述操作时间TY81之内从所述感测信号SY81以所述指定测量值格式HH95获得所述测量值NY81,并在所述操作时间TY81之内藉由执行使用所获得的所述测量值指定范围码EL1T的一科学计算MH85来获得或确定所述测量值应用范围码EL1U以便检查检查所述可变物理参数QU1A和所述物理参数目标状态JE1U之间的所述物理参数关系KD9U。
在一些实施例中,所述测量值指定范围RQ1T具有所述指定范围界限值对DQ1T。所述指定范围界限值对DQ1T包含所述指定范围界限值DQ13和相对于所述指定范围界限值DQ13的所述指定范围界限值DQ14。所述测量值指定范围RQ1T和所述指定范围界限值对DQ1T皆基于所述时钟时间指定区间HR1ET和所述定时器规格FT21来用所述指定测量值格式HH95而被预设。所述测量值应用范围RQ1U具有所述应用范围界限值对DQ1U。所述应用范围界限值对DQ1U包含所述第一应用范围界限值DQ15和相对于所述第一应用范围界限值DQ15的所述第二应用范围界限值DQ16。所述测量值应用范围RQ1U和所述应用范围界限值对DQ1U皆基于所述时钟时间应用区间HR1EU和所述定时器规格FT21来用所述指定测量值格式HH95而被预设。
例如,所述测量应用功能规格GAL8包含一时钟时间指定区间表示GA8HT和一时钟时间应用区间表示GA8HU。所述时钟时间指定区间表示GA8HT用于表示所述时钟时间指定区间HR1ET。所述时钟时间应用区间表示GA8HU用于表示所述时钟时间应用区间HR1EU。所述测量值指定范围RQ1T和所述指定范围界限值对DQ1T皆基于所述时钟时间指定区间表示GA8HT、所述定时器规格FT21和用于转换所述时钟时间指定区间表示GA8HT的一数据编码操作ZX8HT来用所述指定测量值格式HH95而被预设。所述测量值应用范围RQ1U和所述应用范围界限值对DQ1U皆基于所述时钟时间应用区间表示GA8HU、所述定时器规格FT21和用于转换所述时钟时间应用区间表示GA8HU的一数据编码操作ZX8HU来用所述指定测量值格式HH95而被预设。
在一些实施例中,所述处理单元331基于所述控制信号SC81来在所述操作时间TY81之内确定所述测量值应用范围码EL1U以便检查检查所述可变物理参数QU1A和所述物理参数目标状态JE1U之间的所述物理参数关系KD9U。例如,所述处理单元331响应所述操作请求信号SJ81来基于所述控制信号SC81而在所述操作时间TY81之内确定所述测量值应用范围码EL1U。所述处理单元331在所述操作时间TY81之内确定所述相对值VL81,并藉由执行使用所确定的所述相对值VL81、所获得的所述测量时间长度值VH8T和所获得的所述时钟参考时间值NR81的一科学计算ME85来获得所述应用范围界限值对DQ1U。
例如,所述处理单元331响应响应所述操作请求信号SJ81来在所述操作时间TY81之内确定所述相对值VL81,并基于所确定的所述相对值VL81和所获得的所述测量值指定范围码EL1T来确定所述测量值应用范围码EL1U。所述处理单元331基于所获得的所述测量值NY81和所获得的所述应用范围界限值对DQ1U之间的所述数据比较CF81来检查所述数学关系KQ81以做出所述测量值NY81是否为于所选择的所述测量值应用范围RQ1U之内的所述逻辑决定PQ81。在所述逻辑决定PQ81是肯定的条件下,所述处理单元331确定所述时钟时间TH1A目前所处于的所述时钟时间应用区间HR1EU。
在所获得的所述测量值指定范围码EL1T不同于所确定的所述测量值应用范围码EL1U且所述处理单元331藉由做出所述逻辑决定PQ81而确定所述时钟时间TH1A目前所处于的所述时钟时间应用区间HR1EU的条件下,所述处理单元331基于等于所述测量值指定范围码EL1T的所述可变时钟时间区间码UF8A和所确定的所述测量值应用范围码EL1U之间的一码差异DG83来执行所述数据存储控制操作GM8U。所述数据存储控制操作GM8U使用所述存储单元332以将所确定的所述测量值应用范围码EL1U指定到所述可变时钟时间区间码UF8A。
在一些实施例中,当所述触发事件JQ81发生时,所述物理参数目标范围码UQ1U等于所预设的所述物理参数目标状态代码EW1U。在所述触发事件JQ81发生的条件下,所述处理单元331响应所述操作请求信号SJ81来基于所述控制信号SC81而确定所述测量值应用范围码EL1U。在所述处理单元331藉由做出所述逻辑决定PQ81而确定所述时钟时间TH1A目前所处于的所述时钟时间应用区间HR1EU的条件下,所述处理单元331基于所确定的所述测量值应用范围码EL1U来获得所述内存地址AS8U,并基于所获得的所述内存地址AS8U来接入被存储在所述内存位置YS8U的所述物理参数目标范围码UQ1U以获得所述物理参数目标范围码UQ1U和所预设的所述物理参数目标状态代码EW1U的其中之一。
例如,当所述处理单元331检查所述数学关系KQ81时,所述可变物理参数QU1A处于所述物理参数应用状态JE1T。所述处理单元331基于所获得的所述物理参数目标状态代码EW1U来执行用于检查所述可变物理参数QU1A和所述物理参数目标状态JE1U之间的所述物理参数关系KD9U的所述物理参数关系检查控制GX8U。在所述物理参数应用状态JE1T不同于所述物理参数目标状态JE1U且所述处理单元331藉由执行所述物理参数关系检查控制GX8U而确定所述物理参数目标状态JE1U和所述物理参数应用状态JE1T之间的所述物理参数状态差异DT81的条件下,所述处理单元331基于所获得的所述物理参数目标状态代码EW1U来执行所述信号产生控制GY85以产生所述操作信号SG85,并向所述物理参数应用单元335传输所述操作信号SG85。
所述物理参数应用单元335响应所述操作信号SG85来使所述可变物理参数QU1A从所述物理参数应用状态JE1T进入所述物理参数目标状态JE1U。例如,所述可变物理参数QU1A藉由进入所述物理参数目标范围RD1EU来进入所述物理参数目标状态JE1U。例如,在所述物理参数应用状态JE1T不同于所述物理参数目标状态JE1U且所述处理单元331藉由执行所述物理参数关系检查控制GX8U而确定物理参数状态差异DT81的条件下,所述处理单元331藉由使用所述存储单元332来将所获得的所述物理参数目标范围码UQ1U和所获得的所述物理参数目标状态代码EW1U的其中之一指定到所述可变物理参数范围码UN8A。
在一些实施例中,所述控制装置212包含所述操作单元297和耦合于所述操作单元297的一状态改变侦测器475。所述多个物理参数指定范围码UQ11、UQ12、…属于一物理参数指定范围码类型TS81。所述物理参数指定范围码类型TS81由一物理参数指定范围码类型标识符HS81所标识。所述物理参数指定范围码类型标识符HS81被预设。所述内存地址AS8T基于所预设的所述物理参数指定范围码类型标识符HS81和所预设的所述测量值指定范围码EL1T而被预设。所述内存地址AS8U基于所预设的所述物理参数指定范围码类型标识符HS81和所预设的所述测量值应用范围码EL1U而被预设。例如,所述状态改变侦测器475用于导致所述操作单元297向所述接收单元337传输所述控制信号SC81。
在所述接收单元337接收所述控制信号SC81之前,所述操作单元297被配置以取得所默认的所述物理参数目标范围码UQ1T、所预设的所述物理参数指定范围码类型标识符HS81和所预设的所述测量值指定范围码EL1T,并预先基于所取得的所述物理参数指定范围码类型标识符HS81和所取得的所述测量值指定范围码EL1T来取得所述内存地址AS8T。所述操作单元297基于所取得的所述物理参数目标范围码UQ1T和所取得的所述内存地址AS8T来提供一写入请求信息WS8T到所述接收单元337。所述写入请求信息WS8T包含所取得的所述物理参数目标范围码UQ1T和所取得的所述内存地址AS8T。
例如,在所述接收单元337接收所述控制信号SC81之前,所述接收单元337从所述操作单元297接收所述写入请求信息WS8T。所述处理单元331从所接收的所述写入请求信息WS8T获得所包含的所述物理参数目标范围码UQ1T和所包含的所述内存地址AS8T,并基于所获得的所述物理参数目标范围码UQ1T和所获得的所述内存地址AS8T来使用所述存储单元332以在所述内存位置YS8T存储所获得的所述物理参数目标范围码UQ1T。
在所述接收单元337接收所述控制信号SC81之前,所述操作单元297被配置以取得所述物理参数目标范围码UQ1U和所预设的所述测量值应用范围码EL1U,并预先基于所取得的所述物理参数指定范围码类型标识符HS81和所取得的所述测量值应用范围码EL1U来取得所述内存地址AS8U。所述处理单元331基于所取得的所述物理参数目标范围码UQ1U 和所取得的所述内存地址AS8U来来提供一写入请求信息WS8U到所述接收单元337。所述写入请求信息WS8U包含所取得的所述物理参数目标范围码UQ1U和所取得的所述内存地址AS8U。
例如,在所述接收单元337接收所述控制信号SC81之前,所述接收单元337从所述操作单元29接收所述写入请求信息WS8U。所述处理单元331从所接收的所述写入请求信息WS8U获得所包含的所述物理参数目标范围码UQ1U和所包含的所述内存地址AS8U,并基于所获得的所述物理参数目标范围码UQ1U和所获得的所述内存地址AS8U来使用所述存储单元332以在所述内存位置YS8U存储所获得的所述物理参数目标范围码UQ1U。
请参阅图13和图14。图13为绘示于图1中的所述控制系统901的一实施结构9022的示意图。图14为绘示于图1中的所述控制系统901的一实施结构9023的示意图。如图13和图14所示,所述实施结构9022和所述实施结构9023的每一结构包含所述控制装置212和所述功能装置130。所述功能装置130包含一操作单元397、所述物理参数应用单元335、所述存储单元332和耦合于所述处理单元331的一感测单元334。所述操作单元397包含所述处理单元331、所述接收单元337和所述定时器342。所述接收单元337、所述定时器342、所述物理参数应用单元335、所述存储单元332和所述感测单元334皆受所述处理单元331控制。
在一些实施例中,所述可变物理参数QU1A进一步基于一物理参数目标范围RD1ET和不同于所述物理参数目标范围RD1ET的一物理参数应用范围RD1EL而被特征化。所述物理参数应用范围RD1EL由一测量值应用范围RN1L所代表。所述感测单元334感测所述可变物理参数QU1A以产生一感测信号SN81。在所述接收单元337接收起到指示所述物理参数目标范围RD1ET的作用的所述控制信号SC81的条件下,所述处理单元331响应所述感测信号SN81来获得一测量值VN81。例如,所述测量值VN81是一物理参数测量值。当所述接收单元337接收所述控制信号SC81时,所述感测单元334感测所述可变物理参数QU1A以产生所述感测信号SN81。
在所述处理单元331藉由检查所述测量值VN81和所述测量值应用范围RN1L之间的一数学关系KV81而确定所述可变物理参数QU1A目前所处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331基于所述控制信号SC81而导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。例如,在所述处理单元331确定所述可变物理参数QU1A目前所处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331基于所述控制信号SC81而向所述物理参数应用单元335传输一操作信号SG81。所述操作信号SG81用于导致所述可变物理参数QU1A从所述可变物理参数QU1A目前所处于的所述物理参数应用范围 RD1EL进入所述物理参数目标范围RD1ET。
在一些实施例中,所述时钟时间指定区间HR1ET相关于所述物理参数目标范围RD1ET。所述控制信号SC81藉由起到指示所述时钟时间指定区间HR1ET的作用来起到指示所述物理参数目标范围RD1ET的作用。例如,所述控制信号SC81藉由输送所述测量值指定范围码EL1T来使所述处理单元331获得所述物理参数应用状态代码EW1T以起到指示所述物理参数目标范围RD1ET的作用。在所述处理单元331确定所述可变物理参数QU1A目前所处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331基于所述控制信号SC81而确定所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL之间的一范围差异DB81以向所述物理参数应用单元335传输所述操作信号SG81。
所述物理参数应用状态JE1T根据所述物理参数目标范围RD1ET而被预先确定。所述操作信号SG81用于导致所述可变物理参数QU1A进入所述物理参数应用状态JE1T。所述时钟时间指定区间HR1ET相邻于所述时钟时间应用区间HR1EU。在所述时钟时间TH1A处于所述时钟时间指定区间HR1ET的条件下,所述可变物理参数QU1A处于所述物理参数目标范围RD1ET和所述物理参数应用状态JE1T的其中之一。所述处理单元331响应所述控制信号SC81来启动所述定时器342以使所述定时器342在所述时钟时间指定区间HR1ET之内感测所述时钟时间TH1A,并在所述时钟时间应用区间HR1EU之内感测所述时钟时间TH1A。
在一些实施例中,所述物理参数目标范围RD1ET由一测量值目标范围RN1T所代表。所述控制信号SC81藉由起到指示所述测量值目标范围RN1T的作用来起到指示所述物理参数目标范围RD1ET的作用。例如,所述处理单元331基于所述控制信号SC81而确定所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围差异DS81以确定所述范围差异DB81。例如,所述处理单元331藉由执行所述物理参数关系检查控制GX8T来确定所述范围差异DB81。所述物理参数关系检查控制GX8T包含用于检查所述测量值VN81和所述测量值应用范围RN1L之间的所述数学关系KV81的一检查操作BV81。
例如,耦合于所述操作单元397的所述感测单元334感测所述可变物理参数QU1A以产生所述感测信号SN81。在所述操作单元397接收所述控制信号SC81的条件下,所述操作单元397响应所述感测信号SN81来获得所述测量值VN81。在所述操作单元397藉由检查所述数学关系KV81而确定所述可变物理参数QU1A目前所处于的所述物理参数应用范围RD1EL的条件下,所述操作单元397基于所述控制信号SC81而导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
在一些实施例中,所述物理参数目标范围RD1EU由一测量值目标范围RN1U所代表。所述控制信号SC81用于使所述功能装置130执行所述物理参数关系检查控制GX8U。在所 述触发事件JQ81发生或所述处理单元331获得所述测量值NY81的条件下,所述感测单元334感测所述可变物理参数QU1A以产生一感测信号SN85。所述处理单元331响应所述感测信号SN85来获得一测量值VN85。在所述处理单元331基于所述控制信号SC81而确定或获得所述物理参数目标范围码UQ1U的条件下,所述处理单元331基于所确定的所述物理参数目标范围码UQ1U来执行用于检查所述测量值VN85和一测量值指示范围RN1G之间的一数学关系KV86的一检查操作BV86。例如,所述测量值指示范围RN1G等于所述测量值目标范围RN1T和所述测量值目标范围RN1U的其中之一。
在所述处理单元331基于所述检查操作BV86而确定所述物理参数目标范围RD1ET和所述物理参数目标范围RD1EU之间的一范围差异DB86的条件下,所述处理单元331基于所确定的所述物理参数目标范围码UQ1U来执行所述信号产生控制GY85以产生所述操作信号SG85。所述操作信号SG85用于控制所述物理参数应用单元335以使所述可变物理参数QU1A在所述时钟时间应用区间HR1EU之内从所述物理参数应用状态JE1T进入所述物理参数目标状态JE1U。
例如,所述处理单元331藉由执行所述物理参数关系检查控制GX8U来确定所述范围差异DB86。所述物理参数关系检查控制GX8U包含用于检查所述测量值VN85和所述测量值指示范围RN1G之间的所述数学关系KV86的所述检查操作BV86。所述处理单元331藉由检查所述数学关系KV86来检查所述可变物理参数QU1A和所述物理参数目标范围RD1EU之间的一物理参数关系KD8U。
请参阅图15和图16。图15为绘示于图1中的所述控制系统901的一实施结构9024的示意图。图16为绘示于图1中的所述控制系统901的一实施结构9025的示意图。请额外参阅图13。如图15和图16所示,所述实施结构9024和所述实施结构9025的每一结构包含所述控制装置212和所述功能装置130。在一些实施例中,所述感测单元334被配置以符合与所述测量值应用范围RN1L相关的一传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的一感测信号产生HF81。所述测量值VN81以一指定测量值格式HH81而被所述处理单元331获得。
所述测量值目标范围RN1T和所述测量值应用范围RN1L皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预设。例如,所述测量值目标范围RN1T和所述测量值应用范围RN1L皆基于所述传感器测量范围表示GW8R和所述传感器灵敏度表示GW81来用所述指定测量值格式HH81而被预设。所述测 量值目标范围RN1T和所述测量值应用范围RN1L分别具有一目标范围界限值对DN1T和一应用范围界限值对DN1L。所述控制信号SC81输送所述目标范围界限值对DN1T、所述应用范围界限值对DN1L和一句柄CC1T。例如,所述句柄CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预设。所述控制信号SC81藉由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。
在一些实施例中,所述功能装置130进一步包含耦合于所述处理单元331的一传输单元384。所述传输单元384受所述处理单元331控制。所述处理单元331从所述控制信号SC81获得所述应用范围界限值对DN1L,并藉由比较所述测量值VN81和所获得的所述应用范围界限值对DN1L来检查所述数学关系KV81以做出所述测量值VN81是否为于所述测量值应用范围RN1L之内的一逻辑决定PB81。在所述逻辑决定PB81是肯定的条件下,所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL。
所述处理单元331从所述控制信号SC81获得所述目标范围界限值对DN1T。在所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331藉由比较所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L来检查所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围关系KE8A以做出所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L是否相等的一逻辑决定PY81。
在所述逻辑决定PY81是否定的条件下,所述处理单元331辨识所述范围关系KE8A为一范围相异关系以确定所述范围差异DS81。所述处理单元331从所述控制信号SC81获得所述句柄CC1T。在所述处理单元331确定所述范围差异DS81的条件下,所述处理单元331基于所获得的所述句柄CC1T来执行一信号产生控制GY81以产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一操作信号SG81。例如,所述操作信号SG81是一功能信号和一控制信号的其中之一。
在一些实施例中,在所述处理单元331于一操作时间TF81之内执行所述信号产生控制GY81之后,所述感测单元334感测所述可变物理参数QU1A以产生一感测信号SN82。所述处理单元331于所述操作时间TF81之后的一指定时间TG82之内响应所述感测信号SN82来以所述指定测量值格式HH81获得一测量值VN82。在所述处理单元331于所述指定时间TG82之内藉由比较所述测量值VN82和所获得的所述目标范围界限值对DN1T来确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331基于所述测量值VN82来使所述传输单元384向所述控制装置212传输响应所述控制信号 SC81的一控制响应信号SE81,并执行一数据存储控制操作GU81。
所述控制响应信号SE81输送所述测量值VN82。所述数据存储控制操作GU81用于导致代表所确定的所述物理参数目标范围RD1ET的一物理参数目标范围码UN8T被记录。例如,所述数据存储控制操作GU81是一确保操作。所述处理单元331藉由执行所述数据存储控制操作GU81来将所述物理参数目标范围码UN8T指定到在所述存储空间SU11中的所述可变物理参数范围码UN8A。
所述定时器342在一定时操作模式WU21中用于测量所述时钟时间TH1A。所述可变物理参数QU1A相关于一可变时间长度LF8A。例如,所述定时器342在与所述定时操作模式WU21不同的一定时操作模式WU11中用于测量所述可变时间长度LF8A。所述可变时间长度LF8A基于一参考时间长度LJ8V而被特征化。所述参考时间长度LJ8V由一测量时间长度值CL8V所代表。例如,所述测量时间长度值CL8V基于所述定时器规格FT21而被默认。
在一些实施例中,所述可变物理参数QU1A基于一物理参数目标状态JE1V和不同于所述物理参数目标状态JE1V的一物理参数目标状态JE1W而被特征化。所述物理参数目标状态JE1V相同或不同于所述物理参数目标状态JE1U。所述物理参数目标状态JE1V由一物理参数目标状态代码EW1V所代表。在所述可变物理参数QU1A于所述时钟时间应用区间HR1EU之内处于所述物理参数目标状态JE1U的条件下,所述接收单元337从所述控制装置212接收一控制信号SC88。所述控制信号SC88输送所述测量时间长度值CL8V和所述物理参数目标状态代码EW1V。所述多个不同物理参数参考状态JE11、JE12、…包含所述物理参数目标状态JE1V和所述物理参数目标状态JE1W。
所述处理单元331从所述控制信号SC88获得所述测量时间长度值CL8V和所述物理参数目标状态代码EW1V,响应所述控制信号SC88来停止所述定时器342,基于所获得的所述测量时间长度值CL8V来重新启动所述定时器342,并藉由重新启动所述定时器342来使所述定时器342操作于所述定时操作模式WU11中。所述定时器342被重新启动以开始与所述参考时间长度LJ8V匹配的一应用时间长度LT8V,并于所述定时操作模式WU11中藉由执行用于所述应用时间长度LT8V的一计数操作BC8V来经历所述应用时间长度LT8V以到达一特定时间TJ8T。
所述处理单元331基于所获得的所述物理参数目标状态代码EW1V来使所述可变物理参数QU1A于所述应用时间长度LT8V之内处于所述物理参数目标状态JE1V。在所述处理单元331到达所述特定时间TJ8T的条件下,所述处理单元331在所述特定时间TJ8T之内执行用于导致所述可变物理参数QU1A离开所述物理参数目标状态JE1V以进入所述物理参数目标状态JE1W的一信号产生操作BY89。
例如,所述多个不同物理参数参考范围RD1E1、RD1E2、…包含一物理参数目标范围RD1EV和不同于所述物理参数目标范围RD1EV的一物理参数目标范围RD1EW。所述物理参数目标状态JE1V和所述物理参数目标状态JE1W分别根据所述物理参数目标范围RD1EV和所述物理参数目标范围RD1EW而被预先确定。例如,所述处理单元331藉由执行所述信号产生操作BY89来产生用于导致所述可变物理参数QU1A离开所述物理参数目标状态JE1V以进入所述物理参数目标状态JE1W的一操作信号SG89,并向所述物理参数应用单元335传输所述操作信号SG89。
在一些实施例中,在所述可变物理参数QU1A藉由检查所述数学关系KQ81而于所述时钟时间应用区间HR1EU之内处于所述物理参数目标状态JE1U的条件下,所述接收单元337从所述控制装置212接收一控制信号SC8H。当所述接收单元337接收所述控制信号SC8H时,所述感测单元334感测所述可变物理参数QU1A以产生一感测信号SN8H。当所述接收单元337接收所述控制信号SC8A时,所述定时器342感测所述时钟时间TH1A以产生一感测信号SY8H。
所述处理单元331响应所述感测信号SN8H来以所述指定测量值格式HH81获得一测量值VN8H,并响应所述感测信号SY8H来以所述指定测量值格式HH95获得一测量值NY8H。所述处理单元331响应所述控制信号SC8H来使用所述测量值VN8H和所述测量值NY8H以使所述传输单元384向所述控制装置212传输响应所述控制信号SC8H的一控制响应信号SE8H。所述控制响应信号SE8H输送所述测量值VN8H和所述测量值NY8H,并被所述控制装置212使用以执行与所述可变物理参数QU1A和所述时钟时间TH1A的至少其中之一相关的一特定实际操作。例如,所述控制装置212接收所述控制响应信号SE8H,从所接收的所述控制响应信号SE8H获得所述测量值VN8A和所述测量值NY8H,基于所获得的所述测量值VN8H来显示与所述可变物理参数QU1A相关的一测量信息LZ8H,并基于所获得的所述测量值NY8H来显示与所述时钟时间TH1A相关的一测量信息LX8H。
请参阅图17、图18、图19、图20和图21。图17为绘示于图1中的所述控制系统901的一实施结构9026的示意图。图18为绘示于图1中的所述控制系统901的一实施结构9027的示意图。图19为绘示于图1中的所述控制系统901的一实施结构9028的示意图。图20为绘示于图1中的所述控制系统901的一实施结构9029的示意图。图21为绘示于图1中的所述控制系统901的一实施结构9030的示意图。如图17、图18、图19、图20和图21所示,所述实施结构9026、所述实施结构9027、所述实施结构9028、所述实施结构9029和所述实施结构9030的每一结构包含所述控制装置212和所述功能装置130。
请额外参阅图13。在一些实施例中,所述功能装置130包含所述操作单元397、所述 物理参数应用单元335、所述存储单元332和耦合于所述处理单元331的所述感测单元334。所述操作单元397包含所述处理单元331、所述定时器342、所述接收单元337、耦合于所述处理单元331的一输入单元380、耦合于所述处理单元331的一显示单元382、和耦合于所述处理单元331的一传输单元384。所述物理参数应用单元335、所述存储单元332、所述感测单元334、所述定时器342、所述接收单元337、所述输入单元380、所述显示单元382和所述传输单元384皆受所述处理单元331控制。例如,所述物理参数应用单元335设置于所述功能装置130的内部,或设置于所述功能装置130的外部。
所述处理单元331被配置以执行与所述物理参数应用范围RD1EL相关的一测量应用功能FA81,并包含耦合于所述物理参数应用单元335的一输出组件338。所述测量应用功能FA81被配置以符合与所述物理参数应用范围RD1EL相关的一测量应用功能规格GAL8。所述感测单元334被配置以符合与所述测量值应用范围RN1L相关的一传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的一感测信号产生HF81。
在所述接收单元337从一控制装置212接收所述控制信号SC81的条件下,所述处理单元331响应所述感测信号SN81来以一指定测量值格式HH81获得所述测量值VN81。例如,所述指定测量值格式HH81基于一指定比特数目UY81而被特征化。例如,当所述接收单元337接收所述控制信号SC81时,所述感测单元334感测所述可变物理参数QU1A以执行相依于所述传感器灵敏度YW81的所述感测信号产生HF81,所述感测信号产生HF81用于产生所述感测信号SN81。在所述处理单元331基于所述控制信号SC81而确定所述范围差异DS81的条件下,所述处理单元331使用所述输出组件338以输出用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的所述操作信号SG81。
所述可变物理参数QU1A进一步基于一额定物理参数范围RD1E而被特征化。例如,所述额定物理参数范围RD1E由一额定测量值范围RD1N所代表,并包含由多个不同测量值参考范围RN11、RN12、…所分别代表的多个不同物理参数参考范围RD1E1、RD1E2、…。所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL皆包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中。所述测量应用功能规格GAL8包含所述传感器规格FU11、用于表示所述额定物理参数范围RD1E的一额定物理参数范围表示GA8E、和用于表示所述物理参数应用范围RD1EL的一物理参数应用范围表示GA8L。
所述额定测量值范围RD1N基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和用于转换所述额定物理参数范围表示GA8E的一数据编码操作ZX81来用所 述指定测量值格式HH81而被预设,具有一额定范围界限值对DD1A,并包含由多个不同测量值参考范围码EM11、EM12、…所分别代表的所述多个不同测量值参考范围RN11、RN12、…。例如,所述额定范围界限值对DD1A用所述指定测量值格式HH81而被预设。所述多个不同测量值参考范围RN11、RN12、…包含所述测量值目标范围RN1T和所述测量值应用范围RN1L。所述额定测量值范围RD1N和所述额定范围界限值对DD1A皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预设。
在一些实施例中,所述测量值目标范围RN1T由包含于所述多个不同测量值参考范围码EM11、EM12、…中的一测量值目标范围码EM1T所代表;藉此所述测量值目标范围码EM1T被配置以指示所述物理参数目标范围RD1ET。例如,所述多个不同测量值参考范围码EM11、EM12、…皆基于所述测量应用功能规格GAL8而被默认。所述控制信号SC81藉由输送所述测量值目标范围码EM1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。例如,所述测量值目标范围码EM1T等于所述物理参数应用状态代码EW1T。
所述测量值应用范围RN1L由包含于所述多个不同测量值参考范围码EM11、EM12、…中的一测量值应用范围码EM1L所代表,并具有一应用范围界限值对DN1L;藉此所述测量值应用范围码EM1L被配置以指示所述物理参数应用范围RD1EL。例如,所述应用范围界限值对DN1L基于所述物理参数应用范围表示GA8L、所述传感器测量范围表示GW8R和用于转换所述物理参数应用范围表示GA8L的一数据编码操作ZX82来用所述指定测量值格式HH81而被预设。所述测量值应用范围RN1L基于所述物理参数应用范围表示GA8L、所述传感器测量范围表示GW8R和所述数据编码操作ZX82来用所述指定测量值格式HH81而被预设。
在一些实施例中,所述存储单元332存储所默认的所述额定范围界限值对DD1A和一可变物理参数范围码UN8A。所述控制信号SC81进一步输送所述额定范围界限值对DD1A。当所述接收单元337接收所述控制信号SC81时,所述可变物理参数范围码UN8A等于选择自所述多个不同测量值参考范围码EM11、EM12、…的一特定测量值范围码EM14。
例如,所述特定测量值范围码EM14指示基于一感测操作ZS81而被所述处理单元331先前确定的一特定物理参数范围RD1E4。所述特定物理参数范围RD1E4选择自所述多个不同物理参数参考范围RD1E1、RD1E2、…。由所述感测单元334所执行的所述感测操作ZS81用于感测所述可变物理参数QU1A。在所述接收单元337接收所述控制信号SC81之前,所述特定测量值范围码EM14被指定到所述可变物理参数范围码UN8A。
例如,在所述接收单元337接收所述控制信号SC81之前,所述处理单元331获得所述特定测量值范围码EM14。在所述处理单元331于所述接收单元337接收所述控制信号 SC81之前基于所述感测操作ZS81而确定所述特定物理参数范围RD1E4的条件下,所述处理单元331藉由使用所述存储单元332来将所获得的所述特定测量值范围码EM14指定到所述可变物理参数范围码UN8A。所述特定测量值范围码EM14代表被配置以代表所述特定物理参数范围RD1E4的一特定测量值范围。所述特定测量值范围基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预设。例如,所述感测单元334藉由执行所述感测操作ZS81来执行相依于所述传感器灵敏度YW81的一感测信号产生以产生一感测信号。
在所述接收单元337接收所述控制信号SC81之前,所述处理单元331接收所述感测信号,响应所述感测信号来以所述指定测量值格式HH81获得一特定测量值,并执行用于检查所述特定测量值和所述特定测量值范围之间的一数学关系的一特定检查操作。在所述处理单元331基于所述特定检查操作而确定所述可变物理参数QU1A处于的所述特定物理参数范围RD1E4的条件下,所述处理单元331藉由使用所述存储单元332来将所获得的所述特定测量值范围码EM14指定到所述可变物理参数范围码UN8A。所述处理单元331响应用于感测所述可变物理参数QU1A的一特定感测操作来决定所述处理单元331是否要使用所述存储单元332以改变所述可变物理参数范围码UN8A。例如,所述特定感测操作由所述感测单元334所执行。
在一些实施例中,在所述接收单元337接收所述控制信号SC81的条件下,所述处理单元331响应所述控制信号SC81来从所述控制信号SC81和所述存储单元332的其中之一获得一操作参考数据码XU81,并藉由运行一数据确定程序NA8A来执行使用所述操作参考数据码XU81的一数据确定AA8A以确定选择自所述多个不同测量值参考范围码EM11、EM12、…的所述测量值应用范围码EM1L以便从所述多个不同测量值参考范围RN11、RN12、…中选择所述测量值应用范围RN1L。
所述操作参考数据码XU81相同于基于所述测量应用功能规格GAL8而被默认的一可允许参考数据码。所述数据确定程序NA8A基于所述测量应用功能规格GAL8而被建构。所述数据确定AA8A是一数据确定操作AA81和一数据确定操作AA82的其中之一。在所述操作参考数据码XU81藉由接入被存储在所述存储单元332中的所述可变物理参数范围码UN8A而被获得以相同于所述特定测量值范围码EM14的条件下,是所述数据确定操作AA81的所述数据确定AA8A基于所获得的所述特定测量值范围码EM14来确定所述测量值应用范围码EM1L。例如,所确定的所述测量值应用范围码EM1L相同或不同于所获得的所述特定测量值范围码EM14。
在所述操作参考数据码XU81从所述控制信号SC81和所述存储单元332的其中之一而 被获得以相同于所预设的所述额定范围界限值对DD1A的条件下,是所述数据确定操作AA82的所述数据确定AA8A藉由执行使用所述测量值VN81和所获得的所述额定范围界限值对DD1A的一科学计算MR81来从所述多个不同测量值参考范围码EM11、EM12、…中选择所述测量值应用范围码EM1L以确定所述测量值应用范围码EM1L。例如,所述科学计算MR81基于一特定经验公式XR81而被执行。所述特定经验公式XR81基于所预设的所述额定范围界限值对DD1A和所述多个不同测量值参考范围码EM11、EM12、…而被预先制定。例如,所述特定经验公式XR81基于所述测量应用功能规格GAL8而被预先制定。
在一些实施例中,所述处理单元331基于所确定的所述测量值应用范围码EM1L来获得所述应用范围界限值对DN1L,并基于所述测量值VN81和所获得的所述应用范围界限值对DN1L之间的一数据比较CD81来检查所述数学关系KV81以做出所述测量值VN81是否为于所选择的所述测量值应用范围RN1L之内的一逻辑决定PB81。在所述逻辑决定PB81是肯定的条件下,所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL。
所述处理单元331从所述控制信号SC81获得所述测量值目标范围码EM1T。在所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331藉由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L来检查所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围关系KE8A以做出所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L是否相等的一逻辑决定PZ81。在所述逻辑决定PZ81是否定的条件下,所述处理单元331辨识所述范围关系KE8A为一范围相异关系以确定所述范围差异DS81。
例如,在所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331藉由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L来检查所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL之间的一范围关系KE9A以做出所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL是否相等的一逻辑决定PZ91。在所述逻辑决定PZ91为否定的条件下,所述处理单元331辨识所述范围关系KE9A为一范围相异关系以确定所述范围差异DB81。在所述逻辑决定PZ81为否定的条件下,所述逻辑决定PZ91为否定的。
在一些实施例中,所述应用范围界限值对DN1L包含所述测量值应用范围RN1L的一应用范围界限值DN15和相对于所述应用范围界限值DN15的一应用范围界限值DN16。所述功能装置130进一步包含耦合于所述输出组件338的一物理参数应用单元335。所述物理参数应用单元335具有所述可变物理参数QU1A。例如,所述感测单元334耦合于所述物理参 数应用单元335。所述处理单元331藉由使用所述输出组件338来使所述物理参数应用单元335执行与所述可变物理参数QU1A相关的一特定功能操作ZH81。例如,所述特定功能操作ZH81用于导致一触发事件EQ81发生,并是一空间运动操作。所述控制装置212响应所述触发事件EQ81来输出所述控制信号SC81。
例如,在所述应用范围界限值DN15不同于所述应用范围界限值DN16且所述测量值VN81是于所述应用范围界限值DN15和所述应用范围界限值DN16之间的条件下,所述处理单元331藉由比较所述测量值VN81和所获得的所述应用范围界限值对DN1L来做出所述逻辑决定PB81以成为肯定的。在所述应用范围界限值DN15、所述应用范围界限值DN16和所述测量值VN81是相等的条件下,所述处理单元331藉由比较所述测量值VN81和所获得的所述应用范围界限值对DN1L来做出所述逻辑决定PB81以成为肯定的。
所述测量应用功能规格GAL8进一步包含一物理参数表示GA8T1。所述物理参数表示GA8T1用于表示在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T。所述存储单元332具有一内存位置YM8L和不同于所述内存位置YM8L的一内存位置YX8T,在所述内存位置YM8L存储所述应用范围界限值对DN1L,并在所述内存位置YX8T存储一句柄CC1T。
例如,所述内存位置YM8L基于所预设的所述测量值应用范围码EM1L而被标识。所述内存位置YX8T基于所预设的所述测量值目标范围码EM1T而被标识。所述句柄CC1T基于所述物理参数表示GA8T1和用于转换所述物理参数表示GA8T1的一数据编码操作ZX91而被预设。例如,所述应用范围界限值对DN1L和所述句柄CC1T分别基于所预设的所述测量值应用范围码EM1L和所预设的所述测量值目标范围码EM1T而被所述存储单元332存储。
在一些实施例中,所述处理单元331藉由运行一数据获取程序ND8A来执行使用所确定的所述测量值应用范围码EM1L的一数据获取AD8A以获得所述应用范围界限值对DN1L。例如,所述数据获取AD8A是一数据获取操作AD81和一数据获取操作AD82的其中之一。所述数据获取程序ND8A基于所述测量应用功能规格GAL8而被建构。所述数据获取操作AD81基于所确定的所述测量值应用范围码EM1L来使用所述存储单元332以接入被存储在所述内存位置YM8L的所述应用范围界限值对DN1L以获得所述应用范围界限值对DN1L。
所述数据获取操作AD82依靠所述控制信号SC81和所述存储单元332的其中之一来取得所述额定范围界限值对DD1A,并藉由执行使用所确定的所述测量值应用范围码EM1L和所取得的所述额定范围界限值对DD1A的一科学计算MZ81来获得所述应用范围界限值对DN1L。例如,所述额定范围界限值对DD1A包含所述额定测量值范围RD1N的一额定范围界限值DD11和相对于所述额定范围界限值DD11的一额定范围界限值DD12,并基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和所述数据编码操作ZX81来用所 述指定测量值格式HH81而被预设。
在所述处理单元331确定所述范围差异DS81的条件下,所述处理单元331基于所获得的所述测量值目标范围码EM1T来使用所述存储单元332以接入被存储在所述内存位置YX8T的所述句柄CC1T,并基于所接入的所述句柄CC1T来执行用于所述测量应用功能FA81的一信号产生控制GY81以控制所述输出组件338。所述输出组件338响应所述信号产生控制GY81来执行用于所述测量应用功能FA81的一信号产生操作BY81以产生一操作信号SG81,所述操作信号SG81用于控制所述物理参数应用单元335以导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
例如,所述操作单元397包含所述处理单元331、所述接收单元337、所述定时器342、和耦合于所述处理单元331的所述输出组件338。所述输出组件338位于所述处理单元331的外部,并受所述处理单元331控制。所述处理单元331执行用于控制所述输出组件338的所述信号产生控制GY81以提供一控制信号SF81到所述输出组件338。所述输出组件338响应所述控制信号SF81来执行用于所述测量应用功能FA81的所述信号产生操作BY81以产生所述操作信号SG81,并向所述物理参数应用单元335传输所述操作信号SG81。
在一些实施例中,所述控制装置212是一外部装置。所述多个不同测量值参考范围RN11、RN12、…具有一总参考范围数目NT81。所述总参考范围数目NT81基于所述测量应用功能规格GAL8而被默认。所述处理单元331响应所述控制信号SC81来获得所述总参考范围数目NT81。所述科学计算MR81进一步使用所获得的所述总参考范围数目NT81。所述科学计算MZ81进一步使用所获得的所述总参考范围数目NT81。例如,所述总参考范围数目大于或等于2。例如,所述总参考范围数目NT11≧3;所述总参考范围数目NT11≧4;所述总参考范围数目NT11≧5;所述总参考范围数目NT11≧6;且所述总参考范围数目NT11≦255。
所述物理参数应用单元335响应所述操作信号SG81来将所述可变物理参数QU1A从一特定物理参数QU17改变成一特定物理参数QU18。例如,所述特定物理参数QU17是于所述物理参数应用范围RD1EL之内;且所述特定物理参数QU18是于所述物理参数目标范围RD1ET之内。所述测量应用功能规格GAL8进一步包含用于表示所述物理参数目标范围RD1ET的一物理参数候选范围表示GA8T。
所述测量值目标范围RN1T是所述额定测量值范围RD1N的一第一部分,并具有一目标范围界限值对DN1T。例如,所述目标范围界限值对DN1T基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和用于转换所述物理参数候选范围表示GA8T的一数据编码操作ZX83来用所述指定测量值格式HH81而被预设。所述测量值目标范围RN1T基 于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和所述数据编码操作ZX83来用所述指定测量值格式HH81而被预设。所述测量值应用范围RN1L是所述额定测量值范围RD1N的一第二部分。
所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL是分开的或相邻的。在所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL是分开的条件下,所述测量值目标范围RN1T和所述测量值应用范围RN1L是分开的。在所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL是相邻的条件下,所述测量值目标范围RN1T和所述测量值应用范围RN1L是相邻的。
例如,所述测量值应用范围码EM1L被配置以等于一整数。所述额定范围界限值DD12大于所述额定范围界限值DD11。所述额定范围界限值DD12和所述额定范围界限值DD11之间具有相对于所述额定范围界限值DD11的一相对值VA11。所述相对值VA11等于所述额定范围界限值DD12减去所述额定范围界限值DD11的一计算结果。例如,所述应用范围界限值对DN1L基于所述额定范围界限值DD11、所述额定范围界限值DD12、所述整数、和所述相对值VA11对于所述总参考范围数目NT81的一比率而被预设。所述科学计算MZ81使用所述额定范围界限值DD11、所述额定范围界限值DD12、所述整数、所述比率和其任意组合的其中之一。
在一些实施例中,所述存储单元332进一步具有不同于所述内存位置YX8T的一内存位置YM8T,并在所述内存位置YM8T存储所述目标范围界限值对DN1T。例如,所述内存位置YM8T基于所预设的所述测量值目标范围码EM1T而被标识。在所述处理单元331于一操作时间TF81之内执行所述信号产生控制GY81之后,所述感测单元334感测所述可变物理参数QU1A以产生一感测信号SN82。例如,在所述处理单元331执行所述信号产生控制GY81之后,所述感测单元334感测所述可变物理参数QU1A以执行相依于所述传感器灵敏度YW81的一感测信号产生HF82,所述感测信号产生HF82用于产生所述感测信号SN82。
所述处理单元331于所述操作时间TF81之后的一指定时间TG82之内响应所述感测信号SN82来以所述指定测量值格式HH81获得一测量值VN82。所述处理单元331基于所获得的所述测量值目标范围码EM1T来使用所述存储单元332以接入被存储在所述内存位置YM8T的所述目标范围界限值对DN1T,并藉由比较所述测量值VN82和所接入的所述目标范围界限值对DN1T来检查所述测量值VN82和所述测量值目标范围RN1T之间的一数学关系KV91以做出所述测量值VN82是否为于所述测量值目标范围RN1T之内的一逻辑决定PB91。
在所述逻辑决定PB91是肯定的条件下,所述处理单元331于所述指定时间TG82之内确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET,产生一肯定操作报 告RL81,并导致所述传输单元384输出输送所述肯定操作报告RL81的一控制响应信号SE81,藉此所述控制响应信号SE81用于导致所述控制装置212获得所述肯定操作报告RL81。例如,所述肯定操作报告RL81表示所述可变物理参数QU1A成功地进入所述物理参数目标范围RD1ET的一操作情况EP81。所述处理单元331藉由导致所述传输单元384产生所述控制响应信号SE81来响应所述控制信号SC81。例如,所述处理单元331基于所获得的所述测量值VN82来使所述控制响应信号SE81进一步输送所获得的所述测量值VN82。
在一些实施例中,在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述处理单元331藉由做出所述逻辑决定PB91而确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331基于等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的一码差异DF81来使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
当所述接收单元337接收所述控制信号SC81时,所述显示单元382显示一状态指示LB81。例如,所述状态指示LB81用于指示所述可变物理参数QU1A被配置于所述特定物理参数范围RD1E4之内的一特定状态XJ81。在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述处理单元331藉由做出所述逻辑决定PB91而确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331进一步基于所述码差异DF81来导致所述显示单元382将所述状态指示LB81改变成一状态指示LB82。例如,所述状态指示LB82用于指示所述可变物理参数QU1A被配置于所述物理参数目标范围RD1ET之内的一特定状态XJ82。
所述控制信号SC81是一电信号SP81和一光信号SQ81的其中之一。所述接收单元337包含一接收组件3371和一接收组件3372。所述接收组件3371耦合于所述处理单元331。在所述控制信号SC81是所述电信号SP81的条件下,所述接收组件3371藉由接收输送一控制信息CG81的所述电信号SP81来导致所述处理单元331获得所述控制信息CG81。例如,所述控制信息CG81包含所述测量值指定范围码EL1T。所述处理单元331基于所述控制信息CG81的所述测量值指定范围码EL1T来获得所预设的所述测量值目标范围码EM1T。例如,所述控制信息CG81进一步包含所述测量值目标范围码EM1T。例如,所述接收组件3371和所述接收组件3372分别是二输入组件。
所述接收组件3372耦合于所述处理单元331。在所述控制信号SC81是所述光信号SQ81的条件下,所述接收组件3372接收输送一编码影像FY81的所述光信号SQ81。例如,所述编码影像FY81代表所述控制信息CG81。所述输入单元380耦合于所述处理单元331,并 包含一按钮3801。在所述可变物理参数QU1A基于所述控制信号SC81而被配置于所述物理参数目标范围RD1ET之内的条件下,所述输入单元380接收使用所述按钮3801的一用户输入操作BQ81,并响应所述使用者输入操作BQ81来使所述处理单元331接收一操作请求信号SJ91。所述处理单元331响应所述操作请求信号SJ91来确定一特定输入码UW81。例如,所述输入单元380响应使用所述按钮3801的所述用户输入操作BQ81来提供所述操作请求信号SJ91到所述处理单元331,并藉此使所述处理单元331接收所述操作请求信号SJ91。所述特定输入码UW81选择自所述多个不同测量值参考范围码EM11、EM12、…。
在一些实施例中,在所述控制信号SC81是所述光信号SQ81的条件下,所述接收组件3372感测所述编码影像FY81以确定一编码数据DY81,并译码所述编码数据DY81以提供所述控制信息CG81到所述处理单元331。例如,当所述输入单元380接收所述用户输入操作BQ81时,所述可变物理参数范围码UN8A等于所预设的所述测量值目标范围码EM1T。所述处理单元331响应所述操作请求信号SJ91来从所述可变物理参数范围码UN8A获得所述测量值目标范围码EM1T。在所述特定输入码UW81不同于所预设的所述测量值目标范围码EM1T的条件下,所述处理单元331基于等于所获得的所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A和所述特定输入码UW81之间的一码差异DX81来使用所述输出组件338而导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中的一特定物理参数范围RD1E5。
例如,所述按钮3801接收所述用户输入操作BQ81。所述特定物理参数范围RD1E5由一特定物理参数范围码UN85所代表。在所述特定输入码UW81等于所述特定物理参数范围码UN85的条件下,所述处理单元331基于所述码差异DX81来使所述输出组件338向所述物理参数应用单元335传输一操作信号SG82。所述操作信号SG82用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述特定物理参数范围RD1E5。
在所述可变物理参数QU1A基于所述功能信号SG82而被配置以处于所述特定物理参数范围RD1E5的条件下,所述输入单元380接收使用所述按钮3801的一用户输入操作BQ8A,并响应所述使用者输入操作BQ8A来提供一操作请求信号SJ9A到所述处理单元331。例如,在所述可变物理参数QU1A处于所述特定物理参数范围RD1E5的条件下,所述按钮3801接收所述用户输入操作BQ8A以使所述输入单元380接收所述用户输入操作BQ8A。所述处理单元331响应所述操作请求信号SJ9A来使所述输出组件338向所述物理参数应用单元335传输一操作信号SG8A。所述操作信号SG8A用于导致所述可变物理参数QU1A离开所述特定物理参数范围RD1E5以进入包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中的一特定物理参数范围RD1EA。例如,所述特定物理参数范围RD1EA相同于所述物理参数目 标范围RD1ET。
所述感测单元334感测处于一拘束条件FR81的所述可变物理参数QU1A以提供所述感测信号SN81到所述处理单元331。例如,所述拘束条件FR81是所述可变物理参数QU1A等于包含于所述额定物理参数范围RD1E中的一特定物理参数QU15。所述处理单元331基于所述感测信号SN81来估计所述特定物理参数QU15以获得所述测量值VN81。由于处于所述拘束条件FR81的所述可变物理参数QU1A是于所述物理参数应用范围RD1EL之内,所述处理单元331辨识所述测量值VN81为于所述测量值应用范围RN1L之内的一可允许值,藉此辨识所述测量值VN81和所述测量值应用范围RN1L之间的所述数学关系KV81为一数值交集关系,并藉此确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL。
在一些实施例中,所述感测单元334基于与所述感测信号产生HF81相关的所述传感器灵敏度YW81而被特征化,并被配置以符合所述传感器规格FU11。所述传感器规格FU11包含用于表示所述传感器灵敏度YW81的所述传感器灵敏度表示GW81、和用于表示所述传感器测量范围RB8E的所述传感器测量范围表示GW8R。例如,所述额定物理参数范围RD1E被配置以相同于所述传感器测量范围RB8E,或被配置以是所述传感器测量范围RB8E的一部分。所述传感器测量范围RB8E相关于由所述感测单元334所执行的一物理参数感测。所述传感器测量范围表示GW8R基于一第一默认测量单位而被提供。例如,所述第一默认测量单位是一公制测量单位和一英制测量单位的其中之一。
所述额定测量值范围RD1N、所述额定范围界限值对DD1A、所述测量值应用范围RN1L、所述应用范围界限值对DN1L、所述测量值目标范围RN1T、所述目标范围界限值对DN1T、所述测量值目标范围RN1U和所述多个不同测量值参考范围RN11、RN12、…皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预设。例如,所述额定测量值范围RD1N和所述额定范围界限值对DD1A皆基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX81来用所述指定测量值格式HH81而被预设。所述测量值应用范围RN1L和所述应用范围界限值对DN1L皆基于所述物理参数应用范围表示GA8L、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX82来用所述指定测量值格式HH81而被预设。
所述测量值目标范围RN1T和所述目标范围界限值对DN1T皆基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX83来用所述指定测量值格式HH81而被预设。所述额定物理参数范围表示GA8E、所述物理参数应用范围表示GA8L、所述物理参数表示GA8T1和所述物理参数候选范围表示 GA8T皆基于一第二默认测量单位而被提供。例如,所述第二默认测量单位是一公制测量单位和一英制测量单位的其中之一,并相同或不同于所述第一默认测量单位。
所述可变物理参数QU1A进一步基于所述传感器测量范围RB8E而被特征化。例如,所述传感器测量范围表示GW8R、所述额定物理参数范围表示GA8E、所述物理参数应用范围表示GA8L、所述物理参数候选范围表示GA8T和所述物理参数表示GA8T1皆属于十进制数据类型。所述测量值VN81、所述测量值VN82、所述额定范围界限值对DD1A、所述应用范围界限值对DN1L、所述目标范围界限值对DN1T和所述句柄CC1T皆属于所述二进制数据类型,并皆适用于计算机处理。所述传感器规格FU11和所述测量应用功能规格GAL8皆被默认。
在一些实施例中,在所述接收单元337接收所述控制信号SC81之前,所述接收单元337接收包含所默认的所述应用范围界限值对DN1L和一内存地址AM8L的一写入请求信息WN8L。例如,所述内存位置YM8L基于所述内存地址AM8L而被标识;且所述内存地址AM8L基于所预设的所述测量值应用范围码EM1L而被预设。所述处理单元331响应所述写入请求信息WN8L来使用所述存储单元332以将所述写入请求信息WN8L的所述应用范围界限值对DN1L存储到所述内存位置YM8L。
在所述接收单元337接收所述控制信号SC81之前,所述接收单元337接收包含所默认的所述句柄CC1T和一内存地址AX8T的一写入请求信息WC8T。例如,所述内存位置YX8T基于所述内存地址AX8T而被标识;且所述内存地址AX8T基于所预设的所述测量值目标范围码EM1T而被预设。所述处理单元331响应所述写入请求信息WC8T来使用所述存储单元332以将所述写入请求信息WC8T的所述句柄CC1T存储到所述内存位置YX8T。
在一些实施例中,所述功能装置130用于藉由产生一操作信号SG81而控制所述可变物理参数QU1A。所述可变物理参数QU1A基于由所述测量值目标范围RN1T所代表的所述物理参数目标范围RD1ET和由所述测量值应用范围RN1L所代表的所述物理参数应用范围RD1EL而被特征化。所述感测单元334感测所述可变物理参数QU1A以产生一感测信号SN81。在所述接收单元337接收起到指示所述测量值目标范围RN1T的作用的一控制信号SC81的条件下,所述处理单元331响应所述感测信号SN81来获得一测量值VN81。
在所述处理单元331藉由检查所述测量值VN81和所述测量值应用范围RN1L之间的一数学关系KV81而确定所述可变物理参数QU1A目前所处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331基于所述控制信号SC81而确定所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围关系KE8A以做出用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的所述操作信号SG81是否要被所述输出组件338产生 的一合理决定PW81。
例如,在所述处理单元331藉由检查所述数学关系KV81而确定所述可变物理参数QU1A目前所处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331基于所述控制信号SC81而确定所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL之间的一范围关系KE9A以做出所述合理决定PW81。
在一些实施例中,在所述处理单元331确定所述可变物理参数QU1A目前所处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331藉由比较所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L来检查所述范围关系KE8A以做出所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L是否相等的一逻辑决定PY81。
在所述逻辑决定PY81是否定的条件下,所述处理单元331辨识所述范围关系KE8A为一范围相异关系以做出所述合理决定PW81以成为肯定的。在所述合理决定PW81是肯定的条件下,所述处理单元331基于所获得的所述句柄CC1T来执行一信号产生控制GY81以导致所述输出组件338产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一操作信号SG81。
在一些实施例中,在所述处理单元331确定所述可变物理参数QU1A目前所处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331藉由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L来检查所述范围关系KE8A以做出所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L是否相等的一逻辑决定PZ81。在所述逻辑决定PZ81是否定的条件下,所述处理单元331辨识所述范围关系KE8A为一范围相异关系以做出所述合理决定PW81以成为肯定的。
例如,在所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331藉由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L来检查所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL之间的所述范围关系KE9A以做出所所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL是否相等的所述逻辑决定PZ91。在所述逻辑决定PZ91为否定的条件下,所述处理单元331藉由辨识所述范围关系KE9A为一范围相异关系来确定所述范围差异DB81以做出所述合理决定PW81以成为肯定的。在所述逻辑决定PZ81为否定的条件下,所述逻辑决定PZ91为否定的。
在所述合理决定PW81是肯定的条件下,所述处理单元331基于所获得的所述测量值目标范围码EM1T来使用所述存储单元332以接入被存储在所述内存位置YX8T的所述句柄 CC1T。所述处理单元331基于所接入的所述句柄CC1T,执行用于所述测量应用功能FA81的一信号产生控制GY81。所述输出组件338响应所述信号产生控制GY81来执行用于所述测量应用功能FA81的一信号产生操作BY81以产生一操作信号SG81。所述操作信号SG81用于控制所述物理参数应用单元335以导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
在一些实施例中,所述多个不同物理参数参考状态JE11、JE12、…包含所述特定物理参数状态JE16。所述特定物理参数状态JE16由一特定物理参数状态代码EW16所代表。所述多个不同物理参数参考状态代码EW11、EW12、…包含所述特定物理参数状态代码EW16。在所述处理单元331藉由检查所述第一数学关系KQ81而导致所述可变物理参数QU1A处于所述物理参数目标状态JE1U的条件下,所述输入单元380接收使用所述按钮3801的所述用户输入操作BQ82,并响应所述使用者输入操作BQ82来使所述处理单元331接收一操作请求信号SJ92。例如,所述多个不同物理参数参考范围RD1E1、RD1E2、…包含不同于所述物理参数目标范围RD1EU的一特定物理参数范围RD1E6。所述特定物理参数状态JE16根据所述特定物理参数范围RD1E6而被预先确定。
例如,所述输入单元380响应使用所述按钮3801的所述用户输入操作BQ82来提供所述操作请求信号SJ92到所述处理单元331,并藉此使所述处理单元331接收所述操作请求信号SJ92。所述处理单元331响应所述操作请求信号SJ92来确定一特定输入码UW82。例如,所述特定输入码UW82选择自所述多个不同物理参数参考状态代码EW11、EW12、…。例如,所述特定输入码UW82选择自所述多个不同测量值参考范围码EM11、EM12、…。当所述输入单元380接收所述用户输入操作BQ82时,所述可变物理参数范围码UN8A等于所预设的所述物理参数目标状态代码EW1U。所述处理单元331响应所述操作请求信号SJ92来从所述可变物理参数范围码UN8A获得所述物理参数目标状态代码EW1U。
在一些实施例中,所述特定物理参数范围RD1E6由一特定物理参数范围码UN86所代表。在所述特定输入码UW82等于所述特定物理参数范围码UN86并不同于所预设的所述物理参数目标状态代码EW1U的条件下,所述处理单元331基于等于所获得的所述测量值目标范围码EM1U的所述可变物理参数范围码UN8A和所述特定输入码UW82之间的一码差异DX82来使用所述输出组件338以使所述输出组件338产生所述操作信号SG87。所述操作信号SG87用于导致所述可变物理参数QU1A离开所述物理参数目标状态JE1U以进入所述特定物理参数状态JE16。所述输出组件338向所述物理参数应用单元335传输所述操作信号SG87。所述物理参数应用单元335响应所述操作信号SG87来导致所述可变物理参数QU1A离开所述物理参数目标状态JE1U以进入所述特定物理参数状态JE16。
例如,在所述可变物理参数QU1A基于所述功能信号SG87而被配置以处于所述特定物理参数范围RD1E6(或所述特定物理参数状态JE16)的条件下,所述输入单元380接收使用所述按钮3801的一用户输入操作BQ8B,并响应所述使用者输入操作BQ8B来提供一操作请求信号SJ9B到所述处理单元331。例如,在所述可变物理参数QU1A处于所述特定物理参数范围RD1E6的条件下,所述按钮3801接收所述用户输入操作BQ8B以使所述输入单元380接收所述用户输入操作BQ8B。
所述处理单元331响应所述操作请求信号SJ9B来使所述输出组件338向所述物理参数应用单元335传输一操作信号SG8B。所述操作信号SG8B用于导致所述可变物理参数QU1A离开所述特定物理参数范围RD1E6(或所述特定物理参数状态JE16)以进入包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中的一特定物理参数范围RD1EB(或一特定物理参数状态JE1B)。例如,所述特定物理参数范围RD1EB相同于所述物理参数目标范围RD1EU。所述特定物理参数状态JE1B根据所述特定物理参数范围RD1EB而被预先确定。
请参阅图22和图23。图22为绘示于图1中的所述控制系统901的一实施结构9031的示意图。图23为绘示于图1中的所述控制系统901的一实施结构9032的示意图。如图22和图23所示,所述实施结构9031和所述实施结构9032的每一结构包含所述控制装置212和所述功能装置130。所述功能装置130包含所述操作单元397、所述感测单元334、所述物理参数应用单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述接收单元337、所述输入单元380和所述传输单元384。所述接收单元337包含所述接收组件3371和所述接收组件3372。所述传输单元384包含一传输组件3842和一传输组件3843。所述感测单元334、所述物理参数应用单元335、所述存储单元332、所述接收组件3371、所述接收组件3372、所述输入单元380、所述传输组件3842和所述传输组件3843皆耦合于所述处理单元331,并皆受所述处理单元331控制。所述处理单元331包含所述输出组件338。
在一些实施例中,所述输出组件338耦合于所述物理参数应用单元335。所述处理单元331于所述操作时间TF81之内基于所获得的所述句柄CC1T来执行所述信号产生控制GY81。所述输出组件338响应所述信号产生控制GY81来执行用于所述测量应用功能FA81的所述信号产生操作BY81以于所述操作时间TF81之内产生所述操作信号SG81。例如,所述操作信号SG81是一控制信号。所述输出组件338将所述操作信号SG81传输到所述物理参数应用单元335。所述物理参数应用单元335响应所述操作信号SG81来导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。例如,所述操作信号SG81是一脉冲宽度调变信号、一电位准信号、一驱动信号和一指令信号的其中之一。
在所述处理单元331检查所述数学关系KV91以确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331确定所述肯定操作报告RL81,并导致所述传输单元384产生输送所述肯定操作报告RL81和所述测量值VN82的所述控制响应信号SE81。所述控制响应信号SE81是一电信号LP81和一光信号LQ81的其中之一。所述传输组件3842是一传输器。所述传输组件3843是一光发射组件。例如,所述传输组件3842和所述传输组件3843分别是二输出组件。
例如,所述处理单元331藉由检查所述数学关系KV91来确定所述可变物理参数QU1A目前于所述物理参数目标范围RD1ET之内的一物理参数情况,并藉此辨识所述可变物理参数QU1A和所述物理参数目标范围RD1ET之间的一物理参数关系KD8T为所述可变物理参数QU1A目前于所述物理参数目标范围RD1ET之内的一物理参数交集关系。例如,所述处理单元331藉由检查所述数学关系KV91来检查所述物理参数关系KD8T和所述物理参数关系KD9T的其中之一。
在一些实施例中,在所述传输组件3842被配置以产生所述控制响应信号SE81的条件下,所述处理单元331基于所确定的所述肯定操作报告RL81来导致所述传输组件3842向所述控制装置212传输输送所述肯定操作报告RL81的所述电信号LP81。在所述传输组件3843被配置以产生所述控制响应信号SE81的条件下,所述处理单元331基于所确定的所述肯定操作报告RL81来导致所述传输组件3843产生输送所述肯定操作报告RL81的所述光信号LQ81,藉此所述控制装置212从所述传输组件3843接收所产生的所述光信号LQ81。例如,所述光发射组件是一显示组件。所述光信号LQ81输送代表所述肯定操作报告RL81的一编码影像FZ81。例如,所述编码影像FZ81是一条形码影像。例如,所述电信号LP81是一无线电信号。所述光信号LQ81是一红外线信号。
例如,所述控制装置212由一控制装置标识符HA0T所标识。所述控制信号SC81进一步输送所述控制装置标识符HA0T。所述处理单元331响应所述控制信号SC81来从所述控制信号SC81获得所述控制装置标识符HA0T,并基于所获得的所述控制装置标识符HA0T和所确定的所述肯定操作报告RL81来导致所述传输组件3842向所述控制装置212传输输送所述肯定操作报告RL81的所述电信号LP81。
在一些实施例中,所述控制装置212的所述操作单元297被配置以与所述操作单元397有线地或无线地通信;因此,所述操作单元297被配置以向所述操作单元397有线地或无线地传输所述控制信号SC81。例如,所述接收单元337有线地或无线地从所述控制装置212接收所述控制信号SC81。所述控制信号SC81是所述电信号SP81和所述光信号SQ81的其中之一。所述接收组件3371是一接收器,并在所述控制信号SC81是所述电信号SP81 的条件下从所述控制装置212接收所述电信号SP81。所述接收组件3372是一读取器,并在所述控制信号SC81是所述光信号SQ81的条件下从所述控制装置212接收输送所述编码影像FY81的所述光信号SQ81。例如,所述编码影像FY81是一条形码影像。例如,所述电信号SP81是一无线电信号。所述光信号SQ81是一红外线信号。
所述物理参数应用单元335具有所述可变物理参数QU1A。所述接收单元337进一步包含一接收组件3374。所述接收组件3374耦合于所述处理单元331,受所述处理单元331控制,并在所述可变物理参数QU1A要依靠所述控制装置212而被提供的条件下从所述控制装置212接收一物理参数信号SB81。所述物理参数应用单元335从所述接收组件3374接收所述物理参数信号SB81。所述处理单元331藉由使用所述输出组件338来导致所述物理参数应用单元335使用所述物理参数信号SB81以形成取决于所述物理参数信号SB81的所述可变物理参数QU1A。例如,所述接收组件3374是一接收组件。所述控制装置212有线地或无线地传输所述物理参数信号SB81到所述接收组件3374。例如,所述接收组件3371、所述接收组件3372和所述接收组件3374分别是三输入组件。
所述物理参数目标范围RD1ET具有一默认物理参数目标范围界限ZD1T1和相对于所述默认物理参数目标范围界限ZD1T1的一默认物理参数目标范围界限ZD1T2。所述目标范围界限值对DN1T包含所述测量值目标范围RN1T的一目标范围界限值DN17和相对于所述目标范围界限值DN17的一目标范围界限值DN18。所述默认物理参数目标范围界限ZD1T1由所述目标范围界限值DN17所代表。所述默认物理参数目标范围界限ZD1T2由所述目标范围界限值DN18所代表。
所述物理参数应用范围RD1EL具有一预设物理参数应用范围界限ZD1L1和相对于所述预设物理参数应用范围界限ZD1L1的一预设物理参数应用范围界限ZD1L2。所述预设物理参数应用范围界限ZD1L1由所述应用范围界限值DN15所代表。所述预设物理参数应用范围界限ZD1L2由所述应用范围界限值DN16所代表。
在一些实施例中,所述触发事件EQ81是一状态改变事件。所述控制装置212包含一操作单元297和耦合于所述操作单元297的一状态改变侦测器475。例如,所述状态改变侦测器475是一极限侦测器和一边缘侦测器的其中之一。所述极限侦测器是一极限开关485。所述状态改变侦测器475被配置以侦测与一默认特征物理参数UL81相关的一特征物理参数到达ZL82。例如,所述默认特征物理参数UL81是一默认极限位置。所述特征物理参数到达ZL82是一极限位置到达。
所述物理参数应用单元335包含一物理参数应用区AJ11。所述物理参数应用区AJ11具有一可变物理参数QG1A。所述可变物理参数QG1A相依于所述可变物理参数QU1A,并基 于所述默认特征物理参数UL81而被特征化。例如,所述物理参数应用区AJ11是一负载区、一显示区、一感测区、一功率供应区和一环境区的其中之一。所述默认特征物理参数UL81相关于所述可变物理参数QU1A。
在所述接收单元337接收所述控制信号SC81之前,所述接收单元337从所述操作单元297接收一控制信号SC80。所述处理单元331响应所接收的所述控制信号SC80来执行用于控制所述输出组件338的一信号产生控制GY80。所述输出组件338响应所述信号产生控制GY80来产生用于控制所述可变物理参数QU1A的一操作信号SG80。所述物理参数应用单元335从所述输出组件338接收所述操作信号SG80,并响应所接收的所述操作信号SG80来执行与所述可变物理参数QU1A相关的所述特定功能操作ZH81。所述特定功能操作ZH81用于控制所述可变物理参数QG1A,并藉由改变所述可变物理参数QG1A来导致所述触发事件EQ81发生。所述可变物理参数QG1A被配置以处于一可变物理状态XA8A。例如,所述操作单元397受所述控制装置212控制以使所述物理参数应用单元335执行所述特定功能操作ZH81。所述状态改变侦测器475响应所述特定功能操作ZH81来产生一触发信号SX8A。
在所述可变物理参数QU1A于所述特定物理参数范围RD1E4之内的条件下,所述特定功能操作ZH81导致所述可变物理参数QG1A到达所述默认特征物理参数UL81以形成所述特征物理参数到达ZL82,并藉由形成所述特征物理参数到达ZL82来将所述可变物理状态XA8A从一非特征物理参数到达状态XA81改变成一实际特征物理参数到达状态XA82。所述状态改变侦测器475响应所述特征物理参数到达ZL82来产生所述触发信号SX8A。例如,所述实际特征物理参数到达状态XA82基于所述默认特征物理参数UL81而被特征化。所述状态改变侦测器475响应所述可变物理参数QG1A被从所述非特征物理参数到达状态XA81改变成所述实际特征物理参数到达状态XA82的一状态改变事件来产生所述触发信号SX8A。
例如,所述状态改变侦测器475是一触发应用单元。所述触发事件EQ81是所述可变物理参数QG1A进入所述实际特征物理参数到达状态XA82的所述状态改变事件。所述操作单元297接收所述触发信号SX8A,并响应所接收的所述触发信号SX8A来产生所述控制信号SC81。例如,在所述状态改变侦测器475是所述极限开关485的条件下,所述特征物理参数到达ZL82是等于一可变空间位置的所述可变物理参数QG1A到达等于一默认极限位置的所述默认特征物理参数UL81的一极限位置到达。所述触发信号SX8A是一操作请求信号。
例如,所述操作单元297响应所接收的所述触发信号SX8A来获得包含所述目标范围界限值对DN1T和所述测量值目标范围码EM1T的至少其中之一的一控制应用码UA8T,并基于所述控制应用码UA8T来产生输送所述目标范围界限值对DN1T和所述测量值目标范围码 EM1T的至少其中之一的所述控制信号SC81。例如,所述物理参数应用单元335藉由执行基于所述可变物理参数QU1A而被引起的所述特定功能操作ZH81来在所述物理参数应用区AJ11中形成所述可变物理参数QG1A。在所述物理参数应用区AJ11耦合于所述状态改变侦测器475的条件下,所述状态改变侦测器475侦测所述特征物理参数到达ZL82。
在一些实施例中,所述可变物理参数QU1A是一第一可变电性参数、一第一可变力学参数、一第一可变光学参数、一第一可变温度、一第一可变电压、一第一可变电流、一第一可变电功率、一第一可变电阻、一第一可变电容、一第一可变电感、一第一可变频率、一第一时钟时间、一第一可变时间长度、一第一可变亮度、一第一可变光强度、一第一可变音量、一第一可变数据流量、一第一可变振幅、一第一可变空间位置、一第一可变位移、一第一可变顺序位置、一第一可变角度、一第一可变空间长度、一第一可变距离、一第一可变平移速度、一第一可变角速度、一第一可变加速度、一第一可变力、一第一可变压力和一第一可变机械功率的其中之一。
所述操作单元397被配置以依靠所述控制信号SC81而执行与所述可变物理参数QU1A相关的所述测量应用功能FA81。所述功能装置130是多个应用装置的其中之一。所述测量应用功能FA81是多个特定控制功能的其中之一,所述多个特定控制功能包含一光控制功能、一力控制功能、一电控制功能、一磁控制功能和其任意组合。所述多个应用装置包含一控制目标装置、一继电器、一控制开关装置、一电动机、一照明装置、一门、一贩卖机、一能量转换器、一负载装置、一定时装置、一玩具、一电器、一打印装置、一显示设备、一移动装置、一扬声器和其任意组合。
所述物理参数应用单元335是多个应用目标的其中之一,并被配置以执行一特定应用功能。所述特定应用功能是多个物理参数应用功能的其中之一,所述多个物理参数应用功能包含一光使用功能、一力使用功能、一电使用功能、一磁使用功能和其任意组合。所述多个应用目标包含一电子组件、一致动器、一电阻器、一电容器、一电感器、一继电器、一控制开关、一晶体管、一电动机、一照明单元、一能量转换单元、一负载单元、一定时单元、一打印单元、一显示目标、一扬声器和其任意组合。例如,所述物理参数应用单元335是一物理可实现功能单元。
例如,所述可变物理参数QU1A和所述可变物理参数QG1A分别属于一物理参数类型TU11和一物理参数类型TU1G。所述物理参数类型TU11相同或不同于所述物理参数类型TU1G。所述默认特征物理参数UL81属于所述物理参数类型TU1G。所述物理参数应用单元335进一步包含具有所述可变物理参数QU1A的一物理参数形成区AU11。所述物理参数应用区AJ11耦合于所述物理参数形成区AU11。例如,所述特定功能操作ZH81用于驱动所述 物理参数应用区AJ11以形成所述特征物理参数到达ZL82。例如,所述物理参数形成区AU11是一负载区、一显示区、一感测区、一功率供应区和一环境区的其中之一。例如,所述物理参数类型TU11不同于一时间类型。
所述可变物理参数QG1A是一可变电性参数、一可变力学参数、一可变光学参数、一可变温度、一可变电压、一可变电流、一可变电功率、一可变电阻、一可变电容、一可变电感、一可变频率、一时钟时间、一可变时间长度、一可变亮度、一可变光强度、一可变音量、一可变量据流量、一可变振幅、一可变空间位置、一可变位移、一可变顺序位置、一可变角度、一可变空间长度、一可变距离、一可变平移速度、一可变角速度、一可变加速度、一可变力、一可变压力和一可变机械功率的其中之一。例如,所述可变物理参数QU1A相同或不同于所述可变物理参数QG1A。
请参阅图24、图25和图26。图24为绘示于图1中的所述控制系统901的一实施结构9033的示意图。图25为绘示于图1中的所述控制系统901的一实施结构9034的示意图。图26为绘示于图1中的所述控制系统901的一实施结构9035的示意图。如图24、图25和图26所示,所述实施结构9033、所述实施结构9034和所述实施结构9035的每一结构包含所述控制装置212和所述功能装置130。所述功能装置130包含所述操作单元397、所述感测单元334、所述物理参数应用单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述接收单元337、所述显示单元382和所述传输单元384。所述接收单元337、所述显示单元382、所述传输单元384、所述感测单元334、所述物理参数应用单元335和所述存储单元332所述皆受所述处理单元331控制。
在一些实施例中,所述感测单元334感测所述可变物理参数QU1A以产生所述感测信号SN81。例如,在所述接收单元337接收所述控制信号SC81的条件下,所述感测单元334感测所述可变物理参数QU1A以产生所述感测信号SN81。在所述处理单元331藉由执行所述信号产生控制GY81来使用所述输出组件338以于所述操作时间TF81之内产生所述操作信号SG81之后,所述感测单元334感测所述可变物理参数QU1A以产生所述感测信号SN82。例如,所述感测单元334是一时间感测单元、一电性参数感测单元、一力学参数感测单元、一光学参数感测单元、一温度感测单元、一湿度感测单元、一运动感测单元和一磁性参数感测单元的其中之一。
所述感测单元334包含耦合于所述处理单元331的一感测组件3341,并使用所述感测组件3341以产生所述感测信号SN81和所述感测信号SN82。所述感测组件3341属于一传感器类型7341,并是第一多个应用传感器的其中之一。所述第一多个应用传感器包含一第一电压传感器、一第一电流传感器、一第一电阻传感器、一第一电容传感器、一第一电感 传感器、一第一加速度计、一第一陀螺仪、一第一压力转能器、一第一应变规、一第一定时器、一第一光侦测器、一第一温度传感器和一第一湿度传感器。例如,所述感测组件3341产生一感测信号分量SN811。所述感测信号SN81包含所述感测信号分量SN811。
所述感测单元334进一步包含耦合于所述处理单元331的一感测组件3342,并使用所述感测组件3342以产生所述感测信号SN81和所述感测信号SN82。所述感测组件3342属于一传感器类型7342,并是第二多个应用传感器的其中之一。所述传感器类型7342不同于或独立于所述传感器类型7341。所述第二多个应用传感器包含一第二电压传感器、一第二电流传感器、一第二电阻传感器、一第二电容传感器、一第二电感传感器、一第二加速度计、一第二陀螺仪、一第二压力转能器、一第二应变规、一第二定时器、一第二光侦测器、一第二温度传感器和一第二湿度传感器。
例如,所述感测组件3342产生一感测信号分量SN812。所述感测信号SN81进一步包含所述感测信号分量SN812。例如,所述感测单元334属于一传感器类型734。所述传感器类型734相关于所述传感器类型7341和所述传感器类型7342。例如,所述感测单元334、所述感测组件3341和所述感测组件3342分别是一电功率感测单元、一电压传感器和一电流传感器。例如,所述感测单元334、所述感测组件3341和所述感测组件3342分别是一惯性测量单元、一加速度计和一陀螺仪。
在一些实施例中,所述可变物理参数QU1A相依于一可变物理参数JA1A和不同于所述可变物理参数JA1A的一可变物理参数JB1A。例如,所述可变物理参数QU1A、所述可变物理参数JA1A和所述可变物理参数JB1A分别是一可变电功率、一可变电压和一可变电流,并分别属于一第一物理参数类型、一第二物理参数类型和一第三物理参数类型。所述第二物理参数类型和所述第三物理参数类型是不同的或独立的。所述第一物理参数类型相依于所述第二物理参数类型和所述第三物理参数类型。所述感测组件3341感测所述可变物理参数JA1A以产生所述感测信号分量SN811。所述感测组件3342感测所述可变物理参数JB1A以产生所述感测信号分量SN812。
所述处理单元331接收所述感测信号分量SN811和所述感测信号分量SN812。在所述接收单元337接收所述控制信号SC81的条件下,所述处理单元331响应所述感测信号分量SN811和所述感测信号分量SN812来获得所述测量值VN81。例如,所述处理单元331响应所述感测信号分量SN811来获得一测量值VN811,响应所述感测信号分量SN812来获得一测量值VN812,并藉由执行使用所述测量值VN811和所述测量值VN812的一科学计算MY81来获得所述测量值VN81。所述科学计算MY81基于所述第一物理参数类型、所述第二物理参数类型和所述第三物理参数类型而被预先制定。
所述可变物理参数JA1A和所述可变物理参数JB1A的每一物理参数是一可变电性参数、一可变力学参数、一可变光学参数、一可变温度、一可变电压、一可变电流、一可变电功率、一可变电阻、一可变电容、一可变电感、一可变频率、一时钟时间、一可变时间长度、一可变亮度、一可变光强度、一可变音量、一可变量据流量、一可变振幅、一可变空间位置、一可变位移、一可变顺序位置、一可变角度、一可变空间长度、一可变距离、一可变平移速度、一可变角速度、一可变加速度、一可变力、一可变压力和一可变机械功率的其中之一。
在一些实施例中,所述感测单元334被配置以符合所述传感器规格FU11。所述感测单元334藉由执行相依于所述传感器灵敏度YW81的所述感测信号产生HF81来产生所述感测信号SN81。所述物理参数应用单元335包含具有所述可变物理参数QU1A的所述物理参数形成区AU11。在所述接收单元337接收所述控制信号SC81且所述可变物理参数QU1A存在于所述物理参数形成区AU11中的条件下,所述感测单元334感测所述可变物理参数QU1A以产生所述感测信号SN81。例如,所述感测单元334耦合于所述物理参数形成区AU11,或位于所述物理参数形成区AU11中。所述处理单元331接收所述感测信号SN81,并藉由处理所接收的所述感测信号SN81来以所述指定测量值格式HH11获得所述测量值VN81。
所述处理单元331藉由比较所述测量值VN81和所获得的所述应用范围界限值对DN1L来执行用于检查所述测量值VN81和所述测量值应用范围RN1L之间的所述数学关系KV81的一检查操作BV81,并基于所述检查操作BV81来做出所述逻辑决定PB81。在一些实施例中,所述处理单元331处理所接收的所述感测信号SN81以获得包含所述测量值VN81的一测量值序列JN81。所述处理单元331藉由比较所述测量值序列JN81和所获得的所述应用范围界限值对DN1L来执行用于检查所述测量值序列JN81和所述测量值应用范围RN1L之间的一数学关系KV85的一检查操作BV85。所述处理单元331基于所述检查操作BV85来做出所述逻辑决定PB81。例如,所述检查操作BV85包含所述检查操作BV81。
例如,在处理单元331基于所述数据比较CD81而辨识所述测量值VN81为于所述测量值应用范围RN1L之内的一可允许值VG81的条件下,所述处理单元331做出所述逻辑决定PB81以成为肯定的。或者,在所述处理单元331辨识所述数学关系KV81为一数值交集关系KW81的条件下,所述处理单元331做出所述逻辑决定PB81以成为肯定的。
在一些实施例中,所述处理单元331响应所述控制信号SC81来从所述控制信号SC81获得所述测量值目标范围码EM1T。所述处理单元331于所述操作时间TF81之后的所述指定时间TG82之内执行与所述可变物理参数QU1A相关的一验证操作ZU81。在所述处理单元331基于所述验证操作ZU81而确定所述可变物理参数QU1A进入的所述物理参数目标范围 RD1ET的条件下,所述处理单元331使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。例如,所述验证操作ZU81于所述操作时间TF81之后的所述指定时间TG82之内响应所述感测信号SN82来以所述指定测量值格式HH81获得所述测量值VN82。
所述验证操作ZU81基于所获得的所述测量值目标范围码EM1T来获得所述目标范围界限值对DN1T,并藉由比较所述测量值VN82和所获得的所述目标范围界限值对DN1T来检查所述测量值VN82和所述测量值目标范围RN1T之间的所述数学关系KV91以做出所述测量值VN82是否为于所述测量值目标范围RN1T之内的所述逻辑决定PB91。在所述逻辑决定PB91是肯定的条件下,所述验证操作ZU81确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET,或确定所述可变物理参数QU1A进入的所述物理参数目标范围RD1ET。
在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述处理单元331基于所述验证操作ZU81而确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331基于等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的所述码差异DF81来使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
在一些实施例中,在所述处理单元331于所述指定时间TG82之内基于所述验证操作ZU81而确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331执行等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的一数据比较CE8T。在所述处理单元331基于所述数据比较CE8T而确定等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的所述码差异DF81的条件下,所述处理单元331使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
例如,在所述处理单元331基于所述数据比较CE8T而确定所述码差异DF81的条件下,所述处理单元331执行所述数据存储控制操作GU81,所述数据存储控制操作GU81用于导致代表所确定的所述物理参数目标范围RD1ET的所述物理参数目标范围码UN8T被所述存储单元332记录。例如,所述物理参数目标范围码UN8T等于所获得的所述测量值目标范围码EM1T。所述数据存储控制操作GU81使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
当所述接收单元337接收所述控制信号SC81时,所述显示单元382显示所述状态指示LB81。例如,所述状态指示LB81用于指示所述可变物理参数QU1A被配置于所述特定物理参数范围RD1E4之内的所述特定状态XJ81。在所述接收单元337接收所述控制信号SC81之前,所述处理单元331被配置以获得所述特定测量值范围码EM14,并基于所获得的所述特定测量值范围码EM14来导致所述显示单元382显示所述状态指示LB81。
在所述处理单元331基于所述数据比较CE8T而确定所述码差异DF81的条件下,所述处理单元331基于所获得的所述测量值目标范围码EM1T来导致所述显示单元382将所述状态指示LB81改变成所述状态指示LB82。例如,所述状态指示LB82用于指示所述可变物理参数QU1A目前于所述物理参数目标范围RD1ET之内的所述特定状态XJ82。
在一些实施例中,所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL皆包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中。所述物理参数目标范围RD1ET相同或不同于所述物理参数应用范围RD1EL。所述可变物理参数QU1A进一步基于一物理参数候选范围RD1E2而被特征化。所述物理参数候选范围RD1E2不同于所述物理参数应用范围RD1EL,并相同或不同于所述物理参数目标范围RD1ET。例如,所述物理参数应用范围RD1EL是一物理参数候选范围。
所述物理参数目标范围RD1ET被配置以对应于一对应物理参数范围RY1ET。所述额定物理参数范围RD1E等于所述物理参数目标范围RD1ET和所述对应物理参数范围RY1ET的一范围组合,并包含所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2。所述测量值目标范围RN1T被配置以对应于一对应测量值范围RX1T。所述额定测量值范围RD1N等于所述测量值目标范围RN1T和所述对应测量值范围RX1T的一范围组合。所述对应物理参数范围RY1ET由所述对应测量值范围RX1T所代表。例如,所述对应测量值范围RX1T基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预设。
所述测量值目标范围RN1T和所述测量值应用范围RN1L皆包含于所述多个不同测量值参考范围RN11、RN12、…中。所述测量值目标范围RN1T相同或不同于所述测量值应用范围RN1L。所述物理参数候选范围RD1E2由一测量值候选范围RN12所代表。所述测量值候选范围RN12不同于所述测量值应用范围RN1L,并相同或不同于所述测量值目标范围RN1T。所述额定测量值范围RD1N包含所述测量值应用范围RN1L和所述测量值候选范围RN12。例如,所述测量值候选范围RN12基于所述物理参数候选范围RD1E2和所述额定测量值范围RD1N而被预设。所述测量值应用范围RN1L是一测量值候选范围。所述额定测量值范围RD1N基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和所述额定物理参 数范围表示GA8E来用所述指定测量值格式HH81而被预设。
在一些实施例中,所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2是分开的或相邻的。在所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2是分开的条件下,所述测量值应用范围RN1L和所述测量值候选范围RN12是分开的。在所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2是相邻的条件下,所述测量值应用范围RN1L和所述测量值候选范围RN12是相邻的。所述多个不同物理参数参考范围RD1E1、RD1E2、…包含所述物理参数候选范围RD1E2,分别由所述多个不同测量值参考范围RN11、RN12、…所代表,并分别由多个物理参数参考范围码所代表。
所述测量值候选范围RN12由一测量值候选范围码EM12所代表,并具有一候选范围界限值对DN1B,藉此所述测量值候选范围码EM12被配置以指示所述物理参数候选范围RD1E2。例如,所述候选范围界限值对DN1B包含一候选范围界限值DN13和相对于所述候选范围界限值DN13的一候选范围界限值DN14。所述测量值候选范围码EM12和所述候选范围界限值对DN1B皆被预设。所述多个不同测量值参考范围码EM11、EM12、…包含所预设的所述测量值候选范围码EM12。所述多个不同测量值参考范围RN11、RN12、…包含所述测量值候选范围RN12,并分别由所述多个不同测量值参考范围码EM11、EM12、…所代表。例如,所述多个物理参数参考范围码被配置以分别等于所述多个不同测量值参考范围码EM11、EM12、…。
例如,所述触发应用功能规格GAL8进一步包含用于表示所述物理参数候选范围RD1E2的一物理参数候选范围表示GA82。所述测量值候选范围RN12和所述候选范围界限值对DN1B皆基于所述传感器规格FU11来用所述指定测量值格式HH81而被预设。例如,所述测量值候选范围RN12和所述候选范围界限值对DN1B皆基于所述物理参数候选范围表示GA82、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81、和用于转换所述物理参数候选范围表示GA82的的一数据编码操作ZX84来用所述指定测量值格式HH81而被预设。
在一些实施例中,所述测量应用功能规格GAL8用于表示所述额定物理参数范围RD1E和所述多个不同物理参数参考范围RD1E1、RD1E2、…。所述额定测量值范围RD1N、所述额定范围界限值对DD1A、所述多个不同测量值参考范围RN11、RN12、…、及所述多个不同测量值参考范围码EM11、EM12、…皆基于所述测量应用功能规格GAL8而被默认。所述测量应用功能FA81选择自多个不同物理参数控制作用功能。所述存储单元332存储所述测量应用功能规格GAL8。
所述处理单元331根据所述测量应用功能规格GAL8来预先设定所述额定范围界限值 对DD1A、所述应用范围界限值对DN1L、所述目标范围界限值对DN1T、所述候选范围界限值对DN1B、…。所述感测信号SN81包含感测数据。例如,所述感测数据属于所述二进制数据类型。所述处理单元331基于所述感测数据来以所述指定测量值格式HH81获得所述测量值VN81。
在一些实施例中,所述操作单元397被配置以依靠所述控制信号SC81来执行所述测量应用功能FA81。所述处理单元331基于用于所述测量应用功能FA81的所述检查操作BV81来做出所述测量值VN81是否为于所述测量值应用范围RN1L之内的所述逻辑决定PB81。在所述逻辑决定PB81是肯定的条件下,所述处理单元331藉由比较所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L来检查所述范围关系KE8A以做出所述合理决定PW81。
例如,在所述合理决定PW81是肯定的条件下,所述处理单元331基于所获得的所述句柄CC1T来执行所述信号产生控制GY81以导致所述输出组件338产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的所述操作信号SG81。在所述逻辑决定PB81是否定的条件下,所述处理单元331藉由执行使用所确定的所述测量值应用范围码EM1L的一科学计算MR82来确定选择自所述多个不同测量值参考范围码EM11、EM12、…的所述测量值候选范围码EM12以便从所述多个不同测量值参考范围RN11、RN12、…中选择所述测量值候选范围RN12。
所述处理单元331基于所确定的所述测量值候选范围码EM12来获得所述候选范围界限值对DN1B,并基于所述测量值VN81和所获得的所述候选范围界限值对DN1B之间的一数据比较CD82来检查所述测量值VN81和所选择的所述测量值候选范围RN12之间的一数学关系KV82以做出所述测量值VN81是否为于所选择的所述测量值候选范围RN12之内的一逻辑决定PB82。在所述逻辑决定PB82是肯定的条件下,所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数候选范围RD1E2。
在所述逻辑决定PB82是肯定的条件下,所述处理单元331藉由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值候选范围码EM12来检查所述测量值目标范围RN1T和所选择的所述测量值候选范围RN12之间的一范围关系KE8B以做出所获得的所述测量值目标范围码EM1T和所确定的所述测量值候选范围码EM12是否相等的一逻辑决定PZ82。在所述逻辑决定PZ82是否定的条件下,所述处理单元331使用所述输出组件338以产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的所述操作信号SG81。
例如,在所述逻辑决定PB82是肯定的条件下,所述处理单元331藉由比较所获得的 所述测量值目标范围码EM1T和所确定的所述测量值候选范围码EM12来检查所述物理参数目标范围RD1ET和所选择的所述物理参数候选范围RD1E2之间的一范围关系KE9B以做出所述物理参数目标范围RD1ET和所选择的所述物理参数候选范围RD1E2是否相等的一逻辑决定PZ92。在所述逻辑决定PZ92为否定的条件下,所述处理单元331藉由辨识所述范围关系KE9B为一范围相异关系来使用所述输出组件338以产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的所述操作信号SG81。在所述逻辑决定PZ82为否定的条件下,所述逻辑决定PZ92为否定的。
在一些实施例中,在所述可变物理参数QU1A基于所述控制信号SC81而被配置于所述物理参数目标范围RD1ET之内的条件下,所述输入单元380接收所述用户输入操作BQ81,并响应所述使用者输入操作BQ81来提供一输入数据DH81到所述处理单元331。所述处理单元331对于所述输入数据DH81执行一数据编码操作EA81以确定所述特定输入码UW81。所述处理单元331响应于确定所述特定输入码UW81来执行用于所述测量应用功能FA81的一检查操作ZP81以决定所确定的所述特定输入码UW81是否等于所述可变物理参数范围码UN8A。
例如,在所述处理单元331确定所述特定输入码UW81的条件下,所述处理单元331藉由使用所述存储单元332来读取等于所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A,并执行用于检查所确定的所述特定输入码UW81和所读取的所述测量值目标范围码EM1T之间的一算术关系KP81的所述检查操作ZP81。所述检查操作ZP81被配置以藉由执行用于所述测量应用功能FA81的一数据比较CE81来比较所确定的所述特定输入码UW81和所读取的所述测量值目标范围码EM1T以决定所确定的所述特定输入码UW81和所读取的所述测量值目标范围码EM1T是否不同。
在所述处理单元331藉由执行所述数据比较CE81来确定所确定的所述特定输入码UW81和等于所获得的所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A之间的所述码差异DX81的条件下,所述处理单元331导致所述输出组件338执行用于所述测量应用功能FA81的一信号产生操作BY82以产生一操作信号SG82。例如,所述操作信号SG82是一功能信号和一控制信号的其中之一。所述输出组件338将所述操作信号SG82传输到所述物理参数应用单元335。
所述物理参数应用单元335响应所述操作信号SG82来导致所述可变物理参数QU1A从所述物理参数目标范围RD1ET进入所述对应物理参数范围RY1ET。例如,所述操作信号SG82是一脉冲宽度调变信号、一电位准信号、一驱动信号和一指令信号的其中之一。例如,所述物理参数应用单元335响应所述操作信号SG82来导致所述可变物理参数QU1A离开所述 物理参数目标范围RD1ET以进入包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中的所述特定物理参数范围RD1E5。
例如,所述多个不同测量值参考范围码EM11、EM12、…包含不同于所述测量值目标范围码EM1T的一特定测量值范围码EM15。所述特定测量值范围码EM15被配置以指示所述特定物理参数范围RD1E5。在所确定的所述特定输入码UW81等于所述特定测量值范围码EM15以导致所确定的所述特定输入码UW81和等于所获得的所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A之间具有所述码差异DX81的条件下,所述处理单元331藉由执行所述数据比较CE81来确定所述码差异DX81,并响应于确定所述码差异DX81来使用所述输出组件338以产生所述操作信号SG82。所述物理参数应用单元335响应所述操作信号SG82来导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入包含于所述对应物理参数范围RY1ET中的所述特定物理参数范围RD1E5。
例如,在所述处理单元331导致所述输出组件338执行所述信号产生操作BY82之后,所述处理单元331于一指定时间之内执行与所述可变物理参数QU1A相关的一验证操作。在所述处理单元331基于所述验证操作而确定所述可变物理参数QU1A进入的所述特定物理参数范围RD1E5的条件下,所述处理单元331将等于所述特定测量值范围码EM15的所确定的所述特定输入码UW81指定到所述可变物理参数范围码UN8A。例如,所述特定物理参数范围RD1E5等于所述物理参数应用范围RD1EL和所述物理参数目标范围RD1EU的其中之一。
在一些实施例中,在所述处理单元331藉由检查所述第一数学关系KQ81而导致所述可变物理参数QU1A处于所述物理参数目标状态JE1U的条件下,所述输入单元380接收所述用户输入操作BQ82,并响应所述使用者输入操作BQ82来提供一输入数据DH82到所述处理单元331。所述处理单元331对于所述输入数据DH82执行一数据编码操作EA82以确定所述特定输入码UW82。
请参阅图27、图28和图29。图27为绘示于图1中的所述控制系统901的一实施结构9036的示意图。图28为绘示于图1中的所述控制系统901的一实施结构9037的示意图。图29为绘示于图1中的所述控制系统901的一实施结构9038的示意图。如图27、图28和图29所示,所述实施结构9036、所述实施结构9037和所述实施结构9038的每一结构包含所述控制装置212和所述功能装置130。所述功能装置130包含所述操作单元397、所述感测单元334、所述物理参数应用单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述接收单元337和所述传输单元384。
在一些实施例中,所述存储单元332具有所述内存位置YM8L,并在所述内存位置YM8L 存储所述应用范围界限值对DN1L。所述内存位置YM8L基于所预设的所述测量值应用范围码EM1L而被标识。例如,所述内存位置YM8L基于所述内存地址AM8L而被标识,或由所述内存地址AM8L所标识。
所述存储单元332具有所述内存位置YM8T和不同于所述内存位置YM8T的所述内存位置YX8T,在所述内存位置YM8T存储所述目标范围界限值对DN1T,并在所述内存位置YX8T存储所述句柄CC1T。例如,所述内存位置YM8T和所述内存位置YX8T皆基于所预设的所述测量值目标范围码EM1T而被标识。所述句柄CC1T基于在所述物理参数目标范围RD1ET之内的所述指定物理参数QD1T而被预设。所述内存位置YM8T基于一内存地址AM8T而被标识,或由所述内存地址AM8T所标识。所述内存位置YX8T基于所述内存地址AX8T而被标识,或由所述内存地址AX8T所标识。所述内存位置YM8L不同于所述内存位置YX8T。
所述存储单元332进一步具有一内存位置YM82和不同于所述内存位置YM82的一内存位置YX82,在所述内存位置YM82存储所述候选范围界限值对DN1B,并在所述内存位置YX82存储一句柄CC12。例如,所述内存位置YM82和所述内存位置YX82皆基于所预设的所述测量值候选范围码EM12而被标识。所述句柄CC12基于在所述物理参数候选范围RD1E2之内的一指定物理参数QD12而被预设。
例如,所述测量应用功能规格GAL8包含一物理参数表示GA812,所述物理参数表示GA812用于表示在所述物理参数目标范围RD1E2之内的所述指定物理参数QD12。所述句柄CC12基于所述物理参数表示GA812和用于转换所述物理参数表示GA812的一数据编码操作ZX92而被预设。所述内存位置YM82基于所述内存地址AM82而被标识,或由所述内存地址AM82所标识。所述内存位置YX82基于所述内存地址AX82而被标识,或由所述内存地址AX82所标识。
例如,所述存储单元332进一步具有一内存位置YX8L,并在所述内存位置YX8L存储一句柄CC1L。所述内存位置YX8L基于一内存地址AX8L而被标识,或由所述内存地址AX8L所标识。所述句柄CC1L基于在所述物理参数应用范围RD1EL之内的一指定物理参数QD1L而被预设。
在一些实施例中,所述应用范围界限值对DN1L、所述目标范围界限值对DN1T和所述候选范围界限值对DN1B皆属于一测量范围界限数据码类型TN81。所述测量范围界限数据码类型TN81由一测量范围界限数据码类型标识符HN81所标识。所述句柄CC1T和所述句柄CC12皆属于一句柄类型TC81。所述句柄类型TC81由一句柄类型标识符HC81所标识。所述测量范围界限数据码类型标识符HN81和所述句柄类型标识符HC81皆被预设。
所述内存地址AM8L基于所预设的所述测量值应用范围码EM1L和所预设的所述测量范 围界限数据码类型标识符HN81而被预设。所述内存地址AX8L基于所预设的所述测量值应用范围码EM1L和所预设的所述句柄类型标识符HC81而被预设。所述内存地址AX8T基于所预设的所述测量值目标范围码EM1T和所预设的所述句柄类型标识符HC81而被预设。所述第三内存地址AM8T基于所预设的所述测量值目标范围码EM1T和所预设的所述测量范围界限数据码类型标识符HN81而被预设。所述内存地址AM82基于所预设的所述测量值候选范围码EM12和所预设的所述测量范围界限数据码类型标识符HN81而被预设。所述内存地址AX82基于所预设的所述测量值候选范围码EM12和所预设的所述句柄类型标识符HC81而被预设。
在一些实施例中,所述处理单元331响应所述控制信号SC81来确定所述测量值应用范围码EM1L,响应所述控制信号SC81来获得所预设的所述测量范围界限数据码类型标识符HN81,基于所确定的所述测量值应用范围码EM1L和所获得的所述测量范围界限数据码类型标识符HN81来获得所述内存地址AM8L,并基于所获得的所述内存地址AM8L来使用所述存储单元332以接入被存储在所述内存位置YM8L的所述应用范围界限值对DN1L以获得所述应用范围界限值对DN1L。
所述处理单元331基于所述测量值VN81和所获得的所述应用范围界限值对DN1L之间的所述数据比较CD81来检查所述数学关系KV81以做出所述测量值VN81是否为于所选择的所述测量值应用范围RN1L之内的所述逻辑决定PB81,并在所述逻辑决定PB81是肯定的条件下确定所述可变物理参数QU1A目前于的所述物理参数应用范围RD1EL。例如,在所述逻辑决定PB81是肯定的条件下,所述处理单元331确定所述可变物理参数QU1A目前于所述物理参数应用范围RD1EL之内的一物理参数情况,并藉此辨识所述可变物理参数QU1A和所述物理参数应用范围RD1EL之间的一物理参数关系KD8L为所述可变物理参数QU1A目前于所述物理参数应用范围RD1EL之内的一物理参数交集关系。所述处理单元331藉由检查所述数学关系KV81来检查所述物理参数关系KD8L。
所述处理单元331响应所述控制信号SC81来获得所预设的所述句柄类型标识符HC81,并从所述控制信号SC81获得所述测量值目标范围码EM1T。在所述处理单元331确定所述范围差异DS81的条件下,所述处理单元331基于所获得的所述测量值目标范围码EM1T和所获得的所述句柄类型标识符HC81来获得所述内存地址AX8T,并基于所获得的所述内存地址AX8T来使用所述存储单元332以接入被存储在所述内存位置YX8T的所述句柄CC1T。所述处理单元331基于所接入的所述句柄CC1T来导致所述输出组件338执行用于所述测量应用功能FA81的所述信号产生操作BY81以产生所述操作信号SG81,所述操作信号SG81用于控制所述物理参数应用单元335以导致所述可变物理参数QU1A进入所述物理参数目 标范围RD1ET。
所述处理单元331基于所获得的所述测量值目标范围码EM1T和所获得的所述测量范围界限数据码类型标识符HN81来获得所述第三内存地址AM8T,并基于所获得的所述第三内存地址AM8T来使用所述存储单元332以接入被存储在所述内存位置YM8T的所述目标范围界限值对DN1T以获得所述目标范围界限值对DN1T。所述处理单元331藉由比较所述测量值VN82和所获得的所述目标范围界限值对DN1T来检查所述测量值VN82和所述测量值目标范围RN1T之间的所述数学关系KV91以做出所述测量值VN82是否为于所述测量值目标范围RN1T之内的所述逻辑决定PB91。
在一些实施例中,在所述接收单元337接收所述控制信号SC81之前,所述接收组件3371和所述接收组件3372的其中之一接收包含所预设的所述应用范围界限值对DN1L和所默认的所述内存地址AM8L的所述写入请求信息WN8L。例如,所述接收组件3371和所述接收组件3372的其中之一预先从所述控制装置212接收所述写入请求信息WN8L。所述处理单元331响应所述写入请求信息WN8L来使用所述存储单元332以将所述写入请求信息WN8L的所述应用范围界限值对DN1L存储到所述内存位置YM8L。
在所述接收单元337接收所述控制信号SC81之前,所述接收组件3371和所述接收组件3372的其中之一接收包含所预设的所述句柄CC1T和所默认的所述内存地址AX8T的所述写入请求信息WC8T。例如,所述接收组件3371和所述接收组件3372的其中之一预先从所述控制装置212接收所述写入请求信息WC8T。所述处理单元331响应所述写入请求信息WC8T来使用所述存储单元332以将所述写入请求信息WC8T的所述句柄CC1T存储到所述内存位置YX8T。
在所述接收单元337接收所述控制信号SC81之前,所述接收组件3371和所述接收组件3372的其中之一接收包含所默认的所述应用目标界限值对DN1T和所预设的所述第三内存地址AM8T的一写入请求信息WN8T。例如,所述接收组件3371和所述接收组件3372的其中之一预先从所述控制装置212接收所述写入请求信息WN8T。所述处理单元331响应所述写入请求信息WN8T来使用所述存储单元332以将所述写入请求信息WN8T的所述应用目标界限值对DN1T存储到所述内存位置YM8T。
所述存储单元332进一步具有一内存位置YN81,并在所述内存位置YN81存储所述额定范围界限值对DD1A。所述内存位置YN81基于一内存地址AN81而被标识,或由所述内存地址AN81所标识。例如,所述内存地址AN81被默认。在所述接收单元337接收所述控制信号SC81之前,所述接收组件3371和所述接收组件3372的其中之一接收包含所预设的所述额定范围界限值对DD1A和所默认的所述内存地址AN81的一写入请求信息WD81。例如, 所述接收组件3371和所述接收组件3372的其中之一预先从所述控制装置212接收所述写入请求信息WD81。所述处理单元331响应所述写入请求信息WD81来使用所述存储单元332以将所述写入请求信息WD81的所述额定范围界限值对DD1A存储到所述内存位置YN81。
在一些实施例中,所述处理单元331基于所确定的所述测量值候选范围码EM12和所获得的所述测量范围界限数据码类型标识符HN81来获得所述内存地址AM82,并基于所获得的所述内存地址AM82来使用所述存储单元332以接入被存储在所述内存位置YM82的所述候选范围界限值对DN1B以获得所述候选范围界限值对DN1B。
在一些实施例中,所述特定物理参数范围RD1E5由一特定测量值范围RN15所代表。所述特定测量值范围RN15具有一特定范围界限值对DN1E。所述存储单元332进一步具有一内存位置YM85和不同于所述内存位置YM85的一内存位置YX85。所述内存位置YM85基于一内存地址AM85而被标识,并基于所述特定测量值范围码EM15和所述测量范围界限数据码类型标识符HN81而被预设。所述内存位置YX85基于一内存地址AX85而被标识,并基于所述特定测量值范围码EM15和所述句柄类型标识符HC81而被预设。
所述存储单元332在所述内存位置YM85存储所述特定范围界限值对DN1E,并在所述内存位置YX85存储一句柄CC15。所述特定范围界限值对DN1E被配置以代表所述特定物理参数范围RD1E5,并属于所述测量范围界限数据码类型TN81。所述句柄CC15属于所述句柄类型TC81,并基于在所述特定物理参数范围RD1E5之内的一指定物理参数QD5T而被预设。所获得的所述测量值目标范围码EM1T。
在所确定的所述特定输入码UW81等于所预设的所述特定测量值范围码EM15以导致所确定的所述特定输入码UW81和等于所获得的所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A之间具有所述码差异DX81的条件下,所述处理单元331藉由执行所述数据比较CE11来确定所述码差异DX81。在所述处理单元331确定所述码差异DX81的条件下,所述处理单元331基于等于所预设的所述特定测量值范围码EM15的所确定的所述特定输入码UW81和所获得的所述句柄类型标识符HC81来获得所述内存地址AX85。
所述处理单元331基于所获得的所述内存地址AX85来使用所述存储单元332以接入被存储在所述内存位置YX85的所述句柄CC15,并基于所接入的所述句柄CC15来导致所述输出组件338执行用于所述测量应用功能FA81的所述信号产生操作BY82以产生所述操作信号SG82,所述操作信号SG82用于控制所述物理参数应用单元335以导致所述可变物理参数QU1A进入包含于所述对应物理参数范围RY1ET中的所述特定物理参数范围RD1E5。
在一些实施例中,在所述处理单元331于一操作时间TF82之内导致所述输出组件338执行所述信号产生操作BY82以产生所述操作信号SG82之后,所述感测单元334感测所述 可变物理参数QU1A以产生一感测信号SN83。所述处理单元331于所述操作时间TF82之后的一指定时间TG83响应所述感测信号SN83来获得一测量值VN83。所述处理单元331被配置以基于等于所预设的所述特定测量值范围码EM15的所确定的所述特定输入码UW81和所获得的所述测量范围界限数据码类型标识符HN81来获得所述内存地址AM85,并基于所获得的所述内存地址AM85来使用所述存储单元332以接入被存储在所述内存位置YM85的所述特定范围界限值对DN1E。
在所述处理单元331藉由比较所述测量值VN83和所获得的所述特定范围界限值对DN1E来检查所述测量值VN83和所述特定测量值范围RN15之间的一数学关系KV83以确定所述可变物理参数QU1A目前处于的所述特定物理参数范围RD1E5的条件下,所述处理单元331基于所述可变物理参数范围码UN8A和等于所预设的所述特定测量值范围码EM15的所确定的所述特定输入码UW81之间的一码差异来使用所述存储单元332以将所确定的所述特定输入码UW81指定到所述可变物理参数范围码UN8A。
例如,所述处理单元331藉由检查所述数学关系KV83来确定所述可变物理参数QU1A目前于所述特定物理参数范围RD1E5之内的一物理参数情况,并藉此辨识所述可变物理参数QU1A和所述特定物理参数范围RD1E5之间的一物理参数关系KD85为所述可变物理参数QU1A目前于所述特定物理参数范围RD1E5之内的一物理参数交集关系。所述处理单元331藉由检查所述数学关系KV83来检查所述物理参数关系KD85。
请参阅图30、图31和图32。图30为绘示于图1中的所述控制系统901的一实施结构9039的示意图。图31为绘示于图1中的所述控制系统901的一实施结构9040的示意图。图32为绘示于图1中的所述控制系统901的一实施结构9041的示意图。如图30、图31和图32所示,所述实施结构9039、所述实施结构9040和所述实施结构9041的每一结构包含所述控制装置212和所述功能装置130。所述功能装置130包含所述操作单元397、所述感测单元334、所述物理参数应用单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述定时器342、所述接收单元337和所述传输单元384。
在一些实施例中,由所述接收单元337所接收的所述控制信号SC81输送所述控制信息CG81,所述控制信息CG81包含一定时操作模式码CP21、所述测量值指定范围码EL1T、所述指定范围界限值对DQ1T、所述测量时间长度值VH8T、所述目标范围界限值对DN1T、所述额定范围界限值对DD1A、所述句柄CC1T和所述测量值目标范围码EM1T。所述定时操作模式码CP21代表所述定时器342所操作于的一定时操作模式WU21。
所述处理单元331从所述控制信号SC81获得所述控制信息CG81,并基于所获得的所述定时操作模式码CP21来启动所述定时器342以使所述定时器342操作于所述定时操作 模式WU21中。所述定时器342于所述定时操作模式WU21中感测所述时钟时间TH1A。所述定时操作模式WU21基于所述多个不同时钟时间参考区间HR1E1、HR1E2、…而被特征化。在所述处理单元331基于所述控制信号SC81而确定所述范围差异DS81的条件下,所述处理单元331基于所获得的所述句柄CC1T来导致所述输出组件338执行所述信号产生操作BY81,所述信号产生操作BY81用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
在一些实施例中,所述处理单元331从所接收的所述控制信号SC81获得所述测量值目标范围码EM1T和所述目标范围界限值对DN1T。在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述处理单元331藉由比较所述测量值VN82和所获得的所述目标范围界限值对DN1T来确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331基于等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的所述码差异DF81来使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
例如,所述处理单元331藉由比较所述测量值VN82和所获得的所述目标范围界限值对DN1T来确定所述可变物理参数QU1A目前于所述物理参数目标范围RD1ET之内的一物理参数情况,并藉此辨识所述可变物理参数QU1A和所述物理参数目标范围RD1ET之间的一物理参数关系KD8T为所述可变物理参数QU1A目前于所述物理参数目标范围RD1ET之内的一物理参数交集关系。所述处理单元331藉由比较所述测量值VN82和所获得的所述目标范围界限值对DN1T来检查所述物理参数关系KD8T。
在一些实施例中,所述处理单元331响应所述控制信号SC81来执行用于检查所述测量值VN81和所述测量值目标范围RN1T之间的一数学关系KV51的一检查操作BV51。在所述处理单元331基于所述检查操作BV51而确定所述可变物理参数QU1A目前所处于的所述对应物理参数范围RY1ET的条件下,所述处理单元331基于所述控制信号SC81来于所述操作时间TF81之内执行所述信号产生控制GY81以向所述物理参数应用单元335传输所述操作信号SG81。所述操作信号SG81用于导致所述可变物理参数QU1A从所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET进入所述物理参数目标范围RD1ET。
所述控制信号SC81输送所述目标范围界限值对DN1T、所述额定范围界限值对DD1A和所述句柄CC1T。所述处理单元331从所述控制信号SC81获得所述目标范围界限值对DN1T,并藉由比较所述测量值VN81和所获得的所述目标范围界限值对DN1T来执行所述检查操作BV51以做出所述测量值VN81是否为于所述对应测量值范围RX1T之内的一逻辑决 定PB51。在所述逻辑决定PB51是肯定的条件下,所述处理单元331确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET。
所述处理单元331从所述控制信号SC81获得所述句柄CC1T,并基于所获得的所述句柄CC1T来执行所述信号产生控制GY81。所述输出组件338响应所述信号产生控制GY81来产生所述操作信号SG81。例如,所述控制信号SC81输送所述测量值目标范围码EM1T,从所述控制信号SC81获得所述测量值目标范围码EM1T,并基于所获得的所述测量值目标范围码EM1T来从所述存储单元332获得所存储的所述句柄CC1T。
在一些实施例中,所述处理单元331从所述控制信号SC81获得所述额定范围界限值对DD1A,并藉由比较所述测量值VN81和所获得的所述额定范围界限值对DD1A来执行用于检查所述测量值VN81和所述额定测量值范围RD1N之间的一数学关系KM51的一检查操作BM51。例如,所述处理单元331基于所述检查操作BV51和所述检查操作BM51来做出所述逻辑决定PB51。例如,所述物理参数关系检查控制GX8T包含所述检查操作BV51和所述检查操作BM51。
所述处理单元331于所述操作时间TF81之后的所述指定时间TG82之内响应所述感测信号SN82来以所述指定测量值格式HH81获得所述测量值VN82。所述处理单元331藉由比较所述测量值VN82和从所述控制信号SC81所获得的所述目标范围界限值对DN1T来检查所述测量值VN82和所述测量值目标范围RN1T之间的所述数学关系KV91以做出所述测量值VN82是否为于所述测量值目标范围RN1T之内的所述逻辑决定PB91。在所述逻辑决定PB91是肯定的条件下,所述处理单元331于所述指定时间TG82之内确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET,并导致所述传输单元384向所述操作单元297传输输送所获得的所述测量值VN82的所述控制响应信号SE81。
在一些实施例中,所述可变物理参数QU1A基于所述物理参数目标范围RD1ET和不同于所述物理参数目标范围RD1ET的一物理参数应用范围RD1EJ而被特征化,且所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ的其中之一由一测量值指示范围RN1H所代表。在所述处理单元331藉由检查所述测量值VN81和所述测量值指示范围RN1H之间的一数学关系KH81而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EJ的条件下,所述处理单元331导致所述可变物理参数QU1A从所述物理参数应用范围RD1EJ进入所述物理参数目标范围RD1ET。例如,所述物理参数应用范围RD1EJ等于所述对应物理参数范围RY1ET和所述物理参数应用范围RC1EL的其中之一。
在一第一情况中:所述物理参数应用范围RD1EJ由所述测量值指示范围RN1H所代表;所述测量值指示范围RN1H等于测量值应用范围RN1L;且所述数学关系KH81等于所述数学 关系KV81。在与所述第一情况不同的一第二情况中:所述物理参数应用范围RD1EJ对应于所述物理参数目标范围RD1ET,并等于所述对应物理参数范围RY1ET;所述对应物理参数范围RY1ET由所述对应测量值范围RX1T所代表;所述物理参数目标范围RD1ET由所述测量值指示范围RN1H所代表;所述测量值指示范围RN1H等于所述测量值目标范围RN1T;且所述数学关系KH81等于所述数学关系KV51。
在一些实施例中,所述可变物理参数QU1A相关于一可变时间长度LF8A,并基于一物理参数目标范围RD1EV而被特征化。所述物理参数目标范围RD1EV由一物理参数目标范围码UN1V所指示。所述定时器342用于在与所述定时操作模式WU21不同的一定时操作模式WU11中感测或测量所述可变时间长度LF8A。所述定时操作模式WU11由与所述定时操作模式码CP21不同的一定时操作模式码CP11所代表。所述可变时间长度LF8A基于一参考时间长度LJ8V而被特征化。
所述参考时间长度LJ8V由一测量时间长度值CL8V所代表。所述测量时间长度值CL8V基于基于所述参考时间长度LJ8V和所述定时器规格FT21来以一指定测量值格式HH91而被预设。例如,所述指定测量值格式HH91基于一指定比特数目UY91而被特征化。在所述可变物理参数QU1A于所述时钟时间应用区间HR1EU之内处于所述物理参数目标范围RD1EU的条件下,所述接收单元337从所述控制装置212接收一控制信号SC88。例如,所述指定测量值格式HH91是一指定计数值格式。
所述控制信号SC88输送所述定时操作模式码CP11、所述物理参数目标范围码UN1V、所述测量时间长度值CL8V和一句柄CC1V。例如,所述句柄CC1V基于在所述物理参数目标范围RD1EV之内的一指定物理参数QD1V而被预设。所述控制信号SC88藉由输送所述物理参数目标范围码UN1V来起到指示所述物理参数目标范围RD1EV和所述物理参数目标状态JE1V的至少其中之一的作用。
在一些实施例中,所述处理单元331被配置以从所述控制信号SC88获得所述定时操作模式码CP11、所述物理参数目标范围码UN1V、所述测量时间长度值CL8V和所述句柄CC1V。所述处理单元331基于所获得的所述定时操作模式码CP11来停止所述定时器342,基于所获得的所述测量时间长度值CL8V来重新启动所述定时器342,并藉由重新启动所述定时器342来使所述定时器342操作于所述定时操作模式WU11中。所述定时器342被重新启动以开始与所述参考时间长度LJ8V匹配的一应用时间长度LT8V。所述定时器342于所述定时操作模式WU11中藉由执行用于所述应用时间长度LT8V的一计数操作BC8V来感测所述可变时间长度LF8A以经历所述应用时间长度LT8V。所述定时操作模式WU11基于所述参考时间长度LJ8V而被特征化。
所述处理单元331基于所述计数操作BC8V来经历所述应用时间长度LT8V以到达一特定时间TJ8V。所述应用时间长度LT8V具有一结束时间TZ8V。所述特定时间TJ8V相邻于所述结束时间TZ8V。例如,所述控制信号SC88输送一控制信息CG88。所述控制信息CG88包含所述定时操作模式码CP11、所述物理参数目标范围码UN1V、所述测量时间长度值CL8V和所述句柄CC1V。所述处理单元331被配置以从所述控制信号SC88获得所述控制信息CG88。所述处理单元331响应所获得的所述控制信息CG88来使所述可变物理参数QU1A于所述应用时间长度LT8V内处于所述物理参数目标范围RD1EV。
所述测量应用功能规格GAL8包含一时间长度表示GA8KV。所述时间长度表示GA8KV用于表示所述参考时间长度LJ8V。例如,所述时间长度值CL8V基于所述时间长度表示GA8KV、所述定时器规格FT21和用于转换所述时间长度表示GA8KV的一数据编码操作ZX8KV来以所述指定测量值格式HH91而被预设。所述物理参数目标范围RD1EV被配置以对应于一对应物理参数范围RY1EV。所述额定物理参数范围RD1E等于所述物理参数目标范围RD1EV和所述对应物理参数范围RY1EV的一范围组合。
在一些实施例中,所述处理单元331基于所获得的定时操作模式码CP11来使所述定时器342操作于所述定时操作模式WU11。所述处理单元331基于所获得的所述测量时间长度值CL8V而导致所述定时器342于所述定时操作模式WU11中执行所述计数操作BC8V。在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1EV之内的条件下,所述处理单元331基于所述计数操作BC8V来到达所述特定时间TJ8V,并在所述特定时间TJ8V之内导致所述输出组件338执行所述信号产生操作BY89,所述信号产生操作BY89用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1EV以进入所述对应物理参数范围RY1EV。
例如,在所述可变物理参数QU1A基于所述控制信号SC88而被配置以于所述物理参数目标范围RD1EV内的条件下,所述处理单元331基于所述计数操作BC8V来经历所述应用时间长度LT8V以到达所述特定时间TJ8V。所述处理单元331于所述特定时间TJ8V之内藉由执行使用所获得的所述物理参数目标范围码UN1V的一科学计算MK81来取得不同于所获得的所述物理参数目标范围码UN1V的一物理参数目标范围码UN1W。所述物理参数目标范围RD1EW由所述物理参数目标范围码UN1W所代表。例如,所述物理参数目标范围码UN1W指示所述物理参数目标状态JE1W。
例如,所述控制装置212基于所述参考时间长度LJ8V和所述定时器规格FT21来确定所述测量时间长度值CL8V,并基于所确定的所述测量时间长度值CL8V来输出所述控制信号SC88。所述控制信息CG88进一步包含所述测量时间长度值CL8V。所述控制信号SC88 用于导致所述可变物理参数QU1A于所述物理参数目标范围RD1EV之内足有与所述参考时间长度LJ8V匹配的所述应用时间长度LT8V。例如,所述物理参数目标范围码UN1W相同于所述测量值候选范围码EM12。
例如,当所述接收单元337接收所述控制信号SC88时,所述可变物理参数范围码UN8A等于所述物理参数目标状态代码EW1U。在所述控制信号SC88的所述物理参数目标范围码UN1V不同于所述可变物理参数范围码UN8A的所述物理参数目标状态代码EW1U的条件下,所述处理单元331基于所述控制信号SC88的所述物理参数目标范围码UN1V和所述可变物理参数范围码UN8A的所述物理参数目标状态代码EW1U之间的一码差异DX88来产生一操作信号SG88,并向所述物理参数应用单元335传输所述操作信号SG88。所述操作信号SG88用于使所述可变物理参数QU1A处于所述物理参数目标范围RD1EV。
在一些实施例中,所述处理单元331基于所取得的所述测量值候选范围码EM12(或所取得的所述物理参数目标范围码UN1W)和所获得的所述句柄类型标识符HC81来取得所述内存地址AX82。所述处理单元331基于所取得的所述内存地址AX82来使用所述存储单元332以读取被存储在所述内存位置YX82的所述句柄CC12,并基于所读取的所述句柄CC12来执行用于控制所述输出组件338的一信号产生控制GY89。
所述输出组件338响应所述信号产生控制GY89来执行用于所述测量应用功能FA81的所述信号产生操作BY89以产生所述操作信号SG89,所述操作信号SG89用于控制所述物理参数应用单元335以导致所述可变物理参数QU1A进入包含于所述对应物理参数范围RY1EV中的所述物理参数目标范围RD1EW。例如,所述操作信号SG89是一功能信号和一控制信号的其中之一。所述物理参数目标范围RD1EW是所述物理参数应用范围RD1ET、所述物理参数目标范围RD1EU和所述物理参数候选范围RD1E2的其中之一,并不同于所述物理参数目标范围RD1EV。
例如,所述处理单元331基于所获得的所述测量时间长度值CL8V来导致所述定时器342执行所述计数操作BC8V以到达所述结束时间TZ8V。当所述定时器342藉由执行所述计数操作BC8V而到达所述结束时间TZ8V时,所述定时器342向所述处理单元331传输一中断请求信号UH8V以到达所述特定时间TJ8V。所述处理单元331于所述特定时间TJ8V之内响应所述中断请求信号UH8V来执行使用所获得的所述物理参数目标范围码UN1V的所述科学计算MK81以取得不同于所获得的所述物理参数目标范围码UN1V的所述物理参数目标范围码UN1W。例如,所述处理单元331藉由从所述定时器342接收所述中断请求信号UH8V来辨识所述特定时间TJ8V,并藉此经历所述应用时间长度LT8V。所述特定时间TJ8V相邻于所述结束时间TZ8V。
在一些实施例中,所述可变物理参数QU1A基于所述额定物理参数范围RD1E而被特征化。所述额定物理参数范围RD1E包含所述物理参数目标范围RD1ET、所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2,并由所述额定测量值范围RD1N所代表。例如,所述额定测量值范围RD1N包含所述测量值目标范围RN1T、所述测量值应用范围RN1L和所述测量值候选范围RN12。所述物理参数目标范围RD1ET、所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2分别由所述测量值目标范围RN1T、所述测量值应用范围RN1L和所述测量值候选范围RN12所代表。
所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2是不同的。所述物理参数目标范围RD1ET相同或不同于所述物理参数应用范围RD1EL。所述物理参数目标范围RD1ET相同或不同于所述物理参数候选范围RD1E2。所述测量值应用范围RN1L和所述测量值候选范围RN12是不同的。所述测量值目标范围RN1T相同或不同于所述测量值应用范围RN1L。所述测量值目标范围RN1T相同或不同于所述测量值候选范围RN12。
在一些实施例中,所述可变物理参数QU1A的所述额定物理参数范围RD1E包含所述多个不同物理参数参考范围RD1E1、RD1E2、…。所述多个不同物理参数参考范围RD1E1、RD1E2、…包含所述物理参数目标范围RD1ET、所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2。所述可变物理参数QU1A基于所述多个不同物理参数参考范围RD1E1、RD1E2、…而处于多个不同参考状态的其中之一。所述多个不同参考状态包含一第一参考状态、一第二参考状态和一第三参考状态,藉此所述可变物理参数QU1A由一可变目前状态所特征化。所述可变目前状态是所述多个不同参考状态的其中之一。
例如,所述第一参考状态和所述第二参考状态是互补的。在所述可变物理参数QU1A是于所述物理参数应用范围RD1EL之内的条件下,所述可变物理参数QU1A处于所述第一参考状态。在所述可变物理参数QU1A是于所述物理参数候选范围RD1E2之内的条件下,所述可变物理参数QU1A处于所述第二参考状态。在所述可变物理参数QU1A是于所述物理参数目标范围RD1ET之内的条件下,所述可变物理参数QU1A处于所述第三参考状态。所述第三参考状态相同或不同于所述第一参考状态。所述第三参考状态相同或不同于所述第二参考状态。
由所述控制信号SC81所输送的所述句柄CC1T和由所述存储单元332所存储的所述句柄CC1T皆基于在所述物理参数目标范围RD1ET之内的所述指定物理参数QD1T而被预设。在所述处理单元331确定所述范围差异DS81的条件下,所述处理单元331基于所获得的所述句柄CC1T来导致所述输出组件338执行用于所述测量应用功能FA81的所述信号产生操作BY81以产生所述操作信号SG81。
所述物理参数应用单元335响应所述操作信号SG81来导致所述可变物理参数QU1A从一目前状态改变成所述第三参考状态,或响应所述操作信号SG81来导致所述可变物理参数QU1A从一特定物理参数QU17改变成一特定物理参数QU18。例如,所述目前状态是所述第一参考状态和所述第二参考状态的其中之一。所述特定物理参数QU17是于所述物理参数应用范围RD1EL之内,或于所述物理参数候选范围RD1E2之内。所述特定物理参数QU18是于所述物理参数目标范围RD1ET之内。例如,所述特定物理参数QU17是于所述对应物理参数范围RY1ET之内。
在一些实施例中,所述多个不同参考状态分别导致所述物理参数应用单元335处于多个不同功能状态。所述多个不同功能状态是不同的,并包含一第一功能状态、一第二功能状态和一第三功能状态。例如,所述第一功能状态和所述第二功能状态是互补的。在所述可变物理参数QU1A是于所述物理参数应用范围RD1EL之内的条件下,所述物理参数应用单元335处于所述第一功能状态。在所述可变物理参数QU1A是于所述物理参数候选范围RD1E2之内的条件下,所述物理参数应用单元335处于所述第二功能状态。在所述可变物理参数QU1A是于所述物理参数目标范围RD1ET之内的条件下,所述物理参数应用单元335处于所述第三功能状态。所述第三功能状态相同或不同于所述第一功能状态。所述第三功能状态相同或不同于所述第二功能状态。
例如,所述测量值目标范围码EM1T是一测量值参考范围号码。所述测量值目标范围RN1T基于所述测量值目标范围码EM1T而被安排于所述额定测量值范围RD1N中。所述测量值应用范围码EM1L是一测量值参考范围号码。所述测量值应用范围RN1L基于所述测量值应用范围码EM1L而被安排于所述额定测量值范围RD1N中。所述测量值候选范围码EM12是一测量值参考范围号码。所述测量值候选范围RN12基于所述测量值候选范围码EM12而被安排于所述额定测量值范围RD1N中。
在一些实施例中,所述物理参数目标范围RD1ET是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述物理参数应用范围RD1EL是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。在所述可变物理参数QU1A是所述第一可变电压的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高电压范围和一相对低电压范围。在所述可变物理参数QU1A是所述第一可变电流的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高电流范围和一相对低电流范围。在所述可变物理参数QU1A是所述第一可变电阻的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高电阻范围和一相对低电阻范围。
在所述可变物理参数QU1A是所述第一可变亮度的条件下,所述相对高物理参数范围 和所述相对低物理参数范围分别是一相对高亮度范围和一相对低亮度范围。在所述可变物理参数QU1A是所述第一可变光强度的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高光强度范围和一相对低光强度范围。在所述可变物理参数QU1A是所述第一可变音量的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高音量范围和一相对低音量范围。在所述可变物理参数QU1A是所述第一可变角速度的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高角速度范围和一相对低角速度范围。
例如,所述物理参数目标范围RD1ET是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述物理参数候选范围RD1E2是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。例如,所述物理参数应用范围RD1EL是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述物理参数候选范围RD1E2是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。例如,所述物理参数目标范围RD1ET是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述特定物理参数范围RD1E4是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。例如,所述物理参数目标范围RD1ET是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述特定物理参数范围RD1E5是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。
在一些实施例中,在所述功能装置130是一继电器的条件下,所述物理参数应用单元335是一控制开关。在所述物理参数应用单元335是所述控制开关的条件下,所述控制开关具有一可变开关状态,并基于所述可变物理参数QU1A而处于一接通状态和一关断状态的其中之一。例如,所述可变开关状态等于所述接通状态和所述关断状态的其中之一,且所述接通状态和所述关断状态是互补的。所述接通状态是所述第一功能状态和所述第二功能状态的其中之一,且所述关断状态是所述第一功能状态和所述第二功能状态的其中另一。
在所述处理单元331确定所述范围差异DS81的条件下,所述处理单元331辨识所述可变目前状态为不同于所述第三参考状态的一特定状态,并藉此产生所述操作信号SG81。所述物理参数应用单元335响应所述操作信号SG81来导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET,因此所述可变目前状态被改变成所述第三参考状态。在所述处理单元331确定所述码差异DX81的条件下,所述处理单元331使用所述输出组件338以产生所述操作信号SG82。所述物理参数应用单元335响应所述操作信号SG82来导致所述可变物理参数QU1A从所述物理参数目标范围RD1ET进入包含于所述对应物理参数范围 RY1ET中的所述特定物理参数范围RD1E5;因此,在所述特定物理参数范围RD1E5等于所述物理参数候选范围RD1E2的条件下,所述可变目前状态被改变成所述第二参考状态。
例如,所述可变物理参数QU1A是所述第一可变电流。所述物理参数应用范围RD1EL、所述物理参数候选范围RD1E2和所述物理参数目标范围RD1ET分别是一第一电流参考范围、一第二电流参考范围、一第三电流参考范围和一第四电流参考范围。所述句柄CC1L基于在所述第一电流参考范围之内的一第一指定电流而被预设。所述句柄CC12基于在所述第二电流参考范围之内的一第二指定电流而被预设。所述句柄CC1T基于在所述第三电流参考范围之内的一第三指定电流而被预设。所述句柄CC1V基于在所述第四电流参考范围之内的一第四指定电流而被预设。
所述测量时间长度值CL8V基于所述时间长度表示GA8KV、所述定时器规格FT21和所述数据编码操作ZX8KV来以所述指定测量值格式HH91而被预设。所述处理单元331从所述控制信号SC88获得所述测量时间长度值CL8V,并基于所获得的所述测量时间长度值CL8V来导致所述定时器342执行所述计数操作BC8V。在所述第一可变电流基于所述控制信号SC88而被配置以于所述第四电流参考范围之内的条件下,所述处理单元331基于所述计数操作BC8V来经历所述应用时间长度LT8V以到达所述特定时间TJ8V,藉此所述第一可变电流在相关于所述计数操作BC8V的所述应用时间长度LT8V之内维持成为于所述第四电流参考范围之内。
例如,在所述可变物理参数QU1A是一可变转速的条件下,所述物理参数应用范围RD1EL、所述物理参数候选范围RD1E2和所述物理参数目标范围RD1ET分别是一第一转速参考范围、一第二转速参考范围和一第三转速参考范围。在所述可变物理参数QU1A是一可变温度的条件下,所述物理参数应用范围RD1EL、所述物理参数候选范围RD1E2和所述物理参数目标范围RD1ET分别是一第一温度参考范围、一第二温度参考范围和一第三温度参考范围。
请参阅图33。图33为绘示于图1中的所述控制系统901的一实施结构9042的示意图。如图33所示,所述实施结构9042包含所述控制装置212、所述功能装置130和一服务器280。所述控制装置212链接于所述服务器280。所述功能装置130包含所述操作单元397、所述感测单元334、所述物理参数应用单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述接收单元337、所述传输单元384和耦合于所述处理单元331的一定时器340。所述定时器340受所述处理单元331控制。
在一些实施例中,包含于所述接收单元337中的所述接收组件3374耦合于所述处理单元331,并在所述可变物理参数QU1A要依靠所述控制装置212而被提供的条件下从所述 控制装置212接收所述物理参数信号SB81。所述物理参数应用单元335从所述接收组件3374接收所述物理参数信号SB81。所述处理单元331导致所述物理参数应用单元335使用所述物理参数信号SB81以形成取决于所述物理参数信号SB81的所述可变物理参数QU1A。
所述控制装置212包含所述操作单元297、耦合于所述操作单元297的一存储单元250、和耦合于所述操作单元297的一感测单元560。所述操作单元297执行一读取操作BR81和一感测操作BZ81的其中之一以输出所述物理参数信号SB81。所述读取操作BR81读取被存储于所述存储单元250和所述服务器280的其中之一中的一物理参数数据记录DU81。所述感测单元560藉由执行所述感测操作BZ81来感测一可变物理参数QL1A以导致所述操作单元297输出所述物理参数信号SB81。例如,所述感测单元560受所述操作单元297控制以感测所述可变物理参数QL1A。
例如,所述可变物理参数QU1A属于所述物理参数类型TU11。所述可变物理参数QL1A属于一物理参数类型TL11。所述物理参数类型TU11相同或不同于所述物理参数类型TL11。所述控制装置212处于一应用环境EX81中。所述控制装置212和所述应用环境EX81的其中之一具有所述可变物理参数QL1A。所述物理参数数据记录DU81预先基于一可变物理参数QY1A而被提供。所述可变物理参数QY1A属于所述物理参数类型TL11。例如,所述物理参数类型TU11不同于一时间类型。
在一些实施例中,所述物理参数应用单元335包含一驱动电路3355、和耦合于所述驱动电路3355的一物理参数形成部分3351。所述物理参数形成部分3351用于形成所述可变物理参数QU1A,并包含所述物理参数形成区AU11。所述驱动电路3355耦合于所述接收组件3374和所述输出组件338,并通过所述输出组件338而受所述处理单元331控制。所述驱动电路3355从所述接收组件3374接收所述物理参数信号SB81,从所述输出组件338接收所述操作信号SG81,并响应所述操作信号SG81来处理所述物理参数信号SB81以输出一驱动信号SL81。
所述物理参数形成部分3351接收所述驱动信号SL81,并响应所述驱动信号SL81来使所述可变物理参数QU1A处于所述物理参数目标范围RD1ET之内。例如,在所述合理决定PW81是肯定的条件下,所述处理单元331导致所述输出组件338执行用于所述测量应用功能FA81的所述信号产生操作BY81以提供所述操作信号SG81到所述驱动电路3355。所述驱动电路3355响应所述操作信号SG81来驱动所述物理参数形成部分3351以使所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
在一些实施例中,所述额定测量值范围RD1N被配置以具有多个不同测量值参考范围 RN11、RN12、…。例如,所述多个不同测量值参考范围RN11、RN12、…具有一总参考范围数目NT81,并包含所述测量值目标范围RN1T。例如,所述总参考范围数目NT81被预设。所述存储单元332存储所述额定范围界限值对DD1A。所述处理单元331被配置以从所述控制信号SC81和所述存储单元332的其中之一获得所述总参考范围数目NT81,从所述控制信号SC81获得所述测量值目标范围码EM1T,并响应所述控制信号SC81来从所述存储单元332获得所述额定范围界限值对DD1A。
所述处理单元331基于所述测量值VN81、所获得的所述总参考范围数目NT81和和所获得的所述额定范围界限值对DD1A来执行所述科学计算MR81来从所述多个不同测量值参考范围码EM11、EM12、…中选择所述测量值应用范围码EM1L以确定所述测量值应用范围码EM1L。例如,所述科学计算MR81基于所预设的所述总参考范围数目NT81和所预设的所述额定范围界限值对DD1A而被预先建构。
所述处理单元331基于所确定的所述测量值应用范围码EM1L、所获得的所述总参考范围数目NT81和所取得的所述额定范围界限值对DD1A来执行所述科学计算MZ81以获得所述应用范围界限值对DN1L。例如,所述科学计算MZ81基于所预设的所述总参考范围数目NT81和所预设的所述额定范围界限值对DD1A而被预先建构。
在一些实施例中,所述处理单元331响应于所述操作时间TF81之内所执行的所述信号产生控制GY81来导致所述定时器340执行一计数操作BE81。所述处理单元331基于所述计数操作BE81来到达所述指定时间TG82,并在所述指定时间TG82响应所述感测信号SN82来获得所述测量值VN82。
所述可变物理参数QL1A是一第二可变电性参数、一第二可变力学参数、一第二可变光学参数、一第二可变温度、一第二可变电压、一第二可变电流、一第二可变电功率、一第二可变电阻、一第二可变电容、一第二可变电感、一第二可变频率、一第二时钟时间、一第二可变时间长度、一第二可变亮度、一第二可变光强度、一第二可变音量、一第二可变数据流量、一第二可变振幅、一第二可变空间位置、一第二可变位移、一第二可变顺序位置、一第二可变角度、一第二可变空间长度、一第二可变距离、一第二可变平移速度、一第二可变角速度、一第二可变加速度、一第二可变力、一第二可变压力和一第二可变机械功率的其中之一。
所述可变物理参数QY1A是一第三可变电性参数、一第三可变力学参数、一第三可变光学参数、一第三可变温度、一第三可变电压、一第三可变电流、一第三可变电功率、一第三可变电阻、一第三可变电容、一第三可变电感、一第三可变频率、一第三时钟时间、一第三可变时间长度、一第三可变亮度、一第三可变光强度、一第三可变音量、一第三可 变数据流量、一第三可变振幅、一第三可变空间位置、一第三可变位移、一第三可变顺序位置、一第三可变角度、一第三可变空间长度、一第三可变距离、一第三可变平移速度、一第三可变角速度、一第三可变加速度、一第三可变力、一第三可变压力和一第三可变机械功率的其中之一。
请参阅图34、图35和图36。图34为绘示于图1中的所述控制系统901的一实施结构9043的示意图。图35为绘示于图1中的所述控制系统901的一实施结构9044的示意图。图36为绘示于图1中的所述控制系统901的一实施结构9045的示意图。如图34、图35和图36所示,所述实施结构9043、所述实施结构9044和所述实施结构9045的每一结构包含所述控制装置212、所述功能装置130和所述服务器280。所述功能装置130包含所述操作单元397、所述感测单元334、所述物理参数应用单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述接收单元337、所述输入单元380、所述传输单元384、耦合于所述处理单元331的所述定时器342、和耦合于所述处理单元331的一定时器343。
在一些实施例中,所述控制装置212、所述功能装置130和所述服务器280皆耦合于一网络410。所述控制装置212通过所述网络410而链接于所述服务器280。所述功能装置130包含所述操作单元397、所述感测单元334、所述物理参数应用单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述接收单元337和所述传输单元384。所述控制装置212通过所述网络410来向所述功能装置130传输所述控制信号SC81。所述功能装置130通过所述网络410来向所述控制装置212传输所述控制响应信号SE81。
例如,所述操作单元397包含耦合于所述处理单元331的一通信接口单元386。所述处理单元331通过所述通信接口单元386而耦合于所述网络410。例如,所述通信接口单元386受所述处理单元230控制,并包含耦合于所述处理单元331的所述传输组件3842和耦合于所述处理单元331的所述接收组件3371。所述处理单元331通过所述通信接口单元386和所述网络410而耦合于所述服务器280。例如,所述通信接口单元386是一有线通信接口单元和一无线通信接口单元的其中之一。
所述接收单元337、所述传输单元384、所述定时器342、所述定时器343、所述感测单元334、所述物理参数应用单元335、所述存储单元332和所述通信接口单元386皆受所述处理单元331控制。在所述触发事件JQ81是所述整数溢位事件的条件下,是所述触发应用单元387的所述定时器343响应与所述处理单元331相关的一时间控制GD81而导致所述整数溢位事件发生。例如,所述处理单元331响应所述控制信号SC81来执行用于 控制所述定时器343的所述时间控制GD81。所述定时器343响应所述时间控制GD81来形成所述整数溢位事件。
请额外参阅图9、图10、图11和图12。在一些实施例中,当所述接收单元337接收所述控制信号SC81时,所述物理参数目标范围码UQ1T等于所预设的所述测量值目标范围码EM1T。所述控制信号SC81输送所默认的所述测量值指定范围码EL1T。所述处理单元331从所述控制信号SC81获得所输送的所述测量值指定范围码EL1T,基于所获得的所述测量值指定范围码EL1T来获得所述内存地址AS8T,并基于所获得的所述内存地址AS8T来接入被存储在所述内存位置YS8T的所述物理参数目标范围码UQ1T以获得所预设的所述测量值目标范围码EM1T。
例如,在所述物理参数目标范围码UQ1T等于所预设的所述测量值目标范围码EM1T的条件下,所述控制信号SC81藉由输送所预设的所述测量值指定范围码EL1T来起到指示所述测量值目标范围RN1T的作用。所述处理单元331执行使用所获得的所述测量值目标范围码EM1T的所述数据获取AD8A以获得所述目标范围界限值对DN1T。
在一些实施例中,在所述处理单元331藉由比较所述测量值VN81和所获得的所述应用范围界限值对DN1L而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331藉由比较所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L来检查所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的所述范围关系KE8A以做出所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L是否相等的所述逻辑决定PY81。
在所述逻辑决定PY81是否定的条件下,所述处理单元331辨识所述范围关系KE8A为所述范围相异关系以确定所述范围差异DS81。例如,所述处理单元331基于所确定的所述测量值应用范围码EM1L来获得所预定的所述应用范围界限值对DN1L。例如,所述处理单元331藉由确定所述范围差异DS81来确定所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL之间的所述范围差异DB81。
在一些实施例中,在所述处理单元331藉由比较所述测量值VN81和所获得的所述应用范围界限值对DN1L而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331藉由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L来做出所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L是否相等的所述逻辑决定PZ81。在所述逻辑决定PZ81是否定的条件下,所述处理单元331辨识所述范围关系KE8A为所述范围相异关系以确定所述范围差异DS81。
在所述处理单元331确定所述范围差异DS81和所述范围差异DB81的至少其中之一的条件下,所述处理单元331于所述操作时间TF81之内执行用于产生所述操作信号SG81的所述信号产生控制GY81。所述操作信号SG81用于导致所述可变物理参数QU1A进入相同于所述物理参数目标范围RD1ET的所述物理参数目标范围RD1ET。所述处理单元331于所述操作时间TF81之后的所述指定时间TG82之内执行与所述可变物理参数QU1A相关的所述验证操作ZU81。在所述处理单元331于所述指定时间TG82之内基于所述验证操作ZU81而确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331执行等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的所述数据比较CE8T。
在所述处理单元331基于所述数据比较CE8T而确定等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的所述码差异DF81的条件下,所述处理单元331使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
在一些实施例中,在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET之内的条件下,所述处理单元331基于所述计数操作BD81来到达所述操作时间TY81。在所述操作时间TY81之内,所述定时器342感测所述时钟时间TH1A以导致所述可变计数值NY8A等于所述测量值NY81,并藉此产生输送所述测量值NY81的所述感测信号SY81。
例如,所述触发应用单元387响应所述触发事件JQ81来提供所述操作请求信号SJ81到所述处理单元331,并藉此使所述处理单元331接收所述操作请求信号SJ81。所述处理单元331响应所述操作请求信号SJ81来在所述操作时间TY81之内从所述感测信号SY81以所述指定测量值格式HH95获得所述测量值NY81,并在所述操作时间TY81之内藉由执行使用所获得的所述测量值指定范围码EL1T的所述科学计算MH85来获得或确定所述测量值应用范围码EL1U以便检查所获得的所述测量值NY81和所述测量值应用范围RQ1U之间的所述数学关系KQ81。例如,所述触发应用单元387是所述接收单元337、所述输入单元380、所述显示单元382、所述感测单元334和所述定时器343的其中之一。
在一些实施例中,所述测量值指定范围RQ1T具有所述指定范围界限值对DQ1T。所述指定范围界限值对DQ1T包含所述指定范围界限值DQ13和相对于所述指定范围界限值DQ13的所述指定范围界限值DQ14。所述测量值指定范围RQ1T和所述指定范围界限值对DQ1T皆基于所述时钟时间指定区间HR1ET和所述定时器规格FT21来用所述指定测量值格式HH95而被预设。所述测量值应用范围RQ1U具有所述应用范围界限值对DQ1U。所述应用范 围界限值对DQ1U包含所述第一应用范围界限值DQ15和相对于所述第一应用范围界限值DQ15的所述第二应用范围界限值DQ16。所述测量值应用范围RQ1U和所述应用范围界限值对DQ1U皆基于所述时钟时间应用区间HR1EU和所述定时器规格FT21来用所述指定测量值格式HH95而被预设。
例如,在所述操作时间TY81之内,所述物理参数目标范围码UQ1U等于所预设的所述测量值目标范围码EM1U和所预设的所述物理参数目标状态代码EW1U的其中之一。所述存储单元332存储所述指定范围界限值对DQ1T和所述应用范围界限值对DQ1U。所述指定范围界限值对DQ1T和所述应用范围界限值对DQ1U分别基于所述测量值指定范围码EL1T和所述测量值应用范围码EL1U而被存储在所述存储单元332中。例如,所默认的所述物理参数目标状态代码EW1U等于所预设的所述测量值目标范围码EM1U。
所述处理单元331被配置以在所述操作时间TY81之内基于所获得的所述测量值应用范围码EL1U来从所述存储单元332获得所述应用范围界限值对DQ1U,并藉由比较所获得的所述测量值NY81和所获得的所述应用范围界限值对DQ1U来执行用于检查所述测量值NY81和所述测量值应用范围RQ1U之间的所述数学关系KQ81的一检查操作ZQ81。在所述处理单元331于所述操作时间TY81之内基于所述检查操作ZQ81而确定所述时钟时间TH1A目前处于的所述时钟时间应用区间HR1EU的条件下,所述处理单元331基于所获得的所述测量值应用范围码EL1U来获得所述内存地址AS8U,并于所述操作时间TY81之内基于所获得的所述内存地址AS8U来接入被存储在所述内存位置YS8U的所述物理参数目标范围码UQ1U以获得所述物理参数目标范围码UQ1U。
例如,所述处理单元331基于所述检查操作ZQ81来确定所述时钟时间TH1A目前于所述时钟时间应用区间HR1EU之内的一时间情况,并藉此辨识所述时钟时间TH1A和所述时钟时间应用区间HR1EU之间的一时间关系为所述时钟时间TH1A目前于所述时钟时间应用区间HR1EU之内的一时间交集关系。在所述处理单元331从所述内存位置YS8U获得所述物理参数目标范围码UQ1U的条件下,所述处理单元331于所述操作时间TY81之内执行用于所述测量应用功能FA81的一检查操作ZP85以决定所获得的所述物理参数目标范围码UQ1U是否等于所述可变物理参数范围码UN8A。
在一些实施例中,在所述处理单元331从所述内存位置YS8U获得所述物理参数目标范围码UQ1U的条件下,所述处理单元331藉由使用所述存储单元332来读取等于所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A,并执行用于检查所获得的所述物理参数目标范围码UQ1U和所读取的所述测量值目标范围码EM1T之间的一算术关系KP85的所述检查操作ZP85。所述检查操作ZP85被配置以藉由执行用于所述测量应用功能FA81 的一数据比较CE85来比较所获得的所述物理参数目标范围码UQ1U和所读取的所述测量值目标范围码EM1T以决定所获得的所述物理参数目标范围码UQ1U和所读取的所述测量值目标范围码EM1T是否不同。
在所述处理单元331藉由执行所述数据比较CE85来确定所获得的所述物理参数目标范围码UQ1U和等于所获得的所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A之间的一码差异DX85的条件下,所述处理单元331于所述操作时间TY81之内导致所述输出组件338执行用于所述测量应用功能FA81的一信号产生操作BY85以产生一操作信号SG85。例如,所述操作信号SG85是一控制信号。所述输出组件338将所述操作信号SG85传输到所述物理参数应用单元335。所述物理参数应用单元335响应所述操作信号SG85来导致所述可变物理参数QU1A从所述物理参数目标范围RD1ET进入所述对应物理参数范围RY1ET。例如,在所述处理单元331从所述内存位置YS12获得等于所预设的所述测量值候选范围码EM12的所述物理参数目标范围码UQ1U的条件下,所述物理参数应用单元335响应所述操作信号SG85来导致所述可变物理参数QU1A进入相同于所述物理参数候选范围RD1E2的所述物理参数目标范围RD1EU。
例如,所述存储单元332具有不同于所述内存位置YX8T的一内存位置YX8U,并在所述内存位置YX8U存储一句柄CC1U。所述内存位置YX8U基于一内存地址AX8U而被标识。所述内存地址AX8U根据所预设的所述物理参数目标状态代码EW1U而被预设。所述句柄CC1U基于在所述物理参数目标范围RD1EU之内的一指定物理参数QD1U而被预设。在所述处理单元331确定所述码差异DX85的条件下,所述处理单元331基于等于所预设的所述物理参数目标状态代码EW1U的所获得的所述物理参数目标范围码UQ1U来获得所述内存地址AX8U。
所述处理单元331基于所获得的所述内存地址AX8U来使用所述存储单元332以接入被存储在所述内存位置YX8U的所述句柄CC1U以获得所述句柄CC1U,并于所述操作时间TY81之内基于所接入的所述句柄CC1U来导致所述输出组件338执行用于所述测量应用功能FA81的所述信号产生操作BY85以产生所述操作信号SG85。所述操作信号SG85用于导致所述可变物理参数QU1A从从所述物理参数目标范围RD1ET进入所述物理参数目标范围RD1EU。
在一些实施例中,所述输入单元380包含所述按钮3801和一按钮3802。所述按钮3801位于一空间位置LD91。所述按钮3801位于不同于所述空间位置LD91的一空间位置LD92。在所述可变物理参数QU1A基于所述操作信号SG81而被配置以处于所述物理参数目标范围RD1ET的条件下:所述按钮3801相关于所述默认物理参数目标范围界限ZD1T1;所述按钮 3802相关于所述默认物理参数目标范围界限ZD1T2;且所述输入单元380接收一用户输入操作BQ81。所述用户输入操作BQ81使用所述按钮3801和所述按钮3802的其中之一。
在所述使用者输入操作BQ81使用所述按钮3801的条件下,所述输入单元380响应使用所述按钮3801的所述用户输入操作BQ81来提供所述操作请求信号SJ91到所述处理单元331。所述处理单元331响应所述操作请求信号SJ91来使所述输出组件338向所述物理参数应用单元335传输所述操作信号SG82。所述操作信号SG82用于导致所述可变物理参数QU1A通过所述默认物理参数目标范围界限ZD1T1以进入所述特定物理参数范围RD1E5。
在所述使用者输入操作BQ81使用所述按钮3802的条件下,所述输入单元380响应使用所述按钮3802的所述用户输入操作BQ81来提供一操作请求信号SJ71到所述处理单元331。所述处理单元331响应所述操作请求信号SJ71来使所述输出组件338向所述物理参数应用单元335传输一操作信号SG72。所述操作信号SG72用于导致所述可变物理参数QU1A通过所述默认物理参数目标范围界限ZD1T2以进入包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中的一特定物理参数范围RD2E5。所述特定物理参数范围RD2E5不同于所述物理参数目标范围RD1ET和所述特定物理参数范围RD1E5的每一范围。
在一些实施例中,在所述可变物理参数QU1A基于所述操作信号SG85而被配置以处于所述物理参数目标范围RD1EU的条件下:所述按钮3801相关于所述默认物理参数目标范围界限ZD1U1;所述按钮3802相关于所述默认物理参数目标范围界限ZD1U2;且所述输入单元380接收一用户输入操作BQ82。所述用户输入操作BQ82使用所述按钮3801和所述按钮3802的其中之一。
在所述使用者输入操作BQ82使用所述按钮3801的条件下,所述输入单元380响应使用所述按钮3801的所述用户输入操作BQ82来提供所述操作请求信号SJ92到所述处理单元331。所述处理单元331响应所述操作请求信号SJ92来使所述输出组件338向所述物理参数应用单元335传输所述操作信号SG87。所述操作信号SG87用于导致所述可变物理参数QU1A通过所述默认物理参数目标范围界限ZD1U1以进入所述特定物理参数范围RD1E6。
在所述使用者输入操作BQ82使用所述按钮3802的条件下,所述输入单元380响应使用所述按钮3802的所述用户输入操作BQ82来提供一操作请求信号SJ72到所述处理单元331。所述处理单元331响应所述操作请求信号SJ72来使所述输出组件338向所述物理参数应用单元335传输一操作信号SG77。所述操作信号SG77用于导致所述可变物理参数QU1A通过所述默认物理参数目标范围界限ZD1U2以进入包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中的一特定物理参数范围RD2E6。所述特定物理参数范围RD2E6不同于所述物理参数目标范围RD1EU和所述特定物理参数范围RD1E6的每一范围。
请参阅图37、图38、图39和图40。图37为绘示于图1中的所述控制系统901的一实施结构9046的示意图。图38为绘示于图1中的所述控制系统901的一实施结构9047的示意图。图39为绘示于图1中的所述控制系统901的一实施结构9048的示意图。图40为绘示于图1中的所述控制系统901的一实施结构9049的示意图。如图37、图38、图39和图40所示,所述实施结构9046、所述实施结构9047、所述实施结构9048和所述实施结构9049的每一结构包含所述控制装置212和所述功能装置130。所述控制装置212包含所述操作单元297和所述状态改变侦测器475。
所述功能装置130包含所述操作单元397、所述存储单元332、所述感测单元334和所述物理参数应用单元335和一物理参数应用单元735。所述操作单元397包含所述处理单元331、所述接收单元337、所述传输单元384和耦合于所述处理单元331的所述输出组件338。所述输出组件338位于所述处理单元331的外部,并受所述处理单元331控制。例如,所述物理参数应用单元735是一功能目标。所述状态改变侦测器475是一触发应用单元,并响应所述触发事件EQ81来提供所述触发信号SX8A到所述操作单元297。例如,所述触发信号SX8A是一操作请求信号。
在一些实施例中,所述功能装置130进一步包含耦合于所述操作单元397的一物理参数应用单元735和耦合于所述操作单元397的一复用器363。所述物理参数应用单元735耦合于所述输出组件338,并包含一物理参数形成区AU21。所述物理参数形成区AU21具有一可变物理参数QU2A。所述复用器363具有一输入端3631、一输入端3632、一控制端363C和一输出端363P。所述控制端363C耦合于所述处理单元331。例如,所述物理参数应用单元735是一物理可实现功能单元,并具有相似于所述物理参数应用单元335的一功能结构。例如,所述物理参数应用单元735设置于所述功能装置130的内部和所述功能装置130的外部的其中之一。
所述输入端3631耦合于所述物理参数形成区AU11。所述输入端3632耦合于所述物理参数形成区AU21。所述输出端363P耦合于所述感测单元334。例如,所述可变物理参数QU1A和所述可变物理参数QU2A分别是一第四可变电性参数和一第五可变电性参数。例如,所述第四可变电性参数和所述第五可变电性参数分别是一第四可变电压和一第五可变电压。所述输入端3631和所述输出端363P之间具有一第一功能关系。所述第一功能关系等于一第一导通关系和一第一关断关系的其中之一。
所述输入端3632和所述输出端363P之间具有一第二功能关系。所述第二功能关系等于一第二导通关系和一第二关断关系的其中之一。在所述第一功能关系等于所述第一导通关系的条件下,所述感测单元334用于通过所述输出端363P和所述输入端3631来感测所 述可变物理参数QU1A,并通过所述输出端363P和所述输入端3631而耦合于所述物理参数形成区AU11。
在所述第二功能关系等于所述第二导通关系的条件下,所述感测单元334用于通过所述输出端363P和所述输入端3632来感测所述可变物理参数QU2A,并通过所述输出端363P和所述输入端3632而耦合于所述物理参数形成区AU21。例如,所述复用器363受所述处理单元331控制,并是一模拟复用器。例如,所述感测单元334在一操作时间TX81通过所述复用器363来感测所述可变物理参数QU1A,并在与所述操作时间TX81不同的一操作时间TX82通过所述复用器363来感测所述可变物理参数QU2A。
例如,所述存储单元332、所述感测单元334、所述复用器363、所述物理参数应用单元335和所述物理参数应用单元735皆耦合于所述操作单元397,并皆受所述处理单元331控制。所述控制装置212和所述功能装置130是分开的或接触的。所述操作单元397和所述物理参数应用单元335是分开的或接触的。所述操作单元397和所述物理参数应用单元735是分开的或接触的。所述操作单元397和所述感测单元334是分开的或接触的。所述控制装置212用于控制所述可变物理参数QU2A。
在一些实施例中,所述物理参数应用单元335由一应用单元标识符HA2T所标识。所述物理参数应用单元735由一应用单元标识符HA22所标识。所述物理参数应用单元335和所述物理参数应用单元735分别位于不同空间位置,并皆藉由耦合于所述输出组件338而耦合于所述处理单元331。所述应用单元标识符HA2T和所述应用单元标识符HA22皆基于所述测量应用功能规格GAL8而被默认。所述控制信号SC81进一步输送所述应用单元标识符HA2T和所述应用单元标识符HA22的至少其中之一。
所述接收单元337从所述操作单元297接收所述控制信号SC81。在所述控制信号SC81输送所述应用单元标识符HA2T的条件下,所述处理单元331响应所述控制信号SC81来选择所述物理参数应用单元335以进行控制。在所述控制信号SC81输送所述应用单元标识符HA22的条件下,所述处理单元331响应所述控制信号SC81来选择所述物理参数应用单元735以进行控制。例如,所述应用单元标识符HA2T是一第一功能单元号码。所述应用单元标识符HA22是一第二功能单元号码。
例如,所述物理参数应用单元335和所述物理参数应用单元735是分开的,或由设置于所述物理参数应用单元335和所述物理参数应用单元735之间的一材料层70U所隔开。所述物理参数应用单元335、所述材料层70U和所述物理参数应用单元735皆耦合于一支撑媒介70M。所述功能装置130包含所述材料层70U,或所述材料层70U设置于所述功能装置130之外。所述功能装置130包含所述支撑媒介70M,或所述支撑媒介70M设置于所 述功能装置130之外。例如,所述支撑媒介70M耦合于所述操作单元397。
在一些实施例中,在所述控制信号SC81输送所述应用单元标识符HA2T的条件下,所述处理单元331响应所述控制信号SC81来从所述控制信号SC81获得所述应用单元标识符HA2T,并基于所获得的所述应用单元标识符HA2T来导致所述感测单元334感测所述可变物理参数QU1A,并藉此从所述感测单元334接收所述感测信号SN81。所述处理单元331基于所接收的所述感测信号SN81来以所述指定测量值格式HH81获得所述测量值VN81,并基于所获得的所述应用单元标识符HA2T来使所述输出组件338向所述物理参数应用单元335传输所述操作信号SG81、所述操作信号SG82、所述操作信号SG85、所述操作信号SG87、所述操作信号SG88和所述操作信号SG89的至少其中之一。
例如,所述处理单元331响应所述控制信号SC81来基于所获得的所述应用单元标识符HA2T而提供一控制信号SD81到所述控制端363C。例如,所述控制信号SD81是一选择控制信号,并起到指示所述输入端3631的作用。所述复用器363响应所述控制信号SD81来导致所述输入端3631和所述输出端363P之间的所述第一功能关系等于所述第一导通关系。在所述第一功能关系等于所述第一导通关系的条件下,所述感测单元334感测所述可变物理参数QU1A以产生所述感测信号SN81,因此所述处理单元331从所述感测单元334接收所述感测信号SN81。在所述第一功能关系等于所述第一导通关系的条件下,所述感测单元334感测所述可变物理参数QU1A以产生所述感测信号SN85,因此所述处理单元331从所述感测单元334接收所述感测信号SN85。
所述存储单元332具有所述存储空间SU11。所述存储单元332进一步基于所默认的所述应用单元标识符HA2T来在所述存储空间SU11中存储所述额定范围界限值对DD1A、所述可变物理参数范围码UN8A、所述目标范围界限值对DN1T、所述句柄CC1T、所述候选范围界限值对DN1B和所述句柄CC12。所述处理单元331进一步基于所获得的所述应用单元标识符HA2T来使用所述存储单元332以接入所述额定范围界限值对DD1A、所述可变物理参数范围码UN8A、所述目标范围界限值对DN1T、所述句柄CC1T、所述候选范围界限值对DN1B和所述句柄CC12的其中任一。
在一些实施例中,所述第一内存地址AM8T基于所默认的所述应用单元标识符HA2T、所预设的所述测量值目标范围码EM1T和所预设的所述测量范围界限数据码类型标识符HN81而被预设。所述处理单元331响应所述控制信号SC81来使用所获得的所述应用单元标识符HA2T、所获得的所述测量值目标范围码EM1T和所获得的所述测量范围界限数据码类型标识符HN81来获得所述第一内存地址AM8T,并基于所获得的所述第一内存地址AM8T来使用所述存储单元332以接入被存储在所述第一内存位置YM8T的所述目标范围界限值 对DN1T以获得所述目标范围界限值对DN1T。
例如,所述内存地址AX8T基于所默认的所述应用单元标识符HA2T、所预设的所述测量值目标范围码EM1T和所预设的所述句柄类型标识符HC81而被预设。在所述处理单元331确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET的条件下,所述处理单元331基于所获得的所述应用单元标识符HA2T、所获得的所述测量值目标范围码EM1T和所获得的所述句柄类型标识符HC81来获得所述内存地址AX8T,并基于所获得的所述内存地址AX8T来使用所述存储单元332以接入被存储在所述内存位置YX8T的所述句柄CC1T以获得所述句柄CC1T。例如,所述存储单元332进一步存储所述测量时间长度值CL8V、所述时钟参考时间值NR81和所述测量时间长度值VH8T以使所述存储空间SU11进一步具有所述测量时间长度值CL8V、所述时钟参考时间值NR81和所述测量时间长度值VH8T。
所述处理单元331响应所述控制信号SC88来从所述存储空间SU11获得所述测量时间长度值CL8V。所述处理单元331基于所默认的所述测量值指定范围码EL1T来使所述存储单元332存储所述时钟参考时间值NR81和所述测量时间长度值VH8T。所述控制信号SC81输送所述测量值指定范围码EL1T。所述处理单元331从所述控制信号SC81获得所述测量值指定范围码EL1T,并基于所获得的所述测量值指定范围码EL1T来接入被存储在所述存储空间SU11中的所述时钟参考时间值NR81和所述测量时间长度值VH8T以获得所述时钟参考时间值NR81和所述测量时间长度值VH8T。所述处理单元331基于所获得的所述测量时间长度值VH8T和所获得的所述时钟参考时间值NR81来执行所述科学计算ME85以获得所述应用范围界限值对DQ1U。
在一些实施例中,在所述处理单元331确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET的条件下,所述处理单元331基于所获得的所述应用单元标识符HA2T和所获得的所述句柄CC1T来执行用于控制所述输出组件338的所述信号产生控制GY81。所述输出组件338响应所述信号产生控制GY81来执行用于所述测量应用功能FA81的所述信号产生操作BY81以产生所述操作信号SG81,并导致所述输出组件338向所述物理参数应用单元335传输所述操作信号SG81。所述操作信号SG81用于控制所述物理参数应用单元335以导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
例如,所述处理单元331藉由执行所述信号产生控制GY81来提供一控制信号SF81到所述输出组件338。所述输出组件338响应所述控制信号SF81来执行所述信号产生操作BY81以产生所述操作信号SG81。在所述处理单元331基于所述物理参数关系检查控制GX8T而确定所述可变物理参数QU1A目前所处于的所述物理参数应用状态JE1L的条件下,所述处理单元331于所述操作时间TF81之内基于所获得的所述应用单元标识符HA2T和所获得 的所述句柄CC1T来执行用于控制所述输出组件338的所述信号产生控制GY81。所述物理参数应用状态JE1L基于所述物理参数应用范围RD1EL而被预先确定。
例如,所述输出组件338包含一输出端338P和一输出端338Q。所述输出端338P耦合于所述物理参数应用单元335。所述输出端338P耦合于所述物理参数应用单元735。所述输出端338P和所述输出端338Q分别位于不同空间位置。所默认的所述应用单元标识符HA2T被配置以指示所述输出端338P。所默认的所述应用单元标识符HA22被配置以指示所述输出端338Q。例如,所述控制信号SC81藉由输送被配置以指示所述输出端338P的所述应用单元标识符HA2T来使所述处理单元331选择所述物理参数应用单元335以进行控制。所述信号产生控制GY81起到指示所述输出端338P的作用,并用于导致所述输出组件338接收所述控制信号SF81。所述控制信号SF81起到指示所述输出端338P的作用。所述输出组件338响应所述信号产生控制GY81和所述控制信号SF81的其中之一来执行使用所述输出端338P的所述信号产生操作BY81以向所述物理参数应用单元335传输所述操作信号SG81。
在一些实施例中,在所述处理单元331基于所述物理参数关系检查控制GX8U而确定所述可变物理参数QU1A目前所处于的所述物理参数应用状态JE1T的条件下,所述处理单元331于所述操作时间TY81之内基于所获得的所述应用单元标识符HA2T和所获得的所述句柄CC1U来执行用于控制所述输出组件338的所述信号产生控制GY85。所述输出组件338响应所述信号产生控制GY85来执行用于所述测量应用功能FA81的所述信号产生操作BY85以产生所述操作信号SG85,并导致所述输出组件338向所述物理参数应用单元335传输所述操作信号SG85。例如,所述处理单元331藉由执行所述信号产生控制GY85来提供一控制信号SF85到所述输出组件338。所述输出组件338响应所述控制信号SF85来执行所述信号产生操作BY85以产生所述操作信号SG85。
所述操作信号SG85用于控制所述物理参数应用单元335以导致所述可变物理参数QU1A从所述物理参数目标范围RD1ET进入所述物理参数目标范围RD1EU。例如,所述信号产生控制GY85起到指示所述输出端338P的作用,并用于导致所述输出组件338接收所述控制信号SF85。所述控制信号SF85起到指示所述输出端338P的作用。所述输出组件338响应所述信号产生控制GY85和所述控制信号SF85的其中之一来执行使用所述输出端338P的所述信号产生操作BY85以向所述物理参数应用单元335传输所述操作信号SG85。
在一些实施例中,所述接收单元337从所述控制装置212接收一控制信号SC97。所述控制信号SC97输送所述应用单元标识符HA22。在所述控制信号SC97输送所述应用单元标识符HA22的条件下,所述处理单元331响应所述控制信号SC97来从所述控制信号SC97 获得所述应用单元标识符HA22,并基于所获得的所述应用单元标识符HA22来提供一控制信号SD82到所述控制端363C。例如,所述控制信号SD82是一选择控制信号,起到指示所述输入端3632的作用,并不同于所述控制信号SD81。例如,所述控制信号SC97是所述控制信号SC81。在所述控制信号SC81输送所述应用单元标识符HA22的条件下,所述处理单元331响应所述控制信号SC81来从所述控制信号SC81获得所述应用单元标识符HA22。
所述复用器363响应所述控制信号SD82来导致所述输入端3632和所述输出端363P之间的所述第二功能关系等于所述第二导通关系。在所述第二功能关系等于所述第二导通关系的条件下,所述感测单元334感测所述可变物理参数QU1A以产生一感测信号SN91。所述处理单元331从所述感测单元334接收所述感测信号SN91,并基于所接收的所述感测信号SN91来以所述指定测量值格式HH81获得一测量值VN91。例如,所述控制信号SC97藉由输送被配置以指示所述输出端338Q的所述应用单元标识符HA22来使所述处理单元331选择所述物理参数应用单元735以进行控制。
在一特定情况中,所述处理单元331基于所获得的所述测量值VN91和所获得的所述应用单元标识符HA22来执行用于控制所述输出组件338的一信号产生控制GY97。所述信号产生控制GY97起到指示所述输出端338Q的作用,并用于导致所述输出组件338接收一控制信号SF97。所述控制信号SF97起到指示所述输出端338Q的作用。所述输出组件338响应所述信号产生控制GY97和所述控制信号SF97的其中之一来执行使用所述输出端338Q的一信号产生操作BY97以向所述物理参数应用单元735传输一操作信号SG97。所述操作信号SG97用于控制所述可变物理参数QU2A,并是一功能信号和一控制信号的其中之一。例如,所述处理单元331藉由执行所述信号产生控制GY97来提供所述控制信号SF97到所述输出组件338。所述输出组件338响应所述控制信号SF97来执行所述信号产生操作BY97以产生所述操作信号SG97。
请参阅图41,其为绘示于图1中的所述控制系统901的一实施结构9050的示意图。如图41所示,所述实施结构9050包含所述功能装置130和用于控制所述功能装置130的所述控制装置212。在一些实施例中,所述功能装置130具有相关于所述时钟时间TH1A的所述可变物理参数QU1A。所述可变物理参数QU1A基于所述物理参数目标范围RD1ET而被特征化。所述时钟时间TH1A基于所述时钟时间指定区间HR1ET而被特征化。所述时钟时间指定区间HR1ET相关于所述物理参数目标范围RD1ET。用于控制所述可变物理参数QU1A的所述控制装置212包含一感测单元260和所述操作单元297。
所述感测单元260感测一可变物理参数QP1A以产生一感测信号SM81。例如,所述可变物理参数QP1A基于由一测量值应用范围RM1L所代表的一物理参数应用范围RC1EL而被 特征化。所述操作单元297耦合于所述感测单元260。在所述触发事件EQ81发生的条件下,所述操作单元297响应所述感测信号SM81来获得一测量值VM81。在所述操作单元297藉由检查所述测量值VM81和所述测量值应用范围RM1L之间的一数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述操作单元297产生起到指示所述时钟时间指定区间HR1ET的作用的所述控制信号SC81。例如,所述测量值VM81是一物理参数测量值。
所述控制信号SC81用于控制所述功能装置130以导致所述可变物理参数QU1A在所述时钟时间指定区间HR1ET之内处于所述物理参数目标范围RD1ET。所述时钟时间TH1A进一步基于相邻于所述时钟时间指定区间HR1ET的所述时钟时间应用区间HR1EU而被特征化。所述可变物理参数QU1A基于所述物理参数目标范围RD1EU而被特征化。所述时钟时间应用区间HR1EU相关于所述物理参数目标范围RD1EU。所述控制信号SC81用于控制所述功能装置130以导致所述可变物理参数QU1A在所述时钟时间应用区间HR1EU之内处于所述物理参数目标范围RD1EU。
请参阅图42和图43。图42为绘示于图1中的所述控制系统901的一实施结构9051的示意图。图43为绘示于图1中的所述控制系统901的一实施结构9052的示意图。如图42和图43所示,所述实施结构9051和所述实施结构9052的每一结构包含所述功能装置130和所述控制装置212。请额外参阅图40。在一些实施例中,所述感测单元260被配置以符合与所述测量值应用范围RM1L相关的一传感器规格FQ11。例如,所述传感器规格FQ11包含用于表示一传感器测量范围RA8E的一传感器测量范围表示GQ8R、和用于表示一传感器灵敏度YQ81的一传感器灵敏度表示GQ81。所述传感器灵敏度YQ81相关于由所述感测单元260所执行的一感测信号产生HE81。
所述可变物理参数QU1A依靠所述定时器342而被控制,并基于所述物理参数目标范围RD1ET而被特征化。所述定时器342感测所述时钟时间TH1A,并符合与所述时钟时间指定区间HR1ET相关的所述定时器规格FT21。例如,所述时钟时间指定区间HR1ET由所述测量值指定范围RQ1T所代表。所述定时器规格FT21包含用于表示所述全测量值范围QK8E的所述全测量值范围表示FK8E。例如,所述测量值指定范围RQ1T等于所述全测量值范围QK8E的一部分。
所述可变物理参数QU1A进一步依靠所述感测单元334而被控制。所述感测单元334感测所述可变物理参数QU1A,并符合与所述物理参数目标范围RD1ET相关的所述传感器规格FU11。所述物理参数目标范围RD1ET由所述测量值目标范围RN1T所代表。例如,所述传感器规格FU11包含用于表示所述传感器测量范围RB8E的所述传感器测量范围表示 GW8R、和用于表示所述传感器灵敏度YW81的所述传感器灵敏度表示GW81。所述传感器灵敏度YW81相同或不同于所述传感器灵敏度YQ81。所述测量值目标范围RN1T基于所述传感器测量范围表示GW8R而被预设,并具有所述目标范围界限值对DN1T。
所述测量值VM81以一指定测量值格式HQ81而被所述操作单元297获得。所述可变物理参数QP1A进一步基于不同于所述物理参数应用范围RC1EL的一物理参数候选范围RC1E2而被特征化。所述测量值应用范围RM1L和代表所述物理参数候选范围RC1E2的一测量值候选范围RM12皆基于所述传感器测量范围表示GQ8R和所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预设。例如,所述测量值应用范围RM1L和所述测量值候选范围RM12皆基于所述传感器测量范围表示GQ8R和所述传感器灵敏度表示GQ81来用所述指定测量值格式HQ81而被预设。所述测量值指定范围RQ1T基于所述定时器规格FT21而被默认,具有所述指定范围界限值对DQ1T,并由一测量值指定范围码EL1T所代表。
在一些实施例中,所述控制信号SC81输送所述测量值指定范围码EL1T、所述指定范围界限值对DQ1T、所述物理参数应用状态代码EW1T和所述句柄CC1T,并用于导致所述可变物理参数QU1A于所述时钟时间指定区间HR1ET之内处于所述物理参数目标范围RD1ET。例如,所述句柄CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预先设定。所述控制信号SC81藉由输送所述指定范围界限值对DQ1T来起到指示所述测量值指定范围RQ1T和所述时钟时间指定区间HR1ET的至少其中之一的作用。所述控制信号SC81藉由输送所述测量值指定范围码EL1T来起到指示所述测量值指定范围RQ1T和所述时钟时间指定区间HR1ET的至少其中之一的作用。
所述测量值应用范围RM1L具有一应用范围界限值对DM1L。例如,所述应用范围界限值对DM1L被预设。所述操作单元297响应所述触发事件EQ81来获得所述应用范围界限值对DM1L,并藉由比较所述测量值VM81和所获得的所述应用范围界限值对DM1L来检查所述数学关系KA81。所述测量值候选范围RM12具有一候选范围界限值对DM1B。例如,所述候选范围界限值对DM1B被预设。所述操作单元297响应所述触发事件EQ81来获得所预设的所述候选范围界限值对DM1B。
例如,所述操作单元297包含一触发应用单元281。所述触发事件EQ81相关于所述触发应用单元281。所述触发应用单元281响应所述触发事件EQ81来产生一操作请求信号SX81。所述操作单元297响应所述操作请求信号SX81来基于所述感测信号SM81而获得所述测量值VM81,并响应所述操作请求信号SX81来获得所述应用范围界限值对DM1L。
在一些实施例中,所述物理参数应用范围RC1EL被配置以对应于在所述物理参数应用范围RC1EL之外的一对应物理参数范围RW1EL。在所述操作单元297藉由检查所述数学关 系KA81而确定所述可变物理参数QP1A目前处于的所述对应物理参数范围RW1EL的条件下,所述操作单元297执行所述测量值VM81和所获得的所述参考范围界限值对DM1B之间的一数据比较CA91。在所述操作单元297基于所述数据比较CA91而确定所述可变物理参数QP1A目前处于的所述物理参数候选范围RC1E2的条件下,所述操作单元297产生用于控制所述可变物理参数QU1A的一控制信号SC82,所述控制信号SC82不同于所述控制信号SC81。
在所述操作单元297藉由检查所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述操作单元297被配置以获得包含所述测量值指定范围码EL1T、所述指定范围界限值对DQ1T、所述物理参数应用状态代码EW1T和所述句柄CC1T的一控制数据码CK8T,基于所述控制数据码CK8T来执行用于产生所述控制信号SC81的一信号产生控制GS81,并执行一数据存储控制操作GT81,所述数据存储控制操作GT81用于导致代表所确定的所述物理参数应用范围RC1EL的一物理参数应用范围码UM8L被记录。所述可变物理参数QU1A和所述可变物理参数QP1A分别属于所述物理参数类型TU11和一物理参数类型TP11。例如,所述物理参数类型TU11相同或不同于所述物理参数类型TP11。例如,所述数据存储控制操作GT81是一确保操作。
在一些实施例中,所述时钟时间指定区间HR1ET具有所述指定时间长度LH8T。所述指定时间长度LH8T由所述测量时间长度值VH8T所代表。所述控制信号SC81进一步输送所述测量时间长度值VH8T。所输送的所述指定范围界限值对DQ1T和所输送的所述测量时间长度值VH8T用于使所述功能装置130获得所述应用范围界限值对DQ1U;因此,所述控制信号SC81用于使所述功能装置130检查所述时钟时间TH1A和所述时钟时间应用区间HR1EU之间的所述时间关系KT81,并用于控制所述功能装置130以导致所述可变物理参数QU1A在所述时钟时间应用区间HR1EU之内处于所述物理参数目标范围RD1EU。
例如,所述控制信号SC81进一步输送所述目标范围界限值对DN1T。所述控制信号SC81藉由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。所述控制数据码CK8T进一步包含所述测量时间长度值VH8T和所述目标范围界限值对DN1T。
请参阅图44、图45、图46、图47、图48、图49和图50。图44为绘示于图1中的所述控制系统901的一实施结构9053的示意图。图45为绘示于图1中的所述控制系统901的一实施结构9054的示意图。图46为绘示于图1中的所述控制系统901的一实施结构9055的示意图。图47为绘示于图1中的所述控制系统901的一实施结构9056的示意图。图48为绘示于图1中的所述控制系统901的一实施结构9057的示意图。图49为绘示于图1中的所述控制系统901的一实施结构9058的示意图。图50为绘示于图1中的所述控制系统 901的一实施结构9059的示意图。如图44、图45、图46、图47、图48、图49和图50所示,所述实施结构9052、所述实施结构9053、所述实施结构9054、所述实施结构9055、所述实施结构9056、所述实施结构9057、所述实施结构9058和所述实施结构9059的每一结构包含所述控制装置212和所述功能装置130。
请额外参阅图41。在一些实施例中,所述可变物理参数QU1A和所述可变物理参数QP1A分别被形成于一实际位置LD81和不同于所述实际位置LD81的一实际位置LC81。所述操作单元297被配置以执行与所述物理参数应用范围RC1EL相关的一测量应用功能FB81,并包含耦合于所述感测单元260的一处理单元230、耦合于所述处理单元230的一传输单元240、和耦合于所述处理单元230的一显示单元460。所述测量应用功能FB81被配置以符合与所述物理参数应用范围RC1EL相关的一测量应用功能规格GBL8。例如,所述测量应用功能FB81是一触发应用功能。所述测量应用功能规格GBL8是一触发应用功能规格。所述传输单元240是一输出单元。
所述感测单元260被配置以符合与所述测量值应用范围RM1L相关的一传感器规格FQ11。例如,所述传感器规格FQ11包含用于表示一传感器测量范围RA8E的一传感器测量范围表示GQ8R、和用于表示一传感器灵敏度YQ81的一传感器灵敏度表示GQ81。所述传感器灵敏度YQ81相关于由所述感测单元260所执行的一感测信号产生HE81。例如,当所述触发事件EQ81发生时,所述感测单元260感测所述可变物理参数QP1A以执行相依于所述传感器灵敏度YQ81的所述感测信号产生HE81,所述感测信号产生HE81用于产生所述感测信号SM81。
所述可变物理参数QU1A依靠所述定时器342而被控制。所述定时器342符合与所述时钟时间指定区间HR1ET相关的所述定时器规格FT21。例如,所述时钟时间指定区间HR1ET由所述测量值指定范围RQ1T所代表。所述定时器规格FT21包含用于表示所述全测量值范围QK8E的所述全测量值范围表示FK8E。例如,所述测量值指定范围RQ1T等于所述全测量值范围QK8E的一部分。
所述可变物理参数QU1A依靠所述感测单元334而被控制。所述感测单元334被配置以符合与所述测量值目标范围RN1T相关的所述传感器规格FU11。例如,所述传感器规格FU11包含用于表示所述传感器测量范围RB8E的所述传感器测量范围表示GW8R、和用于表示所述传感器灵敏度YW81的所述传感器灵敏度表示GW81。所述传感器灵敏度YW81相同或不同于所述传感器灵敏度YQ81。
在一些实施例中,在所述触发事件EQ81发生的条件下,所述处理单元230响应所述感测信号SM81来以一指定测量值格式HQ81获得所述测量值VM81。例如,所述指定测量值 格式HQ81基于一指定比特数目UX81而被特征化。在所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230导致所述传输单元240产生所述控制信号SC81。所述可变物理参数QP1A进一步基于一额定物理参数范围RC1E而被特征化。例如,所述额定物理参数范围RC1E由一额定测量值范围RC1N所代表,并包含由多个不同测量值参考范围RM11、RM12、…所分别代表的多个不同物理参数参考范围RC1E1、RC1E2、…。
所述多个不同物理参数参考范围RC1E1、RC1E2、…包含所述物理参数应用范围RC1EL。所述测量应用功能规格GBL8包含所述定时器规格FT21、所述传感器规格FQ11、用于表示所述额定物理参数范围RC1E的一额定物理参数范围表示GB8E、和用于表示所述物理参数应用范围RC1EL的一物理参数应用范围表示GB8L。所述物理参数目标范围RD1ET由一物理参数候选范围表示GA8T所表示。例如,所述物理参数候选范围表示GA8T被预设。
所述额定测量值范围RC1N基于所述额定物理参数范围表示GB8E、所述传感器测量范围表示GQ8R和用于转换所述额定物理参数范围表示GB1E的一数据编码操作ZR81来用所述指定测量值格式HQ81而被预设,具有一额定范围界限值对DC1A,并包含由多个不同测量值参考范围码EH11、EH12、…所分别代表的所述多个不同测量值参考范围RM11、RM12、…。例如,所述额定范围界限值对DC1A用所述指定测量值格式HQ81而被预设。所述额定测量值范围RC1N和所述额定范围界限值对DC1A皆基于所述传感器测量范围表示GQ8R和所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预设。
在一些实施例中,所述多个不同测量值参考范围RM11、RM12、…包含所述测量值应用范围RM1L。所述测量值应用范围RM1L由包含于所述多个不同测量值参考范围码EH11、EH12、…中的一测量值应用范围码EH1L所代表,并具有一应用范围界限值对DM1L;藉此所述测量值应用范围码EH1L被配置以指示所述物理参数应用范围RC1EL。例如,所述多个不同测量值参考范围码EH11、EH12、…皆基于所述测量应用功能规格GBL8而被默认。
所述应用范围界限值对DM1L包含所述测量值应用范围RM1L的一应用范围界限值DM15和相对于所述应用范围界限值DM15的一应用范围界限值DM16,并基于所述物理参数应用范围表示GB8L、所述传感器测量范围表示GQ8R和用于转换所述物理参数应用范围表示GB8L的一数据编码操作ZR82来用所述指定测量值格式HQ81而被预设。所述测量值应用范围RM1L基于所述物理参数应用范围表示GB8L、所述传感器测量范围表示GQ8R和所述数据编码操作ZR82来用所述指定测量值格式HQ81而被预设。
所述测量值目标范围RN1T基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GQ8R和用于转换所述物理参数候选范围表示GA8T的一数据编码操作ZX83而被预 设,并由所述测量值目标范围码EM1T所代表。所述控制装置212进一步包含耦合于所述处理单元230的一存储单元250,并包含耦合于所述处理单元230的一触发应用单元281。所述存储单元250存储所默认的所述额定范围界限值对DC1A和一可变物理参数范围码UM8A。例如,所述测量值目标范围RN1T具有一目标范围界限值对DN1T。
在一些实施例中,当与所述触发应用单元281相关的所述触发事件EQ81发生时,所述可变物理参数范围码UM8A等于选择自所述多个不同测量值参考范围码EH11、EH12、…的一特定测量值范围码EH14。例如,所述特定测量值范围码EH14指示基于基于一感测操作ZM81而被所述处理单元230先前确定的一特定物理参数范围RC1E4。所述特定物理参数范围RC1E4选择自所述多个不同物理参数参考范围RC1E1、RC1E2、…。由所述感测单元260所执行的所述感测操作ZM81用于感测所述可变物理参数QP1A。在所述触发事件EQ81发生之前,所述特定测量值范围码EH14被指定到所述可变物理参数范围码UM8A。
例如,在所述触发事件EQ81发生之前,所述处理单元230获得所述特定测量值范围码EH14。在所述处理单元230于所述触发事件EQ81发生之前基于所述感测操作ZM81而确定所述特定物理参数范围RC1E4的条件下,所述处理单元230藉由使用所述存储单元250来将所获得的所述特定测量值范围码EH14指定到所述可变物理参数范围码UM8A。所述特定测量值范围码EH14代表被配置以代表所述特定物理参数范围RC1E4的一特定测量值范围。所述特定测量值范围基于所述传感器测量范围表示GQ8R来用所述指定测量值格式HQ81而被预设。例如,所述感测单元260藉由执行所述感测操作ZM81来执行相依于所述传感器灵敏度YQ81的一感测信号产生以产生一感测信号。
在所述触发事件EQ81发生之前,所述处理单元230接收所述感测信号,响应所述感测信号来以所述指定测量值格式HQ81获得一特定测量值,并执行用于检查所述特定测量值和所述特定测量值范围之间的一数学关系的一特定检查操作。在所述处理单元230基于所述特定检查操作而确定所述可变物理参数QP1A处于的所述特定物理参数范围RC1E4的条件下,所述处理单元230藉由使用所述存储单元250来将所获得的所述特定测量值范围码EH14指定到所述可变物理参数范围码UM8A。所述处理单元230响应用于感测所述可变物理参数QP1A的一特定感测操作来决定所述处理单元230是否要使用所述存储单元250以改变所述可变物理参数范围码UM8A。例如,所述特定感测操作由所述感测单元260所执行。
在一些实施例中,所述触发应用单元281响应所述触发事件EQ81来提供一操作请求信号SX81到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SX81。在所述触发事件EQ81发生的条件下,所述处理单元230响应所述操作请求信号SX81来从 所述存储单元250获得一操作参考数据码XK81,并藉由运行一数据确定程序NE8A来执行使用所述操作参考数据码XK81的一数据确定AE8A以确定选择自所述多个不同测量值参考范围码EH11、EH12、…的所述测量值应用范围码EH1L以便从所述多个不同测量值参考范围RM11、RM12、…中选择所述测量值应用范围RM1L。
所述操作参考数据码XK81相同于基于所述测量应用功能规格GBL8而被默认的一可允许参考数据码。所述数据确定程序NE8A基于所述测量应用功能规格GBL8而被建构。所述数据确定AE8A是一数据确定操作AE81和一数据确定操作AE82的其中之一。在所述操作参考数据码XK81藉由接入被存储在所述存储单元250中的所述可变物理参数范围码UM8A而被获得以相同于所述特定测量值范围码EH14的条件下,是所述数据确定操作AE81的所述数据确定AE8A基于所获得的所述特定测量值范围码EH14来确定所述测量值应用范围码EH1L。例如,所确定的所述测量值应用范围码EH1L相同或不同于所获得的所述特定测量值范围码EH14。
在所述操作参考数据码XK81藉由接入被存储在所述存储单元250中的所述额定范围界限值对DC1A而被获得以相同于所预设的所述额定范围界限值对DC1A的条件下,是所述数据确定操作AE82的所述数据确定AE8A藉由执行使用所述测量值VM81和所获得的所述额定范围界限值对DC1A的一科学计算MF81来从所述多个不同测量值参考范围码EH11、EH12、…中选择所述测量值应用范围码EH1L以确定所述测量值应用范围码EH1L。例如,所述科学计算MF81基于一特定经验公式XP81而被执行。所述特定经验公式XP81基于所预设的所述额定范围界限值对DC1A和所述多个不同测量值参考范围码EH11、EH12、…而被预先制定。例如,所述特定经验公式XP81基于所述测量应用功能规格GBL8而被预先制定。
所述处理单元230基于所确定的所述测量值应用范围码EH1L来获得所述应用范围界限值对DM1L,并基于所述测量值VM81和所获得的所述应用范围界限值对DM1L之间的一数据比较CA81来检查所述数学关系KA81以做出所述测量值VM81是否为于所选择的所述测量值应用范围RM1L之内的一逻辑决定PH81。在所述逻辑决定PH81是肯定的条件下,所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL。
例如,在所述应用范围界限值DM15不同于所述应用范围界限值DM16且所述测量值VM81是于所述应用范围界限值DM15和所述应用范围界限值DM16之间的条件下,所述处理单元230藉由比较所述测量值VM81和所获得的所述应用范围界限值对DM1L来做出所述逻辑决定PH81以成为肯定的。在所述应用范围界限值DM15、所述应用范围界限值DM16和所述测量值VM81是相等的条件下,所述处理单元230藉由比较所述测量值VM81和所获得的 所述应用范围界限值对DM1L来做出所述逻辑决定PH81以成为肯定的。
在一些实施例中,所述控制装置212具有所述可变物理参数QP1A。所述可变物理参数QU1A存在于所述功能装置130中。所述触发事件EQ81是一触发作用事件、一用户输入事件、一信号输入事件、一状态改变事件、一标识媒介出现事件和一整数溢位事件的其中之一,并被应用到所述测量应用功能FB81。在是所述触发作用事件的所述触发事件EQ81发生之前,所述接收单元337从所述传输单元240接收一控制信号SC80。所述处理单元331响应所接收的所述控制信号SC80来执行用于控制所述输出组件338的一信号产生控制GY80。所述输出组件338响应所述信号产生控制GY80来产生用于控制所述可变物理参数QU1A的一操作信号SG80。所述物理参数应用单元335从所述输出组件338接收所述操作信号SG80,并响应所接收的所述操作信号SG80来执行与所述可变物理参数QU1A相关的所述特定功能操作ZH81。在是所述触发作用事件的所述触发事件EQ81要发生的条件下,所述功能装置130被配置以执行与所述可变物理参数QU1A相关的所述特定功能操作ZH81。例如,所述特定功能操作ZH81用于导致所述触发作用事件发生。
所述测量应用功能FB81相关于一内存单元25Y1。所述测量值指定范围RQ1T由所述测量值指定范围码EL1T所代表;藉此所述测量值指定范围码EL1T被配置以指示所述时钟时间指定区间HR1ET。例如,所述测量值指定范围码EL1T基于所述测量应用功能规格GBL8而被默认。所预设的所述测量值应用范围码EH1L和所预设的所述测量值指定范围码EL1T之间具有一数学关系KY81。
所述内存单元25Y1具有一内存位置PM8L和不同于所述内存位置PM8L的一内存位置PV8L,在所述内存位置PM8L存储所述应用范围界限值对DM1L,并在所述内存位置PV8L存储一控制数据码CK8T。例如,所述内存位置PM8L和所述内存位置PV8L皆基于所预设的所述测量值应用范围码EH1L而被标识。所述控制数据码CK8T包含所述测量值指定范围码EL1T。例如,所述应用范围界限值对DM1L和所述控制数据码CK8T皆基于所预设的所述测量值应用范围码EH1L而被所述内存单元25Y1存储。所述控制数据码CK8T进一步包含所述测量值目标范围码EM1T。
在一些实施例中,所述处理单元230藉由运行一数据获取程序NF8A来执行使用所确定的所述测量值应用范围码EH1L的一数据获取AF8A以获得所述应用范围界限值对DM1L。例如,所述数据获取AF8A是一数据获取操作AF81和一数据获取操作AF82的其中之一。所述数据获取程序NF8A基于所述测量应用功能规格GBL8而被建构。所述数据获取操作AF81基于所确定的所述测量值应用范围码EH1L来使用所述内存单元25Y1以接入被存储在所述内存位置PM8L的所述应用范围界限值对DM1L以获得所述应用范围界限值对DM1L。
所述数据获取操作AF82藉由读取被存储在所述存储单元250中的所述额定范围界限值对DC1A来取得所预设的所述额定范围界限值对DC1A,并藉由执行使用所确定的所述测量值应用范围码EH1L和所取得的所述额定范围界限值对DC1A的一科学计算MG81来获得所述应用范围界限值对DM1L。例如,所述额定范围界限值对DC1A包含所述额定测量值范围RC1N的一额定范围界限值DC11和相对于所述额定范围界限值DC11的一额定范围界限值DC12,并基于所述额定物理参数范围表示GB8E、所述传感器测量范围表示GQ8R和所述数据编码操作ZR81来用所述指定测量值格式HQ81而被预设。
在一些实施例中,在所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230执行使用所确定的所述测量值应用范围码EH1L的一数据获取AG8A以获得一控制应用码UA8T。例如,所述数据获取AG8A是一数据获取操作AG81和一数据获取操作AG82的其中之一。
所述数据获取操作AG81基于所确定的所述测量值应用范围码EH1L来使用所述内存单元25Y1以接入被存储在所述内存位置PV8L的所述控制数据码CK8T以获得等于所述控制数据码CK8T的所述控制应用码UA8T。所述数据获取操作AG82藉由执行使用所确定的所述测量值应用范围码EH1L和所述数学关系KY81的一科学计算MQ81来获得等于所预设的所述测量值指定范围码EL1T的所述控制应用码UA8T。
所述处理单元230基于所获得的所述控制应用码UA8T来在一操作时间TD81之内执行用于所述测量应用功能FB81的一信号产生控制GS81以控制所述传输单元240。所述传输单元240响应所述信号产生控制GS81来执行用于所述测量应用功能FB81的一信号产生操作BS81以产生所述控制信号SC81。例如,所述控制信号SC81藉由输送所述测量值指定范围码EL1T来起到指示所述测量值指定范围RQ1T和所述时钟时间指定区间HR1ET的至少其中之一的作用,并用于导致所述可变物理参数QU1A于所述时钟时间指定区间HR1ET之内处于所述物理参数目标范围RD1ET。例如,所述控制信号SC81输送所述控制信息CG81。所述处理单元230基于所获得的所述控制应用码UA8T来导致所述传输单元240产生所述控制信息CG81。
在一些实施例中,所述多个不同物理参数参考范围RC1E1、RC1E2、…进一步包含不同于所述物理参数应用范围RC1EL的一物理参数候选范围RC1E2。所述多个不同测量值参考范围RM11、RM12、…具有一总参考范围数目NS81,并进一步包含代表所述物理参数候选范围RC1E2的一测量值候选范围RM12。所述测量应用功能规格GBL8进一步包含用于表示所述物理参数候选范围RC1E2的一物理参数候选范围表示GB82。
所述测量值候选范围RM12由不同于所述测量值应用范围码EH1L的一测量值候选范围 码EH12所代表,具有一候选范围界限值对DM1B,并被配置以代表所述物理参数候选范围RC1E2;藉此所述测量值候选范围码EH12被配置以指示所述物理参数候选范围RC1E2。例如,所述候选范围界限值对DM1B基于所述物理参数候选范围表示GB82、所述传感器测量范围表示GQ8R和用于转换所述物理参数候选范围表示GB82的一数据编码操作ZR83来用所述指定测量值格式HQ81而被预设。
所述测量值候选范围RM12基于所述物理参数候选范围表示GB82、所述传感器测量范围表示GQ8R和所述数据编码操作ZR83来用所述指定测量值格式HQ81而被预设。所述总参考范围数目NS81基于所述测量应用功能规格GBL8而被默认。所述处理单元230响应所述触发事件EQ81来获得所述总参考范围数目NS81。所述科学计算MF81进一步使用所获得的所述总参考范围数目NS81。所述科学计算MG81进一步使用所获得的所述总参考范围数目NS81。例如,所述总参考范围数目NS81大于或等于2。例如,所述总参考范围数目NS81≧3;所述总参考范围数目NS81≧4;所述总参考范围数目NS81≧5;所述总参考范围数目NS81≧6;且所述总参考范围数目NS81≦255。
在一些实施例中,所述时钟时间指定区间HR1ET相邻于所述时钟时间应用区间HR1EU,并具有所述开始界限时间HR1ET1和相对于所述开始界限时间HR1ET1的所述结束界限时间HR1ET2。所述功能装置130接收所述控制信号SC81,从所接收的所述控制信号SC81获得所述测量值指定范围码EL1T和所述测量值目标范围码EM1T,基于所获得的所述测量值指定范围码EL1T来启动所述定时器342,并藉此使所述定时器342根据所述开始界限时间HR1ET1来测量所述时钟时间TH1A。
所述功能装置130基于所获得的所述测量值目标范围码EM1T来导致所述可变物理参数QU1A于所述时钟时间指定区间HR1ET之内处于所述物理参数目标范围RD1ET。例如,所述控制信号SC81输送基于所述控制应用码UA8T而被确定的一控制信息CG81。所述控制信息CG81包含所述测量值指定范围码EL1T和所述测量值目标范围码EM1T。例如,所述控制信息CG81包含所述指定范围界限值对DQ1T、所述目标范围界限值对DN1T和所述句柄CC1T。
所述测量值应用范围RM1L是所述额定测量值范围RC1N的一第一部分。所述测量值候选范围RM12是所述额定测量值范围RC1N的一第二部分。所述物理参数应用范围RC1EL和所述物理参数候选范围RC1E2是分开的或相邻的。在所述物理参数应用范围RC1EL和所述物理参数候选范围RC1E2是分开的条件下,所述测量值应用范围RM1L和所述测量值候选范围RM12是分开的。在所述物理参数应用范围RC1EL和所述物理参数候选范围RC1E2是相邻的条件下,所述测量值应用范围RM1L和所述测量值候选范围RM12是相邻的。
例如,所述测量值应用范围码EH1L被配置以等于一整数。所述额定范围界限值DC12 大于所述额定范围界限值DC11。所述额定范围界限值DC12和所述额定范围界限值DC11之间具有相对于所述额定范围界限值DC11的一相对值VC11。所述相对值VC11等于所述额定范围界限值DC12减去所述额定范围界限值DC11的一计算结果。例如,所述应用范围界限值对DM1L基于所述额定范围界限值DC11、所述额定范围界限值DC12、所述整数、和所述相对值VC11对于所述总参考范围数目NS11的一比率而被预设。所述科学计算MG81使用所述额定范围界限值DC11、所述额定范围界限值DC12、所述整数、所述比率和其任意组合的其中之一。
在一些实施例中,在所述逻辑决定PH81是否定的条件下,所述处理单元230藉由执行使用所确定的所述测量值应用范围码EH1L的一第四科学计算MF12来确定选择自所述多个不同测量值参考范围码EH11、EH12、…的所述测量值候选范围码EH12以便从所述多个不同测量值参考范围RM11、RM12、…中选择所述测量值候选范围RM12。
所述处理单元230基于所确定的所述测量值候选范围码EH12来获得所述候选范围界限值对DM1B,并基于所述测量值VM81和所获得的所述候选范围界限值对DM1B之间的一数据比较CA91来检查所述测量值VM81和所选择的所述测量值候选范围RM12之间的一数学关系KA91以做出所述测量值VM81是否为于所选择的所述测量值候选范围RM12之内的一逻辑决定PH91。在所述逻辑决定PH91是肯定的条件下,所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数候选范围RC1E2。
在所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数候选范围RC1E2的条件下,所述处理单元230导致所述传输单元240执行用于所述测量应用功能FB81的一信号产生操作BS91以产生用于控制所述可变物理参数QU1A的一控制信号SC82。所述控制信号SC82不同于所述控制信号SC81,并起到指示所述时钟时间参考区间HR1E2的作用。
在所述特定测量值范围码EH14不同于所确定的所述测量值应用范围码EH1L且所述处理单元230藉由做出所述逻辑决定PH81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于等于所述特定测量值范围码EH14的所述可变物理参数范围码UM8A和所确定的所述测量值应用范围码EH1L之间的一码差异DA81来使用所述存储单元250以将所确定的所述测量值应用范围码EH1L指定到所述可变物理参数范围码UM8A。在所述触发事件EQ81是所述可变物理参数QP1A从所述特定物理参数范围RC1E4进入所述物理参数应用范围RC1EL的所述状态改变事件的条件下,所述处理单元230基于所述码差异DA81来确定是所述状态改变事件的所述触发事件EQ81。
在一些实施例中,所述操作单元297进一步包含一响应区域AC1、一读取器220和一 接收单元270。所述响应区域AC1用于执行所述测量应用功能FB81。所述读取器220耦合于所述响应区域AC1。所述接收单元270耦合于所述处理单元230,并受所述处理单元230控制。在所述触发事件EQ81是所述标识媒介出现事件且所述处理单元230通过所述读取器220而辨识了出现于所述响应区域AC1的一标识媒介310的条件下,所述处理单元230基于所述感测信号SM81来获得所述测量值VM81。例如,所述触发事件EQ81是与所述标识媒介310和所述读取器220相关的所述标识媒介出现事件。
当所述触发事件EQ81发生时,所述显示单元460显示一状态指示LA81。例如,所述状态指示LA81用于指示所述可变物理参数QP1A被配置于所述特定物理参数范围RC1E4之内的一特定状态XH81。在所述特定测量值范围码EH14不同于所确定的所述测量值应用范围码EH1L且所述处理单元230藉由做出所述逻辑决定PH81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230进一步基于所述码差异DA81来导致所述显示单元460将所述状态指示LA81改变成一状态指示LA82。例如,所述状态指示LA82用于指示所述可变物理参数QP1A被配置于所述物理参数应用范围RC1EL之内的一特定状态XH82。
在一些实施例中,在所述接收单元270于所述操作时间TD81之后的一指定时间TW81之内从所述功能装置130接收响应所述控制信号SC81而被产生的一控制响应信号SE81的条件下,所述处理单元230响应所述控制响应信号SE81来执行与所述可变物理参数QU1A相关的一特定实际操作BJ81。例如,所述处理单元230从所述控制响应信号SE81获得所输送的所述测量值VN82,并基于所获得的所述测量值VN82来使所述显示单元460显示与所获得的所述测量值VN82相关的一测量信息LZ82。例如,所述特定实际操作BJ81是使用所获得的所述测量值VN82的一显示控制操作。所述处理单元230藉由执行所述显示控制操作来使所述显示单元460显示所述测量信息LZ82。
例如,所述控制响应信号SE81输送所述测量值VN82和所述肯定操作报告RL81。所述处理单元230从所述控制响应信号SE81获得所输送的所述测量值VN82和所输送的所述肯定操作报告RL81。所述特定实际操作BJ81使用所获得的所述测量值VN82和所获得的所述肯定操作报告RL81的至少其中之一以使所述显示单元460显示与所获得的所述测量值VN82和所获得的所述肯定操作报告RL81的至少其中之一相关的一操作信息。
在所述操作时间TD81之后,所述感测单元260感测所述可变物理参数QP1A以产生一感测信号SM82。例如,在所述操作时间TD81之后,所述感测单元260感测所述可变物理参数QP1A以执行相依于所述传感器灵敏度YQ81的一感测信号产生HE82,所述感测信号产生HE82用于产生所述感测信号SM82。
在一些实施例中,所述处理单元230于所述操作时间TD81之后的一指定时间TE82之内响应所述感测信号SM82来以所述指定测量值格式HQ81获得一测量值VM82。所述处理单元230于所述指定时间TE82之内藉由执行使用所确定的所述测量值应用范围码EH1L的一科学计算MF83来获得包含于所述多个不同测量值参考范围码EH11、EH12、…中的一特定测量值范围码EH17。例如,所述特定测量值范围码EH17不同于所确定的所述测量值应用范围码EH1L,并代表包含于所述多个不同测量值参考范围RM11、RM12、…中的一特定测量值范围RM17。
所述特定测量值范围RM17代表包含于所述多个不同物理参数参考范围RC1E1、RC1E2、…中的一特定物理参数范围RC1E7。所述处理单元230基于所述特定测量值范围码EH17来执行用于检查所述测量值VM82和所述特定测量值范围RM17之间的一数学关系KA83的一检查操作BA83。
在一些实施例中,在所述处理单元230于所述指定时间TE82之内基于所述检查操作BA83而确定所述可变物理参数QP1A目前处于的所述特定物理参数范围RC1E7的条件下,所述处理单元230导致所述传输单元240产生用于控制所述可变物理参数QU1A的一控制信号SC83,并使用所述存储单元250以将所述特定测量值范围码EH17指定到所述可变物理参数范围码UM8A。例如,所述控制信号SC83不同于所述控制信号SC81,并起到指示一特定时钟时间区间HR1E7的作用。所述多个不同时钟时间参考区间HR1E1、HR1E2、…包含所述特定时钟时间区间HR1E7。
在所述触发事件EQ81发生的条件下,所述感测单元260感测处于一拘束条件FP81的所述可变物理参数QP1A以提供所述感测信号SM81到所述处理单元230。例如,所述拘束条件FP81是所述可变物理参数QP1A等于包含于所述额定物理参数范围RC1E中的一特定物理参数QP15。所述处理单元230基于所述感测信号SM81来估计所述特定物理参数QP15以获得所述测量值VM81。由于处于所述拘束条件FP81的所述可变物理参数QP1A是于所述物理参数应用范围RC1EL之内,所述处理单元230辨识所述测量值VM81为于所述测量值应用范围RM1L之内的一可允许值,藉此辨识所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81为一数值交集关系,并藉此确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL。
在一些实施例中,所述处理单元230响应一触发事件EQ8H来使所述传输单元240向所述接收单元337传输所述控制信号SC8H。例如,所述触发事件EQ8H相关于所述控制装置212。所述控制信号SC8H输送一控制信息CJ8H。在所述可变物理参数QU1A藉由检查所述数学关系KQ81而于所述时钟时间应用区间HR1EU之内处于所述物理参数目标状态JE1U 的条件下,所述接收单元337从所述传输单元240接收所述控制信号SC8H。所述处理单元331从所述控制信号SC8H获得所述控制信息CJ8H。所述处理单元331响应所述控制信息CJ8H来使用所述感测信号SN8H以用所述指定测量值格式HH81获得所述测量值VN8H,并响应所述控制信息CJ8H来使用所述感测信号SY8H以用所述指定测量值格式HH95获得所述测量值NY8H。
所述处理单元331基于所获得的所述测量值VN8H和所获得的所述测量值NY8H来使所述传输单元384向所述接收单元270传输所述控制响应信号SE8H。所述接收单元270从所述传输单元384接收所述控制响应信号SE8H。所述控制响应信号SE8H输送所述测量值VN8H和所述测量值NY8H,并被所述控制装置212使用以执行与所述可变物理参数QU1A和所述时钟时间TH1A的至少其中之一相关的一特定实际操作。例如,所述处理单元230从所接收的所述控制响应信号SE8H获得所述测量值VN8A和所述测量值NY8H,基于所获得的所述测量值VN8H来使所述显示单元460显示与所述可变物理参数QU1A相关的所述测量信息LZ8H,并基于所获得的所述测量值NY8H来使所述显示单元460显示与所述时钟时间TH1A相关的所述测量信息LX8H。例如,所述处理单元230执行使用所获得的所述测量值VN8H和所获得的所述测量值NY8H的所述特定实际操作以使所述显示单元460执行一显示操作。所述显示操作显示所述测量信息LZ8H和所述测量信息LX8H。
例如,所述操作单元297包含耦合于所述处理单元230的一触发应用单元28H。所述触发事件EQ8H相关于所述触发应用单元28H,并是一触发作用事件、一用户输入事件、一信号输入事件、一状态改变事件和一标识媒介出现事件的其中之一。所述触发应用单元28H响应所述触发事件EQ8H来提供一操作请求信号SX8H到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SX8H。所述处理单元230响应所述操作请求信号SX8H来获得所述控制信息CJ8H,并基于所获得的所述控制信息CJ8H来使所述传输单元240向所述功能装置130传输输送所述控制信息CJ8H的所述控制信号SC8H。例如,所述触发应用单元28H是所述读取器220和所述感测单元260的其中之一。
在一些实施例中,所述感测单元260基于与所述感测信号产生HE81相关的所述传感器灵敏度YQ81而被特征化,并被配置以符合所述传感器规格FQ11。所述传感器规格FQ11包含用于表示所述传感器灵敏度YQ81的所述传感器灵敏度表示GQ81、和用于表示所述传感器测量范围RA8E的所述传感器测量范围表示GQ8R。例如,所述额定物理参数范围RC1E被配置以相同于所述传感器测量范围RA8E,或被配置以是所述传感器测量范围RA8E的一部分。所述传感器测量范围RA8E相关于由所述第一感测单元260所执行的一物理参数感测。所述传感器测量范围表示GQ8R基于一第一默认测量单位而被提供。例如,所述第一 默认测量单位是一公制测量单位和一英制测量单位的其中之一。
所述额定测量值范围RC1N、所述额定范围界限值对DC1A、所述测量值应用范围RM1L、所述应用范围界限值对DM1L、所述测量值候选范围RM12、所述候选范围界限值对DM1B和所述多个不同测量值参考范围RM11、RM12、…皆基于所述传感器测量范围表示GQ8R和所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预设。例如,所述额定测量值范围RC1N和所述额定范围界限值对DC1A皆基于所述额定物理参数范围表示GB8E、所述传感器测量范围表示GQ8R、所述传感器灵敏度表示GQ81和所述数据编码操作ZR81来用所述指定测量值格式HQ81而被预设。所述测量值应用范围RM1L和所述应用范围界限值对DM1L皆基于所述物理参数应用范围表示GB8L、所述传感器测量范围表示GQ8R、所述传感器灵敏度表示GQ81和所述数据编码操作ZR82来用所述指定测量值格式HQ81而被预设。
所述测量值候选范围RM12和所述候选范围界限值对DM1B皆基于所述物理参数候选范围表示GB82、所述传感器测量范围表示GQ8R、所述传感器灵敏度表示GQ81和所述数据编码操作ZR83来用所述指定测量值格式HQ81而被预设。所述额定物理参数范围表示GB8E、所述物理参数应用范围表示GB8L、所述物理参数候选范围表示GA8T和所述物理参数候选范围表示GB82皆基于一第二默认测量单位而被提供。例如,所述第二默认测量单位是一公制测量单位和一英制测量单位的其中之一,并相同或不同于所述第一默认测量单位。例如,所述物理参数目标范围RD1ET被配置以是所述传感器测量范围RB8E的一部分。
所述可变物理参数QP1A进一步基于所述传感器测量范围RA8E而被特征化。例如,所述传感器测量范围表示GQ8R、所述额定物理参数范围表示GB8E、所述物理参数应用范围表示GB8L、所述物理参数候选范围表示GA8T、所述物理参数候选范围表示GB82和所述传感器测量范围表示GW8R皆属于十进制数据类型。所述测量值VM81、所述测量值VM82、所述额定范围界限值对DC1A、所述应用范围界限值对DM1L、所述目标范围界限值对DN1T和所述候选范围界限值对DM1B皆属于所述二进制数据类型,并皆适用于计算机处理。所述传感器规格FQ11、所述传感器规格FU11和所述测量应用功能规格GBL8皆被默认。
在一些实施例中,所述内存位置PM8L基于一内存地址FM8L而被标识。所述内存地址FM8L基于所预设的所述测量值应用范围码EH1L而被预设。所述内存位置PV8L基于一内存地址FV8L而被标识。所述内存地址FV8L基于所预设的所述测量值应用范围码EH1L而被预设。
在所述触发事件EQ81发生之前,所述处理单元230被配置以取得所默认的所述测量值应用范围码EH1L、所预设的所述应用范围界限值对DM1L和所默认的所述控制数据码 CK8T,基于所取得的所述测量值应用范围码EH1L来获得所述内存地址FM8L,并基于所取得的所述应用范围界限值对DM1L和所获得的所述内存地址FM8L来导致所述操作单元297提供包含所取得的所述应用范围界限值对DM1L和所获得的所述内存地址FM8L的一写入请求信息WB8L。例如,所述写入请求信息WB8L用于导致所述内存单元25Y1在所述内存位置PM8L存储所输送的所述应用范围界限值对DM1L。
在所述触发事件EQ81发生之前,所述处理单元230基于所取得的所述测量值应用范围码EH1L来获得所述内存地址FV8L,并基于所取得的所述控制数据码CK8T和所获得的所述内存地址FV8L来导致所述操作单元297提供包含所取得的所述控制数据码CK8T和所获得的所述内存地址FV8L的一写入请求信息WA8L。例如,所述写入请求信息WA8L用于导致所述内存单元25Y1在所述内存位置PV8L存储所输送的所述控制数据码CK8T。
所述控制装置212耦合于一服务器280。所述标识媒介310是一电子卷标350、一条形码媒介360和一生物标识作用媒介370的其中之一。所述电子卷标350、所述存储单元250和所述服务器280的其中之一中包含所述内存单元25Y1。例如,所述存储单元250具有一存储空间SS11。所述存储空间SS11具有所述可变物理参数范围码UM8A、所述额定范围界限值对DC1A和所述总参考范围数目NS81。
在一些实施例中,所述额定物理参数范围RC1E包含一特定物理参数QP15,并由所述额定测量值范围RC1N所代表。所述感测单元260感测处于所述拘束条件FP81的所述可变物理参数QP1A以提供所述感测信号SM81到所述处理单元230。例如,所述拘束条件FP81是所述可变物理参数QP1A等于所述特定物理参数QP15。在所述触发事件EQ81发生的条件下,所述处理单元230基于所述感测信号SM81来估计所述特定物理参数QP15以获得所述测量值VM81。
例如,所述标识媒介310记录所述应用范围界限值对DM1L和所述控制数据码CK8T。例如,所述读取器220是所述触发应用单元281,响应与所述识别媒介310相关的所述触发事件EQ81来提供所述操作请求信号SX81到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SX81。所述处理单元230响应所述操作请求信号SX81来使所述读取器220读取所记录的所述应用范围界限值对DM1L和所记录的所述控制数据码CK8T,并藉此通过所述读取器220来从所述标识媒介310获得所记录的所述应用范围界限值对DM1L和所记录的所述控制数据码CK8T。
请参阅图51。图51为绘示于图1中的所述控制系统901的一实施结构9060的示意图。如图51所示,所述实施结构9060含所述控制装置212、所述功能装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于依靠所述触发事件 EQ81而控制存在于所述功能装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述接收单元270和所述传输单元240。所述处理单元230耦合于所述服务器280。
所述控制装置212设置于所述应用环境EX81中。所述可变物理参数QP1A存在于一物理参数形成区AT11中。所述控制装置212和所述应用环境EX81的其中之一具有所述可变物理参数QP1A。例如,所述感测单元260耦合于具有所述可变物理参数QP1A的所述物理参数形成区AT11。所述可变物理参数QU1A存在于所述物理参数形成区AU11中。例如,在所述物理参数形成区AT11位于所述应用环境EX81中的条件下,所述物理参数形成区AT11邻接于所述控制装置212。例如,所述感测单元260包含所述物理参数形成区AT11。
例如,所述物理参数形成区AU11和所述物理参数形成区AT11是分开的,并分别被形成于所述实际位置LD81和所述实际位置LC81;藉此,所述可变物理参数QU1A和所述可变物理参数QP1A分别被形成于所述实际位置LD81和不同于所述实际位置LD81的所述实际位置LC81。例如,所述物理参数形成区AT11是一负载区、一显示区、一感测区、一功率供应区和一环境区的其中之一。例如,所述物理参数形成区AU11是一负载区、一显示区、一感测区、一功率供应区和一环境区的其中之一。
例如,所述处理单元230响应所述触发事件EQ81来导致所述可变物理参数QP1A在所述物理参数形成区AT11中形成。在所述可变物理参数QP1A存在于所述物理参数形成区AT11中的条件下,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。例如,所述物理参数形成区AT11是一使用者接口区。
在一些实施例中,所述功能装置130包含所述操作单元397、耦合于所述操作单元397的所述感测单元334、和耦合于所述操作单元397的一物理参数应用单元335。所述物理参数应用单元335受所述操作单元397控制,并包含具有所述可变物理参数QU1A的所述物理参数形成区AU11。所述可变物理参数QU1A进一步基于包含所述物理参数目标范围RD1ET的一额定物理参数范围RD1E而被特征化。所述额定物理参数范围RD1E由一额定测量值范围RD1N所代表,并包含由多个不同测量值参考范围RN11、RN12、…所分别代表的多个不同物理参数参考范围RD1E1、RD1E2、…。所述多个不同物理参数参考范围RD1E1、RD1E2、…包含所述物理参数目标范围RD1ET和一物理参数候选范围RD1E2。
所述额定测量值范围RD1N包含所述多个不同测量值参考范围RN11、RN12、…,并基于所述额定物理参数范围表示GB8E、所述传感器测量范围表示GQ8R和用于转换所述额定物理参数范围表示GB8E的所述数据编码操作ZR81来用所述指定测量值格式HQ81而被预设。所述多个不同测量值参考范围RN11、RN12、…包含所述测量值目标范围RN1T和代表 所述物理参数候选范围RD1E2的一测量值候选范围RN12。所述测量值候选范围RN12由一测量值候选范围码EM12所代表,并具有一候选范围界限值对DN1B,藉此所述测量值候选范围码EM12被配置以指示所述物理参数候选范围RD1E2。在所述触发事件EQ81发生之前,所述可变物理参数QU1A被配置以于一特定物理参数范围RD1E4之内。所述特定物理参数范围RD1E4包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中。
在一些实施例中,由所述功能装置130所引起的所述触发作用事件是一状态改变事件。所述控制装置212进一步包含耦合于所述处理单元230的一状态改变侦测器475。例如,所述状态改变侦测器475是一极限侦测器和一边缘侦测器的其中之一。所述极限侦测器是一极限开关485。所述状态改变侦测器475被配置以侦测与一默认特征物理参数UL81相关的一特征物理参数到达ZL82。所述物理参数应用单元335包含一物理参数应用区AJ11。所述物理参数应用区AJ11具有一可变物理参数QG1A。所述可变物理参数QG1A相依于所述可变物理参数QU1A,并基于所述默认特征物理参数UL81而被特征化。例如,所述物理参数应用区AJ11是一负载区、一显示区、一感测区、一功率供应区和一环境区的其中之一。所述默认特征物理参数UL81相关于所述可变物理参数QU1A。
在所述触发事件EQ81发生之前,所述操作单元397使所述物理参数应用单元335执行与所述可变物理参数QU1A相关的所述特定功能操作ZH81。所述特定功能操作ZH81用于控制所述可变物理参数QG1A,并藉由改变所述可变物理参数QG1A来导致所述触发事件EQ81发生。所述可变物理参数QG1A被配置以处于一可变物理状态XA8A。例如,所述操作单元397受所述控制装置212控制以使所述物理参数应用单元335执行所述特定功能操作ZH81。例如,所述额定测量值范围RD1N具有一额定范围界限值对DD1A。
在所述可变物理参数QU1A于所述触发事件EQ81之前被配置以于所述特定物理参数范围RD1E4之内的条件下,所述特定功能操作ZH81导致所述可变物理参数QG1A到达所述默认特征物理参数UL81以形成所述特征物理参数到达ZL82,并藉由形成所述特征物理参数到达ZL82来将所述可变物理状态XA8A从一非特征物理参数到达状态XA81改变成一实际特征物理参数到达状态XA82。所述状态改变侦测器475响应所述特征物理参数到达ZL82来产生一触发信号SX8A。例如,所述实际特征物理参数到达状态XA82基于所述默认特征物理参数UL81而被特征化。所述状态改变侦测器475响应所述可变物理参数QG1A被从所述非特征物理参数到达状态XA81改变成所述实际特征物理参数到达状态XA82的一状态改变事件来产生所述触发信号SX8A。
在一些实施例中,所述接收单元270耦合于所述状态改变侦测器475。所述触发事件EQ81是所述可变物理参数QG1A进入所述实际特征物理参数到达状态XA82的所述状态改变 事件。所述接收单元270和所述处理单元230的其中之一接收所述触发信号SX8A。所述处理单元230响应所接收的所述触发信号SX8A来获得所述控制应用码UA8T,并基于所获得的所述控制应用码UA8T来在所述操作时间TD81之内执行用于所述测量应用功能FB81的所述信号产生控制GS81以导致所述传输单元240产生所述控制信号SC81。例如,所述状态改变侦测器475是一触发应用单元,并响应所述特征物理参数到达ZL82来提供所述触发信号SX8A到所述处理单元230。所述触发信号SX8A是一操作请求信号。
例如,在所述状态改变侦测器475是所述极限开关的条件下,所述特征物理参数到达ZL82是等于一可变空间位置的所述可变物理参数QG1A到达等于一默认极限位置的所述默认特征物理参数UL81的一极限位置到达。例如,所述物理参数应用单元335藉由执行基于所述可变物理参数QU1A而被引起的所述特定功能操作ZH81来在所述物理参数应用区AJ11中形成所述可变物理参数QG1A。在所述物理参数应用区AJ11耦合于所述状态改变侦测器475的条件下,所述状态改变侦测器475侦测所述特征物理参数到达ZL82。
例如,所述处理单元230响应所接收的所述触发信号SX8A来使用所述感测信号SM81以获得所述测量值VM81。在所述处理单元230藉由检查所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230执行使用所确定的所述测量值应用范围码EH1L的所述数据获取AG8A以获得所述控制应用码UA8T,并基于所获得的所述控制应用码UA8T来导致所述传输单元240产生或传输所述控制信号SC81。所述控制信号SC81起到指示所述测量值指定范围RQ1T和所述时钟时间指定区间HR1ET的至少其中之一的作用。
在一些实施例中,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。例如,在所述触发事件EQ81发生的条件下,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。在所述处理单元230藉由执行所述信号产生控制GS81来导致所述传输单元240于所述操作时间TD81之内产生所述控制信号SC81之后,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM82。例如,所述感测单元260是一时间感测单元、一电性参数感测单元、一力学参数感测单元、一光学参数感测单元、一温度感测单元、一湿度感测单元、一运动感测单元和一磁性参数感测单元的其中之一。
例如,所述感测单元260包含耦合于所述处理单元230的一感测组件261,并使用所述感测组件261以产生所述感测信号SM81和所述感测信号SM82。所述感测组件261是多个应用传感器的其中之一。所述多个应用传感器包含一电压传感器、一电流传感器、一电 阻传感器、一电容传感器、一电感传感器、一加速度计、一陀螺仪、一压力转能器、一应变规、一定时器、一光侦测器、一温度传感器和一湿度传感器。例如,所述感测组件261产生一感测信号分量。所述第一感测信号SM81包含所述感测信号分量。
请参阅图52,其为绘示于图1中的所述控制系统901的一实施结构9061的示意图。如图52所示,所述实施结构9061包含所述控制装置212、所述功能装置130和所述服务器280。所述控制装置212是一计算装置、一通信装置、一用户装置、一移动装置、一遥控器、一电子装置、一便携设备、一桌上型装置、一相对固定装置、一固定装置、一智能电话和其任意组合的其中之一。所述电子卷标350是一被动式电子卷标、一主动式电子卷标、一半主动式电子卷标、一无线电子卷标和一有线电子卷标的其中之一。例如,所述控制装置212通过在所述传输单元240和所述操作单元397之间的一实际链接而向所述功能装置130传输所述控制信号SC81。所述实际链接是一有线链接和一无线链接的其中之一。
在一些实施例中,所述控制信号SC81是所述电信号SP81和所述光信号SQ81的其中之一。所述传输单元240包含一传输组件450、一传输组件452和一传输组件455。所述传输组件450耦合于所述处理单元230,并在所述控制信号SC81是所述电信号SP81的条件下,用于输出所述电信号SP81。当所述触发事件EQ81发生时,所述显示单元460显示所述状态指示LA81。在所述特定测量值范围码EH14不同于所确定的所述测量值应用范围码EH1L且所述处理单元230藉由做出所述逻辑决定PH81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于所述码差异DA81来导致所述显示单元460将所述状态指示LA81改变成所述状态指示LA82。例如,所述传输组件450、所述传输组件452和所述传输组件455分别是三输出组件。
所述显示单元460耦合于所述处理单元230,并用于显示与所述测量值VM81相关的一测量信息LY81。所述处理单元230从所述控制响应信号SE81获得所输送的所述测量值VN82,并根据所获得的所述测量值VN82来使所述显示单元460显示与所获得的所述测量值VN82相关的所述测量信息LZ82。在所述控制信号SC81是所述光信号SQ81的条件下,所述传输组件452用于输出所述光信号SQ81。所述传输组件455耦合于所述处理单元230。例如,所述处理单元230被配置以导致所述传输组件455向所述功能装置130传输一物理参数信号SB81。所述可变物理参数QU1A基于所述物理参数信号SB81而被形成。例如,所述电信号SP81是一无线电信号。所述光信号SQ81是一红外线信号。
在一些实施例中,所述控制装置212耦合于所述服务器280,并进一步包含耦合于所述感测单元260的一物理参数形成单元290。例如,在所述可变物理参数QP1A要由所述物理参数形成单元290产生的条件下,所述物理参数形成单元290产生所述可变物理参数 QP1A。所述操作单元297进一步包含一输入单元440。所述输入单元440耦合于所述处理单元230,并受所述处理单元230控制。例如,所述输入单元440和所述显示单元460的其中之一包含一使用者接口区AP11。
所述接收单元270耦合于所述处理单元230,用于接收所述控制响应信号SE81,并包含一接收组件2701和一接收组件2702。所述接收组件2701和所述接收组件2702皆耦合于所述处理单元230。所述控制响应信号SE81是一电信号LP81和一光信号LQ81的其中之一。在所述控制响应信号SE81是所述电信号LP81的条件下,所述接收组件2701用于接收所述电信号LP81。例如,所述接收组件2702是一读取器。在所述控制响应信号SE81是所述光信号LQ81的条件下,所述接收组件2702用于接收所述光信号LQ81。
例如,所述电子卷标350、所述存储单元250和所述服务器280的其中之一中包含所述内存单元25Y1。例如,所述电信号LP81是一无线电信号。所述光信号LQ81是一红外线信号。所述接收组件2701和所述接收组件2702分别是二输入组件。例如,在所述控制装置212是所述遥控器的条件下,所述控制信号SC81是所述光信号SQ81。在所述控制装置212是所述遥控器的条件下,所述控制响应信号SE81是所述光信号LQ81。例如,所述触发事件EQ81是所述感测单元260接收一用户输入操作BU83的一使用者输入事件。所述感测单元260响应所述用户输入操作BU83来使所述处理单元230接收所述感测信号SM81。所述处理单元230响应所述感测信号SM81来获得所述测量值VM81。
所述应用环境EX81、所述感测单元260、所述输入单元440、所述显示单元460和所述物理参数形成单元290的其中之一具有所述物理参数形成区AT11。所述处理单元230藉由执行用于所述测量应用功能FB81的一特定功能操作BH82来导致所述物理参数形成区AT11具有所述可变物理参数QP1A,并藉此导致所述感测单元260感测处于所述拘束条件FP81的所述可变物理参数QP1A。所述电子卷标350、所述存储单元250和所述服务器280的其中之一中包含所述内存单元25Y1。所述感测单元260、所述存储单元250、所述输入单元440、所述传输组件450、所述传输组件455、所述显示单元460、所述接收组件2701、所述接收组件2702和所述物理参数形成单元290皆受所述处理单元230控制。例如,所述感测单元260、所述输入单元440和所述显示单元460的其中之一包含所述物理参数形成区AT11。
所述可变物理参数QP1A是一第四可变电性参数、一第四可变力学参数、一第四可变光学参数、一第四可变温度、一第四可变电压、一第四可变电流、一第四可变电功率、一第四可变电阻、一第四可变电容、一第四可变电感、一第四可变频率、一第四时钟时间、一第四可变时间长度、一第四可变亮度、一第四可变光强度、一第四可变音量、一第四可 变数据流量、一第四可变振幅、一第四可变空间位置、一第四可变位移、一第四可变顺序位置、一第四可变角度、一第四可变空间长度、一第四可变距离、一第四可变平移速度、一第四可变角速度、一第四可变加速度、一第四可变力、一第四可变压力和一第四可变机械功率的其中之一。
在一些实施例中,所述物理参数应用范围RC1EL是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述特定物理参数范围RC1E4是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。在所述可变物理参数QP1A是所述第四可变电压的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高电压范围和一相对低电压范围。在所述可变物理参数QP1A是所述第二可变电流的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高电流范围和一相对低电流范围。在所述可变物理参数QP1A是所述第四可变电阻的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高电阻范围和一相对低电阻范围。
在所述可变物理参数QP1A是所述第四可变空间位置的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高位置范围和一相对低位置范围。在所述可变物理参数QP1A是所述第四可变压力的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高压力范围和一相对低压力范围。在所述可变物理参数QP1A是所述第四可变长度的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高长度范围和一相对低长度范围。在所述可变物理参数QP1A是所述第四可变角速度的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高角速度范围和一相对低角速度范围。
例如,所述物理参数应用范围RC1EL是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述物理参数候选范围RC1E2是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。例如,所述物理参数应用范围RC1EL是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述特定物理参数范围RC1E7是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。例如,所述物理参数候选范围RC1E2是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述物理参数候选范围RC1E3是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。
在一些实施例中,在所述可变物理参数QP1A是于所述物理参数应用范围RC1EL之内的条件下,所述可变物理参数QP1A处于一第一参考状态。在所述可变物理参数QP1A是于所述特定物理参数范围RC1E4之内的条件下,所述可变物理参数QP1A处于一第二参考状态。在所述可变物理参数QP1A是于所述物理参数候选范围RC1E2之内的条件下,所述可 变物理参数QP1A处于一第三参考状态。在所述可变物理参数QP1A是于所述特定物理参数范围RC1E7之内的条件下,所述可变物理参数QP1A处于一第四参考状态。所述第一参考状态相同或不同于所述第二参考状态。所述第二参考状态不同于所述第三参考状态。所述第一参考状态不同于所述第四参考状态。
例如,所述测量值应用范围码EH1L是一测量值参考范围号码。所述测量值应用范围RM1L基于所述测量值应用范围码EH1L而被安排于所述额定测量值范围RC1N中。所述测量值候选范围码EH12是一测量值参考范围号码。所述测量值候选范围RM12基于所述测量值候选范围码EH12而被安排于所述额定测量值范围RC1N中。所述测量值指定范围码EL1T是一测量值参考范围号码。所述测量值指定范围RQ1T基于所述测量值指定范围码EL1T而被安排于所述额定测量值范围HR1N中。所述测量值目标范围码EM1T是一测量值参考范围号码。所述测量值目标范围RN1T基于所述测量值目标范围码EM1T而被安排于所述额定测量值范围RD1N中。
例如,所述可变物理参数QP1A是所述第二可变电压。所述物理参数应用范围RC1EL、所述特定物理参数范围RC1E4和所述物理参数候选范围RD1E2分别是一第一电压参考范围、一第二电压参考范围和一第三电压参考范围。例如,在所述可变物理参数QP1A是所述第二可变位移的条件下,所述物理参数应用范围RC1EL、所述特定物理参数范围RC1E4和所述物理参数候选范围RD1E2分别是一第一位移参考范围、一第二位移参考范围和一第三位移参考范围。例如,在所述可变物理参数QP1A是所述第二时钟时间的条件下,所述物理参数应用范围RC1EL、所述特定物理参数范围RC1E4和所述物理参数候选范围RD1E2分别是一第一时钟时间参考范围、一第二时钟时间参考范围和一第三时钟时间参考范围。
例如,所述操作单元297包含耦合于所述处理单元230的一通信接口单元246。所述处理单元230通过所述通信接口单元246而耦合于所述网络410。例如,所述通信接口单元246受所述处理单元230控制,并包含耦合于所述处理单元230的所述传输组件450和耦合于所述处理单元230的所述接收组件2701。所述处理单元230通过所述通信接口单元246和所述网络410而耦合于所述服务器280,并使所述通信接口单元246通过所述网络410而向所述通信接口单元386有线地或无线地传输所述控制信号SC81、所述控制信号SC82、所述控制信号SC83、所述控制信号SC88和所述控制信号SC97的任一信号。例如,所述通信接口单元246通过所述实际链接而被链接到所述通信接口单元386。
在一些实施例中,在所述控制装置212是所述移动装置的条件下,所述控制信号SC81和所述控制响应信号SE81分别是二无线电信号。在所述控制装置212是所述遥控器的条件下,所述控制信号SC81和所述控制响应信号SE81分别是二光信号。所述通信接口单元 246被配置以与所述通信接口单元386有线地或无线地通信。所述处理单元331通过所述通信接口单元386和所述网络410而耦合于所述服务器280,并使所述通信接口单元386通过所述网络410而向所述通信接口单元246有线地或无线地传输所述控制响应信号SE81。
例如,所述实际链接是一有线链接和一无线链接的其中之一。所述通信接口单元246是一有线通信接口单元和一无线通信接口单元的其中之一。所述通信接口单元386从所述通信接口单元246通过所述实际链接而有线地或无线地接收所述控制信号SC81、所述控制信号SC82、所述控制信号SC83、所述控制信号SC88和所述控制信号SC97的任一信号。所述通信接口单元246从所述通信接口单元386通过所述实际链接而有线地或无线地接收所述控制响应信号SE81。
在所述通信接口单元246和所述通信接口单元386分别是二无线通信接口单元的条件下,所述通信接口单元246被配置以无线地与所述通信接口单元386通信。例如,所述网络410是一无线网络。所述处理单元230使所述通信接口单元246通过所述无线网络而向所述通信接口单元386传输所述控制信号SC81、所述控制信号SC82、所述控制信号SC83、所述控制信号SC88和所述控制信号SC97的任一信号。所述处理单元331使所述通信接口单元386通过所述无线网络而向所述通信接口单元246传输所述控制响应信号SE81。
请参阅图53、图54和图55。图53为绘示于图1中的所述控制系统901的一实施结构9062的示意图。图54为绘示于图1中的所述控制系统901的一实施结构9063的示意图。图55为绘示于图1中的所述控制系统901的一实施结构9064的示意图。如图53、图54和图55所示,所述实施结构9062、所述实施结构9063和所述实施结构9064的每一结构包含所述控制装置212、所述功能装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于控制存在于所述功能装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、耦合于所述处理单元230的所述接收单元270、耦合于所述处理单元230的所述输入单元440和所述传输单元240,并耦合于所述服务器280。
在一些实施例中,所述测量应用功能FB81相关于所述内存单元25Y1。所述内存单元25Y1存储所述控制数据码CK8T。所述控制数据码CK8T是一控制信息码CM82、一控制信息码CM83、一控制信息码CM84和一控制信息码CM85的其中之一。所述控制信息CG81是一控制数据信息CN82、一控制数据信息CN83、一控制数据信息CN84和一控制数据信息CN85的其中之一。
在所述控制数据码CK8T是所述控制信息码CM82的条件下,所述控制信号SC81是输 送所述控制数据信息CN82的一指令信号SW82。所述控制信息码CM82和所述控制数据信息CN82皆包含所述测量值目标范围码EM1T。所述控制信号SC81藉由输送所述测量值目标范围码EM1T来起到指示所述测量值目标范围RN1T的作用,并用于导致所述可变物理参数QU1A进入由所述测量值目标范围RN1T所代表的所述物理参数目标范围RD1ET。
在所述控制数据码CK8T是所述控制信息码CM83的条件下,所述控制信号SC81是输送所述控制数据信息CN83的一指令信号SW83。所述控制信息码CM83和所述控制数据信息CN83皆包含所述目标范围界限值对DN1T、所述额定范围界限值对DD1A和所述句柄CC1T。例如,所述控制信息码CM83和所述控制数据信息CN83皆进一步包含所述测量值目标范围码EM1T。所述控制信号SC81藉由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T的作用,并用于导致所述可变物理参数QU1A进入由所述测量值目标范围RN1T所代表的所述物理参数目标范围RD1ET。
在一些实施例中,在所述控制数据码CK8T是所述控制信息码CM84的条件下,所述控制信号SC81是输送所述控制数据信息CN84的一指令信号SW84。所述控制信息码CM84和所述控制数据信息CN84皆包含所述指定范围界限值对DQ1T。所述控制信号SC81藉由输送所述指定范围界限值对DQ1T来起到指示所述测量值指定范围RQ1T和所述时钟时间指定区间HR1ET的至少其中之一的作用。
所述功能装置130存储所述物理参数目标范围码UQ1T。在所述控制数据码CK8T是所述控制信息码CM85的条件下,所述控制信号SC81是输送所述控制数据信息CN85的一指令信号SW85。所述控制信息码CM85和所述控制数据信息CN85皆包含所述测量值指定范围码EL1T、所述时钟参考时间值NR81和所述测量时间长度值VH8T。所述指定范围界限值对DQ1T包含所述时钟参考时间值NR81。所述测量值指定范围码EL1T被预设。所述控制信号SC81藉由输送所述测量时间长度值VH8T来使能计算所述指定范围界限值对DQ1T,并用于导致所述可变物理参数QP1A在所述时钟时间应用区间HR1EU之内处于所述物理参数目标范围RD1EU。
在所述物理参数目标范围码UQ1T等于所预设的所述测量值目标范围码EM1T的条件下,所述控制信号SC81藉由输送所预设的所述测量值指定范围码EL1T来起到指示所述测量值目标范围RN1T的作用,并用于导致所述可变物理参数QU1A在所述时钟时间指定区间HR1ET之内处于由所述测量值目标范围RN1T所代表的所述物理参数目标范围RD1ET。
在一些实施例中,所述操作单元397包含所述定时器342。所述定时器342用于测量所述时钟时间TH1A,并被配置以符合所述定时器规格FT21。所述可变物理参数QU1A相关于所述时钟时间TH1A。所述时钟时间TH1A基于一时钟参考时间TR81而被特征化。例如, 所述时钟参考时间TR81等于所述开始界限时间HR1ET1。所述触发事件EQ81在一触发时间TT81发生。所述触发时间TT81是一目前时间。所述时钟参考时间值NR81基于所述时钟参考时间TR81和所述定时器规格FT21来以所述指定测量值格式HH95而被预设。所述时钟参考时间TR81与所述触发时间TT81的一时间差异在一预设时间长度内。所述定时器规格FT81和所述定时器规格FT21皆被默认。例如,所述指定测量值格式HH95基于所述指定比特数目UY95而被特征化。
所述时钟时间TH1A基于所述时钟时间指定区间HR1ET而被特征化。所述时钟时间指定区间HR1ET包含所述时钟参考时间TR81,并由所述测量值指定范围RQ1T所代表。所述测量值指定范围RQ1T基于所述定时器规格FT21来用所述指定测量值格式HH95而被预设。所述测量值指定范围码EL1T被配置以指示所述时钟时间指定区间HR1ET,并基于所述测量应用功能规格GBL8而被默认。所述物理参数目标范围码UQ1T代表所述可变物理参数QU1A被期望在所述时钟时间指定区间HR1ET内处于的所述物理参数目标范围RD1ET。所述物理参数目标范围RD1ET选择自所述多个不同物理参数参考范围RD1E1、RD1E2、…。
在一些实施例中,在所述可变物理参数QP1A相同于所述时钟时间TH1A的条件下,所述感测单元260感测所述时钟时间TH1A以产生所述感测信号SM81,并作为一定时器。例如,在所述可变物理参数QP1A相同于所述时钟时间TH1A的条件下,所述测量值应用范围码EH1L相同于所述测量值指定范围码EL1T。所述处理单元230响应所述触发事件EQ81来执行所述数据确定AE8A以确定相同于所述测量值指定范围码EL1T的所述测量值应用范围码EH1L。
例如,在所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230执行使用所确定的所述测量值应用范围码EH1L的所述数据获取AG8A以获得相同于所述控制数据码CK8T的所述控制应用码UA8T。在所获得的所述控制数据码CK8T包含所预设的所述时钟参考时间值NR81、所预设的所述测量时间长度值VH8T和所预设的所述测量值指定范围码EL1T的条件下,所述处理单元230基于所获得的所述控制数据码CK8T来导致所述传输单元240执行所述信号产生操作BS81以产生输送所获得的所述时钟参考时间值NR81、所获得的所述测量时间长度值VH8T和所获得的所述测量值指定范围码EL1T的所述控制信号SC81。
例如,所述物理参数控制功能规格GBL8包含一时钟时间表示GB8TR。所述时钟时间表示GB8TR用于表示所述时钟参考时间TR81。所述时钟参考时间值NR81基于所述时钟时间表示GB8TR、所述定时器规格FT21和用于转换所述时钟时间表示GB8TR的一数据编码操作ZR8TR来用所述指定测量值格式HH95而被预设。例如,所述时钟时间表示GB8TR相同于所 述时钟时间表示GA8TR。
在一些实施例中,所述内存单元25Y1存储一控制数据码CK8V。所述控制数据码CK8V包含所述定时操作模式码CP11、所述物理参数目标范围码UN1V、所述测量时间长度值CL8V和所述句柄CC1V。在所述可变物理参数QU1A基于所述控制信号SC81而于所述时钟时间应用区间HR1EU之内处于所述物理参数目标范围RD1EU的条件下,所述处理单元230响应一触发事件EQ88来接入所述控制数据码CK8V以获得所述控制数据码CK8V,并基于所接入的所述控制数据码CK8V来使所述传输单元240向所述接收单元337传输所述控制信号SC88。所述控制信号SC88输送所述控制信息CG88。
例如,所述操作单元297包含耦合于所述处理单元230的一触发应用单元288。所述触发事件EQ88相关于所述触发应用单元288,并是一触发作用事件、一用户输入事件、一信号输入事件、一状态改变事件和一标识媒介出现事件的其中之一。所述触发应用单元288响应所述触发事件EQ88来提供一操作请求信号SX88到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SX88。所述处理单元230响应所述操作请求信号SX88来接入所述控制数据码CK8V以获得所述控制数据码CK8V。例如,所述触发应用单元288是所述读取器220、所述接收单元270、所述输入单元440、所述显示单元460和所述感测单元260的其中之一。例如,与所述触发事件EQ8H相关的所述触发应用单元28H是所述读取器220、所述接收单元270、所述输入单元440、所述显示单元460和所述感测单元260的其中之一。
例如,所述触发应用单元288包含具有所述电应用目标WJ11的所述使用者接口区AP11,接收使用所述电应用目标WJ11的一第一使用者输入操作来导致所述触发事件EQ88发生,并响应所述第一使用者输入操作(或所述触发事件EQ88)来提供所述操作请求信号SX88到所述处理单元230。例如,所述触发应用单元28H包含具有所述电应用目标WJ11的所述使用者接口区AP11,接收使用所述电应用目标WJ11的一第二使用者输入操作来导致所述触发事件EQ8H发生,并响应所述第二使用者输入操作(或所述触发事件EQ8H)来提供所述操作请求信号SX8H到所述处理单元230。
例如,所述操作单元397包含所述定时器342。所述定时器342用于测量所述可变时间长度LF8A,并被配置以符合所述定时器规格FT21。所述控制数据码CK8V和所述控制信息CG88皆包含所述测量时间长度值CL8V。所述处理单元230基于所述参考时间长度LJ8V和所述定时器规格FT21来以一指定测量值格式HH91设定所述时间长度值CL8V,并基于所获得的所述控制数据码CK8V来导致所述传输单元240执行一信号产生操作BS88以产生输送所述测量时间长度值CL8V的所述控制信号SC88。例如,所述指定测量值格式HH91基于 一指定比特数目UY91而被特征化。
所述测量应用功能规格GBL8包含一时间长度表示GB8KV。所述时间长度表示GB8KV用于表示所述参考时间长度LJ8V。例如,所述测量时间长度值CL8V基于所述时间长度表示GB8KV、所述定时器规格FT21和用于转换所述时间长度表示GB8KV的一数据编码操作ZR8KV来用所述指定测量值格式HH91而被预设。所述存储单元250存储包含所述时间长度值CL8V的所述控制数据码CK8V。所述处理单元230被配置以从所述存储单元250获得所述控制数据码CK8V。例如,所述时间长度表示GB8KV相同于所述时间长度表示GA8KV。
在一些实施例中,所述功能装置130包含耦合于所述操作单元397的所述存储单元332。所述存储单元332具有一内存位置YM8T和不同于所述内存位置YM8T的一内存位置YX8T。例如,所述内存位置YM8T基于一内存地址AM8T而被标识。所述内存位置YX8T基于一内存地址AX8T而被标识。所述内存地址AM8T和所述内存地址AX8T皆基于所预设的所述测量值目标范围码EM1T而被预设。
在所述触发事件EQ81发生之前,所述处理单元230依靠所述用户接口区AP11来从所述输入单元440获得一输入数据DJ81,对于所述输入数据DJ81执行一数据编码操作EJ81以确定所默认的所述目标范围界限值对DN1T,被配置以获得所默认的所述测量值目标范围码EM1T,并基于所获得的所述测量值目标范围码EM1T来取得所述内存地址AM8T。例如,在所述触发事件EQ81发生之前,所述输入单元440接收用于操作所述使用者接口区AP11的一使用者输入操作JV81,并响应所述使用者输入操作JV81来提供所述输入数据DJ81到所述处理单元230。
在所述触发事件EQ81发生之前,所述处理单元230基于所确定的所述目标范围界限值对DN1T和所取得的所述内存地址AM8T来导致所述传输单元240提供一写入请求信息WN8T到所述操作单元397。所述写入请求信息WN8T包含所确定的所述目标范围界限值对DN1T和所取得的所述内存地址AM8T。所述操作单元397响应所述写入请求信息WN8T来导致所述存储单元332在所述内存位置YM8T存储所述目标范围界限值对DN1T。
在一些实施例中,在所述触发事件EQ81发生之前,所述处理单元230依靠所述用户接口区AP11来从所述输入单元440获得一输入数据DJ82,对于所述输入数据DJ82执行一数据编码操作EJ82以确定所预设的所述句柄CC1T,并基于所获得的所述测量值目标范围码EM1T来取得所述内存地址AX8T。例如,在所述触发事件EQ81发生之前,所述输入单元440接收用于操作所述使用者接口区AP11的一使用者输入操作JV82,并响应所述使用者输入操作JV82来提供所述输入数据DJ82到所述处理单元230。
在所述触发事件EQ81发生之前,所述处理单元230基于所确定的所述句柄CC1T和所 取得的所述内存地址AX8T来导致所述传输单元240提供所述写入请求信息WC8T到所述操作单元397。所述写入请求信息WC8T包含所确定的所述句柄CC1T和所取得的所述内存地址AX8T。所述操作单元397响应所述写入请求信息WC8T来导致所述存储单元332在所述内存位置YX8T存储所述句柄CC1T。
所述存储单元332进一步具有一内存位置YN81。例如,所述内存位置YN81基于一内存地址AN81而被标识。所述内存地址AN81被默认。在所述触发事件EQ81发生之前,所述处理单元230依靠所述用户接口区AP11来从所述输入单元440获得一输入数据DJ83,对于所述输入数据DJ83执行一数据编码操作EJ83以确定所预设的所述额定范围界限值对DD1A,并被配置以取得所默认的所述内存地址AN81。例如,在所述触发事件EQ81发生之前,所述输入单元440接收用于操作所述使用者接口区AP11的一使用者输入操作JV83,并响应所述使用者输入操作JV83来提供所述输入数据DJ83到所述处理单元230。
在所述触发事件EQ81发生之前,所述处理单元230基于所确定的所述额定范围界限值对DD1A和所取得的所述内存地址AN81来导致所述传输单元240提供所述写入请求信息WD81到所述操作单元397。所述写入请求信息WD81包含所确定的所述额定范围界限值对DD1A和所取得的所述内存地址AN81。所述操作单元397响应所述写入请求信息WD81来导致所述存储单元332在所述内存位置YN81存储所述额定范围界限值对DD1A。
请参阅图56、图57、图58和图59。图56为绘示于图1中的所述控制系统901的一实施结构9065的示意图。图57为绘示于图1中的所述控制系统901的一实施结构9066的示意图。图58为绘示于图1中的所述控制系统901的一实施结构9067的示意图。图59为绘示于图1中的所述控制系统901的一实施结构9068的示意图。如图56、图57、图58和图59所示,所述实施结构9065、所述实施结构9066、所述实施结构9067和所述实施结构9068的每一结构包含所述控制装置212、所述功能装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于依靠所述触发事件EQ81而控制存在于所述功能装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述接收单元270、所述输入单元440和所述传输单元240。所述处理单元230耦合于所述服务器280。
在一些实施例中,所述功能装置130包含所述操作单元397、所述物理参数应用单元335、所述感测单元334、一物理参数应用单元735和一复用器363。所述操作单元397具有一输出端338P和一输出端338Q。所述输出端338P和所述输出端338Q分别位于不同空间位置。所述物理参数应用单元335、所述感测单元334、所述物理参数应用单元735和所述复用器363皆耦合于所述操作单元397。所述输出端338P耦合于所述物理参数应用单 元335。所述物理参数应用单元735包含一物理参数形成区AU21,并耦合于所述输出端338Q。所述物理参数形成区AU21具有一可变物理参数QU2A。例如,所述物理参数应用单元735是一物理可实现功能单元,并具有相似于所述物理参数应用单元335的一功能结构。
所述感测单元334用于通过所述复用器363而感测多个实际物理参数的其中之一。所述多个实际物理参数包含所述可变物理参数QU1A和所述可变物理参数QU2A。所述控制装置212用于控制所述可变物理参数QU2A。所述复用器363具有一输入端3631、一输入端3632、一控制端363C和一输出端363P。
所述控制端363C耦合于所述操作单元397。所述输入端3631耦合于所述物理参数形成区AU11。所述输入端3632耦合于所述物理参数形成区AU21。所述输出端363P耦合于所述感测单元334。例如,所述可变物理参数QU1A和所述可变物理参数QU2A分别是一第五可变电性参数和一第六可变电性参数。例如,所述第五可变电性参数和所述第六可变电性参数分别是一第五可变电压和一第六可变电压。所述输入端3631和所述输出端363P之间具有一第一功能关系。所述第一功能关系等于一第一导通关系和一第一关断关系的其中之一。
所述输入端3632和所述输出端363P之间具有一第二功能关系。所述第二功能关系等于一第二导通关系和一第二关断关系的其中之一。在所述第一功能关系等于所述第一导通关系的条件下,所述感测单元334用于通过所述输出端363P和所述输入端3631来感测所述可变物理参数QU1A,并通过所述输出端363P和所述输入端3631而耦合于所述物理参数形成区AU11。在所述第二功能关系等于所述第二导通关系的条件下,所述感测单元334用于通过所述输出端363P和所述输入端3632来感测所述可变物理参数QU2A,并通过所述输出端363P和所述输入端3632而耦合于所述物理参数形成区AU21。例如,所述复用器363受所述操作单元397控制,并是一模拟复用器。
在一些实施例中,所述控制装置212和所述应用环境EX81的其中之一具有一物理参数形成区AT21。所述物理参数形成区AT21具有一可变物理参数QP2A。所述控制装置212进一步包含耦合于所述处理单元230的一复用器263。所述复用器263具有一输入端2631、一输入端2632、一控制端263C和一输出端263P。所述控制端263C耦合于所述处理单元230。
所述输入端2631耦合于所述物理参数形成区AT11。所述输入端2632耦合于所述物理参数形成区AT21。所述输出端263P耦合于所述感测单元260。例如,所述可变物理参数QP1A和所述可变物理参数QP2A分别是一第七可变电性参数和一第八可变电性参数。例如,所述第七可变电性参数和所述第八可变电性参数分别是一第七可变电压和一第八可变电 压。所述输入端2631和所述输出端263P之间具有一第三功能关系。所述第三功能关系等于一第三导通关系和一第三关断关系的其中之一。
所述输入端2632和所述输出端263P之间具有一第四功能关系。所述第四功能关系等于一第四导通关系和一第四关断关系的其中之一。在所述第三功能关系等于所述第三导通关系的条件下,所述感测单元260用于通过所述输出端263P和所述输入端2631来感测所述可变物理参数QP1A,并通过所述输出端263P和所述输入端2631而耦合于所述物理参数形成区AT11。
在所述第四功能关系等于所述第四导通关系的条件下,所述感测单元260用于通过所述输出端263P和所述输入端2632来感测所述可变物理参数QP2A,并通过所述输出端263P和所述输入端2632而耦合于所述物理参数形成区AT21。例如,所述复用器263受所述处理单元230控制,并是一模拟复用器。例如,所述感测单元260在一操作时间TB81通过所述复用器263来感测所述可变物理参数QP1A,并在与所述操作时间TB81不同的一操作时间TB82通过所述复用器263来感测所述可变物理参数QP2A。
在一些实施例中,所述物理参数应用单元335由一应用单元标识符HA2T所标识。所述物理参数应用单元735由一应用单元标识符HA22所标识。所述物理参数应用单元335和所述物理参数应用单元735分别位于不同空间位置,并皆耦合于所述操作单元397。所述应用单元标识符HA2T和所述应用单元标识符HA22皆基于所述测量应用功能规格GBL8而被默认。为了控制所述物理参数应用单元335,所述控制信号SC81进一步输送所述应用单元标识符HA2T。所述操作单元397从所述控制装置212接收所述控制信号SC81。所述操作单元397响应所述控制信号SC81来选择所述物理参数应用单元335以进行控制。例如,所述应用单元标识符HA2T被配置以指示所述输出端338P,并是一第一功能单元号码。所述应用单元标识符HA22被配置以指示所述输出端338Q,并是一第二功能单元号码。
所述控制装置212进一步包含耦合于所述处理单元230的一电使用目标285、和耦合于所述处理单元230的一电使用目标286。所述电使用目标285由一电使用目标标识符HZ2T所标识,并是一电使用单元。所述电使用目标286由一电使用目标标识符HZ22所标识,并是一电使用单元。所述电使用目标标识符HZ2T和所述电使用目标标识符HZ22皆基于所述测量应用功能规格GBL8而被默认。在所述触发事件EQ81依靠所述电使用目标285而发生的条件下,所述处理单元230响应所述触发事件EQ81来选择所述物理参数应用单元335以进行控制。在所述触发事件EQ81依靠所述电使用目标286而发生的条件下,所述处理单元230响应所述触发事件EQ81来选择所述物理参数应用单元735以进行控制。
在一些实施例中,所述存储单元250具有一内存位置XC9T和一内存位置XC92,在所 述内存位置XC9T存储所述应用单元标识符HA2T,并在所述内存位置XC92存储所述应用单元标识符HA22。所述内存位置XC9T由一内存地址EC9T所标识,或基于所述内存地址EC9T而被标识。所述内存地址EC9T基于所述电使用目标标识符HZ2T而被预设;藉此,所述电使用目标285相关于所述应用单元标识符HA2T。例如,所述电使用目标标识符HZ2T和所述应用单元标识符HA2T之间具有一数学关系KK91;藉此,所述电使用目标285相关于所述应用单元标识符HA2T。
所述内存位置XC92由一内存地址EC92所标识,或基于所述内存地址EC92而被标识。所述内存地址EC92基于所述电使用目标标识符HZ22而被预设;藉此,所述电使用目标286相关于所述应用单元标识符HA22。例如,所述电使用目标标识符HZ22和所述应用单元标识符HA22之间具有一数学关系KK92;藉此,所述电使用目标286相关于所述应用单元标识符HA22。
在一些实施例中,所述触发事件EQ81依靠所述电使用目标285而发生,并导致所述处理单元230接收一操作请求信号SZ91。在所述触发事件EQ81依靠所述电使用目标285而发生的条件下,所述处理单元230响应所述操作请求信号SZ91来获得所述测量值VM81和所述电使用目标标识符HZ2T,并基于所获得的所述电使用目标标识符HZ2T来获得所述应用单元标识符HA2T。所述处理单元230基于所获得的所述应用单元标识符HA2T来导致所述传输单元240向所述操作单元397传输所述控制信号SC81、所述控制信号SC82和所述控制信号SC83的至少其中之一。
例如,所述触发事件EQ81是所述输入单元440接收一用户输入操作JU91的一使用者输入事件。所述输入单元440响应是所述使用者输入事件的所述触发事件EQ81来提供所述操作请求信号SZ91到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SZ91。在所述触发事件EQ81依靠所述电使用目标285而发生的条件下,所述输入单元440依靠所述电使用目标285来提供所述操作请求信号SZ91到所述处理单元230。所述处理单元230响应所述操作请求信号SZ91来提供一控制信号SV81到所述控制端263C。例如,所述控制信号SV81是一选择控制信号,并起到指示所述输入端2631的作用。所述复用器263响应所述控制信号SV81来导致所述输入端2631和所述输出端263P之间的所述第三功能关系等于所述第三导通关系。
在所述第三功能关系等于所述第三导通关系的条件下,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。所述处理单元230从所述感测单元260接收所述感测信号SM81,并基于所接收的所述感测信号SM81来以所述指定测量值格式HQ81获得所述测量值VM81。例如,所述电使用目标285和所述电使用目标286被配置以分别对 应于所述物理参数应用单元335和所述物理参数应用单元735,皆耦合于所述处理单元230,并分别位于不同空间位置。
在一些实施例中,所述输入单元440接收用于选择所述电使用目标285的所述用户输入操作JU91以导致所述触发事件EQ81发生。所述输入单元440响应所述用户输入操作JU91来产生所述操作请求信号SZ91。所述处理单元230接收所述操作请求信号SZ91,响应所述操作请求信号SZ91来使用所述感测信号SM81以获得所述测量值VM81,并响应所述操作请求信号SZ91来执行一数据获取AF9C以获得所述电使用目标标识符HZ2T。例如,所述存储单元250包含所述存储空间SS11。所述存储空间SS11具有所预设的所述额定范围界限值对DC1A、所述可变物理参数范围码UM8A、所述电使用目标标识符HZ2T、所述电使用目标标识符HZ22和所述应用单元标识符HA2T。
在一些实施例中,所述处理单元230被配置以基于所获得的所述电使用目标标识符HZ2T来获得所述内存地址EC9T,并基于所获得的所述内存地址EC9T来接入被存储在所述内存位置XC9T的所述应用单元标识符HA2T以获得所述应用单元标识符HA2T。在所述处理单元230藉由检查所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于所获得的所述应用单元标识符HA2T和所接入的所述控制数据码CK8T来执行所述信号产生控制GS81以导致所述传输单元240产生所述控制信号SC81,并导致所述传输单元240向所述操作单元397传输所述控制信号SC81。
例如,所述控制信号SC81输送所述应用单元标识符HA2T。例如,所述控制信号SC81输送所述应用单元标识符HA2T和所述测量值目标范围码EM1T。所述操作单元397响应所述控制信号SC81来从所述控制信号SC81获得所述测量值目标范围码EM1T和所述应用单元标识符HA2T。在一第三特定情况中,所述操作单元397基于所获得的所述测量值目标范围码EM1T和所获得的所述应用单元标识符HA2T来执行使用所述输出端338P的所述信号产生操作BY81以向所述物理参数应用单元335传输一操作信号SG81。所述物理参数应用单元335响应所述操作信号SG81来导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET。
在一些实施例中,在所述控制信号SC81输送所述应用单元标识符HA2T和所述测量值目标范围码EM1T的条件下,所述操作单元397响应所述控制信号SC81来从所述控制信号SC81获得所述应用单元标识符HA2T和所述测量值目标范围码EM1T,并基于所获得的所述应用单元标识符HA2T来提供一控制信号SD81到所述控制端363C。例如,所述控制信号SD81是一选择控制信号,并起到指示所述输入端3631的作用。所述复用器363响应所述 控制信号SD81来导致所述输入端3631和所述输出端363P之间的所述第一功能关系等于所述第一导通关系。在所述第一功能关系等于所述第一导通关系的条件下,所述感测单元334感测所述可变物理参数QU1A以产生一感测信号SN81。
所述操作单元397从所述感测单元334接收所述感测信号SN81,并基于所接收的所述感测信号SN81来获得一测量值VN81。在所述第三特定情况中,所述操作单元397基于所获得的所述测量值VN81、所获得的所述测量值目标范围码EM1T和所获得的所述应用单元标识符HA2T来执行使用所述输出端338P的所述信号产生操作BY81以向所述物理参数应用单元335传输所述操作信号SG81。
在一些实施例中,所述存储空间SS11进一步具有一内存位置PF9T。所述存储单元250在所述内存位置PF9T存储所预设的所述电使用目标标识符HZ2T。所述内存位置PF9T由一内存地址FF9T所标识,或基于所述内存地址FF9T而被标识。所述内存地址FF9T被默认。所述电使用目标285通过所述处理单元230而耦合于所述内存位置PF9T。例如,所述操作请求信号SZ91输送一输入数据DJ91。
所述数据获取AF9C是一数据获取操作AF95和一数据获取操作AF96的其中之一。所述数据获取操作AF95藉由使用所默认的所述内存地址PF2T来接入被存储在所述内存位置PF9T的所述电使用目标标识符HZ2T以获得所预设的所述电使用目标标识符HZ2T。所述数据获取操作AF96基于一默认数据导出规则YU91来处理所述输入数据DJ91以获得所预设的所述电使用目标标识符HZ2T。
在一些实施例中,在所述输入单元440接收用于选择所述电使用目标286的一用户输入操作JU92的一触发事件发生的条件下,所述输入单元440导致所述处理单元230接收一操作请求信号SZ92。所述处理单元230响应所述操作请求信号SZ92来获得一测量值VM91和所述电使用目标标识符HZ22,并基于所获得的所述电使用目标标识符HZ22来获得所述应用单元标识符HA22。所述处理单元230基于所获得的所述测量值VM91和所获得的所述应用单元标识符HA22来导致所述传输单元240向所述操作单元397传输一控制信号SC97。所述控制信号SC97用于控制所述可变物理参数QU2A,并输送所述应用单元标识符HA22。
例如,所述输入单元440响应用于选择所述电使用目标286的所述用户输入操作JU92来提供所述操作请求信号SZ92到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SZ92。所述处理单元230响应所述操作请求信号SZ92来提供一控制信号SV82到所述控制端263C。例如,所述控制信号SV82是一选择控制信号,起到指示所述输入端2632的作用,并不同于所述控制信号SV81。所述复用器263响应所述控制信号SV82来导致所述输入端2632和所述输出端263P之间的所述第四功能关系等于所述第四导通关系。 在所述第四功能关系等于所述第四导通关系的条件下,所述感测单元260感测所述可变物理参数QP2A以产生一感测信号SM91。所述处理单元230从所述感测单元260接收所述感测信号SM91,并基于所接收的所述感测信号SM91来获得所述测量值VM91。
在一些实施例中,所述操作单元397响应所述控制信号SC97来从所述控制信号SC97获得所述应用单元标识符HA22,并基于所获得的所述应用单元标识符HA22来提供一控制信号SD82到所述控制端363C。例如,所述控制信号SD82是一选择控制信号,并起到指示所述输入端3632的作用。所述复用器363响应所述控制信号SD82来导致所述输入端3632和所述输出端363P之间的所述第二功能关系等于所述第二导通关系。在所述第二功能关系等于所述第二导通关系的条件下,所述感测单元334感测所述可变物理参数QU2A以产生一感测信号SN91。
所述操作单元397从所述感测单元334接收所述感测信号SN91,并基于所接收的所述感测信号SN91来获得一测量值VN91。所述操作单元397基于所获得的所述测量值VN91和所获得的所述应用单元标识符HA22来执行使用所述输出端338Q的一信号产生操作BY97以向所述物理参数应用单元735传输一操作信号SG97。所述操作信号SG97用于控制所述可变物理参数QU2A。
例如,所述使用者输入操作JU81是所述使用者输入操作JU91和所述使用者输入操作JU92的其中之一。所述触发事件EQ81是所述输入单元440接收用于选择所述电使用目标286的所述用户输入操作JU92的一使用者输入事件。在所述输入单元440接收使用所述电使用目标285的所述用户输入操作JU91的条件下,所述处理单元230响应所述用户输入操作JU91来使所述传输单元240向所述操作单元397传输所述控制信号SC81。在所述输入单元440接收使用所述电使用目标286的所述用户输入操作JU92的条件下,所述处理单元230响应所述用户输入操作JU92来使所述传输单元240向所述操作单元397传输所述控制信号SC97。
在一些实施例中,所述使用者接口区AP11具有所述电使用目标285和所述电使用目标286。所述使用者输入操作JU91由所述使用者295所执行。所述电使用目标285是一第三感测目标和一第三显示目标的其中之一。在所述电使用目标285是所述第三感测目标的条件下,所述输入单元440包含所述电使用目标285。在所述电使用目标285是所述第三显示目标的条件下,所述显示单元460包含所述电使用目标285。例如,所述第三感测目标是一第三按钮目标。所述第三显示目标是一第三图符目标。
所述电使用目标286是一第四感测目标和一第四显示目标的其中之一。在所述电使用目标286是所述第四感测目标的条件下,所述输入单元440包含所述电使用目标286。在 所述电使用目标286是所述第四显示目标的条件下,所述显示单元460包含所述电使用目标286。例如,所述第四感测目标是一第四按钮目标。所述第三显示目标是一第四图符目标。所述操作单元297进一步包含一指向装置441。例如,所述输入单元440包含所述指向装置441。例如,所述输入单元440是所述指向装置441。
例如,在所述电使用目标285被配置以存在于所述输入单元440的条件下,所述电使用目标285接收所述用户输入操作JU91来导致所述输入单元440提供所述操作请求信号SZ91到所述处理单元230。在所述电使用目标285被配置以存在于所述显示单元460的条件下,所述指向装置441接收用于选择所述电使用目标285的所述用户输入操作JU91来导致所述指向装置441提供所述操作请求信号SZ91到所述处理单元230。例如,所述用户输入操作JU91被配置以依靠所述指向装置441和所述选择工具YJ81来选择所述电使用目标285。例如,所述选择工具YJ81是一光标。
在一些实施例中,所预设的所述额定范围界限值对DC1A和所述可变物理参数范围码UM8A皆进一步基于所默认的所述应用单元标识符HA2T而被存储在所述存储空间SS11中。所述处理单元230进一步基于所述应用单元标识符HA2T来使用所述存储单元250以接入所预设的所述额定范围界限值对DC1A和所述可变物理参数范围码UM8A的其中任一。
所预设的所述应用范围界限值对DM1L、所默认的所述控制数据码CK8T和所预设的所述候选范围界限值对DM1B皆进一步基于所默认的所述应用单元标识符HA2T而被存储在所述存储空间SS11中。所述处理单元230进一步基于所述应用单元标识符HA2T来使用所述内存单元25Y1以接入所预设的所述应用范围界限值对DM1L、所默认的所述控制数据码CK8T和所预设的所述候选范围界限值对DM1B的其中任一。
所预设的所述应用范围界限值对DM1L和所预设的所述候选范围界限值对DM1B皆被配置以属于一测量范围界限数据码类型TM81。所述测量范围界限数据码类型TM81由一测量范围界限数据码类型标识符HM81所标识。所述测量范围界限数据码类型标识符HM81被预设。所默认的所述控制数据码CK8T被配置以属于一控制数据码类型TK81。所述控制数据码类型TK81由一控制数据码类型标识符HK81所标识。所述控制数据码类型标识符HK81被预设。
例如,所述内存地址FM8L基于所默认的所述应用单元标识符HA2T、所预设的所述测量值应用范围码EH1L和所预设的所述测量范围界限数据码类型标识符HM81而被预设。所述处理单元230响应所述触发事件EQ81来获得所述应用单元标识符HA2T。所述数据获取操作AF81基于所获得的所述应用单元标识符HA2T、所确定的所述测量值应用范围码EH1L和所获得的所述测量范围界限数据码类型标识符HM81来获得所述内存地址FM8L,并基于 所获得的所述内存地址FM8L来使用所述内存单元25Y1以接入被存储在所述内存位置PM8L的所预设的所述应用范围界限值对DM1L。
例如,所述内存地址FV8L基于所默认的所述应用单元标识符HA2T、所预设的所述测量值应用范围码EH1L和所默认的所述控制数据码类型标识符HK81而被预设。在所述处理单元230确定所述可变物理参数QP1A目前于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于所获得的所述应用单元标识符HA2T、所确定的所述测量值应用范围码EH1L和所获得的所述控制数据码类型标识符HK81来获得所述内存地址FV8L,并基于所获得的所述内存地址FV8L来使用所述内存单元25Y1以接入被存储在所述内存位置PV8L的所述控制数据码CK8T。
请参阅图60。图60为绘示于图1中的所述控制系统901的一实施结构9069的示意图。如图60所示,所述实施结构9069包含所述控制装置212、所述功能装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于依靠所述触发事件EQ81而控制存在于所述功能装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述接收单元270、所述输入单元440和所述传输单元240。所述处理单元230耦合于所述服务器280。
在一些实施例中,所述操作单元297包含耦合于所述处理单元230的一定时器545、耦合于所述处理单元230的一电应用目标WJ11、和耦合于所述处理单元230的一定时器546。所述定时器545用于测量所述时钟时间TH1A,并被配置以符合一定时器规格FW22。所述定时器545受所述处理单元230控制而感测所述时钟时间TH1A以产生一感测信号SK91。例如,所述感测信号SK91是一时钟时间信号。例如,所述使用者接口区AP11具有所述电应用目标WJ11。所述电应用目标WJ11是一第五按钮目标和一第五图符目标的其中之一。所述电应用目标WJ11是一电应用单元。
在所述感测单元260被配置以相同于所述定时器545的条件下,所述感测信号SM81被配置以相同于所述感测信号SK91,所述传感器规格FQ11被配置以相同于所述定时器规格FW22,且所述可变物理参数QP1A被配置以相同于所述时钟时间TH1A。所述内存单元25Y1存储相同于所述控制信息码CM85的所述控制数据码CK8T。例如,在所述可变物理参数QP1A被配置以相同于所述时钟时间TH1A的条件下,所述测量值应用范围码EH1L相同于所述测量值指定范围码EL1T。所述定时器规格FW22被默认。
所述触发事件EQ81是所述输入单元440接收所述用户输入操作JU81的所述使用者输入事件。所述使用者输入操作JU81用于选择所述电应用目标WJ11。所述输入单元440响应所述触发事件EQ81来提供所述操作请求信号SZ81到所述处理单元230,并藉此使所述 处理单元230接收所述操作请求信号SZ81。在所述使用者输入事件发生的条件下,所述处理单元230响应所述操作请求信号SZ81来使用所述感测信号SK91以获得所述测量值VM81。例如,是所述时钟时间信号的所述感测信号SK91以一指定测量值格式HQ92输送一测量值NP91。例如,所述测量值NP91是一特定计数值。所述指定测量值格式HQ92基于一指定比特数目UX92而被特征化,并是一指定计数值格式。
在一些实施例中,所述触发应用单元281响应所述触发事件EQ81来提供所述操作请求信号SX81到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SX81。所述处理单元230响应所述操作请求信号SX81来获得所述控制应用码UA8T,并基于所获得的所述控制应用码UA8T来使所述传输单元240向所述功能装置130传输输送所述控制信息CG81的所述控制信号SC81。例如,所述控制应用码UA8T包含或是所述控制数据码CK8T。
所述触发应用单元281是所述状态改变侦测器475、所述读取器220、所述接收单元270、所述输入单元440、所述显示单元460、所述感测单元260和所述定时器546的其中之一。所述触发事件EQ81是一触发作用事件、一用户输入事件、一信号输入事件、一状态改变事件、一标识媒介出现事件和一整数溢位事件的其中之一。在所述触发事件EQ81是所述整数溢位事件的条件下,是所述触发应用单元281的所述定时器546响应与所述处理单元230相关的一时间控制GE81而导致所述整数溢位事件发生。例如,所述处理单元230被配置以执行用于控制所述定时器546的所述时间控制GE81。所述定时器546响应所述时间控制GE81来形成所述整数溢位事件。
所述处理单元230使用所述感测信号SK91以获得等于所述测量值NP91的所述测量值VM81。所述处理单元230响应所述触发事件EQ81来执行所述数据确定AE8A以确定相同于所述测量值指定范围码EL1T的所述测量值应用范围码EH1L。在所述处理单元230藉由检查所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于所确定的所述测量值应用范围码EH1L来从所述内存单元25Y1获得相同于所述控制信息码CM85的所述控制应用码UA8T。例如,在所述感测单元260被配置以相同于所述定时器545的条件下,所述指定测量值格式HQ81被配置以相同于所述指定测量值格式HQ92。
例如,所述控制信息码CM85包含所预设的所述测量值指定范围码EL1T、所预设的所述时钟参考时间值NR81和所预设的所述测量时间长度值VH8T。所述处理单元230基于所获得的所述控制应用码UA8T来在所述操作时间TD81之内执行用于所述测量应用功能FB81的所述信号产生控制GS81以导致所述传输单元240产生输送所述控制数据信息CN85的所 述控制信号SC81。例如,所述控制数据信息CN85包含所预设的所述测量值指定范围码EL1T、所预设的所述时钟参考时间值NR81和所预设的所述测量时间长度值VH8T。在所述物理参数目标范围码UQ1T等于所预设的所述测量值目标范围码EM1T的条件下,所述控制信号SC81藉由输送所预设的所述测量值指定范围码EL1T来起到指示所述测量值指定范围RQ1T和所述时钟时间指定区间HR1ET的至少其中之一的作用。
在一些实施例中,所述输入单元440包含所述用户接口区AP11和设置于所述使用者接口区AP11中的所述电应用目标WJ11(或所述第五按钮目标)。例如,所述显示单元460包含所述用户接口区AP11和设置于所述使用者接口区AP11中的所述电应用目标WJ11(或所述第五图符目标)。例如,所述输入单元440包含一触控屏幕4401。所述触控屏幕4401包含所述使用者接口区AP11和设置于所述使用者接口区AP11中的所述电应用目标WJ11(或所述第五按钮目标),并接收所述使用者输入操作JU81。
例如,所述触控屏幕4401的所述电应用目标WJ11接收所述使用者输入操作JU81。所述触控屏幕4401是所述触发应用单元281、所述触发应用单元288和所述触发应用单元28H的任一单元。在所述触控屏幕4401是所述触发应用单元281的条件下,所述触控屏幕4401响应所述使用者输入操作JU81(或所述触发事件EQ81)来提供所述操作请信讯号SX81到所述处理单元230。
在一些实施例中,所述功能装置130包含所述操作单元397、所述功能单元335和所述存储单元332。包含于所述操作单元397中的所述定时器342用于测量所述时钟时间TH1A,并被配置以符合所述定时器规格FT21。所述可变物理参数QU1A相关于所述时钟时间TH1A。所述时钟时间TH1A基于一时钟时间指定区间HR1ET而被特征化。所述时钟时间指定区间HR1ET由一测量值指定范围RQ1T所代表。所述测量值指定范围码EL1T被配置以指示所述时钟时间指定区间HR1ET。
所述存储单元332具有一内存位置YS8T,并在所述内存位置YS8T存储所述物理参数目标范围码UQ1T。所述物理参数目标范围码UQ1T代表所述可变物理参数QU1A被期望在所述时钟时间指定区间HR1ET内处于的一物理参数目标范围RD1ET,并被配置以基于所述测量值指定范围码EL1T而被存储在所述内存位置YS8T。所述内存位置YS8T基于一内存地址AS8T而被标识。所述内存地址AS8T基于所述测量值指定范围码EL1T而被预设。所述物理参数目标范围RD1ET选择自所述多个不同物理参数参考范围RD1E1、RD1E2、…。
在一些实施例中,当所述操作单元397接收所述控制信号SC81时,所述物理参数目标范围码UQ1T等于所预设的所述测量值目标范围码EM1T。所述控制信号SC81输送所默认的所述测量值指定范围码EL1T。所述操作单元397从所述控制信号SC81获得所输送的所 述测量值指定范围码EL1T,基于所获得的所述测量值指定范围码EL1T来获得所述内存地址AS8T,并基于所获得的所述内存地址AS8T来接入被存储在所述内存位置YS8T的所述物理参数目标范围码UQ1T以获得所预设的所述测量值目标范围码EM1T。
所述操作单元397基于所获得的所述测量值目标范围码EM1T来执行用于所述测量应用功能FA81的所述信号产生操作BY81以向所述物理参数应用单元335传输所述操作信号SG81。所述物理参数应用单元335响应所述操作信号SG81来导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET。所述操作单元397从所述控制信号SC81获得所输送的所述时钟参考时间值NR81,基于所获得的所述时钟参考时间值NR81来导致所述定时器342在一启动时间TT82之内启动,并藉此导致所述定时器342在所述启动时间TT82之内产生一感测信号SY80。所述感测信号SY80是一初始时间信号,并以所述指定测量值格式HH95输送一测量值NY80。例如,所述测量值NY80被配置以相同于所述时钟参考时间值NR81。
提出于此之本公开多数变形例与其他实施例,将对于熟习本项技艺者理解到具有呈现于上述说明与相关附图之教导的益处。因此,吾人应理解到本公开并非受限于所公开之特定实施例,而变形例与其他实施例意图是包含在以下的权利要求之范畴之内。
符号说明:
130:功能装置
212:控制装置
220:读取器
230、331:处理单元
240:传输单元
246:通信接口单元
250、332:存储单元
25Y1:内存单元
260、334:感测单元
261、3341、3342:感测组件
263、363:复用器
2631、2632、3631、3632:输入端
263C、363C:控制端
263P、363P、338P、338Q:输出端
270、337:接收单元
2701、2702、3371、3372、3374:接收组件
285、286:电使用目标
280:服务器
288、28H、387:触发应用单元
290:物理参数形成单元
295:使用者
297、397:操作单元
310:标识媒介
335、735:物理参数应用单元
3351:物理参数形成部分
3355:驱动电路
338:输出组件
340、342、343、545、546:定时器
350:电子卷标
360:条形码媒介
370:生物标识作用媒介
380、440:输入单元
3801:按钮
382:显示单元
384:传输单元
3842、3843:传输组件
410:网络
441:指向装置
450、452、455:传输组件
460:显示单元
475:状态改变侦测器
70M:支撑媒介
70U:材料层
734、7341、7342:传感器类型
901:控制系统
9011、9012、9013、9014、9015、9016、9017、9018、9019、9020、9021、9022、9023、 9024、9025、9026、9027、9028、9029、9030、9031、9032、9033、9034、9035、9036、9037、9038、9039、9040、9041、9042、9043、9044、9045、9046、9047、9048、9049、9050、9051、9052、9053、9054、9055、9056、9057、9058、9059、9060、9061、9062、9063、9064、9065、9066、9067、9068、9069:实施结构
AA81、AA82、AE81、AE82:数据确定操作
AA8A、AE8A、AK8A:数据确定
AC1:响应区域
AD81、AD82、AF81、AF82、AF95、AF96、AG81、AG82:数据获取操作
AD8A、AF8A、AF9C、AG8A:数据获取
AJ11:物理参数应用区
AK81:第一数据确定操作
AK82:第二数据确定操作
AM82、AM85、AM8L、AM8T、AN81、AS81、AS82、AS8T、AS8U、AX82、AX85、AX8L、AX8T、EC92、EC9T、FF9T、FM8L、FV8L:内存地址
AP11:使用者接口区
AT11、AT21、AU11、AU21:物理参数形成区
BA83、BM51、BV51、BV81、BV85、BV86、ZP81、ZP85、ZQ81:检查操作
BC8V、BD81、BE81:计数操作
BH82、ZH81:特定功能操作
BJ81:特定实际操作
BQ81、BQ82、BQ8A、BQ8B、BU83、JU81、JU91、JU92、JV81、JV82、JV83:使用者输入操作
BS81、BS88、BS91、BY81、BY85、BY89、BY97:信号产生操作
BR81:读取操作
BZ81、ZM81、ZS81:感测操作
CA81、CA91、CD81、CD82、CE81、CE85、CE8T:数据比较
CC12、CC15、CC1L、CC1T、CC1U、CC1V:句柄
CF81:数据比较
CG81、CG88:控制信息
CK8T、CK8V:控制数据码
CL8V:测量时间长度值
CM82、CM83、CM84、CM85:控制信息码
CN82、CN83、CN84、CN85:控制数据信息
CP11、CP21:定时操作模式码
DA81、DF81、DG81、DG83、DX81、DX82、DX85、DX88:码差异
DB81、DB86、DS81:范围差异
DC11、DC12、DD11、DD12:额定范围界限值
DC1A、DD1A:额定范围界限值对
DH81、DH82、DJ81、DJ82、DJ83、DJ91:输入数据
DM15、DM16、DN15、DN16:应用范围界限值
DM1B、DN1B、DQ1B:候选范围界限值对
DM1L、DN1L、DQ1L:应用范围界限值对
DN17、DN18:目标范围界限值
DN1E:特定范围界限值对
DN1T:目标范围界限值对
DP1A:额定范围界限值对
DQ13、DQ14:指定范围界限值
DQ15:第一应用范围界限值
DQ16:第二应用范围界限值
DQ1T:指定范围界限值对
DQ1U:应用范围界限值对
DT81:物理参数状态差异
DU81:物理参数数据记录
DY81:编码数据
EA81、EA82、EJ81、EJ82、EJ83、ZR81、ZR82、ZR83、ZR8KV、ZR8TR、ZX81、ZX82、ZX83、ZX8HE、ZX8HR、ZX8HJ、ZX8HT、ZX8HU、ZX8KV、ZX8TR、ZX91、ZX92:数据编码操作
EH11、EM11:测量值参考范围码
EH12:测量值参考范围码、测量值候选范围码
EH14、EH17、EM14、EM15:特定测量值范围码
EH1L、EM1L:测量值应用范围码
EL11、EL12:测量值参考范围码
EL14:特定测量值范围码
EL1T:测量值指定范围码
EL1U:测量值应用范围码
EM12:测量值参考范围码、测量值候选范围码
EM1T:测量值目标范围码
EP81:操作情况
EQ81、EQ88、EQ8H、JQ81:触发事件
EW11、EW12:物理参数参考状态代码
EW16:特定物理参数状态代码
EW1T:物理参数应用状态代码
EW1U、EW1V:物理参数目标状态代码
EX81:应用环境
FA81、FB81:测量应用功能
FK8E:全测量值范围表示
FP81、FR81:拘束条件
FQ11、FU11:传感器规格
FT21、FW22:定时器规格
FY81、FZ81:编码影像
GA812、GA8T1:物理参数表示
GA83、GB82:物理参数候选范围表示
GA8E、GB8E:额定物理参数范围表示
GA8L、GB8L:物理参数应用范围表示
GA8HE:额定时钟时间区间表示
GA8HU:时钟时间应用区间表示
GA8HR:时钟时间参考区间表示
GA8HT:时钟时间指定区间表示
GA8KV、GB8KV:时间长度表示
GA8T:物理参数候选范围表示
GA8TR、GB8TR:时钟时间表示
GAL8、GBL8:测量应用功能规格
GD81、GE81:时间控制
GM8T、GM8U、GT81、GU81:数据存储控制操作
GQ81、GW81:传感器灵敏度表示
GQ8R、GW8R:传感器测量范围表示
GS81、GY80、GY81、GY85、GY89:信号产生控制
GX8T、GX8U:物理参数关系检查控制
HA0T:控制装置标识符
HA22、HA2T:应用单元标识符
HC81:句柄类型标识符
HE81、HE82、HF81、HF82:感测信号产生
HH81、HH91、HH95、HQ81、HQ92:指定测量值格式
HK81:控制数据码类型标识符
HM81:测量范围界限数据码类型标识符
HR1E:额定时钟时间区间
HR1E1、HR1E2:时钟时间参考区间
HR1E4、HR1E7:特定时钟时间区间
HR1ET:时钟时间指定区间
HR1ET1:开始界限时间
HR1ET2:结束界限时间
HR1EU:时钟时间应用区间
HR1N:额定测量值范围
HZ22、HZ2T:电使用目标标识符
JA1A、JB1A、QG1A、QL1A、QP1A、QP2A、QU1A、QY1A:可变物理参数
JE11、JE12:物理参数参考状态
JE16:特定物理参数状态
JE1T:物理参数应用状态
JE1U、JE1V、JE1W:物理参数目标状态
JN81:测量值序列
JP81:情况
JY81:测量值序列
KD85、KD8L、KD8T、KD8U、KD9T、KD9U:物理参数关系
KA81、KA91、KH81、KM51、KV51、KQ81、KV83、KV85、KY81、KK91、KK92:数学关系
KE8A、KE8B、KE9A、KE9B:范围关系
KJ81:数值关系
KP81、KP85:算术关系
KQ81:数学关系、第一数学关系
KQ82:第二数学关系
KT81:时间关系
KV81、KV86、KV91:数学关系
KW81:数值交集关系
LA81、LA82:状态指示
LB81、LB82:状态指示
LC81、LD81:实际位置
LD91、LD92:空间位置
LE81:相对区间位置
LF8A:可变时间长度
LH8T:指定时间长度
LH8U:应用时间长度
LJ8V:参考时间长度
LP81、SP81:电信号
LQ81、SQ81:光信号
LT8V:应用时间长度
LX8H、LY81、LZ82、LZ8H:测量信息
MC81:第一科学计算
MD81:第二科学计算
ME81、ME85、MF81、MF83、MG81、MH81、MH85、MK81、MQ81、MR81、MR82、MZ81:科学计算
NA8A、NE8A、NK8A:数据确定程序
ND8A、NF8A:数据获取程序
NP91:特定计数值
NR81:时钟参考时间值
NS81:总参考范围数目
NT81:总参考范围数目
NY80、NY81:测量值
NY8A:可变计数值
PB51、PB81、PB82、PB91、PE81、PH81、PH91、PR81、PY81、PZ81、PZ82、PZ91、PZ92:逻辑决定
PF9T、PM8L、PV8L、XC9T、XC92、YM82、YM85、YN81、YX82、YX85、YX8L:内存位置
PW81:合理决定
QB81:默认时间参考区间顺序
QD12、QD1L、QD1T、QD5T:指定物理参数
QK8E:全测量值范围
QP15:特定物理参数
QU15、QU17、QU18:特定物理参数
RA8E、RB8E:传感器测量范围
RC1E、RD1E:额定物理参数范围
RC1E1、RD1E1:物理参数参考范围
RC1E2:物理参数参考范围、物理参数候选范围
RC1E3:物理参数候选范围
RC1E4、RC1E7:特定物理参数范围
RC1EL、RD1EJ、RD1EL:物理参数应用范围
RC1N、RD1N:额定测量值范围
RD1E2:物理参数参考范围、物理参数候选范围
RD1E4、RD1E5、RD1E6、RD1EA、RD1EB、RD2E5、RD2E6:特定物理参数范围
RD1ET、RD1EU、RD1EV、RD1EW:物理参数目标范围
RL81:肯定操作报告
RM11、RN11:测量值参考范围
RM12:测量值参考范围、测量值候选范围
RM17、RN15:特定测量值范围
RM1L、RN1L:测量值应用范围
RN12:测量值参考范围、测量值候选范围
RN1G、RN1H:测量值指示范围
RN1T、RN1U:测量值目标范围
RQ11、RQ12:测量值参考范围
RQ1T:测量值指定范围
RQ1U:测量值应用范围
RW1EL、RY1ET、RY1EV:对应物理参数范围
RX1T:对应测量值范围
SB81:物理参数信号
SC80、SC81、SC82、SC83、SC88、SC97、SD81、SD82、SF81、SF85、SF97、SV81、SV82:控制信号
SE81、SE8H:控制响应信号
SG72、SG77、SG80、SG81、SG82、SG85、SG87、SG88、SG89、SG8A、SG8B、SG97:操作信号
SJ71、SJ72、SJ81、SJ91、SJ92、SJ9A、SJ9B、SX81、SX88、SX8H、SZ81、SZ91、SZ92:操作请求信号
SK91:时钟时间信号
SL81:驱动信号
SM81、SM82、SM91、SN81、SN82、SN83、SN85、SN91、SY80、SY81:感测信号
SN811、SN812:感测信号分量
SS11、SU11:存储空间
SW82、SW83、SW84、SW85:指令信号
SX8A:触发信号
TB81、TB82、TD81、TF81、TF82、TX81、TX82、TY81:操作时间
TE82、TG82、TG83、TW81、TY81:指定时间
TH1A:时钟时间
TJ8V:特定时间
TK81:控制数据码类型
TL11、TP11、TU11、TU1G:物理参数类型
TM81:测量范围界限数据码类型
TQ11:时钟时间类型
TR81:时钟参考时间
TT81:触发时间
TT82:启动时间
TZ8V:结束时间
UA8T:控制应用码
UF8A:可变时钟时间区间码
UF8T、UF8U:时钟时间应用区间码
UH8T:中断请求信号
UL81:默认特征物理参数
UM8A、UN8A:可变物理参数范围码
UM8L:物理参数应用范围码
UN85、UN86:特定物理参数范围码
UN8T、UQ1T、UQ1U、UN1V、UN1W:物理参数目标范围码
UQ11:物理参数指定范围码
UQ12:物理参数指定范围码
UW81、UW82:特定输入码
UX81、UX92、UY81、UY91、UY95:指定比特数目
VA11、VC11、VL81:相对值
VG81:可允许值
VH8T、VH8U:测量时间长度值
VM81、VM82、VM91、VN81、VN82、VN83、VN85、VN91:测量值
WA8L、WB8L、WC8T、WD81、WN8L、WN8T、WS8T、WS8U:写入请求信息
WJ11:电应用目标
WU11、WU21:定时操作模式
WX8HE:第一数据编码规则
WX8HU:第二数据编码规则
XA8A:可变物理状态
XA81:非特征物理参数到达状态
XA82:实际特征物理参数到达状态
XH81、XH82、XJ81、XJ82:特定状态
XK81、XU81:操作参考数据码
XP81、XR81:特定经验公式
XS81:特定经验公式
XV81:操作参考数据码
YJ81:选择工具
YM8L、YM8T、YX8T:内存位置
YQ81、YW81:传感器灵敏度
YS81、YS82、YS8T、YS8U:内存位置
YU91:默认数据导出规则
ZD1L1、ZD1L2:预设物理参数应用范围界限
ZD1T1、ZD1T2、ZD1U1、ZD1U2:默认物理参数目标范围界限
ZF81:减法运算
ZL82:特征物理参数到达
ZT81:感测操作
ZU81:验证操作

Claims (12)

  1. 一种用于控制可变物理参数的功能装置,其中所述可变物理参数基于物理参数目标状态而被特征化,所述功能装置包含:
    定时器,感测时钟时间以产生感测信号,其中所述时钟时间基于由测量值应用范围所代表的时钟时间应用区间而被特征化;以及
    处理单元,耦合于所述定时器,响应所述感测信号来获得测量值,并在所述处理单元藉由检查所述测量值和所述测量值应用范围之间的第一数学关系而确定所述时钟时间进入所述时钟时间应用区间的情况的条件下使所述可变物理参数处于所述物理参数目标状态。
  2. 如权利要求1所述的功能装置,进一步包含耦合于所述处理单元的接收单元、和耦合于所述处理单元的物理参数应用单元,其中:
    所述时钟时间进一步基于不同于所述时钟时间应用区间的时钟时间指定区间而被特征化,其中所述时钟时间指定区间早于所述时钟时间应用区间;
    在所述接收单元从控制装置接收控制信号之后,所述处理单元由于所述控制信号来响应所述感测信号而获得包含所述测量值的测量值序列,其中所述控制信号起到指示所述时钟时间指定区间的作用;
    所述控制装置是移动装置和遥控器的其中之一;
    在所述控制装置是所述遥控器的条件下,所述控制信号是光信号;
    所述处理单元藉由检查所述测量值序列和所述测量值应用范围之间的第二数学关系而做出所述时钟时间是否从所述时钟时间指定区间进入所述时钟时间应用区间的逻辑决定,并在所述逻辑决定是肯定的条件下确定所进入的所述时钟时间应用区间;
    所述定时器符合定时器规格,其中所述测量值应用范围基于所述定时器规格而被默认;
    所述定时器规格包含用于表示全测量值范围的全测量值范围表示,其中所述测量值应用范围等于所述全测量值范围的一部分;
    所述测量值以指定测量值格式而被获得;
    所述测量值应用范围基于所述定时器规格来用所述指定测量值格式而被预设;
    所述测量值应用范围具有应用范围界限值对,并由测量值应用范围码所代表,其中所述应用范围界限值对被预设;
    所述处理单元响应所述控制信号来获得所述应用范围界限值对和所述测量值应用范围码,并藉由比较所述测量值和所获得的所述应用范围界限值对来检查所述第一数学关系;
    所述物理参数目标状态由物理参数目标状态代码所代表;
    所述物理参数应用单元具有所述可变物理参数,其中当所述处理单元检查所述第一数学关系时,所述可变物理参数处于物理参数应用状态;
    在所述处理单元藉由检查所述第一数学关系而确定所进入的所述时钟时间应用区间的条件下,所述处理单元基于所获得的所述测量值应用范围码来获得所述物理参数目标状态代码,并基于所获得的所述物理参数目标状态代码来执行用于检查所述可变物理参数和所述物理参数目标状态之间的物理参数关系的物理参数关系检查控制;
    在所述物理参数应用状态不同于所述物理参数目标状态且所述处理单元藉由执行所述物理参数关系检查控制而确定所述物理参数目标状态和所述物理参数应用状态之间的物理参数状态差异的条件下,所述处理单元基于所获得的所述物理参数目标状态代码来执行信号产生控制以产生操作信号,并向所述物理参数应用单元传输所述操作信号;
    所述物理参数应用单元响应所述操作信号来使所述可变物理参数从所述物理参数应用状态进入所述物理参数目标状态;
    在所述处理单元藉由检查所述第一数学关系而确定所进入的所述时钟时间应用区间的条件下,所述处理单元执行数据存储控制操作,所述数据存储控制操作用于导致代表所确定的所述时钟时间应用区间的时钟时间应用区间码被存储;以及
    所述可变物理参数和所述时钟时间分别属于物理参数类型和时钟时间类型,其中所述物理参数类型不同于所述时钟时间类型。
  3. 如权利要求1所述的功能装置,进一步包含耦合于所述处理单元的输入单元、和耦合于所述处理单元的物理参数应用单元,其中:
    所述定时器符合定时器规格,其中所述测量值应用范围基于所述定时器规格而被默认;
    所述定时器规格包含用于表示全测量值范围的全测量值范围表示,其中所述测量值应用范围等于所述全测量值范围的第一部分;
    所述处理单元被配置以执行与所述时钟时间应用区间相关的测量应用功能;
    所述测量应用功能符合与所述时钟时间应用区间相关的测量应用功能规格;
    所述处理单元响应所述感测信号来以指定测量值格式获得所述测量值,其中所述指定测量值格式基于指定比特数目而被特征化;
    所述时钟时间进一步基于额定时钟时间区间而被特征化,其中所述额定时钟时间区间由额定测量值范围所代表,并包含由多个不同测量值参考范围所分别代表的多个不同时钟时间参考区间;
    所述多个不同时钟时间参考区间包含所述时钟时间应用区间;
    所述测量应用功能规格包含所述定时器规格、用于表示所述额定时钟时间区间的额定时钟时间区间表示、和用于表示所述时钟时间应用区间的时钟时间应用区间表示;
    所述额定测量值范围等于所述全测量值范围的至少第二部分,基于所述定时器规格、所述测量应用功能规格和第一数据编码规则的其中之一来用所述指定测量值格式而被预设,具有额定范围界限值对,并包含由多个不同测量值参考范围码所分别代表的所述多个不同测量值参考范围,其中所述额定范围界限值对用所述指定测量值格式而被预设,且所述多个不同测量值参考范围包含所述测量值应用范围;
    所述第一数据编码规则用于转换所述额定时钟时间区间表示,并基于所述定时器规格而被制定;
    所述测量值应用范围由包含于所述多个不同测量值参考范围码中的测量值应用范围码所代表,具有应用范围界限值对,并基于所述定时器规格、所述测量应用功能规格和第二数据编码规则的其中之一来用所述指定测量值格式而被预设,其中所述多个不同测量值参考范围码皆基于所述测量应用功能规格而被默认;
    所述第二数据编码规则用于转换所述时钟时间应用区间表示,并基于所述定时器规格而被制定;
    所述应用范围界限值对包含第一应用范围界限值和相对于所述第一应用范围界限值的第二应用范围界限值;
    所述功能装置进一步包含耦合于所述处理单元的存储单元,并包含耦合于所述处理单元的触发应用单元;
    所述存储单元存储所默认的所述额定范围界限值对和可变时钟时间区间码;
    当与所述触发应用单元相关的触发事件发生时,所述可变时钟时间区间码等于选择自所述多个不同测量值参考范围码的特定测量值范围码,其中所述特定测量值范围码指示基于感测操作而被先前确定的特定时钟时间区间,所述特定时钟时间区间选择自所述多个不同时钟时间参考区间,且由所述定时器所执行的所述感测操作用于感测所述时钟时间;
    在所述触发事件发生之前,所述特定测量值范围码被指定到所述可变时钟时间区间码;
    所述触发应用单元响应所述触发事件来使所述处理单元接收操作请求信号;
    在所述触发事件发生的条件下,所述处理单元响应所述操作请求信号来从所述存储单元获得操作参考数据码,并藉由运行数据确定程序来执行使用所述操作参考数据码的数据确定以确定选择自所述多个不同测量值参考范围码的所述测量值应用范围码以便从所述多个不同测量值参考范围中选择所述测量值应用范围;
    所述操作参考数据码相同于基于所述测量应用功能规格而被默认的可允许参考数据码;
    所述数据确定程序基于所述测量应用功能规格而被建构;
    所述数据确定是第一数据确定操作和第二数据确定操作的其中之一;
    在所述操作参考数据码藉由接入被存储在所述存储单元中的所述可变时钟时间区间码而被获得以相同于所述特定测量值范围码的条件下,是所述第一数据确定操作的所述数据确定基于所获得的所述特定测量值范围码来确定所述测量值应用范围码,其中所述第一数据确定操作是使用所获得的所述特定测量值范围码的第一科学计算,且所确定的所述测量值应用范围码相同或不同于所获得的所述特定测量值范围码;
    在所述操作参考数据码藉由接入被存储在所述存储单元中的所述额定范围界限值对而被获得以相同于所预设的所述额定范围界限值对的条件下,是所述第二数据确定操作的所述数据确定藉由执行使用所述测量值和所获得的所述额定范围界限值对的第二科学计算来从所述多个不同测量值参考范围码中选择所述测量值应用范围码以确定所述测量值应用范围码,其中所述第二科学计算基于特定经验公式而被执行,且所述特定经验公式基于所预设的所述额定范围界限值对和所述多个不同测量值参考范围码而被预先制定;
    所述处理单元基于所确定的所述测量值应用范围码来获得所述应用范围界限值对,基于所述测量值和所获得的所述应用范围界限值对之间的数据比较来检查所述第一数学关系以做出所述测量值是否为于所选择的所述测量值应用范围之内的逻辑决定,并在所述逻辑决定是肯定的条件下确定所述情况;
    在所述特定测量值范围码不同于所确定的所述测量值应用范围码且所述处理单元藉由做出所述逻辑决定而确定所进入的所述时钟时间应用区间的条件下,所述处理单元基于等于所述特定测量值范围码的所述可变时钟时间区间码和所确定的所述测量值应用范围码之间的码差异来使用所述存储单元以将所确定的所述测量值应用范围码指定到所述可变时钟时间区间码;
    所述输入单元包含按钮;
    所述物理参数应用单元具有所述可变物理参数;
    所述可变物理参数进一步基于不同于所述物理参数目标状态的特定物理参数状态而被特征化;
    在所述处理单元藉由检查所述第一数学关系而导致所述可变物理参数处于所述物理参数目标状态的条件下,所述输入单元接收使用所述按钮的用户输入操作;以及
    所述处理单元响应所述用户输入操作来向所述物理参数应用单元传输用于导致所述可变物理参数离开所述物理参数目标状态以进入所述特定物理参数状态的操作信号。
  4. 一种用于控制可变物理参数的方法,其中所述可变物理参数基于物理参数目标状态而被特征化,所述方法包含下列步骤:
    感测时钟时间以产生感测信号,其中所述时钟时间基于由测量值应用范围所代表的时钟时间应用区间而被特征化;
    响应所述感测信号,获得测量值;以及
    在所述时钟时间进入所述时钟时间应用区间的情况藉由检查所述测量值和所述测量值应用范围之间的第一数学关系而被确定的条件下,使所述可变物理参数处于所述物理参数目标状态。
  5. 如权利要求4所述的方法,其中:
    所述时钟时间进一步基于不同于所述时钟时间应用区间的时钟时间指定区间而被特征化,其中所述时钟时间指定区间早于所述时钟时间应用区间;
    所述方法进一步包含下列步骤:
    提供定时器,其中感测所述时钟时间的步骤藉由使用所述定时器而被执行;以及
    从控制装置接收控制信号,其中所述控制信号起到指示所述时钟时间指定区间的作用;
    所述控制装置是移动装置和遥控器的其中之一;
    在所述控制装置是所述遥控器的条件下,所述控制信号是光信号;
    获得所述测量值的步骤包含子步骤:在所述控制信号被接收之后,由于所述控制信号来响应所述感测信号而获得包含所述测量值的测量值序列;
    所述方法进一步包含下列步骤:
    藉由检查所述测量值序列和所述测量值应用范围之间的第二数学关系,做出所述时钟时间是否从所述时钟时间指定区间进入所述时钟时间应用区间的逻辑决定;以及
    在所述逻辑决定是肯定的条件下,确定所进入的所述时钟时间应用区间;
    所述定时器符合定时器规格,其中所述测量值应用范围基于所述定时器规格而被默认;
    所述定时器规格包含用于表示全测量值范围的全测量值范围表示,其中所述测量值应用范围等于所述全测量值范围的一部分;
    所述测量值以指定测量值格式而被获得;
    所述测量值应用范围基于所述定时器规格来用所述指定测量值格式而被预设;
    所述测量值应用范围具有应用范围界限值对,并由测量值应用范围码所代表,其中所述应用范围界限值对被预设;
    所述方法进一步包含下列步骤:
    响应所述控制信号,获得所述应用范围界限值对和所述测量值应用范围码;以及
    藉由比较所述测量值和所获得的所述应用范围界限值对,检查所述第一数学关系;
    所述物理参数目标状态由物理参数目标状态代码所代表;
    当所述第一数学关系被检查时,所述可变物理参数处于物理参数应用状态;
    使所述可变物理参数处于所述物理参数目标状态的步骤包含下列子步骤:
    在所进入的所述时钟时间应用区间藉由检查所述第一数学关系而被确定的条件下,基于所获得的所述测量值应用范围码来获得所述物理参数目标状态代码;
    基于所获得的所述物理参数目标状态代码,执行用于检查所述可变物理参数和所述物理参数目标状态之间的一物理参数关系的一物理参数关系检查控制;
    在所述物理参数应用状态不同于所述物理参数目标状态且所述物理参数目标状态和所述物理参数应用状态之间的物理参数状态差异藉由执行所述物理参数关系检查控制而被确定的条件下,基于所获得的所述物理参数目标状态代码来执行信号产生控制以产生操作信号;以及
    响应所述操作信号,使所述可变物理参数从所述物理参数应用状态进入所述物理参数目标状态;
    所述方法进一步包含步骤:在所进入的所述时钟时间应用区间藉由检查所述第一数学关系而被确定的条件下,执行数据存储控制操作,所述数据存储控制操作用于导致代表所确定的所述时钟时间应用区间的时钟时间应用区间码被存储;以及
    所述可变物理参数和所述时钟时间分别属于物理参数类型和时钟时间类型,其中所述物理参数类型不同于所述时钟时间类型。
  6. 如权利要求4所述的方法,其中:
    所述方法进一步包含下列步骤:
    提供定时器,其中感测所述时钟时间的步骤藉由使用所述定时器而被执行;以及
    执行与所述时钟时间应用区间相关的测量应用功能;
    所述定时器符合定时器规格,其中所述测量值应用范围基于所述定时器规格而被默认;
    所述定时器规格包含用于表示全测量值范围的全测量值范围表示,其中所述测量值应用范围等于所述全测量值范围的第一部分;
    所述测量应用功能符合与所述时钟时间应用区间相关的测量应用功能规格;
    所述测量值以指定测量值格式而被获得,其中所述指定测量值格式基于指定比特数目而被特征化;
    所述时钟时间进一步基于额定时钟时间区间而被特征化,其中所述额定时钟时间区间由额定测量值范围所代表,并包含由多个不同测量值参考范围所分别代表的多个不同时钟时间参考区间;
    所述多个不同时钟时间参考区间包含所述时钟时间应用区间;
    所述测量应用功能规格包含所述定时器规格、用于表示所述额定时钟时间区间的额定时钟时间区间表示、和用于表示所述时钟时间应用区间的时钟时间应用区间表示;
    所述额定测量值范围等于所述全测量值范围的至少第二部分,基于所述定时器规格、所述测量应用功能规格和第一数据编码规则的其中之一来用所述指定测量值格式而被预设,具有额定范围界限值对,并包含由多个不同测量值参考范围码所分别代表的所述多个不同测量值参考范围,其中所述额定范围界限值对用所述指定测量值格式而被预设,且所述多个不同测量值参考范围包含所述测量值应用范围;
    所述第一数据编码规则用于转换所述额定时钟时间区间表示,并基于所述定时器规格而被制定;
    所述测量值应用范围由包含于所述多个不同测量值参考范围码中的测量值应用范围码所代表,具有应用范围界限值对,并基于所述定时器规格、所述测量应用功能规格和第二数据编码规则的其中之一来用所述指定测量值格式而被预设,其中所述多个不同测量值参考范围码皆基于所述测量应用功能规格而被默认;
    所述第二数据编码规则用于转换所述时钟时间应用区间表示,并基于所述定时器规格而被制定;
    所述应用范围界限值对包含第一应用范围界限值和相对于所述第一应用范围界限值的第二应用范围界限值;
    所述方法进一步包含下列步骤:
    提供存储空间;以及
    在所述存储空间中存储所预设的所述额定范围界限值对和可变时钟时间区间码;
    当触发事件发生时,所述可变时钟时间区间码等于选择自所述多个不同测量值参考范围码的特定测量值范围码,其中所述特定测量值范围码指示基于感测操作而被先前确定的特定时钟时间区间,所述特定时钟时间区间选择自所述多个不同时钟时间参考区间,且由所述定时器所执行的所述感测操作用于感测所述时钟时间;
    在所述触发事件发生之前,所述特定测量值范围码被指定到所述可变时钟时间区间码;
    所述方法进一步包含下列步骤:
    响应所述触发事件,接收操作请求信号;
    在所述触发事件发生的条件下,响应所述操作请求信号来从所述存储空间获得操作参考数据码;以及
    藉由运行数据确定程序来执行使用所述操作参考数据码的数据确定,确定选择自所述多个不同测量值参考范围码的所述测量值应用范围码以便从所述多个不同测量值参考范围中选择所述测量值应用范围;
    所述操作参考数据码相同于基于所述测量应用功能规格而被默认的可允许参考数据码;
    所述数据确定程序基于所述测量应用功能规格而被建构;
    所述数据确定是第一数据确定操作和第二数据确定操作的其中之一;
    在所述操作参考数据码藉由接入被存储在所述存储空间中的所述可变时钟时间区间码而被获得以相同于所述特定测量值范围码的条件下,是所述第一数据确定操作的所述数据确定基于所获得的所述特定测量值范围码来确定所述测量值应用范围码,其中所述第一数据确定操作是使用所获得的所述特定测量值范围码的第一科学计算,且所确定的所述测量值应用范围码相同或不同于所获得的所述特定测量值范围码;
    在所述操作参考数据码藉由接入被存储在所述存储空间中的所述额定范围界限值对而被获得以相同于所预设的所述额定范围界限值对的条件下,是所述第二数据确定操作的所述数据确定藉由执行使用所述测量值和所获得的所述额定范围界限值对的第二科学计算来从所述多个不同测量值参考范围码中选择所述测量值应用范围码以确定所述测量值应用范围码,其中所述第二科学计算基于特定经验公式而被执行,且所述特定经验公式基于所预设的所述额定范围界限值对和所述多个不同测量值参考范围码而被预先制定;
    所述方法进一步包含下列步骤:
    基于所确定的所述测量值应用范围码,获得所述应用范围界限值对;
    基于所述测量值和所获得的所述应用范围界限值对之间的数据比较,检查所述第一数学关系以做出所述测量值是否为于所选择的所述测量值应用范围之内的逻辑决定;以及
    在所述逻辑决定是肯定的条件下,确定所述情况;
    所述方法进一步包含步骤:在所述特定测量值范围码不同于所确定的所述测量值应用范围码且所进入的所述时钟时间应用区间藉由做出所述逻辑决定而被确定的条件下,基于等于所述特定测量值范围码的所述可变时钟时间区间码和所确定的所述测量值应用范围码之间的码差异来将所确定的所述测量值应用范围码指定到所述可变时钟时间区间码;
    所述可变物理参数进一步基于不同于所述物理参数目标状态的特定物理参数状态而被特征化;以及
    所述方法进一步包含下列步骤:
    提供按钮;
    在所述可变物理参数藉由检查所述第一数学关系而被导致处于所述物理参数目标状态的条件下,接收使用所述按钮的用户输入操作;以及
    响应所述使用者输入操作,产生用于导致所述可变物理参数离开所述物理参数目标状态以进入所述特定物理参数状态的操作信号。
  7. 一种用于控制可变物理参数的功能装置,其中所述可变物理参数基于物理参数目标状态而被特征化,所述功能装置包含:
    定时器,感测时钟时间以产生感测信号,其中所述时钟时间基于由测量值应用范围所代表的时钟时间应用区间而被特征化;以及
    处理单元,耦合于所述定时器,响应所述感测信号来获得测量值,并在所述处理单元藉由检查所述测量值和所述测量值应用范围之间的数学关系而确定所述时钟时间目前所处于的所述时钟时间应用区间的条件下使所述可变物理参数处于所述物理参数目标状态。
  8. 如权利要求7所述的功能装置,进一步包含耦合于所述处理单元的接收单元、和耦合于所述处理单元的物理参数应用单元,其中:
    所述时钟时间进一步基于不同于所述时钟时间应用区间的时钟时间指定区间而被特征化,其中所述时钟时间指定区间早于所述时钟时间应用区间;
    在所述接收单元从控制装置接收控制信号之后,所述处理单元由于所述控制信号来响应所述感测信号而获得所述测量值,其中所述控制信号起到指示所述时钟时间指定区间的作用;
    所述控制装置是移动装置和遥控器的其中之一;
    在所述控制装置是所述遥控器的条件下,所述控制信号是光信号;
    所述定时器符合定时器规格,其中所述测量值应用范围基于所述定时器规格而被默认;
    所述定时器规格包含用于表示全测量值范围的全测量值范围表示,其中所述测量值应用范围等于所述全测量值范围的一部分;
    所述测量值以指定测量值格式而被获得;
    所述测量值应用范围基于所述定时器规格来用所述指定测量值格式而被预设;
    所述测量值应用范围具有应用范围界限值对,并由测量值应用范围码所代表,其中所述应用范围界限值对被预设;
    所述处理单元响应所述控制信号来获得所述应用范围界限值对和所述测量值应用范围码,并藉由比较所述测量值和所获得的所述应用范围界限值对来检查所述数学关系;
    所述物理参数目标状态由物理参数目标状态代码所代表;
    所述物理参数应用单元具有所述可变物理参数,其中当所述处理单元检查所述数学关系时,所述可变物理参数处于物理参数应用状态;
    在所述处理单元藉由检查所述数学关系而确定所述时钟时间目前所处于的所述时钟时间应用区间的条件下,所述处理单元基于所获得的所述测量值应用范围码来获得所述物理参数目标状态代码,并基于所获得的所述物理参数目标状态代码来执行用于检查所述可变物理参数和所述物理参数目标状态之间的物理参数关系的物理参数关系检查控制;
    在所述物理参数应用状态不同于所述物理参数目标状态且所述处理单元藉由执行所述物理参数关系检查控制而确定所述物理参数目标状态和所述物理参数应用状态之间的物理参数状态差异的条件下,所述处理单元基于所获得的所述物理参数目标状态代码来执行信号产生控制以产生操作信号,并向所述物理参数应用单元传输所述操作信号;
    所述物理参数应用单元响应所述操作信号来使所述可变物理参数从所述物理参数应用状态进入所述物理参数目标状态;
    在所述处理单元藉由检查所述数学关系而确定所述时钟时间目前所处于的所述时钟时间应用区间的条件下,所述处理单元执行数据存储控制操作,所述数据存储控制操作用于导致代表所确定的所述时钟时间应用区间的时钟时间应用区间码被存储;以及
    所述可变物理参数和所述时钟时间分别属于物理参数类型和时钟时间类型,其中所述物理参数类型不同于所述时钟时间类型。
  9. 如权利要求7所述的功能装置,其中:
    所述定时器符合定时器规格,其中所述测量值应用范围基于所述定时器规格而被默认;
    所述定时器规格包含用于表示全测量值范围的全测量值范围表示,其中所述测量值应用范围等于所述全测量值范围的第一部分;
    所述处理单元被配置以执行与所述时钟时间应用区间相关的测量应用功能;
    所述测量应用功能符合与所述时钟时间应用区间相关的测量应用功能规格;
    所述处理单元响应所述感测信号来以指定测量值格式获得所述测量值,其中所述指定测量值格式基于指定比特数目而被特征化;
    所述时钟时间进一步基于额定时钟时间区间而被特征化,其中所述额定时钟时间区间由额定测量值范围所代表,并包含由多个不同测量值参考范围所分别代表的多个不同时钟时间参考区间;
    所述多个不同时钟时间参考区间包含所述时钟时间应用区间;
    所述测量应用功能规格包含所述定时器规格、用于表示所述额定时钟时间区间的额定时钟时间区间表示、和用于表示所述时钟时间应用区间的时钟时间应用区间表示;
    所述额定测量值范围等于所述全测量值范围的至少第二部分,基于所述定时器规格、所述测量应用功能规格和第一数据编码规则的其中之一来用所述指定测量值格式而被预设,具有额定范围界限值对,并包含由多个不同测量值参考范围码所分别代表的所述多个不同测量值参考范围,其中所述额定范围界限值对用所述指定测量值格式而被预设,且所述多个不同测量值参考范围包含所述测量值应用范围;
    所述第一数据编码规则用于转换所述额定时钟时间区间表示,并基于所述定时器规格而被制定;
    所述测量值应用范围由包含于所述多个不同测量值参考范围码中的测量值应用范围码所代表,具有应用范围界限值对,并基于所述定时器规格、所述测量应用功能规格和第二数据编码规则的其中之一来用所述指定测量值格式而被预设,其中所述多个不同测量值参考范围码皆基于所述测量应用功能规格而被默认;
    所述第二数据编码规则用于转换所述时钟时间应用区间表示,并基于所述定时器规格而被制定;
    所述应用范围界限值对包含第一应用范围界限值和相对于所述第一应用范围界限值的第二应用范围界限值;
    所述功能装置进一步包含耦合于所述处理单元的存储单元,并包含耦合于所述处理单元的触发应用单元;
    所述存储单元存储所默认的所述额定范围界限值对和可变时钟时间区间码;
    当与所述触发应用单元相关的触发事件发生时,所述可变时钟时间区间码等于选择自所述多个不同测量值参考范围码的特定测量值范围码,其中所述特定测量值范围码指示基于感测操作而被先前确定的特定时钟时间区间,所述特定时钟时间区间选择自所述多个不同时钟时间参考区间,且由所述定时器所执行的所述感测操作用于感测所述时钟时间;
    在所述触发事件发生之前,所述特定测量值范围码被指定到所述可变时钟时间区间码;
    所述触发应用单元响应所述触发事件来使所述处理单元接收操作请求信号;
    在所述触发事件发生的条件下,所述处理单元响应所述操作请求信号来从所述存储单元获得操作参考数据码,并藉由运行数据确定程序来执行使用所述操作参考数据码的数据确定以确定选择自所述多个不同测量值参考范围码的所述测量值应用范围码以便从所述多个不同测量值参考范围中选择所述测量值应用范围;
    所述操作参考数据码相同于基于所述测量应用功能规格而被默认的可允许参考数据码;
    所述数据确定程序基于所述测量应用功能规格而被建构;
    所述数据确定是第一数据确定操作和第二数据确定操作的其中之一;
    在所述操作参考数据码藉由接入被存储在所述存储单元中的所述可变时钟时间区间码而被获得以相同于所述特定测量值范围码的条件下,是所述第一数据确定操作的所述数据确定基于所获得的所述特定测量值范围码来确定所述测量值应用范围码,其中所述第一数据确定操作是使用所获得的所述特定测量值范围码的第一科学计算,且所确定的所述测量值应用范围码相同或不同于所获得的所述特定测量值范围码;
    在所述操作参考数据码藉由接入被存储在所述存储单元中的所述额定范围界限值对而被获得以相同于所预设的所述额定范围界限值对的条件下,是所述第二数据确定操作的所述数据确定藉由执行使用所述测量值和所获得的所述额定范围界限值对的第二科学计算来从所述多个不同测量值参考范围码中选择所述测量值应用范围码以确定所述测量值应用范围码,其中所述第二科学计算基于特定经验公式而被执行,且所述特定经验公式基于所预设的所述额定范围界限值对和所述多个不同测量值参考范围码而被预先制定;
    所述处理单元基于所确定的所述测量值应用范围码来获得所述应用范围界限值对,基于所述测量值和所获得的所述应用范围界限值对之间的数据比较来检查所述数学关系以做出所述测量值是否为于所选择的所述测量值应用范围之内的逻辑决定,并在所述逻辑决定是肯定的条件下确定所述时钟时间目前所处于的所述时钟时间应用区间;
    在所述特定测量值范围码不同于所确定的所述测量值应用范围码且所述处理单元藉由做出所述逻辑决定而确定所述时钟时间目前所处于的所述时钟时间应用区间的条件下,所述处理单元基于等于所述特定测量值范围码的所述可变时钟时间区间码和所确定的所述测量值应用范围码之间的码差异来使用所述存储单元以将所确定的所述测量值应用范围码指定到所述可变时钟时间区间码;
    所述输入单元包含按钮;
    所述物理参数应用单元具有所述可变物理参数;
    所述可变物理参数进一步基于不同于所述物理参数目标状态的特定物理参数状态而被特征化;
    在所述处理单元藉由检查所述第一数学关系而导致所述可变物理参数处于所述物理参数目标状态的条件下,所述输入单元接收使用所述按钮的用户输入操作;以及
    所述处理单元响应所述用户输入操作来向所述物理参数应用单元传输用于导致所述可变物理参数离开所述物理参数目标状态以进入所述特定物理参数状态的操作信号。
  10. 一种用于控制可变物理参数的方法,其中所述可变物理参数基于物理参数目标状态而被特征化,所述方法包含下列步骤:
    感测时钟时间以产生感测信号,其中所述时钟时间基于由测量值应用范围所代表的时钟时间应用区间而被特征化;
    响应所述感测信号,获得测量值;以及
    在所述时钟时间目前所处于的所述时钟时间应用区间藉由检查所述测量值和所述测量值应用范围之间的数学关系而被确定的条件下,使所述可变物理参数处于所述物理参数目标状态。
  11. 如权利要求10所述的方法,其中:
    所述时钟时间进一步基于不同于所述时钟时间应用区间的时钟时间指定区间而被特征化,其中所述时钟时间指定区间早于所述时钟时间应用区间;
    所述方法进一步包含下列步骤:
    提供定时器,其中感测所述时钟时间的步骤藉由使用所述定时器而被执行;以及
    从控制装置接收控制信号,其中所述控制信号起到指示所述时钟时间指定区间的作用;
    所述控制装置是移动装置和遥控器的其中之一;
    在所述控制装置是所述遥控器的条件下,所述控制信号是光信号;
    获得所述测量值的步骤包含子步骤:在所述控制信号被接收之后,由于所述控制信号来响应所述感测信号而获得所述测量值;
    所述定时器符合定时器规格,其中所述测量值应用范围基于所述定时器规格而被默认;
    所述定时器规格包含用于表示全测量值范围的全测量值范围表示,其中所述测量值应用范围等于所述全测量值范围的一部分;
    所述测量值以指定测量值格式而被获得;
    所述测量值应用范围基于所述定时器规格来用所述指定测量值格式而被预设;
    所述测量值应用范围具有应用范围界限值对,并由测量值应用范围码所代表,其中所述应用范围界限值对被预设;
    所述方法进一步包含下列步骤:
    响应所述控制信号,获得所述应用范围界限值对和所述测量值应用范围码;以及
    藉由比较所述测量值和所获得的所述应用范围界限值对,检查所述数学关系;
    所述物理参数目标状态由物理参数目标状态代码所代表;
    当所述数学关系被检查时,所述可变物理参数处于物理参数应用状态;
    使所述可变物理参数处于所述物理参数目标状态的步骤包含下列子步骤:
    在所述时钟时间目前所处于的所述时钟时间应用区间藉由检查所述数学关系而被确定的条件下,基于所获得的所述测量值应用范围码来获得所述物理参数目标状态代码;
    基于所获得的所述物理参数目标状态代码,执行用于检查所述可变物理参数和所述物理参数目标状态之间的物理参数关系的物理参数关系检查控制;
    在所述物理参数应用状态不同于所述物理参数目标状态且所述物理参数目标状态和所述物理参数应用状态之间的物理参数状态差异藉由执行所述物理参数关系检查控制而被确定的条件下,基于所获得的所述物理参数目标状态代码来执行信号产生控制以产生操作信号;以及
    响应所述操作信号,使所述可变物理参数从所述物理参数应用状态进入所述物理参数目标状态;
    所述方法进一步包含步骤:在所述时钟时间目前所处于的所述时钟时间应用区间藉由检查所述数学关系而被确定的条件下,执行数据存储控制操作,所述数据存储控制操作用于导致代表所确定的所述时钟时间应用区间的时钟时间应用区间码被存储;以及
    所述可变物理参数和所述时钟时间分别属于物理参数类型和时钟时间类型,其中所述物理参数类型不同于所述时钟时间类型。
  12. 如权利要求10所述的方法,其中:
    所述方法进一步包含下列步骤:
    提供定时器,其中感测所述时钟时间的步骤藉由使用所述定时器而被执行;以及
    执行与所述时钟时间应用区间相关的测量应用功能;
    所述定时器符合定时器规格,其中所述测量值应用范围基于所述定时器规格而被默认;
    所述定时器规格包含用于表示全测量值范围的全测量值范围表示,其中所述测量值应用范围等于所述全测量值范围的第一部分;
    所述测量应用功能符合与所述时钟时间应用区间相关的测量应用功能规格;
    所述测量值以指定测量值格式而被获得,其中所述指定测量值格式基于指定比特数目而被特征化;
    所述时钟时间进一步基于额定时钟时间区间而被特征化,其中所述额定时钟时间区间由额定测量值范围所代表,并包含由多个不同测量值参考范围所分别代表的多个不同时钟时间参考区间;
    所述多个不同时钟时间参考区间包含所述时钟时间应用区间;
    所述测量应用功能规格包含所述定时器规格、用于表示所述额定时钟时间区间的额定时钟时间区间表示、和用于表示所述时钟时间应用区间的时钟时间应用区间表示;
    所述额定测量值范围等于所述全测量值范围的至少第二部分,基于所述定时器规格、所述测量应用功能规格和第一数据编码规则的其中之一来用所述指定测量值格式而被预设,具有额定范围界限值对,并包含由多个不同测量值参考范围码所分别代表的所述多个不同测量值参考范围,其中所述额定范围界限值对用所述指定测量值格式而被预设,且所述多个不同测量值参考范围包含所述测量值应用范围;
    所述第一数据编码规则用于转换所述额定时钟时间区间表示,并基于所述定时器规格而被制定;
    所述测量值应用范围由包含于所述多个不同测量值参考范围码中的测量值应用范围码所代表,具有应用范围界限值对,并基于所述定时器规格、所述测量应用功能规格和第二数据编码规则的其中之一来用所述指定测量值格式而被预设,其中所述多个不同测量值参考范围码皆基于所述测量应用功能规格而被默认;
    所述第二数据编码规则用于转换所述时钟时间应用区间表示,并基于所述定时器规格而被制定;
    所述应用范围界限值对包含第一应用范围界限值和相对于所述第一应用范围界限值的第二应用范围界限值;
    所述方法进一步包含下列步骤:
    提供存储空间;以及
    在所述存储空间中存储所预设的所述额定范围界限值对和可变时钟时间区间码;
    当触发事件发生时,所述可变时钟时间区间码等于选择自所述多个不同测量值参考范围码的特定测量值范围码,其中所述特定测量值范围码指示基于感测操作而被先前确定的特定时钟时间区间,所述特定时钟时间区间选择自所述多个不同时钟时间参考区间,且由所述定时器所执行的所述感测操作用于感测所述时钟时间;
    在所述触发事件发生之前,所述特定测量值范围码被指定到所述可变时钟时间区间码;
    所述方法进一步包含下列步骤:
    响应所述触发事件,接收操作请求信号;
    在所述触发事件发生的条件下,响应所述操作请求信号来从所述存储空间获得操作参考数据码;以及
    藉由运行数据确定程序来执行使用所述操作参考数据码的数据确定,确定选择自所述多个不同测量值参考范围码的所述测量值应用范围码以便从所述多个不同测量值参考范围中选择所述测量值应用范围;
    所述操作参考数据码相同于基于所述测量应用功能规格而被默认的可允许参考数据码;
    所述数据确定程序基于所述测量应用功能规格而被建构;
    所述数据确定是第一数据确定操作和第二数据确定操作的其中之一;
    在所述操作参考数据码藉由接入被存储在所述存储空间中的所述可变时钟时间区间码而被获得以相同于所述特定测量值范围码的条件下,是所述第一数据确定操作的所述数据确定基于所获得的所述特定测量值范围码来确定所述测量值应用范围码,其中所述第一数据确定操作是使用所获得的所述特定测量值范围码的第一科学计算,且所确定的所述测量值应用范围码相同或不同于所获得的所述特定测量值范围码;
    在所述操作参考数据码藉由接入被存储在所述存储空间中的所述额定范围界限值对而被获得以相同于所预设的所述额定范围界限值对的条件下,是所述第二数据确定操作的 所述数据确定藉由执行使用所述测量值和所获得的所述额定范围界限值对的第二科学计算来从所述多个不同测量值参考范围码中选择所述测量值应用范围码以确定所述测量值应用范围码,其中所述第二科学计算基于特定经验公式而被执行,且所述特定经验公式基于所预设的所述额定范围界限值对和所述多个不同测量值参考范围码而被预先制定;
    所述方法进一步包含下列步骤:
    基于所确定的所述测量值应用范围码,获得所述应用范围界限值对;
    基于所述测量值和所获得的所述应用范围界限值对之间的数据比较,检查所述数学关系以做出所述测量值是否为于所选择的所述测量值应用范围之内的逻辑决定;以及
    在所述逻辑决定是肯定的条件下,确定所述时钟时间目前所处于的所述时钟时间应用区间;
    所述方法进一步包含步骤:在所述特定测量值范围码不同于所确定的所述测量值应用范围码且所述时钟时间目前所处于的所述时钟时间应用区间藉由做出所述逻辑决定而被确定的条件下,基于等于所述特定测量值范围码的所述可变时钟时间区间码和所确定的所述测量值应用范围码之间的码差异来将所确定的所述测量值应用范围码指定到所述可变时钟时间区间码;
    所述可变物理参数进一步基于不同于所述物理参数目标状态的特定物理参数状态而被特征化;以及
    所述方法进一步包含下列步骤:
    提供按钮;
    在所述可变物理参数藉由检查所述第一数学关系而被导致处于所述物理参数目标状态的条件下,接收使用所述按钮的用户输入操作;以及
    响应所述使用者输入操作,产生用于导致所述可变物理参数离开所述物理参数目标状态以进入所述特定物理参数状态的操作信号。
PCT/CN2020/140745 2019-12-31 2020-12-29 用于控制可变物理参数的功能装置及方法 WO2021136253A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/788,866 US20230039885A1 (en) 2019-12-31 2020-12-29 Functional device and method for controlling variable physical parameter
CN202080091312.1A CN115398351A (zh) 2019-12-31 2020-12-29 用于控制可变物理参数的功能装置及方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911418652.6 2019-12-31
CN201911418652.6A CN113126481A (zh) 2019-12-31 2019-12-31 控制目标装置及用于控制可变物理参数的方法
CN202011556362.0 2020-12-24
CN202011556362.0A CN113126539A (zh) 2019-12-31 2020-12-24 用于控制可变物理参数的功能装置及方法

Publications (1)

Publication Number Publication Date
WO2021136253A1 true WO2021136253A1 (zh) 2021-07-08

Family

ID=76686534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140745 WO2021136253A1 (zh) 2019-12-31 2020-12-29 用于控制可变物理参数的功能装置及方法

Country Status (2)

Country Link
US (1) US20230039885A1 (zh)
WO (1) WO2021136253A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120483A1 (en) * 2004-12-07 2006-06-08 Mcalexander William I Heterodyne-based optical spectrum analysis using data clock sampling
CN101539983A (zh) * 2008-03-20 2009-09-23 上海锐帆信息科技有限公司 防冲突有源只读rfid的一种实现方法
CN103310565A (zh) * 2013-06-06 2013-09-18 南京邮电大学 基于rfid的全天候楼宇门禁智能防盗预警系统
CN103530271A (zh) * 2012-07-02 2014-01-22 苏州汉朗光电有限公司 一种电子标签系统用双核工作系统及方法
CN103745181A (zh) * 2013-12-31 2014-04-23 浙江网新技术有限公司 一种低频激活有源标签的防冲突方法
CN109472339A (zh) * 2018-11-23 2019-03-15 重庆京东方智慧电子系统有限公司 电子标签控制方法、电子标签及可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120483A1 (en) * 2004-12-07 2006-06-08 Mcalexander William I Heterodyne-based optical spectrum analysis using data clock sampling
CN101539983A (zh) * 2008-03-20 2009-09-23 上海锐帆信息科技有限公司 防冲突有源只读rfid的一种实现方法
CN103530271A (zh) * 2012-07-02 2014-01-22 苏州汉朗光电有限公司 一种电子标签系统用双核工作系统及方法
CN103310565A (zh) * 2013-06-06 2013-09-18 南京邮电大学 基于rfid的全天候楼宇门禁智能防盗预警系统
CN103745181A (zh) * 2013-12-31 2014-04-23 浙江网新技术有限公司 一种低频激活有源标签的防冲突方法
CN109472339A (zh) * 2018-11-23 2019-03-15 重庆京东方智慧电子系统有限公司 电子标签控制方法、电子标签及可读存储介质

Also Published As

Publication number Publication date
US20230039885A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
CN103995607B (zh) 控制方法、控制装置及被控方法和被控装置
CN109416676B (zh) 用于确定电子设备的角色的方法及其电子设备
US20140141761A1 (en) Method for controlling portable device by using humidity sensor and portable device thereof
US20200241486A1 (en) Electronic device and method for determining task including plural actions
WO2021136253A1 (zh) 用于控制可变物理参数的功能装置及方法
WO2021136374A1 (zh) 用于控制可变物理参数的控制目标装置及方法
TWI741471B (zh) 控制目標裝置及用於控制可變物理參數的方法
TWI791391B (zh) 用於控制可變物理參數的控制裝置及系統及方法
TWI734334B (zh) 控制目標裝置及用於控制可變物理參數的方法
TWI734335B (zh) 用於控制可變物理參數的控制裝置及方法
WO2021136260A1 (zh) 用于控制可变物理参数的控制装置及方法
CN110462561B (zh) 基于雷达的力感测
TWI798812B (zh) 用於控制照明裝置的控制裝置及方法
TWI742502B (zh) 用於控制可變物理參數的控制裝置及方法
KR20230026273A (ko) 환경 센서를 커미셔닝하기 위한 방법 및 시스템
KR102263226B1 (ko) Nfc 센서를 이용한 일정 관리 방법 및 장치
TWI775592B (zh) 用於控制照明裝置的控制裝置及方法
TW202314412A (zh) 及方法
CN113126486B (zh) 用于控制可变物理参数的控制装置及方法
CN113126482A (zh) 控制目标装置及用于控制可变物理参数的方法
TWI787893B (zh) 用於控制可變物理參數的功能裝置及方法
KR102443782B1 (ko) 미래 상호작용 예측 기반의 타겟 사용자 예측 방법 및 시스템
WO2017199356A1 (ja) ジェスチャ認識装置、ジェスチャ認識パターン情報のキャリブレーション方法、及びそれを用いた通信端末
CN105554378A (zh) 控制方法、控制装置及电子装置
KR20240042720A (ko) 터치 기능이 구비된 전자 장치 및 그의 터치 감도 복원 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909894

Country of ref document: EP

Kind code of ref document: A1