WO2021136374A1 - 用于控制可变物理参数的控制目标装置及方法 - Google Patents

用于控制可变物理参数的控制目标装置及方法 Download PDF

Info

Publication number
WO2021136374A1
WO2021136374A1 PCT/CN2020/141401 CN2020141401W WO2021136374A1 WO 2021136374 A1 WO2021136374 A1 WO 2021136374A1 CN 2020141401 W CN2020141401 W CN 2020141401W WO 2021136374 A1 WO2021136374 A1 WO 2021136374A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
physical parameter
measurement value
target range
measurement
Prior art date
Application number
PCT/CN2020/141401
Other languages
English (en)
French (fr)
Inventor
钟国诚
Original Assignee
钟国诚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911410185.2A external-priority patent/CN113126486B/zh
Priority claimed from CN201911421090.0A external-priority patent/CN113126482A/zh
Priority claimed from CN201911418652.6A external-priority patent/CN113126481A/zh
Application filed by 钟国诚 filed Critical 钟国诚
Priority to CN202080091274.XA priority Critical patent/CN114930255A/zh
Publication of WO2021136374A1 publication Critical patent/WO2021136374A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Definitions

  • the present disclosure relates to a control target device, and more particularly to a control target device and method for controlling a variable physical parameter.
  • a control device can generate a control signal to control a functional target included in a control target device.
  • the control target device uses the control signal to control the functional target.
  • the functional target can use at least one of a mechanical energy, an electrical energy, and a light energy, and can be an electric motor for an access control, a relay for an electric power control, and an energy conversion. One of the energy converters.
  • the control target device can obtain a measurement value provided based on a variable physical parameter.
  • the control target device may require an improved mechanism to effectively use the measured value and thereby effectively control the functional target.
  • U.S. Patent No. 2015/0357887 A1 discloses a product specification setting device and a fan engine equipped with it.
  • U.S. Patent No. 7,411,505 Announcement B2 discloses a switch state and radio frequency identification tag.
  • An object of the present disclosure is to provide a control target device that relies on a control signal and a measurement value provided based on a variable physical parameter to effectively control the variable physical parameter.
  • An embodiment of the present disclosure is to provide a control target device for controlling a variable physical parameter.
  • the variable physical parameter is characterized based on a physical parameter target range and a physical parameter application range different from the physical parameter target range, and one of the physical parameter target range and the physical parameter application range is measured by The value indicates what the range represents.
  • the control target device includes a sensing unit and an operation unit. The sensing unit senses the variable physical parameter to generate a first sensing signal.
  • the operating unit is coupled to the sensing unit, and responds to the first sensing signal to obtain a first measurement value under the condition that the operating unit receives a control signal that functions to indicate the target range of the physical parameter, And under the condition that the operating unit determines the physical parameter application range that the variable physical parameter is currently in by checking the first mathematical relationship between the first measurement value and the measurement value indication range, Causing the variable physical parameter to enter the physical parameter target range.
  • Another embodiment of the present disclosure is to provide a method for controlling a variable physical parameter by generating a functional signal, wherein the variable physical parameter is based on a physical parameter target range and a physical parameter that is different from the physical parameter target range.
  • the parameter application range is characterized, and one of the physical parameter target range and the physical parameter application range is represented by a measurement value indication range.
  • the method includes the following steps: sensing the variable physical parameter to generate a first sensing signal; responding to the first sensing signal under the condition that a control signal that functions to indicate a target range of the physical parameter is received Measuring signals to obtain a first measurement value; performing a relationship check for checking the first mathematical relationship between the first measurement value and the measurement value indicating range; and determining the variable physical relationship based on the relationship check
  • the physical parameter relationship between the parameter and the application range of the physical parameter is used to make a reasonable decision whether the functional signal for causing the variable physical parameter to enter the target range of the physical parameter is to be generated.
  • Another embodiment of the present disclosure is to provide a method for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target range and a physical parameter application range different from the physical parameter target range And one of the physical parameter target range and the physical parameter application range is represented by a measurement value indication range.
  • the method includes the following steps: sensing the variable physical parameter to generate a first sensing signal; responding to the first sensing signal under the condition that a control signal that functions to indicate a target range of the physical parameter is received Measuring a signal to obtain a first measurement value; and by checking the first mathematical relationship between the first measurement value and the measurement value indication range in the application range of the physical parameter where the variable physical parameter is currently Under the determined condition, the variable physical parameter is caused to enter the target range of the physical parameter.
  • Figure 1 is a schematic diagram of a control system in various embodiments of the present disclosure.
  • Fig. 2 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 3 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 4 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 5 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 6 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 7 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 8 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 9 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 10 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 11 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 12 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 13 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 14 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 15 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 16 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 17 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 18 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 19 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 20 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 21 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 22 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 23 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 24 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 25 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 26 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 27 A schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 28 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 29 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 30 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 31 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 32 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 33 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 34 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 35 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 36 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 37 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 38 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 39 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 40 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 41 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 42 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 43 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 44 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 45 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 46 A schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 47 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 48 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 49 A schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 50 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 51 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 52 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 53 A schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 54 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 55 A schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 56 A schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 57 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 58 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 59 A schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 60 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 61 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 62 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 63 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 64 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 65 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 66 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 67 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 68 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 69 A schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 70 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • FIG. 71 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • Fig. 72 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 73 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 74 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • FIG. 75 is a schematic diagram of an implementation structure of the control system shown in FIG. 1.
  • Fig. 76 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 77 A schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 78 A schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 79 A schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 80 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 81 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 82 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 83 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 84 A schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 85 A schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 86 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • Fig. 87 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.
  • FIG. 1 is a schematic diagram of a control system 861 in various embodiments of the present disclosure.
  • the control system 861 includes a control target device 130 and a control device 212 for controlling the control target device 130.
  • the variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET and a physical parameter application range RD1EJ different from the physical parameter target range RD1ET.
  • One of the physical parameter target range RD1ET and the physical parameter application range RD1EJ is represented by a measurement value indication range RN1G.
  • the control target device 130 includes a sensing unit 334 and an operating unit 397.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a first sensing signal SN81.
  • the operating unit 397 is coupled to the sensing unit 334. Under the condition that the operating unit 397 receives a control signal SC81 that functions to indicate the physical parameter target range RD1ET, the operating unit 397 obtains a first measurement value VN81 in response to the first sensing signal SN81 . The operating unit 397 determines the physical parameter application that the variable physical parameter QU1A is currently in by checking a first mathematical relationship KG81 between the first measurement value VN81 and the measurement value indication range RN1G Under the condition of the range RD1EJ, the operating unit 397 causes the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the variable physical parameter QU1A is related to a variable time length LF8A.
  • the operating unit 397 receives the control signal SC81 from a control device 212, and includes a timer 339 for measuring the variable time length LF8A.
  • the variable time length LF8A is characterized based on a time length reference range HJ81 and a reference time length LJ8T.
  • the time length reference range HJ81 is represented by a measurement time length value range GJ81.
  • the reference time length LJ8T is represented by a measured time length value CL8T.
  • the control device 212 is one of a mobile device and a remote controller. Under the condition that the control device 212 is the remote controller, the control signal SC81 is an optical signal. The control signal SC81 conveys the measurement time length value CL8T.
  • the operating unit 397 is configured to obtain the measurement time length value CL8T from the control signal SC81, and to check a numerical relationship between the obtained measurement time length value CL8T and the measurement time length value range GJ81 KJ81 makes a logical decision PE81 for controlling whether a counting operation BC8T for a specific time TJ8T is to be executed. For example, under the condition that the control device 212 is the mobile device, the operation unit 397 receives the control signal SC81 from the control device 212 via a wireless link LK81, or the control signal SC81 is a radio signal.
  • the operation unit 397 uses the timer 339 to perform the counting operation BC8T based on the obtained measurement time length value CL8T.
  • the operating unit 397 reaches the specific time TJ8T based on the counting operation BC8T , And execute a signal generating operation BY91 for causing the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the physical parameter application range RD1EL within the specific time TJ8T.
  • FIG. 3 is a schematic diagram of an implementation structure 8612 of the control system 861 shown in FIG. 1.
  • FIG. 4 is a schematic diagram of an implementation structure 8613 of the control system 861 shown in FIG. 1.
  • each of the implementation structure 8612 and the implementation structure 8613 includes the control device 212 and the control target device 130.
  • the control target device 130 includes the sensing unit 334 and the operation unit 397.
  • the physical parameter application range RD1EJ is represented by the measurement value indication range RN1G.
  • the measurement value indication range RN1G is equal to a measurement value application range RN1L.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value indication range RN1G.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E.
  • the first measurement value VN81 is obtained in a designated measurement value format HH81.
  • the physical parameter target range RD1ET is represented by a measured value target range RN1T.
  • the measurement value target range RN1T and the measurement value application range RN1L are both preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the specified measurement value format HH81.
  • the measurement value target range RN1T and the measurement value application range RN1J respectively have a target range limit value pair DN1T and an application range limit value pair DN1L.
  • the control signal SC81 conveys the target range limit value pair DN1T, the application range limit value pair DN1L and a control code CC1T.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the target range limit value pair DN1T.
  • the operating unit 397 obtains the application range limit value pair DN1L from the control signal SC81, and compares the first measurement value VN81 with the obtained application range limit value pair DN1L to check a second mathematical relationship KV81 between the first measurement value VN81 and the measurement value application range RN1L to determine whether the first measurement value VN81 is within the measurement value application range RN1L
  • the first logic determines PB81. Under the condition that the first logical decision PB81 is affirmative, the operating unit 397 determines the physical parameter application range RD1EJ in which the variable physical parameter QU1A is currently located. For example, the first mathematical relationship KG81 is equal to the second mathematical relationship KV81.
  • the operating unit 397 obtains the target range limit value pair DN1T from the control signal SC81. Under the condition that the operating unit 397 determines that the variable physical parameter QU1A is currently in the physical parameter application range RD1EL, the operating unit 397 compares the obtained target range limit value pair DN1T with the obtained The application range limit value pair DN1L to check a range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L to make the obtained target range limit value pair DN1T and the obtained A second logic determines whether the application range limit value of DN1L is equal to PY81.
  • the operating unit 397 recognizes that the range relationship KE8A is a range difference relationship to determine the difference between the physical parameter target range RD1ET and the physical parameter application range RD1EJ A range of difference DB81.
  • the operating unit 397 obtains the control code CC1T from the control signal SC81.
  • the operating unit 397 executes a signal generation control GY81 based on the obtained control code CC1T to generate a signal for causing the variable physical parameter QU1A to enter A functional signal SG81 of the physical parameter target range RD1ET.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a second sensing Signal SN82.
  • the operating unit 397 receives the control signal SC81 from the control device 212, and responds to the second sensing signal SN82 within a specified time TG82 after the operating time TF81 to obtain the specified measurement value format HH81 A second measured value VN82.
  • the operating unit 397 determines the current variable physical parameter QU1A by comparing the second measured value VN82 with the obtained target range limit value pair DN1T. Under the condition of the physical parameter target range RD1ET, the operating unit 397 transmits a control response signal SE81 in response to the control signal SC81 to the control device 212, and executes a data storage control operation GU81.
  • the control response signal SE81 transmits the second measured value VN82.
  • the control response signal SE81 is used by the control device 212 to perform a specific actual operation BJ81 related to the variable physical parameter QU1A.
  • the data storage control operation GU81 is used to cause a physical parameter target range code UN8T representing the determined physical parameter target range RD1ET to be recorded.
  • FIG. 5 is a schematic diagram of an implementation structure 8614 of the control system 861 shown in FIG. 1.
  • FIG. 6 is a schematic diagram of an implementation structure 8615 of the control system 861 shown in FIG. 1.
  • each of the implementation structure 8614 and the implementation structure 8615 includes the control device 212 and the control target device 130.
  • the control target device 130 includes the sensing unit 334, the operating unit 397, and a functional unit 335 coupled to the operating unit 397.
  • the functional unit 335 is a physical parameter application unit.
  • the physical parameter application range RD1EJ corresponds to the physical parameter target range RD1ET, and is equal to a corresponding physical parameter range RY1ET.
  • the corresponding physical parameter range RY1ET is represented by a corresponding measurement value range RX1T.
  • the physical parameter target range RD1ET is represented by the measurement value indication range RN1G.
  • the measurement value indication range RN1G is equal to a measurement value target range RN1T.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value indication range RN1G.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E.
  • the first measurement value VN81 is obtained in a designated measurement value format HH81.
  • the variable physical parameter QU1A is further characterized based on a rated physical parameter range RD1E.
  • the rated physical parameter range RD1E includes the physical parameter target range RD1ET and the physical parameter application range RD1EJ, and is represented by a rated measurement value range RD1N.
  • the measurement value target range RN1T, the corresponding measurement value range RX1T, and the rated measurement value range RD1N are all based on one of the sensor measurement range representation GW8R and the sensor specification FU11 to use the specified measurement value format HH81 is preset.
  • the measurement value target range RN1T and the rated measurement value range RD1N respectively have a target range limit value pair DN1T and a rated range limit value pair DD1A.
  • the control signal SC81 conveys the target range limit value pair DN1T, the rated range limit value pair DD1A and a control code CC1T.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the target range limit value pair DN1T.
  • the operating unit 397 obtains the target range limit value pair DN1T from the control signal SC81, and performs a check for checking the target range limit value pair DN1T by comparing the first measurement value VN81 with the obtained target range limit value pair DN1T A first check operation BV51 of a second mathematical relationship KV51 between the first measurement value VN81 and the measurement value target range RN1T.
  • the first mathematical relationship KG81 is equal to the second mathematical relationship KV51.
  • the operation unit 397 determines whether the first measurement value VN81 is within the corresponding measurement value range RX1T based on the first check operation BV51 to make a logical decision PB51, and then The logical decision PB51 is to determine the corresponding physical parameter range RY1ET where the variable physical parameter QU1A is currently located.
  • the operating unit 397 obtains the rated range limit value pair DD1A from the control signal SC81, and performs a check for checking the rated range limit value pair DD1A by comparing the first measured value VN81 with the obtained rated range limit value pair DD1A
  • the operation unit 397 includes a button 3801, further makes the logical decision PB51 based on the second check operation BM51, and obtains the control code CC1T from the control signal SC81. Under the condition that the operating unit 397 determines that the variable physical parameter QU1A is currently in the corresponding physical parameter range RY1ET, the operating unit 397 executes a signal generation control GY81 based on the obtained control code CC1T.
  • a first functional signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET is transmitted to the functional unit 335.
  • the first function signal SG81 is an operation signal.
  • the functional unit 335 has the variable physical parameter QU1A.
  • the variable physical parameter QU1A is characterized based on a specific physical parameter range RD1E5 that is different from the physical parameter target range RD1ET.
  • the operating unit 397 receives a use of the button 3801 The user enters the operation BQ81.
  • the operating unit 397 transmits to the functional unit 335 a first part for causing the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5
  • Two function signal SG82 is an operation signal.
  • a method MT80 for controlling the variable physical parameter QU1A is disclosed.
  • the variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET and a physical parameter application range RD1EJ different from the physical parameter target range RD1ET.
  • One of the physical parameter target range RD1ET and the physical parameter application range RD1EJ is represented by a measurement value indication range RN1G.
  • the method MT80 includes the following steps: sensing the variable physical parameter QU1A to generate a first sensing signal SN81; under the condition that a control signal SC81 that functions to indicate the physical parameter target range RD1ET is received , In response to the first sensing signal SN81 to obtain a first measurement value VN81; and in the physical parameter application range RD1EJ where the variable physical parameter QU1A is currently located, by checking the first measurement value VN81 and the Under the condition that a first mathematical relationship KG81 between the measurement value indicating ranges RN1G is determined, the variable physical parameter QU1A enters the physical parameter target range RD1ET.
  • the variable physical parameter QU1A is related to a variable time length LF8A.
  • the method MT80 further includes a step of providing a timer 339 for measuring the variable time length LF8A.
  • the variable time length LF8A is characterized based on a time length reference range HJ81 and a reference time length LJ8T.
  • the time length reference range HJ81 is represented by a measurement time length value range GJ81.
  • the reference time length LJ8T is represented by a measured time length value CL8T.
  • the control signal SC81 is received from a control device 212, and the measurement time length value CL8T is transmitted.
  • the control device 212 is one of a mobile device and a remote controller. Under the condition that the control device 212 is the remote controller, the control signal SC81 is an optical signal.
  • the method MT80 further includes the following steps: obtaining the measurement time length value CL8T from the control signal SC81; and checking a value between the obtained measurement time length value CL8T and the measurement time length value range GJ81
  • the relationship KJ81 is used to make a logical decision PE81 for controlling whether a counting operation BC8T for a specific time TJ8T is to be executed. For example, under the condition that the control device 212 is the mobile device, the control signal SC81 is received from the control device 212 via a wireless link LK81, or the control signal SC81 is a radio signal.
  • the method MT80 further includes the following steps: under the condition that the logical decision PE81 is affirmative, make the timer 339 execute the counting operation BC8T based on the obtained measurement time length value CL8T;
  • the variable physical parameter QU1A is configured based on the control signal SC81 to reach the specific time TJ8T based on the counting operation BC8T under the condition that the physical parameter target range RD1ET is within the physical parameter target range RD1ET; and during the specific time TJ8T Inside, a signal generating operation BY91 for causing the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the physical parameter application range RD1EL is performed.
  • the physical parameter application range RD1EJ is represented by the measurement value indication range RN1G, wherein the measurement value indication range RN1G is equal to a measurement value application range RN1L.
  • the method MT80 further includes a step of providing a sensing unit 334.
  • the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value indication range RN1G.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E.
  • the first measurement value VN81 is obtained in a designated measurement value format HH81.
  • the physical parameter target range RD1ET is represented by a measured value target range RN1T.
  • the measurement value target range RN1T and the measurement value application range RN1L are both preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the specified measurement value format HH81.
  • the measurement value target range RN1T and the measurement value application range RN1J respectively have a target range limit value pair DN1T and an application range limit value pair DN1L.
  • the control signal SC81 conveys the target range limit value pair DN1T, the application range limit value pair DN1L and a control code CC1T.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the target range limit value pair DN1T.
  • the method MT80 further includes a step of obtaining the application range limit value pair DN1L, the target range limit value pair DN1T, and the control code CC1T from the control signal SC81.
  • the step of causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET includes the following sub-steps: by comparing the first measured value VN81 with the obtained application range limit value pair DN1L, check a second mathematical relationship KV81 between the first measurement value VN81 and the measurement value application range RN1L to determine whether the first measurement value VN81 is within the measurement value application range RN1L A first logical decision PB81, wherein the first mathematical relationship KG81 is equal to the second mathematical relationship KV81; and under the condition that the first logical decision PB81 is affirmative, it is determined that the variable physical parameter QU1A is currently in The physical parameter application range is RD1EJ.
  • the step of causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET further includes the following sub-steps: Under the condition that the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located is determined, by Compare the obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L to check a range relationship KE8A between the measured value target range RN1T and the measured value application range RN1L to do A second logical decision PY81 to determine whether the obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L are equal; under the condition that the second logical decision PY81 is negative, the identification
  • the range relationship KE8A is a range difference relationship to determine a range difference DB81 between the physical parameter target range RD1ET and the physical parameter application range RD1EJ; and under the condition that the range difference DB81 is determined, based on
  • the obtained control code CC1T executes a signal generation control G
  • the method MT80 further includes the following steps: after the signal generation control GY81 is executed within an operating time TF81, by using the sensing unit 334 to sense the variable physical parameter QU1A to generate a first Two sensing signals SN82; within a designated time TG82 after the operating time TF81, responding to the second sensing signal SN82 to obtain a second measurement value VN82 in the designated measurement value format HH81; and
  • the target range RD1ET of the physical parameter that the variable physical parameter QU1A is currently in is determined within the specified time TG82 by comparing the second measured value VN82 with the obtained target range limit value pair DN1T Under conditions, a control response signal SE81 in response to the control signal SC81 is transmitted to the control device 212, and a data storage control operation GU81 is executed.
  • control response signal SE81 transmits the second measured value VN82.
  • the control response signal SE81 is used by the control device 212 to perform a specific actual operation BJ81 related to the variable physical parameter QU1A.
  • the data storage control operation GU81 is used to cause a physical parameter target range code UN8T representing the determined physical parameter target range RD1ET to be recorded.
  • the physical parameter application range RD1EJ corresponds to the physical parameter target range RD1ET, and is equal to a corresponding physical parameter range RY1ET.
  • the corresponding physical parameter range RY1ET is represented by a corresponding measurement value range RX1T.
  • the physical parameter target range RD1ET is represented by the measurement value indication range RN1G.
  • the measurement value indication range RN1G is equal to a measurement value target range RN1T.
  • the method MT80 further includes a step of providing a sensing unit 334.
  • the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value indication range RN1G.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E.
  • the first measurement value VN81 is obtained in a designated measurement value format HH81.
  • the variable physical parameter QU1A is further characterized based on a rated physical parameter range RD1E.
  • the rated physical parameter range RD1E includes the physical parameter target range RD1ET and the physical parameter application range RD1EJ, and is represented by a rated measurement value range RD1N.
  • the measurement value target range RN1T, the corresponding measurement value range RX1T, and the rated measurement value range RD1N are all based on one of the sensor measurement range representation GW8R and the sensor specification FU11 to use the specified measurement value format HH81 is preset.
  • the measurement value target range RN1T and the rated measurement value range RD1N respectively have a target range limit value pair DN1T and a rated range limit value pair DD1A.
  • the control signal SC81 conveys the target range limit value pair DN1T, the rated range limit value pair DD1A and a control code CC1T.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the target range limit value pair DN1T.
  • the method MT80 further includes a step of obtaining the target range limit value pair DN1T, the rated range limit value pair DD1A, and the control code CC1T from the control signal SC81.
  • the step of causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET includes the following sub-steps: by comparing the first measured value VN81 with the obtained target range limit value pair DN1T , Perform a first check operation BV51 for checking a second mathematical relationship KV51 between the first measurement value VN81 and the measurement value target range RN1T, wherein the first mathematical relationship KG81 is equal to the second Mathematical relationship KV51; based on the first check operation BV51, a logical decision PB51 is made whether the first measurement value VN81 is within the corresponding measurement value range RX1T; the condition that the logical decision PB51 is affirmative Under the condition that the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently located is determined; and under the condition that the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently located is determined, based on the obtained The control code CC1T executes a signal
  • the method MT80 further includes the step of: by comparing the first measured value VN81 with the obtained rated range limit value pair DD1A, performing a check for checking the first measured value VN81 and the rated range RD1N A third mathematical relationship between KM51 and a second check operation BM51.
  • the sub-step of making the logical decision PB51 based on the first inspection operation BV51 includes sub-steps: making the logical decision PB51 based on the first inspection operation BV51 and the second inspection operation BM51.
  • the variable physical parameter QU1A is characterized based on a specific physical parameter range RD1E5 that is different from the physical parameter target range RD1ET.
  • the method MT80 further includes the following steps: providing a button 3801; under the condition that the variable physical parameter QU1A is caused to be in the physical parameter target range RD1ET by checking the first mathematical relationship KG81, receiving the used data A user input operation BQ81 of the button 3801; and in response to the user input operation BQ81, a second parameter for causing the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5 is generated.
  • Two function signal SG82 Two function signal SG82.
  • FIG. 7 is a schematic diagram of an implementation structure 8616 of the control system 861 shown in FIG. 1.
  • a method MT82 for controlling a variable physical parameter QU1A by generating a function signal SG81 is disclosed.
  • the variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET and a physical parameter application range RD1EJ different from the physical parameter target range RD1ET.
  • One of the physical parameter target range RD1ET and the physical parameter application range RD1EJ is represented by a measurement value indication range RN1G.
  • the method MT82 includes the following steps: the sensing unit 334 senses the variable physical parameter QU1A to generate a first sensing signal SN81; a control signal that functions to indicate the target range RD1ET of the physical parameter Under the condition that SC81 is received by the operating unit 397, the operating unit 397 responds to the first sensing signal SN81 to obtain a first measured value VN81; the operating unit 397 executes for checking the first measured value A relationship check ZV81 of a first mathematical relationship KG81 between VN81 and the measurement value indication range RN1G; and the operating unit 397 checks ZV81 based on the relationship, and determines the variable physical parameter QU1A and the physical parameter A physical parameter relationship KC81 between the ranges RD1EJ is applied to make a reasonable decision PW81 for whether the function signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET is to be generated.
  • the variable physical parameter QU1A is related to a variable time length LF8A.
  • the method MT82 further includes a step: the operating unit 397 provides a timer 339 for measuring the variable time length LF8A.
  • the variable time length LF8A is characterized based on a time length reference range HJ81 and a reference time length LJ8T.
  • the time length reference range HJ81 is represented by a measurement time length value range GJ81.
  • the reference time length LJ8T is represented by a measured time length value CL8T.
  • the control signal SC81 is received by the operating unit 397 from a control device 212, and the measurement time length value CL8T is transmitted.
  • the control device 212 is one of a mobile device and a remote controller. Under the condition that the control device 212 is the remote controller, the control signal SC81 is an optical signal.
  • the method MT82 further includes the following steps: the operation unit 397 obtains the measurement time length value CL8T from the control signal SC81; and the operation unit 397 checks the obtained measurement time length value CL8T and the measurement A numerical relationship KJ81 between the time length value range GJ81 is used to make a logical decision PE81 for controlling whether a counting operation BC8T for a specific time TJ8T is to be executed.
  • the control signal SC81 is received by the operation unit 397 from the control device 212 through a wireless link LK81, or the control signal SC81 is a Radio signal.
  • the method MT82 further includes the following steps: under the condition that the logical decision PE81 is affirmative, the operation unit 397 causes the timer 339 to perform the counting operation BC8T based on the obtained measurement time length value CL8T Under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1ET based on the control signal SC81, the operating unit 397 arrives at the specific time based on the counting operation BC8T TJ8T; and within the specific time TJ8T, the operating unit 397 performs a signal generating operation for causing the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the physical parameter application range RD1EL BY91.
  • the physical parameter application range RD1EJ is represented by the measurement value indication range RN1G.
  • the measurement value indication range RN1G is equal to a measurement value application range RN1L.
  • the method MT82 further includes a step: the control target device 130 provides a sensing unit 334.
  • the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value indication range RN1G.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E.
  • the first measurement value VN81 is obtained in a designated measurement value format HH81.
  • the physical parameter target range RD1ET is represented by a measured value target range RN1T.
  • the measurement value target range RN1T and the measurement value application range RN1L are both preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the specified measurement value format HH81.
  • the measurement value target range RN1T and the measurement value application range RN1J respectively have a target range limit value pair DN1T and an application range limit value pair DN1L.
  • the control signal SC81 conveys the target range limit value pair DN1T, the application range limit value pair DN1L, and a control code CC1T.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the target range limit value pair DN1T.
  • the method MT82 further includes a step: the operating unit 397 obtains the application range limit value pair DN1L, the target range limit value pair DN1T, and the control code CC1T from the control signal SC81.
  • the step of performing the relationship check ZV81 includes a sub-step: by comparing the first measurement value VN81 with the obtained application range limit value pair DN1L, checking the first measurement value VN81 and the measurement value application A second mathematical relationship KV81 between the range RN1L.
  • the first mathematical relationship KG81 is equal to the second mathematical relationship KV81.
  • the step of determining the physical parameter relationship KC81 to make the reasonable decision PW81 includes the following sub-steps: the operating unit 397 checks ZV81 based on the relationship, and determines whether the first measured value VN81 is the measured value A first logical decision PB81 within the application range RN1L; and under the condition that the first logical decision PB81 is affirmative, the operating unit 397 determines the physical location where the variable physical parameter QU1A is currently located Parameter application range RD1EJ. For example, under the condition that the first logical decision PB81 is affirmative, the operating unit 397 recognizes that the physical parameter relationship KC81 is a physical parameter of the physical parameter application range RD1EJ including the variable physical parameter QU1A Containment relationship.
  • the step of determining the physical parameter relationship KC81 to make the reasonable decision PW81 further includes the following sub-steps: the condition where the physical parameter application range RD1EL is currently determined by the operating unit 397 in the variable physical parameter QU1A
  • the operating unit 397 checks the measurement value target range RN1T and the measurement value application range RN1L by comparing the obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L.
  • the range relationship KE8A is recognized by the operating unit 397 as the range different relationship so that a range difference DB81 between the physical parameter target range RD1ET and the physical parameter application range RD1EJ is recognized by the operating unit 397 OK.
  • the method MT82 further includes the following steps: under the condition that the reasonable decision PW81 is affirmative, the operation unit 397 executes a signal generation control GY81 based on the obtained control code CC1T to generate A function signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET; and after the signal generation control GY81 is executed by the operating unit 397 within an operating time TF81, the The operating unit 397 senses the variable physical parameter QU1A by using the sensing unit 334 to generate a second sensing signal SN82.
  • the method MT82 further includes the following steps: the operating unit 397 responds to the second sensing signal SN82 within a specified time TG82 after the operating time TF81 to obtain a first measured value format HH81 Two measured values VN82; and the target range of physical parameters RD1ET in which the variable physical parameter QU1A is currently located within the specified time TG82 by comparing the second measured value VN82 with the target range obtained Under the condition that the threshold value is DN1T determined by the operating unit 397, the operating unit 397 transmits a control response signal SE81 in response to the control signal SC81 to the control device 212, and executes a data storage control operation GU81. For example, the control response signal SE81 transmits the second measured value VN82.
  • the control response signal SE81 is used by the control device 212 to perform a specific actual operation BJ81 related to the variable physical parameter QU1A.
  • the data storage control operation GU81 is used to cause a physical parameter target range code UN8T representing the determined physical parameter target range RD1ET to be recorded.
  • the physical parameter application range RD1EJ corresponds to the physical parameter target range RD1ET, and is equal to a corresponding physical parameter range RY1ET.
  • the corresponding physical parameter range RY1ET is represented by a corresponding measurement value range RX1T.
  • the physical parameter target range RD1ET is represented by the measurement value indication range RN1G.
  • the measurement value indication range RN1G is equal to a measurement value target range RN1T.
  • the method MT82 further includes a step of providing a sensing unit 334.
  • the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value indication range RN1G.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E.
  • the first measurement value VN81 is obtained in a designated measurement value format HH81.
  • the variable physical parameter QU1A is further characterized based on a rated physical parameter range RD1E.
  • the rated physical parameter range RD1E includes the physical parameter target range RD1ET and the physical parameter application range RD1EJ, and is represented by a rated measurement value range RD1N.
  • the measurement value target range RN1T, the corresponding measurement value range RX1T, and the rated measurement value range RD1N are all based on one of the sensor measurement range representation GW8R and the sensor specification FU11 to use the specified measurement value format HH81 is preset.
  • the measurement value target range RN1T and the rated measurement value range RD1N respectively have a target range limit value pair DN1T and a rated range limit value pair DD1A.
  • the control signal SC81 conveys the target range limit value pair DN1T, the rated range limit value pair DD1A, and a control code CC1T.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the target range limit value pair DN1T.
  • the method MT82 further includes the step: the operating unit 397 obtains the target range limit value pair DN1T, the rated range limit value pair DD1A, and the control code CC1T from the control signal SC81.
  • the step of performing the relationship check ZV81 includes a sub-step: the operating unit 397 performs a check for checking the first measurement value by comparing the first measurement value VN81 with the obtained target range limit value pair DN1T.
  • the first mathematical relationship KG81 is equal to the second mathematical relationship KV51.
  • the relationship check ZV81 is equal to the first check operation BV51.
  • the step of determining the physical parameter relationship KC81 to make the reasonable decision PW81 includes the following sub-steps: the operating unit 397 checks ZV81 based on the relationship, and makes whether the first measurement value VN81 is Is a logical decision PB51 within the corresponding measurement value range RX1T; and under the condition that the logical decision PB51 is affirmative, the operating unit 397 determines the corresponding physical parameter QU1A in which the variable physical parameter QU1A is currently The parameter range RY1ET can be affirmed by making the reasonable decision PW81.
  • the method MT82 further includes a step: the operating unit 397 compares the first measured value VN81 with the obtained rated range limit value pair DD1A, and executes a method for checking the first measured value VN81 and the A second check operation BM51 of a third mathematical relationship KM51 between the rated measurement value range RD1N.
  • the sub-step of making the logical decision PB51 based on the relationship check ZV81 includes a sub-step: the operating unit 397 makes the logical decision based on the first check operation BV51 and the second check operation BM51 PB51.
  • the method MT82 further includes a step: under the condition that the reasonable decision PW81 is affirmative, the operation unit 397 executes a signal generation control GY81 based on the obtained control code CC1T to generate a signal for causing the A first functional signal SG81 that changes the physical parameter QU1A into the physical parameter target range RD1ET.
  • the variable physical parameter QU1A is characterized based on a specific physical parameter range RD1E5 that is different from the physical parameter target range RD1ET.
  • the method MT82 further includes the following steps: the operating unit 397 provides a button 3801; the variable physical parameter QU1A is caused to be in the physical parameter by the operating unit 397 by checking the first mathematical relationship KG81 Under the condition of the target range RD1ET, the operation unit 397 receives a user input operation BQ81 using the button 3801; and the operation unit 397 responds to the user input operation BQ81 to generate the variable physical parameter QU1A A second function signal SG82 leaving the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5.
  • FIG. 8 is a schematic diagram of an implementation structure 9010 of the control system 861 shown in FIG. 1.
  • the implementation structure 9010 includes a control target device 130 and a control device 212 for controlling the control target device 130.
  • the control target device 130 includes a variable physical parameter QU1A, a sensing unit 334 and an operating unit 397.
  • the variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET represented by a measured value target range RN1T and a physical parameter application range RD1EL represented by a measured value application range RN1L.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a first sensing signal SN81.
  • the physical parameter application range RD1EJ is equal to the physical parameter application range RD1EL.
  • the physical parameter application range RD1EJ is represented by the measurement value indication range RN1G.
  • the measurement value indication range RN1G is equal to the measurement value application range RN1L.
  • the operating unit 397 is coupled to the sensing unit 334. Under the condition that the operation unit 397 receives a control signal SC81 that functions to indicate the measurement value target range RN1T, the operation unit 397 obtains a first measurement value VN81 in response to the first sensing signal SN81 .
  • the operating unit 397 determines the physical parameter application that the variable physical parameter QU1A is currently in by checking a second mathematical relationship KV81 between the first measurement value VN81 and the measurement value application range RN1L Under the condition of the range RD1EL, the operating unit 397 determines a range difference DS81 between the measurement value target range RN1T and the measurement value application range RN1L based on the control signal SC81 to cause the variable physical parameter QU1A Enter the physical parameter target range RD1ET.
  • the first mathematical relationship KG81 is equal to the second mathematical relationship KV81.
  • control signal SC81 functions to indicate the physical parameter target range RD1ET.
  • the operating unit 397 determines the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in by checking the second mathematical relationship KV81, the operating unit 397 is based on the control signal SC81 A range difference DB81 between the physical parameter target range RD1ET and the physical parameter application range RD1EL is determined to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to a sensing signal generated by the sensing unit 334 to generate HF81.
  • the first measurement value VN81 is obtained by the operation unit 397 in a designated measurement value format HH81.
  • the measurement value target range RN1T and the measurement value application range RN1L are preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the specified measurement value format HH81.
  • the measurement value target range RN1T and the measurement value application range RN1L are both preset based on the sensor measurement range indication GW8R and the sensor sensitivity indication GW81 in the specified measurement value format HH81.
  • the measurement value target range RN1T and the measurement value application range RN1L respectively have a target range limit value pair DN1T and an application range limit value pair DN1L.
  • the control signal SC81 conveys the target range limit value pair DN1T, the application range limit value pair DN1L and a control code CC1T.
  • control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the target range limit value pair DN1T.
  • the operating unit 397 obtains the application range limit value pair DN1L from the control signal SC81, and checks the second application range limit value pair DN1L by comparing the first measurement value VN81 with the obtained application range limit value pair DN1L
  • the mathematical relationship KV81 is used to make a first logical decision PB81 whether the first measurement value VN81 is within the measurement value application range RN1L. Under the condition that the first logical decision PB81 is affirmative, the operating unit 397 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently.
  • the first measurement value VN81 is a physical parameter measurement value.
  • the operating unit 397 obtains the target range limit value pair DN1T from the control signal SC81. Under the condition that the operating unit 397 determines that the variable physical parameter QU1A is currently in the physical parameter application range RD1EL, the operating unit 397 compares the obtained target range limit value pair DN1T with the obtained The application range limit value pair DN1L to check a range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L to make the obtained target range limit value pair DN1T and the obtained A second logic determines whether the application range limit value of DN1L is equal to PY81.
  • the operating unit 397 recognizes that the range relationship KE8A is a range difference relationship to determine the range difference DS81.
  • the operating unit 397 obtains the control code CC1T from the control signal SC81.
  • the operating unit 397 executes a signal generation control GY81 based on the obtained control code CC1T to generate a signal for causing the variable physical parameter QU1A to enter A functional signal SG81 of the physical parameter target range RD1ET.
  • the function signal SG81 is one of an operation signal and a control signal.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a second sensing Signal SN82.
  • the operating unit 397 responds to the second sensing signal SN82 within a specified time TG82 after the operating time TF81 to obtain a second measurement value VN82 in the specified measurement value format HH81.
  • the operating unit 397 determines the current variable physical parameter QU1A by comparing the second measured value VN82 with the obtained target range limit value pair DN1T.
  • the operating unit 397 transmits a control response signal SE81 in response to the control signal SC81 to the control device 212 based on the measured value VN82, and performs a data storage control operation GU81.
  • the control response signal SE81 delivers the measured value VN82.
  • the data storage control operation GU81 is used to cause a physical parameter target range code UN8T representing the determined physical parameter target range RD1ET to be recorded.
  • the data storage control operation GU81 is a guarantee operation.
  • the variable physical parameter QU1A is related to a variable time length LF8A.
  • the operating unit 397 is used to measure the variable time length LF8A.
  • the variable time length LF8A is characterized based on a time length reference range HJ81 and a reference time length LJ8T.
  • the time length reference range HJ81 is represented by a measurement time length value reference range GJ81.
  • the reference time length LJ8T is represented by a measured time length value CL8T.
  • the control signal SC81 further conveys the measurement time length value CL8T.
  • the operating unit 397 is configured to obtain the measurement time length value CL8T from the control signal SC81, and to check a value between the obtained measurement time length value CL8T and the measurement time length value reference range GJ81
  • the relationship KJ81 is used to make a logical decision PE81 for controlling whether a counting operation BC8T for a specific time TJ8T is to be executed.
  • the operation unit 397 performs the counting operation BC8T based on the obtained measurement time length value CL8T.
  • the operating unit 397 reaches the specific time TJ8T based on the counting operation BC8T , And execute a signal generating operation BY91 for causing the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the physical parameter application range RD1EL within the specific time TJ8T.
  • FIG. 10 is a schematic diagram of an implementation structure 9012 of the control system 861 shown in FIG. 1.
  • FIG. 11 is a schematic diagram of an implementation structure 9013 of the control system 861 shown in FIG. 1.
  • FIG. 12 is a schematic diagram of an implementation structure 9014 of the control system 861 shown in FIG. 1.
  • FIG. 13 is a schematic diagram of an implementation structure 9015 of the control system 861 shown in FIG. 1.
  • FIG. 14 is a schematic diagram of an implementation structure 9016 of the control system 861 shown in FIG. 1. 10, 11, 12, 13 and 14, each of the implementation structure 9012, the implementation structure 9013, the implementation structure 9014, the implementation structure 9015, and the implementation structure 9016
  • the structure includes the control device 212 and the control target device 130.
  • the operating unit 397 is configured to execute a measurement application function FA81 related to the physical parameter application range RD1EL, and includes a processing unit 331 coupled to the sensing unit 334, and An input unit 337 of the processing unit 331 and an output unit 338 coupled to the processing unit 331.
  • the measurement application function FA81 is configured to comply with a measurement application function specification GAL8 related to the physical parameter application range RD1EL.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to a sensing signal generated by the sensing unit 334 to generate HF81.
  • the measurement application function FA81 is a physical parameter control function.
  • the measurement application function specification GAL8 is a physical parameter control function specification.
  • the processing unit 331 responds to the first sensing signal SN81 to obtain the first measurement value in a designated measurement value format HH81 VN81.
  • the specified measurement value format HH81 is characterized based on a specified number of bits UY81.
  • the sensing unit 334 senses the variable physical parameter QU1A to execute the sensing signal dependent on the sensor sensitivity YW81 to generate HF81, so The sensing signal generating HF81 is used to generate the first sensing signal SN81.
  • the processing unit 331 determines the range difference DS81 based on the control signal SC81, the processing unit 331 causes the output unit 240 to output for causing the variable physical parameter QU1A to enter the physical parameter A function signal SG81 of the target range RD1ET.
  • the variable physical parameter QU1A is further characterized based on a rated physical parameter range RD1E.
  • the rated physical parameter range RD1E is represented by a rated measurement value range RD1N, and includes a plurality of different physical parameter reference ranges RD1E1, RD1E2, ... represented by a plurality of different measurement value reference ranges RN11, RN12, ... .
  • the physical parameter target range RD1ET and the physical parameter application range RD1EL are both included in the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the measurement application function specification GAL8 includes the sensor specification FU11, a rated physical parameter range representation GA8E for representing the rated physical parameter range RD1E, and a physical parameter application range representing the physical parameter application range RD1EL Represents GA8L.
  • the rated measurement value range RD1N is based on the rated physical parameter range representing GA8E, the sensor measurement range representing GW8R, and a data encoding operation ZX81 for converting the rated physical parameter range representing GA8E to use the specified measurement value format HH81 is preset, has a rated range limit value pair DD1A, and includes the multiple different measurement value reference ranges RN11, RN12, ... represented by multiple different measurement value reference range codes EM11, EM12, ... respectively.
  • the rated range limit value pair DD1A is preset using the specified measurement value format HH81.
  • the rated measurement value range RD1N and the rated range limit value pair DD1A are preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the designated measurement value format HH81.
  • the measurement value target range RN1T is represented by a measurement value target range code EM1T included in the plurality of different measurement value reference range codes EM11, EM12, ...; thereby, the measurement value target
  • the range code EM1T is configured to indicate the physical parameter target range RD1ET.
  • the multiple different measurement value reference range codes EM11, EM12, ... are preset based on the measurement application function specification GAL8.
  • the control signal SC81 transmits the measurement value target range code EM1T to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET.
  • the measurement value application range RN1L is represented by a measurement value application range code EM1L included in the multiple different measurement value reference range codes EM11, EM12, ..., and has an application range limit value pair DN1L; thereby
  • the measurement value application range code EM1L is configured to indicate the physical parameter application range RD1EL.
  • the application range limit value pair DN1L is based on the physical parameter application range representing GA8L, the sensor measurement range representing GW8R, and a data encoding operation ZX82 for converting the physical parameter application range representing GA8L to use the designated
  • the measured value format HH81 is preset.
  • the measurement value application range RN1L is preset using the specified measurement value format HH81 based on the physical parameter application range representation GA8L, the sensor measurement range representation GW8R, and the data encoding operation ZX82.
  • control target device 130 further includes a storage unit 332 coupled to the processing unit 331.
  • the storage unit 332 stores the preset rated range limit value pair DD1A and a variable physical parameter range code UN8A.
  • the control signal SC81 further conveys the rated range limit value pair DD1A.
  • the variable physical parameter range code UN8A is equal to a specific measurement value range code EM14 selected from the multiple different measurement value reference range codes EM11, EM12,...
  • the specific measurement value range code EM14 indicates a specific physical parameter range RD1E4 previously determined by the processing unit 331 based on a sensing operation ZS81.
  • the specific physical parameter range RD1E4 is selected from the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the sensing operation ZS81 performed by the sensing unit 334 is used to sense the variable physical parameter QU1A.
  • the specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.
  • the processing unit 331 obtains the specific measurement value range code EM14 before the input unit 337 receives the control signal SC81. Under the condition that the processing unit 331 determines the specific physical parameter range RD1E4 based on the sensing operation ZS81 before the input unit 337 receives the control signal SC81, the processing unit 331 uses the storage The unit 332 assigns the obtained specific measurement value range code EM14 to the variable physical parameter range code UN8A.
  • the specific measurement value range code EM14 represents a specific measurement value range configured to represent the specific physical parameter range RD1E4.
  • the specific measurement value range is preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the specified measurement value format HH81.
  • the sensing unit 334 generates a sensing signal dependent on the sensor sensitivity YW81 by performing the sensing operation ZS81 to generate a sensing signal.
  • the processing unit 331 Before the input unit 337 receives the control signal SC81, the processing unit 331 receives the sensing signal, responds to the sensing signal to obtain a specific measurement value in the specified measurement value format HH81, and executes A specific check operation for checking a mathematical relationship between the specific measurement value and the specific measurement value range. Under the condition that the processing unit 331 determines the specific physical parameter range RD1E4 in which the variable physical parameter QU1A is located based on the specific checking operation, the processing unit 331 uses the storage unit 332 to perform The obtained specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.
  • the processing unit 331 responds to a specific sensing operation for sensing the variable physical parameter QU1A to determine whether the processing unit 331 uses the storage unit 332 to change the variable physical parameter range code UN8A.
  • the specific sensing operation is performed by the sensing unit 334.
  • the processing unit 331 responds to the control signal SC81 to obtain one of the control signal SC81 and the storage unit 332 Obtain an operation reference data code XU81, and run a data determination program NA8A to execute a data determination AA8A using the operation reference data code XU81 to determine the reference range codes EM11, EM12, and EM12 selected from the plurality of different measurement values.
  • the operation reference data code XU81 is the same as an allowable reference data code preset based on the measurement application function specification GAL8.
  • the data determination program NA8A is constructed based on the measurement application function specification GAL8.
  • the data determination AA8A is one of a data determination operation AA81 and a data determination operation AA82.
  • the data determination AA8A of the data determination operation AA81 determines the measurement value application range code EM1L based on the obtained specific measurement value range code EM14. For example, the determined measurement value application range code EM1L is the same as or different from the obtained specific measurement value range code EM14.
  • the operation reference data code XU81 is obtained from one of the control signal SC81 and the storage unit 332 and is the same as the preset rated range limit value pair DD1A, it is the data
  • the data of the determining operation AA82 determines that AA8A can obtain the reference range code EM11 from the plurality of different measurement values by performing a scientific calculation MR81 using the first measurement value VN81 and the obtained rated range limit value pair DD1A. Select the measurement value application range code EM1L among, EM12,... to determine the measurement value application range code EM1L.
  • the scientific calculation MR81 is executed based on a specific empirical formula XR81.
  • the specific empirical formula XR81 is formulated in advance based on the preset rated range limit value pair DD1A and the multiple different measurement value reference range codes EM11, EM12,...
  • the specific empirical formula XR81 is formulated in advance based on the measurement application function specification GAL8.
  • the processing unit 331 obtains the application range limit value pair DN1L based on the determined measurement value application range code EM1L, and based on the first measurement value VN81 and the obtained application
  • a data comparison CD81 between the range limit value and DN1L checks the second mathematical relationship KV81 to determine whether the first measurement value VN81 is within the selected measurement value application range RN1L.
  • Logic determines PB81. Under the condition that the first logical decision PB81 is affirmative, the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.
  • the processing unit 331 obtains the measurement value target range code EM1T from the control signal SC81. Under the condition that the processing unit 331 determines that the variable physical parameter QU1A is currently in the physical parameter application range RD1EL, the processing unit 331 compares the measured value target range code EM1T obtained with the determined target range code EM1T The measurement value application range code EM1L is used to check a range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L to make the obtained measurement value target range code EM1T and the determined PZ81 is determined by a logic of whether the measurement value application range code EM1L is equal. Under the condition that the logical decision PZ81 is negative, the processing unit 331 recognizes that the range relationship KE8A is a range difference relationship to determine the range difference DS81.
  • the processing unit 331 determines that the variable physical parameter QU1A is currently in the physical parameter application range RD1EL
  • the processing unit 331 compares the measured value target range code EM1T and The determined measurement value application range code EM1L is used to check a range relationship KE9A between the physical parameter target range RD1ET and the physical parameter application range RD1EL to make the physical parameter target range RD1ET and the physical parameter A logic of whether the application range RD1EL is equal or not determines PZ91.
  • the processing unit 331 recognizes that the range relationship KE9A is a range difference relationship to determine the range difference DB81. Under the condition that the logical decision PZ81 is negative, the logical decision PZ91 is negative.
  • the functional unit 335 has the variable physical parameter QU1A.
  • the variable physical parameter QU1A is characterized based on a specific physical parameter range RD1E5 that is different from the physical parameter target range RD1ET.
  • the operating unit 397 receives a user input operation BQ81.
  • the operation unit 397 transmits the variable physical parameter QU1A to the functional unit 335 for causing the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5.
  • the second function signal SG82 is an operation signal.
  • the application range limit value pair DN1L includes an application range limit value DN15 of the measurement value application range RN1L and an application range limit value DN16 relative to the application range limit value DN15.
  • the control target device 130 further includes a functional unit 335 coupled to the output unit 338.
  • the functional unit 335 has the variable physical parameter QU1A.
  • the sensing unit 334 is coupled to the functional unit 335.
  • the processing unit 331 uses the output unit 338 to cause the function unit 335 to perform a specific function operation ZH81 related to the variable physical parameter QU1A.
  • the specific function operation ZH81 is used to cause a trigger event EQ81 to occur.
  • the control device 212 responds to the trigger event EQ81 to output the control signal SC81.
  • the functional unit 335 is a physical parameter application unit.
  • the functional unit 335 is located at one of the inside of the control target device 130 and the outside of the control target device 130.
  • the specific function operation ZH81 is a spatial movement operation.
  • the processing unit 331 makes the first logical decision PB81 by comparing the first measurement value VN81 with the obtained application range limit value pair DN1L to become affirmative. Under the condition that the application range limit value DN15, the application range limit value DN16, and the first measurement value VN81 are equal, the processing unit 331 compares the first measurement value VN81 with the obtained value. The application range limit value is affirmative for DN1L to make the first logical decision PB81.
  • the measurement application function specification GAL8 further includes a physical parameter representing GA8T1.
  • the physical parameter representation GA8T1 is used to represent a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the storage unit 332 has a memory location YM8L and a memory location YX8T different from the memory location YM8L, the application range limit value pair DN1L is stored in the memory location YM8L, and a control is stored in the memory location YX8T Code CC1T.
  • the memory location YM8L is identified based on the preset measurement value application range code EM1L.
  • the memory location YX8T is identified based on the preset measurement value target range code EM1T.
  • the control code CC1T is preset based on the physical parameter representation GA8T1 and a data encoding operation ZX91 for converting the physical parameter representation GA8T1.
  • the application range limit value pair DN1L and the control code CC1T are respectively transferred to the storage unit 332 based on the preset measurement value application range code EM1L and the preset measurement value target range code EM1T. storage.
  • the processing unit 331 executes a data acquisition AD8A using the determined measurement value application range code EM1L by running a data acquisition program ND8A to obtain the application range limit value pair DN1L.
  • the data acquisition AD8A is one of a data acquisition operation AD81 and a data acquisition operation AD82.
  • the data acquisition program ND8A is constructed based on the measurement application function specification GAL8.
  • the data acquisition operation AD81 uses the storage unit 332 based on the determined measurement value application range code EM1L to access the application range limit value pair DN1L stored in the memory location YM8L to obtain the application The range limit is DN1L.
  • the data acquisition operation AD82 relies on one of the control signal SC81 and the storage unit 332 to acquire the rated range limit value pair DD1A, and uses the determined measurement value application range code EM1L and A scientific calculation MZ81 of the obtained rated range limit value pair DD1A is used to obtain the application range limit value pair DN1L.
  • the rated range limit value pair DD1A includes a rated range limit value DD11 of the rated measurement value range RD1N and a rated range limit value DD12 relative to the rated range limit value DD11, and is based on the rated physical parameter
  • the range represents GA8E
  • the sensor measurement range represents GW8R
  • the data encoding operation ZX81 is preset using the specified measurement value format HH81.
  • the processing unit 331 uses the storage unit 332 based on the obtained measurement value target range code EM1T to access the memory location stored in the memory.
  • the control code CC1T of YX8T is used to execute a signal generation control GY81 for the measurement application function FA81 based on the accessed control code CC1T to control the output unit 338.
  • the output unit 338 responds to the signal generation control GY81 to execute a signal generation operation BY81 for the measurement application function FA81 to generate a function signal SG81, and the function signal SG81 is used to control the function unit 335 to cause
  • the variable physical parameter QU1A enters the physical parameter target range RD1ET.
  • the control device 212 is an external device.
  • the multiple different measurement value reference ranges RN11, RN12,... Have a total number of reference ranges NT81.
  • the total number of reference ranges NT81 is preset based on the measurement application function specification GAL8.
  • the processing unit 331 responds to the control signal SC81 to obtain the total reference range number NT81.
  • the scientific calculation MR81 further uses the obtained total reference range number NT81.
  • the scientific calculation MZ81 further uses the obtained total reference range number NT81. For example, the total number of reference ranges is greater than or equal to two.
  • the function unit 335 responds to the function signal SG81 to change the variable physical parameter QU1A from a specific physical parameter QU17 to a specific physical parameter QU18.
  • the specific physical parameter QU17 is within the physical parameter application range RD1EL; and the specific physical parameter QU18 is within the physical parameter target range RD1ET.
  • the measurement application function specification GAL8 further includes a physical parameter candidate range representation GA8T for representing the physical parameter target range RD1ET.
  • the measurement value target range RN1T is a first part of the rated measurement value range RD1N, and has a target range limit value pair DN1T.
  • the target range limit value pair DN1T is based on the physical parameter candidate range representing GA8T, the sensor measurement range representing GW8R, and a data encoding operation ZX83 for converting the physical parameter candidate range representing GA8T to use the designated
  • the measured value format HH81 is preset.
  • the measurement value target range RN1T is preset using the specified measurement value format HH81 based on the physical parameter candidate range representation GA8T, the sensor measurement range representation GW8R, and the data encoding operation ZX83.
  • the measurement value application range RN1L is a second part of the rated measurement value range RD1N.
  • the physical parameter target range RD1ET and the physical parameter application range RD1EL are separate or adjacent. Under the condition that the physical parameter target range RD1ET and the physical parameter application range RD1EL are separated, the measured value target range RN1T and the measured value application range RN1L are separated. Under the condition that the physical parameter target range RD1ET and the physical parameter application range RD1EL are adjacent, the measurement value target range RN1T and the measurement value application range RN1L are adjacent.
  • the measurement value application range code EM1L is configured to be equal to an integer.
  • the rated range limit value DD12 is greater than the rated range limit value DD11.
  • the relative value VA11 is equal to a calculation result of the rated range limit value DD12 minus the rated range limit value DD11.
  • the application range limit value pair DN1L is determined based on the rated range limit value DD11, the rated range limit value DD12, the integer, and a ratio of the relative value VA11 to the total reference range number NT81. Preset.
  • the scientific calculation MZ81 uses one of the rated range limit value DD11, the rated range limit value DD12, the integer, the ratio, and any combination thereof.
  • the storage unit 332 further has a memory location YM8T different from the memory location YX8T, and stores the target range limit value pair DN1T in the memory location YM8T.
  • the memory location YM8T is identified based on the preset measurement value target range code EM1T.
  • the sensing unit 334 senses the variable physical parameter QU1A to execute a sensing signal dependent on the sensor sensitivity YW81 to generate HF82, so The sensing signal generating HF82 is used to generate the second sensing signal SN82.
  • the processing unit 331 responds to the second sensing signal SN82 within a specified time TG82 after the operating time TF81 to obtain a second measurement value VN82 in the specified measurement value format HH81.
  • the processing unit 331 uses the storage unit 332 to access the target range limit value pair DN1T stored in the memory location YM8T based on the obtained measurement value target range code EM1T, and compares the result
  • the second measured value VN82 and the accessed target range limit value pair DN1T are used to check a mathematical relationship KV91 between the second measured value VN82 and the measured value target range RN1T to make the second Whether the measured value VN82 is within the measured value target range RN1T is a logical decision PB91.
  • the processing unit 331 determines the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located within the specified time TG82, and generates an affirmative operation report RL81 , And cause the output unit 338 to output a control response signal SE81 that transmits the positive operation report RL81, whereby the control response signal SE81 is used to cause the control device 212 to obtain the positive operation report RL81.
  • the positive operation report RL81 indicates an operation situation EP81 in which the variable physical parameter QU1A successfully enters the physical parameter target range RD1ET.
  • the processing unit 331 responds to the control signal SC81 by causing the output unit 338 to generate the control response signal SE81.
  • the processing unit 331 causes the control response signal SE81 to further transmit the obtained measurement value VN82 based on the obtained measurement value VN82.
  • the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the processing unit 331 determines the variable physical value by making the logical decision PB91 Under the condition that the parameter QU1A is currently in the physical parameter target range RD1ET, the processing unit 331 is based on the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target A code difference DF81 between the range codes EM1T uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the output unit 338 displays a status indication LB81.
  • the state indicator LB81 is used to indicate that the variable physical parameter QU1A is configured in a specific state XJ81 within the specific physical parameter range RD1E4.
  • the processing unit 331 determines where the variable physical parameter QU1A is currently located by making the logical decision PB91 Under the condition of the physical parameter target range RD1ET, the processing unit 331 further causes the output unit 338 to change the status indicator LB81 to a status indicator LB82 based on the code difference DF81.
  • the state indicator LB82 is used to indicate that the variable physical parameter QU1A is configured in a specific state XJ82 within the physical parameter target range RD1ET.
  • the control signal SC81 is one of an electrical signal SP81 and an optical signal SQ81.
  • the input unit 337 includes an input component 3371, an input component 3372, and an input component 3373.
  • the input component 3371 is coupled to the processing unit 331. Under the condition that the control signal SC81 is the electrical signal SP81, the input component 3371 causes the processing unit 331 to obtain the control information CG81 by receiving the electrical signal SP81 for conveying a control information CG81.
  • the control information CG81 includes the measurement value target range code EM1T.
  • the input component 3372 is coupled to the processing unit 331. Under the condition that the control signal SC81 is the optical signal SQ81, the input component 3372 receives the optical signal SQ81 for delivering an encoded image FY81. For example, the coded image FY81 represents the control information CG81.
  • the input component 3373 is coupled to the processing unit 331 and includes a button 3801 coupled to the processing unit 331. Under the condition that the variable physical parameter QU1A is configured within the physical parameter target range RD1ET based on the control signal SC81, the input component 3373 receives a user input operation BQ81 using the button 3801, and In response to the user input operation BQ81, the processing unit 331 receives an operation request signal SJ91.
  • the processing unit 331 determines a specific input code UW81 in response to the operation request signal SJ91.
  • the input component 3373 provides the operation request signal SJ91 to the processing unit 331 in response to the user input operation BQ81 using the button 3801, and thereby causes the processing unit 331 to receive the operation request signal SJ91.
  • the specific input code UW81 is selected from the multiple different measurement value reference range codes EM11, EM12,...
  • the input component 3372 senses the encoded image FY81 to determine an encoded data DY81, and decodes the encoded data DY81 to Provide the control information CG81 to the processing unit 331.
  • the variable physical parameter range code UN8A is equal to the preset measurement value target range code EM1T.
  • the processing unit 331 responds to the operation request signal SJ91 to obtain the measurement value target range code EM1T from the variable physical parameter range code UN8A.
  • the processing unit 331 is based on the variable physical parameter equal to the obtained measurement value target range code EM1T
  • a code difference DX81 between the range code UN8A and the specific input code UW81 causes the variable physical parameter QU1A to leave the physical parameter target range RD1ET through the output unit 338 to enter the multiple different A specific physical parameter range RD1E5 in the physical parameter reference ranges RD1E1, RD1E2,...
  • the sensing unit 334 senses the variable physical parameter QU1A under a restraining condition FR81 to provide the first sensing signal SN81 to the processing unit 331.
  • the constraint condition FR81 is that the variable physical parameter QU1A is equal to a specific physical parameter QU15 included in the rated physical parameter range RD1E.
  • the processing unit 331 estimates the specific physical parameter QU15 based on the first sensing signal SN81 to obtain the first measured value VN81.
  • the processing unit 331 recognizes that the first measurement value VN81 is within the measurement value application range RN1L A permissible value within, thereby identifying that the second mathematical relationship KV81 between the first measurement value VN81 and the measurement value application range RN1L is a numerical intersection relationship, and thereby determining the variable physical The physical parameter application range RD1EL in which the parameter QU1A is currently located.
  • the sensing unit 334 is characterized based on the sensor sensitivity YW81 related to the sensing signal generation HF81, and is configured to comply with the sensor specification FU11.
  • the sensor specification FU11 includes the sensor sensitivity indication GW81 for indicating the sensor sensitivity YW81, and the sensor measurement range indication GW8R for indicating the sensor measurement range RB8E.
  • the rated physical parameter range RD1E is configured to be the same as the sensor measurement range RB8E, or configured to be a part of the sensor measurement range RB8E.
  • the sensor measurement range RB8E is related to a physical parameter sensing performed by the sensing unit 334.
  • the sensor measurement range indicates that the GW8R is provided based on a first preset measurement unit.
  • the first preset measurement unit is one of a metric measurement unit and an English measurement unit.
  • the rated measurement value range RD1N, the rated range limit value pair DD1A, the measurement value application range RN1L, the application range limit value pair DN1L, the measurement value target range RN1T, the target range limit value pair DN1T And the multiple different measurement value reference ranges RN11, RN12,... are preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the specified measurement value format HH81.
  • the rated measurement value range RD1N and the rated range limit value pair DD1A are based on the rated physical parameter range representing GA8E, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the data encoding operation ZX81
  • the measurement value application range RN1L and the application range limit value pair DN1L are both used based on the physical parameter application range representation GA8L, the sensor measurement range representation GW8R, the sensor sensitivity representation GW81, and the data encoding operation ZX82.
  • the specified measurement value format HH81 is preset.
  • the measurement value target range RN1T and the target range limit value pair DN1T are used based on the physical parameter candidate range representing GA8T, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the data encoding operation ZX83.
  • the specified measurement value format HH81 is preset.
  • the rated physical parameter range represents GA8E
  • the physical parameter application range represents GA8L
  • the physical parameter represents GA8T1
  • the physical parameter candidate range represents GA8T are all provided based on a second preset measurement unit.
  • the second preset measurement unit is one of a metric measurement unit and an English measurement unit, and is the same as or different from the first preset measurement unit.
  • the variable physical parameter QU1A is further characterized based on the sensor measurement range RB8E.
  • the sensor measurement range represents GW8R
  • the rated physical parameter range represents GA8E
  • the physical parameter application range represents GA8L
  • the physical parameter candidate range represents GA8T
  • the physical parameter represents GA8T1 are all decimal data types.
  • the first measurement value VN81, the second measurement value VN82, the rated range limit value pair DD1A, the application range limit value pair DN1L, the target range limit value pair DN1T, and the control code CC1T all belong to The binary data types are all suitable for computer processing.
  • the sensor specification FU11 and the measurement application function specification GAL8 are both preset.
  • the input unit 337 before the input unit 337 receives the control signal SC81, the input unit 337 receives a write request message including the preset application range limit value pair DN1L and a memory address AM8L WN8L.
  • the memory location YM8L is identified based on the memory address AM8L; and the memory address AM8L is preset based on the preset measurement value application range code EM1L.
  • the processing unit 331 uses the storage unit 332 in response to the write request information WN8L to store the application range limit value pair DN1L of the write request information WN8L in the memory location YM8L.
  • the input unit 337 Before the input unit 337 receives the control signal SC81, the input unit 337 receives a write request message WC8T including the preset control code CC1T and a memory address AX8T. For example, the memory location YX8T is identified based on the memory address AX8T; and the memory address AX8T is preset based on the preset measurement value target range code EM1T.
  • the processing unit 331 uses the storage unit 332 in response to the write request information WC8T to store the control code CC1T of the write request information WC8T in the memory location YX8T.
  • variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET represented by a measured value target range RN1T and a physical parameter application range RD1EL represented by a measured value application range RN1L.
  • the method ML80 includes the following steps: sensing the variable physical parameter QU1A to generate a first sensing signal SN81; under the condition that a control signal SC81 that functions to indicate the measurement value target range RN1T is received , In response to the first sensing signal SN81 to obtain a first measurement value VN81; and in the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located, by checking the first measurement value VN81 and the Under the condition that a second mathematical relationship KV81 between the measurement value application ranges RN1L is determined, a range between the measurement value target range RN1T and the measurement value application range RN1L is determined based on the control signal SC81
  • the difference DS81 causes the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • control signal SC81 functions to indicate the physical parameter target range RD1ET.
  • the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located is determined by checking the second mathematical relationship KV81, the physical parameter target range RD1ET and the physical parameter application range A range difference DB81 between RD1EL is determined based on the control signal SC81 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the method ML80 further includes a step of providing a sensing unit 334.
  • the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to a sensing signal generated by the sensing unit 334 to generate HF81.
  • the first measurement value VN81 is obtained in a designated measurement value format HH81.
  • the measurement value target range RN1T and the measurement value application range RN1L are preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the specified measurement value format HH81.
  • the measurement value target range RN1T and the measurement value application range RN1L respectively have a target range limit value pair DN1T and an application range limit value pair DN1L.
  • the control signal SC81 conveys the target range limit value pair DN1T, the application range limit value pair DN1L and a control code CC1T.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the target range limit value pair DN1T.
  • the method ML80 further includes the steps of: obtaining the application range limit value pair DN1L from the control signal SC81; obtaining the target range limit value pair DN1T from the control signal SC81; and obtaining the target range limit value pair DN1T from the control signal SC81;
  • the control signal SC81 obtains the control code CC1T.
  • the step of determining the range difference DS81 includes the following sub-steps: by comparing the first measurement value VN81 with the obtained application range limit value pair DN1L, checking the second mathematical relationship KV81 to make the first Whether a measurement value VN81 is a first logical decision PB81 within the measurement value application range RN1L; and under the condition that the first logical decision PB81 is affirmative, it is determined that the variable physical parameter QU1A is currently in The physical parameter application range is RD1EL.
  • the step of determining the range difference DS81 further includes the following sub-steps: under the condition that the physical parameter application range RD1EL is determined, the target range limit value pair DN1T obtained by comparing with the obtained application range Limit value pair DN1L to check a range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L to make the obtained target range limit value pair DN1T and the obtained application range A second logic decision PY81 for whether the threshold value is equal to DN1L; Under the condition that the second logic decision PY81 is negative, identify the range relationship KE8A as a range difference relationship to determine the range difference DS81; and Under the condition that the range difference DS81 is determined, a signal generation control GY81 is executed based on the obtained control code CC1T to generate a function for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET Signal SG81;
  • the method ML80 further includes the following steps: after the signal generation control GY81 is executed within an operating time TF81, sensing the variable physical parameter QU1A to generate a second sensing signal SN82; within a specified time TG82 after the operating time TF81, respond to the second sensing signal SN82 to obtain a second measurement value VN82 in the specified measurement value format HH81; and in the variable physical
  • the parameter QU1A is currently in the physical parameter target range RD1ET within the specified time TG82 by comparing the second measured value VN82 with the obtained target range limit value pair DN1T under the condition that it is determined to execute
  • a data storage control operation GU81 is used to cause a physical parameter target range code UN8T representing the determined physical parameter target range RD1ET to be recorded.
  • the method ML80 further includes the following steps: after the signal generation control GY81 is executed within an operating time TF81, sensing the variable physical parameter QU1A to generate a second sensing signal SN82; within a designated time TG82 after the operating time TF81, respond to the second sensing signal SN82 to obtain a second measured value VN82; and in the physical state where the variable physical parameter QU1A is currently Under the condition that the parameter target range RD1ET is determined by comparing the second measured value VN82 with the obtained target range limit value pair DN1T within the specified time TG82, a data storage control operation GU81 is executed, so The data storage control operation GU81 is used to cause a physical parameter target range code UN8T representing the determined physical parameter target range RD1ET to be recorded.
  • the variable physical parameter QU1A is related to a variable time length LF8A.
  • the variable time length LF8A is characterized based on a time length reference range HJ81 and a reference time length LJ8T.
  • the time length reference range HJ81 is represented by a measurement time length value reference range GJ81.
  • the reference time length LJ8T is represented by a measured time length value CL8T.
  • the control signal SC81 further conveys the measurement time length value CL8T.
  • the method ML80 further includes the following steps: obtaining the measurement time length value CL8T from the control signal SC81; and checking a value between the obtained measurement time length value CL8T and the measurement time length value reference range GJ81
  • the numerical relationship KJ81 is used to make a logical decision PE81 for controlling whether a counting operation BC8T for a specific time TJ8T is to be executed.
  • the method ML80 further includes the following steps: under the condition that the logical decision PE81 is affirmative, execute the counting operation BC8T based on the obtained measurement time length value CL8T; in the variable physical parameter QU1A based on all
  • the control signal SC81 is configured to reach the specific time TJ8T based on the counting operation BC8T under the condition that the physical parameter target range RD1ET is within the target range RD1ET;
  • the variable physical parameter QU1A leaves the physical parameter target range RD1ET to enter the physical parameter application range RD1EL to generate a signal BY91.
  • the method ML80 further includes the following steps: providing a sensing unit 334, wherein the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334; and executing and A measurement application function FA81 related to the physical parameter application range RD1EL.
  • the step of determining the range difference DS81 includes a sub-step: under the condition that the range difference DS81 is determined based on the control signal SC81, generating a method for causing the variable physical parameter QU1A to enter the physical parameter target range A function signal SG81 of RD1ET.
  • the measurement application function FA81 is configured to comply with a measurement application function specification GAL8 related to the physical parameter application range RD1EL.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to a sensing signal generated by the sensing unit 334 to generate HF81.
  • the first measurement value VN81 is obtained in a designated measurement value format HH81.
  • the specified measurement value format HH81 is characterized based on a specified number of bits UY81.
  • the variable physical parameter QU1A is further characterized based on a rated physical parameter range RD1E.
  • the rated physical parameter range RD1E is represented by a rated measurement value range RD1N, and includes a plurality of different physical parameter reference ranges RD1E1, RD1E2, ... represented by a plurality of different measurement value reference ranges RN11, RN12, ... .
  • the physical parameter target range RD1ET and the physical parameter application range RD1EL are both included in the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the measurement application function specification GAL8 includes the sensor specification FU11, a rated physical parameter range representation GA8E for representing the rated physical parameter range RD1E, and a physical parameter application range representing the physical parameter application range RD1EL Represents GA8L.
  • the rated measurement value range RD1N is based on the rated physical parameter range representing GA8E, the sensor measurement range representing GW8R, and a data encoding operation ZX81 for converting the rated physical parameter range representing GA8E to use the specified measurement value format HH81 is preset, has a rated range limit value pair DD1A, and includes the multiple different measurement value reference ranges RN11, RN12, ... represented by multiple different measurement value reference range codes EM11, EM12, ... respectively.
  • the rated range limit value pair DD1A is preset using the specified measurement value format HH81.
  • the multiple different measurement value reference ranges RN11, RN12, ... include the measurement value target range RN1T and the measurement value application range RN1L.
  • the measurement value target range RN1T is represented by a measurement value target range code EM1T included in the plurality of different measurement value reference range codes EM11, EM12,...
  • the multiple different measurement value reference range codes EM11, EM12, ... are preset based on the measurement application function specification GAL8.
  • the control signal SC81 transmits the measurement value target range code EM1T to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET.
  • the measurement value application range RN1L is represented by a measurement value application range code EM1L included in the plurality of different measurement value reference range codes EM11, EM12, ..., and has an application range limit value pair DN1L.
  • the application range limit value pair DN1L is based on the physical parameter application range representing GA8L, the sensor measurement range representing GW8R, and a data encoding operation ZX82 for converting the physical parameter application range representing GA8L to use the designated
  • the measured value format HH81 is preset.
  • the method ML80 further includes the following steps: providing a storage space SU11; and storing the preset rated range limit value pair DD1A and a variable physical parameter range code UN8A in the storage space SU11.
  • the control signal SC81 further conveys the rated range limit value pair DD1A.
  • the variable physical parameter range code UN8A is equal to a specific measurement value range code EM14 selected from the multiple different measurement value reference range codes EM11, EM12,...
  • the specific measurement value range code EM14 indicates a specific physical parameter range RD1E4 previously determined based on a sensing operation ZS81.
  • the specific physical parameter range RD1E4 is selected from the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the sensing operation ZS81 performed by the sensing unit 334 is used to sense the variable physical parameter QU1A.
  • the specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.
  • the method ML80 further includes the following steps: under the condition that the control signal SC81 is received from a control device 212, responding to the control signal SC81 to obtain data from the control signal SC81 and the storage
  • One of the space SU11 obtains an operation reference data code XU81; and executes a data determination AA8A using the operation reference data code XU81 by running a data determination program NA8A to determine the selection from the multiple different measured value references
  • the measurement value application range code EM1L of the range codes EM11, EM12, ... is used to select the measurement value application range RN1L from the plurality of different measurement value reference ranges RN11, RN12, ....
  • the operation reference data code XU81 is the same as an allowable reference data code preset based on the measurement application function specification GAL8.
  • the data determination program NA8A is constructed based on the measurement application function specification GAL8.
  • the data determination AA8A is one of a data determination operation AA81 and a data determination operation AA82.
  • the data determination AA8A of the data determination operation AA81 determines the measurement value application range code EM1L based on the obtained specific measurement value range code EM14. For example, the determined measurement value application range code EM1L is the same as or different from the obtained specific measurement value range code EM14.
  • the operation reference data code XU81 is obtained from one of the control signal SC81 and the storage space SU11 and is the same as the preset rated range limit value pair DD1A, it is the data
  • the data of the determining operation AA82 determines that AA8A can obtain the reference range code EM11 from the plurality of different measurement values by performing a scientific calculation MR81 using the first measurement value VN81 and the obtained rated range limit value pair DD1A. Select the measurement value application range code EM1L among, EM12,... to determine the measurement value application range code EM1L.
  • the scientific calculation MR81 is executed based on a specific empirical formula XR81, and the specific empirical formula XR81 is based on the preset rated range limit value pair DD1A and the multiple different measurement value reference range codes EM11, EM12,...and is pre-defined.
  • the method ML80 further includes the following steps: obtaining the application range limit value pair DN1L based on the determined measurement value application range code EM1L; and obtaining the measurement value from the control signal SC81
  • the target range code is EM1T.
  • the step of determining the range difference DS81 further includes the following sub-steps: based on a data comparison CD81 between the first measured value VN81 and the obtained application range limit value pair DN1L, checking the second mathematical relationship KV81 To determine whether the first measurement value VN81 is within a first logical decision PB81 within the selected measurement value application range RN1L; and to determine if the first logical decision PB81 is affirmative
  • the variable physical parameter QU1A is currently in the physical parameter application range RD1EL.
  • the step of determining the range difference DS81 further includes the following sub-steps: under the condition that the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in is determined, the target range of the measured value obtained by comparison Code EM1T and the determined measurement value application range code EM1L to check a range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L to make the obtained measurement value target range
  • the code EM1T and the determined application range code EM1L of the measured value are equal to a logic determination PZ81; and under the condition that the logic determination PZ81 is negative, the range relationship KE8A is identified as a range difference relationship to determine the The range difference DS81.
  • the application range limit value pair DN1L includes an application range limit value DN15 and an application range limit value DN16 relative to the application range limit value DN15.
  • the storage space SU11 further has a memory location YM8L and a memory location YX8T different from the memory location YM8L.
  • the memory location YM8L is identified based on the preset measurement value application range code EM1L.
  • the memory location YX8T is identified based on the preset measurement value target range code EM1T.
  • the measurement application function specification GAL8 further includes a physical parameter representation GA8T1, and the physical parameter representation GA8T1 is used to indicate a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the method ML80 further includes the following steps: storing the application range limit value pair DN1L in the memory location YM8L; storing a control code CC1T in the memory location YX8T, wherein the control code CC1T represents GA8T1 based on the physical parameter And a data encoding operation ZX91 used to convert the physical parameter to represent GA8T1 to be preset; perform a specific function operation ZH81 related to the variable physical parameter QU1A, wherein the specific function operation ZH81 is used to cause a trigger The event EQ81 occurs; and by using the control device 212, the control signal SC81 is generated in response to the trigger event EQ81.
  • the step of obtaining the application range limit value pair DN1L includes a sub-step: by running a data obtaining program ND8A to execute a data obtaining AD8A using the determined measurement value application range code EM1L to Obtain the application range limit value pair DN1L.
  • the data acquisition AD8A is one of a data acquisition operation AD81 and a data acquisition operation AD82.
  • the data acquisition program ND8A is constructed based on the measurement application function specification GAL8.
  • the data acquisition operation AD81 accesses the application range limit value pair DN1L stored in the memory location YM8L based on the determined measurement value application range code EM1L to obtain the application range limit value pair DN1L.
  • the data acquisition operation AD82 relies on one of the control signal SC81 and the storage space SU11 to acquire the rated range limit value pair DD1A, and uses the determined measurement value application range code EM1L and A scientific calculation MZ81 of the obtained rated range limit value pair DD1A is used to obtain the application range limit value pair DN1L.
  • the step of determining the range difference DS81 further includes the following sub-steps: under the condition that the range difference DS81 is determined, access the target range code EM1T stored in the memory location YX8T based on the obtained measurement value The control code CC1T; based on the accessed control code CC1T, execute a signal generation control GY81 for the measurement application function FA81; and respond to the signal generation control GY81 to execute the measurement application function A signal of FA81 generates operation BY81 to generate a function signal SG81, and the function signal SG81 is used to control the function unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the measurement application function specification GAL8 further includes a physical parameter candidate range representation GA8T for representing the physical parameter target range RD1ET.
  • the measured value target range RN1T has a target range limit value pair DN1T.
  • the target range limit value pair DN1T is based on the physical parameter candidate range representing GA8T, the sensor measurement range representing GW8R, and a data encoding operation ZX83 for converting the physical parameter candidate range representing GA8T to use the designated
  • the measured value format HH81 is preset.
  • the control device 212 is an external device.
  • the method ML80 further includes the following steps: providing a memory location YM8T different from the memory location YX8T, wherein the memory location YM8T is in the storage space SU11, and is based on the preset measurement value target range code EM1T is identified; and the target range limit value pair DN1T is stored in the memory location YM8T.
  • the method ML80 further includes the following steps: after the signal generation control GY81 is executed within an operating time TF81, sensing the variable physical parameter QU1A to generate a second sensing signal SN82; within a specified time TG82 after the operating time TF81, respond to the second sensing signal SN82 to obtain a second measurement value VN82 in the specified measurement value format HH81; based on the obtained measurement Value target range code EM1T, access the target range limit value pair DN1T stored in the memory location YM8T; and by comparing the second measured value VN82 with the accessed target range limit value pair DN1T , Checking a mathematical relationship KV91 between the second measurement value VN82 and the measurement value target range RN1T to make a logical decision whether the second measurement value VN82 is within the measurement value target range RN1T PB91.
  • the method ML80 further includes the following steps: under the condition that the logical decision PB91 is affirmative, determine within the specified time TG82 the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located, and generate An affirmative operation report RL81, wherein the affirmative operation report RL81 indicates an operation condition EP81 in which the variable physical parameter QU1A successfully enters the physical parameter target range RD1ET; and a control response for transmitting the affirmative operation report RL81 is generated Signal SE81, whereby the control response signal SE81 is used to cause the control device 212 to obtain the positive operation report RL81.
  • the method ML80 further includes a step: when the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the variable physical parameter QU1A is currently in the Under the condition that the physical parameter target range RD1ET is determined by making the logical decision PB91, based on the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target A code difference DF81 between the range codes EM1T is used to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the method ML80 further includes the following steps: when the control signal SC81 is received, a status indicator LB81 is displayed, wherein the status indicator LB81 is used to indicate that the variable physical parameter QU1A is configured in the specific physical parameter range A specific state XJ81 within RD1E4; and the physical parameter target range RD1ET in which the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the variable physical parameter QU1A is currently in Under the condition determined by making the logical decision PB91, the status indicator LB81 is changed to a status indicator LB82 based on the code difference DF81, wherein the status indicator LB82 is used to indicate the variable physical parameter QU1A is configured in a specific state XJ82 within the physical parameter target range RD1ET.
  • the method ML80 further includes the following steps: before the control signal SC81 is received, receiving a write request message WN8L including the preset application range limit value pair DN1L and a memory address AM8L, wherein the memory The location YM8L is identified based on the memory address AM8L, and the memory address AM8L is preset based on the preset measurement value application range code EM1L; and in response to the write request information WN8L, the write The application range limit value pair DN1L of the incoming request information WN8L is stored in the memory location YM8L.
  • the method ML80 further includes the following steps: before the control signal SC81 is received, receiving a write request message WC8T including the preset control code CC1T and a memory address AX8T, wherein the memory location YX8T is based on The memory address AX8T is identified, and the memory address AX8T is preset based on the preset measurement value target range code EM1T; and in response to the write request information WC8T, the write request information
  • the control code CC1T of WC8T is stored in the memory location YX8T.
  • a method ML82 for controlling a variable physical parameter QU1A by generating a function signal SG81 is disclosed.
  • the variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET represented by a measured value target range RN1T and a physical parameter application range RD1EL represented by a measured value application range RN1L.
  • the method ML82 includes the following steps: the sensing unit 334 senses the variable physical parameter QU1A to generate a first sensing signal SN81; and a control signal that functions to indicate the measurement value target range RN1T Under the condition that SC81 is received by the input unit 337, the processing unit 331 responds to the first sensing signal SN81 to obtain a first measurement value VN81; and when the variable physical parameter QU1A is currently in the physical Under the condition that the parameter application range RD1EL is determined by the processing unit 331 by checking a second mathematical relationship KV81 between the first measurement value VN81 and the measurement value application range RN1L, the processing unit 331 is based on the The control signal SC81 is used to determine a range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L to make a determination for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET It is a reasonable decision PW81 whether the function signal SG81 is to
  • the control signal SC81 functions to indicate the physical parameter target range RD1ET.
  • the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located is determined by checking the second mathematical relationship KV81
  • the physical parameter target range RD1ET and the physical parameter application range A range difference DB81 between RD1EL is determined based on the control signal SC81 to make the reasonable decision PW81.
  • the physical parameter application range RD1EJ is equal to the physical parameter application range RD1EL.
  • the physical parameter application range RD1EJ is represented by the measurement value indication range RN1G.
  • the measurement value indication range RN1G is equal to the measurement value application range RN1L.
  • the first mathematical relationship KG81 is equal to the second mathematical relationship KV81.
  • the method ML82 further includes a step: the control target device 130 provides a sensing unit 334.
  • the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to a sensing signal generated by the sensing unit 334 to generate HF81.
  • the first measurement value VN81 is obtained by the processing unit 331 in a designated measurement value format HH81.
  • the measurement value target range RN1T and the measurement value application range RN1L are preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the specified measurement value format HH81.
  • the measurement value target range RN1T and the measurement value application range RN1L respectively have a target range limit value pair DN1T and an application range limit value pair DN1L.
  • the control signal SC81 conveys the target range limit value pair DN1T, the application range limit value pair DN1L and a control code CC1T.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the target range limit value pair DN1T.
  • the method ML82 further includes the following steps: the processing unit 331 obtains the application range limit value pair DN1L from the control signal SC81; the processing unit 331 obtains the target range limit value pair DN1T from the control signal SC81 And the processing unit 331 obtains the control code CC1T from the control signal SC81.
  • the step of determining the range relationship KE8A includes the following substeps: the processing unit 331 checks the second mathematical relationship KV81 by comparing the first measurement value VN81 with the obtained application range limit value pair DN1L Determine whether the first measurement value VN81 is a first logical decision PB81 within the measurement value application range RN1L; and under the condition that the first logical decision PB81 is affirmative, the processing unit 331 determines The physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.
  • the step of determining the range relationship KE8A includes the following sub-steps: Under the condition that the physical parameter application range RD1EL currently in the variable physical parameter QU1A is determined by the processing unit 331, the processing unit 331 compares The obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L are used to check the range relationship KE8A to make the obtained target range limit value pair DN1T and the obtained A second logical decision PY81 is applied to determine whether the range limit value is equal to DN1L; and under the condition that the second logical decision PY81 is negative, the processing unit 331 recognizes that the range relationship KE8A is a range difference relationship to make Make the reasonable decision PW81 to be affirmative.
  • the method ML82 further includes the following steps: under the condition that the reasonable decision PW81 is affirmative, the processing unit 331 executes a signal generation control GY81 based on the obtained control code CC1T to cause The output unit 240 generates a function signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET; and the signal generation control GY81 is controlled by the processing unit within an operating time TF81 After 331 is executed, the sensing unit 334 senses the variable physical parameter QU1A to generate a second sensing signal SN82.
  • the method ML82 further includes the following steps: the processing unit 331 responds to the second sensing signal SN82 within a specified time TG82 after the operation time TF81 to obtain a first measurement value format HH81 Two measured values VN82; and the target range of physical parameters RD1ET in which the variable physical parameter QU1A is currently located within the specified time TG82 by comparing the second measured value VN82 with the target range obtained Under the condition that the threshold value is DN1T and is determined by the processing unit 331, the processing unit 331 executes a data storage control operation GU81, and the data storage control operation GU81 is used to cause the target range RD1ET to represent the determined physical parameter.
  • a physical parameter target range code UN8T of is recorded by the storage unit 332.
  • the variable physical parameter QU1A is related to a variable time length LF8A.
  • the variable time length LF8A is characterized based on a time length reference range HJ81 and a reference time length LJ8T.
  • the time length reference range HJ81 is represented by a measurement time length value reference range GJ81.
  • the reference time length LJ8T is represented by a measured time length value CL8T.
  • the control signal SC81 further conveys the measurement time length value CL8T.
  • the method ML82 further includes the following steps: the processing unit 331 obtains the measurement time length value CL8T from the control signal SC81; and the processing unit 331 checks the obtained measurement time length value CL8T and the measurement
  • the time length value refers to a numerical relationship KJ81 between the range GJ81 to make a logical decision PE81 for controlling whether a counting operation BC8T for a specific time TJ8T is to be executed.
  • the method ML82 further includes the following steps: under the condition that the logical decision PE81 is affirmative, the processing unit 331 performs the counting operation BC8T based on the obtained measurement time length value CL8T;
  • the physical parameter QU1A is configured to be within the physical parameter target range RD1ET based on the control signal SC81, and the processing unit 331 reaches the specific time TJ8T based on the counting operation BC8T; and the processing The unit 331 causes the output unit 240 to perform a signal generation operation BY91 for causing the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the physical parameter application range RD1EL within the specific time TJ8T. .
  • the method ML82 further includes the following steps: the control target device 130 provides a sensing unit 334, wherein the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334 Is executed; the operating unit 397 executes a measurement application function FA81 related to the variable physical parameter QU1A; and under the condition that the reasonable decision PW81 is affirmative, the processing unit 331 causes the output unit 240 to generate A functional signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the measurement application function FA81 is configured to comply with a measurement application function specification GAL8 related to the physical parameter application range RD1EL.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to a sensing signal generated by the sensing unit 334 to generate HF81.
  • the first measurement value VN81 is obtained by the processing unit 331 in a designated measurement value format HH81.
  • the specified measurement value format HH81 is characterized based on a specified number of bits UY81.
  • the sensing unit 334 senses the variable physical parameter QU1A to execute the sensing signal dependent on the sensor sensitivity YW81 to generate HF81, so The sensing signal generating HF81 is used to generate the first sensing signal SN81.
  • the variable physical parameter QU1A is further characterized based on a rated physical parameter range RD1E.
  • the rated physical parameter range RD1E is represented by a rated measurement value range RD1N, and includes a plurality of different physical parameter reference ranges RD1E1, RD1E2, ... represented by a plurality of different measurement value reference ranges RN11, RN12, ... .
  • the physical parameter target range RD1ET and the physical parameter application range RD1EL are both included in the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the measurement application function specification GAL8 includes the sensor specification FU11, a rated physical parameter range representation GA8E for representing the rated physical parameter range RD1E, and a physical parameter application range representing the physical parameter application range RD1EL Represents GA8L.
  • the rated measurement value range RD1N is based on the rated physical parameter range representing GA8E, the sensor measurement range representing GW8R, and a data encoding operation ZX81 for converting the rated physical parameter range representing GA8E to use
  • the specified measurement value format HH81 is preset, has a rated range limit value pair DD1A, and includes the multiple different measurement value reference ranges represented by multiple different measurement value reference range codes EM11, EM12, ... RN11, RN12,...
  • the rated range limit value pair DD1A is preset using the specified measurement value format HH81, and the multiple different measurement value reference ranges RN11, RN12, ... include the measurement value target range RN1T and the measurement value Value application range RN1L.
  • the measurement value target range RN1T is represented by a measurement value target range code EM1T included in the plurality of different measurement value reference range codes EM11, EM12, ..., and has a target range limit value pair DN1T; thereby
  • the measured value target range code EM1T is configured to indicate the physical parameter target range RD1ET.
  • the multiple different measurement value reference range codes EM11, EM12, ... are preset based on the measurement application function specification GAL8.
  • the control signal SC81 transmits the measurement value target range code EM1T to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET.
  • the measurement value application range RN1L is represented by a measurement value application range code EM1L included in the multiple different measurement value reference range codes EM11, EM12, ..., and has an application range limit value pair DN1L; thereby
  • the measurement value application range code EM1L is configured to indicate the physical parameter application range RD1EL.
  • the application range limit value pair DN1L is based on the physical parameter application range representing GA8L, the sensor measurement range representing GW8R, and a data encoding operation ZX82 for converting the physical parameter application range representing GA8L to use the designated
  • the measured value format HH81 is preset.
  • the measurement value application range RN1L is preset using the specified measurement value format HH81 based on the physical parameter application range representation GA8L, the sensor measurement range representation GW8R, and the data encoding operation ZX82.
  • the method ML82 further includes the following steps: the storage unit 332 provides a storage space SU11; and the storage unit 332 stores the preset limit value of the rated range in the storage space SU11 For DD1A and a variable physical parameter range code UN8A.
  • the control signal SC81 further conveys the rated range limit value pair DD1A.
  • the variable physical parameter range code UN8A is equal to a specific measurement value range code EM14 selected from the multiple different measurement value reference range codes EM11, EM12, ... .
  • the specific measurement value range code EM14 indicates a specific physical parameter range RD1E4 previously determined by the processing unit 331 based on a sensing operation ZS81.
  • the first specific physical parameter range RD1E4 is selected from the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the sensing operation ZS81 performed by the sensing unit 334 is used to sense the variable physical parameter QU1A.
  • the specific measurement value range code EM14 is assigned by the processing unit 331 to the variable physical parameter range code UN8A.
  • the processing unit 331 obtains the specific measurement value range code EM14 before the input unit 337 receives the control signal SC81. Under the condition that the processing unit 331 determines the specific physical parameter range RD1E4 based on the sensing operation ZS81 before the input unit 337 receives the control signal SC81, the processing unit 331 uses the storage The unit 332 assigns the obtained specific measurement value range code EM14 to the variable physical parameter range code UN8A.
  • the specific measurement value range code EM14 represents a specific measurement value range configured to represent the specific physical parameter range RD1E4.
  • the specific measurement value range is preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the specified measurement value format HH81.
  • the sensing unit 334 generates a sensing signal dependent on the sensor sensitivity YW81 by performing the sensing operation ZS81 to generate a sensing signal.
  • the processing unit 331 Before the input unit 337 receives the control signal SC81, the processing unit 331 receives the sensing signal, responds to the sensing signal to obtain a specific measurement value in the specified measurement value format HH81, and executes A specific check operation for checking a mathematical relationship between the specific measurement value and the specific measurement value range. Under the condition that the processing unit 331 determines the specific physical parameter range RD1E4 in which the variable physical parameter QU1A is located based on the specific checking operation, the processing unit 331 uses the storage unit 332 to perform The obtained specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.
  • the processing unit 331 responds to a specific sensing operation for sensing the variable physical parameter QU1A to determine whether the processing unit 331 will use the storage unit 332 to change the variable physical parameter range code UN8A.
  • the specific sensing operation is performed by the sensing unit 334.
  • the method ML82 further includes the following steps: under the condition that the control signal SC81 is received by the input unit 337 from a control device 212, the processing unit 331 responds to the control signal SC81 Obtain an operation reference data code XU81 from one of the control signal SC81 and the storage space SU11; and the processing unit 331 executes an operation reference data code XU81 by running a data determination program NA8A
  • Data determination AA8A determines the measurement value application range code EM1L selected from the plurality of different measurement value reference range codes EM11, EM12, ... so as to select all from the plurality of different measurement value reference ranges RN11, RN12, ...
  • the measurement value application range is RN1L.
  • the operation reference data code XU81 is the same as an allowable reference data code preset based on the measurement application function specification GAL8.
  • the data determination program NA8A is constructed based on the measurement application function specification GAL8.
  • the data determination AA8A is one of a data determination operation AA81 and a data determination operation AA82.
  • the operation reference data code XU81 is obtained by the processing unit 331 by accessing the variable physical parameter range code UN8A stored in the storage space SU11 to be the same as the specific measurement value range code EM14 Under the condition of, it is the data determination AA8A of the data determination operation AA81 that determines the measurement value application range code EM1L based on the obtained specific measurement value range code EM14. For example, the determined measurement value application range code EM1L is the same as or different from the obtained specific measurement value range code EM14.
  • the operation reference data code XU81 is obtained by the processing unit 331 from one of the control signal SC81 and the storage space SU11 to be the same as the preset rated range limit value pair DD1A , Is the data determination operation AA82 of the data determination AA8A from the multiple different measurements by executing a scientific calculation MR81 using the first measurement value VN81 and the obtained rated range limit value for DD1A
  • the measurement value application range code EM1L is selected from the value reference range codes EM11, EM12, ... to determine the measurement value application range code EM1L.
  • the scientific calculation MR81 is executed based on a specific empirical formula XR81.
  • the specific empirical formula XR81 is formulated in advance based on the preset rated range limit value pair DD1A and the multiple different measurement value reference range codes EM11, EM12,...
  • the specific empirical formula XR81 is formulated in advance based on the measurement application function specification GAL8.
  • the method ML82 further includes the following steps: the processing unit 331 obtains the application range limit value pair DN1L based on the determined measurement value application range code EM1L; and the processing unit 331 obtains the application range limit value pair DN1L from The control signal SC81 obtains the measurement value target range code EM1T.
  • the step of determining the range relationship KE8A includes the following sub-steps: the processing unit 331 compares a data CD81 between the first measurement value VN81 and the obtained application range limit value pair DN1L, and checks the first measurement value VN81.
  • the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.
  • the step of determining the range relationship KE8A further includes the following sub-steps: under the condition that the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in is determined by the processing unit 331, the processing unit 331 uses Compare the obtained measurement value target range code EM1T with the determined measurement value application range code EM1L to check the range relationship KE8A to make the obtained measurement value target range code EM1T and the determined measurement value application range code EM1L A logical decision PZ81 for whether the measurement value application range code EM1L is equal; and under the condition that the logical decision PZ81 is negative, the processing unit 331 recognizes that the range relationship KE8A is a range difference relationship to make the Reasonably decide PW81 to become affirmative.
  • the application range limit value pair DN1L includes an application range limit value DN15 of the measurement value application range RN1L and an application range limit value DN16 relative to the application range limit value DN15.
  • the processing unit 331 makes the first logical decision PB81 by comparing the first measurement value VN81 with the obtained application range limit value pair DN1L to become affirmative.
  • the processing unit 331 compares the first measurement value VN81 with the obtained value.
  • the application range limit value is affirmative for DN1L to make the first logical decision PB81.
  • the storage space SU11 further has a memory location YM8L and a memory location YX8T different from the memory location YM8L.
  • the memory location YM8L is identified based on the preset measurement value application range code EM1L.
  • the memory location YX8T is identified based on the preset measurement value target range code EM1T.
  • the measurement application function specification GAL8 further includes a physical parameter representation GA8T1, and the physical parameter representation GA8T1 is used to indicate a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the method ML82 further includes the following steps: the storage unit 332 stores the application range limit value pair DN1L in the memory location YM8L; the storage unit 332 stores a control code CC1T in the memory location YX8T, wherein the The control code CC1T is preset based on the physical parameter representation GA8T1 and a data encoding operation ZX91 for converting the physical parameter representation GA8T1; the processing unit 331 performs a specific function related to the variable physical parameter QU1A Operation ZH81, wherein the specific function operation ZH81 is used to cause a trigger event EQ81 to occur; and by using the control device 212, the control signal SC81 is generated in response to the trigger event EQ81.
  • the application range limit value pair DN1L and the control code CC1T are respectively transferred to the storage unit 332 based on the preset measurement value application range code EM1L and the preset measurement value target range code EM1T. storage.
  • the step of obtaining the application range limit value pair DN1L includes a sub-step: the processing unit 331 runs a data obtaining program ND8A to execute the operation using the determined measurement value application range code EM1L A data acquisition AD8A to obtain the application range limit value pair DN1L.
  • the data acquisition AD8A is one of a data acquisition operation AD81 and a data acquisition operation AD82.
  • the data acquisition program ND8A is constructed based on the measurement application function specification GAL8.
  • the data acquisition operation AD81 accesses the application range limit value pair DN1L stored in the memory location YM8L based on the determined measurement value application range code EM1L to obtain the application range limit value pair DN1L.
  • the data acquisition operation AD82 relies on one of the control signal SC81 and the storage space SU11 to acquire the rated range limit value pair DD1A, and uses the determined measurement value application range code EM1L and A scientific calculation MZ81 of the obtained rated range limit value pair DD1A is used to obtain the application range limit value pair DN1L.
  • the rated range limit value pair DD1A includes a rated range limit value DD11 of the rated measurement value range RD1N and a rated range limit value DD12 relative to the rated range limit value DD11, and is based on the rated physical parameter
  • the range represents GA8E
  • the sensor measurement range represents GW8R
  • the data encoding operation ZX81 is preset using the specified measurement value format HH81.
  • the step of generating the function signal SG81 includes the following sub-steps: under the condition that the reasonable decision PW81 is affirmative, the processing unit 331 uses the storage unit 332 to use the storage unit 332 based on the obtained measurement value target range code EM1T.
  • the processing unit 331 executes a signal generation control GY81 for the measurement application function FA81 based on the accessed control code CC1T; and In response to the signal generation control GY81, the output unit 338 performs a signal generation operation BY81 for the measurement application function FA81 to generate a function signal SG81, and the function signal SG81 is used to control the function unit 335 to cause
  • the variable physical parameter QU1A enters the physical parameter target range RD1ET.
  • the control device 212 is an external device.
  • the multiple different measurement value reference ranges RN11, RN12,... Have a total number of reference ranges NT81.
  • the total number of reference ranges NT81 is preset based on the measurement application function specification GAL8.
  • the method ML82 further includes a step: the processing unit 331 responds to the control signal SC81 to obtain the total number of reference ranges NT81.
  • the scientific calculation MR81 further uses the obtained total reference range number NT81.
  • the scientific calculation MZ81 further uses the obtained total reference range number NT81. For example, the total number of reference ranges is greater than or equal to two.
  • the method ML82 further includes a step: the function unit 335 responds to the function signal SG81 to change the variable physical parameter QU1A from a specific physical parameter QU17 to a specific physical parameter QU18.
  • the specific physical parameter QU17 is within the physical parameter application range RD1EL; and the specific physical parameter QU18 is within the physical parameter target range RD1ET.
  • the measurement application function specification GAL8 further includes a physical parameter candidate range representation GA8T for representing the physical parameter target range RD1ET.
  • the measurement value target range RN1T is a first part of the rated measurement value range RD1N, and has a target range limit value pair DN1T.
  • the target range limit value pair DN1T is based on the physical parameter candidate range representing GA8T, the sensor measurement range representing GW8R, and a data encoding operation ZX83 for converting the physical parameter candidate range representing GA8T to use the designated
  • the measured value format HH81 is preset.
  • the measurement value target range RN1T is preset using the specified measurement value format HH81 based on the physical parameter candidate range representation GA8T, the sensor measurement range representation GW8R, and the data encoding operation ZX83.
  • the measurement value application range RN1L is a second part of the rated measurement value range RD1N.
  • the physical parameter target range RD1ET and the physical parameter application range RD1EL are separate or adjacent. Under the condition that the physical parameter target range RD1ET and the physical parameter application range RD1EL are separated, the measured value target range RN1T and the measured value application range RN1L are separated. Under the condition that the physical parameter target range RD1ET and the physical parameter application range RD1EL are adjacent, the measurement value target range RN1T and the measurement value application range RN1L are adjacent.
  • the measurement value application range code EM1L is configured to be equal to an integer.
  • the rated range limit value DD12 is greater than the rated range limit value DD11.
  • the relative value VA11 is equal to a calculation result of the rated range limit value DD12 minus the rated range limit value DD11.
  • the application range limit value pair DN1L is determined based on the rated range limit value DD11, the rated range limit value DD12, the integer, and a ratio of the relative value VA11 to the total reference range number NT81. Preset.
  • the scientific calculation MZ81 uses one of the rated range limit value DD11, the rated range limit value DD12, the integer, the ratio, and any combination thereof.
  • the method ML82 further includes the following steps: the storage unit 332 provides a memory location YM8T different from the memory location YX8T, wherein the memory location YM8T is in the storage space SU11 and is based on The preset measurement value target range code EM1T is identified; the storage unit 332 stores the target range limit value pair DN1T in the memory location YM8T; and the signal generation controls GY81 at an operating time TF81 After being executed by the processing unit 331, the sensing unit 334 senses the variable physical parameter QU1A to generate a second sensing signal SN82.
  • the sensing unit 334 senses the variable physical parameter QU1A to execute a sensing signal dependent on the sensor sensitivity YW81 to generate HF82, so The sensing signal generating HF82 is used to generate the second sensing signal SN82.
  • the method ML82 further includes the following steps: the processing unit 331 responds to the second sensing signal SN82 within a specified time TG82 after the operation time TF81 to obtain a first measurement value format HH81 Two measurement values VN82; the processing unit 331 uses the storage unit 332 to access the target range limit value pair DN1T stored in the memory location YM8T based on the obtained measurement value target range code EM1T; And the processing unit 331 checks the one between the second measured value VN82 and the measured value target range RN1T by comparing the second measured value VN82 with the accessed target range limit value pair DN1T.
  • the mathematical relationship KV91 is used to make a logical decision PB91 whether the second measured value VN82 is within the measured value target range RN1T.
  • the method ML82 further includes the following steps: under the condition that the logical decision PB91 is affirmative, the processing unit 331 determines the physical parameter target where the variable physical parameter QU1A is currently located within the specified time TG82 Range RD1ET, and generate a positive operation report RL81, wherein the positive operation report RL81 indicates that the variable physical parameter QU1A successfully enters the physical parameter target range RD1ET an operation situation EP81; and the processing unit 331 causes the
  • the output unit 338 generates a control response signal SE81 that transmits the positive operation report RL81, whereby the control response signal SE81 is used to cause the control device 212 to obtain the positive operation report RL81.
  • the processing unit 331 responds to the control signal SC81 by causing the output unit 338 to generate the control response signal SE81.
  • the method ML82 further includes a step: when the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the variable physical parameter QU1A is currently in the physical parameter target range RD1ET, borrow Under the condition determined by the processing unit 331 by making the logical decision PB91, the processing unit 331 is based on the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained A code difference DF81 between the measured value target range codes EM1T is used to assign the obtained measured value target range code EM1T to the variable physical parameter range code UN8A.
  • the method ML82 further includes the following steps: when the control signal SC81 is received by the input unit 337, the output unit 240 displays a status indicator LB81, wherein the status indicator LB81 is used to indicate the variable physical parameter QU1A is configured in a specific state XJ81 within the specific physical parameter range RD1E4; and when the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the variable physical parameter QU1A Under the condition that the current physical parameter target range RD1ET is determined by the processing unit 331 by making the logical decision PB91, the processing unit 331 causes the output unit 338 to change based on the code difference DF81 The status indicator LB81 changes to a status indicator LB82. For example, the state indicator LB82 is used to indicate that the variable physical parameter QU1A is configured in a specific state XJ82 within the physical parameter target range RD1ET.
  • the control signal SC81 is one of an electrical signal SP81 and an optical signal SQ81.
  • the method ML82 further includes the following steps: under the condition that the control signal SC81 is the electrical signal SP81, the processing unit 331 obtains the control information CG81 from the electrical signal SP81 that transmits a control information CG81, wherein The control information CG81 includes the measurement value target range code EM1T; and under the condition that the control signal SC81 is the optical signal SQ81, the input unit 337 senses the signal transmitted by the optical signal SQ81 An encoded image FY81 is used to determine an encoded data DY81, and the encoded data DY81 is decoded to cause the processing unit 331 to obtain the control information CG81.
  • the coded image FY81 represents the control information CG81.
  • the method ML82 further includes the following steps: under the condition that the variable physical parameter QU1A is configured within the physical parameter target range RD1ET based on the control signal SC81, the input unit 337 receives a user input operation BQ81; in response to the user input operation BQ81, the processing unit 331 determines a specific input code UW81, wherein the specific input code UW81 is selected from the plurality of different measurement value reference range codes EM11, EM12, ...; and Under the condition that the specific input code UW81 is different from the preset measurement value target range code EM1T, the processing unit 331 is based on the variable physical parameter range code equal to the obtained measurement value target range code EM1T A code difference DX81 between UN8A and the specific input code UW81 causes the variable physical parameter QU1A to leave the physical parameter target range RD1ET through the output unit 338 to enter the multiple different physical parameters included A specific physical parameter range RD1E5 in the reference range RD1E1, RD1E2,...
  • the step of sensing the variable physical parameter QU1A includes a sub-step: the sensing unit 334 senses the variable physical parameter QU1A in a restraining condition FR81 to generate the first sensing Measure the signal SN81.
  • the constraint condition FR81 is that the variable physical parameter QU1A is equal to a specific physical parameter QU15 included in the rated physical parameter range RD1E.
  • the step of obtaining the first measurement value VN81 in response to the first sensing signal SN81 includes a sub-step: the processing unit 331 estimates the specific physical parameter QU15 based on the first sensing signal SN81 to obtain the The first measured value VN81.
  • the processing unit 331 recognizes that the first measurement value VN81 is within the measurement value application range RN1L A permissible value within, thereby identifying that the second mathematical relationship KV81 between the first measurement value VN81 and the measurement value application range RN1L is a numerical intersection relationship, and thereby determining the variable physical The physical parameter application range RD1EL in which the parameter QU1A is currently located.
  • the sensing unit 334 is characterized based on the sensor sensitivity YW81 related to the sensing signal generation HF81, and is configured to comply with the sensor specification FU11.
  • the sensor specification FU11 includes the sensor sensitivity representation GW81 for representing the sensor sensitivity YW81, and a sensor measurement range representation GW8R for representing a sensor measurement range RB8E.
  • the rated physical parameter range RD1E is configured to be the same as the sensor measurement range RB8E, or configured to be a part of the sensor measurement range RB8E.
  • the sensor measurement range RB8E is related to a physical parameter sensing performed by the sensing unit 334.
  • the sensor measurement range means that GW8R is provided based on a first preset measurement unit.
  • the first preset measurement unit is one of a metric measurement unit and an English measurement unit.
  • the rated measurement value range RD1N and the rated range limit value pair DD1A are both used based on the rated physical parameter range representing GA8E, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the data encoding operation ZX81.
  • the specified measurement value format HH81 is preset.
  • the measurement value application range RN1L and the application range limit value pair DN1L are both used based on the physical parameter application range representation GA8L, the sensor measurement range representation GW8R, the sensor sensitivity representation GW81, and the data encoding operation ZX82.
  • the specified measurement value format HH81 is preset.
  • the measurement value target range RN1T and the target range limit value pair DN1T are used based on the physical parameter candidate range representing GA8T, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the data encoding operation ZX83.
  • the specified measurement value format HH81 is preset.
  • the rated physical parameter range represents GA8E
  • the physical parameter application range represents GA8L
  • the physical parameter represents GA8T1
  • the physical parameter candidate range represents GA8T are all provided based on a second preset measurement unit.
  • the second preset measurement unit is one of a metric measurement unit and an English measurement unit, and is the same as or different from the first preset measurement unit.
  • the variable physical parameter QU1A is further characterized based on the sensor measurement range RB8E.
  • the sensor measurement range represents GW8R
  • the rated physical parameter range represents GA8E
  • the physical parameter application range represents GA8L
  • the physical parameter candidate range represents GA8T
  • the physical parameter represents GA8T1 are all decimal data types.
  • the first measurement value VN81, the second measurement value VN82, the rated range limit value pair DD1A, the application range limit value pair DN1L, the target range limit value pair DN1T, and the control code CC1T all belong to The binary data types are all suitable for computer processing.
  • the sensor specification FU11 and the measurement application function specification GAL8 are both preset.
  • the method ML82 further includes the following steps: before the control signal SC81 is received by the input unit 337, the input unit 337 receives the preset application range limit value pair DN1L and A write request message WN8L of a memory address AM8L, wherein the memory location YM8L is identified based on the memory address AM8L, and the memory address AM8L is preset based on the preset measurement value application range code EM1L And the processing unit 331 responds to the write request information WN8L and uses the storage unit 332 to store the application range limit value pair DN1L of the write request information WN8L to the memory location YM8L.
  • the method ML82 further includes the following steps: before the control signal SC81 is received by the input unit 337, the input unit 337 receives a write request including the preset control code CC1T and a memory address AX8T Information WC8T, wherein the memory location YX8T is identified based on the memory address AX8T, and the memory address AX8T is preset based on the preset measurement value target range code EM1T; and the processing unit 331 responds For the write request information WC8T, the storage unit 332 is used to store the control code CC1T of the write request information WC8T in the memory location YX8T.
  • FIG. 15 is a schematic diagram of an implementation structure 9017 of the control system 861 shown in FIG. 1.
  • FIG. 16 is a schematic diagram of an implementation structure 9018 of the control system 861 shown in FIG. 1.
  • each of the implementation structure 9017 and the implementation structure 9018 includes the control device 212 and the control target device 130.
  • the control target device 130 includes the operation unit 397, the sensing unit 334, the function unit 335, and the storage unit 332.
  • the operation unit 397 includes the processing unit 331, the input unit 337 and the output unit 338.
  • the input unit 337 includes the input component 3371, the input component 3372, and the input component 3373.
  • the output unit 338 includes an output component 3381, an output component 3382 and an output component 3383.
  • the sensing unit 334, the functional unit 335, the storage unit 332, the input component 3371, the input component 3372, the input component 3373, the output component 3381, the output component 3382, and the The output components 3383 are all coupled to the processing unit 331 and are controlled by the processing unit 331.
  • the output component 3381 is further coupled to the functional unit 335.
  • the processing unit 331 executes the signal generation control GY81 based on the obtained control code CC1T within the operation time TF81.
  • the output component 3381 responds to the signal generation control GY81 to execute the signal generation operation BY81 for the measurement application function FA81 to generate the function signal SG81 within the operation time TF81.
  • the function signal SG81 is a control signal.
  • the output component 3381 transmits the function signal SG81 to the function unit 335.
  • the function unit 335 responds to the function signal SG81 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the function signal SG81 is one of a pulse width modulation signal, a potential quasi signal, a driving signal, and a command signal.
  • the functional unit 335 is located at one of the inside of the control target device 130 and the outside of the control target device 130.
  • the processing unit 331 determines the positive operation report RL81 and causes The output unit 338 generates the control response signal SE81 that transmits the positive operation report RL81 and the measured value VN82.
  • the control response signal SE81 is one of an electrical signal LP81 and an optical signal LQ81.
  • the output component 3382 is a transmitter.
  • the output component 3383 is a light emitting component.
  • the processing unit 331 determines a physical parameter of the variable physical parameter QU1A currently within the physical parameter target range RD1ET by checking the mathematical relationship KV91, and thereby identifies the variable physical parameter.
  • a physical parameter relationship KD8T between the parameter QU1A and the physical parameter target range RD1ET is a physical parameter intersection relationship of the variable physical parameter QU1A currently within the physical parameter target range RD1ET.
  • the processing unit 331 checks the physical parameter relationship KD8T by checking the mathematical relationship KV91.
  • the processing unit 331 causes the output component 3382 to transmit to the control device 212 based on the determined positive operation report RL81.
  • the affirmative operation reports the electrical signal LP81 of the RL81.
  • the processing unit 331 causes the output component 3383 to generate and transmit the positive operation report RL81 based on the determined positive operation report RL81
  • the optical signal LQ81 of the control device 212 receives the generated optical signal LQ81 from the output component 3383.
  • the light emitting component is a display component.
  • the optical signal LQ81 conveys an encoded image FZ81 representing the affirmative operation report RL81.
  • the encoded image FZ81 is a barcode image.
  • the electrical signal LP81 is a radio signal.
  • the light signal LQ81 is an infrared signal.
  • control device 212 is identified by a control device identifier HAOT.
  • the control signal SC81 further conveys the control device identifier HAOT.
  • the processing unit 331 obtains the control device identifier HA0T from the control signal SC81 in response to the control signal SC81, and based on the obtained control device identifier HA0T and the determined positive operation report RL81
  • the output component 3382 is caused to transmit the electrical signal LP81 for delivering the positive operation report RL81 to the control device 212.
  • the operating unit 297 of the control device 212 is configured to communicate with the operating unit 397 by wire or wirelessly; therefore, the operating unit 297 is configured to wire to the operating unit 397.
  • the control signal SC81 is transmitted ground or wirelessly.
  • the input unit 337 receives the control signal SC81 from the control device 212 in a wired or wireless manner.
  • the control signal SC81 is one of the electrical signal SP81 and the optical signal SQ81.
  • the input component 3371 is a receiver, and receives the electrical signal SP81 from the control device 212 under the condition that the control signal SC81 is the electrical signal SP81.
  • the input component 3372 is a reader, and receives the optical signal SQ81 for delivering the encoded image FY81 from the control device 212 under the condition that the control signal SC81 is the optical signal SQ81.
  • the encoded image FY81 is a barcode image.
  • the electrical signal SP81 is a radio signal.
  • the optical signal SQ81 is an infrared signal.
  • the functional unit 335 has the variable physical parameter QU1A.
  • the input unit 337 further includes an input component 3374.
  • the input component 3374 is coupled to the processing unit 331, is controlled by the processing unit 331, and receives from the control device 212 under the condition that the variable physical parameter QU1A is provided by the control device 212 A physical parameter signal SB81.
  • the functional unit 335 receives the physical parameter signal SB81 from the input component 3374.
  • the processing unit 331 causes the functional unit 335 to use the physical parameter signal SB81 through the output component 3381 to form the variable physical parameter QU1A that depends on the physical parameter signal SB81.
  • the input component 3374 is a receiving component.
  • the control device 212 transmits the physical parameter signal SB81 to the input component 3374 in a wired or wireless manner.
  • the physical parameter target range RD1ET has a preset physical parameter target range limit ZD1T1 and a preset physical parameter target range limit ZD1T2 relative to the preset physical parameter target range limit ZD1T1.
  • the target range limit value pair DN1T includes a target range limit value DN17 of the measured value target range RN1T and a target range limit value DN18 relative to the target range limit value DN17.
  • the preset physical parameter target range limit ZD1T1 is represented by the target range limit value DN17.
  • the preset physical parameter target range limit ZD1T2 is represented by the target range limit value DN18.
  • the trigger event EQ81 is a state change event.
  • the control device 212 includes an operating unit 297 and a state change detector 475 coupled to the operating unit 297.
  • the state change detector 475 is one of a limit detector and an edge detector.
  • the limit detector is a limit switch 485.
  • the state change detector 475 is configured to detect the arrival of a characteristic physical parameter related to a preset characteristic physical parameter UL81 to the ZL82.
  • the preset characteristic physical parameter UL81 is a preset limit position.
  • the characteristic physical parameter reaching ZL82 is a limit position reaching.
  • the functional unit 335 includes a physical parameter application area AJ11.
  • the physical parameter application area AJ11 has a variable physical parameter QG1A.
  • the variable physical parameter QG1A is dependent on the variable physical parameter QU1A, and is characterized based on the preset characteristic physical parameter UL81.
  • the physical parameter application area AJ11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area.
  • the preset characteristic physical parameter UL81 is related to the variable physical parameter QU1A.
  • the input unit 337 Before the input unit 337 receives the control signal SC81, the input unit 337 receives a control signal SC80 from the operation unit 297; the processing unit 331 responds to the received control signal SC80 to perform control
  • the output unit 338 generates a signal to control GY80; the output unit 338 responds to the signal to generate a control GY80 to generate a function signal SG80 for controlling the variable physical parameter QU1A; and the function unit 335 receives
  • the output unit 338 receives the function signal SG80, and executes the specific function operation ZH81 related to the variable physical parameter QU1A in response to the received function signal SG80.
  • the specific function operation ZH81 is used to control the variable physical parameter QG1A, and cause the trigger event EQ81 to occur by changing the variable physical parameter QG1A.
  • the variable physical parameter QG1A is configured to be in a variable physical state XA8A.
  • the operation unit 397 is controlled by the control device 212 so that the function unit 335 executes the specific function operation ZH81.
  • the state change detector 475 generates a trigger signal SX8A in response to the specific function operation ZH81.
  • the specific functional operation ZH81 causes the variable physical parameter QG1A to reach the preset characteristic physical parameter UL81 to form the characteristic
  • the physical parameter reaches ZL82, and the variable physical state XA8A is changed from a non-characteristic physical parameter reaching state XA81 to an actual characteristic physical parameter reaching state XA82 by forming the characteristic physical parameter reaching ZL82.
  • the state change detector 475 generates the trigger signal SX8A in response to the characteristic physical parameter reaching the ZL82.
  • the actual characteristic physical parameter arrival state XA82 is characterized based on the preset characteristic physical parameter UL81.
  • the state change detector 475 responds to a state change event in which the variable physical parameter QG1A is changed from the non-characteristic physical parameter reaching state XA81 to the actual characteristic physical parameter reaching state XA82 to generate the trigger signal SX8A .
  • the state change detector 475 is a trigger application unit.
  • the trigger event EQ81 is the state change event in which the variable physical parameter QG1A enters the actual characteristic physical parameter arrival state XA82.
  • the operating unit 297 receives the trigger signal SX8A, and generates the control signal SC81 in response to the received trigger signal SX8A.
  • the characteristic physical parameter reaching ZL82 is equal to a variable space position and the variable physical parameter QG1A reaches a preset limit position.
  • a limit position of the preset characteristic physical parameter UL81 is reached.
  • the trigger signal SX8A is an operation request signal.
  • the operating unit 297 obtains a control application code UA8T that includes at least one of the target range limit value pair DN1T and the measured value target range code EM1T in response to the received trigger signal SX8A, and is based on The control application code UA8T is used to generate the control signal SC81 that transmits at least one of the target range limit value pair DN1T and the measured value target range code EM1T.
  • the functional unit 335 forms the variable physical parameter QG1A in the physical parameter application area AJ11 by executing the specific functional operation ZH81 caused based on the variable physical parameter QU1A. Under the condition that the physical parameter application area AJ11 is coupled to the state change detector 475, the state change detector 475 detects that the characteristic physical parameter reaches the ZL82.
  • variable physical parameter QU1A is a first variable electrical parameter, a first variable mechanical parameter, a first variable optical parameter, a first variable temperature, a first variable Variable voltage, a first variable current, a first variable electric power, a first variable resistor, a first variable capacitor, a first variable inductance, a first variable frequency, a first Clock time, a first variable time length, a first variable brightness, a first variable light intensity, a first variable volume, a first variable data flow, a first variable amplitude, a first A variable space position, a first variable displacement, a first variable sequence position, a first variable angle, a first variable space length, a first variable distance, a first variable translation speed , One of a first variable angular velocity, a first variable acceleration, a first variable force, a first variable pressure, and a first variable mechanical power.
  • the operating unit 397 is configured to execute the measurement application function FA81 related to the variable physical parameter QU1A by relying on the control signal SC81.
  • the control target device 130 is one of a plurality of application devices.
  • the measurement application function FA81 is one of a plurality of specific control functions, and the plurality of specific control functions include a light control function, a force control function, an electric control function, a magnetic control function, and any combination thereof.
  • the multiple application devices include a functional device, a relay, a control switch device, a motor, a lighting device, a door, a vending machine, an energy converter, a load device, a timed device, a toy, a Electrical appliances, a printing device, a display device, a mobile device, a speaker, and any combination thereof.
  • the functional unit 335 is one of multiple application targets and is configured to perform a specific application function.
  • the specific application function is one of multiple physical parameter application functions, and the multiple physical parameter application functions include a light use function, a force use function, an electricity use function, a magnetic use function, and any combination thereof.
  • the multiple application targets include an electronic component, an actuator, a resistor, a capacitor, an inductor, a relay, a control switch, a transistor, a motor, a lighting unit, an energy conversion unit, and a load Unit, time unit, a printing unit, a display target, a speaker, and any combination thereof.
  • the functional unit 335 is a physically implementable functional unit.
  • variable physical parameter QU1A and the variable physical parameter QG1A belong to a physical parameter type TU11 and a physical parameter type TU1G, respectively.
  • the physical parameter type TU11 is the same as or different from the physical parameter type TU1G.
  • the preset characteristic physical parameter UL81 belongs to the physical parameter type TU1G.
  • the functional unit 335 further includes a physical parameter formation area AU11 having the variable physical parameter QU1A.
  • the physical parameter application area AJ11 is coupled to the physical parameter forming area AU11.
  • the specific function operation ZH81 is used to drive the physical parameter application area AJ11 to form the characteristic physical parameter to ZL82.
  • the physical parameter formation area AU11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area.
  • the physical parameter type TU11 is different from a time type.
  • the variable physical parameter QG1A is a variable electrical parameter, a variable mechanical parameter, a variable optical parameter, a variable temperature, a variable voltage, a variable current, a variable electric power, a variable Variable resistance, one variable capacitor, one variable inductance, one variable frequency, one clock time, one variable time length, one variable brightness, one variable light intensity, one variable volume, one variable amount of data , A variable amplitude, a variable space position, a variable displacement, a variable sequence position, a variable angle, a variable space length, a variable distance, a variable translation speed, a variable angular velocity, One of a variable acceleration, a variable force, a variable pressure, and a variable mechanical power.
  • the variable physical parameter QU1A is the same as or different from the variable physical parameter QG1A.
  • FIG. 17 is a schematic diagram of an implementation structure 9019 of the control system 861 shown in FIG. 1.
  • FIG. 18 is a schematic diagram of an implementation structure 9020 of the control system 861 shown in FIG. 1.
  • FIG. 19 is a schematic diagram of an implementation structure 9021 of the control system 861 shown in FIG. 1.
  • each of the implementation structure 9019, the implementation structure 9020, and the implementation structure 9021 includes the control device 212 and the control target device 130.
  • the control target device 130 includes the operation unit 397, the sensing unit 334, the function unit 335, and the storage unit 332.
  • the operation unit 397 includes the processing unit 331, the input unit 337 and the output unit 338.
  • the input unit 337, the output unit 338, the sensing unit 334, the function unit 335, and the storage unit 332 are all controlled by the processing unit 331.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate the first sensing signal SN81. For example, under the condition that the input unit 337 receives the control signal SC81, the sensing unit 334 senses the variable physical parameter QU1A to generate the first sensing signal SN81. After the processing unit 331 executes the signal generation control GY81 to cause the output unit 338 to generate the function signal SG81 within the operation time TF81, the sensing unit 334 senses the variable The physical parameter QU1A is used to generate the second sensing signal SN82.
  • the sensing unit 334 is a time sensing unit, an electrical parameter sensing unit, a mechanical parameter sensing unit, an optical parameter sensing unit, a temperature sensing unit, a humidity sensing unit, One of a motion sensing unit and a magnetic parameter sensing unit.
  • the sensing unit 334 includes a sensing component 3341 coupled to the processing unit 331 and uses the sensing component 3341 to generate the first sensing signal SN81 and the second sensing signal SN82.
  • the sensing component 3341 belongs to a sensor type 7341 and is one of the first plurality of application sensors.
  • the first plurality of application sensors includes a first voltage sensor, a first current sensor, a first resistance sensor, a first capacitance sensor, a first inductance sensor, a first accelerometer, and a first gyroscope , A first pressure transducer, a first strain gauge, a first timer, a first light detector, a first temperature sensor and a first humidity sensor.
  • the sensing component 3341 generates a sensing signal component SN811.
  • the first sensing signal SN81 includes the sensing signal component SN811.
  • the sensing unit 334 further includes a sensing component 3342 coupled to the processing unit 331 and uses the sensing component 3342 to generate the first sensing signal SN81 and the second sensing signal SN82.
  • the sensing component 3342 belongs to a sensor type 7342 and is one of the second plurality of application sensors.
  • the sensor type 7342 is different from or independent of the sensor type 7341.
  • the second plurality of application sensors includes a second voltage sensor, a second current sensor, a second resistance sensor, a second capacitance sensor, a second inductance sensor, a second accelerometer, and a second gyroscope , A second pressure transducer, a second strain gauge, a second timer, a second light detector, a second temperature sensor and a second humidity sensor.
  • the sensing component 3342 generates a sensing signal component SN812.
  • the first sensing signal SN81 further includes the sensing signal component SN812.
  • the sensing unit 334 belongs to a sensor type 734.
  • the sensor type 734 is related to the sensor type 7341 and the sensor type 7342.
  • the sensing unit 334, the sensing component 3341, and the sensing component 3342 are an electric power sensing unit, a voltage sensor, and a current sensor, respectively.
  • the sensing unit 334, the sensing component 3341, and the sensing component 3342 are an inertial measurement unit, an accelerometer, and a gyroscope, respectively.
  • the variable physical parameter QU1A depends on a variable physical parameter JA1A and a variable physical parameter JB1A different from the variable physical parameter JA1A.
  • the variable physical parameter QU1A, the variable physical parameter JA1A, and the variable physical parameter JB1A are respectively a variable electric power, a variable voltage, and a variable current, and belong to a first physical parameter.
  • the second physical parameter type and the third physical parameter type are different or independent.
  • the first physical parameter type depends on the second physical parameter type and the third physical parameter type.
  • the sensing component 3341 senses the variable physical parameter JA1A to generate the sensing signal component SN811.
  • the sensing component 3342 senses the variable physical parameter JB1A to generate the sensing signal component SN812.
  • the processing unit 331 receives the sensing signal component SN811 and the sensing signal component SN812. Under the condition that the input unit 337 receives the control signal SC81, the processing unit 331 responds to the sensing signal component SN811 and the sensing signal component SN812 to obtain the first measurement value VN81. For example, the processing unit 331 obtains a measurement value VN811 in response to the sensing signal component SN811, obtains a measurement value VN812 in response to the sensing signal component SN812, and uses the measurement value VN811 and the A scientific calculation MY81 of the measured value VN812 is used to obtain the first measured value VN81. The scientific calculation MY81 is predetermined based on the first physical parameter type, the second physical parameter type, and the third physical parameter type.
  • Each physical parameter of the variable physical parameter JA1A and the variable physical parameter JB1A is a variable electrical parameter, a variable mechanical parameter, a variable optical parameter, a variable temperature, a variable voltage, One variable current, one variable electric power, one variable resistor, one variable capacitor, one variable inductance, one variable frequency, one clock time, one variable time length, one variable brightness, one variable Light intensity, a variable volume, a variable amount of data, a variable amplitude, a variable space position, a variable displacement, a variable sequence position, a variable angle, a variable space length, a variable One of distance, a variable translation speed, a variable angular velocity, a variable acceleration, a variable force, a variable pressure, and a variable mechanical power.
  • the sensing unit 334 is configured to comply with the sensor specification FU11.
  • the sensing unit 334 generates the first sensing signal SN81 by executing the sensing signal generation HF81 dependent on the sensor sensitivity YW81.
  • the functional unit 335 includes the physical parameter formation area AU11 having the variable physical parameter QU1A. Under the condition that the input unit 337 receives the control signal SC81 and the variable physical parameter QU1A exists in the physical parameter formation area AU11, the sensing unit 334 senses the variable physical parameter QU1A to The first sensing signal SN81 is generated.
  • the sensing unit 334 is coupled to the physical parameter formation area AU11, or is located in the physical parameter formation area AU11.
  • the processing unit 331 receives the first sensing signal SN81, and obtains the first measurement value VN81 in the designated measurement value format HH11 by processing the received first sensing signal SN81.
  • the processing unit 331 compares the first measurement value VN81 with the obtained application range limit value pair DN1L to perform a check for checking the relationship between the first measurement value VN81 and the measurement value application range RN1L.
  • a check operation BV81 of the second mathematical relationship KV81, and the first logical decision PB81 is made based on the check operation BV81.
  • the processing unit 331 processes the received first sensing signal SN81 to obtain a measurement value sequence JN81 including the first measurement value VN81.
  • the processing unit 331 performs a mathematical procedure for checking the measurement value sequence JN81 and the measurement value application range RN1L by comparing the measurement value sequence JN81 with the obtained application range limit value pair DN1L.
  • a check operation of the relationship KV85 is BV85.
  • the processing unit 331 makes the first logical decision PB81 based on the check operation BV85.
  • the inspection operation BV85 includes the inspection operation BV81.
  • the processing unit 331 under the condition that the processing unit 331 recognizes that the first measurement value VN81 is an allowable value VG81 within the measurement value application range RN1L based on the data comparison CD81, the processing unit 331 makes The above first logic determines PB81 to be affirmative.
  • the processing unit 331 under the condition that the processing unit 331 recognizes that the second mathematical relationship KV81 is a numerical intersection relationship KW81, the processing unit 331 makes the first logical decision PB81 to become affirmative.
  • the processing unit 331 responds to the control signal SC81 to obtain the measurement value target range code EM1T from the control signal SC81.
  • the processing unit 331 performs a verification operation ZU81 related to the variable physical parameter QU1A within the specified time TG82 after the operation time TF81.
  • the processing unit 331 uses the storage unit 332 to store the obtained
  • the measurement value target range code EM1T is assigned to the variable physical parameter range code UN8A.
  • the verification operation ZU81 responds to the second sensing signal SN82 within the specified time TG82 after the operation time TF81 to obtain the second measurement value VN82 in the specified measurement value format HH81.
  • the verification operation ZU81 obtains the target range limit value pair DN1T based on the obtained measurement value target range code EM1T, and by comparing the second measurement value VN82 with the obtained target range limit value pair DN1T to check the mathematical relationship KV91 between the second measured value VN82 and the measured value target range RN1T to determine whether the second measured value VN82 is within the measured value target range RN1T.
  • the logic determines PB91. Under the condition that the logical decision PB91 is affirmative, the verification operation ZU81 determines the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located, or determines the physical parameter that the variable physical parameter QU1A enters Parameter target range RD1ET.
  • the output unit 338 includes a transmitter 3382 (or an output component 3382) coupled to the processing unit 331.
  • the processing unit 331 generates a specific operation report RL8A based on the verification operation ZU81, and based on the specific operation report RL8A, causes the transmission unit 384 to transmit all of the specific operation report RL8A to the operation unit 297.
  • the control response signal SE81 The operating unit 297 obtains the specific operation report RL8A from the control response signal SE81, and executes the specific actual operation BJ81 related to the variable physical parameter QU1A based on the obtained specific operation report RL8A.
  • the specific operation report RL8A includes the positive operation report RL81.
  • the processing unit 331 determines the physical parameter in which the variable physical parameter QU1A is currently located based on the verification operation ZU81 Under the condition of the target range RD1ET, the processing unit 331 is based on the code between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T
  • the difference DF81 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the processing unit 331 determines that the variable physical parameter QU1A is currently in the physical parameter target range RD1ET based on the verification operation ZU81 within the specified time TG82.
  • the processing unit 331 performs a data comparison CE8T between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T.
  • the processing unit 331 determines the difference between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T based on the data comparison CE8T Under the condition of the code difference DF81, the processing unit 331 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the processing unit 331 determines the code difference DF81 based on the data comparison CE8T
  • the processing unit 331 executes the data storage control operation GU81, and the data storage control operation GU81 is used to cause a representative
  • the determined physical parameter target range code UN8T of the physical parameter target range RD1ET is recorded by the storage unit 332.
  • the physical parameter target range code UN8T is equal to the obtained measured value target range code EM1T.
  • the data storage control operation GU81 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the output component 3383 displays the status indicator LB81.
  • the state indication LB81 is used to indicate that the variable physical parameter QU1A is configured in the specific state XJ81 within the specific physical parameter range RD1E4.
  • the processing unit 331 is configured to obtain the specific measurement value range code EM14, and cause the output based on the obtained specific measurement value range code EM14 Unit 338 displays the status indication LB81.
  • the processing unit 331 determines the code difference DF81 based on the data comparison CE8T
  • the processing unit 331 causes the output component 3383 to convert the code difference DF81 based on the obtained measurement value target range code EM1T
  • the status indication LB81 changes to the status indication LB82.
  • the status indicator LB82 is used to indicate that the variable physical parameter QU1A is currently in the specific status XJ82 within the physical parameter target range RD1ET.
  • both the physical parameter target range RD1ET and the physical parameter application range RD1EL are included in the multiple different physical parameter reference ranges RD1E1, RD1E2,...
  • the physical parameter target range RD1ET is the same or different from the physical parameter application range RD1EL.
  • the variable physical parameter QU1A is further characterized based on a physical parameter candidate range RD1E2.
  • the physical parameter candidate range RD1E2 is different from the physical parameter application range RD1EL, and is the same as or different from the physical parameter target range RD1ET.
  • the physical parameter application range RD1EL is a physical parameter candidate range.
  • the physical parameter target range RD1ET is configured to correspond to a corresponding physical parameter range RY1ET.
  • the rated physical parameter range RD1E is equal to a range combination of the physical parameter target range RD1ET and the corresponding physical parameter range RY1ET, and includes the physical parameter application range RD1EL and the physical parameter candidate range RD1E2.
  • the measurement value target range RN1T is configured to correspond to a corresponding measurement value range RX1T.
  • the rated measurement value range RD1N is equal to a range combination of the measurement value target range RN1T and the corresponding measurement value range RX1T.
  • the corresponding physical parameter range RY1ET is represented by the corresponding measurement value range RX1T.
  • the corresponding measurement value range RX1T is preset in the designated measurement value format HH81 based on one of the sensor measurement range representation GW8R and the sensor specification FU11.
  • Both the measurement value target range RN1T and the measurement value application range RN1L are included in the multiple different measurement value reference ranges RN11, RN12,...
  • the measurement value target range RN1T is the same as or different from the measurement value application range RN1L.
  • the physical parameter candidate range RD1E2 is represented by a measurement value candidate range RN12.
  • the measurement value candidate range RN12 is different from the measurement value application range RN1L, and is the same as or different from the measurement value target range RN1T.
  • the rated measurement value range RD1N includes the measurement value application range RN1L and the measurement value candidate range RN12.
  • the measurement value candidate range RN12 is preset based on the physical parameter candidate range RD1E2 and the rated measurement value range RD1N.
  • the measurement value application range RN1L is a measurement value candidate range.
  • the rated measurement value range RD1N is preset using the designated measurement value format HH81 based on the rated physical parameter range representation GA8E, the sensor measurement range representation GW8R, and the rated physical parameter range representation GA8E.
  • the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are separate or adjacent. Under the condition that the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are separated, the measurement value application range RN1L and the measurement value candidate range RN12 are separated. Under the condition that the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are adjacent, the measurement value application range RN1L and the measurement value candidate range RN12 are adjacent.
  • the multiple different physical parameter reference ranges RD1E1, RD1E2,... include the physical parameter candidate ranges RD1E2, which are respectively represented by the multiple different measurement value reference ranges RN11, RN12,..., and are respectively referenced by multiple physical parameters Represented by the range code.
  • the measurement value candidate range RN12 is represented by a measurement value candidate range code EM12 and has a candidate range limit value pair DN1B, whereby the measurement value candidate range code EM12 is configured to indicate the physical parameter candidate range RD1E2.
  • the candidate range limit value pair DN1B includes a candidate range limit value DN13 and a candidate range limit value DN14 relative to the candidate range limit value DN13.
  • the measurement value candidate range code EM12 and the candidate range limit value pair DN1B are preset.
  • the multiple different measurement value reference range codes EM11, EM12, ... include the preset measurement value candidate range codes EM12.
  • the multiple physical parameter reference range codes are configured to be respectively equal to the multiple different measurement value reference range codes EM11, EM12,...
  • the trigger application function specification GAL8 further includes a physical parameter candidate range representation GA82 for representing the physical parameter candidate range RD1E2.
  • the measurement value candidate range RN12 and the candidate range limit value pair DN1B are preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the specified measurement value format HH81.
  • the measurement value candidate range RN12 and the candidate range limit value pair DN1B are both based on the physical parameter candidate range representing GA82, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and for converting the
  • the candidate range of physical parameters indicates that a data encoding operation ZX84 of GA82 is preset using the specified measurement value format HH81.
  • the measurement application function specification GAL8 is used to represent the rated physical parameter range RD1E and the multiple different physical parameter reference ranges RD1E1, RD1E2,...
  • the rated measurement value range RD1N, the rated range limit value pair DD1A, the multiple different measurement value reference ranges RN11, RN12,..., and the multiple different measurement value reference range codes EM11, EM12,... are all based on The measurement application function specification GAL8 is preset.
  • the measurement application function FA81 is selected from a number of different physical parameter control functions.
  • the storage unit 332 stores the measurement application function specification GAL8.
  • the processing unit 331 presets the rated range limit value pair DD1A, the application range limit value pair DN1L, the target range limit value pair DN1T, and the candidate range limit value according to the measurement application function specification GAL8. To DN1B,....
  • the first sensing signal SN81 includes sensing data.
  • the sensing data belongs to the binary data type.
  • the processing unit 331 obtains the first measurement value VN81 in the designated measurement value format HH81 based on the sensing data.
  • the operating unit 397 is configured to rely on the control signal SC81 to execute the measurement application function FA81.
  • the processing unit 331 determines whether the first measurement value VN81 is within the measurement value application range RN1L based on the check operation BV81 for the measurement application function FA81 to make the first logical decision PB81 . Under the condition that the first logical decision PB81 is affirmative, the processing unit 331 checks the range by comparing the obtained target range limit value pair DN1T with the obtained application range limit value pair DN1L Relation with KE8A to make the reasonable decision PW81.
  • the processing unit 331 determines that the variable physical parameter QU1A is currently in the physical parameter application range RD1EL
  • the processing unit 331 compares the measured value target range code EM1T and The determined measurement value application range code EM1L is used to check the range relationship KE9A between the physical parameter target range RD1ET and the physical parameter application range RD1EL to make the physical parameter target range RD1ET and the physical parameter application range RD1EL.
  • the logic of whether the physical parameter application range RD1EL is equal or not determines PZ91.
  • the processing unit 331 determines the range difference DB81 by recognizing that the range relationship KE9A is a range difference relationship to make the reasonable decision PW81 to be affirmative . Under the condition that the logical decision PZ81 is negative, the logical decision PZ91 is negative.
  • the processing unit 331 executes the signal generation control GY81 based on the obtained control code CC1T to cause the output unit 338 to generate a signal for causing the The functional signal SG81 that changes the physical parameter QU1A into the physical parameter target range RD1ET.
  • the processing unit 331 determines to select from the plurality of different measurement values by executing a scientific calculation MR82 using the determined measurement value application range code EM1L
  • the measurement value candidate range code EM12 of the reference range codes EM11, EM12, ... is so as to select the measurement value candidate range RN12 from the plurality of different measurement value reference ranges RN11, RN12, ....
  • the processing unit 331 obtains the candidate range limit value pair DN1B based on the determined measurement value candidate range code EM12, and obtains the candidate range limit value pair DN1B based on the first measurement value VN81 and the obtained candidate range limit value pair DN1B.
  • a logic within the measurement value candidate range RN12 determines PB82. Under the condition that the logical decision PB82 is affirmative, the processing unit 331 determines the physical parameter candidate range RD1E2 in which the variable physical parameter QU1A is currently located.
  • the processing unit 331 checks the measured value target by comparing the obtained measured value target range code EM1T with the determined measured value candidate range code EM12 A range relationship KE8B between the range RN1T and the selected measurement value candidate range RN12 to determine whether the obtained measurement value target range code EM1T and the determined measurement value candidate range code EM12 are equal Logic determines PZ82. Under the condition that the logical decision PZ82 is negative, the processing unit 331 causes the output unit 338 to generate the function signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the processing unit 331 compares the obtained measurement value target range code EM1T with the determined measurement value candidate range code EM12 to check the physical A range relationship KE9B between the parameter target range RD1ET and the selected physical parameter candidate range RD1E2 is used to make a logical decision PZ92 whether the physical parameter target range RD1ET and the selected physical parameter candidate range RD1E2 are equal .
  • the processing unit 331 uses the output component 338 by recognizing that the range relationship KE9B is a range difference relationship to generate the variable physical parameter QU1A.
  • the logical decision PZ92 is negative.
  • the input component included in the input unit 337 3373 receives the user input operation BQ81, and responds to the user input operation BQ81 to provide input data DH81 to the processing unit 331.
  • the processing unit 331 performs a data encoding operation EA81 on the input data DH81 to determine the specific input code UW81.
  • the processing unit 331 performs a check operation ZP81 for the measurement application function FA81 to determine whether the determined specific input code UW81 is equal to the variable physical parameter range code. UN8A.
  • the processing unit 331 uses the storage unit 332 to read the variable physical value equal to the measurement value target range code EM1T.
  • Parameter range code UN8A and perform the check operation ZP81 for checking an arithmetic relationship KP81 between the determined specific input code UW81 and the read measured value target range code EM1T.
  • the checking operation ZP81 is configured to compare the determined specific input code UW81 with the read measurement value target range code EM1T by executing a data comparison CE81 for the measurement application function FA81 to determine Whether the determined specific input code UW81 and the read measured value target range code EM1T are different.
  • the processing unit 331 determines between the determined specific input code UW81 and the variable physical parameter range code UN8A equal to the obtained measured value target range code EM1T by performing the data comparison CE81 Under the condition of the code difference DX81, the processing unit 331 causes the output component 3381 to perform a signal generation operation BY82 for the measurement application function FA81 to generate a function signal SG82.
  • the function signal SG82 is one of an operation signal and a control signal.
  • the output component 3381 transmits the function signal SG82 to the function unit 335.
  • the function unit 335 responds to the function signal SG82 to cause the variable physical parameter QU1A to enter the corresponding physical parameter range RY1ET from the physical parameter target range RD1ET.
  • the function signal SG82 is one of a pulse width modulation signal, a potential quasi signal, a driving signal, and a command signal.
  • the functional unit 335 responds to the functional signal SG82 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the multiple reference ranges RD1E1, RD1E2,...
  • the specific physical parameter range is RD1E5.
  • the plurality of different measurement value reference range codes EM11, EM12, ... include a specific measurement value range code EM15 that is different from the measurement value target range code EM1T.
  • the specific measurement value range code EM15 is configured to indicate the specific physical parameter range RD1E5.
  • the processing unit 331 determines the code difference DX81 by performing the data comparison CE81, and causes the output in response to determining the code difference DX81
  • the unit 338 generates the function signal SG82.
  • the function unit 335 responds to the function signal SG82 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5 included in the corresponding physical parameter range RY1ET.
  • the processing unit 331 performs a verification operation related to the variable physical parameter QU1A within a specified time.
  • the processing unit 331 determines the specific physical parameter range RD1E5 into which the variable physical parameter QU1A enters based on the verification operation, the processing unit 331 will be equal to the value of the specific measurement value range code EM15.
  • the determined specific input code UW81 is assigned to the variable physical parameter range code UN8A.
  • the specific physical parameter range RD1E5 is equal to one of the physical parameter application range RD1EL and the physical parameter candidate range RD1E2.
  • FIG. 20 is a schematic diagram of an implementation structure 9022 of the control system 861 shown in FIG. 1.
  • FIG. 21 is a schematic diagram of an implementation structure 9023 of the control system 861 shown in FIG. 1.
  • FIG. 22 is a schematic diagram of an implementation structure 9024 of the control system 861 shown in FIG. 1.
  • each of the implementation structure 9022, the implementation structure 9023, and the implementation structure 9024 includes the control device 212 and the control target device 130.
  • the control target device 130 includes the operation unit 397, the sensing unit 334, the function unit 335, and the storage unit 332.
  • the operation unit 397 includes the processing unit 331, the input unit 337 and the output unit 338.
  • the storage unit 332 has the memory location YM8L, and stores the application range limit value pair DN1L in the memory location YM8L.
  • the memory location YM8L is identified based on the preset measurement value application range code EM1L.
  • the memory location YM8L is identified based on the memory address AM8L, or is identified by the memory address AM8L.
  • the storage unit 332 has the memory location YM8T and the memory location YX8T different from the memory location YM8T, stores the target range limit value pair DN1T in the memory location YM8T, and stores it in the memory location YX8T
  • the control code CC1T For example, the memory location YM8T and the memory location YX8T are both identified based on the preset measurement value target range code EM1T.
  • the control code CC1T is preset based on the designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the memory location YM8T is identified based on a memory address AM8T, or is identified by the memory address AM8T.
  • the memory location YX8T is identified based on the memory address AX8T, or is identified by the memory address AX8T.
  • the memory location YM8L is different from the memory location YX8T.
  • the storage unit 332 further has a memory location YM82 and a memory location YX82 different from the memory location YM82.
  • the candidate range limit value pair DN1B is stored in the memory location YM82, and a memory location YX82 is stored in the memory location YX82.
  • the memory location YM82 and the memory location YX82 are both identified based on the preset measurement value candidate range code EM12.
  • the control code CC12 is preset based on a designated physical parameter QD12 within the physical parameter candidate range RD1E2.
  • the measurement application function specification GAL8 includes a physical parameter representation GA812, and the physical parameter representation GA812 is used to indicate the designated physical parameter QD12 within the physical parameter target range RD1E2.
  • the control code CC12 is preset based on the physical parameter representation GA812 and a data encoding operation ZX92 for converting the physical parameter representation GA812.
  • the memory location YM82 is identified based on the memory address AM82, or is identified by the memory address AM82.
  • the memory location YX82 is identified based on the memory address AX82, or is identified by the memory address AX82.
  • the storage unit 332 further has a memory location YX8L, and stores a control code CC1L in the memory location YX8L.
  • the memory location YX8L is identified based on a memory address AX8L, or is identified by the memory address AX8L.
  • the control code CC1L is preset based on a designated physical parameter QD1L within the physical parameter application range RD1EL.
  • the application range limit value pair DN1L, the target range limit value pair DN1T, and the candidate range limit value pair DN1B all belong to a measurement range limit data code type TN81.
  • the measurement range limit data code type TN81 is identified by a measurement range limit data code type identifier HN81.
  • the control code CC1T and the control code CC12 both belong to a control code type TC81.
  • the control code type TC81 is identified by a control code type identifier HC81. Both the measurement range limit data code type identifier HN81 and the control code type identifier HC81 are preset.
  • the memory address AM8L is preset based on the preset measurement value application range code EM1L and the preset measurement range limit data code type identifier HN81.
  • the memory address AX8L is preset based on the preset measurement value application range code EM1L and the preset control code type identifier HC81.
  • the memory address AX8T is preset based on the preset measurement value target range code EM1T and the preset control code type identifier HC81.
  • the third memory address AM8T is preset based on the preset measurement value target range code EM1T and the preset measurement range limit data code type identifier HN81.
  • the memory address AM82 is preset based on the preset measurement value candidate range code EM12 and the preset measurement range limit data code type identifier HN81.
  • the memory address AX82 is preset based on the preset measurement value candidate range code EM12 and the preset control code type identifier HC81.
  • the processing unit 331 determines the measurement value application range code EM1L in response to the control signal SC81, and obtains the preset measurement range limit data code type identifier in response to the control signal SC81 HN81, based on the determined measurement value application range code EM1L and the obtained measurement range limit data code type identifier HN81 to obtain the memory address AM8L, and use all the memory address AM8L based on the obtained memory address AM8L
  • the storage unit 332 accesses the application range limit value pair DN1L stored in the memory location YM8L to obtain the application range limit value pair DN1L.
  • the processing unit 331 checks the second mathematical relationship KV81 to make the first measurement based on the data comparison CD81 between the first measurement value VN81 and the obtained application range limit value pair DN1L Whether the value VN81 is within the first logical decision PB81 within the selected measurement value application range RN1L, and under the condition that the first logical decision PB81 is affirmative, it is determined that the variable physical parameter QU1A is currently in The physical parameter application range RD1EL.
  • the processing unit 331 determines the current physical parameter status of the variable physical parameter QU1A within the physical parameter application range RD1EL, and uses this to identify A physical parameter relationship KD8L between the variable physical parameter QU1A and the physical parameter application range RD1EL is a physical parameter intersection relationship of the variable physical parameter QU1A currently in the physical parameter application range RD1EL.
  • the processing unit 331 checks the physical parameter relationship KD8L by checking the mathematical relationship KV81. For example, under the condition that the physical parameter application range RD1EJ is equal to the physical parameter application range RD1EL, the physical parameter relationship KC81 is equal to the physical parameter relationship KD8L.
  • the processing unit 331 obtains the preset control code type identifier HC81 in response to the control signal SC81, and obtains the measured value target range code EM1T from the control signal SC81. Under the condition that the processing unit 331 determines the range difference DS81, the processing unit 331 obtains the memory based on the obtained measurement value target range code EM1T and the obtained control code type identifier HC81 Address AX8T, and use the storage unit 332 to access the control code CC1T stored in the memory location YX8T based on the obtained memory address AX8T.
  • the processing unit 331 causes the output unit 338 to perform the signal generation operation BY81 for the measurement application function FA81 to generate the function signal SG81 based on the accessed control code CC1T.
  • the SG81 is used to control the functional unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the processing unit 331 obtains the third memory address AM8T based on the obtained measurement value target range code EM1T and the obtained measurement range limit data code type identifier HN81, and based on the obtained first memory address AM8T.
  • the memory address AM8T is used to use the storage unit 332 to access the target range limit value pair DN1T stored in the memory location YM8T to obtain the target range limit value pair DN1T.
  • the processing unit 331 checks the mathematical relationship between the second measured value VN82 and the measured value target range RN1T by comparing the second measured value VN82 with the obtained target range limit value pair DN1T.
  • the relationship KV91 is used to make the logical decision PB91 whether the second measurement value VN82 is within the measurement value target range RN1T.
  • one of the input component 3371 and the input component 3372 receives the preset application range limit value pair DN1L and The preset write request information WN8L of the memory address AM8L.
  • one of the input component 3371 and the input component 3372 receives the write request information WN8L from the control device 212 in advance.
  • the processing unit 331 uses the storage unit 332 in response to the write request information WN8L to store the application range limit value pair DN1L of the write request information WN8L in the memory location YM8L.
  • one of the input component 3371 and the input component 3372 receives the preset control code CC1T and the preset memory address AX8T
  • the write request information WC8T For example, one of the input component 3371 and the input component 3372 receives the write request information WC8T from the control device 212 in advance.
  • the processing unit 331 uses the storage unit 332 in response to the write request information WC8T to store the control code CC1T of the write request information WC8T in the memory location YX8T.
  • one of the input component 3371 and the input component 3372 receives the preset application target threshold pair DN1T and the preset A write request message WN8T of the third memory address AM8T.
  • one of the input component 3371 and the input component 3372 receives the write request information WN8T from the control device 212 in advance.
  • the processing unit 331 uses the storage unit 332 to store the application target threshold pair DN1T of the write request information WN8T in the memory location YM8T in response to the write request information WN8T.
  • the storage unit 332 further has a memory location YN81, and stores the rated range limit value pair DD1A in the memory location YN81.
  • the memory location YN81 is identified based on a memory address AN81, or is identified by the memory address AN81.
  • the memory address AN81 is preset.
  • one of the input component 3371 and the input component 3372 receives the preset rating range limit value pair DD1A and the preset A write request message WD81 of the memory address AN81.
  • one of the input component 3371 and the input component 3372 receives the write request information WD81 from the control device 212 in advance.
  • the processing unit 331 uses the storage unit 332 to store the rated range limit value pair DD1A of the write request information WD81 in the memory location YN81 in response to the write request information WD81.
  • the processing unit 331 obtains the memory address AM82 based on the determined measurement value candidate range code EM12 and the obtained measurement range limit data code type identifier HN81, and based on the obtained The memory address AM82 is used to use the storage unit 332 to access the candidate range limit value pair DN1B stored in the memory location YM82 to obtain the candidate range limit value pair DN1B.
  • the specific physical parameter range RD1E5 is represented by a specific measurement value range RN15.
  • the specific measurement value range RN15 has a specific range limit value pair DN1E.
  • the storage unit 332 further has a memory location YM85 and a memory location YX85 different from the memory location YM85.
  • the memory location YM85 is identified based on a memory address AM85, and is preset based on the specific measurement value range code EM15 and the measurement range limit data code type identifier HN81.
  • the memory location YX85 is identified based on a memory address AX85, and is preset based on the specific measurement value range code EM15 and the control code type identifier HC81.
  • the storage unit 332 stores the specific range limit value pair DN1E in the memory location YM85, and stores a control code CC15 in the memory location YX85.
  • the specific range limit value pair DN1E is configured to represent the specific physical parameter range RD1E5, and belongs to the measurement range limit data code type TN81.
  • the control code CC15 belongs to the control code type TC81 and is preset based on a designated physical parameter QD5T within the specific physical parameter range RD1E5. For example, the control code CC12, the control code CC15, the control code CC1L, and the control code CC1T are respectively multiple handles.
  • the processing unit 331 determines the code difference DX81 by performing the data comparison CE11. Under the condition that the processing unit 331 determines the code difference DX81, the processing unit 331 is based on the determined specific input code UW81 that is equal to the preset specific measurement value range code EM15 and the obtained all The control code type identifier HC81 is used to obtain the memory address AX85.
  • the processing unit 331 uses the storage unit 332 to access the control code CC15 stored in the memory location YX85 based on the obtained memory address AX85, and based on the accessed control code CC15
  • the physical parameter QU1A enters the specific physical parameter range RD1E5 included in the corresponding physical parameter range RY1ET.
  • the sensing unit 334 senses The variable physical parameter QU1A generates a sensing signal SN83.
  • the processing unit 331 responds to the sensing signal SN83 at a specified time TG83 after the operating time TF82 to obtain a measurement value VN83.
  • the processing unit 331 is configured to obtain the determined specific input code UW81 equal to the preset specific measurement value range code EM15 and the obtained measurement range limit data code type identifier HN81.
  • the memory address AM85 is used, and the storage unit 332 is used to access the specific range limit value pair DN1E stored in the memory location YM85 based on the obtained memory address AM85.
  • the processing unit 331 checks a mathematical relationship KV83 between the measurement value VN83 and the specific measurement value range RN15 by comparing the measurement value VN83 with the obtained specific range limit value pair DN1E to determine Under the condition of the specific physical parameter range RD1E5 that the variable physical parameter QU1A is currently in, the processing unit 331 is based on the variable physical parameter range code UN8A and the preset specific measurement value range code EM15. A code difference between the determined specific input code UW81 is used for the storage unit 332 to assign the determined specific input code UW81 to the variable physical parameter range code UN8A.
  • the processing unit 331 determines the current state of a physical parameter of the variable physical parameter QU1A within the specific physical parameter range RD1E5 by checking the mathematical relationship KV83, and thereby identifies the variable physical parameter.
  • a physical parameter relationship KD85 between the parameter QU1A and the specific physical parameter range RD1E5 is a physical parameter intersection relationship of the variable physical parameter QU1A currently within the specific physical parameter range RD1E5.
  • the processing unit 331 checks the physical parameter relationship KD85 by checking the mathematical relationship KV83.
  • FIG. 23 is a schematic diagram of an implementation structure 9025 of the control system 861 shown in FIG. 1.
  • FIG. 24 is a schematic diagram of an implementation structure 9026 of the control system 861 shown in FIG. 1.
  • each of the implementation structure 9025 and the implementation structure 9026 includes the control device 212 and the control target device 130.
  • the control target device 130 includes the operation unit 397, the sensing unit 334, the function unit 335, and the storage unit 332.
  • the operating unit 397 includes the processing unit 331, the input unit 337, the output unit 338, and a timer 339 coupled to the processing unit 331.
  • the control signal SC81 received by the input unit 337 conveys the control information CG81
  • the control information CG81 includes the target range limit value pair DN1T and the rated range limit value pair DD1A , The control code CC1T and the measured value target range code EM1T.
  • the processing unit 331 determines the range difference DS81 based on the control signal SC81
  • the processing unit 331 causes the output unit 338 to perform the signal generation operation based on the obtained control code CC1T BY81
  • the signal generating operation BY81 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the processing unit 331 obtains the measured value target range code EM1T and the target range limit value pair DN1T from the received control signal SC81.
  • the processing unit 331 compares the second measurement value VN82 with the obtained target range limit value pair DN1T
  • the processing unit 331 is based on the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the The code difference DF81 between the obtained measurement value target range codes EM1T is used to use the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the processing unit 331 determines that the variable physical parameter QU1A is currently within the physical parameter target range RD1ET by comparing the second measured value VN82 with the obtained target range limit value pair DN1T.
  • a physical parameter situation, and a physical parameter relationship KD8T between the variable physical parameter QU1A and the physical parameter target range RD1ET is identified as the variable physical parameter QU1A currently in the physical parameter target range RD1ET The intersection of a physical parameter within.
  • the timer 339 is controlled by the processing unit 331 to measure the variable time length LF8A, and is configured to comply with a timer specification FT11.
  • the variable time length LF8A is further characterized based on a reference time length LJ8T.
  • the control signal SC81 conveys the measured time length value CL8T representing the reference time length LJ8T.
  • the measurement time length value CL8T is preset based on at least one of the reference time length LJ8T and the timer specification FT11 in a designated count value format HH91.
  • the measurement application function specification GAL8 includes a time length representation GA8KJ.
  • the time length representation GA8KJ is used to represent the reference time length LJ8T.
  • the designated count value format HH91 is characterized based on a designated number of bits UY91.
  • the measurement time length value CL8T is based on the time length representation GA8KJ, the timer specification FT11, and a data encoding operation ZX8KJ for converting the time length representation GA8KJ to the designated count value format HH91.
  • the processing unit 331 obtains the measurement time length value CL8T from the control signal SC81, and checks the numerical relationship KJ81 between the obtained measurement time length value CL8T and the measurement time length value reference range GJ81 To make the logical decision PE81 for controlling whether the counting operation BC8T for the specific time TJ8T is to be executed.
  • the measurement time length value CL8T and the measurement time length value reference range GJ81 are both preset based on the timer specification FT11 in the designated count value format HH91.
  • the measurement time length value reference range GJ81 used to make the logical decision PE81 has a time length range limit value pair LN8A, and represents the time length reference range HJ81.
  • the measurement time length value reference range GJ81 is preset based on at least one of the time length reference range HJ81 and the timer specification FT11 in the designated count value format HH91.
  • the measurement application function specification GAL8 includes a time length reference range representation GA8HJ, and the time length reference range representation GA8HJ is used to represent the time length reference range HJ81.
  • the time length reference range HJ81 and the time length range limit value pair LN8A are based on the time length reference range representation GA8HJ, the timer specification FT11 and a data code used to convert the time length reference range representation GA8HJ Operate ZX8HJ to be preset using the specified count value format HH91.
  • the storage unit 332 stores the time length range limit value pair LN8A.
  • the processing unit 331 obtains the time length range limit value pair LN8A from the storage unit 332 in response to the control signal SC81, and compares the obtained measurement time length value CL8T with the obtained measurement time length value CL8T.
  • the time length range limit value is paired with LN8A to check the numerical relationship KJ81 to make the logical decision PE81.
  • the processing unit 331 under the condition that the processing unit 331 recognizes that the numerical relationship KJ81 is a numerical intersection relationship by checking the numerical relationship KJ81, the processing unit 331 makes the logical decision PE81 to become affirmative.
  • the time length range limit value is preset for LN8A, and includes a time length range limit value LN81 of the measurement time length value reference range GJ81 and a time length range relative to the time length range limit value LN81
  • the limit value is LN82.
  • the processing unit 331 determines the time length reference range HJ81 in which the reference time length LJ8T is included by comparing the obtained measurement time length value CL8T with the obtained time length range limit value pair LN8A. Under the condition that the processing unit 331 makes the logical decision PE81 to become affirmative.
  • the processing unit 331 under the condition that the logical decision PE81 is affirmative, the processing unit 331 causes the timer 339 to perform the counting operation BC8T based on the obtained measurement time length value CL8T. Under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1ET based on the control signal SC81, the processing unit 331 reaches the specific time TJ8T based on the counting operation BC8T , And cause the output unit 338 to perform a signal generation operation BY91 within the specific time TJ8T. The signal generation operation BY91 is used to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the The description corresponds to the physical parameter range RY1ET.
  • the processing unit 331 experiences an end time based on the counting operation BC8T An application time length of TZ8T is LT8T to reach the specific time TJ8T.
  • the processing unit 331 performs a scientific calculation MK81 that uses the obtained measured value target range code EM1T within the specific time TJ8T to obtain all values that are different from the obtained measured value target range code EM1T.
  • control device 212 determines the measurement time length value CL8T based on the reference time length LJ8T and the timer specification FT11, and outputs the control signal SC81 based on the determined measurement time length value CL8T .
  • the control information CG81 further includes the measurement time length value CL8T.
  • the control signal SC81 is used to cause the variable physical parameter QU1A to have the application time length LT8T that matches the reference time length LJ8T within the physical parameter target range RD1ET.
  • the processing unit 331 obtains the memory address AX82 based on the obtained measurement value candidate range code EM12 and the obtained control code type identifier HC81.
  • the processing unit 331 uses the storage unit 332 to read the control code CC12 stored in the memory location YX82 based on the acquired memory address AX82, and based on the read control code CC12 To execute a signal generation control GY91 for controlling the output unit 338.
  • the output unit 338 responds to the signal generation control GY91 to execute the signal generation operation BY91 for the measurement application function FA81 to generate a function signal SG91, and the function signal SG91 is used to control the function unit 335 to Cause the variable physical parameter QU1A to enter a physical parameter candidate range RD2E2 included in the corresponding physical parameter range RY1ET.
  • the function signal SG91 is one of an operation signal and a control signal.
  • the physical parameter candidate range RD2E2 is one of the physical parameter application range RD1EL and the physical parameter candidate range RD1E2, and is different from the physical parameter target range RD1ET.
  • the physical parameter candidate range RD2E2 is a specific physical parameter range.
  • the processing unit 331 causes the timer 339 to perform the counting operation BC8T to reach the end time TZ8T based on the obtained measurement time length value CL8T. .
  • the timer 339 transmits an interrupt request signal UH8T to the processing unit 331 to reach the specific time TJ8T.
  • the processing unit 331 responds to the interrupt request signal UH8T within the specific time TJ8T to execute the scientific calculation MK81 using the obtained measurement value target range code EM1T to obtain the measurement that is different from the obtained measurement The measured value candidate range code EM12 of the value target range code EM1T.
  • the processing unit 331 recognizes the specific time TJ8T by receiving the interrupt request signal UH8T from the timer 339, and thereby experiences the application time length LT8T.
  • the specific time TJ8T is adjacent to the end time TZ8T.
  • variable physical parameter QU1A is characterized based on the rated physical parameter range RD1E.
  • the rated physical parameter range RD1E includes the physical parameter target range RD1ET, the physical parameter application range RD1EL, and the physical parameter candidate range RD1E2, and is represented by the rated measurement value range RD1N.
  • the rated measurement value range RD1N includes the measurement value target range RN1T, the measurement value application range RN1L, and the measurement value candidate range RN12.
  • the physical parameter target range RD1ET, the physical parameter application range RD1EL, and the physical parameter candidate range RD1E2 are respectively represented by the measurement value target range RN1T, the measurement value application range RN1L, and the measurement value candidate range RN12 .
  • the measurement application function specification GAL8 includes a physical parameter candidate range representation GA83 for representing the physical parameter candidate range RD1E3.
  • the measurement value candidate range RN13 is based on the physical parameter candidate range representing GA83, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and a data encoding operation ZX87 for converting the physical parameter candidate range representing GA83. It is preset using the specified measurement value format HH81, and is represented by a measurement value candidate range code EM13 included in the plurality of different measurement value reference range codes EM11, EM12,...
  • the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are different.
  • the physical parameter target range RD1ET is the same or different from the physical parameter application range RD1EL.
  • the physical parameter target range RD1ET is the same or different from the physical parameter candidate range RD1E2.
  • the measurement value application range RN1L and the measurement value candidate range RN12 are different.
  • the measurement value target range RN1T is the same as or different from the measurement value application range RN1L.
  • the measurement value target range RN1T is the same or different from the measurement value candidate range RN12.
  • the rated physical parameter range RD1E of the variable physical parameter QU1A includes the multiple different physical parameter reference ranges RD1E1, RD1E2,...
  • the multiple different physical parameter reference ranges RD1E1, RD1E2,... include the physical parameter target range RD1ET, the physical parameter application range RD1EL, and the physical parameter candidate range RD1E2.
  • the variable physical parameter QU1A is in one of a plurality of different reference states based on the plurality of different physical parameter reference ranges RD1E1, RD1E2,....
  • the multiple different reference states include a first reference state, a second reference state, and a third reference state, whereby the variable physical parameter QU1A is characterized by a variable current state.
  • the variable current state is one of the multiple different reference states.
  • the first reference state and the second reference state are complementary. Under the condition that the variable physical parameter QU1A is within the physical parameter application range RD1EL, the variable physical parameter QU1A is in the first reference state. Under the condition that the variable physical parameter QU1A is within the physical parameter candidate range RD1E2, the variable physical parameter QU1A is in the second reference state. Under the condition that the variable physical parameter QU1A is within the physical parameter target range RD1ET, the variable physical parameter QU1A is in the third reference state. The third reference state is the same or different from the first reference state. The third reference state is the same or different from the second reference state.
  • the control code CC1T conveyed by the control signal SC81 and the control code CC1T stored by the storage unit 332 are both based on the designated physical parameter QD1T within the physical parameter target range RD1ET. Preset. Under the condition that the processing unit 331 determines the range difference DS81, the processing unit 331 causes the output unit 338 to execute the signal for the measurement application function FA81 based on the obtained control code CC1T Operation BY81 is generated to generate the function signal SG81.
  • the function unit 335 responds to the function signal SG81 to cause the variable physical parameter QU1A to change from a current state to the third reference state, or responds to the function signal SG81 to cause the variable physical parameter QU1A to change from A specific physical parameter QU17 is changed to a specific physical parameter QU18.
  • the current state is one of the first reference state and the second reference state.
  • the specific physical parameter QU17 is within the physical parameter application range RD1EL or within the physical parameter candidate range RD1E2.
  • the specific physical parameter QU18 is within the physical parameter target range RD1ET.
  • the specific physical parameter QU17 is within the corresponding physical parameter range RY1ET.
  • the multiple different reference states respectively cause the functional unit 335 to be in multiple different functional states.
  • the multiple different functional states are different and include a first functional state, a second functional state, and a third functional state.
  • the first functional state and the second functional state are complementary.
  • the functional unit 335 Under the condition that the variable physical parameter QU1A is within the physical parameter application range RD1EL, the functional unit 335 is in the first functional state.
  • the functional unit 335 is in the second functional state.
  • the functional unit 335 is in the third functional state.
  • the third functional state is the same or different from the first functional state.
  • the third functional state is the same or different from the second functional state.
  • the measurement value target range code EM1T is a measurement value reference range number.
  • the measurement value target range RN1T is arranged in the rated measurement value range RD1N based on the measurement value target range code EM1T.
  • the measurement value application range code EM1L is a measurement value reference range number.
  • the measurement value application range RN1L is arranged in the rated measurement value range RD1N based on the measurement value application range code EM1L.
  • the measurement value candidate range code EM12 is a measurement value reference range number.
  • the measurement value candidate range RN12 is arranged in the rated measurement value range RD1N based on the measurement value candidate range code EM12.
  • the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter application range RD1EL is the relatively high physical parameter range and the corresponding physical parameter range.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high voltage range and a relatively low voltage range, respectively.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high current range and a relatively low current range, respectively.
  • the variable physical parameter QU1A is the first variable resistance
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high resistance range and a relatively low resistance range, respectively.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high brightness range and a relatively low brightness range, respectively.
  • the relatively high physical parameter range and the relatively low physical parameter range are respectively a relatively high light intensity range and a relatively low light intensity range .
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high volume range and a relatively low volume range, respectively.
  • the relatively high physical parameter range and the relatively low physical parameter range are a relatively high angular velocity range and a relatively low angular velocity range, respectively.
  • the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RD1E2 is the relatively high physical parameter range and the relatively low physical parameter range.
  • the other of the parameter range For example, the physical parameter application range RD1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RD1E2 is the relatively high physical parameter range and the relatively low physical parameter range.
  • the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RD1E4 is the relatively high physical parameter range and the relatively low physical parameter range.
  • the other of the parameter range For example, the physical parameter range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RD1E4 is the relatively high physical parameter range and the relatively low physical parameter range.
  • the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RD1E5 is the relatively high physical parameter range and the relatively low physical parameter range. The other of the parameter range.
  • the functional unit 335 under the condition that the control target device 130 is a relay, is a control switch. Under the condition that the functional unit 335 is the control switch, the control switch has a variable switch state and is in one of an on state and an off state based on the variable physical parameter QU1A .
  • the variable switch state is equal to one of the on state and the off state, and the on state and the off state are complementary.
  • the on state is one of the first functional state and the second functional state
  • the off state is the other of the first functional state and the second functional state.
  • the processing unit 331 determines the range difference DS81
  • the processing unit 331 recognizes that the variable current state is a specific state different from the third reference state, and thereby generates the function signal SG81.
  • the function unit 335 responds to the function signal SG81 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET, so the variable current state is changed to the third reference state.
  • the processing unit 331 determines the code difference DX81, the processing unit 331 causes the output unit 338 to generate the function signal SG82.
  • the function unit 335 responds to the function signal SG82 to cause the variable physical parameter QU1A to enter the specific physical parameter range RD1E5 included in the corresponding physical parameter range RY1ET from the physical parameter target range RD1ET; therefore, Under the condition that the specific physical parameter range RD1E5 is equal to the physical parameter candidate range RD1E2, the variable current state is changed to the second reference state.
  • variable physical parameter QU1A is the first variable current.
  • the physical parameter application range RD1EL, the physical parameter candidate range RD1E2, and the physical parameter target range RD1ET are a first current reference range, a second current reference range, and a third current reference range, respectively.
  • the control code CC1L is preset based on a first designated current within the first current reference range.
  • the control code CC12 is preset based on a second designated current within the second current reference range.
  • the control code CC1T is preset based on a third specified current within the third current reference range.
  • the measurement time length value CL8T is preset in the designated count value format HH91 based on the time length representation GA8KJ, the timer specification FT11, and the data encoding operation ZX8KJ.
  • the processing unit 331 causes the timer 339 to perform the counting operation BC8T based on the obtained measurement time length value CL8T.
  • the processing unit 331 experiences the application time length based on the counting operation BC8T LT8T reaches the specific time TJ8T, whereby the first variable current is maintained within the third current reference range within the application time length LT8T related to the counting operation BC8T.
  • the physical parameter application range RD1EL, the physical parameter candidate range RD1E2, and the physical parameter target range RD1ET are respectively a first rotational speed reference range
  • the physical parameter application range RD1EL, the physical parameter candidate range RD1E2, and the physical parameter target range RD1ET are respectively a first temperature reference range and a first temperature reference range.
  • FIG. 25 is a schematic diagram of an implementation structure 9027 of the control system 861 shown in FIG. 1.
  • the implementation structure 9027 includes the control device 212, the control target device 130, and a server 280.
  • the control device 212 is linked to the server 280.
  • the control target device 130 includes the operation unit 397, the sensing unit 334, the function unit 335, and the storage unit 332.
  • the operating unit 397 includes the processing unit 331, the input unit 337, the output unit 338, and a timer 340 coupled to the processing unit 331.
  • the timer 340 is controlled by the processing unit 331.
  • the input component 3374 included in the input unit 337 is coupled to the processing unit 331, and under the condition that the variable physical parameter QU1A is provided by the control device 212
  • the physical parameter signal SB81 is received from the control device 212.
  • the functional unit 335 receives the physical parameter signal SB81 from the input component 3374.
  • the processing unit 331 causes the functional unit 335 to use the physical parameter signal SB81 to form the variable physical parameter QU1A that depends on the physical parameter signal SB81.
  • the control device 212 includes the operating unit 297, a storage unit 250 coupled to the operating unit 297, and a sensing unit 560 coupled to the operating unit 297.
  • the operating unit 297 performs one of a reading operation BR81 and a sensing operation BZ81 to output the physical parameter signal SB81.
  • the reading operation BR81 reads a physical parameter data record DU81 stored in one of the storage unit 250 and the server 280.
  • the sensing unit 560 senses a variable physical parameter QL1A by performing the sensing operation BZ81 to cause the operating unit 297 to output the physical parameter signal SB81.
  • the sensing unit 560 is controlled by the operating unit 297 to sense the variable physical parameter QL1A.
  • variable physical parameter QU1A belongs to the physical parameter type TU11.
  • the variable physical parameter QL1A belongs to a physical parameter type TL11.
  • the physical parameter type TU11 is the same as or different from the physical parameter type TL11.
  • the control device 212 is in an application environment EX81. One of the control device 212 and the application environment EX81 has the variable physical parameter QL1A.
  • the physical parameter data record DU81 is provided in advance based on a variable physical parameter QY1A.
  • the variable physical parameter QY1A belongs to the physical parameter type TL11.
  • the physical parameter type TU11 is different from a time type.
  • the functional unit 335 includes a driving circuit 3355 and a physical parameter forming part 3351 coupled to the driving circuit 3355.
  • the physical parameter forming part 3351 is used to form the variable physical parameter QU1A, and includes the physical parameter forming area AU11.
  • the driving circuit 3355 is coupled to the input component 3374 and the output component 3381, and is controlled by the processing unit 331 through the output component 3381.
  • the driving circuit 3355 receives the physical parameter signal SB81 from the input component 3374, receives the function signal SG81 from the output component 3381, and responds to the function signal SG81 to process the physical parameter signal SB81 to output a Drive signal SL81.
  • the physical parameter forming part 3351 receives the driving signal SL81, and responds to the driving signal SL81 to make the variable physical parameter QU1A within the physical parameter target range RD1ET. For example, under the condition that the reasonable decision PW81 is affirmative, the processing unit 331 causes the output unit 240 to perform the signal generation operation BY81 for the measurement application function FA81 to provide the function signal SG81 to all ⁇ drive circuit 3355. The driving circuit 3355 responds to the function signal SG81 to drive the physical parameter forming part 3351 so that the variable physical parameter QU1A enters the physical parameter target range RD1ET.
  • the rated measurement value range RD1N is configured to have a plurality of different measurement value reference ranges RN11, RN12,....
  • the multiple different measurement value reference ranges RN11, RN12, ... have a total number of reference ranges NT81, and include the measurement value target range RN1T.
  • the total number of reference ranges NT81 is preset.
  • the storage unit 332 stores the rated range limit value pair DD1A.
  • the processing unit 331 is configured to obtain the total reference range number NT81 from one of the control signal SC81 and the storage unit 332, obtain the measured value target range code EM1T from the control signal SC81, and In response to the control signal SC81, the rated range limit value pair DD1A is obtained from the storage unit 332.
  • the processing unit 331 executes the scientific calculation MR81 based on the first measurement value VN81, the obtained total reference range number NT81, and the obtained rated range limit value pair DD1A to obtain the scientific calculation MR81 from the plurality of
  • the measurement value application range code EM1L is selected from the different measurement value reference range codes EM11, EM12, ... to determine the measurement value application range code EM1L.
  • the scientific calculation MR81 is pre-constructed based on the preset total reference range number NT81 and the preset rated range limit value pair DD1A.
  • the processing unit 331 executes the scientific calculation MZ81 based on the determined measurement value application range code EM1L, the obtained total reference range number NT81, and the obtained rated range limit value pair DD1A
  • the limit value of the application range is DN1L.
  • the scientific calculation MZ81 is pre-constructed based on the preset total reference range number NT81 and the preset rated range limit value pair DD1A.
  • the processing unit 331 generates a control GY81 in response to the signal executed within the operation time TF81 to cause the timer 340 to perform a counting operation BE81.
  • the processing unit 331 arrives at the designated time TG82 based on the counting operation BE81, and obtains the second measured value VN82 in response to the second sensing signal SN82 at the designated time TG82.
  • the variable physical parameter QL1A is a second variable electrical parameter, a second variable mechanical parameter, a second variable optical parameter, a second variable temperature, a second variable voltage, a second Variable current, a second variable electric power, a second variable resistor, a second variable capacitor, a second variable inductance, a second variable frequency, a second clock time, a second Variable time length, a second variable brightness, a second variable light intensity, a second variable volume, a second variable data flow, a second variable amplitude, a second variable spatial position, A second variable displacement, a second variable sequence position, a second variable angle, a second variable space length, a second variable distance, a second variable translation speed, a second variable One of angular velocity, a second variable acceleration, a second variable force, a second variable pressure, and a second variable mechanical power.
  • the variable physical parameter QY1A is a third variable electrical parameter, a third variable mechanical parameter, a third variable optical parameter, a third variable temperature, a third variable voltage, a third Variable current, a third variable electric power, a third variable resistor, a third variable capacitor, a third variable inductance, a third variable frequency, a third clock time, a third Variable time length, a third variable brightness, a third variable light intensity, a third variable volume, a third variable data flow, a third variable amplitude, a third variable spatial position, A third variable displacement, a third variable sequence position, a third variable angle, a third variable space length, a third variable distance, a third variable translation speed, a third variable One of angular velocity, a third variable acceleration, a third variable force, a third variable pressure, and a third variable mechanical power.
  • FIG. 26 is a schematic diagram of an implementation structure 9028 of the control system 861 shown in FIG. 1.
  • the implementation structure 9028 includes the control device 212, the control target device 130, and the server 280.
  • the control device 212, the control target device 130, and the server 280 are all coupled to a network 410.
  • the control device 212 is linked to the server 280 through the network 410.
  • the control target device 130 includes the operation unit 397, the sensing unit 334, the function unit 335, and the storage unit 332.
  • the operation unit 397 includes the processing unit 331, the input unit 337 and the output unit 338.
  • the control device 212 transmits the control signal SC81 to the control target device 130 through the network 410.
  • the control target device 130 transmits the control response signal SE81 to the control device 212 through the network 410.
  • the operating unit 397 includes a communication interface unit 386 coupled to the processing unit 331.
  • the processing unit 331 is coupled to the network 410 through the communication interface unit 386.
  • the communication interface unit 386 is controlled by the processing unit 331, and includes the output component 3382 (or a transmitter 3382) coupled to the processing unit 331, and the output component 3382 (or a transmitter 3382) coupled to the processing unit 331.
  • Input component 3371 (or a receiver 3371).
  • the processing unit 331 is coupled to the server 280 through the communication interface unit 386 and the network 410.
  • the communication interface unit 386 is one of a wired communication interface unit and a wireless communication interface unit.
  • the preset measurement value target range code EM1T is a measurement value reference range number.
  • the stored variable physical parameter range code UN8A is a variable physical parameter range number.
  • the control signal SC81 conveys a relative reference range code ZB81.
  • the relative reference range code ZB81 is a relative reference range number.
  • the processing unit 331 obtains the relative reference range code ZB81 from the control signal SC81, and uses the storage unit 332 to access a measurement equal to one measurement under the condition that the input unit 337 receives the control signal SC81.
  • the value refers to the variable physical parameter range code UN8A of the range code EB81.
  • the processing unit 331 executes a scientific calculation MU81 based on the obtained relative reference range code ZB81 and the accessed measurement value reference range code EB81 to obtain the preset measurement value target range code EM1T.
  • the scientific computing MU81 uses the obtained relative reference range code ZB81 and the accessed measurement value reference range code EB81.
  • the processing unit 331 obtains the preset measurement value target range code EM1T by adding the obtained relative reference range code ZB81 and the accessed measurement value reference range code EB81.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the relative reference range code ZB81.
  • the processing unit 331 executes the data acquisition AD8A using the obtained measurement value target range code EM1T to obtain the target range limit value pair DN1T.
  • the processing unit 331 uses the storage unit based on the code difference DF81 between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the relative reference range code ZB81 is equal to one of a relative value VK81 and a relative value VK82.
  • the relative value VK82 is different from the relative value VK81.
  • the relative value VK81 is proportional to 1, or equal to 1.
  • the relative value VK82 is proportional to (-1), or equal to (-1).
  • the relative reference range code ZB81 is equal to the relative value VK81.
  • the relative value VK81 is configured to be equal to a positive integer.
  • the relative reference range code ZB81 is equal to the relative value VK82.
  • the relative value VK82 is configured to be equal to a negative integer.
  • the physical parameter target range RD1ET has a first specific physical parameter range limit and a second specific physical parameter range limit relative to the first specific physical parameter range limit.
  • the processing unit 331 responds to the control signal SC81 to obtain the relative reference range code ZB81 equal to the relative value VK81 from the control signal SC81, and based on the obtained
  • the relative reference range code ZB81 causes the variable physical parameter QU1A to have a first physical quantity change to change the variable current state of the variable physical parameter QU1A.
  • the processing unit 331 causes the variable physical parameter QU1A to pass from the corresponding physical parameter range RY1ET through the first specific parameter based on the obtained relative reference range code ZB81.
  • the physical parameter range limit is to enter the physical parameter target range RD1ET.
  • the first specific physical parameter range limit is one of the preset physical parameter target range limit ZD1T1 and the preset physical parameter target range limit ZD1T2.
  • the first physical quantity change is one of a first physical increment and a first physical decrement.
  • the processing unit 331 obtains the relative reference range code ZB81 equal to the relative value VK82 from the control signal SC81 in response to the control signal SC81, and based on the obtained
  • the relative reference range code ZB81 causes the variable physical parameter QU1A to have a second physical quantity change opposite to the first physical quantity change to change the variable current state of the variable physical parameter QU1A.
  • the processing unit 331 causes the variable physical parameter QU1A to pass from the corresponding physical parameter range RY1ET through the second specific parameter based on the obtained relative reference range code ZB81.
  • the physical parameter range limit is to enter the physical parameter target range RD1ET.
  • the second specific physical parameter range limit is the other of the preset physical parameter target range limit ZD1T1 and the preset physical parameter target range limit ZD1T2.
  • the second physical quantity change is one of a second physical increment and a second physical decrement.
  • the relative reference range code ZB81 in the second specific case is different from the relative reference range code ZB81 in the first specific case.
  • FIG. 27 is a schematic diagram of an implementation structure 9029 of the control system 861 shown in FIG. 1.
  • FIG. 28 is a schematic diagram of an implementation structure 9030 of the control system 861 shown in FIG. 1.
  • FIG. 29 is a schematic diagram of an implementation structure 9031 of the control system 861 shown in FIG. 1.
  • FIG. 30 is a schematic diagram of an implementation structure 9032 of the control system 861 shown in FIG. 1.
  • each of the implementation structure 9029, the implementation structure 9030, the implementation structure 9031, and the implementation structure 9032 includes the control device 212 and the The control target device 130 is described.
  • the control target device 130 includes the operation unit 397, the sensing unit 334, the function unit 335, and the storage unit 332.
  • the operating unit 397 includes the processing unit 331, the input unit 337, the output unit 338, and a timer 342 coupled to the processing unit 331.
  • the timer 342 is controlled by the processing unit 331 and used to measure a clock time TH1A.
  • the timer 342 is configured to comply with a timer specification FT21.
  • the variable physical parameter QU1A is related to the clock time TH1A.
  • the clock time TH1A is characterized based on a plurality of different time reference intervals HR1E1, HR1E2,....
  • the multiple different time reference intervals HR1E1, HR1E2,... are respectively represented by multiple time value reference ranges RQ11, RQ12,..., and are arranged based on a preset time reference interval sequence QB81.
  • the multiple time value reference ranges RQ11, RQ12,... Are arranged based on the preset time reference interval sequence QB81.
  • the multiple time value reference ranges RQ11, RQ12, ... are preset based on the timer specification FT21 using a designated count value format HH95, and are respectively determined by multiple time value reference range codes EL11, EL12, ... representative.
  • the storage unit 332 further has multiple different memory locations YS81, YS82,..., and stores multiple physical parameter designated range codes UQ11, UQ12,... in the multiple different memory locations YS81, YS82,..., respectively.
  • the multiple different time reference intervals HR1E1, HR1E2,... are respectively represented by multiple time reference interval codes.
  • the plurality of time reference interval codes are configured to be respectively equal to the plurality of time value reference range codes EL11, EL12,....
  • the multiple time value reference range codes EL11, EL12,... are configured to indicate the multiple different time reference intervals HR1E1, HR1E2,..., respectively.
  • the designated count value format HH95 is characterized based on a designated number of bits UY95.
  • the multiple time value reference range codes EL11, EL12,... include a time value target range code EL1T and a time value candidate range code EL12.
  • the multiple different time reference intervals HR1E1, HR1E2,... include a time target interval HR1ET and a time candidate interval HR1E2.
  • the time value target range code EL1T and the time value candidate range code EL12 are configured to indicate the time target interval HR1ET and the time candidate interval HR1E2, respectively.
  • the multiple time value reference ranges RQ11, RQ12,... include a time value target range RQ1T and a time value candidate range RQ12.
  • the time target interval HR1ET and the time candidate interval HR1E2 are respectively represented by the time value target range RQ1T and the time value candidate range RQ12.
  • the plurality of different memory locations YS81, YS82, ... are respectively identified based on the plurality of time value reference range codes EL11, EL12, ....
  • the multiple different memory locations YS81, YS82,... are respectively identified based on multiple memory addresses AS81, AS82,..., or are identified by the multiple memory addresses AS81, AS82,..., respectively.
  • the multiple memory addresses AS81, AS82,... are preset based on the multiple time value reference range codes EL11, EL12,..., respectively.
  • the clock time TH1A is further characterized based on a rated time interval HR1E.
  • the rated time interval HR1E includes the multiple different time reference intervals HR1E1, HR1E2,..., and is represented by a rated time value range HR1N.
  • the rated time value range HR1N includes the multiple time value reference ranges RQ11, RQ12, ..., and is preset based on the rated time interval HR1E and the timer specification FT21 using the designated count value format HH95 .
  • the measurement application function specification GAL8 includes a rated time interval representing GA8HE and a time reference interval representing GA8HR.
  • the rated time interval indicates that GA8HE is used to indicate the rated time interval HR1E.
  • the time reference interval representation GA8HR is used to indicate the multiple different time reference intervals HR1E1, HR1E2,...
  • the rated time value range HR1N is based on the rated time interval representing GA8HE, the timer specification FT21, and a data encoding operation ZX8HE for converting the rated time interval representing GA8HE to use the designated count value format HH95.
  • the plurality of time value reference ranges RQ11, RQ12, ... use the designation based on the time reference interval representing GA8HR, the timer specification FT21, and a data encoding operation ZX8HR for converting the time reference interval representing GA8HR
  • the count value format HH95 is preset.
  • the plurality of physical parameter designated range codes UQ11, UQ12, ... are configured to be stored based on the plurality of time value reference range codes EL11, EL12, ... respectively, and include a physical parameter target range code UQ1T and a physical parameter Candidate range code UQ12.
  • the multiple physical parameter designated range codes UQ11, UQ12,... are all selected from the multiple different measured value reference range codes EM11, EM12,....
  • the physical parameter target range code UQ1T represents a physical parameter target range RK1ET that the variable physical parameter QU1A is expected to be in the time target interval HR1ET, and is configured to be based on the time value target range code EL1T Stored in a memory location YS8T.
  • the memory location YS8T is identified based on a memory address AS8T.
  • the multiple time value reference range codes EL11, EL12,... are all preset based on the measurement application function specification GAL8.
  • the physical parameter candidate range code UQ12 represents a physical parameter candidate range RK1E2 that the variable physical parameter QU1A is expected to be in the time candidate interval HR1E2, and is configured to be based on the time value candidate range code EL12 Stored in a memory location YS82.
  • the memory location YS82 is identified based on a memory address AS82.
  • the physical parameter target range RK1ET and the physical parameter candidate range RK1E2 are both selected from the multiple different physical parameter reference ranges RD1E1, RD1E2,.... For example, the time candidate interval HR1E2 is adjacent to the time target interval HR1ET.
  • the physical parameter target range RK1ET is the same as the physical parameter target range RD1ET.
  • the physical parameter candidate range RK1E2 is the same as the physical parameter candidate range RD1E2. For example, there is a preset time interval between the time target interval HR1ET and the time candidate interval HR1E2.
  • the physical parameter target range code UQ1T is equal to the preset measurement value target range code EM1T.
  • the control signal SC81 conveys the preset time value target range code EL1T.
  • the processing unit 331 obtains the delivered time value target range code EL1T from the control signal SC81, obtains the memory address AS8T based on the obtained time value target range code EL1T, and based on the obtained time value target range code EL1T.
  • the memory address AS8T is used to access the physical parameter target range code UQ1T stored in the memory location YS8T to obtain the preset measurement value target range code EM1T.
  • the control signal SC81 starts by transmitting the preset time value target range code EL1T To indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET.
  • the processing unit 331 executes the data acquisition AD8A using the obtained measurement value target range code EM1T to obtain the target range limit value pair DN1T.
  • the processing unit 331 determines the physical parameter at which the variable physical parameter QU1A is currently located by comparing the first measured value VN81 with the obtained application range limit value pair DN1L Under the condition of the application range RD1EL, the processing unit 331 checks the measurement value target range RN1T and the obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L by comparing The range relationship KE8A between the measurement value application ranges RN1L is used to make the second logical decision PY81 of whether the obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L are equal.
  • the processing unit 331 recognizes that the range relationship KE8A is the range difference relationship to determine the range difference DS81. For example, the processing unit 331 obtains the predetermined application range limit value pair DN1L based on the determined measurement value application range code EM1L.
  • the processing unit 331 determines the physical parameter at which the variable physical parameter QU1A is currently located by comparing the first measured value VN81 with the obtained application range limit value pair DN1L Under the condition of the application range RD1EL, the processing unit 331 obtains the obtained measurement value target range by comparing the obtained measurement value target range code EM1T with the determined measurement value application range code EM1L The logic determines whether the code EM1T and the determined application range code EM1L of the measured value are equal to PZ81. Under the condition that the logic decision PZ81 is negative, the processing unit 331 identifies the range relationship KE8A as the range difference relationship to determine the range difference DS81.
  • the processing unit 331 determines the range difference DS81
  • the processing unit 331 executes the signal generation control GY81 for generating the function signal SG81 within the operation time TF81.
  • the function signal SG81 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RK1ET which is the same as the physical parameter target range RD1ET.
  • the processing unit 331 executes the verification operation ZU81 related to the variable physical parameter QU1A within the designated time TG82 after the operation time TF81.
  • the processing unit 331 determines the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located based on the verification operation ZU81 within the specified time TG82, the processing unit 331 executes equal to
  • the data comparison between the variable physical parameter range code UN8A of the specific measurement value range code EM14 and the obtained measurement value target range code EM1T is CE8T.
  • the processing unit 331 determines the difference between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T based on the data comparison CE8T Under the condition of the code difference DF81, the processing unit 331 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the timer 342 is configured to represent the time target interval HR1ET by using the time value target range RQ1T, and is configured to represent the time value target range RQ12 by using the time value candidate range RQ12.
  • the control signal SC81 further conveys a clock reference time value NR81 representing a clock reference time TR81.
  • the clock reference time TR81 is close to a current time.
  • a time difference between the clock reference time TR81 and the current time is within a preset time length.
  • the clock reference time value NR81 is preset in the designated count value format HH95 based on the clock reference time TR81 and the timer specification FT21.
  • the control information CG81 includes the time value target range code EL1T and the clock reference time value NR81.
  • the measurement application function specification GAL8 includes a clock time representing GA8TR.
  • the clock time representation GA8TR is used to represent the clock reference time TR81.
  • the clock reference time value NR81 is preset in the designated count value format HH95 based on the clock time representation GA8TR, the timer specification FT21, and a data encoding operation ZX8TR for converting the clock time representation GA8TR .
  • the processing unit 331 responds to the control signal SC81 to obtain the clock reference time value NR81 from the control signal SC81.
  • the operating unit 297 included in the control device 212 is configured to obtain the preset time value target range code EL1T and the preset clock reference time value NR81, and based on the obtained The clock refers to the time value NR81 and the obtained time value target range code EL1T to output the control signal SC81 for conveying the control information CG81.
  • the processing unit 331 causes the timer 342 to start within a start time TT82 based on the obtained clock reference time value NR81, and thereby causes the timer 342 to start in the A clock time signal SY80 is generated within the start time TT82.
  • the clock time signal SY80 is an initial time signal, and transmits an initial count value NY80 in the designated count value format HH95.
  • the initial count value NY80 is equal to the clock reference time value NR81.
  • the timer 342 is configured to have a variable count value NY8A. Under the condition that the input unit 337 receives the control signal SC81 conveying the clock reference time value NR81 from the control device 212, the processing unit 331 activates the control signal SC81 based on the obtained clock reference time value NR81. The timer 342 executes a counting operation BD81 for the measurement application function FA81 to change the variable count value NY8A.
  • the variable count value NY8A is configured to be equal to the initial count value NY80 within the start time TT82, and is provided in the designated count value format HH95.
  • the initial count value NY80 is configured to be the same as the obtained clock reference time value NR81.
  • the processing unit 331 Under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1ET based on the control signal SC81, the processing unit 331 reaches an operating time TY81 based on the counting operation BD81. Within the operating time TY81, the timer 342 senses the clock time TH1A to cause the variable count value NY8A to be equal to a specific count value NY81, and thereby generates a value that transmits the specific count value NY81. Clock time signal SY81. For example, the operating time TY81 is a designated time.
  • the processing unit 331 obtains the specific count value NY81 from the clock time signal SY81 in the specified count value format HH95 within the operating time TY81, and executes and uses the specified count value during the operating time TY81.
  • the time value target range RQ1T has a target range limit value pair DQ1T.
  • the target range limit value pair DQ1T includes a target range limit value DQ17 and a target range limit value DQ18 relative to the target range limit value DQ17.
  • the time value target range RQ1T and the target range limit value pair DQ1T are preset based on the time target interval HR1ET and the timer specification FT21 in the designated count value format HH95.
  • the time value candidate range RQ12 has a candidate range limit value pair DQ1B.
  • the candidate range limit value pair DQ1B includes a candidate range limit value DQ13 and a candidate range limit value DQ14 relative to the candidate range limit value DQ13.
  • the time value candidate range RQ12 and the candidate range limit value pair DQ1B are preset based on the time candidate interval HR1E2 and the timer specification FT21 in the designated count value format HH95.
  • the measurement application function specification GAL8 includes a time candidate interval representing GA8HT and a time candidate interval representing GA8H2.
  • the time candidate interval indicates that GA8HT is used to indicate the time target interval HR1ET.
  • the candidate time interval representation GA8H2 is used to indicate the candidate time interval HR1E2.
  • the time value target range RQ1T and the target range limit value pair DQ1T are based on the time candidate interval representing GA8HT, the timer specification FT21, and a data encoding operation ZX8HT for converting the time candidate interval representing GA8HT. It is preset using the specified count value format HH95.
  • the time value candidate range RQ12 and the candidate range limit value pair DQ1B are based on the time candidate interval representation GA8H2, the timer specification FT21, and a data encoding operation ZX8H2 for converting the time candidate interval representation GA8H2. It is preset using the specified count value format HH95.
  • the physical parameter candidate range code UQ12 is equal to the preset measurement value candidate range code EM12.
  • the storage unit 332 stores the target range limit value pair DQ1T and the candidate range limit value pair DQ1B.
  • the target range limit value pair DQ1T and the candidate range limit value pair DQ1B are stored in the storage unit 332 based on the time value target range code EL1T and the time value candidate range code EL12, respectively.
  • the processing unit 331 is configured to obtain the candidate range limit value pair DQ1B from the storage unit 332 based on the obtained time value candidate range code EL12 within the operating time TY81, and compare the The obtained specific count value NY81 and the obtained candidate range limit value pair DQ1B are used to perform a check for checking the mathematical relationship KQ81 between the specific count value NY81 and the time value candidate range RQ12 Operate ZQ81.
  • the processing unit 331 determines the time candidate interval HR1E2 in which the clock time TH1A is currently located based on the checking operation ZQ81 within the operating time TY81, the processing unit 331 is based on the obtained
  • the time value candidate range code EL12 is used to obtain the memory address AS82, and the physical parameter candidate stored in the memory location YS82 is accessed based on the obtained memory address AS82 within the operating time TY81
  • the range code UQ12 is used to obtain the physical parameter candidate range code UQ12.
  • the processing unit 331 determines based on the check operation ZQ81 that the clock time TH1A is currently within the time candidate interval HR1E2, and thereby identifies the clock time TH1A and the time candidate interval A time relationship between HR1E2 is a time intersection relationship of the clock time TH1A currently within the time candidate interval HR1E2. Under the condition that the processing unit 331 obtains the physical parameter candidate range code UQ12 from the memory location YS82, the processing unit 331 performs a check for the measurement application function FA81 within the operating time TY81 Operate ZP85 to determine whether the obtained physical parameter candidate range code UQ12 is equal to the variable physical parameter range code UN8A.
  • the processing unit 331 under the condition that the processing unit 331 obtains the physical parameter candidate range code UQ12 from the memory location YS82, the processing unit 331 uses the storage unit 332 to read the value equal to the The variable physical parameter range code UN8A of the measured value target range code EM1T, and performs a check for checking the obtained physical parameter candidate range code UQ12 and the read measured value target range code EM1T.
  • the arithmetic relation KP85 is the checking operation ZP85.
  • the checking operation ZP85 is configured to compare the obtained physical parameter candidate range code UQ12 with the read measured value target range code EM1T by executing a data comparison CE85 for the measurement application function FA81 To determine whether the obtained physical parameter candidate range code UQ12 is different from the read measured value target range code EM1T.
  • the processing unit 331 determines the obtained physical parameter candidate range code UQ12 and the variable physical parameter range code UN8A equal to the obtained measured value target range code EM1T by performing the data comparison CE85. Under the condition of a code difference between DX85, the processing unit 331 causes the output component 3381 to perform a signal generation operation BY85 for the measurement application function FA81 within the operating time TY81 to generate a functional signal SG85.
  • the function signal SG85 is a control signal.
  • the output component 3381 transmits the function signal SG85 to the function unit 335.
  • the function unit 335 responds to the function signal SG85 to cause the variable physical parameter QU1A to enter the corresponding physical parameter range RY1ET from the physical parameter target range RD1ET.
  • the function unit 335 responds to the function
  • the signal SG85 causes the variable physical parameter QU1A to enter the physical parameter candidate range RK1E2 that is the same as the physical parameter candidate range RD1E2.
  • the control device 212 includes the operating unit 297 and the state change detector 475 coupled to the operating unit 297.
  • the multiple physical parameter designated range codes UQ11, UQ12, ... belong to a physical parameter designated range code type TS81.
  • the physical parameter designated range code type TS81 is identified by a physical parameter designated range code type identifier HS81.
  • the physical parameter designation range code type identifier HS81 is preset.
  • the memory address AS8T is preset based on the preset physical parameter designation range code type identifier HS81 and the preset time value target range code EL1T.
  • the memory address AS82 is preset based on the preset physical parameter designation range code type identifier HS81 and the preset time value candidate range code EL12.
  • the operation unit 297 is configured to obtain the preset physical parameter target range code UQ1T and the preset physical parameter designated range code type identifier HS81 and the preset time value target range code EL1T, and obtain the memory address based on the acquired physical parameter designated range code type identifier HS81 and the acquired time value target range code EL1T in advance AS8T.
  • the operating unit 297 provides a write request message WS8T to the input unit 337 based on the acquired physical parameter target range code UQ1T and the acquired memory address AS8T.
  • the write request information WS8T includes the acquired physical parameter target range code UQ1T and the acquired memory address AS8T.
  • the input unit 337 receives the write request information WS8T from the operation unit 297.
  • the processing unit 331 obtains the included physical parameter target range code UQ1T and the included memory address AS8T from the received write request information WS8T, and based on the obtained physical parameter target range code UQ1T and the obtained memory address AS8T are used to use the storage unit 332 to store the obtained physical parameter target range code UQ1T in the memory location YS8T.
  • the operation unit 297 is configured to obtain the physical parameter candidate range code UQ12 and the preset time value candidate range code EL12, and based on the obtained
  • the physical parameter specifies the range code type identifier HS81 and the obtained time value candidate range code EL12 to obtain the memory address AS82.
  • the processing unit 331 provides a write request message WS82 to the input unit 337 based on the obtained physical parameter candidate range code UQ12 and the obtained memory address AS82.
  • the write request information WS82 includes the obtained physical parameter candidate range code UQ12 and the obtained memory address AS82.
  • the input unit 337 receives the write request information WS82 from the operation unit 29.
  • the processing unit 331 obtains the included physical parameter candidate range code UQ12 and the included memory address AS82 from the received write request information WS82, and based on the obtained physical parameter candidate range code UQ12 and the obtained memory address AS82 use the storage unit 332 to store the obtained physical parameter candidate range code UQ12 in the memory location YS82.
  • FIG. 31 is a schematic diagram of an implementation structure 9033 of the control system 861 shown in FIG. 1.
  • FIG. 32 is a schematic diagram of an implementation structure 9034 of the control system 861 shown in FIG. 1.
  • FIG. 33 is a schematic diagram of an implementation structure 9035 of the control system 861 shown in FIG. 1.
  • each of the implementation structure 9033, the implementation structure 9034, and the implementation structure 9035 includes the control device 212 and the control target device 130.
  • the control device 212 includes the operating unit 297 and the state change detector 475.
  • the control target device 130 includes the operating unit 397, the storage unit 332, the sensing unit 334, the functional unit 335, and a functional unit 735.
  • the operation unit 397 includes the processing unit 331, the input unit 337 and the output unit 338.
  • the functional unit 735 is a physical parameter application unit.
  • the state change detector 475 is a trigger application unit, and provides the trigger signal SX8A to the operation unit 297 in response to the trigger event EQ81.
  • the trigger signal SX8A is an operation request signal.
  • the control target device 130 further includes a functional unit 735 coupled to the operating unit 397 and a multiplexer 363 coupled to the operating unit 397.
  • the functional unit 735 is coupled to the output unit 338 and includes a physical parameter formation area AU21.
  • the physical parameter formation area AU21 has a variable physical parameter QU2A.
  • the multiplexer 363 has an input terminal 3631, an input terminal 3632, a control terminal 363C, and an output terminal 363P.
  • the control terminal 363C is coupled to the processing unit 331.
  • the functional unit 735 is a physically implementable functional unit and has a functional structure similar to the functional unit 335.
  • the functional unit 735 is provided in one of the inside of the control target device 130 and the outside of the control target device 130.
  • the input terminal 3631 is coupled to the physical parameter formation area AU11.
  • the input terminal 3632 is coupled to the physical parameter formation area AU21.
  • the output terminal 363P is coupled to the sensing unit 334.
  • the variable physical parameter QU1A and the variable physical parameter QU2A are a fourth variable electrical parameter and a fifth variable electrical parameter, respectively.
  • the fourth variable electrical parameter and the fifth variable electrical parameter are a fourth variable voltage and a fifth variable voltage, respectively.
  • the second functional relationship is equal to one of a second on-state relationship and a second off-state relationship.
  • the sensing unit 334 is configured to sense the variable physical parameter QU1A through the output terminal 363P and the input terminal 3631, It is coupled to the physical parameter formation area AU11 through the output terminal 363P and the input terminal 3631.
  • the sensing unit 334 is configured to sense the variable physical parameter QU2A through the output terminal 363P and the input terminal 3632, It is coupled to the physical parameter formation area AU21 through the output terminal 363P and the input terminal 3632.
  • the multiplexer 363 is controlled by the processing unit 331 and is an analog multiplexer.
  • the sensing unit 334 senses the variable physical parameter QU1A through the multiplexer 363 at an operating time TX81, and passes the multiplexer at an operating time TX82 that is different from the operating time TX81. 363 to sense the variable physical parameter QU2A.
  • the storage unit 332, the sensing unit 334, the multiplexer 363, the functional unit 335, and the functional unit 735 are all coupled to the operating unit 397 and are all controlled by the processing unit 331. control.
  • the control device 212 and the control target device 130 are separate or in contact.
  • the operating unit 397 and the functional unit 335 are separated or in contact.
  • the operating unit 397 and the functional unit 735 are separated or in contact.
  • the operating unit 397 and the sensing unit 334 are separated or in contact.
  • the control device 212 is used to control the variable physical parameter QU2A.
  • the functional unit 335 is identified by a functional unit identifier HA2T.
  • the functional unit 735 is identified by a functional unit identifier HA22.
  • the functional unit 335 and the functional unit 735 are respectively located in different spatial positions, and both are coupled to the processing unit 331 through the output unit 338.
  • the functional unit identifier HA2T and the functional unit identifier HA22 are preset based on the measurement application function specification GAL8.
  • the control signal SC81 further conveys at least one of the functional unit identifier HA2T and the functional unit identifier HA22.
  • the input unit 337 receives the control signal SC81 from the operation unit 297. Under the condition that the control signal SC81 conveys the functional unit identifier HA2T, the processing unit 331 responds to the control signal SC81 to select the functional unit 335 for control. Under the condition that the control signal SC81 conveys the functional unit identifier HA22, the processing unit 331 responds to the control signal SC81 to select the functional unit 735 for control.
  • the functional unit identifier HA2T is a first functional unit number.
  • the functional unit identifier HA22 is a second functional unit number.
  • the functional unit 335 and the functional unit 735 are separated or separated by a material layer 70U disposed between the functional unit 335 and the functional unit 735.
  • the functional unit 335, the material layer 70U, and the functional unit 735 are all coupled to a supporting medium 70M.
  • the control target device 130 includes the material layer 70U, or the material layer 70U is disposed outside the control target device 130.
  • the control target device 130 includes the support medium 70M, or the support medium 70M is disposed outside the control target device 130.
  • the supporting medium 70M is coupled to the operating unit 397.
  • the processing unit 331 under the condition that the control signal SC81 conveys the functional unit identifier HA2T, responds to the control signal SC81 to obtain the functional unit identifier HA2T from the control signal SC81 , And cause the sensing unit 334 to sense the variable physical parameter QU1A based on the obtained functional unit identifier HA2T, and thereby receive the first sensing signal SN81 from the sensing unit 334 .
  • the processing unit 331 obtains the first measurement value VN81 in the designated measurement value format HH81 based on the received first sensing signal SN81, and sends the first measurement value VN81 based on the obtained functional unit identifier HA2T.
  • the function unit 335 transmits at least one of the function signal SG81, the function signal SG82, and the function signal SG91.
  • the processing unit 331 responds to the control signal SC81 to provide a control signal SD81 to the control terminal 363C based on the obtained functional unit identifier HA2T.
  • the control signal SD81 is a selection control signal and functions as an instruction to the input terminal 3631.
  • the multiplexer 363 responds to the control signal SD81 to cause the first functional relationship between the input terminal 3631 and the output terminal 363P to be equal to the first conduction relationship.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate the first sensing signal SN81, so the processing unit 331 receives the first sensing signal SN81 from the sensing unit 334.
  • the storage unit 332 has the storage space SU11.
  • the storage unit 332 further stores the rated range limit value pair DD1A, the variable physical parameter range code UN8A, and the target range in the storage space SU11 based on the preset functional unit identifier HA2T.
  • the processing unit 331 further uses the storage unit 332 to access the rated range limit value pair DD1A, the variable physical parameter range code UN8A, and the target range based on the obtained functional unit identifier HA2T. Any one of the limit value pair DN1T, the control code CC1T, the candidate range limit value pair DN1B, the control code CC12, and the time length range limit value pair LN8A.
  • the first memory address AM8T is based on the preset functional unit identifier HA2T, the preset measurement value target range code EM1T, and the preset measurement range limit data code
  • the type identifier HN81 is preset.
  • the processing unit 331 uses the obtained functional unit identifier HA2T, the obtained measurement value target range code EM1T, and the obtained measurement range limit data code type identifier HN81.
  • To obtain the first memory address AM8T and use the storage unit 332 based on the obtained first memory address AM8T to access the target range limit value pair stored in the first memory location YM8T DN1T to obtain the target range limit value pair DN1T.
  • the memory address AX8T is preset based on the preset function unit identifier HA2T, the preset measurement value target range code EM1T, and the preset control code type identifier HC81.
  • the processing unit 331 determines that the variable physical parameter QU1A is currently in the corresponding physical parameter range RY1ET, the processing unit 331 is based on the obtained functional unit identifier HA2T and the obtained The measured value target range code EM1T and the obtained control code type identifier HC81 are used to obtain the memory address AX8T, and based on the obtained memory address AX8T, the storage unit 332 is used to access the memory address stored in the The control code CC1T in the memory location YX8T is used to obtain the control code CC1T.
  • the storage space SU11 further has the measurement time length value CL8T.
  • the processing unit 331 obtains the measurement time length value CL8T from the storage space SU11 in response to the control signal SC81.
  • the processing unit 331 under the condition that the processing unit 331 determines that the variable physical parameter QU1A is currently in the corresponding physical parameter range RY1ET, the processing unit 331 is based on the obtained functional unit identifier HA2T And the obtained control code CC1T to execute the signal generation control GY81 for controlling the output unit 338.
  • the output unit 338 executes the signal generation operation BY81 for the measurement application function FA81 to generate the function signal SG81, and causes the output unit 338 to send the signal to the function unit 335
  • the function signal SG81 is transmitted.
  • the function signal SG81 is used to control the function unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the output unit 338 includes an output terminal 338P and an output terminal 338Q.
  • the output terminal 338P is coupled to the functional unit 335.
  • the output terminal 338P is coupled to the functional unit 735.
  • the output terminal 338P and the output terminal 338Q are respectively located at different spatial positions.
  • the preset functional unit identifier HA2T is configured to indicate the output terminal 338P.
  • the preset functional unit identifier HA22 is configured to indicate the output terminal 338Q.
  • the control signal SC81 transmits the functional unit identifier HA2T configured to indicate the output terminal 338P to enable the processing unit 331 to select the functional unit 335 for control.
  • the signal generation control GY81 plays a role of instructing the output terminal 338P, and is used to cause the output unit 338 to receive a control signal SF81.
  • the control signal SF81 plays a role of instructing the output terminal 338P.
  • the output unit 338 responds to one of the signal generation control GY81 and the control signal SF81 to perform the signal generation operation BY81 using the output terminal 338P to transmit the function signal SG81 to the function unit 335 .
  • the signal generation control GY81 is used to cause the processing unit 331 to provide the control signal SF81 to the output unit 338.
  • the input unit 337 receives a control signal SC97 from the control device 212.
  • the control signal SC97 conveys the functional unit identifier HA22.
  • the processing unit 331 responds to the control signal SC97 to obtain the functional unit identifier HA22 from the control signal SC97, and based on the obtained
  • the functional unit identifier HA22 provides a control signal SD82 to the control terminal 363C.
  • the control signal SD82 is a selection control signal, which functions as an instruction to the input terminal 3632, and is different from the control signal SD81.
  • the control signal SC97 is the control signal SC81. Under the condition that the control signal SC81 conveys the functional unit identifier HA22, the processing unit 331 responds to the control signal SC81 to obtain the functional unit identifier HA22 from the control signal SC81.
  • the multiplexer 363 responds to the control signal SD82 to cause the second functional relationship between the input terminal 3632 and the output terminal 363P to be equal to the second conduction relationship.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN91.
  • the processing unit 331 receives the sensing signal SN91 from the sensing unit 334, and obtains a measurement value VN91 in the designated measurement value format HH81 based on the received sensing signal SN91.
  • the control signal SC97 transmits the functional unit identifier HA22 configured to indicate the output terminal 338Q to enable the processing unit 331 to select the functional unit 735 for control.
  • the processing unit 331 executes a signal generation control GY97 for controlling the output unit 338 based on the obtained measurement value VN91 and the obtained functional unit identifier HA22.
  • the signal generation control GY97 functions to indicate the output terminal 338Q, and is used to cause the output unit 338 to receive a control signal SF97.
  • the control signal SF97 functions to indicate the output terminal 338Q.
  • the output unit 338 responds to one of the signal generation control GY97 and the control signal SF97 to perform a signal generation operation BY97 using the output terminal 338Q to transmit a function signal SG97 to the function unit 735.
  • the function signal SG97 is used to control the variable physical parameter QU2A, and is one of an operation signal and a control signal.
  • the signal generation control GY97 is used to cause the processing unit 331 to provide the control signal SF97 to the output unit 338.
  • the processing unit 331 provides the control signal SD81 for controlling the multiplexer 363 to the multiplexer 363 in response to the control signal SC81.
  • the multiplexer 363 responds to the control signal SD81 to enable the sensing unit 334 to perform a sensing for sensing the variable physical parameter QU1A through the multiplexer 363 within the operating time TX81. Test operation ZW81.
  • the sensing unit 334 provides the sensing signal SN81 to the processing unit 331 by performing the sensing operation ZW81.
  • the processing unit 331 provides the control signal SD82 for controlling the multiplexer 363 to the multiplexer 363 in response to the control signal SC81.
  • the multiplexer 363 responds to the control signal SD82 to enable the sensing unit 334 to perform a sensing for sensing the variable physical parameter QU2A through the multiplexer 363 within the operating time TX82. Test operation ZW82.
  • the sensing unit 334 provides the sensing signal SN91 to the operating unit 397 by performing the sensing operation ZW82.
  • the operating time TX82 is different from the operating time TX81.
  • the operating unit 397 transmits the function signal SG97 for controlling the variable physical parameter QU2A to the function unit 735 based on the sensing signal SN91 in a specific situation YA82.
  • FIG. 34 is a schematic diagram of an implementation structure 9510 of the control system 861 shown in FIG. 1.
  • the implementation structure 9510 includes a control device 212 and a control target device 130.
  • the control device 212 is used to control the control target device 130.
  • the control target device 130 includes a variable physical parameter QU1A, a sensing unit 334 and an operating unit 397.
  • the variable physical parameter QU1A is characterized based on the physical parameter target range RD1ET represented by the measured value target range RN1T and the corresponding physical parameter range RY1ET corresponding to the physical parameter target range RD1ET.
  • the physical parameter application range RD1EJ corresponds to the physical parameter target range RD1ET, and is equal to the corresponding physical parameter range RY1ET.
  • the corresponding physical parameter range RY1ET is represented by a corresponding measurement value range RX1T.
  • the physical parameter target range RD1ET is represented by the measurement value indication range RN1G.
  • the measurement value indication range RN1G is equal to a measurement value target range RN1T.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a first sensing signal SN81.
  • the operating unit 397 is coupled to the sensing unit 334. Under the condition that the operating unit 397 receives the control signal SC81 functioning to indicate the measurement value target range RN1T, the operating unit 397 obtains the first measurement value VN81 in response to the first sensing signal SN81, and In response to the control signal SC81, a first check operation BV51 for checking the second mathematical relationship KV51 between the first measurement value VN81 and the measurement value target range RN1T is performed.
  • the operating unit 397 determines the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently located based on the first check operation BV51, the operating unit 397 causes the variable physical parameter QU1A Enter the physical parameter target range RD1ET.
  • the first mathematical relationship KG81 is equal to the second mathematical relationship KV51.
  • the control signal SC81 functions to indicate the physical parameter target range RD1ET.
  • the operation unit 397 determines the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently located based on the first check operation BV51, the operation unit 397 performs the operation based on the control signal SC81 This causes the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the sensing unit 334 is configured to comply with the sensor specification FU11 related to the measurement value target range RN1T.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to the sensing signal generated by the sensing unit 334 to generate HF81.
  • the first measurement value VN81 is obtained by the operation unit 397 in a designated measurement value format HH81.
  • the measured value target range RN1T has a target range limit value pair DN1T.
  • the corresponding physical parameter range RY1ET is represented by the corresponding measurement value range RX1T.
  • the range combination of the measurement value target range RN1T and the corresponding measurement value range RX1T is equal to the rated measurement value range RD1N.
  • the measurement value target range RN1T, the corresponding measurement value range RX1T, and the rated measurement value range RD1N are all based on one of the sensor measurement range representation GW8R and the sensor specification FU11 to use the specified measurement
  • the value format HH81 is preset.
  • the measurement value target range RN1T, the corresponding measurement value range RX1T, and the rated measurement value range RD1N are all based on the sensor measurement range representation GW8R and the sensor sensitivity representation GW81 to use the specified measurement value format HH81 It is preset.
  • the rated measurement value range RD1N has a rated range limit value pair DD1A.
  • the control signal SC81 conveys the target range limit value pair DN1T, the rated range limit value pair DD1A, and a control code CC1T.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 transmits the target range limit value pair DN1T to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET.
  • the operating unit 397 obtains the target range limit value pair DN1T from the control signal SC81, and performs the first check by comparing the first measurement value VN81 with the obtained target range limit value pair DN1T Operate BV51.
  • the operating unit 397 makes a logical decision PB51 whether the first measurement value VN81 is within the corresponding measurement value range RX1T based on the first check operation BV51. Under the condition that the logical decision PB51 is affirmative, the operating unit 397 determines the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently located.
  • the operating unit 397 obtains the rated range limit value pair DD1A from the control signal SC81, and performs a check for checking the rated range limit value pair DD1A by comparing the first measured value VN81 with the obtained rated range limit value pair DD1A
  • the operation unit 397 further makes the logical decision PB51 based on the second check operation BM51.
  • the operating unit 397 obtains the control code CC1T from the control signal SC81.
  • the operating unit 397 executes the signal generation control GY81 based on the obtained control code CC1T to generate A function signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate the second sensing signal SN82 .
  • the operating unit 397 responds to the second sensing signal SN82 within a specified time TG82 after the operating time TF81 to obtain a second measurement value VN82 in the specified measurement value format HH81.
  • the operating unit 397 determines the physical parameter QU1A in which the variable physical parameter QU1A is currently located by comparing the second measured value VN82 with the obtained target range limit value pair DN1T.
  • the operating unit 397 transmits a control response signal SE81 in response to the control signal SC81 to the control device 212 based on the second measured value VN82, and executes a data storage control operation GU81.
  • the control response signal SE81 delivers the measured value VN82.
  • the data storage control operation GU81 is used to cause the physical parameter target range code UN8T representing the determined physical parameter target range RD1ET to be recorded.
  • the data storage control operation GU81 is a guarantee operation.
  • the variable physical parameter QU1A is related to the variable time length LF8A.
  • the operating unit 397 is used to measure the variable time length LF8A.
  • the variable time length LF8A is characterized based on the time length reference range HJ81 and the reference time length LJ8T.
  • the time length reference range HJ81 is represented by the measurement time length value reference range GJ81.
  • the reference time length LJ8T is represented by the measured time length value CL8T.
  • the control signal SC81 further conveys the measurement time length value CL8T.
  • the operating unit 397 is configured to obtain the measurement time length value CL8T from the control signal SC81, and to check the numerical relationship between the obtained measurement time length value CL8T and the measurement time length value reference range GJ81 KJ81 makes a logical decision PE81 for controlling whether the counting operation BC8T for a specific time TJ8T is to be executed.
  • the operation unit 397 performs the counting operation BC8T based on the obtained measurement time length value CL8T.
  • the operating unit 397 reaches the specific time TJ8T based on the counting operation BC8T , And execute the signal generating operation BY91 for causing the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the corresponding physical parameter range RY1ET within the specific time TJ8T.
  • FIG. 36 is a schematic diagram of an implementation structure 9512 of the control system 861 shown in FIG. 1.
  • FIG. 37 is a schematic diagram of an implementation structure 9513 of the control system 861 shown in FIG. 1.
  • FIG. 38 is a schematic diagram of an implementation structure 9514 of the control system 861 shown in FIG. 1.
  • FIG. 39 is a schematic diagram of an implementation structure 9515 of the control system 861 shown in FIG. 1.
  • FIG. 40 is a schematic diagram of an implementation structure 9516 of the control system 861 shown in FIG. 1.
  • Figure 34 additionally. 36, 37, 38, 39, and 40, each of the implementation structure 9512, the implementation structure 9513, the implementation structure 9514, the implementation structure 9515, and the implementation structure 9516
  • the structure includes the control device 212 and the control target device 130.
  • the operating unit 397 is configured to execute the measurement application function FA81 related to the physical parameter target range RD1ET, and includes a processing unit 331 coupled to the sensing unit 334, and a processing unit 331 coupled to the processing unit 334.
  • the measurement application function FA81 is configured to comply with the measurement application function specification GAL8 related to the physical parameter target range RD1ET.
  • the sensing unit 334 is configured to comply with the sensor specification FU11 related to the measurement value target range RN1T.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to the sensing signal generated by the sensing unit 334 to generate HF81.
  • the measurement application function FA81 is a physical parameter control function.
  • the measurement application function specification GAL8 is a physical parameter control function specification.
  • the processing unit 331 responds to the first sensing signal SN81 to obtain the first measurement value VN81 in a designated measurement value format HH81.
  • the specified measurement value format HH81 is characterized based on the specified number of bits UY81.
  • the control target device 130 further includes a functional unit 335 coupled to the output unit 338 and a storage unit 332 coupled to the processing unit 331.
  • the sensing unit 334 senses the variable physical parameter QU1A to execute the sensing signal dependent on the sensor sensitivity YW81 to generate HF81, so The sensing signal generating HF81 is used to generate the first sensing signal SN81.
  • the functional unit 335 is a physical parameter application unit.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate the first sensing signal SN81.
  • the corresponding physical parameter range RY1ET is represented by the corresponding measurement value range RX1T.
  • the range combination of the physical parameter target range RD1ET and the corresponding physical parameter range RY1ET is equal to the rated physical parameter range RD1E.
  • the measurement application function specification GAL8 includes the sensor specification FU11, a rated physical parameter range representation GA8E used to represent the rated physical parameter range RD1E, and a physical parameter candidate range representation GA8T used to represent the physical parameter target range RD1ET .
  • the range combination of the measurement value target range RN1T and the corresponding measurement value range RX1T is equal to the rated measurement value range RD1N.
  • the functional unit 335 is arranged inside the control target device 130 or arranged outside the control target device 130.
  • the rated measurement value range RD1N represents the rated physical parameter range RD1E
  • based on the rated physical parameter range represents GA8E
  • the sensor measurement range represents GW8R
  • the data encoding operation ZX81 of GA8E is preset with the specified measurement value format HH81, and has the rated range limit value pair DD1A.
  • the rated range limit value pair DD1A is preset using the specified measurement value format HH81.
  • the measurement value target range RN1T is represented by a measurement value target range code EM1T, and has a target range limit value pair DN1T; thereby, the measurement value target range code EM1T is configured to indicate the physical parameter target range RD1ET.
  • the measurement value target range code EM1T is preset based on the measurement application function specification GAL8.
  • the target range limit value pair DN1T includes the target range limit value DN17 of the measurement value target range RN1T and the target range limit value DN18 relative to the target range limit value DN17, and based on the physical parameter candidate range, it represents GA8T,
  • the sensor measurement range representation GW8R and the data encoding operation ZX82 for converting the physical parameter candidate range representation GA8T are preset using the specified measurement value format HH81.
  • the control signal SC81 transmits the measurement value target range code EM1T to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET.
  • the measurement value target range RN1T is preset using the specified measurement value format HH81 based on the physical parameter candidate range representation GA8T, the sensor measurement range representation GW8R, and the data encoding operation ZX82.
  • the measurement application function specification GAL8 further includes a physical parameter representation GA8T1.
  • the physical parameter representation GA8T1 is used to represent the designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the storage unit 332 stores the rated range limit value pair DD1A, which has a memory location YM8T and a memory location YX8T different from the memory location YM8T.
  • the target range limit value pair DN1T is stored in the memory location YM8T, and is stored in the memory location YM8T.
  • the memory location YX8T stores the control code CC1T.
  • the memory location YM8T and the memory location YX8T are both identified based on the measured value target range code EM1T.
  • the control code CC1T is preset based on the physical parameter representation GA8T1 and the data encoding operation ZX91 for converting the physical parameter representation GA8T1.
  • Both the target range limit value pair DN1T and the control code CC1T are stored by the storage unit 332 based on the preset measurement value target range code EM1T.
  • the functional unit 335 has the variable physical parameter QU1A.
  • the sensing unit 334 is coupled to the functional unit 335.
  • the control signal SC81 further conveys the rated range limit value pair DD1A.
  • the processing unit 331 obtains the rated range limit value pair DD1A from one of the control signal SC81 and the storage unit 332 in response to the control signal SC81, and obtains the rated range limit value pair DD1A in response to the control signal SC81 from the control signal
  • the SC81 obtains the measured value target range code EM1T, and executes the data acquisition AD5A using the obtained measured value target range code EM1T by running the data acquisition program ND5A to obtain the target range limit value pair DN1T.
  • the data acquisition AD5A is one of the data acquisition operation AD51 and the data acquisition operation AD52.
  • the data acquisition program ND5A is constructed based on the measurement application function specification GAL8.
  • the data acquisition operation AD51 uses the storage unit 332 to access the target range limit value pair DN1T stored in the memory location YM8T based on the obtained measurement value target range code EM1T to obtain the target The range limit is DN1T.
  • the data acquisition operation AD52 obtains the target range limit value pair DN1T by performing scientific calculation MZ51 using the obtained measurement value target range code EM1T and the obtained rated range limit value pair DD1A.
  • the processing unit 331 performs the first check operation BV51 based on the data comparison CD51 between the first measured value VN81 and the obtained target range limit value pair DN1T, and based on the obtained data comparison CD51.
  • the first check operation BV51 is used to make a logical decision PB51 whether the first measurement value VN81 is within the corresponding measurement value range RX1T. Under the condition that the logical decision PB51 is affirmative, the processing unit 331 determines the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently located.
  • the processing unit 331 compares the first measurement value VN81 with the accessed first measurement range limit data code DN1A to make the logical decision PB51 to become negative. Under the condition that the target range limit value DN17, the target range limit value DN18, and the first measurement value VN81 are equal, the processing unit 331 compares the first measurement value VN81 with all accessed values. The first measurement range limit data code DN1A is used to make the logical decision PB51 to become negative.
  • the processing unit 331 determines that the variable physical parameter QU1A is currently in the corresponding physical parameter range RY1ET, the processing unit 331 uses the storage based on the obtained measurement value target range code EM1T The unit 332 accesses the control code CC1T stored in the memory location YX8T, and executes the signal generation control GY81 for the measurement application function FA81 based on the accessed control code CC1T to control the Output unit 338.
  • the output unit 338 responds to the signal generation control GY81 to perform a signal generation operation BY81 for the measurement application function FA81 to generate a function signal SG81, and the function signal SG81 is used to control the function unit 335 to cause the
  • the variable physical parameter QU1A enters the physical parameter target range RD1ET.
  • the control device 212 is an external device.
  • the processing unit 331 causes the function unit 335 to perform a specific function operation ZH81 related to the variable physical parameter QU1A through the output unit 338.
  • the specific function operation ZH81 is used to cause the trigger event EQ81 to occur.
  • the control device 212 responds to the trigger event EQ81 to output the control signal SC81.
  • the rated measurement value range RD1N is configured to have a plurality of different measurement value reference ranges RN11, RN12,...
  • the multiple different measurement value reference ranges RN11, RN12, ... have a total number of reference ranges NT81, which are respectively represented by multiple different measurement value reference range codes EM11, EM12, ..., and include the measurement value target range RN1T .
  • the total number of reference ranges NT81 is preset based on the measurement application function specification GAL8.
  • the multiple different measurement value reference range codes EM11, EM12, ... include the preset measurement value target range codes EM1T, and are all preset based on the measurement application function specification GAL8.
  • the control signal SC81 further conveys the total reference range number NT81.
  • the processing unit 331 responds to the control signal SC81 to obtain the total reference range number NT81 from one of the control signal SC81 and the storage unit 332.
  • the scientific calculation MZ51 further uses the obtained total reference range number NT81. For example, the total number of reference ranges is greater than or equal to two.
  • the function unit 335 responds to the function signal SG81 to change the variable physical parameter QU1A from a specific physical parameter QU17 to a specific physical parameter QU18.
  • the specific physical parameter QU17 is within the corresponding physical parameter range RY1ET; and the specific physical parameter QU18 is within the physical parameter target range RD1ET.
  • the measurement application function specification GAL8 further includes a corresponding physical parameter range representation GA8TY for representing the corresponding physical parameter range RY1ET.
  • the corresponding measurement value range RX1T is based on the corresponding physical parameter range representing GA8TY, the sensor measurement range representing GW8R, and the data encoding operation ZX83 for converting the corresponding physical parameter range representing GA8TY to use the specified measurement value format HH81 It is preset.
  • variable physical parameter QU1A is further characterized based on the rated physical parameter range RD1E.
  • the rated physical parameter range RD1E includes a plurality of different physical parameter reference ranges RD1E1, RD1E2,....
  • the multiple different physical parameter reference ranges RD1E1, RD1E2,... include the physical parameter target range RD1ET.
  • the measured value target range RN1T is the first part of the rated measured value range RD1N.
  • the corresponding measurement value range RX1T is the second part of the rated measurement value range RD1N, adjacent to the measurement value target range RN1T, and complementary to the measurement value target range RN1T.
  • the rated measurement value range RD1N is equal to the range combination of the measurement value target range RN1T and the corresponding measurement value range RX1T complementary to the measurement value target range RN1T, and has the rated range limit value pair DD1A.
  • the rated range limit value pair DD1A includes the rated range limit value DD11 of the rated measurement value range RD1N and the rated range limit value DD12 relative to the rated range limit value DD11, and is expressed based on the rated physical parameter range GA8E, the sensor measurement range representation GW8R and the data encoding operation ZX81 are preset using the specified measurement value format HH81.
  • the measured value target range code EM1T is configured to be equal to an integer.
  • the rated range limit value DD12 is greater than the rated range limit value DD11.
  • the rated range limit value DD12 and the rated range limit value DD11 have a relative value VA11 with respect to the rated range limit value DD11.
  • the relative value VA11 is equal to the calculation result of the rated range limit value DD12 minus the rated range limit value DD11.
  • the target range limit value pair DN1T is predicted based on the rated range limit value DD11, the rated range limit value DD12, the integer, and the ratio of the relative value VA11 to the total reference range number NT81. Set.
  • the scientific calculation MZ51 uses one of the rated range limit value DD11, the rated range limit value DD12, the integer, the ratio, and any combination thereof.
  • the processing unit 331 performs data comparison CD52 between the first measurement value VN81 and the obtained rated range limit value pair DD1A to check the first measurement value VN81 and the rated measurement value range.
  • the processing unit 331 further makes the logical decision PB51 based on the second check operation BM51.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate the second sensing signal SN82 .
  • the sensing unit 334 senses the variable physical parameter QU1A to perform a sensing signal generation HF82 that depends on the sensor sensitivity YW81.
  • the sensing signal generation HF82 is used to generate the second sensing signal SN82.
  • the processing unit 331 responds to the second sensing signal SN82 within a specified time TG82 after the operating time TF81 to obtain a second measurement value VN82 in the specified measurement value format HH81.
  • the processing unit 331 checks the mathematical relationship KV91 between the second measurement value VN82 and the measurement value target range RN1T by comparing the second measurement value VN82 with the obtained target range limit value pair DN1T.
  • a logical decision PB91 is made whether the second measured value VN82 is within the measured value target range RN1T.
  • the processing unit 331 determines the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located within the specified time TG82, and generates a positive operation report RL81, And cause the output unit 338 to output a control response signal SE81 that transmits the positive operation report RL81, whereby the control response signal SE81 is used to cause the control device 212 to obtain the positive operation report RL81.
  • the positive operation report RL81 indicates the operation situation EP81 in which the variable physical parameter QU1A successfully enters the physical parameter target range RD1ET.
  • the processing unit 331 responds to the control signal SC81 by causing the output unit 338 to generate the control response signal SE81.
  • the processing unit 331 causes the control response signal SE81 to further transmit the obtained measurement value VN82 based on the obtained measurement value VN82.
  • the storage unit 332 further stores a variable physical parameter range code UN8A.
  • the variable physical parameter range code UN8A is equal to the specific measurement value range code EM14 selected from the multiple different measurement value reference range codes EM11, EM12,...
  • the specific measurement value range code EM14 indicates the specific physical parameter range RD1E4 previously determined by the processing unit 331 based on the sensing operation ZS81.
  • the specific physical parameter range RD1E4 is selected from the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the sensing operation ZS81 performed by the sensing unit 334 is used to sense the variable physical parameter QU1A.
  • the specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.
  • the processing unit 331 obtains the specific measurement value range code EM14 before the input unit 337 receives the control signal SC81.
  • the processing unit 331 uses the storage unit 332 to assign the obtained specific measurement value range code EM14 to the variable physical parameter range code UN8A.
  • the specific measurement value range code EM14 represents a specific measurement value range configured to represent the specific physical parameter range RD1E4.
  • the specific measurement value range is preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the specified measurement value format HH81.
  • the sensing unit 334 performs sensing signal generation dependent on the sensor sensitivity YW81 by performing the sensing operation ZS81 to generate a sensing signal.
  • the processing unit 331 Before the input unit 337 receives the control signal SC81, the processing unit 331 receives the sensing signal, responds to the sensing signal to obtain a specific measurement value in the specified measurement value format HH81, and executes A specific check operation for checking the mathematical relationship between the specific measurement value and the specific measurement value range. Under the condition that the processing unit 331 determines the specific physical parameter range RD1E4 in which the variable physical parameter QU1A is located based on the specific checking operation, the processing unit 331 uses the storage unit 332 to obtain The specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.
  • the processing unit 331 determines whether the processing unit 331 uses the storage unit 332 to change the variable physical parameter range code UN8A in response to a specific sensing operation for sensing the variable physical parameter QU1A. For example, the specific sensing operation is performed by the sensing unit 334.
  • the processing unit 331 determines the variable physical parameter QU1A in the current state by making the logical decision PB91 Under the condition of the physical parameter target range RD1ET, the processing unit 331 is based on the code between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T
  • the difference DF81 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the output unit 338 displays a status indication LB81.
  • the state indication LB81 is used to indicate that the variable physical parameter QU1A is configured in the specific state XJ81 within the specific physical parameter range RD1E4.
  • the processing unit 331 determines the variable physical parameter QU1A in the current state by making the logical decision PB91 Under the condition of the physical parameter target range RD1ET, the processing unit 331 further causes the output unit 338 to change the status indicator LB81 to the status indicator LB82 based on the code difference DF81.
  • the state indicator LB82 is used to indicate that the variable physical parameter QU1A is configured in the specific state XJ82 within the physical parameter target range RD1ET.
  • the control signal SC81 is one of the electrical signal SP81 and the optical signal SQ81.
  • the input unit 337 includes an input component 3371, an input component 3372, and an input component 3373.
  • the input component 3371 is coupled to the processing unit 331. Under the condition that the control signal SC81 is the electrical signal SP81, the input component 3371 causes the processing unit 331 to obtain the control information CG81 by receiving the electrical signal SP81 that transmits the control information CG81.
  • the control information CG81 includes the measurement value target range code EM1T.
  • the input component 3372 is coupled to the processing unit 331. Under the condition that the control signal SC81 is the optical signal SQ81, the input component 3372 receives the optical signal SQ81 for delivering the encoded image FY81. For example, the coded image FY81 represents the control information CG81.
  • the input component 3373 is coupled to the processing unit 331 and includes a button 3801 coupled to the processing unit 331. Under the condition that the variable physical parameter QU1A is configured within the physical parameter target range RD1ET based on the control signal SC81, the input component 3373 receives the user input operation BQ81 using the button 3801, and responds The user input operation BQ81 to cause the processing unit 331 to receive an operation request signal SJ91.
  • the processing unit 331 determines the specific input code UW81 in response to the operation request signal SJ91.
  • the input component 3373 provides the operation request signal SJ91 to the processing unit 331 in response to the user input operation BQ81 using the button 3801, and thereby causes the processing unit 331 to receive the operation request signal SJ91.
  • the specific input code UW81 is selected from the multiple different measurement value reference range codes EM11, EM12,...
  • the input component 3372 senses the encoded image FY81 to determine the encoded data DY81, and decodes the encoded data DY81 to provide the control information CG81 to the ⁇ processing unit 331.
  • the variable physical parameter range code UN8A is equal to the preset measurement value target range code EM1T.
  • the processing unit 331 responds to the operation request signal SJ91 to obtain the measurement value target range code EM1T from the variable physical parameter range code UN8A.
  • the processing unit 331 is based on the variable physical parameter equal to the obtained measurement value target range code EM1T
  • the code difference DX81 between the range code UN8A and the specific input code UW81 passes through the output unit 338 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the corresponding physical parameter range RY1ET.
  • the sensing unit 334 senses the variable physical parameter QU1A in the restrained condition FR81 to provide the first sensing signal SN81 to the processing unit 331.
  • the constraint condition FR81 is that the variable physical parameter QU1A is equal to the specific physical parameter QU15 included in the rated physical parameter range RD1E.
  • the processing unit 331 estimates the specific physical parameter QU15 based on the first sensing signal SN81 to obtain the first measured value VN81.
  • the processing unit 331 Based on the data comparison CD51 and the data comparison CD52, the processing unit 331 recognizes that the first measurement value VN81 is outside the measurement value target range RN1T and within the rated measurement value range RD1N. Under the condition of the value VG51, the processing unit 331 makes the logical decision PB51 to become affirmative. Since the variable physical parameter QU1A in the constraint condition FR81 is outside the physical parameter target range RD1ET and within the rated physical parameter range RD1E, the processing unit 331 compares CD51 with The data compares CD52 to identify that the first measurement value VN81 is the allowable value VG51 within the corresponding measurement value range RX1T.
  • the sensing unit 334 is characterized based on the sensor sensitivity YW81 related to the sensing signal generation HF81, and is configured to comply with the sensor specification FU11.
  • the sensor specification FU11 includes the sensor sensitivity indication GW81 for indicating the sensor sensitivity YW81, and the sensor measurement range indication GW8R for indicating the sensor measurement range RB8E.
  • the rated physical parameter range RD1E is configured to be the same as the sensor measurement range RB8E, or configured to be a part of the sensor measurement range RB8E.
  • the sensor measurement range RB8E is related to physical parameter sensing performed by the sensing unit 334.
  • the sensor measurement range indicates that the GW8R is provided based on the first preset measurement unit.
  • the first preset measurement unit is one of a metric measurement unit and an imperial measurement unit.
  • the rated measurement value range RD1N, the rated range limit value pair DD1A, the measurement value target range RN1T, the target range limit value pair DN1T, and the corresponding measurement value range RX1T are all based on the sensor measurement range representation GW8R
  • One of the sensor specifications FU11 is preset using the specified measurement value format HH81.
  • the rated measurement value range RD1N and the rated range limit value pair DD1A are based on the rated physical parameter range representing GA8E, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the data encoding operation ZX81 To use the specified measurement value format HH81 to be preset.
  • the measurement value target range RN1T and the target range limit value pair DN1T are used based on the physical parameter candidate range representing GA8T, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the data encoding operation ZX82.
  • the specified measurement value format HH81 is preset.
  • the corresponding measurement value range RX1T is predicted based on the corresponding physical parameter range representing GA8TY, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the data encoding operation ZX83 using the specified measurement value format HH81.
  • the rated physical parameter range represents GA8E, the physical parameter represents GA8T1, the physical parameter candidate range represents GA8T, and the corresponding physical parameter range represents GA8TY are all provided based on a second preset measurement unit.
  • the second preset measurement unit is one of a metric measurement unit and an English measurement unit, and is the same as or different from the first preset measurement unit.
  • the corresponding physical parameter range representing GA8TY is derived based on the rated physical parameter range representing GA8E and the physical parameter candidate range representing GA8T.
  • the variable physical parameter QU1A is further characterized based on the sensor measurement range RB8E.
  • the sensor measurement range represents GW8R
  • the rated physical parameter range represents GA8E
  • the physical parameter candidate range represents GA8T
  • the corresponding physical parameter range represents GA8TY
  • the physical parameter represents GA8T1 are all decimal data types.
  • the first measurement value VN81, the second measurement value VN82, the rated range limit value pair DD1A, the target range limit value pair DN1T, and the control code CC1T all belong to the binary data type and are all applicable In computer processing.
  • the sensor specification FU11 and the measurement application function specification GAL8 are both preset.
  • the input unit 337 before the input unit 337 receives the control signal SC81, the input unit 337 receives the write request information WN8T including the preset target range limit value pair DN1T and the memory address AM8T.
  • the first memory location YM8T is identified based on the memory address AM8T.
  • the memory address AM8T is preset based on the preset measurement value target range code EM1T.
  • the processing unit 331 uses the storage unit 332 in response to the write request information WN8T to store the target range limit value pair DN1T of the write request information WN8T in the memory location YM8T.
  • the input unit 337 receives the write request information WC8T including the preset control code CC1T and the memory address AX8T.
  • the memory location YX8T is identified based on the memory address AX8T.
  • the memory address AX8T is preset based on the preset measurement value target range code EM1T.
  • the processing unit 331 uses the storage unit 332 in response to the write request information WC8T to store the control code CC1T of the write request information WC8T in the memory location YX8T.
  • variable physical parameter QU1A is characterized based on the physical parameter target range RD1ET represented by the measured value target range RN1T and the corresponding physical parameter range RY1ET corresponding to the physical parameter target range RD1ET.
  • the method ML86 includes the following steps: sensing the variable physical parameter QU1A to generate a first sensing signal SN81; under the condition that the control signal SC81 that functions to indicate the measurement value target range RN1T is received, responding The first sensing signal SN81 is used to obtain a first measurement value VN81; in response to the control signal SC81, a second mathematical relationship KV51 for checking the first measurement value VN81 and the measurement value target range RN1T is performed And under the condition that the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently in is determined based on the first check operation BV51, causing the variable physical parameter QU1A to enter The physical parameter target range RD1ET.
  • control signal SC81 functions to indicate the physical parameter target range RD1ET.
  • the variable physical parameter QU1A is caused based on the control signal SC81 Enter the physical parameter target range RD1ET.
  • the method ML86 further includes the step of providing a sensing unit 334.
  • the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334.
  • the sensing unit 334 is configured to comply with the sensor specification FU11 related to the measurement value target range RN1T.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to the sensing signal generated by the sensing unit 334 to generate HF81.
  • the first measurement value VN81 is obtained in a designated measurement value format HH81.
  • the measured value target range RN1T has a target range limit value pair DN1T.
  • the corresponding physical parameter range RY1ET is represented by the corresponding measurement value range RX1T.
  • the range combination of the measurement value target range RN1T and the corresponding measurement value range RX1T is equal to the rated measurement value range RD1N.
  • the measurement value target range RN1T, the corresponding measurement value range RX1T, and the rated measurement value range RD1N are all based on one of the sensor measurement range representation GW8R and the sensor specification FU11 to use the specified measurement
  • the value format HH81 is preset.
  • the rated measurement value range RD1N has a rated range limit value pair DD1A.
  • the control signal SC81 conveys the target range limit value pair DN1T, the rated range limit value pair DD1A, and a control code CC1T.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 transmits the target range limit value pair DN1T to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET.
  • the step of performing the first check operation BV51 includes the following sub-steps: obtaining the target range limit value pair DN1T from the control signal SC81; and comparing the first measured value VN81 with the obtained target range limit For the value pair DN1T, the first check operation BV51 is performed.
  • the method ML86 further includes the following steps: obtaining the rated range limit value pair DD1A from the control signal SC81; and by comparing the first measured value VN81 with the obtained rated range limit value pair DD1A, executing A second check operation BM51 for checking the third mathematical relationship KM51 between the first measurement value VN81 and the rated measurement value range RD1N.
  • the step of causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET includes the following sub-steps: based on the first inspection operation BV51 and the second inspection operation BM51, making the Whether the first measurement value VN81 is within the logical decision PB51 within the corresponding measurement value range RX1T; under the condition that the logical decision PB51 is affirmative, determine the corresponding physical parameter that the variable physical parameter QU1A is currently in Range RY1ET; obtain the control code CC1T from the control signal SC81; and under the condition that the corresponding physical parameter range RY1ET is determined, perform a signal generation control GY81 based on the obtained control code CC1T to generate The functional signal SG81 that causes the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the method ML86 further includes the following steps: after the signal generation control GY81 is executed within the operating time TF81, sensing the variable physical parameter QU1A to generate a second sensing signal SN82; at the operating time TF81 After the specified time TG82, respond to the second sensing signal SN82 to obtain the second measurement value VN82 in the specified measurement value format HH81; and the physical parameter target where the variable physical parameter QU1A is currently
  • the range RD1ET is determined by comparing the second measured value VN82 with the obtained target range limit value pair DN1T within the specified time TG82, and the data storage control operation GU81 is executed, and the data storage control Operation GU81 is used to cause the physical parameter target range code UN8T representing the determined physical parameter target range RD1ET to be recorded.
  • the variable physical parameter QU1A is related to the variable time length LF8A.
  • the variable time length LF8A is characterized based on the time length reference range HJ81 and the reference time length LJ8T.
  • the time length reference range HJ81 is represented by the measurement time length value reference range GJ81.
  • the reference time length LJ8T is represented by the measured time length value CL8T.
  • the control signal SC81 further conveys the measurement time length value CL8T.
  • the method ML86 further includes the following steps: obtaining the measurement time length value CL8T from the control signal SC81; and checking the value between the obtained measurement time length value CL8T and the measurement time length value reference range GJ81
  • the relationship KJ81 is used to make a logical decision PE81 for controlling whether the counting operation BC8T for a specific time TJ8T is to be executed.
  • the method ML86 further includes the following steps: under the condition that the logical decision PE81 is affirmative, execute the counting operation BC8T based on the obtained measurement time length value CL8T; in the variable physical parameter QU1A based on all
  • the control signal SC81 is configured to reach the specific time TJ8T based on the counting operation BC8T under the condition within the physical parameter target range RD1ET; and within the specific time TJ8T, execute for causing
  • the variable physical parameter QU1A leaves the physical parameter target range RD1ET to enter the corresponding physical parameter range RY1ET signal generating operation BY91.
  • the method ML86 further includes the following steps: providing a sensing unit 334, wherein the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334; and performing the same
  • the measurement application function FA81 related to the physical parameter target range RD1ET is configured to comply with the measurement application function specification GAL8 related to the physical parameter target range RD1ET.
  • the sensing unit 334 is configured to comply with the sensor specification FU11 related to the measurement value target range RN1T.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to the sensing signal generated by the sensing unit 334 to generate HF81.
  • the first measurement value VN81 is obtained in a designated measurement value format HH81.
  • the specified measurement value format HH81 is characterized based on the specified number of bits UY81.
  • the corresponding physical parameter range RY1ET is represented by the corresponding measurement value range RX1T.
  • the range combination of the physical parameter target range RD1ET and the corresponding physical parameter range RY1ET is equal to the rated physical parameter range RD1E.
  • the measurement application function specification GAL8 includes the sensor specification FU11, a rated physical parameter range representation GA8E used to represent the rated physical parameter range RD1E, and a physical parameter candidate range representation GA8T used to represent the physical parameter target range RD1ET .
  • the range combination of the measurement value target range RN1T and the corresponding measurement value range RX1T is equal to the rated measurement value range RD1N.
  • the rated measurement value range RD1N represents the rated physical parameter range RD1E, based on the rated physical parameter range represents GA8E, the sensor measurement range represents GW8R, and the data encoding operation ZX81 used to convert the rated physical parameter range represents GA8E It is preset using the specified measurement value format HH81, and has the rated range limit value pair DD1A. For example, the rated range limit value pair DD1A is preset using the specified measurement value format HH81.
  • the measurement value target range RN1T is represented by a measurement value target range code EM1T, and has a target range limit value pair DN1T.
  • the measurement value target range code EM1T is preset based on the measurement application function specification GAL8.
  • the target range limit value pair DN1T includes a target range limit value DN17 and a target range limit value DN18 relative to the target range limit value DN17, and based on the physical parameter candidate range represents GA8T, the sensor measurement range represents GW8R and
  • the data encoding operation ZX82 for converting the physical parameter candidate range representation GA8T is preset using the specified measurement value format HH81.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the measurement value target range code EM1T, and is received from the control device 212 .
  • the measurement application function specification GAL8 further includes a physical parameter representation GA8T1.
  • the physical parameter representation GA8T1 is used to represent the designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 further conveys the rated range limit value pair DD1A.
  • the method ML86 further includes the following steps: providing a storage space SU11, wherein the storage space SU11 has a memory location YM8T and a memory location YX8T different from the memory location YM8T, and the memory location YM8T and The memory location YX8T is identified based on the measured value target range code EM1T; the rated range limit value pair DD1A is stored in the storage space SU11; the target range limit value pair is stored in the memory location YM8T DN1T; storing a control code CC1T in the memory location YX8T, wherein the control code CC1T is preset based on the physical parameter representing GA8T1 and the data encoding operation ZX91 for converting the physical parameter representing GA8T1; and in response to the The control signal SC81 obtains the rated range limit value pair DD1A from one of the control signal SC81 and the storage space SU11.
  • the step of performing the first check operation BV51 includes the following sub-steps: in response to the control signal SC81, obtaining the measured value target range code EM1T from the control signal SC81; and executing the data obtaining program ND5A by running the obtained
  • the data acquisition AD5A of the measured value target range code EM1T acquires the target range limit value pair DN1T, wherein the data acquisition AD5A is one of the data acquisition operation AD51 and the data acquisition operation AD52, and the data acquisition program ND5A is constructed based on the measurement application function specification GAL8; and based on the data comparison CD51 between the first measurement value VN81 and the obtained target range limit value pair DN1T, the first inspection operation BV51 is performed.
  • the data acquisition operation AD51 accesses the target range limit value pair DN1T stored in the memory location YM8T based on the obtained measurement value target range code EM1T to obtain the target range limit value pair DN1T.
  • the data acquisition operation AD52 obtains the target range limit value pair DN1T by performing a scientific calculation MZ51 using the obtained measured value target range code EM1T and the obtained rated range limit value pair DD1A.
  • the step of causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET includes the following sub-steps: based on the first check operation BV51, whether the first measurement value VN81 is The logical decision PB51 within the corresponding measurement value range RX1T; and under the condition that the logical decision PB51 is affirmative, determine the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently located.
  • the step of causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET further includes the following sub-steps: under the condition that the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently located is determined, based on all The obtained measurement value target range code EM1T is used to access the control code CC1T stored in the memory location YX8T; based on the accessed control code CC1T, the signal for the measurement application function FA81 is executed Generate control GY81; and in response to the signal generation control GY81, perform a signal generation operation BY81 for the measurement application function FA81 to generate a function signal SG81, which is used to cause the variable physical parameter QU1A to enter the The physical parameter target range RD1ET.
  • the control device 212 is an external device.
  • the method ML88 further includes the following steps: executing a specific function operation ZH81 related to the variable physical parameter QU1A, wherein the specific function operation ZH81 is used to cause the trigger event EQ81 to occur; and by using the control device 212, responding The trigger event EQ81 generates the control signal SC81.
  • the rated measurement value range RD1N is configured to have a plurality of different measurement value reference ranges RN11, RN12,...
  • the multiple different measurement value reference ranges RN11, RN12, ... are respectively represented by multiple different measurement value reference range codes EM11, EM12, ..., and include the measurement value target range RN1T.
  • the multiple different measurement value reference range codes EM11, EM12, ... include the preset measurement value target range codes EM1T, and are all preset based on the measurement application function specification GAL8.
  • the measurement application function specification GAL8 further includes a corresponding physical parameter range representation GA8TY for representing the corresponding physical parameter range RY1ET.
  • the corresponding measurement value range RX1T is based on the corresponding physical parameter range representing GA8TY, the sensor measurement range representing GW8R, and the data encoding operation ZX83 for converting the corresponding physical parameter range representing GA8TY to use the specified measurement value format HH81 It is preset.
  • the variable physical parameter QU1A is further characterized based on the rated physical parameter range RD1E.
  • the rated physical parameter range RD1E includes a plurality of different physical parameter reference ranges RD1E1, RD1E2,....
  • the multiple different physical parameter reference ranges RD1E1, RD1E2,... include the physical parameter target range RD1ET.
  • the method ML86 further includes the step of storing a variable physical parameter range code UN8A in the storage space SU11.
  • the variable physical parameter range code UN8A is equal to the specific measurement value range code EM14 selected from the multiple different measurement value reference range codes EM11, EM12,...
  • the specific measurement value range code EM14 indicates a specific physical parameter range RD1E4 previously determined based on the sensing operation ZS81.
  • the specific physical parameter range RD1E4 is selected from the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the sensing operation ZS81 performed by the sensing unit 334 is used to sense the variable physical parameter QU1A.
  • the specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.
  • the method ML86 further includes the step of: comparing the data CD52 between the first measurement value VN81 and the obtained rated range limit value pair DD1A, and performing a check for checking the first measurement value VN81 and the rated range limit value DD1A.
  • the step of causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET includes a sub-step: based on the first inspection operation BV51 and the second inspection operation BM51, the logical decision PB51 is made.
  • the first measurement value VN81 is identified as the allowable value VG51 outside the measurement value target range RN1T and within the rated measurement value range RD1N based on the data comparison CD51 and the data comparison CD52 Under the conditions, the logical decision PB51 is made affirmative.
  • the method ML86 further includes the following steps: after the signal generation control GY81 is executed within the operating time TF81, sensing the variable physical parameter QU1A to generate a second sensing signal SN82; Within the designated time TG82 after the operating time TF81, respond to the second sensing signal SN82 to obtain a second measured value VN82 in the designated measured value format HH81; and by comparing the second measured value VN82 with To obtain the target range limit value pair DN1T, check the mathematical relationship KV91 between the second measurement value VN82 and the measurement value target range RN1T to determine whether the second measurement value VN82 is in the measurement The logic within the value target range RN1T determines PB91.
  • the method ML86 further includes the following steps: under the condition that the logical decision PB91 is affirmative, determine within the specified time TG82 the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located, and generate Affirmative operation report RL81, wherein the affirmative operation report RL81 indicates the operation status EP81 of the variable physical parameter QU1A successfully entering the physical parameter target range RD1ET; and outputting a control response signal SE81 that transmits the affirmative operation report RL81, In this way, the control response signal SE81 is used to cause the control device 212 to obtain the positive operation report RL81.
  • the method ML86 further includes the step of: when the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the variable physical parameter QU1A is currently in the physical parameter target range RD1ET by doing Under the condition that the logical decision PB91 is determined, based on the code difference between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T DF81 assigns the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the method ML86 further includes the following steps: when the control signal SC81 is received, a status indicator LB81 is displayed, wherein the status indicator LB81 is used to indicate that the variable physical parameter QU1A is configured in the specific physical parameter range RD1E4 In the specific state XJ81; and the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the variable physical parameter QU1A is currently in the physical parameter target range RD1ET by doing Under the condition that the logical decision PB91 is determined, the status indicator LB81 is changed to the status indicator LB82 based on the code difference DF81, wherein the status indicator LB82 is used to indicate that the variable physical parameter QU1A is configured A specific state XJ82 within the physical parameter target range RD1ET.
  • the method ML86 further includes the following steps: before the control signal SC81 is received, receiving a write request message WN8T containing the preset target range limit value pair DN1T and a memory address AM8T, The memory location YM8T is identified based on the memory address AM8T, and the memory address AM8T is preset based on the preset measurement value target range code EM1T; and in response to the write request information WN8T, The target range limit value pair DN1T of the write request information WN8T is stored in the memory location YM8T.
  • the method ML86 further includes the following steps: before the control signal SC81 is received, receiving write request information WC8T including the preset control code CC1T and a memory address AX8T, wherein the memory location YX8T is based on the The memory address AX8T is identified, and the memory address AX8T is preset based on the preset measurement value target range code EM1T; and in response to the write request information WC8T, the write request information WC8T The control code CC1T is stored in the memory location YX8T.
  • a method ML88 for controlling the variable physical parameter QU1A by generating the function signal SG81 is disclosed.
  • the variable physical parameter QU1A is characterized based on the physical parameter target range RD1ET represented by the measured value target range RN1T and the corresponding physical parameter range RY1ET corresponding to the physical parameter target range RD1ET.
  • the method ML88 includes the following steps: the sensing unit 334 senses the variable physical parameter QU1A to generate a first sensing signal SN81; the control signal SC81 that functions to indicate the measurement value target range RN1T is used Under the condition received by the input unit 337, the processing unit 331 responds to the first sensing signal SN81 to obtain a first measurement value VN81; the processing unit 331 responds to the control signal SC81 to perform a check for the The first check operation BV51 of the second mathematical relationship KV51 between the first measurement value VN81 and the measurement value target range RN1T; and the processing unit 331 determines the variable physical parameter based on the first check operation BV51
  • the physical parameter relationship KH81 between QU1A and the corresponding physical parameter range RY1ET is used to make a reasonable decision whether the functional signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET is to be generated PW81.
  • the physical parameter application range RD1EJ corresponds to the physical parameter target range RD1ET, and is equal to the corresponding physical parameter range RY1ET.
  • the corresponding physical parameter range RY1ET is represented by a corresponding measurement value range RX1T.
  • the physical parameter target range RD1ET is represented by the measurement value indication range RN1G.
  • the measurement value indication range RN1G is equal to a measurement value target range RN1T.
  • the first mathematical relationship KG81 is equal to the second mathematical relationship KV51.
  • the control signal SC81 functions to indicate the physical parameter target range RD1ET.
  • the physical parameter relationship KC81 is equal to the physical parameter relationship KH81.
  • the method ML88 further includes the step of: the control target device 130 provides a sensing unit 334.
  • the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334.
  • the sensing unit 334 is configured to comply with the sensor specification FU11 related to the measurement value target range RN1T.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to the sensing signal generated by the sensing unit 334 to generate HF81.
  • the first measurement value VN81 is obtained by the processing unit 331 in a designated measurement value format HH81.
  • the measured value target range RN1T has a target range limit value pair DN1T.
  • the corresponding physical parameter range RY1ET is represented by the corresponding measurement value range RX1T.
  • the range combination of the measurement value target range RN1T and the corresponding measurement value range RX1T is equal to the rated measurement value range RD1N.
  • the measurement value target range RN1T, the corresponding measurement value range RX1T, and the rated measurement value range RD1N are all based on one of the sensor measurement range representation GW8R and the sensor specification FU11 to use the specified measurement
  • the value format HH81 is preset.
  • the rated measurement value range RD1N has a rated range limit value pair DD1A.
  • the control signal SC81 conveys the target range limit value pair DN1T, the rated range limit value pair DD1A, and a control code CC1T.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 transmits the target range limit value pair DN1T to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET.
  • the step of performing the first check operation BV51 includes the following sub-steps: the processing unit 331 obtains the target range limit value pair DN1T from the control signal SC81; and the processing unit 331 compares the first measurement value VN81 and the obtained target range limit value pair DN1T, perform the first check operation BV51.
  • the method ML88 further includes the following steps: the processing unit 331 obtains the rated range limit value pair DD1A from the control signal SC81; and the processing unit 331 compares the first measured value VN81 with the obtained all For the rated range limit value pair DD1A, a second check operation BM51 for checking the third mathematical relationship KM51 between the first measurement value VN81 and the rated measurement value range RD1N is performed.
  • the step of determining the physical parameter relationship KH81 to make the reasonable decision PW81 includes the following sub-steps: the processing unit 331 is based on the first inspection operation BV51 and the second inspection operation BM51, Make a logical decision PB51 whether the first measurement value VN81 is within the corresponding measurement value range RX1T; and the processing unit 331 determines the physical parameter relationship KH81 based on the logical decision PB51 to make the determination Said reasonable decision PW81.
  • the sub-step of determining the physical parameter relationship KH81 based on the logical decision PB51 includes sub-steps: under the condition that the logical decision PB51 is affirmative, the processing unit 331 recognizes that the physical parameter relationship KH81 is a physical parameter intersection relationship To make the reasonable decision PW81 to become affirmative.
  • the method ML88 further includes the following steps: the processing unit 331 obtains the control code CC1T from the control signal SC81; and under the condition that the reasonable decision PW81 is affirmative, the processing unit 331 is based on the obtained all
  • the control code CC1T executes the signal generation control GY81 to cause the output unit 338 to generate the function signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the method ML88 further includes the following steps: after the signal generation control GY81 is executed by the processing unit 331 within the operating time TF81, the sensing unit 334 senses the variable physical parameter QU1A to generate a second Sensing signal SN82; the processing unit 331 responds to the second sensing signal SN82 within a designated time TG82 after the operating time TF81 to obtain a second measurement value VN82 in the designated measurement value format HH81; and The physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located is determined by comparing the second measured value VN82 with the obtained target range limit value pair DN1T within the specified time TG82. Under the condition determined by the processing unit 331, the processing unit 331 performs a data storage control operation GU81, which is used to cause the physical parameter target range code UN8T representing the determined physical parameter target range RD1ET to be The storage unit 332 records.
  • variable physical parameter QU1A is related to a variable time length LF8A.
  • the variable time length LF8A is characterized based on the time length reference range HJ81 and the reference time length LJ8T.
  • the time length reference range HJ81 is represented by the measurement time length value reference range GJ81.
  • the reference time length LJ8T is represented by the measured time length value CL8T.
  • the control signal SC81 further conveys the measurement time length value CL8T.
  • the operating unit 397 further includes a timer 339.
  • the method ML88 further includes the following steps: the processing unit 331 obtains the measurement time length value CL8T from the control signal SC81; and the processing unit 331 checks the obtained measurement time length value CL8T and the measurement
  • the time length value refers to the numerical relationship KJ81 between the range GJ81 to make a logical decision PE81 for controlling whether the counting operation BC8T for a specific time TJ8T is to be executed by the timer 339.
  • the method ML88 further includes the following steps: under the condition that the logical decision PE81 is affirmative, the processing unit 331 causes the timer 339 to perform the counting operation BC8T based on the obtained measurement time length value CL8T Under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1ET based on the control signal SC81, the processing unit 331 arrives at the specific time based on the counting operation BC8T TJ8T; and the processing unit 331 causes the output unit 338 to execute within the specific time TJ8T for causing the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the corresponding physical parameter range RY1ET The signal generates operation BY91.
  • the method ML88 further includes the following steps: the control target device 130 provides a sensing unit 334, wherein the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334 And the operating unit 397 executes the measurement application function FA81 related to the physical parameter target range RD1ET.
  • the measurement application function FA81 is configured to comply with the measurement application function specification GAL8 related to the physical parameter target range RD1ET.
  • the sensing unit 334 is configured to comply with the sensor specification FU11 related to the measurement value target range RN1T.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is related to the sensing signal generated by the sensing unit 334 to generate HF81.
  • the first measurement value VN81 is obtained by the processing unit 331 in a designated measurement value format HH81.
  • the specified measurement value format HH81 is characterized based on the specified number of bits UY81.
  • the sensing unit 334 senses the variable physical parameter QU1A to execute the sensing signal dependent on the sensor sensitivity YW81 to generate HF81, so The sensing signal generating HF81 is used to generate the first sensing signal SN81.
  • the corresponding physical parameter range RY1ET is represented by the corresponding measurement value range RX1T.
  • the range combination of the physical parameter target range RD1ET and the corresponding physical parameter range RY1ET is equal to the rated physical parameter range RD1E.
  • the measurement application function specification GAL8 includes the sensor specification FU11, a rated physical parameter range representation GA8E used to represent the rated physical parameter range RD1E, and a physical parameter candidate range representation GA8T used to represent the physical parameter target range RD1ET .
  • the range combination of the measurement value target range RN1T and the corresponding measurement value range RX1T is equal to the rated measurement value range RD1N.
  • the rated measurement value range RD1N represents the rated physical parameter range RD1E, based on the rated physical parameter range represents GA8E, the sensor measurement range represents GW8R, and the data encoding operation ZX81 used to convert the rated physical parameter range represents GA8E It is preset using the specified measurement value format HH81, and has the rated range limit value pair DD1A.
  • the rated range limit value pair DD1A is preset using the specified measurement value format HH81.
  • the measurement value target range RN1T is represented by a measurement value target range code EM1T, and has a target range limit value pair DN1T; whereby the measurement value target range code EM1T is configured to indicate the physical parameter target range RD1ET.
  • the measurement value target range code EM1T is preset based on the measurement application function specification GAL8.
  • the target range limit value pair DN1T includes the target range limit value DN17 of the measurement value target range RN1T and the target range limit value DN18 relative to the target range limit value DN17, and based on the physical parameter candidate range, it represents GA8T,
  • the sensor measurement range representation GW8R and the data encoding operation ZX82 for converting the physical parameter candidate range representation GA8T are preset using the specified measurement value format HH81.
  • the measurement value target range RN1T is preset using the specified measurement value format HH81 based on the physical parameter candidate range representation GA8T, the sensor measurement range representation GW8R, and the data encoding operation ZX82.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the measurement value target range code EM1T, and is received from the control device 212 .
  • the measurement application function specification GAL8 further includes a physical parameter representation GA8T1.
  • the physical parameter representation GA8T1 is used to represent the designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 further conveys the rated range limit value pair DD1A.
  • the method ML88 further includes the following steps: the storage unit 332 provides a storage space SU11, wherein the storage space SU11 has a memory location YM8T and a memory location YX8T different from the memory location YM8T, and The memory location YM8T and the memory location YX8T are both identified based on the measured value target range code EM1T; and the storage unit 332 stores the rated range limit value pair DD1A in the storage space SU11.
  • the method ML88 further includes the following steps: the storage unit 332 stores the target range limit value pair DN1T in the memory location YM8T; the storage unit 332 stores the control code CC1T in the memory location YX8T, wherein the control The code CC1T is preset based on the physical parameter representation GA8T1 and the data encoding operation ZX91 for converting the physical parameter representation GA8T1; and the processing unit 331 responds to the control signal SC81 from the control signal SC81 and One of the storage spaces SU11 obtains the rated range limit value pair DD1A. Both the target range limit value pair DN1T and the control code CC1T are stored by the storage unit 332 based on the preset measurement value target range code EM1T.
  • the step of performing the first check operation BV51 includes the following sub-steps: the processing unit 331 responds to the control signal SC81 and obtains the measurement value target range code EM1T from the control signal SC81; the processing unit 331 runs The data acquisition program ND5A executes the data acquisition AD5A using the acquired measurement value target range code EM1T to acquire the target range limit value pair DN1T, wherein the data acquisition AD5A is the result of the data acquisition operation AD51 and the data acquisition operation AD52 One of them, and the data acquisition program ND5A is constructed based on the measurement application function specification GAL8; and the processing unit 331 is based on the first measurement value VN81 and the obtained target range limit value pair DN1T Compare the data between CD51 and perform the first check operation BV51.
  • the data acquisition operation AD51 uses the storage unit 332 to access the target range limit value pair DN1T stored in the memory location YM8T based on the obtained measurement value target range code EM1T to obtain the target The range limit is DN1T.
  • the data acquisition operation AD52 obtains the target range limit value pair DN1T by performing a scientific calculation MZ51 using the obtained measured value target range code EM1T and the obtained rated range limit value pair DD1A.
  • the step of determining the physical parameter relationship KH81 to make the reasonable decision PW81 includes the following sub-steps: the processing unit 331 makes the first measurement value based on the first inspection operation BV51 Whether VN81 is a logical decision PB51 within the corresponding measurement value range RX1T; and the processing unit 331 determines the physical parameter relationship KH81 based on the logical decision PB51 to make the reasonable decision PW81.
  • the sub-step of determining the physical parameter relationship KH81 based on the logical decision PB51 includes sub-steps: under the condition that the logical decision PB51 is affirmative, the processing unit 331 recognizes that the physical parameter relationship KH81 is a physical parameter intersection relationship To make the reasonable decision PW81 to become affirmative.
  • the processing unit 331 compares the first measurement value VN81 with the accessed first measurement range limit data code DN1A to make the logical decision PB51 to become negative. Under the condition that the target range limit value DN17, the target range limit value DN18, and the first measurement value VN81 are equal, the processing unit 331 compares the first measurement value VN81 with all accessed values. The first measurement range limit data code DN1A is used to make the logical decision PB51 to become negative.
  • the method ML88 further includes the following steps: under the condition that the reasonable decision PW81 is affirmative, the processing unit 331 accesses the data stored in the memory location YX8T based on the obtained measured value target range code EM1T The control code CC1T; the processing unit 331 executes the signal generation control GY81 for the measurement application function FA81 based on the accessed control code CC1T to control the output unit 338; and the output unit 338 In response to the signal generation control GY81, execute the signal generation operation BY81 for the measurement application function FA81 to generate the function signal SG81, and the function signal SG81 is used to cause the variable physical parameter QU1A to enter the physical parameter Target range RD1ET.
  • control device 212 is an external device.
  • the method ML88 further includes the following steps: the processing unit 331 causes the function unit 335 to perform a specific function operation ZH81 related to the variable physical parameter QU1A through the output unit 338, wherein the specific function operation ZH81 It is used to cause the trigger event EQ81 to occur; and the control signal SC81 is generated in response to the trigger event EQ81 by using the control device 212.
  • the rated measurement value range RD1N is configured to have a plurality of different measurement value reference ranges RN11, RN12,...
  • the multiple different measurement value reference ranges RN11, RN12, ... have a total number of reference ranges NT81, which are respectively represented by multiple different measurement value reference range codes EM11, EM12, ..., and include the measurement value target range RN1T .
  • the total number of reference ranges NT81 is preset based on the measurement application function specification GAL8.
  • the multiple different measurement value reference range codes EM11, EM12, ... include the preset measurement value target range codes EM1T, and are all preset based on the measurement application function specification GAL8.
  • the control signal SC81 further conveys the total reference range number NT81.
  • the method ML88 further includes the step: in response to the control signal SC81, the processing unit 331 obtains the total reference range number NT81 from one of the control signal SC81 and the storage space SU11.
  • the scientific calculation MZ51 further uses the obtained total reference range number NT81.
  • the total number of reference ranges is greater than or equal to two.
  • the method ML88 further includes the step: the function unit 335 responds to the function signal SG81 to change the variable physical parameter QU1A from a specific physical parameter QU17 to a specific physical parameter QU18.
  • the specific physical parameter QU17 is within the corresponding physical parameter range RY1ET; and the specific physical parameter QU18 is within the physical parameter target range RD1ET.
  • the measurement application function specification GAL8 further includes a corresponding physical parameter range representation GA8TY for representing the corresponding physical parameter range RY1ET.
  • the corresponding measurement value range RX1T is based on the corresponding physical parameter range representing GA8TY, the sensor measurement range representing GW8R, and the data encoding operation ZX83 for converting the corresponding physical parameter range representing GA8TY to use the specified measurement value format HH81 It is preset.
  • variable physical parameter QU1A is further characterized based on the rated physical parameter range RD1E.
  • the rated physical parameter range RD1E includes a plurality of different physical parameter reference ranges RD1E1, RD1E2,....
  • the multiple different physical parameter reference ranges RD1E1, RD1E2,... include the physical parameter target range RD1ET.
  • the measured value target range RN1T is the first part of the rated measured value range RD1N.
  • the corresponding measurement value range RX1T is the second part of the rated measurement value range RD1N, adjacent to the measurement value target range RN1T, and complementary to the measurement value target range RN1T.
  • the rated measurement value range RD1N is equal to the range combination of the measurement value target range RN1T and the corresponding measurement value range RX1T complementary to the measurement value target range RN1T, and has the rated range limit value pair DD1A.
  • the rated range limit value pair DD1A includes the rated range limit value DD11 of the rated measurement value range RD1N and the rated range limit value DD12 relative to the rated range limit value DD11, and is expressed based on the rated physical parameter range GA8E, the sensor measurement range representation GW8R and the data encoding operation ZX81 are preset using the specified measurement value format HH81.
  • the measured value target range code EM1T is configured to be equal to an integer.
  • the rated range limit value DD12 is greater than the rated range limit value DD11.
  • the rated range limit value DD12 and the rated range limit value DD11 have a relative value VA11 with respect to the rated range limit value DD11.
  • the relative value VA11 is equal to the calculation result of the rated range limit value DD12 minus the rated range limit value DD11.
  • the target range limit value pair DN1T is predicted based on the rated range limit value DD11, the rated range limit value DD12, the integer, and the ratio of the relative value VA11 to the total reference range number NT81. Set.
  • the scientific calculation MZ51 uses one of the rated range limit value DD11, the rated range limit value DD12, the integer, the ratio, and any combination thereof.
  • the method ML88 further includes the step: the processing unit 331 performs data comparison CD52 between the first measured value VN81 and the obtained rated range limit value pair DD1A to check the first measured value
  • the step of determining the physical parameter relationship KH81 to make the reasonable decision PW81 includes sub-steps: the processing unit 331 makes the logical decision PB51 based on the first inspection operation BV51 and the second inspection operation BM51 .
  • the method ML88 further includes the following steps: after the signal generation control GY81 is executed by the processing unit 331 within the operation time TF81, the sensing unit 334 senses the variable physical The parameter QU1A is used to generate the second sensing signal SN82; the processing unit 331 responds to the second sensing signal SN82 within the designated time TG82 after the operating time TF81 to obtain the second sensing signal in the designated measurement value format HH81 Two measurement values VN82; and the processing unit 331 checks the difference between the second measurement value VN82 and the measurement value target range RN1T by comparing the second measurement value VN82 with the obtained target range limit value pair DN1T The mathematical relationship KV91 is used to make a logical decision PB91 whether the second measured value VN82 is within the measured value target range RN1T.
  • the method ML88 further includes the following steps: under the condition that the logical decision PB91 is affirmative, the processing unit 331 determines the physical parameter target where the variable physical parameter QU1A is currently located within the specified time TG82 Range RD1ET, and generate a positive operation report RL81, wherein the positive operation report RL81 represents the operation status EP81 of the variable physical parameter QU1A successfully entering the physical parameter target range RD1ET; and the processing unit 331 causes the output
  • the unit 338 outputs a control response signal SE81 that transmits the positive operation report RL81, whereby the control response signal SE81 is used to cause the control device 212 to obtain the positive operation report RL81.
  • the sensing unit 334 senses the variable physical parameter QU1A to perform a sensing signal generation HF82 that depends on the sensor sensitivity YW81.
  • the sensing signal generation HF82 is used to generate the second sensing signal SN82.
  • the processing unit 331 responds to the control signal SC81 by causing the output unit 338 to generate the control response signal SE81.
  • the method ML88 further includes the step: the storage unit 332 stores the variable physical parameter range code UN8A in the storage space SU11.
  • the variable physical parameter range code UN8A is equal to the specific measurement value range code EM14 selected from the multiple different measurement value reference range codes EM11, EM12,...
  • the specific measurement value range code EM14 indicates the specific physical parameter range RD1E4 previously determined by the processing unit 331 based on the sensing operation ZS81.
  • the specific physical parameter range RD1E4 is selected from the multiple different physical parameter reference ranges RD1E1, RD1E2,....
  • the sensing operation ZS81 performed by the sensing unit 334 is used to sense the variable physical parameter QU1A.
  • the specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.
  • the processing unit 331 obtains the specific measurement value range code EM14 before the input unit 337 receives the control signal SC81.
  • the processing unit 331 uses the storage unit 332 to assign the obtained specific measurement value range code EM14 to the variable physical parameter range code UN8A.
  • the specific measurement value range code EM14 represents a specific measurement value range configured to represent the specific physical parameter range RD1E4.
  • the specific measurement value range is preset based on one of the sensor measurement range representation GW8R and the sensor specification FU11 in the specified measurement value format HH81.
  • the sensing unit 334 performs sensing signal generation dependent on the sensor sensitivity YW81 by performing the sensing operation ZS81 to generate a sensing signal.
  • the processing unit 331 Before the input unit 337 receives the control signal SC81, the processing unit 331 receives the sensing signal, responds to the sensing signal to obtain a specific measurement value in the specified measurement value format HH81, and executes A specific check operation for checking the mathematical relationship between the specific measurement value and the specific measurement value range. Under the condition that the processing unit 331 determines the specific physical parameter range RD1E4 in which the variable physical parameter QU1A is located based on the specific checking operation, the processing unit 331 uses the storage unit 332 to obtain The specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.
  • the processing unit 331 determines whether the processing unit 331 uses the storage unit 332 to change the variable physical parameter range code UN8A in response to a specific sensing operation for sensing the variable physical parameter QU1A. For example, the specific sensing operation is performed by the sensing unit 334.
  • the method ML88 further includes the step of: when the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the variable physical parameter QU1A is currently in the physical parameter target range RD1ET by doing Under the condition that the logic decision PB91 is determined by the processing unit 331, the processing unit 331 is based on the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement
  • the code difference DF81 between the value target range codes EM1T uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.
  • the method ML88 further includes the following steps: when the control signal SC81 is received by the input unit 337, the output unit 338 displays a status indicator LB81, wherein the status indicator LB81 is used to indicate the variable physical parameter QU1A Is configured in the specific state XJ81 within the specific physical parameter range RD1E4; and when the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the variable physical parameter QU1A is currently in Under the condition that the physical parameter target range RD1ET is determined by the processing unit 331 by making the logical decision PB91, the processing unit 331 causes the output unit 338 to change the status based on the code difference DF81
  • the indication LB81 changes to the status indication LB82.
  • the state indicator LB82 is used to indicate that the variable physical parameter QU1A is configured in the specific state XJ82 within the physical parameter target range RD1ET.
  • control signal SC81 is one of the electrical signal SP81 and the optical signal SQ81.
  • the method ML88 further includes the following steps: under the condition that the control signal SC81 is the electrical signal SP81, the processing unit 331 obtains the control information CG81 from the electrical signal SP81 that transmits the control information CG81, wherein The control information CG81 includes the measurement value target range code EM1T; and under the condition that the control signal SC81 is the optical signal SQ81, the input unit 337 senses the encoded image transmitted by the optical signal SQ81 FY81 is used to determine the encoded data DY81, and decode the encoded data DY81 to cause the processing unit 331 to obtain the control information CG81.
  • the coded image FY81 represents the control information CG81.
  • the method ML88 further includes the following steps: under the condition that the variable physical parameter QU1A is configured within the physical parameter target range RD1ET based on the control signal SC81, the input unit 337 receives a user input operation BQ81 The processing unit 331 responds to the user input operation BQ81 to determine a specific input code UW81, wherein the specific input code UW81 is selected from the multiple different measurement value reference range codes EM11, EM12, ...; and in the specific Under the condition that the input code UW81 is different from the preset measurement value target range code EM1T, the processing unit 331 is based on the variable physical parameter range code UN8A and the variable physical parameter range code equal to the obtained measurement value target range code EM1T.
  • the code difference DX81 between the specific input codes UW81 causes the variable physical parameter QU1A to leave the physical parameter target range RD1ET through the output unit 338 to enter the corresponding physical parameter range RY1ET.
  • the step of sensing the variable physical parameter QU1A includes a sub-step: the sensing unit 334 senses the variable physical parameter QU1A in a restrained condition FR81 to generate the first sensing signal SN81.
  • the constraint condition FR81 is that the variable physical parameter QU1A is equal to the specific physical parameter QU15 included in the rated physical parameter range RD1E.
  • the step of obtaining the first measurement value VN81 in response to the first sensing signal SN81 includes sub-steps: the processing unit 331 estimates the specific physical parameter QU15 based on the first sensing signal SN81 to obtain the The first measured value VN81.
  • the first measurement value VN81 is identified as the allowable value VG51 outside the measurement value target range RN1T and within the rated measurement value range RD1N based on the data comparison CD51 and the data comparison CD52 Under the condition of, the logical decision PB51 is made by the processing unit 331 to become affirmative. Since the variable physical parameter QU1A in the constraint condition FR81 is outside the physical parameter target range RD1ET and within the rated physical parameter range RD1E, the processing unit 331 compares CD51 with The data compares CD52 to identify that the first measurement value VN81 is the allowable value VG51 within the corresponding measurement value range RX1T.
  • the sensing unit 334 is characterized based on the sensor sensitivity YW81 related to the sensing signal generation HF81, and is configured to comply with the sensor specification FU11.
  • the sensor specification FU11 includes the sensor sensitivity indication GW81 for indicating the sensor sensitivity YW81, and the sensor measurement range indication GW8R for indicating the sensor measurement range RB8E.
  • the rated physical parameter range RD1E is configured to be the same as the sensor measurement range RB8E, or configured to be a part of the sensor measurement range RB8E.
  • the sensor measurement range RB8E is related to physical parameter sensing performed by the sensing unit 334.
  • the sensor measurement range indicates that the GW8R is provided based on the first preset measurement unit.
  • the first preset measurement unit is one of a metric measurement unit and an imperial measurement unit.
  • the rated measurement value range RD1N and the rated range limit value pair DD1A are both used based on the rated physical parameter range representing GA8E, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the data encoding operation ZX81.
  • the specified measurement value format HH81 is preset.
  • the measurement value target range RN1T and the target range limit value pair DN1T are used based on the physical parameter candidate range representing GA8T, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the data encoding operation ZX82.
  • the specified measurement value format HH81 is preset.
  • the corresponding measurement value range RX1T is predicted based on the corresponding physical parameter range representing GA8TY, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the data encoding operation ZX83 using the specified measurement value format HH81.
  • the rated physical parameter range represents GA8E, the physical parameter represents GA8T1, the physical parameter candidate range represents GA8T, and the corresponding physical parameter range represents GA8TY are all provided based on a second preset measurement unit.
  • the second preset measurement unit is one of a metric measurement unit and an English measurement unit, and is the same as or different from the first preset measurement unit.
  • the corresponding physical parameter range representing GA8TY is derived based on the rated physical parameter range representing GA8E and the physical parameter candidate range representing GA8T.
  • the variable physical parameter QU1A is further characterized based on the sensor measurement range RB8E.
  • the sensor measurement range represents GW8R
  • the rated physical parameter range represents GA8E
  • the physical parameter candidate range represents GA8T
  • the corresponding physical parameter range represents GA8TY
  • the physical parameter represents GA8T1 are all decimal data types.
  • the first measurement value VN81, the second measurement value VN82, the rated range limit value pair DD1A, the target range limit value pair DN1T, and the control code CC1T all belong to the binary data type and are all applicable In computer processing.
  • the sensor specification FU11 and the measurement application function specification GAL8 are both preset.
  • the method ML88 further includes the following steps: before the control signal SC81 is received by the input unit 337, the input unit 337 receives the preset target range limit value pair DN1T and The write request information WN8T of the memory address AM8T, wherein the memory location YM8T is identified based on the memory address AM8T, and the memory address AM8T is preset based on the preset measurement value target range code EM1T; And in response to the write request information WN8T, the processing unit 331 uses the storage unit 332 to store the target range limit value pair DN1T of the write request information WN8T in the memory location YM8T.
  • the method ML88 further includes the following steps: before the control signal SC81 is received by the input unit 337, the input unit 337 receives a write request message WC8T including the preset control code CC1T and a memory address AX8T , Wherein the memory location YX8T is identified based on the memory address AX8T, and the memory address AX8T is preset based on the preset measurement value target range code EM1T; and the processing unit 331 responds to the Write request information WC8T, use the storage unit 332 to store the control code CC1T of the write request information WC8T in the memory location YX8T.
  • FIG. 41 is a schematic diagram of an implementation structure 9517 of the control system 861 shown in FIG. 1.
  • the implementation structure 9517 includes the control device 212 and the control target device 130.
  • the control target device 130 includes the operation unit 397, the sensing unit 334, the function unit 335, and the storage unit 332.
  • the operation unit 397 includes the processing unit 331, the input unit 337 and the output unit 338.
  • the input unit 337, the output unit 338, the sensing unit 334, the function unit 335, and the storage unit 332 are all controlled by the processing unit 331.
  • the processing unit 331 processes the received first sensing signal SN81 to obtain a measurement value sequence JN81 including the first measurement value VN81.
  • the processing unit 331 compares the measurement value sequence JN81 with the obtained target range limit value pair DN1T to perform a function for checking the mathematical relationship KV55 between the measurement value sequence JN81 and the measurement value target range RN1T.
  • Check operation BV55 The processing unit 331 compares the measurement value sequence JN81 with the obtained rated range limit value pair DD1A to perform a check for the mathematical relationship KM55 between the measurement value sequence JN81 and the rated measurement value range RD1N.
  • Check operation BM55 The processing unit 331 makes the logical decision PB51 based on the inspection operation BV55 and the inspection operation BM55.
  • the inspection operation BV55 and the inspection operation BM55 respectively include the first inspection operation BV51 and the second inspection operation BM51.
  • the processing unit 331 Based on the data comparison CD51 and the data comparison CD52, the processing unit 331 recognizes that the first measurement value VN81 is outside the measurement value target range RN1T and within the rated measurement value range RD1N Under the condition of the allowable value VG51, the processing unit 331 makes the logical decision PB51 to become affirmative. Alternatively, under the condition that the processing unit 331 recognizes that the second mathematical relationship KV51 is a numerical non-intersection relationship and the third mathematical relationship KM51 is a numerical intersection relationship KN81, the processing unit 331 makes the logical decision PB51 to be sure.
  • the processing unit 331 determines the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located, and causes the variable physical parameter QU1A to be maintained at the physical parameter. Within the parameter target range RD1ET.
  • the processing unit 331 performs the first inspection operation BV51 based on the data comparison CD51 between the first measurement value VN81 and the obtained target range limit value pair DN1T, based on the first inspection operation BV51 makes the logical decision PB51 whether the first measurement value VN81 is within the corresponding measurement value range RX1T, and determines the variable physical parameter QU1A under the condition that the logical decision PB51 is affirmative The current corresponding physical parameter range RY1ET. For example, under the condition that the logical decision PB51 is affirmative, the processing unit 331 determines the current physical parameter status of the variable physical parameter QU1A within the corresponding physical parameter range RY1ET, and thereby identifies the available physical parameter.
  • the physical parameter relationship KH81 between the variable physical parameter QU1A and the corresponding physical parameter range RY1ET is the current physical parameter intersection relationship of the variable physical parameter QU1A within the corresponding physical parameter range RY1ET.
  • the physical parameter relationship KC81 is equal to the physical parameter relationship KH81.
  • FIG. 42 is a schematic diagram of an implementation structure 9601 of the control system 861 shown in FIG. 1.
  • the implementation structure 9601 includes the control target device 130 and the control device 212.
  • the control target device 130 is used to control a functional unit 335 with a variable physical parameter QU1A.
  • the variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET and a physical parameter application range RD1EJ different from the physical parameter target range RD1ET.
  • One of the physical parameter target range RD1ET and the physical parameter application range RD1EJ is represented by a measurement value indication range RN1G.
  • the measurement value indication range RN1G has an indication range limit value pair DN1G.
  • the control target device 130 includes a sensing unit 334 and an operating unit 397.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a first sensing signal SN81.
  • the operating unit 397 is coupled to the sensing unit 334. Under the condition that the operating unit 397 receives a control signal SC81 that functions to indicate the physical parameter target range RD1ET, the operating unit 397 obtains a first measurement value VN81 in response to the first sensing signal SN81 .
  • the operating unit 397 determines the physical parameter application that the variable physical parameter QU1A is currently in by checking a first mathematical relationship KG81 between the first measurement value VN81 and the measurement value indication range RN1G Under the condition of the range RD1EJ, the operating unit 397 transmits a function signal SG81 to the function unit 335 based on the control signal SC81.
  • the function signal SG81 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.
  • the control signal SC81 conveys the indicated range limit value pair DN1G.
  • the operating unit 397 obtains the delivered indication range limit value pair DN1G from the control signal SC81, and checks the indication range limit value pair DN1G by comparing the first measurement value VN81 with the obtained indication range limit value pair DN1G State the first mathematical relationship KG81.
  • the function signal SG81 is used by the function unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET from the physical parameter application range RD1EJ.
  • the sensing unit 334 is configured to comply with a sensor specification FU11.
  • the indication range limit value pair DN1G is preset based on the sensor specification FU11. For example, the indicated range limit value pair DN1G is equal to one of the application range limit value pair DN1L and the target range limit value pair DN1T.
  • control signal SC81 further conveys a control code CC1T.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the operating unit 397 obtains the delivered control code CC1T from the control signal SC81. Under the condition that the operating unit 397 determines the physical parameter application range RD1EJ that the variable physical parameter QU1A is currently in by checking the first mathematical relationship KG81, the operating unit 397 is based on the obtained
  • the control code CC1T transmits the function signal SG81 to the function unit 335.
  • FIG. 43 is a schematic diagram of an implementation structure 9602 of the control system 861 shown in FIG. 1.
  • the implementation structure 9602 includes the control target device 130 and the control device 212.
  • the control target device 130 is used to control a functional unit 335 with a variable physical parameter QU1A.
  • the variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET and a physical parameter application range RD1EJ different from the physical parameter target range RD1ET.
  • One of the physical parameter target range RD1ET and the physical parameter application range RD1EJ is represented by a measurement value indication range RN1G.
  • the control target device 130 includes a sensing unit 334 and an operating unit 397.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a first sensing signal SN81.
  • the operating unit 397 is coupled to the sensing unit 334. Under the condition that the operating unit 397 receives from the control device 212 a control signal SC81 that functions to indicate the physical parameter target range RD1ET, the operating unit 397 responds to the first sensing signal SN81 to obtain A first measured value VN81.
  • the operating unit 397 determines the physical parameter application that the variable physical parameter QU1A is currently in by checking a first mathematical relationship KG81 between the first measurement value VN81 and the measurement value indication range RN1G Under the condition of the range RD1EJ, the operating unit 397 transmits a function signal SG81 to the function unit 335 based on the control signal SC81.
  • the control device 212 is one of a mobile device and a remote controller. Under the condition that the control device 212 is the mobile device, the operation unit 397 receives the control signal SC81 from the control device 212 via a wireless link LK81, or the control signal SC81 is a radio signal. Under the condition that the control device 212 is the remote controller, the control signal SC81 is an optical signal SQ81.
  • the function signal SG81 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET from the physical parameter application range RD1EJ.
  • control target device 130 is further configured to control a functional unit 735 having a variable physical parameter QU2A, and further includes a multiplexer 363 coupled to the operation unit 397.
  • the multiplexer 363 is coupled to the functional unit 335 and the functional unit 735, and is controlled by the operating unit 397.
  • the operating unit 397 responds to the control signal SC81 to provide a control signal SD81 for controlling the multiplexer 363 to the multiplexer 363.
  • the multiplexer 363 responds to the control signal SD81 to cause the sensing unit 334 to perform a sensing for sensing the variable physical parameter QU1A through the multiplexer 363 within an operating time TX81. Operate ZQ81.
  • the sensing unit 334 provides the first sensing signal SN81 to the operating unit 397 by performing the sensing operation ZQ81.
  • the operating unit 397 responds to the control signal SC81 to provide a control signal SD82 for controlling the multiplexer 363 to the multiplexer 363.
  • the multiplexer 363 responds to the control signal SD82 to enable the sensing unit 334 to perform a sensing for sensing the variable physical parameter QU2A through the multiplexer 363 within an operating time TX82 Operate ZQ82.
  • the sensing unit 334 provides the sensing signal SN91 to the operating unit 397 by performing the sensing operation ZQ82.
  • the operating time TX82 is different from the operating time TX81.
  • the operating unit 397 transmits a function signal SG97 for controlling the variable physical parameter QU2A to the function unit 735 based on the sensing signal SN91 in a specific situation YA82.
  • FIG. 44 is a schematic diagram of an implementation structure 9603 of the control system 861 shown in FIG. 1.
  • the implementation structure 9603 includes the control target device 130 and the control device 212.
  • the control target device 130 is used to control a functional unit 335 with a variable physical parameter QU1A.
  • the variable physical parameter QU1A is based on a physical parameter target range RD1ET, a physical parameter application range RD1EJ different from the physical parameter target range RD1ET, and a specific physical parameter range RD2E2 different from the physical parameter target range RD1ET. Be characterized.
  • One of the physical parameter target range RD1ET and the physical parameter application range RD1EJ is represented by a measurement value indication range RN1G.
  • the control target device 130 includes a sensing unit 334 and an operating unit 397.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a first sensing signal SN81.
  • the operating unit 397 is coupled to the sensing unit 334 and includes a timer 339. Under the condition that the operating unit 397 receives a control signal SC81 that functions to indicate the physical parameter target range RD1ET, the operating unit 397 obtains a first measurement value VN81 in response to the first sensing signal SN81 .
  • the operating unit 397 determines the physical parameter application that the variable physical parameter QU1A is currently in by checking a first mathematical relationship KG81 between the first measurement value VN81 and the measurement value indication range RN1G Under the condition of the range RD1EJ, the operating unit 397 transmits a function signal SG81 to the function unit 335 based on the control signal SC81.
  • the function signal SG81 is used by the function unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET from the physical parameter application range RD1EJ.
  • the operating unit 397 determines the physical parameter application range RD1EJ that the variable physical parameter QU1A is currently in by checking the first mathematical relationship KG81
  • the operating unit 397 uses the timing
  • the device 339 arrives at a specific time TJ8T, and transmits a function signal SG91 to the functional unit 335 within the specific time TJ8T.
  • the function signal SG91 is used by the function unit 335 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD2E2.
  • the specific physical parameter range RD2E2 is the physical parameter application range RD1EJ.
  • control target device 130 is further used to control a functional unit 735 having a variable physical parameter QU2A.
  • the functional unit 335 and the functional unit 735 are respectively located in different spatial positions.
  • the functional unit 335 is identified by a functional unit identifier HA2T.
  • the functional unit 735 is identified by a functional unit identifier HA22.
  • the operating unit 397 includes an output terminal 338P and an output terminal 338Q.
  • the output terminal 338P is coupled to the functional unit 335.
  • the output terminal 338Q is coupled to the functional unit 735.
  • the output terminal 338P and the output terminal 338Q are respectively located at different spatial positions.
  • the operating unit 397 selects the functional unit 335 for control in response to the control signal SC81. Under the condition that the operating unit 397 determines the physical parameter application range RD1EJ that the variable physical parameter QU1A is currently in by checking the first mathematical relationship KG81, the operating unit 397 is based on the control signal SC81 The output terminal 338P transmits the function signal SG81 to the function unit 335.
  • the operating unit 397 selects the functional unit 735 for control in response to the control signal SC81, In a specific case YD82, based on the control signal SC81, the output terminal 338Q transmits a function signal SG97 for controlling the variable physical parameter QU2A to the function unit 735.
  • FIG. 45 is a schematic diagram of an implementation structure 9604 of the control system 861 shown in FIG. 1.
  • the implementation structure 9604 includes the control target device 130 and the control device 212.
  • the control target device 130 is used to control a functional unit 335 with a variable physical parameter QU1A.
  • the variable physical parameter QU1A is based on a physical parameter target range RD1ET, a physical parameter application range RD1EJ different from the physical parameter target range RD1ET, and a specific physical parameter range RD1E5 different from the physical parameter target range RD1ET. Be characterized.
  • One of the physical parameter target range RD1ET and the physical parameter application range RD1EJ is represented by a measurement value indication range RN1G.
  • the control target device 130 includes a sensing unit 334 and an operating unit 397.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a first sensing signal SN81.
  • the operating unit 397 is coupled to the sensing unit 334 and includes a button 3801. Under the condition that the operating unit 397 receives a control signal SC81 that functions to indicate the physical parameter target range RD1ET, the operating unit 397 obtains a first measurement value VN81 in response to the first sensing signal SN81 .
  • the operating unit 397 determines the physical parameter application that the variable physical parameter QU1A is currently in by checking a first mathematical relationship KG81 between the first measurement value VN81 and the measurement value indication range RN1G Under the condition of the range RD1EJ, the operating unit 397 transmits a function signal SG81 to the function unit 335 based on the control signal SC81.
  • the function signal SG81 is used by the function unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET from the physical parameter application range RD1EJ.
  • the operation unit 397 receives a user input operation BQ81 using the button 3801.
  • the operation unit 397 transmits a second function signal SG82 to the function unit 335 in response to the user input operation BQ81.
  • the second functional signal SG82 is used by the functional unit 335 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5.
  • the specific physical parameter range RD1E5 is the physical parameter application range RD1EJ.
  • the variable physical parameter QU1A is characterized based on a specific physical parameter range RD1E6 that is different from the specific physical parameter range RD1E5.
  • the operation unit 397 receives a user input operation BQ82 using the button 3801.
  • the operation unit 397 transmits a function signal SG83 to the function unit 335 in response to the user input operation BQ82.
  • the function signal SG83 is used by the function unit 335 to cause the variable physical parameter QU1A to leave the specific physical parameter range RD1E5 to enter the specific physical parameter range RD1E6.
  • the specific physical parameter range RD1E6 is the physical parameter target range RD1ET.
  • FIG. 46 is a schematic diagram of an implementation structure 9605 of the control system 861 shown in FIG. 1.
  • the implementation structure 9605 includes the control target device 130 and the control device 212.
  • the control target device 130 is used to control a functional unit 335 with a variable physical parameter QU1A.
  • the variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET and a physical parameter application range RD1EJ different from the physical parameter target range RD1ET.
  • One of the physical parameter target range RD1ET and the physical parameter application range RD1EJ is represented by a measurement value indication range RN1G.
  • the control target device 130 includes a sensing unit 334 and an operating unit 397.
  • the sensing unit 334 senses the variable physical parameter QU1A to generate a first sensing signal SN81.
  • the operating unit 397 is coupled to the sensing unit 334. Under the condition that the operating unit 397 receives from the control device 212 a control signal SC81 that functions to indicate the physical parameter target range RD1ET, the operating unit 397 responds to the first sensing signal SN81 to obtain A first measured value VN81.
  • the operating unit 397 determines the physical parameter application that the variable physical parameter QU1A is currently in by checking a first mathematical relationship KG81 between the first measurement value VN81 and the measurement value indication range RN1G Under the condition of the range RD1EJ, the operating unit 397 transmits a function signal SG81 to the function unit 335 based on the control signal SC81.
  • the function signal SG81 is used by the function unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET from the physical parameter application range RD1EJ.
  • the physical parameter target range RD1ET is represented by a measured value target range RN1T having a target range limit value pair DN1T.
  • the control signal SC81 conveys the target range limit value pair DN1T.
  • the operating unit 397 obtains the delivered target range limit value pair DN1T from the control signal SC81, and obtains a second measurement value VN82 in response to the second sensing signal SN82. Under the condition that the operating unit 397 determines the target range of the physical parameter in which the variable physical parameter is currently located by comparing the second measured value VN82 with the obtained target range limit value pair DN1T, The operating unit 397 transmits a control response signal SE81 for delivering the second measured value VN82 to the control device 212. The second measured value VN82 is used by the control device 212 to execute a specific actual operation BJ81 related to the variable physical parameter QU1A.
  • FIG. 47 is a schematic diagram of an implementation structure 8010 of the control system 861 shown in FIG. 1.
  • the implementation structure 8010 includes a control target device 130 and a control device 212 for controlling the control target device 130.
  • the control target device 130 has a variable physical parameter QU1A.
  • the variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET represented by a measured value target range RN1T.
  • the control device 212 for controlling the variable physical parameter QU1A includes a sensing unit 260 and an operating unit 297.
  • the sensing unit 260 senses a variable physical parameter QP1A to generate a sensing signal SM81.
  • the variable physical parameter QP1A is characterized based on a physical parameter application range RC1EL represented by a measurement value application range RM1L.
  • the operating unit 297 is coupled to the sensing unit 260. When a trigger event EQ81 occurs, the operating unit 297 responds to the sensing signal SM81 to obtain a measurement value VM81.
  • the operating unit 297 determines the condition of the physical parameter application range RC1EL that the variable physical parameter QP1A is currently in by checking a mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L Next, the operating unit 297 generates a control signal SC81 that functions to indicate the measurement value target range RN1T.
  • the operating unit 297 determines the physical parameter application range in which the variable physical parameter QP1A is currently located by checking the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L Under the condition of RC1EL, the operation unit 297 generates the control signal SC81 that functions to indicate the physical parameter target range RD1ET.
  • the measurement value VM81 is a physical parameter measurement value.
  • FIG. 48 is a schematic diagram of an implementation structure 8011 of the control system 861 shown in FIG. 1.
  • the implementation structure 8011 includes the control device 212 and the control target device 130.
  • the sensing unit 260 is configured to comply with a sensor specification FQ11 related to the measurement value application range RM1L.
  • the sensor specification FQ11 includes a sensor measurement range representation GQ8R for representing a sensor measurement range RA8E, and a sensor sensitivity representation GQ81 for representing a sensor sensitivity YQ81.
  • the sensor sensitivity YQ81 is related to a sensing signal generated by the sensing unit 260 to generate HE81.
  • the variable physical parameter QU1A is further controlled by a sensing unit 334.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value target range RN1T.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is the same as or different from the sensor sensitivity YQ81.
  • the measurement value VM81 is obtained by the operation unit 297 in a designated measurement value format HQ81.
  • the variable physical parameter QP1A is further characterized based on a physical parameter candidate range RC1E2 that is different from the physical parameter application range RC1EL.
  • the measurement value application range RM1L and a measurement value candidate range RM12 representing the physical parameter candidate range RC1E2 are both based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11 to use the specified measurement
  • the value format HQ81 is preset.
  • the measurement value target range RN1T is preset based on one of the sensor measurement range indication GW8R and the sensor specification FU11, and has a target range limit value pair DN1T.
  • the variable physical parameter QU1A is related to a variable time length LF8A.
  • the variable time length LF8A is characterized based on a reference time length LJ8T.
  • the reference time length LJ8T is represented by a measured time length value CL8T.
  • the control signal SC81 conveys the target range limit value pair DN1T, the measurement time length value CL8T, and a control code CC1T, and is used to cause the variable physical parameter QU1A to be within the physical parameter target range RD1ET.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the target range limit value pair DN1T.
  • the measurement value application range RM1L has an application range limit value pair DM1L.
  • the application range limit value is preset for DM1L.
  • the operating unit 297 obtains the application range limit value pair DM1L in response to the trigger event EQ81, and checks the mathematical relationship KA81 by comparing the measurement value VM81 with the obtained application range limit value pair DM1L .
  • the measurement value candidate range RM12 has a candidate range limit value pair DM1B.
  • the candidate range limit value is preset for DM1B.
  • the operating unit 297 responds to the trigger event EQ81 to obtain the preset candidate range limit value pair DM1B. For example, when the trigger event EQ81 occurs, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81.
  • the operation unit 297 includes a trigger application unit 281.
  • the trigger event EQ81 is related to the trigger application unit 281.
  • the trigger application unit 281 generates an operation request signal SX81 in response to the trigger event EQ81.
  • the operation unit 297 obtains the measurement value VM81 based on the sensing signal SM81 in response to the operation request signal SX81, and obtains the application range limit value pair DM1L in response to the operation request signal SX81.
  • the physical parameter application range RC1EL is configured to correspond to a corresponding physical parameter range RW1EL outside the physical parameter application range RC1EL.
  • the operating unit 297 determines the corresponding physical parameter range RW1EL in which the variable physical parameter QP1A is currently located by checking the mathematical relationship KA81, the operating unit 297 executes the measurement value VM81 and the corresponding physical parameter range RW1EL The obtained limit value of the reference range compares CA91 with a data between DM1B.
  • the operating unit 297 determines the physical parameter candidate range RC1E2 in which the variable physical parameter QP1A is currently located based on the data comparison CA91, the operating unit 297 generates a signal for controlling the variable physical parameter A control signal SC82 of QU1A, the control signal SC82 is different from the control signal SC81.
  • the operating unit 297 determines the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located by checking the mathematical relationship KA81, the operating unit 297 is configured to obtain the target The range limit value pair DN1T, the measurement time length value CL8T, and a control data code CK8T of the control code CC1T, based on the control data code CK8T to execute a signal generation control GS81 for generating the control signal SC81, And execute a data storage control operation GT81, which is used to cause a physical parameter application range code UM8L representing the determined physical parameter application range RC1EL to be recorded.
  • variable physical parameter QU1A and the variable physical parameter QP1A belong to a physical parameter type TU11 and a physical parameter type TP11, respectively.
  • the physical parameter type TU11 is the same as or different from the physical parameter type TP11.
  • the data storage control operation GT81 is a guarantee operation.
  • FIG. 49 is a schematic diagram of an implementation structure 8012 of the control system 861 shown in FIG. 1.
  • FIG. 50 is a schematic diagram of an implementation structure 8013 of the control system 861 shown in FIG. 1.
  • FIG. 51 is a schematic diagram of an implementation structure 8014 of the control system 861 shown in FIG. 1.
  • FIG. 52 is a schematic diagram of an implementation structure 8015 of the control system 861 shown in FIG. 1.
  • FIG. 53 is a schematic diagram of an implementation structure 8016 of the control system 861 shown in FIG. 1.
  • each of the implementation structure 8012, the implementation structure 8013, the implementation structure 8014, the implementation structure 8015, and the implementation structure 8016 The structure includes the control device 212 and the control target device 130.
  • variable physical parameter QU1A and the variable physical parameter QP1A are respectively formed at an actual position LD81 and an actual position LC81 different from the actual position LD81.
  • the operating unit 297 is configured to execute a measurement application function FB81 related to the physical parameter application range RC1EL, and includes a processing unit 230 coupled to the sensing unit 260, and a processing unit 230 coupled to the processing unit 230 One output unit 240.
  • the measurement application function FB81 is configured to comply with a measurement application function specification GBL8 related to the physical parameter application range RC1EL.
  • the measurement application function FB81 is a trigger application function.
  • the measurement application function specification GBL8 is a trigger application function specification.
  • the sensing unit 260 is configured to comply with a sensor specification FQ11 related to the measurement value application range RM1L.
  • the sensor specification FQ11 includes a sensor measurement range representation GQ8R for representing a sensor measurement range RA8E, and a sensor sensitivity representation GQ81 for representing a sensor sensitivity YQ81.
  • the sensor sensitivity YQ81 is related to a sensing signal generated by the sensing unit 260 to generate HE81.
  • the sensing unit 260 senses the variable physical parameter QP1A to perform the sensing signal generation HE81 dependent on the sensor sensitivity YQ81, and the sensing signal generation HE81 is used to generate the sensing signal SM81.
  • the variable physical parameter QU1A is further controlled by a sensing unit 334.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value target range RN1T.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is the same as or different from the sensor sensitivity YQ81.
  • the processing unit 230 responds to the sensing signal SM81 to obtain the measurement value VM81 in a designated measurement value format HQ81.
  • the specified measurement value format HQ81 is characterized based on a specified number of bits UX81.
  • the processing unit 230 determines the physical parameter application range RC1EL, the processing unit 230 causes the output unit 240 to generate the control signal SC81.
  • the variable physical parameter QP1A is further characterized based on a rated physical parameter range RC1E.
  • the rated physical parameter range RC1E is represented by a rated measurement value range RC1N, and includes a plurality of different physical parameter reference ranges RC1E1, RC1E2, ... represented by a plurality of different measurement value reference ranges RM11, RM12, ... .
  • the multiple different physical parameter reference ranges RC1E1, RC1E2,... include the physical parameter application range RC1EL.
  • the measurement application function specification GBL8 includes the sensor specification FQ11, a rated physical parameter range representation GB8E for representing the rated physical parameter range RC1E, and a physical parameter application range representing the physical parameter application range RC1EL Represents GB8L.
  • the physical parameter target range RD1ET is represented by a physical parameter candidate range representation GA8T.
  • the physical parameter candidate range indicates that GA8T is preset.
  • the rated measurement value range RC1N is based on the rated physical parameter range representing GB8E, the sensor measurement range representing GQ8R, and a data encoding operation ZR81 for converting the rated physical parameter range representing GB8E to use the specified measurement value format HQ81 is preset, has a rated range limit value pair DC1A, and includes the multiple different measurement value reference ranges RM11, RM12, ... represented by multiple different measurement value reference range codes EH11, EH12, ....
  • the rated range limit value pair DC1A is preset using the specified measurement value format HQ81.
  • the rated measurement value range RC1N and the rated range limit value pair DC1A are preset based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11 in the designated measurement value format HQ81 .
  • the multiple different measurement value reference ranges RM11, RM12, ... include the measurement value application range RM1L.
  • the measurement value application range RM1L is represented by a measurement value application range code EH1L included in the plurality of different measurement value reference range codes EH11, EH12, ..., and has an application range limit value pair DM1L; thereby
  • the measurement value application range code EH1L is configured to indicate the physical parameter application range RC1EL.
  • the multiple different measurement value reference range codes EH11, EH12,... are preset based on the measurement application function specification GBL8.
  • the application range limit value pair DM1L includes an application range limit value DM15 of the measurement value application range RM1L and an application range limit value DM16 relative to the application range limit value DM15, and is expressed based on the physical parameter application range GB8L, the sensor measurement range representation GQ8R, and a data encoding operation ZR82 for converting the physical parameter application range representation GB8L are preset using the specified measurement value format HQ81.
  • the measurement value application range RM1L is preset with the specified measurement value format HQ81 based on the physical parameter application range representation GB8L, the sensor measurement range representation GQ8R, and the data encoding operation ZR82.
  • the measurement value target range RN1T is preset based on the physical parameter candidate range representation GA8T, the sensor measurement range representation GW8R, and a data encoding operation ZX83 for converting the physical parameter candidate range representation GA8T.
  • the control device 212 further includes a storage unit 250 coupled to the processing unit 230 and includes a trigger application unit 281 coupled to the processing unit 230.
  • the storage unit 250 stores the preset rated range limit value pair DC1A and a variable physical parameter range code UM8A.
  • the measured value target range RN1T has a target range limit value pair DN1T.
  • the variable physical parameter range code UM8A is equal to the reference range codes EH11, EH12, and EH11 selected from the multiple different measurement values. ...
  • a specific measurement value range code EH14 indicates a specific physical parameter range RC1E4 previously determined by the processing unit 230 based on a sensing operation ZM81.
  • the specific physical parameter range RC1E4 is selected from the multiple different physical parameter reference ranges RC1E1, RC1E2,....
  • the sensing operation ZM81 performed by the sensing unit 260 is used to sense the variable physical parameter QP1A.
  • the specific measurement value range code EH14 is assigned to the variable physical parameter range code UM8A.
  • the processing unit 230 obtains the specific measurement value range code EH14. Under the condition that the processing unit 230 determines the specific physical parameter range RC1E4 based on the sensing operation ZM81 before the trigger event EQ81 occurs, the processing unit 230 uses the storage unit 250 to store all the parameters.
  • the obtained specific measurement value range code EH14 is assigned to the variable physical parameter range code UM8A.
  • the specific measurement value range code EH14 represents a specific measurement value range configured to represent the specific physical parameter range RC1E4.
  • the specific measurement value range is preset based on one of the sensor measurement range indication GQ8R and the sensor specification FQ11 in the specified measurement value format HQ81.
  • the sensing unit 260 generates a sensing signal dependent on the sensor sensitivity YQ81 by performing the sensing operation ZM81 to generate a sensing signal.
  • the processing unit 230 receives the sensing signal, and responds to the sensing signal to obtain a specific measurement value in the specified measurement value format HQ81, and executes a method for checking the specific measurement value.
  • the processing unit 230 uses the storage unit 250 to store the The obtained specific measurement value range code EH14 is assigned to the variable physical parameter range code UM8A.
  • the processing unit 230 determines whether the processing unit 230 uses the storage unit 250 to change the variable physical parameter range code UM8A in response to a specific sensing operation for sensing the variable physical parameter QP1A.
  • the specific sensing operation is performed by the sensing unit 260.
  • the trigger application unit 281 responds to the trigger event EQ81 to provide an operation request signal SX81 to the processing unit 230, thereby enabling the processing unit 230 to receive the operation request signal SX81.
  • the processing unit 230 obtains an operation reference data code XK81 from the storage unit 250 in response to the operation request signal SX81, and executes the operation by running a data determination program NE8A.
  • a data of the operation reference data code XK81 determines AE8A to determine the measurement value application range code EH1L selected from the multiple different measurement value reference range codes EH11, EH12, ... so as to refer to the multiple different measurement values Select the measurement value application range RM1L from the ranges RM11, RM12,...
  • the operation reference data code XK81 is the same as an allowable reference data code preset based on the measurement application function specification GBL8.
  • the data determination program NE8A is constructed based on the measurement application function specification GBL8.
  • the data determination AE8A is one of a data determination operation AE81 and a data determination operation AE82. Under the condition that the operation reference data code XK81 is obtained by accessing the variable physical parameter range code UM8A stored in the storage unit 250 to be the same as the specific measurement value range code EH14, yes
  • the data determination AE8A of the data determination operation AE81 determines the measurement value application range code EH1L based on the obtained specific measurement value range code EH14. For example, the determined measurement value application range code EH1L is the same as or different from the obtained specific measurement value range code EH14.
  • the operation reference data code XK81 is obtained by accessing the rated range limit value pair DC1A stored in the storage unit 250 to obtain the same conditions as the preset rated range limit value pair DC1A
  • the data of the data determination operation AE82 determines that AE8A obtains from the multiple different measurement values by performing a scientific calculation MF81 that uses the measurement value VM81 and the obtained rated range limit value pair DC1A
  • the measurement value application range code EH1L is selected from the reference range codes EH11, EH12, ... to determine the measurement value application range code EH1L.
  • the scientific calculation MF81 is executed based on a specific empirical formula XP81.
  • the specific empirical formula XP81 is formulated in advance based on the preset rated range limit value pair DC1A and the multiple different measurement value reference range codes EH11, EH12,... For example, the specific empirical formula XP81 is formulated in advance based on the measurement application function specification GBL8.
  • the processing unit 230 obtains the application range limit value pair DM1L based on the determined measurement value application range code EH1L, and obtains the application range limit value pair DM1L based on the measurement value VM81 and the obtained application range limit value pair DM1L.
  • a data comparison CA81 checks the mathematical relationship KA81 to make a logical decision PH81 whether the measurement value VM81 is within the selected measurement value application range RM1L. Under the condition that the logical decision PH81 is affirmative, the processing unit 230 determines the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located.
  • the processing unit 230 obtains the measurement value VM81 based on the sensing signal SM81 in response to the operation request signal SX81, and obtains the application range limit value pair DM1L in response to the operation request signal SX81.
  • the trigger application unit 281 responds to the trigger event EQ81 to provide the operation request signal SX81 to the processing unit 230, thereby enabling the processing unit 230 to receive the operation request signal SX81.
  • the The processing unit 230 makes the logical decision PH81 by comparing the measured value VM81 with the obtained application range limit value pair DM1L to become affirmative.
  • the processing unit 230 compares the measurement value VM81 with the obtained application range limit Value pair DM1L to make the logical decision PH81 to become affirmative.
  • the control device 212 has the variable physical parameter QP1A.
  • the variable physical parameter QU1A exists in the control target device 130.
  • the trigger event EQ81 is one of a trigger action event, a user input event, a signal input event, a state change event, an identification medium occurrence event, and an integer overflow event, and is applied to the measurement application Function FB81.
  • the control target device 130 is configured to execute the specific functional operation ZH81 related to the variable physical parameter QU1A.
  • the specific function operation ZH81 is used to cause the triggering event to occur, and is a spatial movement operation.
  • the measurement application function FB81 is related to a memory unit 25Y1.
  • the measurement value target range RN1T is represented by a measurement value target range code EM1T; thereby, the measurement value target range code EM1T is configured to indicate the physical parameter target range RD1ET.
  • the measurement value target range code EM1T is preset based on the measurement application function specification GBL8. There is a mathematical relationship KY81 between the preset measurement value application range code EH1L and the preset measurement value target range code EM1T.
  • the memory unit 25Y1 has a memory location PM8L and a memory location PV8L different from the memory location PM8L, the application range limit value pair DM1L is stored in the memory location PM8L, and a control is stored in the memory location PV8L Data code CK8T.
  • the memory location PM8L and the memory location PV8L are both identified based on the preset measurement value application range code EH1L.
  • the control data code CK8T includes the measurement value target range code EM1T.
  • the application range limit value pair DM1L and the control data code CK8T are stored by the memory unit 25Y1 based on the preset measurement value application range code EH1L.
  • the processing unit 230 executes a data acquisition AF8A using the determined measurement value application range code EH1L by running a data acquisition program NF8A to obtain the application range limit value pair DM1L.
  • the data acquisition AF8A is one of a data acquisition operation AF81 and a data acquisition operation AF82.
  • the data acquisition program NF8A is constructed based on the measurement application function specification GBL8.
  • the data acquisition operation AF81 uses the memory unit 25Y1 based on the determined measurement value application range code EH1L to access the application range limit value pair DM1L stored in the memory location PM8L to obtain the application
  • the range limit is DM1L.
  • the data acquisition operation AF82 obtains the preset rated range limit value pair DC1A by reading the rated range limit value pair DC1A stored in the storage unit 250, and is determined by executing the use
  • the measurement value application range code EH1L and a scientific calculation MG81 of the obtained rated range limit value pair DC1A are used to obtain the application range limit value pair DM1L.
  • the rated range limit value pair DC1A includes a rated range limit value DC11 of the rated measurement value range RC1N and a rated range limit value DC12 relative to the rated range limit value DC11, and is based on the rated physical parameter
  • the range represents GB8E
  • the sensor measurement range represents GQ8R
  • the data encoding operation ZR81 is preset using the specified measurement value format HQ81.
  • the processing unit 230 executes the use of the determined measurement value application range A data of code EH1L obtains AG8A to obtain a control application code UA8T.
  • the data acquisition AG8A is one of a data acquisition operation AG81 and a data acquisition operation AG82.
  • the data acquisition operation AG81 uses the memory unit 25Y1 to access the control data code CK8T stored in the memory location PV8L based on the determined measurement value application range code EH1L to obtain the control data equal to the control data.
  • the data acquisition operation AG82 obtains the value equal to the preset measurement value target range code EM1T by executing a scientific calculation MQ81 using the determined measurement value application range code EH1L and the mathematical relationship KY81. Control application code UA8T.
  • the processing unit 230 executes a signal generation control GS81 for the measurement application function FB81 within an operating time TD81 based on the obtained control application code UA8T to control the output unit 240.
  • the output unit 240 responds to the signal generation control GS81 to execute a signal generation operation BS81 for the measurement application function FB81 to generate the control signal SC81.
  • the control signal SC81 serves to indicate at least one of the measured value target range RN1T and the physical parameter target range RD1ET by transmitting the measured value target range code EM1T, and is used to cause the
  • the variable physical parameter QU1A is within the target range RD1ET of the physical parameter.
  • the multiple different physical parameter reference ranges RC1E1, RC1E2, ... further include a physical parameter candidate range RC1E2 that is different from the physical parameter application range RC1EL.
  • the multiple different measurement value reference ranges RM11, RM12,... Have a total reference range number NS81, and further include a measurement value candidate range RM12 representing the physical parameter candidate range RC1E2.
  • the measurement application function specification GBL8 further includes a physical parameter candidate range representation GB82 for representing the physical parameter candidate range RC1E2.
  • the measurement value candidate range RM12 is represented by a measurement value candidate range code EH12 that is different from the measurement value application range code EH1L, has a candidate range limit value pair DM1B, and is configured to represent the physical parameter candidate range RC1E2 ; With this, the measurement value candidate range code EH12 is configured to indicate the physical parameter candidate range RC1E2.
  • the candidate range limit value pair DM1B uses the specified physical parameter candidate range representation GB82, the sensor measurement range representation GQ8R, and a data encoding operation ZR83 for converting the physical parameter candidate range representation GB82.
  • the measured value format HQ81 is preset.
  • the measurement value candidate range RM12 is preset based on the physical parameter candidate range indication GB82, the sensor measurement range indication GQ8R, and the data encoding operation ZR83 using the specified measurement value format HQ81.
  • the total reference range number NS81 is preset based on the measurement application function specification GBL8.
  • the processing unit 230 obtains the total reference range number NS81 in response to the trigger event EQ81.
  • the scientific calculation MF81 further uses the obtained total reference range number NS81.
  • the scientific calculation MG81 further uses the obtained total reference range number NS81. For example, the total number of reference ranges NS81 is greater than or equal to 2.
  • the control target device 130 receives the control signal SC81, obtains the measurement value target range code EM1T from the received control signal SC81, and based on the obtained measurement value target range code EM1T causes the variable physical parameter QU1A to be within the target range RD1ET of the physical parameter.
  • the control signal SC81 conveys a piece of control information CG81 determined based on the control application code UA8T.
  • the control information CG81 includes the measured value target range code EM1T.
  • the control information CG81 includes the target range limit value pair DN1T and the control code CC1T.
  • the measurement value application range RM1L is a first part of the rated measurement value range RC1N.
  • the measurement value candidate range RM12 is a second part of the rated measurement value range RC1N.
  • the physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are separate or adjacent. Under the condition that the physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are separated, the measurement value application range RM1L and the measurement value candidate range RM12 are separated. Under the condition that the physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are adjacent, the measurement value application range RM1L and the measurement value candidate range RM12 are adjacent.
  • the measurement value application range code EH1L is configured to be equal to an integer.
  • the rated range limit value DC12 is greater than the rated range limit value DC11.
  • the relative value VC11 is equal to a calculation result of the rated range limit value DC12 minus the rated range limit value DC11.
  • the application range limit value pair DM1L is determined based on the rated range limit value DC11, the rated range limit value DC12, the integer, and a ratio of the relative value VC11 to the total reference range number NS81 Preset.
  • the scientific calculation MG81 uses one of the rated range limit value DC11, the rated range limit value DC12, the integer, the ratio, and any combination thereof.
  • the processing unit 230 determines the selection from the multiple by executing a scientific calculation MF82 using the determined measurement value application range code EH1L
  • the measurement value candidate range codes EH12 of two different measurement value reference range codes EH11, EH12, ... are used to select the measurement value candidate range RM12 from the plurality of different measurement value reference ranges RM11, RM12, ....
  • the processing unit 230 obtains the candidate range limit value pair DM1B based on the determined measurement value candidate range code EH12, and obtains the candidate range limit value pair DM1B based on the measurement value VM81 and the obtained candidate range limit value pair DM1B.
  • a data comparison CA91 to check a mathematical relationship KA91 between the measurement value VM81 and the selected measurement value candidate range RM12 to determine whether the measurement value VM81 is within the selected measurement value candidate range RM12
  • a logic within determines PH91. Under the condition that the logical decision PH91 is affirmative, the processing unit 230 determines the physical parameter candidate range RC1E2 in which the variable physical parameter QP1A is currently located.
  • the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter candidate range RC1E2, the processing unit 230 causes the output unit 240 to execute a measurement application function FB81.
  • the signal generating operation BS91 generates a control signal SC82 for controlling the variable physical parameter QU1A, and the control signal SC82 is different from the control signal SC81.
  • the processing unit 230 determines where the variable physical parameter QP1A is currently located by making the logical decision PH81 Under the condition of the physical parameter application range RC1EL, the processing unit 230 is based on the difference between the variable physical parameter range code UM8A equal to the specific measurement value range code EH14 and the determined measurement value application range code EH1L
  • a code difference DA81 uses the storage unit 250 to assign the determined measurement value application range code EH1L to the variable physical parameter range code UM8A.
  • the processing unit 230 is based on the code difference DA81 determines that it is the trigger event EQ81 of the state change event.
  • the operating unit 297 further includes a response area AC1, a reader 220, and an input unit 270.
  • the response area AC1 is used to execute the measurement application function FB81.
  • the reader 220 is coupled to the response area AC1.
  • the input unit 270 is coupled to the processing unit 230.
  • the processing unit 230 Under the condition that the trigger event EQ81 is the occurrence event of the identification medium and the processing unit 230 has identified an identification medium 310 appearing in the response area AC1 through the reader 220, the processing unit 230
  • the measurement value VM81 is obtained based on the sensing signal SM81.
  • the operating unit 297 relies on the identification medium 310 to control the variable physical parameter QU1A.
  • the identification medium 310 records the application range limit value pair DM1L and the control data code CK8T.
  • the reader 220 is the trigger application unit 281, generates the operation request signal SX81 in response to the trigger event EQ81 related to the identification medium 310, and provides the operation request signal SX81 to the processing Unit 230, and thereby enable the processing unit 230 to receive the operation request signal SX81.
  • the processing unit 230 responds to the operation request signal SX81 to make the reader 220 read the recorded application range limit value pair DM1L and the recorded control data code CK8T, and thereby pass the The reader 220 obtains the recorded application range limit value pair DM1L and the recorded control data code CK8T from the identification medium 310.
  • the output unit 240 displays a status indication LA81.
  • the state indication LA81 is used to indicate that the variable physical parameter QP1A is configured in a specific state XH81 within the specific physical parameter range RC1E4.
  • the processing unit 230 determines where the variable physical parameter QP1A is currently located by making the logical decision PH81 Under the condition of the physical parameter application range RC1EL, the processing unit 230 further causes the output unit 240 to change the status indicator LA81 to a status indicator LA82 based on the code difference DA81.
  • the state indication LA82 is used to indicate that the variable physical parameter QP1A is configured in a specific state XH82 within the physical parameter application range RC1EL.
  • the processing The unit 230 responds to the control response signal SE81 to execute a specific actual operation BJ81 related to the variable physical parameter QU1A. For example, the processing unit 230 obtains the delivered measurement value VN82 from the control response signal SE81, and based on the obtained measurement value VN82, causes the output unit 240 to display the same value as the obtained measurement value VN82.
  • the sensing unit 260 senses the variable physical parameter QP1A to generate a sensing signal SM82. For example, after the operating time TD81, the sensing unit 260 senses the variable physical parameter QP1A to perform a sensing signal that depends on the sensor sensitivity YQ81 to generate HE82, and the sensing signal generates HE82 for generating HE82. To generate the sensing signal SM82.
  • the processing unit 230 responds to the sensing signal SM82 within a specified time TE82 after the operating time TD81 to obtain a measurement value VM82 in the specified measurement value format HQ81.
  • the processing unit 230 performs a scientific calculation MF83 using the determined measurement value application range code EH1L within the specified time TE82 to obtain the reference range codes EH11, EH12 included in the multiple different measurement values. ,...
  • a specific measurement value range code EH17 is different from the determined measurement value application range code EH1L, and represents a specific measurement value range RM17 included in the plurality of different measurement value reference ranges RM11, RM12, ... .
  • the specific measurement value range RM17 represents a specific physical parameter range RC1E7 included in the plurality of different physical parameter reference ranges RC1E1, RC1E2,...
  • the processing unit 230 performs a check operation BA83 for checking a fourth mathematical relationship KA83 between the measurement value VM82 and the specific measurement value range RM17 based on the specific measurement value range code EH17.
  • the processing unit 230 determines that the variable physical parameter QP1A is currently in the specific physical parameter range RC1E7 based on the checking operation BA83 within the specified time TE82.
  • the processing unit 230 causes the output unit 240 to generate a control signal SC83 for controlling the variable physical parameter QU1A, and uses the storage unit 250 to assign the specific measurement value range code EH17 to the variable
  • the physical parameter range code is UM8A.
  • the control signal SC83 is different from the control signal SC81.
  • the sensing unit 260 senses the variable physical parameter QP1A in a restraining condition FP81 to provide the sensing signal SM81 to the processing unit 230.
  • the constraint condition FP81 is that the variable physical parameter QP1A is equal to a specific physical parameter QP11 included in the rated physical parameter range RC1E.
  • the processing unit 230 estimates the specific physical parameter QP11 based on the sensing signal SM81 to obtain the measured value VM81.
  • the processing unit 230 recognizes that the measurement value VM81 is within the measurement value application range RM1L
  • the application range of the physical parameters is RC1EL.
  • the sensing unit 260 is characterized based on the sensor sensitivity YQ81 related to the sensing signal generation HE81, and is configured to comply with the sensor specification FQ11.
  • the sensor specification FQ11 includes the sensor sensitivity representation GQ81 for representing the sensor sensitivity YQ81, and the sensor measurement range representation GQ8R for representing the sensor measurement range RA8E.
  • the rated physical parameter range RC1E is configured to be the same as the sensor measurement range RA8E, or is configured to be a part of the sensor measurement range RA8E.
  • the sensor measurement range RA8E is related to a physical parameter sensing performed by the sensing unit 260.
  • the sensor measurement range means that GQ8R is provided based on a first preset measurement unit.
  • the first preset measurement unit is one of a metric measurement unit and an English measurement unit.
  • the multiple different measurement value reference ranges RM11, RM12, ... are all preset based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11 in the specified measurement value format HQ81.
  • the rated measurement value range RC1N and the rated range limit value pair DC1A are based on the rated physical parameter range representing GB8E, the sensor measurement range representing GQ8R, the sensor sensitivity representing GQ81, and the data encoding operation ZR81
  • the measurement value application range RM1L and the application range limit value pair DM1L are all based on the physical parameter application range representation GB8L, the sensor measurement range representation GQ8R, the sensor sensitivity representation GQ81, and the data encoding operation ZR82.
  • the specified measurement value format HQ81 is preset.
  • the measurement value candidate range RM12 and the candidate range limit value pair DM1B are used based on the physical parameter candidate range representing GB82, the sensor measurement range representing GQ8R, the sensor sensitivity representing GQ81, and the data encoding operation ZR83.
  • the specified measurement value format HQ81 is preset.
  • the rated physical parameter range represents GB8E
  • the physical parameter application range represents GB8L
  • the physical parameter candidate range represents GA8T
  • the physical parameter candidate range represents GB82 are provided based on a second preset measurement unit.
  • the second preset measurement unit is one of a metric measurement unit and an English measurement unit, and is the same as or different from the first preset measurement unit.
  • the sensing unit 334 is characterized based on the sensor sensitivity YW81 related to the generation of a sensing signal, and is configured to comply with the sensor specification FU11.
  • the sensor specification FU11 includes the sensor sensitivity indication GW81 for indicating the sensor sensitivity YW81, and the sensor measurement range indication GW8R for indicating the sensor measurement range RB8E.
  • the physical parameter target range RD1ET is configured to be a part of the sensor measurement range RB8E.
  • the sensor measurement range RB8E is related to a physical parameter sensing performed by the sensing unit 334.
  • the sensor measurement range indicates that the GW8R is provided based on a third preset measurement unit.
  • the third preset measurement unit is one of a metric measurement unit and an English measurement unit.
  • the variable physical parameter QU1A is further characterized based on the sensor measurement range RB8E.
  • the variable physical parameter QP1A is further characterized based on the sensor measurement range RA8E.
  • the sensor measurement range represents GQ8R
  • the rated physical parameter range represents GB8E
  • the physical parameter application range represents GB8L
  • the physical parameter candidate range represents GA8T
  • the physical parameter candidate range represents GB82 and the sensor measurement
  • the range indicates that GW8R belongs to the decimal data type.
  • the measurement value VM81, the measurement value VM82, the rated range limit value pair DC1A, the application range limit value pair DM1L, the target range limit value pair DN1T, and the candidate range limit value pair DM1B all belong to all
  • the binary data types mentioned above are all suitable for computer processing.
  • the sensor specification FQ11, the sensor specification FU11, and the measurement application function specification GBL8 are all preset.
  • the memory location PM8L is identified based on a memory address FM8L.
  • the memory address FM8L is preset based on the preset measurement value application range code EH1L.
  • the memory location PV8L is identified based on a memory address FV8L.
  • the memory address FV8L is preset based on the preset measurement value application range code EH1L.
  • the processing unit 230 is configured to obtain the preset measurement value application range code EH1L, the preset application range limit value pair DM1L and the preset
  • the control data code CK8T obtains the memory address FM8L based on the obtained measurement value application range code EH1L, and based on the obtained application range limit value pair DM1L and the obtained memory address FM8L to cause all
  • the operating unit 297 provides write request information WB8L including the obtained application range limit value pair DM1L and the obtained memory address FM8L.
  • the write request information WB8L is used to cause the memory unit 25Y1 to store the delivered application range limit value pair DM1L in the memory location PM8L.
  • the processing unit 230 obtains the memory address FV8L based on the obtained measurement value application range code EH1L, and based on the obtained control data code CK8T and the obtained control data code EH1L.
  • the memory address FV8L causes the operating unit 297 to provide a write request information WA8L including the acquired control data code CK8T and the acquired memory address FV8L.
  • the write request information WA8L is used to cause the memory unit 25Y1 to store the delivered control data code CK8T in the memory location PV8L.
  • the control device 212 is coupled to a server 280.
  • the identification medium 310 is one of an electronic tag 350, a barcode medium 360, and a biometric identification medium 370.
  • One of the electronic tag 350, the storage unit 250, and the server 280 includes the memory unit 25Y1.
  • the rated physical parameter range RC1E includes a specific physical parameter QP15 and is represented by the rated measurement value range RC1N.
  • the sensing unit 260 senses the variable physical parameter QP1A in the restraint condition FP81 to provide the sensing signal SM81 to the processing unit 230.
  • the constraint condition FP81 is that the variable physical parameter QP1A is equal to the specific physical parameter QP15.
  • the processing unit 230 estimates the specific physical parameter QP15 based on the sensing signal SM81 to obtain the measured value VM81.
  • a method MM80 for controlling a variable physical parameter QU1A is disclosed.
  • the variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET represented by a measured value target range RN1T.
  • the method MM80 includes the following steps: providing a variable physical parameter QP1A, wherein the variable physical parameter QP1A is characterized based on a physical parameter application range RC1EL represented by a measurement value application range RM1L; and sensing the The variable physical parameter QP1A is used to generate a sensing signal SM81; when a trigger event EQ81 occurs, a measurement value VM81 is obtained in response to the sensing signal SM81; and where the variable physical parameter QP1A is currently located Under the condition that the physical parameter application range RC1EL is determined by checking a mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L, a function indicating the measurement value target range RN1T is generated A control signal SC81.
  • the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently in is checked by checking the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L Under certain conditions, the control signal SC81 that functions to indicate the physical parameter target range RD1ET is generated.
  • the method MM80 further includes a step of providing a sensing unit 260. For example, the step of sensing the variable physical parameter QP1A is performed by using the sensing unit 260.
  • the sensing unit 260 is configured to comply with a sensor specification FQ11 related to the measurement value application range RM1L.
  • the sensor specification FQ11 includes a sensor measurement range representation GQ8R for representing a sensor measurement range RA8E, and a sensor sensitivity representation GQ81 for representing a sensor sensitivity YQ81.
  • the sensor sensitivity YQ81 is related to a sensing signal generated by the sensing unit 260 to generate HE81.
  • the variable physical parameter QU1A is further controlled by a sensing unit 334.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value target range RN1T.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is the same as or different from the sensor sensitivity YQ81.
  • the measurement value VM81 is obtained in a designated measurement value format HQ81.
  • the variable physical parameter QP1A is further characterized based on a physical parameter candidate range RC1E2 that is different from the physical parameter application range RC1EL.
  • the measurement value application range RM1L and a measurement value candidate range RM12 representing the physical parameter candidate range RC1E2 are both based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11 to use the specified measurement
  • the value format HQ81 is preset.
  • the measurement value target range RN1T is preset based on one of the sensor measurement range indication GW8R and the sensor specification FU11, and has a target range limit value pair DN1T.
  • the variable physical parameter QU1A is related to a variable time length LF8A.
  • the variable time length LF8A is characterized based on a reference time length LJ8T.
  • the reference time length LJ8T is represented by a measured time length value CL8T.
  • the control signal SC81 conveys the target range limit value pair DN1T, the measurement time length value CL8T, and a control code CC1T, and is used to cause the variable physical parameter QU1A to be within the physical parameter target range RD1ET.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the target range limit value pair DN1T.
  • the measurement value application range RM1L has an application range limit value pair DM1L.
  • the application range limit value is preset for DM1L.
  • the measurement value candidate range RM12 has a candidate range limit value pair DM1B.
  • the candidate range limit value is preset for DM1B.
  • the method MM80 further includes the following steps: in response to the trigger event EQ81, obtaining the application range limit value pair DM1L; and in response to the trigger event EQ81, obtaining the preset candidate range limit value pair DM1B.
  • the step of generating the control signal SC81 includes a sub-step: checking the mathematical relationship KA81 by comparing the measured value VM81 with the obtained application range limit value pair DM1L.
  • the variable physical parameter QU1A and the variable physical parameter QP1A belong to a physical parameter type TU11 and a physical parameter type TP11, respectively.
  • the physical parameter type TU11 is the same as or different from the physical parameter type TP11.
  • the physical parameter application range RC1EL is configured to correspond to a corresponding physical parameter range RW1EL outside the physical parameter application range RC1EL.
  • the method MM80 further includes the following steps: under the condition that the corresponding physical parameter range RW1EL in which the variable physical parameter QP1A is currently located is determined by checking the mathematical relationship KA81, executing the measured value VM81 and all A data comparison CA91 between the obtained reference range limit value and DM1B; and under the condition that the physical parameter candidate range RC1E2 that the variable physical parameter QP1A is currently in is determined based on the data comparison CA91, A control signal SC82 for controlling the variable physical parameter QU1A is generated, and the control signal SC82 is different from the control signal SC81.
  • the step of generating the control signal SC81 further includes the following sub-steps: under the condition that the physical parameter application range RC1EL is determined by checking the mathematical relationship KA81, obtaining the target range limit value pair DN1T, the Measure the time length value CL8T and a control data code CK8T of the control code CC1T; and based on the control data code CK8T, perform a signal generation control GS81 for generating the control signal SC81.
  • the method MM80 further includes a step of performing a data storage control operation GT81 under the condition that the physical parameter application range RC1EL is determined by checking the mathematical relationship KA81.
  • the data storage control operation GT81 is used to cause a physical parameter application range code UM8L representing the determined physical parameter application range RC1EL to be recorded.
  • variable physical parameter QU1A and the variable physical parameter QP1A are respectively formed at an actual position LD81 and an actual position LC81 different from the actual position LD81.
  • the method MM80 further includes the following steps: providing a sensing unit 260, wherein the step of sensing the variable physical parameter QP1A is performed by using the sensing unit 260; and performing the application range of the physical parameter A measurement application function FB81 related to RC1EL.
  • the measurement application function FB81 is configured to comply with a measurement application function specification GBL8 related to the physical parameter application range RC1EL.
  • the sensing unit 260 is configured to comply with a sensor specification FQ11 related to the measurement value application range RM1L.
  • the sensor specification FQ11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GQ81 for representing a sensor sensitivity YQ81.
  • the sensor sensitivity YQ81 is related to a sensing signal generated by the sensing unit 260 to generate HE81.
  • the variable physical parameter QU1A is further controlled by a sensing unit 334.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value target range RN1T.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is the same as or different from the sensor sensitivity YQ81.
  • the measurement value VM81 is obtained in a designated measurement value format HQ81.
  • the specified measurement value format HQ81 is characterized based on a specified number of bits UX81.
  • the variable physical parameter QP1A is further characterized based on a rated physical parameter range RC1E.
  • the rated physical parameter range RC1E is represented by a rated measurement value range RC1N, and includes a plurality of different physical parameter reference ranges RC1E1, RC1E2, ... represented by a plurality of different measurement value reference ranges RM11, RM12, ... .
  • the multiple different physical parameter reference ranges RC1E1, RC1E2, ... include the physical parameter application range RC1EL.
  • the measurement application function specification GBL8 includes the sensor specification FQ11, a rated physical parameter range representation GB8E for representing the rated physical parameter range RC1E, and a physical parameter application range representing the physical parameter application range RC1EL Represents GB8L.
  • the physical parameter target range RD1ET is represented by a physical parameter candidate range representation GA8T.
  • the rated measurement value range RC1N is based on the rated physical parameter range representing GB8E, the sensor measurement range representing GQ8R, and a data encoding operation ZR81 for converting the rated physical parameter range representing GB8E to use the specified measurement value format HQ81 is preset, has a rated range limit value pair DC1A, and includes the multiple different measurement value reference ranges RM11, RM12, ... represented by multiple different measurement value reference range codes EH11, EH12, ....
  • the rated range limit value pair DC1A is preset using the specified measurement value format HQ81.
  • the multiple different measurement value reference ranges RM11, RM12, ... include the measurement value application range RM1L.
  • the measurement value application range RM1L is represented by a measurement value application range code EH1L included in the plurality of different measurement value reference range codes EH11, EH12, ..., and has an application range limit value pair DM1L.
  • the multiple different measurement value reference range codes EH11, EH12,... are preset based on the measurement application function specification GBL8.
  • the application range limit value pair DM1L includes an application range limit value DM15 and an application range limit value DM16 relative to the application range limit value DM15, and is based on the physical parameter application range representation GB8L, the sensor measurement range representation GQ8R and a data encoding operation ZR82 for converting the physical parameter application range representation GB8L are preset using the specified measurement value format HQ81.
  • the measurement value target range RN1T is preset based on the physical parameter candidate range representation GA8T, the sensor measurement range representation GW8R, and a data encoding operation ZX83 for converting the physical parameter candidate range representation GA8T.
  • the method MM80 further includes the following steps: providing a storage space SS11; and storing the preset rated range limit value pair DC1A and a variable physical parameter range code in the storage space SS11 UM8A.
  • the variable physical parameter range code UM8A is equal to a specific measurement value range code EH14 selected from the multiple different measurement value reference range codes EH11, EH12,...
  • the specific measurement value range code EH14 indicates a specific physical parameter range RC1E4 previously determined based on a sensing operation ZM81.
  • the specific physical parameter range RC1E4 is selected from the multiple different physical parameter reference ranges RC1E1, RC1E2,....
  • the sensing operation ZM81 performed by the sensing unit 260 is used to sense the variable physical parameter QP1A.
  • the specific measurement value range code EH14 is assigned to the variable physical parameter range code UM8A.
  • the method MM80 further includes the following steps: in response to the trigger event EQ81, receiving an operation request signal SX81; under the condition that the trigger event EQ81 occurs, responding to the operation request signal SX81 to obtain an operation request signal SX81 from the storage space SS11 Operation reference data code XK81; and by running a data determination program NE8A to execute a data determination AE8A using the operation reference data code XK81 to determine the selection from the multiple different measurement value reference range codes EH11, EH12, ...
  • the measurement value application range code EH1L is used to select the measurement value application range RM1L from the plurality of different measurement value reference ranges RM11, RM12,...
  • the operation reference data code XK81 is the same as an allowable reference data code preset based on the measurement application function specification GBL8.
  • the data determination program NE8A is constructed based on the measurement application function specification GBL8.
  • the data determination AE8A is one of a data determination operation AE81 and a data determination operation AE82. Under the condition that the operation reference data code XK81 is obtained by accessing the variable physical parameter range code UM8A stored in the storage space SS11 to be the same as the specific measurement value range code EH14, yes
  • the data determination AE8A of the data determination operation AE81 determines the measurement value application range code EH1L based on the obtained specific measurement value range code EH14. For example, the determined measurement value application range code EH1L is the same as or different from the obtained specific measurement value range code EH14.
  • the operation reference data code XK81 is obtained by accessing the rated range limit value pair DC1A stored in the storage space SS11 to obtain the same conditions as the preset rated range limit value pair DC1A
  • the data of the data determination operation AE82 determines that AE8A obtains from the multiple different measurement values by performing a scientific calculation MF81 that uses the measurement value VM81 and the obtained rated range limit value pair DC1A
  • the measurement value application range code EH1L is selected from the reference range codes EH11, EH12, ... to determine the measurement value application range code EH1L.
  • the scientific calculation MF81 is executed based on a specific empirical formula XP81.
  • the specific empirical formula XP81 is formulated in advance based on the preset rated range limit value pair DC1A and the multiple different measurement value reference range codes EH11, EH12,...
  • the method MM80 further includes a step of obtaining the application range limit value pair DM1L based on the determined application range code EH1L of the measured value.
  • the step of generating the control signal SC81 includes the following sub-steps: based on a data comparison CA81 between the measured value VM81 and the obtained reference range limit value pair DM1A, the mathematical relationship KA81 is checked to make the Whether the measurement value VM81 is a logical decision PH81 within the selected measurement value application range RM1L; and under the condition that the logical decision PH81 is affirmative, it is determined that the variable physical parameter QP1A is currently in the Physical parameter application range RC1EL.
  • the variable physical parameter QU1A exists in a control target device 130.
  • the trigger event EQ81 is one of a trigger action event, a user input event, a signal input event, a state change event, an identification medium occurrence event, and an integer overflow event, and is applied to the measurement application Function FB81.
  • the measured value target range RN1T is represented by a measured value target range code EM1T, and has a target range limit value pair DN1T.
  • the measurement value target range code EM1T is preset based on the measurement application function specification GBL8. There is a mathematical relationship KY81 between the preset measurement value application range code EH1L and the preset measurement value target range code EM1T.
  • the method MM80 further includes the following steps: under the condition that the trigger event EQ81 of the trigger action event is about to occur, by using the control target device 130 to execute a variable related to the variable physical parameter QU1A A specific function operation ZH81, wherein the specific function operation ZH81 is used to cause the triggering event to occur; and a memory space SA1 related to the measurement application function FB81 is provided.
  • the memory space SA1 has a memory location PM8L and a memory location PV8L different from the memory location PM8L.
  • the storage space SS11 includes the memory space SA1.
  • the method MM80 further includes the following steps: storing the reference range limit value pair DM1A in the memory location PM8L; and storing a control data code CK8T in the memory location PV8L.
  • the memory location PM8L and the memory location PV8L are both identified based on the preset measurement value reference range code EH1L.
  • the control data code CK8T includes the measurement value target range code EM1T.
  • the step of obtaining the application range limit value pair DM1L includes a sub-step: by running a data acquisition program NF8A to execute a data acquisition AF8A using the determined measurement value application range code EH1L to Obtain the application range limit value pair DM1L.
  • the data acquisition AF8A is one of a data acquisition operation AF81 and a data acquisition operation AF82.
  • the data acquisition program NF8A is constructed based on the measurement application function specification GBL8.
  • the data acquisition operation AF81 uses the memory unit 25Y1 based on the determined measurement value application range code EH1L to access the application range limit value pair DM1L stored in the memory location PM8L to obtain the application
  • the range limit is DM1L.
  • the data acquisition operation AF82 obtains the rated range limit value pair DC1A by reading the rated range limit value pair DC1A stored in the storage space SS11, and performs the measurement determined by using The value application range code EH1L and a scientific calculation MG81 of the obtained rated range limit value pair DC1A are used to obtain the application range limit value pair DM1L.
  • the step of generating the control signal SC81 further includes a sub-step: under the condition that the physical parameter application range RC1EL is determined, executing a data using the determined measurement value application range code EH1L Obtain AG8A to obtain a control application code UA8T.
  • the data acquisition AG8A is one of a data acquisition operation AG81 and a data acquisition operation AG82.
  • the data acquisition operation AG81 accesses the control data code CK8T stored in the memory location PV8L based on the determined measurement value reference range code EH1L to obtain the control application equal to the control data code CK8T Code UA8T.
  • the data acquisition operation AG82 obtains the value equal to the preset measurement value target range code EM1T by executing a scientific calculation MQ81 using the determined measurement value application range code EH1L and the mathematical relationship KY81. Control application code UA8T.
  • the step of generating the control signal SC81 further includes the following sub-steps: based on the obtained control application code UA8T, executing a signal generation control GS81 for the measurement application function FB81 within an operating time TD81; and responding
  • the signal generation control GS81 executes a signal generation operation BS81 for the measurement application function FB81 to generate the control signal SC81.
  • the control signal SC81 serves to indicate at least one of the measured value target range RN1T and the physical parameter target range RD1ET by transmitting the measured value target range code EM1T, and is used to cause the The variable physical parameter QU1A is within the target range RD1ET of the physical parameter.
  • the method MM80 further includes the following steps: when the specific measurement value range code EH14 is different from the determined measurement value application range code EH1L and the physical parameter application range RC1EL is determined by Under the condition that the logic determines PH81 and is determined, based on a code difference DA81 between the variable physical parameter range code UM8A equal to the specific measurement value range code EH14 and the determined measurement value reference range code EH1L To assign the determined measurement value reference range code EH1L to the variable physical parameter range code UM8A; and in the trigger event EQ81, the variable physical parameter QP1A enters the specified physical parameter range RC1E4. Under the condition of the state change event of the physical parameter application range RC1EL, the trigger event EQ81 of the state change event is determined based on the code difference DA81.
  • the method MM80 further includes the following steps: when the trigger event EQ81 occurs, a status indicator LA81 is displayed, wherein the status indicator LA81 is used to indicate that the variable physical parameter QP1A is configured in the specific physical parameter range RC1E4 A specific state XH81; and where the specific measurement value range code EH14 is different from the determined measurement value application range code EH1L and the physical parameter application range RC1EL is determined by making the logical decision PH81 Under certain conditions, the status indicator LA81 is changed to a status indicator LA82 based on the code difference DA81. For example, the state indication LA82 is used to indicate that the variable physical parameter QP1A is configured in a specific state XH82 within the physical parameter application range RC1EL.
  • a method MM82 for controlling a variable physical parameter QU1A by generating a control signal SC81 is disclosed.
  • the variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET represented by a measured value target range RN1T.
  • the method MM82 includes the following steps: the control device 212 provides a variable physical parameter QP1A, wherein the variable physical parameter QP1A is characterized based on a physical parameter application range RC1EL represented by a measurement value application range RM1L And the sensing unit 260 senses the variable physical parameter QP1A to generate a sensing signal SM81.
  • the method MM82 includes the following further steps: when a trigger event EQ81 occurs, the processing unit 230 responds to the sensing signal SM81 to obtain a measurement value VM81; and the processing unit 230 checks the measurement A mathematical relationship KA81 between the value VM81 and the measurement value application range RM1L determines a physical parameter relationship KB81 between the variable physical parameter QP1A and the physical parameter application range RC1EL to indicate the It is a reasonable decision PA81 whether the control signal SC81 of the function of the measurement value target range RN1T is to be generated.
  • the processing unit 230 determines the physical parameter relationship KB81 by checking the mathematical relationship KA81 to determine whether the control signal SC81 that functions to indicate the physical parameter target range RD1ET needs to be The resulting reasonable decision PA81.
  • the method MM82 further includes a step of providing a sensing unit 260.
  • the step of sensing the variable physical parameter QP1A is performed by using the sensing unit 260.
  • the sensing unit 260 is configured to comply with a sensor specification FQ11 related to the measurement value application range RM1L.
  • the sensor specification FQ11 includes a sensor measurement range representation GQ8R for representing a sensor measurement range RA8E, and a sensor sensitivity representation GQ81 for representing a sensor sensitivity YQ81.
  • the sensor sensitivity YQ81 is related to a sensing signal generated by the sensing unit 260 to generate HE81.
  • the variable physical parameter QU1A is further controlled by a sensing unit 334.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value target range RN1T.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is the same as or different from the sensor sensitivity YQ81.
  • the measurement value VM81 is obtained by the processing unit 230 in a designated measurement value format HQ81.
  • the variable physical parameter QP1A is further characterized based on a physical parameter candidate range RC1E2 that is different from the physical parameter application range RC1EL.
  • the measurement value application range RM1L and a measurement value candidate range RM12 representing the physical parameter candidate range RC1E2 are both based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11 to use the specified measurement
  • the value format HQ81 is preset.
  • the measurement value target range RN1T is preset based on one of the sensor measurement range indication GW8R and the sensor specification FU11, and has a target range limit value pair DN1T.
  • the variable physical parameter QU1A is related to a variable time length LF8A.
  • the variable time length LF8A is characterized based on a reference time length LJ8T.
  • the reference time length LJ8T is represented by a measured time length value CL8T.
  • the control signal SC81 conveys the target range limit value pair DN1T, the measurement time length value CL8T, and a control code CC1T, and is used to cause the variable physical parameter QU1A to be within the physical parameter target range RD1ET.
  • the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET.
  • the control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by transmitting the target range limit value pair DN1T.
  • the measurement value application range RM1L has an application range limit value pair DM1L.
  • the limit value of the application range is preset for DM1L.
  • the measurement value candidate range RM12 has a candidate range limit value pair DM1B.
  • the processing unit 230 responds to the trigger event EQ81 to obtain the application range limit value pair DM1L; and the processing unit 230 responds to the trigger event EQ81 to obtain the preset The candidate range limit value pair DM1B.
  • the step of determining the physical parameter relationship KB81 includes a sub-step: the processing unit 230 compares CA81 based on a data comparison between the measured value VM81 and the obtained application range limit value pair DM1L. , Check the mathematical relationship KA81.
  • the variable physical parameter QU1A and the variable physical parameter QP1A belong to a physical parameter type TU11 and a physical parameter type TP11, respectively.
  • the physical parameter type TU11 is the same as or different from the physical parameter type TP11.
  • the physical parameter application range RC1EL is configured to correspond to a corresponding physical parameter range RW1EL outside the physical parameter application range RC1EL.
  • the method MM82 further includes the following steps: under the condition that the corresponding physical parameter range RW1EL in which the variable physical parameter QP1A is currently located is determined by the processing unit 230 by checking the mathematical relationship KA81, the processing The unit 230 performs a data comparison CA91 between the measured value VM81 and the obtained reference range limit value pair DM1B; and the physical parameter candidate range RC1E2 in which the variable physical parameter QP1A is currently located is based on the
  • the processing unit 230 causes the output unit 240 to generate a control signal SC82 for controlling the variable physical parameter QU1A.
  • the control signal SC82 is different from the control signal SC81.
  • the method MM82 further includes the following steps: under the condition that the reasonable decision PA81 is affirmative, the processing unit 230 obtains the target range limit value pair DN1T, the measurement time length value CL8T, and the control code CC1T The processing unit 230 executes a signal generation control GS81 for generating the control signal SC81 based on the control data code CK8T; and compares the CA81 based on the data in the physical parameter relationship KB81 Under the condition that the processing unit 230 recognizes a physical parameter intersection relationship to determine the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located, the processing unit 230 executes a data storage control operation GT81.
  • the data storage control operation GT81 is used to cause a physical parameter application range code UM8L representing the determined physical parameter application range RC1EL to be recorded by the storage unit 250.
  • variable physical parameter QU1A and the variable physical parameter QP1A are respectively formed at an actual position LD81 and an actual position LC81 different from the actual position LD81.
  • the method MM82 further includes the following steps: the control device 212 provides a sensing unit 260, wherein the step of sensing the variable physical parameter QP1A is performed by using the sensing unit 260; and the operation
  • the unit 297 executes a measurement application function FB81 related to the physical parameter application range RC1EL.
  • the measurement application function FB81 is configured to comply with a measurement application function specification GBL8 related to the physical parameter application range RC1EL.
  • the sensing unit 260 is configured to comply with a sensor specification FQ11 related to the measurement value application range RM1L.
  • the sensor specification FQ11 includes a sensor measurement range representation GQ8R for representing a sensor measurement range RA8E, and a sensor sensitivity representation GQ81 for representing a sensor sensitivity YQ81.
  • the sensor sensitivity YQ81 is related to a sensing signal generated by the sensing unit 260 to generate HE81.
  • the sensing unit 260 senses the variable physical parameter QP1A to perform the sensing signal generation HE81 dependent on the sensor sensitivity YQ81, and the sensing signal generation HE81 is used to generate the sensing signal SM81.
  • the variable physical parameter QU1A is further controlled by a sensing unit 334.
  • the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value target range RN1T.
  • the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81.
  • the sensor sensitivity YW81 is the same as or different from the sensor sensitivity YQ81.
  • the measurement value VM81 is obtained by the processing unit 230 in a designated measurement value format HQ81.
  • the specified measurement value format HQ81 is characterized based on a specified number of bits UX81.
  • the variable physical parameter QP1A is further characterized based on a rated physical parameter range RC1E.
  • the rated physical parameter range RC1E is represented by a rated measurement value range RC1N. It includes a plurality of different physical parameter reference ranges RC1E1, RC1E2, ... represented by a plurality of different measurement value reference ranges RM11, RM12, ....
  • the multiple different physical parameter reference ranges RC1E1, RC1E2,... include the physical parameter application range RC1EL.
  • the measurement application function specification GBL8 includes the sensor specification FQ11, a rated physical parameter range representation GB8E for representing the rated physical parameter range RC1E, and a physical parameter application range representing the physical parameter application range RC1EL Represents GB8L.
  • the physical parameter target range RD1ET is represented by a physical parameter candidate range representation GA8T.
  • the physical parameter candidate range indicates that GA8T is preset.
  • the rated measurement value range RC1N is based on the rated physical parameter range representing GB8E, the sensor measurement range representing GQ8R, and a data encoding operation ZR81 for converting the rated physical parameter range representing GB8E to use the specified measurement value format HQ81 is preset, has a rated range limit value pair DC1A, and includes the multiple different measurement value reference ranges RM11, RM12, ... represented by multiple different measurement value reference range codes EH11, EH12, ....
  • the rated range limit value pair DC1A is preset using the specified measurement value format HQ81.
  • the rated measurement value range RC1N and the rated range limit value pair DC1A are preset based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11 in the designated measurement value format HQ81 .
  • the multiple different measurement value reference ranges RM11, RM12, ... include the measurement value application range RM1L.
  • the measurement value application range RM1L is represented by a measurement value application range code EH1L included in the plurality of different measurement value reference range codes EH11, EH12, ..., and has an application range limit value pair DM1L; thereby
  • the measurement value application range code EH1L is configured to indicate the physical parameter application range RC1EL.
  • the multiple different measurement value reference range codes EH11, EH12,... are preset based on the measurement application function specification GBL8.
  • the application range limit value pair DM1L includes an application range limit value DM15 of the measurement value application range RM1L and an application range limit value DM16 relative to the application range limit value DM15, and is expressed based on the physical parameter application range GB8L, the sensor measurement range representation GQ8R, and a data encoding operation ZR82 for converting the physical parameter application range representation GB8L are preset using the specified measurement value format HQ81.
  • the measurement value application range RM1L is preset with the specified measurement value format HQ81 based on the physical parameter application range representation GB8L, the sensor measurement range representation GQ8R, and the data encoding operation ZR82.
  • the measured value target range RN1T is preset based on the physical parameter candidate range representation GA8T, the sensor measurement range representation GW8R, and a data encoding operation ZX83 for converting the physical parameter candidate range representation GA8T.
  • the method MM82 further includes the following steps: the storage unit 250 provides a storage space SS11; and the storage unit 250 stores the preset limit value of the rated range in the storage space SS11 For DC1A and a variable physical parameter range code UM8A.
  • the variable physical parameter range code UM8A is equal to a specific measurement value range code EH14 selected from the multiple different measurement value reference range codes EH11, EH12,...
  • the specific measurement value range code EH14 indicates a specific physical parameter range RC1E4 previously determined by the processing unit 230 based on a sensing operation ZM81.
  • the specific physical parameter range RC1E4 is selected from the multiple different physical parameter reference ranges RC1E1, RC1E2,....
  • the sensing operation ZM81 performed by the sensing unit 260 is used to sense the variable physical parameter QP1A.
  • the specific measurement value range code EH14 is assigned to the variable physical parameter range code UM8A.
  • the processing unit 230 obtains the specific measurement value range code EH14. Under the condition that the processing unit 230 determines the specific physical parameter range RC1E4 based on the sensing operation ZM81 before the trigger event EQ81 occurs, the processing unit 230 uses the storage unit 250 to store all the parameters.
  • the obtained specific measurement value range code EH14 is assigned to the variable physical parameter range code UM8A.
  • the specific measurement value range code EH14 represents a specific measurement value range configured to represent the specific physical parameter range RC1E4.
  • the specific measurement value range is preset based on one of the sensor measurement range indication GQ8R and the sensor specification FQ11 in the specified measurement value format HQ81.
  • the sensing unit 260 generates a sensing signal dependent on the sensor sensitivity YQ81 by performing the sensing operation ZM81 to generate a sensing signal.
  • the processing unit 230 receives the sensing signal, and responds to the sensing signal to obtain a specific measurement value in the specified measurement value format HQ81, and executes a method for checking the specific measurement value.
  • the processing unit 230 uses the storage unit 250 to store the The obtained specific measurement value range code EH14 is assigned to the variable physical parameter range code UM8A.
  • the processing unit 230 determines whether the processing unit 230 uses the storage unit 250 to change the variable physical parameter range code UM8A in response to a specific sensing operation for sensing the variable physical parameter QP1A.
  • the specific sensing operation is performed by the sensing unit 260.
  • the method MM82 further includes the following steps: in response to the trigger event EQ81 related to the trigger application unit 281, receiving an operation request signal SX81; under the condition that the trigger event EQ81 occurs, all The processing unit 230 obtains an operation reference data code XK81 from the storage space SS11 in response to the operation request signal SX81; and the processing unit 230 executes using the operation reference data code XK81 by running a data determination program NE8A One of the data determines AE8A to determine the measurement value application range code EH1L selected from the plurality of different measurement value reference range codes EH11, EH12, ... so as to select from the plurality of different measurement value reference ranges RM11, RM12, ... Select the measurement value application range RM1L.
  • the operation reference data code XK81 is the same as an allowable reference data code preset based on the measurement application function specification GBL8.
  • the data determination program NE8A is constructed based on the measurement application function specification GBL8.
  • the data determination AE8A is one of a data determination operation AE81 and a data determination operation AE82.
  • the operation reference data code XK81 is obtained by the processing unit 230 by accessing the variable physical parameter range code UM8A stored in the storage space SS11 to be the same as the specific measurement value range code EH14 Under the condition of the data determination operation AE81, the data determination AE8A determines the measurement value application range code EH1L based on the obtained specific measurement value range code EH14. For example, the determined measurement value application range code EH1L is the same as or different from the obtained specific measurement value range code EH14.
  • the operation reference data code XK81 is obtained by the processing unit 230 by accessing the rated range limit value pair DC1A stored in the storage space SS11 to be the same as the preset rated range limit. Under the condition of the value pair DC1A, the data of the data determination operation AE82 determines that AE8A is obtained by performing a scientific calculation MF81 that uses the measured value VM81 and the obtained rated range limit value to DC1A.
  • the measurement value application range code EH1L is selected from a plurality of different measurement value reference range codes EH11, EH12, ... to determine the measurement value application range code EH1L. For example, the scientific calculation MF81 is executed based on a specific empirical formula XP81.
  • the specific empirical formula XP81 is formulated in advance based on the preset rated range limit value pair DC1A and the multiple different measurement value reference range codes EH11, EH12,... For example, the specific empirical formula XP81 is formulated in advance based on the measurement application function specification GBL8.
  • the method MM82 further includes a step: the processing unit 230 obtains the application range limit value pair DM1L based on the determined measurement value application range code EH1L.
  • the step of determining the physical parameter relationship KB81 includes the following sub-steps: the processing unit 230 compares CA81 based on the measured value VM81 and the obtained application range limit value pair DM1L, and checks the mathematical relationship KA81 is used to make a logical decision PH81 whether the measurement value VM81 is within the selected measurement value application range RM1L; and under the condition that the logical decision PH81 is affirmative, the processing unit 230 uses Identify the physical parameter relationship KB81 as a physical parameter intersection relationship to make the reasonable decision PA81 to be affirmative.
  • the The processing unit 230 makes the logical decision PH81 by comparing the measured value VM81 with the obtained application range limit value pair DM1L to become affirmative.
  • the processing unit 230 compares the measurement value VM81 with the obtained application range limit Value pair DM1L to make the logical decision PH81 to become affirmative.
  • the variable physical parameter QU1A exists in a control target device 130.
  • the trigger event EQ81 is one of a trigger action event, a user input event, a signal input event, a state change event, an identification medium occurrence event, and an integer overflow event, and is applied to the measurement application Function FB81.
  • the measurement value target range RN1T is represented by a measurement value target range code EM1T, and has a target range limit value pair DN1T; thereby, the measurement value target range code EM1T is configured to indicate the physical parameter target range RD1ET.
  • the measurement value target range code EM1T is preset based on the measurement application function specification GBL8. There is a mathematical relationship KY81 between the preset measurement value application range code EH1L and the preset measurement value target range code EM1T.
  • the method MM82 further includes the following steps: under the condition that the trigger event EQ81 of the trigger action event is about to occur, by using the control target device 130 to execute a variable related to the variable physical parameter QU1A A specific function operation ZH81, wherein the specific function operation ZH81 is used to cause the triggering event to occur; the operation unit 297 provides a response area AC1 for executing the measurement application function FB81; and the memory unit 25Y1 provides A memory space SA1 related to the measurement application function FB81.
  • the memory space SA1 has a memory location PM8L and a memory location PV8L different from the memory location PM8L.
  • the storage space SS11 includes the memory space SA1.
  • the method MM82 further includes the following steps: the memory unit 25Y1 stores the application range limit value pair DM1L in the memory location PM8L; and the memory unit 25Y1 stores a control data code CK8T in the memory location PV8L.
  • the memory location PM8L and the memory location PV8L are both identified based on the preset measurement value application range code EH1L.
  • the control data code CK8T includes the measurement value target range code EM1T.
  • the application range limit value pair DM1L and the control data code CK8T are stored based on the preset measurement value application range code EH1L.
  • the step of obtaining the application range limit value pair DM1L includes a sub-step: the processing unit 230 runs a data acquisition program NF8A to execute the operation using the determined measurement value application range code EH1L A data acquisition AF8A to obtain the application range limit value pair DM1L.
  • the data acquisition AF8A is one of a data acquisition operation AF81 and a data acquisition operation AF82.
  • the data acquisition program NF8A is constructed based on the measurement application function specification GBL8.
  • the data acquisition operation AF81 uses the memory unit 25Y1 based on the determined measurement value application range code EH1L to access the application range limit value pair DM1L stored in the memory location PM8L to obtain the application
  • the range limit is DM1L.
  • the data acquisition operation AF82 obtains the rated range limit value pair DC1A by reading the rated range limit value pair DC1A stored in the storage space SS11, and performs the measurement determined by using The value application range code EH1L and a scientific calculation MG81 of the obtained rated range limit value pair DC1A are used to obtain the application range limit value pair DM1L.
  • the rated range limit value pair DC1A includes a rated range limit value DC11 of the rated measurement value range RC1N and a rated range limit value DC12 relative to the rated range limit value DC11, and is based on the rated physical parameter
  • the range represents GB8E
  • the sensor measurement range represents GQ8R
  • the data encoding operation ZR81 is preset using the specified measurement value format HQ81.
  • the method MM82 further includes a step: under the condition that the reasonable decision PA81 is affirmative, the processing unit 230 executes a data acquisition AG8A using the determined measurement value application range code EH1L To obtain a control application code UA8T.
  • the data acquisition AG8A is one of a data acquisition operation AG81 and a data acquisition operation AG82.
  • the data acquisition operation AG81 accesses the control data code CK8T stored in the memory location PV8L based on the determined measurement value application range code EH1L to obtain the control application equal to the control data code CK8T Code UA8T.
  • the data acquisition operation AG82 obtains the value equal to the preset measurement value target range code EM1T by executing a scientific calculation MQ81 using the determined measurement value application range code EH1L and the mathematical relationship KY81. Control application code UA8T.
  • the method MM82 further includes the following steps: the processing unit 230 executes a signal generation control GS81 for the measurement application function FB81 within an operating time TD81 based on the obtained control application code UA8T to control the control application code UA8T.
  • the output unit 240; and the output unit 240 responds to the signal generation control GS81, and executes a signal generation operation BS81 for the measurement application function FB81 to generate the control signal SC81.
  • the control signal SC81 serves to indicate at least one of the measured value target range RN1T and the physical parameter target range RD1ET by transmitting the measured value target range code EM1T, and is used to cause the
  • the variable physical parameter QU1A is within the target range RD1ET of the physical parameter.
  • the multiple different physical parameter reference ranges RC1E1, RC1E2, ... further include a physical parameter candidate range RC1E2 that is different from the physical parameter application range RC1EL.
  • the multiple different measurement value reference ranges RM11, RM12,... Have a total reference range number NS81, and further include a measurement value candidate range RM12 representing the physical parameter candidate range RC1E2.
  • the measurement application function specification GBL8 further includes a physical parameter candidate range representation GB82 for representing the physical parameter candidate range RC1E2.
  • the measurement value candidate range RM12 is represented by a measurement value candidate range code EH12 that is different from the measurement value application range code EH1L, has a candidate range limit value pair DM1B, and is configured to represent the physical parameter candidate range RC1E2 ; With this, the measurement value candidate range code EH12 is configured to indicate the physical parameter candidate range RC1E2.
  • the candidate range limit value pair DM1B uses the specified physical parameter candidate range representation GB82, the sensor measurement range representation GQ8R, and a data encoding operation ZR83 for converting the physical parameter candidate range representation GB82.
  • the measured value format HQ81 is preset.
  • the measurement value candidate range RM12 is preset based on the physical parameter candidate range indication GB82, the sensor measurement range indication GQ8R, and the data encoding operation ZR83 using the specified measurement value format HQ81.
  • the total reference range number NS81 is preset based on the measurement application function specification GBL8.
  • the method MM82 further includes a step: the processing unit 230 responds to the trigger event EQ81 to obtain the total reference range number NS81.
  • the scientific calculation MF81 further uses the obtained total reference range number NS81.
  • the scientific calculation MG81 further uses the obtained total reference range number NS81. For example, the total number of reference ranges NS81 is greater than or equal to 2.
  • the method MM82 further includes the following steps: by using the control target device 130, receiving the control signal SC81; by using the control target device 130, obtaining the measurement value from the received control signal SC81 Target range code EM1T; and by using the control target device 130, based on the obtained measurement value target range code EM1T, the variable physical parameter QU1A is caused to be within the physical parameter target range RD1ET.
  • the control signal SC81 conveys a piece of control information CG81 determined based on the control application code UA8T.
  • the control information CG81 includes the measurement value target range code EM1T.
  • the control information CG81 includes the target range limit value pair DN1T and the control code CC1T.
  • the measurement value application range RM1L is a first part of the rated measurement value range RC1N.
  • the measurement value candidate range RM12 is a second part of the rated measurement value range RC1N.
  • the physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are separate or adjacent. Under the condition that the physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are separated, the measurement value application range RM1L and the measurement value candidate range RM12 are separated. Under the condition that the physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are adjacent, the measurement value application range RM1L and the measurement value candidate range RM12 are adjacent.
  • the measurement value application range code EH1L is configured to be equal to an integer.
  • the rated range limit value DC12 is greater than the rated range limit value DC11.
  • the relative value VC11 is equal to a calculation result of the rated range limit value DC12 minus the rated range limit value DC11.
  • the application range limit value pair DM1L is determined based on the rated range limit value DC11, the rated range limit value DC12, the integer, and a ratio of the relative value VC11 to the total reference range number NS81 Preset.
  • the scientific calculation MG81 uses one of the rated range limit value DC11, the rated range limit value DC12, the integer, the ratio, and any combination thereof.
  • the method MM82 further includes the following steps: under the condition that the logic determines PH81 is negative, the processing unit 230 executes a scientific method using the determined measurement value application range code EH1L MF82 is calculated to determine the measurement value candidate range code EH12 selected from the plurality of different measurement value reference range codes EH11, EH12, ... so as to select the measurement value reference range RM11, RM12, ... The measurement value candidate range RM12; and the processing unit 230 obtains the candidate range limit value pair DM1B based on the determined measurement value candidate range code EH12.
  • the method MM82 further includes the following steps: the processing unit 230 compares CA91 based on the measured value VM81 and the obtained candidate range limit value pair DM1B, and checks the measured value VM81 and the selected A mathematical relationship KA91 between the measured value candidate range RM12 is used to make a logical decision PH91 whether the measured value VM81 is within the selected measured value candidate range RM12; in the logical decision PH91 is Under a positive condition, the processing unit 230 determines the physical parameter candidate range RC1E2 in which the variable physical parameter QP1A is currently located; and the physical parameter candidate range RC1E2 in which the variable physical parameter QP1A is currently located is captured Under the condition determined by the processing unit 230, the processing unit 230 causes the output unit 240 to execute a signal generation operation BS91 for the measurement application function FB81 to generate a control for controlling the variable physical parameter QU1A Signal SC82.
  • the control signal SC82 is different from the control signal SC81.
  • the method MM82 further includes a step: when the specific measurement value range code EH14 is different from the determined measurement value application range code EH1L and the variable physical parameter QP1A is currently in the physical parameter application range RC1EL, borrow Under the condition determined by making the logical decision PH81, the processing unit 230 is based on the variable physical parameter range code UM8A equal to the specific measurement value range code EH14 and the determined measurement value application range A code difference DA81 between the codes EH1L uses the storage unit 250 to assign the determined measurement value application range code EH1L to the variable physical parameter range code UM8A.
  • the method MM82 further includes a step: under the condition that the trigger event EQ81 is the state change event in which the variable physical parameter QP1A enters the physical parameter application range RC1EL from the specific physical parameter range RC1E4, The processing unit 230 determines that it is the trigger event EQ81 of the state change event based on the code difference DA81.
  • the step of obtaining the measurement value VM81 includes a sub-step: under the condition that the trigger event EQ81 is the occurrence event of the identification medium and an identification medium 310 that appears in the response area AC1 is identified by the processing unit 230 The processing unit 230 obtains the measurement value VM81 based on the sensing signal SM81.
  • the method MM82 further includes the following steps: when the trigger event EQ81 occurs, the output unit 240 displays a status indicator LA81, wherein the status indicator LA81 is used to indicate the variable physical parameter QP1A is configured in a specific state XH81 within the specific physical parameter range RC1E4; and when the specific measurement value range code EH14 is different from the determined measurement value application range code EH1L and the variable physical parameter QP1A Under the condition that the current physical parameter application range RC1EL is determined by the processing unit 230 by making the logical decision PH81, the processing unit 230 changes the status indication LA81 based on the code difference DA81 A status indicates LA82. For example, the state indication LA82 is used to indicate that the variable physical parameter QP1A is configured in a specific state XH82 within the physical parameter application range RC1EL.
  • the method MM82 further includes the following steps: a control response signal SE81 generated by the control target device 130 in response to the control signal SC81 is transferred from the control target within a specified time TW81 after the operation time TD81 Under the condition that the device 130 is received by the input unit 270, the processing unit 230 responds to the control response signal SE81 to execute a specific actual operation BJ81 related to the variable physical parameter QU1A; at the operating time TD81 After that, the sensing unit 260 senses the variable physical parameter QP1A to generate a sensing signal SM82; and within a specified time TE82 after the operating time TD81, the processing unit 230 responds to the sensing
  • the measurement signal SM82 is used to obtain a measurement value VM82 in the specified measurement value format HQ81.
  • the sensing unit 260 senses the variable physical parameter QP1A to perform a sensing signal that depends on the sensor sensitivity YQ81 to generate HE82, and the sensing signal generates HE82 for generating HE82.
  • the method MM82 further includes a step: the processing unit 230 performs a scientific calculation MF83 using the determined measurement value application range code EH1L within the specified time TE82 to obtain the information contained in the multiple A specific measurement value range code EH17 among the four different measurement value reference range codes EH11, EH12,...
  • the specific measurement value range code EH17 is different from the determined measurement value application range code EH1L, and represents a specific measurement value range RM17 included in the plurality of different measurement value reference ranges RM11, RM12, ... .
  • the specific measurement value range RM17 represents a specific physical parameter range RC1E7 included in the plurality of different physical parameter reference ranges RC1E1, RC1E2,...
  • the method MM82 further includes the following steps: the processing unit 230 executes a check for checking between the measurement value VM82 and the specific measurement value range RM17 based on the specific measurement value range code EH17 A check operation BA83 of a fourth mathematical relationship KA83; and the specific physical parameter range RC1E7 in which the variable physical parameter QP1A is currently in is processed based on the check operation BA83 within the specified time TE82 Under the condition determined by the unit 230, the processing unit 230 causes the output unit 240 to generate a control signal SC83 for controlling the variable physical parameter QU1A, and assigns the specific measurement value range code EH17 to the available Change the physical parameter range code UM8A. For example, the control signal SC83 is different from the control signal SC81.
  • the step of sensing the variable physical parameter QP1A includes a sub-step: under the condition that the trigger event EQ81 occurs, the sensing unit 260 senses the variable physical parameter QP1A under a restraining condition FP81 to provide The sensing signal SM81 is sent to the processing unit 230.
  • the constraint condition FP81 is that the variable physical parameter QP1A is equal to a specific physical parameter QP11 included in the rated physical parameter range RC1E.
  • the step of obtaining the measurement value VM81 includes a sub-step: the processing unit 230 estimates the specific physical parameter QP11 based on the sensing signal SM81 to obtain the measurement value VM81.
  • the processing unit 230 recognizes that the measurement value VM81 is within the measurement value application range RM1L An allowable value to identify the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L as a numerical intersection relationship, and thereby determine where the variable physical parameter QP1A is currently located
  • the application range of the physical parameters is RC1EL.
  • the sensing unit 260 is characterized based on the sensor sensitivity YQ81 related to the sensing signal generation HE81, and is configured to comply with the sensor specification FQ11.
  • the sensor specification FQ11 includes the sensor sensitivity representation GQ81 for representing the sensor sensitivity YQ81, and the sensor measurement range representation GQ8R for representing the sensor measurement range RA8E.
  • the rated physical parameter range RC1E is configured to be the same as the sensor measurement range RA8E, or is configured to be a part of the sensor measurement range RA8E.
  • the sensor measurement range RA8E is related to a physical parameter sensing performed by the sensing unit 260.
  • the sensor measurement range means that GQ8R is provided based on a first preset measurement unit.
  • the first preset measurement unit is one of a metric measurement unit and an English measurement unit.
  • the multiple different measurement value reference ranges RM11, RM12, ... are all preset based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11 in the specified measurement value format HQ81.
  • the rated measurement value range RC1N and the rated range limit value pair DC1A are based on the rated physical parameter range representing GB8E, the sensor measurement range representing GQ8R, the sensor sensitivity representing GQ81, and the data encoding operation ZR81
  • the measurement value application range RM1L and the application range limit value pair DM1L are all based on the physical parameter application range representation GB8L, the sensor measurement range representation GQ8R, the sensor sensitivity representation GQ81, and the data encoding operation ZR82.
  • the specified measurement value format HQ81 is preset.
  • the measurement value candidate range RM12 and the candidate range limit value pair DM1B are used based on the physical parameter candidate range representing GB82, the sensor measurement range representing GQ8R, the sensor sensitivity representing GQ81, and the data encoding operation ZR83.
  • the specified measurement value format HQ81 is preset.
  • the rated physical parameter range represents GB8E
  • the physical parameter application range represents GB8L
  • the physical parameter candidate range represents GA8T
  • the physical parameter candidate range represents GB82 are provided based on a second preset measurement unit.
  • the second preset measurement unit is one of a metric measurement unit and an English measurement unit, and is the same as or different from the first preset measurement unit.
  • the sensing unit 334 is characterized based on the sensor sensitivity YW81 related to the generation of a sensing signal, and is configured to comply with the sensor specification FU11.
  • the sensor specification FU11 includes the sensor sensitivity indication GW81 for indicating the sensor sensitivity YW81, and the sensor measurement range indication GW8R for indicating the sensor measurement range RB8E.
  • the physical parameter target range RD1ET is configured to be a part of the sensor measurement range RB8E.
  • the sensor measurement range RB8E is related to a physical parameter sensing performed by the sensing unit 334.
  • the sensor measurement range indicates that the GW8R is provided based on a third preset measurement unit.
  • the third preset measurement unit is one of a metric measurement unit and an English measurement unit.
  • the variable physical parameter QU1A is further characterized based on the sensor measurement range RB8E.
  • the variable physical parameter QP1A is further characterized based on the sensor measurement range RA8E.
  • the sensor measurement range represents GQ8R
  • the rated physical parameter range represents GB8E
  • the physical parameter application range represents GB8L
  • the physical parameter candidate range represents GA8T
  • the physical parameter candidate range represents GB82 and the sensor measurement
  • the range indicates that GW8R belongs to the decimal data type.
  • the measurement value VM81, the measurement value VM82, the rated range limit value pair DC1A, the application range limit value pair DM1L, the target range limit value pair DN1T, and the candidate range limit value pair DM1B all belong to all
  • the binary data types mentioned above are all suitable for computer processing.
  • the sensor specification FQ11, the sensor specification FU11, and the measurement application function specification GBL8 are all preset.
  • the memory location PM8L is identified based on a memory address FM8L.
  • the memory address FM8L is preset based on the preset measurement value application range code EH1L.
  • the memory location PV8L is identified based on a memory address FV8L.
  • the memory address FV8L is preset based on the preset measurement value application range code EH1L.
  • the method MM82 further includes the following steps: before the trigger event EQ81 occurs, the processing unit 230 obtains the preset measurement value application range code EH1L, the preset application range limit value pair DM1L, and The preset control data code CK8T; the processing unit 230 obtains the memory address FM8L based on the obtained measurement value application range code EH1L; and before the trigger event EQ81 occurs, the processing unit 230, based on the obtained application range limit value pair DM1L and the obtained memory address FM8L, provide a write request including the obtained application range limit value pair DM1L and the obtained memory address FM8L Information WB8L.
  • the write request information WB8L is used to store the delivered application range limit value pair DM1L in the memory location PM8L.
  • the method MM82 further includes the following steps: the processing unit 230 applies the range code EH1L based on the obtained measurement value to obtain the memory address FV8L; and before the trigger event EQ81 occurs, the processing unit 230 applies the range code EH1L based on
  • the acquired control data code CK8T and the acquired memory address FV8L provide a write request information WA8L including the acquired control data code CK8T and the acquired memory address FV8L.
  • the write request information WA8L is used to cause the memory unit 25Y1 to store the delivered control data code CK8T in the memory location PV8L.
  • the identification medium 310 is one of an electronic tag 350, a barcode medium 360, and a biometric identification medium 370.
  • FIG. 56 is a schematic diagram of an implementation structure 8017 of the control system 861 shown in FIG. 1.
  • the implementation structure 8017 includes the control device 212, the control target device 130, and the server 280.
  • the processing unit 230 performs an application for checking the measurement value VM81 and the measurement value by comparing the obtained measurement value VM81 with the obtained application range limit value pair DM1L.
  • the processing unit 230 determines the physical parameter application range RC1EL that the variable physical parameter QP1A is currently in based on the checking operation BA81, the processing unit 230 causes the output unit 240 to generate The control signal SC81 that controls the variable physical parameter QU1A.
  • the variable physical parameter QP1A corresponds to the variable physical parameter QU1A.
  • the control device 212 is installed in an application environment EX81.
  • the variable physical parameter QP1A exists in a physical parameter formation area AT11.
  • One of the control device 212 and the application environment EX81 has the variable physical parameter QP1A.
  • the sensing unit 260 is coupled to the physical parameter formation area AT11 having the variable physical parameter QP1A.
  • the variable physical parameter QU1A exists in a physical parameter formation area AU11.
  • the physical parameter formation area AT11 is adjacent to the control device 212.
  • the sensing unit 260 includes the physical parameter formation area AT11.
  • the physical parameter formation area AU11 and the physical parameter formation area AT11 are separate and are respectively formed at the actual position LD81 and the actual position LC81; thereby, the variable physical parameter QU1A and the physical parameter are formed separately.
  • the variable physical parameters QP1A are respectively formed at the actual position LD81 and the actual position LC81 which is different from the actual position LD81.
  • the physical parameter formation area AT11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area.
  • the physical parameter formation area AU11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area.
  • the variable physical parameter QP1A is characterized based on the corresponding physical parameter range RW1EL corresponding to the physical parameter application range RC1EL.
  • the corresponding physical parameter range RW1EL is represented by a corresponding measurement value range RV1L.
  • a range combination of the measurement value application range RM1L and the corresponding measurement value range RV1L is equal to the rated measurement value range RC1N.
  • the corresponding measurement value range RV1L is preset based on one of the sensor measurement range indication GQ8R and the sensor specification FQ11 in the designated measurement value format HQ81.
  • the corresponding measurement value range RV1L is preset based on the corresponding physical parameter range RW1EL and the rated measurement value range RC1N.
  • the measurement application function FB81 is related to the memory unit 25Y1. Under the condition that the trigger event EQ81 is applied to the measurement application function FB81, the processing unit 230 is coupled to the memory unit 25Y1. For example, the storage unit 250 includes the memory unit 25Y1. Under the condition that the processing unit 230 recognizes that the mathematical relationship KA81 is a numerical intersection relationship KU81 based on the data comparison CA81 between the measured value VM81 and the obtained application range limit value pair DM1L, The processing unit 230 makes the logical decision PH81 to become affirmative.
  • the processing unit 230 determines the current physical parameter status of the variable physical parameter QP1A within the physical parameter application range RC1EL, and borrows This identifies a physical parameter relationship KB81 between the variable physical parameter QP1A and the physical parameter application range RC1EL, which is a physical parameter intersection relationship of the variable physical parameter QP1A currently within the physical parameter application range RC1EL .
  • the processing unit 230 checks the physical parameter relationship KB81 by checking the mathematical relationship KA81.
  • the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter application range RC1EL, the processing unit 230 executes the data using the determined measurement value application range code EH1L Acquire AG8A to obtain the control application code UA8T, and based on the obtained control application code UA8T, cause the output unit 240 to perform the signal generation operation BS81 for the measurement application function FB81 to generate The control signal SC81 of the control target device 130.
  • the processing unit 230 processes the received sensing signal SM81 to obtain a measurement value sequence JM81 including the measurement value VM81.
  • the processing unit 230 performs a mathematical procedure for checking the measurement value sequence JM81 and the measurement value application range RM1L by comparing the measurement value sequence JM81 with the obtained application range limit value pair DM1L.
  • a check operation of the relationship KA85 is BA85.
  • the processing unit 230 makes the logical decision PH81 based on the check operation BA85.
  • the inspection operation BA85 includes the inspection operation BA81.
  • the application range limit value pair DM1L belongs to a measurement range limit data code type TM81.
  • the measurement range limit data code type TM81 is identified by a measurement range limit data code type identifier HM81.
  • the control data code CK8T belongs to a control data code type TK81.
  • the control data code type TK81 is identified by a control data code type identifier HK81.
  • the measurement range limit data code type identifier HM81 and the control data code type identifier HK81 are preset.
  • the memory location PM8L is identified based on the memory address FM8L, or is identified by the memory address FM8L.
  • the memory location PV8L is identified based on the memory address FV8L, or is identified by the memory address FV8L.
  • the memory address FM8L is preset based on the preset measurement value application range code EH1L and the preset measurement range limit data code type identifier HM81.
  • the memory address FV8L is preset based on the preset measurement value application range code EH1L and the preset control data code type identifier HK81.
  • the processing unit 230 is configured to obtain the preset measurement range limit data code type identifier HM81.
  • the data obtaining operation AF81 obtains the memory address FM8L based on the determined measurement value application range code EH1L and the obtained measurement range limit data code type identifier HM81, and based on the obtained memory address FM8L uses the memory unit 25Y1 to access the application range limit value pair DM1L stored in the memory location PM8L.
  • the plurality of different measurement value reference ranges RM11, RM12,... Have the total number of reference ranges NS81.
  • the total number of reference ranges NS81 is preset.
  • the storage unit 250 stores the total reference range number NS81 and the rated range limit value pair DC1A.
  • the processing unit 230 performs multiple scientific calculations in response to the trigger event EQ81 to obtain the preset total reference range number NS81 and the preset rated range limit value pair DC1A, or respond to the trigger event EQ81 is used to obtain the total reference range number NS81 and the rated range limit value pair DC1A from the storage unit 250.
  • the data determination operation AE82 is performed by using the obtained measurement value VM81, the obtained total reference range number NS81, and the obtained total reference range number NS81.
  • the scientific calculation MF81 of the rated range limit value to DC1A is used to obtain the preset measurement value application range code EH1L in order to check the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L .
  • the scientific calculation MF81 is pre-built based on the preset total reference range number NS81 and the preset rated range limit value pair DC1A.
  • the data acquisition operation AF82 is performed by performing the scientific calculation MG81 using the determined measurement value application range code EH1L, the obtained rated range limit value pair DC1A, and the obtained total reference range number NS81 To obtain the application range limit value pair DM1L.
  • the processing unit 230 is configured to obtain the preset control data code type identifier HK81. Under the condition that the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter application range RC1EL, the processing unit 230 applies the range code EH1L based on the determined measurement value and the obtained obtained obtained
  • the control data code type identifier HK81 is used to obtain the memory address FV8L, and the memory unit 25Y1 is used based on the obtained memory address FV8L to access the control data code CK8T stored in the memory location PV8L , And cause the output unit 240 to perform the signal generation operation BS81 to generate the control signal SC81 based on the accessed control data code CK8T.
  • the processing unit 230 responds to the trigger event EQ81 to cause the variable physical parameter QP1A to be formed in the physical parameter formation area AT11.
  • the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81.
  • the physical parameter formation area AT11 is a user interface area.
  • FIG. 57 is a schematic diagram of an implementation structure 8018 of the control system 861 shown in FIG. 1.
  • the implementation structure 8018 includes an identification medium 310, the control device 212, the control target device 130, and the server 280.
  • the control device 212 is linked to the server 280.
  • the control device 212 is configured to control the variable physical parameter QU1A existing in the control target device 130 by relying on the identification medium 310, and includes the operation unit 297 and the sensing unit 260.
  • the operation unit 297 includes the processing unit 230, the input unit 270, and the output unit 240.
  • the processing unit 230 is coupled to the server 280.
  • the measurement application function FB81 is an identification application function.
  • the trigger event EQ81 is an event that recognizes the occurrence of the medium.
  • the operation unit 297 includes the response area AC1 and the reader 220.
  • the response area AC1 is used to execute the measurement application function FB81.
  • the reader 220 is coupled to the response area AC1 and the processing unit 230. Under the condition that the trigger event EQ81 occurs when the identification medium 310 appears in the response area AC1, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81.
  • the processing unit 230 receives the sensing signal SM81, and responds to the trigger event EQ81 to process the received sensing signal SM81 to obtain the measurement value VM81. For example, under the condition that the processing unit 230 recognizes the identification medium 310 appearing in the response area AC1 through the reader 220, the processing unit 230 processes the received sensing signal SM81 To obtain the measured value VM81.
  • the identification medium 310 is identified by an identification medium identifier HU11, records the identification medium identifier HU11, the application range limit value pair DM1L and the control data code CK8T, and is an electronic label 350 and a barcode medium One of 360 and a biometric identification medium 370.
  • the reader 220 performs a reading operation BX81 for the identification application function to read the identification medium 310 to obtain a Read data DB81.
  • the processing unit 230 determines an identification medium identification code CU81 equal to the identification medium identifier HU11 based on the read data DB81, and thereby identifies the identification medium 310.
  • the processing unit 230 responds to the operation request signal SX81 to cause the reader 220 to read the recorded identification medium identifier HU11, the recorded application range limit value pair DM1L, and the recorded The control data code CK8T, and thereby obtain the recorded identification medium identifier HU11, the recorded application range limit value pair DM1L and the recorded identification medium 310 from the identification medium 310 through the reader 220 The control data code CK8T.
  • the processing unit 230 Under the condition that the processing unit 230 obtains the measurement value VM81, the processing unit 230 performs the check for checking the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L Operate BA81. Under the condition that the processing unit 230 determines the physical parameter application range RC1EL that the variable physical parameter QP1A is currently in based on the check operation BA81, the processing unit 230 causes the output unit 240 to generate the control Signal SC81.
  • the implementation structure 8018 further includes a control target device 630.
  • the control device 212 is identified by a control device identifier HAOT, and is used to control the control target device 630.
  • the output unit 240 has an output terminal 240P and an output terminal 240Q; thereby, the operating unit 297 has the output terminal 240P and the output terminal 240Q.
  • the output terminal 240P and the output terminal 240Q are respectively located at different spatial positions.
  • the control target device 130 is coupled to the output terminal 240P and is identified by a control target device identifier HA1T.
  • the control target device 630 is coupled to the output terminal 240Q and is identified by a control target device identifier HA12.
  • control device identifier HAOT is a control device number and is preset.
  • the control target device identifier HA1T is configured to indicate that the output terminal 240P is a first control target device number and is preset.
  • the control target device identifier HA12 is configured to indicate that the output terminal 240Q is a second control target device number and is preset.
  • the memory location PM8L is identified based on the memory address FM8L.
  • the memory address FM8L is preset based on the preset measurement value application range code EH1L and the preset control target device identifier HA1T.
  • the memory location PV8L is identified based on the memory address FV8L.
  • the memory address FV8L is preset based on the preset measurement value application range code EH1L and the preset control target device identifier HA12.
  • the processing unit 230 obtains the preset control target device identifier HA1T in response to the trigger event EQ81.
  • the data obtaining operation AF81 obtains the memory address FM8L based on the obtained control target device identifier HA1T and the determined measurement value application range code EH1L, and uses it based on the obtained memory address FM8L
  • the memory unit 25Y1 accesses the preset application range limit value pair DM1L stored in the memory location PM8L.
  • the processing unit 230 determines the current physical parameter application range RC1EL of the variable physical parameter QP1A, the processing unit 230 is based on the obtained control target device identifier HA1T and the determined all The measurement value application range code EH1L is used to obtain the memory address FV8L, and the memory unit 25Y1 is used based on the obtained memory address FV8L to access the control data code CK8T stored in the memory location PV8L .
  • the processing unit 230 executes the signal generation control GS81 for the measurement application function FB81 based on the obtained control target device identifier HA1T and the obtained control data code CK8T to control the output unit 240.
  • the signal generation control GS81 plays a role of instructing the output terminal 240P, and is used to cause the processing unit 230 to provide a control signal SH81 to the output unit 240.
  • the control signal SH81 plays a role of instructing the output terminal 240P.
  • the output unit 240 responds to one of the signal generation control GS81 and the control signal SH81 to execute the signal generation operation BS81 using the output terminal 240P to transmit the control signal to the control target device 130 SC81.
  • the processing unit 230 is configured to obtain the preset control device identifier HAOT.
  • the control signal SC81 includes at least one of the obtained control device identifier HA0T, the obtained control target device identifier HA1T, and the obtained control code CC1T.
  • the processing unit 230 obtains the preset control target device identifier HA12 in response to a trigger event EQ21, and performs a signal generation control based on the obtained control target device identifier HA12 GS89 to control the output unit 240.
  • the signal generation control GS89 plays a role of instructing the output terminal 240Q.
  • the output unit 240 generates a control GS89 in response to the signal to use the output terminal 240Q to transmit a control signal SC89 to the control target device 630.
  • the control signal SC89 is used to control the control target device 630.
  • the storage unit 250 stores the preset control device identifier HA0T, the preset control target device identifier HA1T, and the preset control target device identifier HA12.
  • the processing unit 230 is configured to obtain the preset control device identifier HAOT from the storage unit 250.
  • the processing unit 230 obtains the preset control target device identifier HA1T from the storage unit 250 in response to the trigger event EQ81.
  • the processing unit 230 obtains the preset control target device identifier HA12 from the storage unit 250 in response to the trigger event EQ21.
  • the storage unit 250 has a first application memory location and a second application memory location, and stores the rated range limit value pair DC1A in the first application memory location, and stores it in the second application memory location.
  • the variable physical parameter range code is UM8A.
  • the first application memory location is identified by a first application memory address, or is identified based on the first application memory address.
  • the second application memory location is identified by a second application memory address, or is identified based on the second application memory address.
  • the first application memory address and the second application memory address are preset based on the preset control target device identifier HA1T.
  • the data obtaining operation AF82 obtains the first application memory address based on the obtained control target device identifier HA1T, and uses the storage unit 250 to read based on the obtained first application memory address.
  • the rated range limit value pair DC1A stored in the first application memory location is used to obtain the preset rated range limit value pair DC1A.
  • the processing unit 230 is configured to obtain the second application memory address based on the obtained control target device identifier HA1T, and to use the storage unit 250 based on the obtained second application memory address. Access the variable physical parameter range code UM8A stored in the second application memory location.
  • the physical parameter target range RD1ET has a preset physical parameter target range limit ZD1T1 and a preset physical parameter target range limit ZD1T2 relative to the preset physical parameter target range limit ZD1T1.
  • the target range limit value pair DN1T includes a target range limit value DN17 of the measured value target range RN1T and a target range limit value DN18 relative to the target range limit value DN17.
  • the preset physical parameter target range limit ZD1T1 is represented by the target range limit value DN17.
  • the preset physical parameter target range limit ZD1T2 is represented by the target range limit value DN18.
  • FIG. 56 is a schematic diagram of an implementation structure 8019 of the control system 861 shown in FIG. 1.
  • the implementation structure 8019 includes the control device 212, the control target device 130, and the server 280.
  • the control device 212 is linked to the server 280.
  • the control device 212 is configured to control the variable physical parameter QU1A existing in the control target device 130 by relying on the trigger event EQ81, and includes the operating unit 297 and the sensing unit 260.
  • the operation unit 297 includes the processing unit 230, the input unit 270, and the output unit 240.
  • the processing unit 230 is coupled to the server 280.
  • the measurement application function FB81 is a signal input application function.
  • the trigger event EQ81 is a signal input event. Under the condition that the trigger event EQ81 occurs when the input unit 270 receives a trigger signal ST81, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81.
  • the trigger signal ST81 is provided by one of a function switch 470 and a signal generator 472.
  • the server 280 includes the memory unit 25Y1.
  • the input unit 270 is coupled to at least one of the function switch 470 and the signal generator 472.
  • the input unit 270 is the trigger application unit 281, and responds to the trigger signal ST81 to provide the operation request signal SX81 to the processing unit 230, thereby enabling the processing unit 230 to receive the operation request Signal SX81.
  • the measurement application function FB81 is a user input application function.
  • the trigger event EQ81 is a user input event.
  • the control device 212 further includes an electrical application target WJ11 coupled to the processing unit 230. Under the condition that the input unit 270 receives a user input operation JU81 and the trigger event EQ81 occurs, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81.
  • the user input operation JU81 is used to select the electrical application target WJ11.
  • the control device 212 is used by a user 295.
  • the user input operation JU81 is performed by the user 295.
  • the electrical application target WJ11 is an electrical application unit.
  • the electrical application target WJ11 is one of a sensing target and a display target. Under the condition that the electrical application target WJ11 is the sensing target, the input unit 270 includes the electrical application target WJ11. Under the condition that the electrical application target WJ11 is the display target, the output unit 240 includes the electrical application target WJ11.
  • the input unit 270 is the trigger application unit 281, and responds to the user input operation JU81 to provide an operation request signal SZ81 to the processing unit 230, thereby enabling the processing unit 230 to receive the operation request signal SZ81 .
  • the processing unit 230 determines the trigger event EQ81 in response to the operation request signal SZ81. For example, under the condition that the processing unit 230 determines the trigger event EQ81, the processing unit 230 obtains the measurement value VM81 based on the sensing signal SM81.
  • FIG. 57 is a schematic diagram of an implementation structure 8020 of the control system 861 shown in FIG. 1.
  • FIG. 58 is a schematic diagram of an implementation structure 8021 of the control system 861 shown in FIG. 1.
  • each of the implementation structure 8020 and the implementation structure 8021 includes the control device 212, the control target device 130, and the server 280.
  • the control device 212 is linked to the server 280.
  • the control device 212 is configured to control the variable physical parameter QU1A existing in the control target device 130 by relying on the trigger event EQ81, and includes the operating unit 297 and the sensing unit 260.
  • the operation unit 297 includes the processing unit 230, the input unit 270, and the output unit 240.
  • the processing unit 230 is coupled to the server 280.
  • the control target device 130 includes an operating unit 397, the sensing unit 334 coupled to the operating unit 397, and a functional unit 335 coupled to the operating unit 397.
  • the functional unit 335 is controlled by the operating unit 397 and includes the physical parameter forming area AU11 having the variable physical parameter QU1A.
  • the variable physical parameter QU1A is further characterized based on a rated physical parameter range RD1E including the physical parameter target range RD1ET.
  • the rated physical parameter range RD1E is represented by a rated measurement value range RD1N, and includes a plurality of different physical parameter reference ranges RD1E1, RD1E2, ... represented by a plurality of different measurement value reference ranges RN11, RN12, ....
  • the multiple different physical parameter reference ranges RD1E1, RD1E2,... include the physical parameter target range RD1ET and a physical parameter candidate range RD1E2.
  • the functional unit 335 is a physical parameter application unit.
  • the rated measurement value range RD1N includes the multiple different measurement value reference ranges RN11, RN12, ..., and is based on the rated physical parameter range representing GB8E, the sensor measurement range representing GQ8R, and used to convert the rated physical parameter
  • the range indicates that the data encoding operation ZR81 of GB8E is preset using the specified measurement value format HQ81.
  • the multiple different measurement value reference ranges RN11, RN12, ... include the measurement value target range RN1T and a measurement value candidate range RN12 representing the physical parameter candidate range RD1E2.
  • the measurement value candidate range RN12 is represented by a measurement value candidate range code EM12 and has a candidate range limit value pair DN1B, whereby the measurement value candidate range code EM12 is configured to indicate the physical parameter candidate range RD1E2.
  • the variable physical parameter QU1A is configured to be within a specific physical parameter range RD1E4.
  • the specific physical parameter range RD1E4 is included in the multiple different physical parameter reference ranges RD1E1, RD1E2,...
  • the triggering event caused by the control target device 130 is a state change event.
  • the control device 212 further includes a state change detector 475 coupled to the processing unit 230.
  • the state change detector 475 is one of a limit detector and an edge detector.
  • the limit detector is a limit switch 485.
  • the state change detector 475 is configured to detect the arrival of a characteristic physical parameter related to a preset characteristic physical parameter UL81 to the ZL82.
  • the preset characteristic physical parameter UL81 is a preset limit position.
  • the characteristic physical parameter reaching ZL82 is a limit position reaching.
  • the functional unit 335 includes a physical parameter application area AJ11.
  • the physical parameter application area AJ11 has a variable physical parameter QG1A.
  • the variable physical parameter QG1A is dependent on the variable physical parameter QU1A, and is characterized based on the preset characteristic physical parameter UL81.
  • the physical parameter application area AJ11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area.
  • the preset characteristic physical parameter UL81 is related to the variable physical parameter QU1A.
  • the operating unit 397 receives a control signal SC80 from the output unit 240.
  • the operating unit 397 executes a signal generation control GY80 in response to the received control signal SC80 to generate a function signal SG80 for controlling the variable physical parameter QU1A.
  • the function unit 335 receives the function signal SG80 from the operation unit 397, and executes the specific function operation ZH81 related to the variable physical parameter QU1A in response to the received function signal SG80.
  • the specific function operation ZH81 is used to control the variable physical parameter QG1A, and cause the trigger event EQ81 to occur by changing the variable physical parameter QG1A.
  • the variable physical parameter QG1A is configured to be in a variable physical state XA8A.
  • the operation unit 397 is controlled by the control device 212 so that the function unit 335 executes the specific function operation ZH81.
  • the rated measurement value range RD1N has a rated range limit value pair DD1A.
  • the state change detector 475 generates a trigger signal SX8A in response to the specific function operation ZH81.
  • the specific functional operation ZH81 causes the variable physical parameter QG1A to reach the preset Set the characteristic physical parameter UL81 to form the characteristic physical parameter reaching ZL82, and by forming the characteristic physical parameter reaching ZL82, change the variable physical state XA8A from a non-characteristic physical parameter reaching state XA81 to an actual characteristic physical parameter State XA82 is reached.
  • the state change detector 475 generates the trigger signal SX8A in response to the characteristic physical parameter reaching the ZL82.
  • the actual characteristic physical parameter arrival state XA82 is characterized based on the preset characteristic physical parameter UL81.
  • the state change detector 475 responds to a state change event in which the variable physical parameter QG1A is changed from the non-characteristic physical parameter reaching state XA81 to the actual characteristic physical parameter reaching state XA82 to generate the trigger signal SX8A .
  • the state change detector 475 is a trigger application unit, and provides the trigger signal SX8A to the processing unit 230 in response to the characteristic physical parameter reaching the ZL82.
  • the trigger signal SX8A is an operation request signal.
  • the input unit 270 is coupled to the state change detector 475.
  • the trigger event EQ81 is the state change event in which the variable physical parameter QG1A enters the actual characteristic physical parameter arrival state XA82.
  • One of the input unit 270 and the processing unit 230 receives the trigger signal SX8A.
  • the processing unit 230 obtains the control application code UA8T in response to the received trigger signal SX8A, and executes the measurement application within the operation time TD81 based on the obtained control application code UA8T
  • the signal generation control GS81 of the function FB81 causes the output unit 240 to generate the control signal SC81.
  • the operation request signal SX81 is equal to the trigger signal SX8A.
  • the trigger application unit 281 is related to a trigger event EQ80, generates an operation request signal SX80 in response to the trigger event EQ80, provides the operation request signal SX80 to the processing unit 230, and thereby causes the processing unit 230 receives the operation request signal SX80.
  • the processing unit 230 responds to the operation request signal SX80 to cause the output unit 240 to transmit the control signal SC80 to the input unit 337.
  • the input unit 270 includes a touch screen 2701. Under the condition that the electrical application target WJ11 is the sensing target, the touch screen 2701 includes the electrical application target WJ11.
  • the touch screen 2701 is the trigger application unit 281, and provides the operation request signal SX81 to the processing unit 230 in response to the user input operation JU81 using the electrical application target WJ11.
  • the state change detector 475 is the limit switch 485
  • the characteristic physical parameter reaching ZL82 is equal to a variable space position and the variable physical parameter QG1A reaches a preset limit position.
  • a limit position of the preset characteristic physical parameter UL81 is reached.
  • the functional unit 335 forms the variable physical parameter QG1A in the physical parameter application area AJ11 by executing the specific functional operation ZH81 caused based on the variable physical parameter QU1A.
  • the state change detector 475 detects that the characteristic physical parameter reaches the ZL82.
  • the processing unit 230 uses the sensing signal SM81 to obtain the measurement value VM81 in response to the received trigger signal SX8A.
  • the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter application range RC1EL by checking the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L Under conditions, the processing unit 230 executes the data acquisition AG8A using the determined measurement value application range code EH1L to obtain the control application code UA8T, and causes the control application code UA8T to cause all the results based on the obtained control application code UA8T.
  • the output unit 240 generates the control signal SC81 that functions to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET.
  • variable physical parameter QU1A is a first variable electrical parameter, a first variable mechanical parameter, a first variable optical parameter, a first variable temperature, a first variable Variable voltage, a first variable current, a first variable electric power, a first variable resistor, a first variable capacitor, a first variable inductance, a first variable frequency, a first Clock time, a first variable time length, a first variable brightness, a first variable light intensity, a first variable volume, a first variable data flow, a first variable amplitude, a first A variable space position, a first variable displacement, a first variable sequence position, a first variable angle, a first variable space length, a first variable distance, a first variable translation speed , One of a first variable angular velocity, a first variable acceleration, a first variable force, a first variable pressure, and a first variable mechanical power.
  • the operating unit 397 is configured to rely on the control signal SC81 to execute a measurement application function FA81 related to the variable physical parameter QU1A.
  • the control target device 130 is one of a plurality of application devices.
  • the measurement application function FA81 is one of a plurality of specific control functions, and the plurality of specific control functions include a light control function, a force control function, an electric control function, a magnetic control function, and any combination thereof.
  • the multiple application devices include a functional device, a relay, a control switch device, an electric motor, a lighting device, a door, a vending machine, an energy converter, a load device, a timing device, a toy, a Electrical appliances, a printing device, a display device, a mobile device, a speaker, and any combination thereof.
  • the functional unit 335 is one of multiple application targets and is configured to perform a specific application function.
  • the specific application function is one of multiple physical parameter application functions, and the multiple physical parameter application functions include a light use function, a force use function, an electricity use function, a magnetic use function, and any combination thereof.
  • the multiple application targets include an electronic component, an actuator, a resistor, a capacitor, an inductor, a relay, a control switch, a transistor, a motor, a lighting unit, an energy conversion unit, and a load Unit, time unit, a printing unit, a display target, a speaker, and any combination thereof.
  • the functional unit 335 is a physically implementable functional unit.
  • variable physical parameter QU1A and the variable physical parameter QG1A belong to the physical parameter type TU11 and a physical parameter type TU1G, respectively.
  • the physical parameter type TU11 is the same as or different from the physical parameter type TU1G.
  • the preset characteristic physical parameter UL81 belongs to the physical parameter type TU1G.
  • the physical parameter application area AJ11 is coupled to the physical parameter forming area AU11.
  • the specific function operation ZH81 is used to drive the physical parameter application area AJ11 to form the characteristic physical parameter to ZL82.
  • the physical parameter type TU11 is different from a time type.
  • the variable physical parameter QG1A is a variable electrical parameter, a variable mechanical parameter, a variable optical parameter, a variable temperature, a variable voltage, a variable current, a variable electrical power, a variable Variable resistance, one variable capacitor, one variable inductance, one variable frequency, one clock time, one variable time length, one variable brightness, one variable light intensity, one variable volume, one variable data flow , A variable amplitude, a variable space position, a variable displacement, a variable sequence position, a variable angle, a variable space length, a variable distance, a variable translation speed, a variable angular velocity, One of a variable acceleration, a variable force, a variable pressure, and a variable mechanical power.
  • the variable physical parameter QU1A is the same as or different from the variable physical parameter QG1A.
  • FIG. 59 is a schematic diagram of an implementation structure 8022 of the control system 861 shown in FIG. 1.
  • FIG. 60 is a schematic diagram of an implementation structure 8023 of the control system 861 shown in FIG. 1.
  • FIG. 61 is a schematic diagram of an implementation structure 8024 of the control system 861 shown in FIG. 1.
  • FIG. 62 is a schematic diagram of an implementation structure 8025 of the control system 861 shown in FIG. 1.
  • each of the implementation structure 8022, the implementation structure 8023, the implementation structure 8024, and the implementation structure 8025 includes the control device 212, the The control target device 130 and the server 280 are described.
  • the control device 212 is linked to the server 280.
  • the control device 212 includes the physical parameter formation area AT11, the operation unit 297, the sensing unit 260, and the storage unit 250.
  • the operation unit 297 includes the processing unit 230, the input unit 270, and the output unit 240.
  • the multiple different physical parameter reference ranges RC1E1, RC1E2, ... include the physical parameter application range RC1EL, the physical parameter candidate range RC1E2, and a physical parameter candidate range RC1E3.
  • the multiple different measurement value reference ranges RM11, RM12, ... include the measurement value application range RM1L, the measurement value candidate range RM12, and a measurement value candidate range RM13.
  • the measurement value candidate range RM12 is represented by the measurement value candidate range code EH12, whereby the measurement value candidate range code EM12 is configured to indicate the physical parameter candidate range RC1E2.
  • the measurement value candidate range RM13 is preset based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11 in the designated measurement value format HQ81.
  • the measurement application function specification GBL8 includes a physical parameter candidate range representation GB83 for representing the physical parameter candidate range RC1E3.
  • the measurement value candidate range RM13 is based on the physical parameter candidate range representing GB83, the sensor measurement range representing GQ8R, the sensor sensitivity representing GQ81, and a data encoding operation for converting the physical parameter candidate range representing GB83 ZR87 is preset using the specified measurement value format HQ81, and is represented by a measurement value candidate range code EH13 included in the multiple different measurement value reference range codes EH11, EH12, ....
  • the multiple different physical parameter reference ranges RC1E1, RC1E2, ... are respectively represented by multiple different physical parameter reference range codes.
  • the multiple different physical parameter reference range codes of the rated physical parameter range RC1E are configured to be equal to the multiple different measured value reference range codes EH11, EH12,...
  • the physical parameter application range RC1EL, the physical parameter candidate range RC1E2, and the physical parameter candidate range RC1E3 are different, and are respectively determined by the measurement value application range RM1L, the measurement value candidate range RM12, and the measurement value
  • the candidate range is represented by RM13.
  • the electronic tag 350 includes the memory unit 25Y1.
  • the measurement application function specification GBL8 is used to represent the rated physical parameter range RC1E and the multiple different physical parameter reference ranges RC1E1, RC1E2,...
  • the rated measurement value range RC1N, the rated range limit value pair DC1A, the multiple different measurement value reference ranges RM11, RM12, ..., and the multiple different measurement value reference range codes EH11, EH12, ... are all based on
  • the measurement application function specification GBL8 is preset.
  • the measurement application function FB81 is selected from a number of different triggering functions.
  • the storage unit 250 stores the measurement application function specification GBL8.
  • the processing unit 230 presets the rated range limit value pair DC1A, the application range limit value pair DM1L, the target range limit value pair DN1T, and the candidate range limit value according to the measurement application function specification GBL8. To DM1B,....
  • the sensing signal SM81 includes sensing data. For example, the sensing data belongs to the binary data type.
  • the processing unit 230 obtains the measurement value VM81 in the designated measurement value format HQ81 based on the sensing data.
  • the operation unit 397 receives the control signal SC81. Under the condition that the operating unit 397 executes a signal generating operation BY81 based on the control signal SC81 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET, the operating unit 397 responds to the signal to generate Operate BY81 to output the control response signal SE81. For example, the control response signal SE81 sends an affirmative operation report RL81.
  • the positive operation report RL81 indicates an operation situation EP81 in which the variable physical parameter QU1A has successfully entered the physical parameter target range RD1ET.
  • the processing unit 331 of the operation unit 397 causes the control response signal SE81 to further transmit the obtained measurement value VN82 based on the obtained measurement value VN82.
  • the operating unit 297 executes the specific actual operation BJ81 in response to the control response signal SE81.
  • the processing unit 230 obtains the positive operation report RL81 from the control response signal SE81 within the specified time TW81
  • the processing unit 230 is based on the obtained specific operation report RL8A and One of the obtained positive operation reports RL81 is used to perform the specific actual operation BJ81 related to the variable physical parameter QU1A.
  • the operating unit 397 responds to the control signal SC81 by generating the control response signal SE81.
  • the processing unit 230 determines the corresponding physical parameter range RW1EL in which the variable physical parameter QP1A is currently located. Under the condition that the logical decision PH91 is affirmative, the processing unit 230 determines the physical parameter candidate range RC1E2 in which the variable physical parameter QP1A is currently located. Under the condition that the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter candidate range RC1E2, the processing unit 230 causes the output unit 240 to execute all the measurement applications for the measurement application function FB81.
  • the signal generation operates BS91 to generate the control signal SC82 for controlling the variable physical parameter QU1A, and the control signal SC82 is different from the control signal SC81.
  • the physical parameter candidate range RC1E2 is configured to correspond to the physical parameter candidate range RD1E2 included in the rated physical parameter range RD1E.
  • the control signal SC82 is used to cause the variable physical parameter QU1A to be within the physical parameter candidate range RD1E2.
  • the operation unit 397 receives the control signal SC82 from the output unit 240.
  • the operating unit 397 responds to the control signal SC82 to cause the variable physical parameter QU1A to be within the physical parameter candidate range RD1E2.
  • the control signal SC82 conveys one of the measurement value candidate range code EM12 and the candidate range limit value pair DN1B to indicate at least the measurement value candidate range RN12 and the physical parameter candidate range RD1E2 One of the roles.
  • the processing unit 230 determines that the variable physical parameter QP1A is currently in the specific physical parameter range RC1E7 based on the check operation BA83, the processing unit 230 causes the output
  • the unit 240 generates the control signal SC83 for controlling the variable physical parameter QU1A, and uses the storage unit 250 to assign the specific measurement value range code EH17 to the variable physical parameter range code UM8A.
  • the control signal SC83 is different from the control signal SC81.
  • the specific physical parameter range RC1E7 is configured to correspond to a specific physical parameter range RD1E7 included in a plurality of different physical parameter reference ranges RD1E1, RD1E2,... Under the condition that the specific physical parameter range RD1E7 is different from the physical parameter target range RD1ET, the control signal SC83 is used to cause the variable physical parameter QU1A to fall within the specific physical parameter range RD1E7.
  • the operation unit 397 receives the control signal SC83 from the output unit 240.
  • the operating unit 397 responds to the control signal SC83 to cause the variable physical parameter QU1A to be within the specific physical parameter range RD1E7.
  • the specific physical parameter range RD1E7 is represented by a specific measurement value range RN17 included in the multiple different measurement value reference ranges RN11, RN12,...
  • the specific measurement value range RN17 is represented by a specific measurement value range code EM17, which is preset in the specified measurement value format HH81 based on one of the sensor measurement range representation GW8R and the sensor specification FU11, And there is a specific range limit value pair DN1K, whereby the measurement value candidate range code EM17 is configured to indicate the specific physical parameter range RD1E7.
  • the control signal SC83 transmits one of the specific measurement value range code EM17 and the specific range limit value pair DN1K to indicate at least the specific measurement value range RN17 and the specific physical parameter range RD1E7 One of the roles.
  • the processing unit 230 before the trigger event EQ81 occurs, is configured to obtain the preset control target device identifier HA1T, the preset application range limit value pair DM1L, The preset measurement range limit data code type identifier HM81 and the preset measurement value application range code EH1L are based on the acquired control target device identifier HA1T and the acquired measurement range The limit data code type identifier HM81 and the obtained measurement value apply the range code EH1L to obtain the memory address FM8L. Before the trigger event EQ81 occurs, the processing unit 230 causes the operating unit 297 to provide the write request information WB8L based on the obtained application range limit value pair DM1L and the obtained memory address FM8L .
  • the write request information WB8L transmits the obtained application range limit value pair DM1L and the obtained memory address FM8L, and is used to cause the memory unit 25Y1 to store the obtained value in the memory location PM8L.
  • the limit value of the application range is DM1L.
  • the processing unit 230 is configured to obtain the preset control target device identifier HA1T, the preset control data code CK8T, and the preset control data
  • the code type identifier HK81 and the preset measurement value application range code EH1L are based on the acquired control target device identifier HA1T, the acquired control data code type identifier HK81 and the acquired acquired The measurement value uses the range code EH1L to obtain the memory address FV8L.
  • the processing unit 230 causes the operating unit 297 to provide the write request information WA8L based on the acquired control data code CK8T and the acquired memory address FV8L.
  • the write request information WA8L transmits the acquired control data code CK8T and the acquired memory address FV8L, and is used to cause the memory unit 25Y1 to store the acquired control in the memory location PV8L Data code CK8T.
  • one of the input unit 270 and the output unit 240 includes a user interface area AP11 coupled to the processing unit 230.
  • the processing unit 230 relies on the user interface area AP11 to obtain an input data DG81 and an input data DG82, and obtains the preset application range limit based on the input data DG81 Value pair DM1L, and obtain the preset control data code CK8T based on the input data DG82.
  • the processing unit 230 obtains the preset application range limit value pair DM1L by performing a data encoding operation ZR9A on the input data DG81, and performs a data encoding operation on the input data DG82 ZR9B to obtain the preset control data code CK8T.
  • the input unit 270 receives a user input operation BU85 for operating the user interface area AP11, and responds to the user input operation BU85 to cause the processing unit 230 to obtain the input data DG81 from the input unit 270.
  • the input unit 270 receives a user input operation BU86 for operating the user interface area AP11, and responds to the user input operation BU86 to cause the processing unit 230 to obtain the input data DG82 from the input unit 270.
  • one of the sensing unit 260 and the output unit 240 includes an electrical application target WK11 coupled to the processing unit 230.
  • the electrical application targets WK11 are arranged in an electrical application target group GK11 based on a target sequence position UK11.
  • the electrical application target group GK11 is located in the physical parameter formation area AT11.
  • the variable physical parameter QP1A is characterized based on the target sequence position UK11.
  • the electrical application target WK11 is one of a display target and a sensing target. Under the condition that the electrical application target WK11 is the display target, the electrical application target group GK11 is a display target group. Under the condition that the electrical application target WK11 is the sensing target, the electrical application target group GK11 is a sensing target group.
  • the target sequence location UK11 is represented by a target location number NB11.
  • one of the sensing unit 260 and the output unit 240 includes the physical parameter formation area AT11.
  • the sensing unit 260 senses the variable physical parameter QP1A in a restricted condition FP8M by sensing a user input operation BU83 for selecting the electrical application target WK11 to generate a measurement value for obtaining the measurement value.
  • the restriction condition FP8M is that the variable physical parameter QP1A is equal to the target sequence position UK11.
  • the sensing unit 260 receives the user input operation BU83 for selecting the electrical application target WK11, and responds to the user input operation BU83 to sense the variable physical parameter under the restriction condition FP8M QP1A to generate the sensing signal SM81.
  • the processing unit 230 obtains the measurement value VM81 equal to the target location number NB11 in the specified measurement value format HQ81 based on the sensing signal SM81.
  • the control device 212 is a computing device, a communication device, a user device, a mobile device, a remote control, an electronic device, a portable device, a desktop device, a relative fixed device, a fixed device, a One of smart phones and any combination thereof.
  • the electronic tag 350 is one of a passive electronic tag, an active electronic tag, a semi-active electronic tag, a wireless electronic tag and a wired electronic tag.
  • the control device 212 transmits the control signal SC81 to the control target device 130 through an actual link LK8A between the output unit 240 and the operation unit 397.
  • the actual link LK8A is one of a wired link and a wireless link LK81.
  • the rated physical parameter range RC1E includes a specific physical parameter QP11 and is represented by the rated measurement value range RC1N.
  • the sensing unit 260 senses the variable physical parameter QP1A in the restraint condition FP81 to provide the sensing signal SM81 to the processing unit 230.
  • the constraint condition FP81 is that the variable physical parameter QP1A is equal to the specific physical parameter QP11.
  • the processing unit 230 estimates the specific physical parameter QP11 based on the sensing signal SM81 to obtain the measured value VM81.
  • the restriction condition FP81 is equal to the restriction condition FP8M.
  • the control signal SC81 is one of an electrical signal SP81 and an optical signal SQ81.
  • the output unit 240 includes an output component 450, a display component 460, and an output component 455.
  • the output component 450 is coupled to the processing unit 230, and is used to output the electrical signal SP81 under the condition that the control signal SC81 is the electrical signal SP81.
  • the output component 450 is a transmission component.
  • the display component 460 displays the status indication LA81.
  • the processing unit 230 determines where the variable physical parameter QP1A is currently located by making the logical decision PH81 Under the condition of the physical parameter application range RC1EL, the processing unit 230 causes the display component 460 to change the status indication LA81 to the status indication LA82 based on the code difference DA81.
  • the display component 460 is coupled to the processing unit 230 and is used to display measurement information LY81 related to the measurement value VM81.
  • the processing unit 230 obtains the conveyed measurement value VN82 from the control response signal SE81, and causes the display component 460 to display the correlation with the obtained measurement value VN82 according to the obtained measurement value VN82 The measurement information LZ82.
  • the control signal SC81 is the optical signal SQ81
  • the display component 460 is used to output the optical signal SQ81.
  • one of the sensing unit 260 and the display component 460 includes the electrical application target group GK11.
  • the output component 455 is coupled to the processing unit 230.
  • the processing unit 230 is configured to cause the output component 455 to transmit a physical parameter signal SB81 to the control target device 130.
  • the variable physical parameter QU1A is formed based on the physical parameter signal SB81.
  • the output component 455 is a transmission component.
  • the display component 460 is a transmission component, and the transmission component is used to transmit the optical signal SQ81.
  • the electrical signal SP81 is a radio signal.
  • the optical signal SQ81 is an infrared signal.
  • control device 212 is coupled to the server 280 and further includes a physical parameter forming unit 290 coupled to the sensing unit 260.
  • the physical parameter forming unit 290 generates the variable physical parameter QP1A.
  • the input unit 270 includes an input component 440 and an input component 445 (or a receiving component 445).
  • the input component 440 is coupled to the processing unit 230.
  • one of the input component 440 and the display component 460 includes the user interface area AP11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

用于控制可变物理参数(JA1A, JB1A, QG1A, QL1A, QP1A, QP2A, QU1A, QY1A)的控制目标装置(130, 630),包含感测单元(260, 334)和操作单元(297, 397)。可变物理参数(JA1A, JB1A, QG1A, QL1A, QP1A, QP2A, QU1A, QY1A)基于物理参数目标范围(RD1ET, RK1ET)和物理参数应用范围(RC1EL, RD1EL)而被特征化。物理参数目标范围(RD1ET, RK1ET)和物理参数应用范围(RC1EL, RD1EL)的其中之一由测量值指示范围(RN1G)所代表。感测单元(260, 334)感测可变物理参数(JA1A, JB1A, QG1A, QL1A, QP1A, QP2A, QU1A, QY1A)以产生感测信号(SM81, SM82, SM91, SN83, SN91, SN81, SN82)。在操作单元(297, 397)接收起到指示物理参数目标范围(RD1ET, RK1ET)的作用的控制信号(SC80, SC81, SC82, SC83, SC97, SD81, SD82, SF81, SF97, SV81, SV82)的条件下,操作单元(297, 397)响应感测信号(SM81, SM82, SM91, SN83, SN91, SN81, SN82)来获得测量值(VM81, VM82, VM91, VN83, VN91, VN81, VN82),并在借由检查测量值(VM81, VM82, VM91, VN83, VN91, VN81, VN82)和测量值指示范围(RN1G)之间的数学关系(KA81, KA91, KQ81, KV83, KV85, KY81, KK91, KK92, KV81, KV91)而确定物理参数应用范围(RC1EL, RD1EL)的条件下导致可变物理参数(JA1A, JB1A, QG1A, QL1A, QP1A, QP2A, QU1A, QY1A)进入物理参数目标范围(RD1ET, RK1ET)。

Description

用于控制可变物理参数的控制目标装置及方法 技术领域
本公开是关于一控制目标装置,并特别是关于用于控制一可变物理参数的控制目标装置及方法。
背景技术
一控制装置能够产生一控制信号以控制包含于一控制目标装置中的一功能目标。所述控制目标装置使用所述控制信号以控制所述功能目标。所述功能目标能够使用一机械能、一电能和一光能的至少其中之一,并能够是用于一门禁管制的一电动机、用于一电力控制的一继电器、和用于一能量转换的一能量转换器的其中之一。为了有效地控制所述功能目标,所述控制目标装置能够获得基于一可变物理参数而被提供的一测量值。所述控制目标装置可能需要一改良的机制以有效地使用所述测量值,并藉此有效地控制所述功能目标。
美国第2015/0357887 A1号公开专利公开一种制品规格设定装置及具备其之风扇发动机。美国第7,411,505 B2号公告专利公开一种开关状态及射频识别标签。
发明内容
本公开的一目的在于提供一种依靠一控制信号和基于一可变物理参数而被提供的一测量值而有效地控制所述可变物理参数的控制目标装置。
本公开的一实施例在于提供一种用于控制可变物理参数的控制目标装置。所述可变物理参数基于物理参数目标范围和不同于所述物理参数目标范围的物理参数应用范围而被特征化,且所述物理参数目标范围和所述物理参数应用范围的其中之一由测量值指示范围所代表。所述控制目标装置包含感测单元和操作单元。所述感测单元感测所述可变物理参数以产生第一感测信号。所述操作单元耦合于所述感测单元,在所述操作单元接收起到指示所述物理参数目标范围的作用的控制信号的条件下响应所述第一感测信号来获得第一测量值,并在所述操作单元借由检查所述第一测量值和所述测量值指示范围之间的第一数学关系而确定所述可变物理参数目前处于的所述物理参数应用范围的条件下,导致所述可变物理参数进入所述物理参数目标范围。
本公开的另一实施例在于提供一种用于借由产生功能信号而控制可变物理参数的方法,其中所述可变物理参数基于物理参数目标范围和不同于所述物理参数目标范围的物理参数应用范围而被特征化,且所述物理参数目标范围和所述物理参数应用范围的其中之一由测量值指示范围所代表。所述方法包含下列步骤:感测所述可变物理参数以产生第一感 测信号;在起到指示所述物理参数目标范围的作用的控制信号被接收的条件下,响应所述第一感测信号来获得第一测量值;执行用于检查所述第一测量值和所述测量值指示范围之间的第一数学关系的关系检查;以及基于所述关系检查,确定所述可变物理参数和所述物理参数应用范围之间的物理参数关系以做出用于导致所述可变物理参数进入所述物理参数目标范围的所述功能信号是否要被产生的合理决定。
本公开的另一实施例在于提供一种用于控制可变物理参数的方法,其中所述可变物理参数基于物理参数目标范围和不同于所述物理参数目标范围的物理参数应用范围而被特征化,且所述物理参数目标范围和所述物理参数应用范围的其中之一由测量值指示范围所代表。所述方法包含下列步骤:感测所述可变物理参数以产生第一感测信号;在起到指示所述物理参数目标范围的作用的控制信号被接收的条件下,响应所述第一感测信号来获得第一测量值;以及在所述可变物理参数目前处于的所述物理参数应用范围借由检查所述第一测量值和所述测量值指示范围之间的第一数学关系而被确定的条件下,导致所述可变物理参数进入所述物理参数目标范围。
附图说明
本公开得藉由下列附图的详细说明,以获得更深入的了解︰
图1︰为在本公开各式各样实施例中一控制系统的示意图。
图2︰为示出于图1中的所述控制系统的一实施结构的示意图。
图3︰为示出于图1中的所述控制系统的一实施结构的示意图。
图4︰为示出于图1中的所述控制系统的一实施结构的示意图。
图5︰为示出于图1中的所述控制系统的一实施结构的示意图。
图6︰为示出于图1中的所述控制系统的一实施结构的示意图。
图7︰为示出于图1中的所述控制系统的一实施结构的示意图。
图8︰为示出于图1中的所述控制系统的一实施结构的示意图。
图9︰为示出于图1中的所述控制系统的一实施结构的示意图。
图10︰为示出于图1中的所述控制系统的一实施结构的示意图。
图11︰为示出于图1中的所述控制系统的一实施结构的示意图。
图12︰为示出于图1中的所述控制系统的一实施结构的示意图。
图13︰为示出于图1中的所述控制系统的一实施结构的示意图。
图14︰为示出于图1中的所述控制系统的一实施结构的示意图。
图15︰为示出于图1中的所述控制系统的一实施结构的示意图。
图16︰为示出于图1中的所述控制系统的一实施结构的示意图。
图17︰为示出于图1中的所述控制系统的一实施结构的示意图。
图18︰为示出于图1中的所述控制系统的一实施结构的示意图。
图19︰为示出于图1中的所述控制系统的一实施结构的示意图。
图20︰为示出于图1中的所述控制系统的一实施结构的示意图。
图21︰为示出于图1中的所述控制系统的一实施结构的示意图。
图22︰为示出于图1中的所述控制系统的一实施结构的示意图。
图23︰为示出于图1中的所述控制系统的一实施结构的示意图。
图24︰为示出于图1中的所述控制系统的一实施结构的示意图。
图25︰为示出于图1中的所述控制系统的一实施结构的示意图。
图26︰为示出于图1中的所述控制系统的一实施结构的示意图。
图27︰为示出于图1中的所述控制系统的一实施结构的示意图。
图28︰为示出于图1中的所述控制系统的一实施结构的示意图。
图29︰为示出于图1中的所述控制系统的一实施结构的示意图。
图30︰为示出于图1中的所述控制系统的一实施结构的示意图。
图31︰为示出于图1中的所述控制系统的一实施结构的示意图。
图32︰为示出于图1中的所述控制系统的一实施结构的示意图。
图33︰为示出于图1中的所述控制系统的一实施结构的示意图。
图34︰为示出于图1中的所述控制系统的一实施结构的示意图。
图35︰为示出于图1中的所述控制系统的一实施结构的示意图。
图36︰为示出于图1中的所述控制系统的一实施结构的示意图。
图37︰为示出于图1中的所述控制系统的一实施结构的示意图。
图38︰为示出于图1中的所述控制系统的一实施结构的示意图。
图39︰为示出于图1中的所述控制系统的一实施结构的示意图。
图40︰为示出于图1中的所述控制系统的一实施结构的示意图。
图41︰为示出于图1中的所述控制系统的一实施结构的示意图。
图42︰为示出于图1中的所述控制系统的一实施结构的示意图。
图43︰为示出于图1中的所述控制系统的一实施结构的示意图。
图44︰为示出于图1中的所述控制系统的一实施结构的示意图。
图45︰为示出于图1中的所述控制系统的一实施结构的示意图。
图46︰为示出于图1中的所述控制系统的一实施结构的示意图。
图47︰为示出于图1中的所述控制系统的一实施结构的示意图。
图48︰为示出于图1中的所述控制系统的一实施结构的示意图。
图49︰为示出于图1中的所述控制系统的一实施结构的示意图。
图50︰为示出于图1中的所述控制系统的一实施结构的示意图。
图51︰为示出于图1中的所述控制系统的一实施结构的示意图。
图52︰为示出于图1中的所述控制系统的一实施结构的示意图。
图53︰为示出于图1中的所述控制系统的一实施结构的示意图。
图54︰为示出于图1中的所述控制系统的一实施结构的示意图。
图55︰为示出于图1中的所述控制系统的一实施结构的示意图。
图56︰为示出于图1中的所述控制系统的一实施结构的示意图。
图57︰为示出于图1中的所述控制系统的一实施结构的示意图。
图58︰为示出于图1中的所述控制系统的一实施结构的示意图。
图59︰为示出于图1中的所述控制系统的一实施结构的示意图。
图60︰为示出于图1中的所述控制系统的一实施结构的示意图。
图61︰为示出于图1中的所述控制系统的一实施结构的示意图。
图62︰为示出于图1中的所述控制系统的一实施结构的示意图。
图63︰为示出于图1中的所述控制系统的一实施结构的示意图。
图64︰为示出于图1中的所述控制系统的一实施结构的示意图。
图65︰为示出于图1中的所述控制系统的一实施结构的示意图。
图66︰为示出于图1中的所述控制系统的一实施结构的示意图。
图67︰为示出于图1中的所述控制系统的一实施结构的示意图。
图68︰为示出于图1中的所述控制系统的一实施结构的示意图。
图69︰为示出于图1中的所述控制系统的一实施结构的示意图。
图70︰为示出于图1中的所述控制系统的一实施结构的示意图。
图71︰为示出于图1中的所述控制系统的一实施结构的示意图。
图72︰为示出于图1中的所述控制系统的一实施结构的示意图。
图73︰为示出于图1中的所述控制系统的一实施结构的示意图。
图74︰为示出于图1中的所述控制系统的一实施结构的示意图。
图75︰为示出于图1中的所述控制系统的一实施结构的示意图。
图76︰为示出于图1中的所述控制系统的一实施结构的示意图。
图77︰为示出于图1中的所述控制系统的一实施结构的示意图。
图78︰为示出于图1中的所述控制系统的一实施结构的示意图。
图79︰为示出于图1中的所述控制系统的一实施结构的示意图。
图80︰为示出于图1中的所述控制系统的一实施结构的示意图。
图81︰为示出于图1中的所述控制系统的一实施结构的示意图。
图82︰为示出于图1中的所述控制系统的一实施结构的示意图。
图83︰为示出于图1中的所述控制系统的一实施结构的示意图。
图84︰为示出于图1中的所述控制系统的一实施结构的示意图。
图85︰为示出于图1中的所述控制系统的一实施结构的示意图。
图86︰为示出于图1中的所述控制系统的一实施结构的示意图。
图87︰为示出于图1中的所述控制系统的一实施结构的示意图。
具体实施方式
请参阅图1,其为在本公开各式各样实施例中一控制系统861的示意图。所述控制系统861包含一控制目标装置130和用于控制所述控制目标装置130的一控制装置212。例如,所述可变物理参数QU1A基于一物理参数目标范围RD1ET和不同于所述物理参数目标范围RD1ET的一物理参数应用范围RD1EJ而被特征化。所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ的其中之一由一测量值指示范围RN1G所代表。所述控制目标装置130包含一感测单元334和一操作单元397。所述感测单元334感测所述可变物理参数QU1A以产生一第一感测信号SN81。
所述操作单元397耦合于所述感测单元334。在所述操作单元397接收起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81的条件下,所述操作单元397响应所述第一感测信号SN81来获得一第一测量值VN81。在所述操作单元397借由检查所述第一测量值VN81和所述测量值指示范围RN1G之间的一第一数学关系KG81而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EJ的条件下,所述操作单元397导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
请参阅图2,其为示出于图1中的所述控制系统861的一实施结构8611的示意图。请额外参阅图1。在一些实施例中,所述可变物理参数QU1A相关于一可变时间长度LF8A。所述操作单元397从一控制装置212接收所述控制信号SC81,并包含用于测量所述可变时间长度LF8A的一定时器339。例如,所述可变时间长度LF8A基于一时间长度参考范围HJ81和一参考时间长度LJ8T而被特征化。所述时间长度参考范围HJ81由一测量时间长度值范围GJ81所代表。所述参考时间长度LJ8T由一测量时间长度值CL8T所代表。
所述控制装置212是一移动装置和一遥控器的其中之一。在所述控制装置212是所述遥控器的条件下,所述控制信号SC81是一光信号。所述控制信号SC81输送所述测量时间长度值CL8T。所述操作单元397被配置以从所述控制信号SC81获得所述测量时间长度值CL8T,并检查所获得的所述测量时间长度值CL8T和所述测量时间长度值范围GJ81之间的一数值关系KJ81以做出用于控制一特定时间TJ8T的一计数操作BC8T是否要被执行的一逻辑决定PE81。例如,在所述控制装置212是所述移动装置的条件下,所述操作单元397从所述控制装置212通过一无线链接LK81而接收所述控制信号SC81,或所述控制信号SC81是一无线电信号。
在所述逻辑决定PE81是肯定的条件下,所述操作单元397基于所获得的所述测量时间长度值CL8T来使用所述定时器339以执行所述计数操作BC8T。在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET之内的条件下,所述操作单元397基于所述计数操作BC8T来到达所述特定时间TJ8T,并在所述特定时间TJ8T之内执行用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述物理参数应用范围RD1EL的一信号产生操作BY91。
请参阅图3和图4。图3为示出于图1中的所述控制系统861的一实施结构8612的示意图。图4为示出于图1中的所述控制系统861的一实施结构8613的示意图。如图3和图4所示,所述实施结构8612和所述实施结构8613的每一结构包含所述控制装置212和所述控制目标装置130。所述控制目标装置130包含所述感测单元334和所述操作单元397。
在一些实施例中,所述物理参数应用范围RD1EJ由所述测量值指示范围RN1G所代表。例如,所述测量值指示范围RN1G等于一测量值应用范围RN1L。所述感测单元334被配置以符合与所述测量值指示范围RN1G相关的一传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R。所述第一测量值VN81以一指定测量值格式HH81而被获得。所述物理参数目标范围RD1ET由一测量值目标范围RN1T所代表。
所述测量值目标范围RN1T和所述测量值应用范围RN1L皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预设。所述测量值目标范围RN1T和所述测量值应用范围RN1J分别具有一目标范围界限值对DN1T和一应用范围界限值对DN1L。所述控制信号SC81输送所述目标范围界限值对DN1T、所述应用范围界限值对DN1L和一控制码CC1T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预设。所述控制信号SC81借由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围 RD1ET的至少其中之一的作用。
在一些实施例中,所述操作单元397从所述控制信号SC81获得所述应用范围界限值对DN1L,并借由比较所述第一测量值VN81和所获得的所述应用范围界限值对DN1L来检查所述第一测量值VN81和所述测量值应用范围RN1L之间的一第二数学关系KV81以做出所述第一测量值VN81是否为于所述测量值应用范围RN1L之内的一第一逻辑决定PB81。在所述第一逻辑决定PB81是肯定的条件下,所述操作单元397确定所述可变物理参数QU1A目前所处于的所述所述物理参数应用范围RD1EJ。例如,所述第一数学关系KG81等于所述第二数学关系KV81。
所述操作单元397从所述控制信号SC81获得所述目标范围界限值对DN1T。在所述操作单元397确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述操作单元397借由比较所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L来检查所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围关系KE8A以做出所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L是否相等的一第二逻辑决定PY81。
在所述第二逻辑决定PY81是否定的条件下,所述操作单元397辨识所述范围关系KE8A为一范围相异关系以确定所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ之间的一范围差异DB81。所述操作单元397从所述控制信号SC81获得所述控制码CC1T。在所述操作单元397确定所述范围差异DB81的条件下,所述操作单元397基于所获得的所述控制码CC1T来执行一信号产生控制GY81以产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一功能信号SG81。
在一些实施例中,在所述操作单元397于一操作时间TF81之内执行所述信号产生控制GY81之后,所述感测单元334感测所述可变物理参数QU1A以产生一第二感测信号SN82。所述操作单元397从控制装置212接收所述控制信号SC81,并于所述操作时间TF81之后的一指定时间TG82之内响应所述第二感测信号SN82来以所述指定测量值格式HH81获得一第二测量值VN82。
在所述操作单元397于所述指定时间TG82之内借由比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T来确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述操作单元397向所述控制装置212传输响应所述控制信号SC81的一控制响应信号SE81,并执行一数据存储控制操作GU81。例如,所述控制响应信号SE81输送所述第二测量值VN82。所述控制响应信号SE81被所述控制装置212使用以执行与所述可变物理参数QU1A相关的一特定实际操作BJ81。所述数据存储控制操作GU81用 于导致代表所确定的所述物理参数目标范围RD1ET的一物理参数目标范围码UN8T被记录。
请参阅图5和图6。图5为示出于图1中的所述控制系统861的一实施结构8614的示意图。图6为示出于图1中的所述控制系统861的一实施结构8615的示意图。如图5和图6所示,所述实施结构8614和所述实施结构8615的每一结构包含所述控制装置212和所述控制目标装置130。所述控制目标装置130包含所述感测单元334、所述操作单元397和耦合于所述操作单元397的一功能单元335。例如,所述功能单元335是一物理参数应用单元。
在一些实施例中,所述物理参数应用范围RD1EJ对应于所述物理参数目标范围RD1ET,并等于一对应物理参数范围RY1ET。例如,所述对应物理参数范围RY1ET由一对应测量值范围RX1T所代表。所述物理参数目标范围RD1ET由所述测量值指示范围RN1G所代表。例如,所述测量值指示范围RN1G等于一测量值目标范围RN1T。所述感测单元334被配置以符合与所述测量值指示范围RN1G相关的一传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R。
所述第一测量值VN81以一指定测量值格式HH81而被获得。所述可变物理参数QU1A进一步基于一额定物理参数范围RD1E而被特征化。例如,所述额定物理参数范围RD1E包含所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ,并由一额定测量值范围RD1N所代表。所述测量值目标范围RN1T、所述对应测量值范围RX1T和所述额定测量值范围RD1N皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预设。所述测量值目标范围RN1T和所述额定测量值范围RD1N分别具有一目标范围界限值对DN1T和一额定范围界限值对DD1A。
所述控制信号SC81输送所述目标范围界限值对DN1T、所述额定范围界限值对DD1A和一控制码CC1T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预设。所述控制信号SC81借由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。所述操作单元397从所述控制信号SC81获得所述目标范围界限值对DN1T,并通过比较所述第一测量值VN81和所获得的所述目标范围界限值对DN1T来执行用于检查所述第一测量值VN81和所述测量值目标范围RN1T之间的一第二数学关系KV51的一第一检查操作BV51。例如,所述第一数学关系KG81等于所述第二数学关系KV51。
在一些实施例中,所述操作单元397基于所述第一检查操作BV51来做出所述第一测量值VN81是否为于所述对应测量值范围RX1T之内的一逻辑决定PB51,并在所述逻辑决定PB51是肯定的条件下确定所述可变物理参数QU1A目前所处于的所述对应物理参数范围 RY1ET。所述操作单元397从所述控制信号SC81获得所述额定范围界限值对DD1A,并通过比较所述第一测量值VN81和所获得的所述额定范围界限值对DD1A来执行用于检查所述第一测量值VN81和所述额定测量值范围RD1N之间的一第三数学关系KM51的一第二检查操作BM51。
所述操作单元397包含一按钮3801,进一步基于所述第二检查操作BM51来做出所述逻辑决定PB51,并从所述控制信号SC81获得所述控制码CC1T。在所述操作单元397确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET的条件下,所述操作单元397基于所获得的所述控制码CC1T来执行一信号产生控制GY81以向所述功能单元335传输用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一第一功能信号SG81。例如,所述第一功能信号SG81是一操作信号。
所述功能单元335具有所述可变物理参数QU1A。所述可变物理参数QU1A基于不同于所述物理参数目标范围RD1ET的一特定物理参数范围RD1E5而被特征化。在所述操作单元397借由检查所述第一数学关系KG81而导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET的条件下,所述操作单元397接收使用所述按钮3801的一用户输入操作BQ81。所述操作单元397响应所述用户输入操作BQ81来向所述功能单元335传输用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述特定物理参数范围RD1E5的一第二功能信号SG82。例如,所述第二功能信号SG82是一操作信号。
请参阅图1、图2、图3、图4、图5和图6。一种用于控制可变物理参数QU1A的方法MT80被公开。所述可变物理参数QU1A基于一物理参数目标范围RD1ET和不同于所述物理参数目标范围RD1ET的一物理参数应用范围RD1EJ而被特征化。所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ的其中之一由一测量值指示范围RN1G所代表。
所述方法MT80包含下列步骤:感测所述可变物理参数QU1A以产生一第一感测信号SN81;在起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81被接收的条件下,响应所述第一感测信号SN81来获得一第一测量值VN81;以及在所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EJ借由检查所述第一测量值VN81和所述测量值指示范围RN1G之间的一第一数学关系KG81而被确定的条件下,导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
在一些实施例中,所述可变物理参数QU1A相关于一可变时间长度LF8A。所述方法MT80进一步包含一步骤:提供用于测量所述可变时间长度LF8A的一定时器339。例如,所述可变时间长度LF8A基于一时间长度参考范围HJ81和一参考时间长度LJ8T而被特征化。所述时间长度参考范围HJ81由一测量时间长度值范围GJ81所代表。所述参考时间长度LJ8T 由一测量时间长度值CL8T所代表。所述控制信号SC81从一控制装置212而被接收,并输送所述测量时间长度值CL8T。
所述控制装置212是一移动装置和一遥控器的其中之一。在所述控制装置212是所述遥控器的条件下,所述控制信号SC81是一光信号。所述方法MT80进一步包含下列步骤:从所述控制信号SC81获得所述测量时间长度值CL8T;以及检查所获得的所述测量时间长度值CL8T和所述测量时间长度值范围GJ81之间的一数值关系KJ81以做出用于控制一特定时间TJ8T的一计数操作BC8T是否要被执行的一逻辑决定PE81。例如,在所述控制装置212是所述移动装置的条件下,所述控制信号SC81从所述控制装置212通过一无线链接LK81而被接收,或所述控制信号SC81是一无线电信号。
所述方法MT80进一步包含下列步骤:在所述逻辑决定PE81是肯定的条件下,基于所获得的所述测量时间长度值CL8T来使所述定时器339执行所述计数操作BC8T;在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET之内的条件下,基于所述计数操作BC8T来到达所述特定时间TJ8T;以及在所述特定时间TJ8T之内,执行用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述物理参数应用范围RD1EL的一信号产生操作BY91。
在一些实施例中,所述物理参数应用范围RD1EJ由所述测量值指示范围RN1G所代表,其中所述测量值指示范围RN1G等于一测量值应用范围RN1L。所述方法MT80进一步包含一步骤:提供一感测单元334。例如,感测所述可变物理参数QU1A的步骤借由使用所述感测单元334而被执行。所述感测单元334被配置以符合与所述测量值指示范围RN1G相关的一传感器规格FU11。所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R。
所述第一测量值VN81以一指定测量值格式HH81而被获得。所述物理参数目标范围RD1ET由一测量值目标范围RN1T所代表。所述测量值目标范围RN1T和所述测量值应用范围RN1L皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预设。所述测量值目标范围RN1T和所述测量值应用范围RN1J分别具有一目标范围界限值对DN1T和一应用范围界限值对DN1L。
所述控制信号SC81输送所述目标范围界限值对DN1T、所述应用范围界限值对DN1L和一控制码CC1T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预设。所述控制信号SC81借由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。所述方法MT80进一步包含一步骤:从所述控制信号SC81获得所述应用范围界限值对 DN1L、所述目标范围界限值对DN1T和所述控制码CC1T。
在一些实施例中,导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的步骤包含下列子步骤:借由比较所述第一测量值VN81和所获得的所述应用范围界限值对DN1L,检查所述第一测量值VN81和所述测量值应用范围RN1L之间的一第二数学关系KV81以做出所述第一测量值VN81是否为于所述测量值应用范围RN1L之内的一第一逻辑决定PB81,其中所述第一数学关系KG81等于所述第二数学关系KV81;以及在所述第一逻辑决定PB81是肯定的条件下,确定所述可变物理参数QU1A目前处于的所述所述物理参数应用范围RD1EJ。
导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的步骤进一步包含下列子步骤:在所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL被确定的条件下,借由比较所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L来检查所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围关系KE8A以做出所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L是否相等的一第二逻辑决定PY81;在所述第二逻辑决定PY81是否定的条件下,辨识所述范围关系KE8A为一范围相异关系以确定所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ之间的一范围差异DB81;以及在所述范围差异DB81被确定的条件下,基于所获得的所述控制码CC1T来执行一信号产生控制GY81以产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一功能信号SG81。
所述方法MT80进一步包含下列步骤:在所述信号产生控制GY81于一操作时间TF81之内被执行之后,借由使用所述感测单元334来感测所述可变物理参数QU1A以产生一第二感测信号SN82;于所述操作时间TF81之后的一指定时间TG82之内,响应所述第二感测信号SN82来以所述指定测量值格式HH81获得一第二测量值VN82;以及在所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET于所述指定时间TG82之内借由比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T而被确定的条件下,向所述控制装置212传输响应所述控制信号SC81的一控制响应信号SE81,并执行一数据存储控制操作GU81。例如,所述控制响应信号SE81输送所述第二测量值VN82。所述控制响应信号SE81被所述控制装置212使用以执行与所述可变物理参数QU1A相关的一特定实际操作BJ81。所述数据存储控制操作GU81用于导致代表所确定的所述物理参数目标范围RD1ET的一物理参数目标范围码UN8T被记录。
在一些实施例中,所述物理参数应用范围RD1EJ对应于所述物理参数目标范围RD1ET,并等于一对应物理参数范围RY1ET。例如,所述对应物理参数范围RY1ET由一对应测量值 范围RX1T所代表。所述物理参数目标范围RD1ET由所述测量值指示范围RN1G所代表。例如,所述测量值指示范围RN1G等于一测量值目标范围RN1T。所述方法MT80进一步包含一步骤:提供一感测单元334。例如,感测所述可变物理参数QU1A的步骤借由使用所述感测单元334而被执行。所述感测单元334被配置以符合与所述测量值指示范围RN1G相关的一传感器规格FU11。所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R。
所述第一测量值VN81以一指定测量值格式HH81而被获得。所述可变物理参数QU1A进一步基于一额定物理参数范围RD1E而被特征化。例如,所述额定物理参数范围RD1E包含所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ,并由一额定测量值范围RD1N所代表。所述测量值目标范围RN1T、所述对应测量值范围RX1T和所述额定测量值范围RD1N皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预设。所述测量值目标范围RN1T和所述额定测量值范围RD1N分别具有一目标范围界限值对DN1T和一额定范围界限值对DD1A。
所述控制信号SC81输送所述目标范围界限值对DN1T、所述额定范围界限值对DD1A和一控制码CC1T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预设。所述控制信号SC81借由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。所述方法MT80进一步包含一步骤:从所述控制信号SC81获得所述目标范围界限值对DN1T、所述额定范围界限值对DD1A和所述控制码CC1T。
在一些实施例中,导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的步骤包含下列子步骤:通过比较所述第一测量值VN81和所获得的所述目标范围界限值对DN1T,执行用于检查所述第一测量值VN81和所述测量值目标范围RN1T之间的一第二数学关系KV51的一第一检查操作BV51,其中所述第一数学关系KG81等于所述第二数学关系KV51;基于所述第一检查操作BV51,做出所述第一测量值VN81是否为于所述对应测量值范围RX1T之内的一逻辑决定PB51;在所述逻辑决定PB51是肯定的条件下,确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET;以及在所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET被确定的条件下,基于所获得的所述控制码CC1T来执行一信号产生控制GY81以产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一第一功能信号SG81。
所述方法MT80进一步包含步骤:通过比较所述第一测量值VN81和所获得的所述额定范围界限值对DD1A,执行用于检查所述第一测量值VN81和所述额定测量值范围RD1N之间 的一第三数学关系KM51的一第二检查操作BM51。基于所述第一检查操作BV51来做出所述逻辑决定PB51的子步骤包含子步骤:基于所述第一检查操作BV51和所述第二检查操作BM51,做出所述逻辑决定PB51。
所述可变物理参数QU1A基于不同于所述物理参数目标范围RD1ET的特定物理参数范围RD1E5而被特征化。所述方法MT80进一步包含下列步骤:提供一按钮3801;在所述可变物理参数QU1A借由检查所述第一数学关系KG81而被导致处于所述物理参数目标范围RD1ET的条件下,接收使用所述按钮3801的一用户输入操作BQ81;以及响应所述用户输入操作BQ81,产生用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述特定物理参数范围RD1E5的一第二功能信号SG82。
请参阅图1、图2、图3、图4、图5、图6和图7。图7为示出于图1中的所述控制系统861的一实施结构8616的示意图。一种用于借由产生一功能信号SG81而控制一可变物理参数QU1A的方法MT82被公开。例如,所述可变物理参数QU1A基于一物理参数目标范围RD1ET和不同于所述物理参数目标范围RD1ET的一物理参数应用范围RD1EJ而被特征化。所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ的其中之一由一测量值指示范围RN1G所代表。
所述方法MT82包含下列步骤:所述感测单元334感测所述可变物理参数QU1A以产生一第一感测信号SN81;在起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81被所述操作单元397接收的条件下,所述操作单元397响应所述第一感测信号SN81来获得一第一测量值VN81;所述操作单元397执行用于检查所述第一测量值VN81和所述测量值指示范围RN1G之间的一第一数学关系KG81的一关系检查ZV81;以及所述操作单元397基于所述关系检查ZV81,确定所述可变物理参数QU1A和所述物理参数应用范围RD1EJ之间的一物理参数关系KC81以做出用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的所述功能信号SG81是否要被产生的一合理决定PW81。
在一些实施例中,所述可变物理参数QU1A相关于一可变时间长度LF8A。所述方法MT82进一步包含一步骤:所述操作单元397提供用于测量所述可变时间长度LF8A的一定时器339。例如,所述可变时间长度LF8A基于一时间长度参考范围HJ81和一参考时间长度LJ8T而被特征化。所述时间长度参考范围HJ81由一测量时间长度值范围GJ81所代表。所述参考时间长度LJ8T由一测量时间长度值CL8T所代表。所述控制信号SC81从一控制装置212而被所述操作单元397接收,并输送所述测量时间长度值CL8T。
所述控制装置212是一移动装置和一遥控器的其中之一。在所述控制装置212是所述遥控器的条件下,所述控制信号SC81是一光信号。所述方法MT82进一步包含下列步骤: 所述操作单元397从所述控制信号SC81获得所述测量时间长度值CL8T;以及所述操作单元397检查所获得的所述测量时间长度值CL8T和所述测量时间长度值范围GJ81之间的一数值关系KJ81以做出用于控制一特定时间TJ8T的一计数操作BC8T是否要被执行的一逻辑决定PE81。例如,在所述控制装置212是所述移动装置的条件下,所述控制信号SC81从所述控制装置212通过一无线链接LK81而被所述操作单元397接收,或所述控制信号SC81是一无线电信号。
所述方法MT82进一步包含下列步骤:在所述逻辑决定PE81是肯定的条件下,所述操作单元397基于所获得的所述测量时间长度值CL8T来使所述定时器339执行所述计数操作BC8T;在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET之内的条件下,所述操作单元397基于所述计数操作BC8T来到达所述特定时间TJ8T;以及在所述特定时间TJ8T之内,所述操作单元397执行用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述物理参数应用范围RD1EL的一信号产生操作BY91。
在一些实施例中,所述物理参数应用范围RD1EJ由所述测量值指示范围RN1G所代表。例如,所述测量值指示范围RN1G等于一测量值应用范围RN1L。所述方法MT82进一步包含一步骤:所述控制目标装置130提供一感测单元334。例如,感测所述可变物理参数QU1A的步骤借由使用所述感测单元334而被执行。所述感测单元334被配置以符合与所述测量值指示范围RN1G相关的一传感器规格FU11。所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R。
所述第一测量值VN81以一指定测量值格式HH81而被获得。所述物理参数目标范围RD1ET由一测量值目标范围RN1T所代表。所述测量值目标范围RN1T和所述测量值应用范围RN1L皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预设。所述测量值目标范围RN1T和所述测量值应用范围RN1J分别具有一目标范围界限值对DN1T和一应用范围界限值对DN1L。
在一些实施例中,所述控制信号SC81输送所述目标范围界限值对DN1T、所述应用范围界限值对DN1L和一控制码CC1T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预设。所述控制信号SC81借由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。所述方法MT82进一步包含一步骤:所述操作单元397从所述控制信号SC81获得所述应用范围界限值对DN1L、所述目标范围界限值对DN1T和所述控制码CC1T。
执行所述关系检查ZV81的步骤包含一子步骤:借由比较所述第一测量值VN81和所获 得的所述应用范围界限值对DN1L,检查所述第一测量值VN81和所述测量值应用范围RN1L之间的一第二数学关系KV81。例如,所述第一数学关系KG81等于所述第二数学关系KV81。确定所述物理参数关系KC81以做出所述合理决定PW81的步骤包含下列子步骤:所述操作单元397基于所述关系检查ZV81,做出所述第一测量值VN81是否为于所述测量值应用范围RN1L之内的一第一逻辑决定PB81;以及在所述第一逻辑决定PB81是肯定的条件下,所述操作单元397确定所述可变物理参数QU1A目前所处于的所述所述物理参数应用范围RD1EJ。例如,在所述第一逻辑决定PB81是肯定的条件下,所述操作单元397辨识所述物理参数关系KC81为所述所述物理参数应用范围RD1EJ包含所述可变物理参数QU1A的一物理参数包含关系。
确定所述物理参数关系KC81以做出所述合理决定PW81的步骤进一步包含下列子步骤:在所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL被所述操作单元397确定的条件下,所述操作单元397借由比较所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L来检查所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围关系KE8A以做出所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L是否相等的一第二逻辑决定PY81;以及在所述第二逻辑决定PY81是否定的条件下,所述操作单元397辨识所述范围关系KE8A为一范围相异关系以做出所述合理决定PW81以成为肯定的。例如,所述范围关系KE8A被所述操作单元397辨识为所述范围相异关系以使所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ之间的一范围差异DB81被所述操作单元397确定。
在一些实施例中,所述方法MT82进一步包含下列步骤:在所述合理决定PW81为肯定的条件下,所述操作单元397基于所获得的所述控制码CC1T来执行一信号产生控制GY81以产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一功能信号SG81;以及在所述信号产生控制GY81于一操作时间TF81之内被所述操作单元397执行之后,所述操作单元397借由使用所述感测单元334来感测所述可变物理参数QU1A以产生一第二感测信号SN82。
所述方法MT82进一步包含下列步骤:所述操作单元397于所述操作时间TF81之后的一指定时间TG82之内,响应所述第二感测信号SN82来以所述指定测量值格式HH81获得一第二测量值VN82;以及在所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET于所述指定时间TG82之内借由比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T而被所述操作单元397确定的条件下,所述操作单元397向所述控制装置212传输响应所述控制信号SC81的一控制响应信号SE81,并执行一数据存储控制操作 GU81。例如,所述控制响应信号SE81输送所述第二测量值VN82。所述控制响应信号SE81被所述控制装置212使用以执行与所述可变物理参数QU1A相关的一特定实际操作BJ81。所述数据存储控制操作GU81用于导致代表所确定的所述物理参数目标范围RD1ET的一物理参数目标范围码UN8T被记录。
在一些实施例中,所述物理参数应用范围RD1EJ对应于所述物理参数目标范围RD1ET,并等于一对应物理参数范围RY1ET。例如,所述对应物理参数范围RY1ET由一对应测量值范围RX1T所代表。所述物理参数目标范围RD1ET由所述测量值指示范围RN1G所代表。例如,所述测量值指示范围RN1G等于一测量值目标范围RN1T。所述方法MT82进一步包含一步骤:提供一感测单元334。例如,感测所述可变物理参数QU1A的步骤借由使用所述感测单元334而被执行。所述感测单元334被配置以符合与所述测量值指示范围RN1G相关的一传感器规格FU11。所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R。
所述第一测量值VN81以一指定测量值格式HH81而被获得。所述可变物理参数QU1A进一步基于一额定物理参数范围RD1E而被特征化。例如,所述额定物理参数范围RD1E包含所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ,并由一额定测量值范围RD1N所代表。所述测量值目标范围RN1T、所述对应测量值范围RX1T和所述额定测量值范围RD1N皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预设。所述测量值目标范围RN1T和所述额定测量值范围RD1N分别具有一目标范围界限值对DN1T和一额定范围界限值对DD1A。
在一些实施例中,所述控制信号SC81输送所述目标范围界限值对DN1T、所述额定范围界限值对DD1A和一控制码CC1T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预设。所述控制信号SC81借由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。所述方法MT82进一步包含步骤:所述操作单元397从所述控制信号SC81获得所述目标范围界限值对DN1T、所述额定范围界限值对DD1A和所述控制码CC1T。
执行所述关系检查ZV81的步骤包含一子步骤:所述操作单元397通过比较所述第一测量值VN81和所获得的所述目标范围界限值对DN1T,执行用于检查所述第一测量值VN81和所述测量值目标范围RN1T之间的一第二数学关系KV51的一第一检查操作BV51。例如,所述第一数学关系KG81等于所述第二数学关系KV51。所述关系检查ZV81等于所述第一检查操作BV51。
在一些实施例中,确定所述物理参数关系KC81以做出所述合理决定PW81的步骤包含 下列子步骤:所述操作单元397基于所述关系检查ZV81,做出所述第一测量值VN81是否为于所述对应测量值范围RX1T之内的一逻辑决定PB51;以及在所述逻辑决定PB51是肯定的条件下,所述操作单元397确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET以做出所述合理决定PW81以成为肯定的。
所述方法MT82进一步包含一步骤:所述操作单元397通过比较所述第一测量值VN81和所获得的所述额定范围界限值对DD1A,执行用于检查所述第一测量值VN81和所述额定测量值范围RD1N之间的一第三数学关系KM51的一第二检查操作BM51。基于所述关系检查ZV81来做出所述逻辑决定PB51的子步骤包含一子步骤:所述操作单元397基于所述第一检查操作BV51和所述第二检查操作BM51,做出所述逻辑决定PB51。所述方法MT82进一步包含一步骤:在所述合理决定PW81为肯定的条件下,所述操作单元397基于所获得的所述控制码CC1T来执行一信号产生控制GY81以产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一第一功能信号SG81。
所述可变物理参数QU1A基于不同于所述物理参数目标范围RD1ET的一特定物理参数范围RD1E5而被特征化。所述方法MT82进一步包含下列步骤:所述操作单元397提供一按钮3801;在所述可变物理参数QU1A借由检查所述第一数学关系KG81而被所述操作单元397导致处于所述物理参数目标范围RD1ET的条件下,所述操作单元397接收使用所述按钮3801的一用户输入操作BQ81;以及所述操作单元397响应所述用户输入操作BQ81,产生用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述特定物理参数范围RD1E5的一第二功能信号SG82。
请参阅图8,其为示出于图1中的所述控制系统861的一实施结构9010的示意图。所述实施结构9010包含一控制目标装置130和用于控制所述控制目标装置130的一控制装置212。所述控制目标装置130包含一可变物理参数QU1A、一感测单元334和一操作单元397。所述可变物理参数QU1A基于由一测量值目标范围RN1T所代表的一物理参数目标范围RD1ET和由一测量值应用范围RN1L所代表的一物理参数应用范围RD1EL而被特征化。所述感测单元334感测所述可变物理参数QU1A以产生一第一感测信号SN81。例如,所述物理参数应用范围RD1EJ等于所述物理参数应用范围RD1EL。所述物理参数应用范围RD1EJ由所述测量值指示范围RN1G所代表。所述测量值指示范围RN1G等于所述测量值应用范围RN1L。
所述操作单元397耦合于所述感测单元334。在所述操作单元397接收起到指示所述测量值目标范围RN1T的作用的一控制信号SC81的条件下,所述操作单元397响应所述第一感测信号SN81来获得一第一测量值VN81。在所述操作单元397借由检查所述第一测量 值VN81和所述测量值应用范围RN1L之间的一第二数学关系KV81而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述操作单元397基于所述控制信号SC81而确定所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围差异DS81以导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。例如,所述第一数学关系KG81等于所述第二数学关系KV81。
例如,所述控制信号SC81起到指示所述物理参数目标范围RD1ET的作用。在所述操作单元397借由检查所述第二数学关系KV81而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述操作单元397基于所述控制信号SC81而确定所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL之间的一范围差异DB81以导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
请参阅图9,其为示出于图1中的所述控制系统861的一实施结构9011的示意图。请额外参阅图8。在一些实施例中,所述感测单元334被配置以符合与所述测量值应用范围RN1L相关的一传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的一感测信号产生HF81。所述第一测量值VN81以一指定测量值格式HH81而被所述操作单元397获得。
所述测量值目标范围RN1T和所述测量值应用范围RN1L皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。例如,所述测量值目标范围RN1T和所述测量值应用范围RN1L皆基于所述传感器测量范围表示GW8R和所述传感器灵敏度表示GW81来用所述指定测量值格式HH81而被预置。所述测量值目标范围RN1T和所述测量值应用范围RN1L分别具有一目标范围界限值对DN1T和一应用范围界限值对DN1L。所述控制信号SC81输送所述目标范围界限值对DN1T、所述应用范围界限值对DN1L和一控制码CC1T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预置。所述控制信号SC81借由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。
所述操作单元397从所述控制信号SC81获得所述应用范围界限值对DN1L,并借由比较所述第一测量值VN81和所获得的所述应用范围界限值对DN1L来检查所述第二数学关系KV81以做出所述第一测量值VN81是否为于所述测量值应用范围RN1L之内的一第一逻辑决定PB81。在所述第一逻辑决定PB81是肯定的条件下,所述操作单元397确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL。例如,所述第一测量值VN81是一 物理参数测量值。
所述操作单元397从所述控制信号SC81获得所述目标范围界限值对DN1T。在所述操作单元397确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述操作单元397借由比较所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L来检查所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围关系KE8A以做出所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L是否相等的一第二逻辑决定PY81。
在所述第二逻辑决定PY81是否定的条件下,所述操作单元397辨识所述范围关系KE8A为一范围相异关系以确定所述范围差异DS81。所述操作单元397从所述控制信号SC81获得所述控制码CC1T。在所述操作单元397确定所述范围差异DS81的条件下,所述操作单元397基于所获得的所述控制码CC1T来执行一信号产生控制GY81以产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一功能信号SG81。例如,所述功能信号SG81是一操作信号和一控制信号的其中之一。
在一些实施例中,在所述操作单元397于一操作时间TF81之内执行所述信号产生控制GY81之后,所述感测单元334感测所述可变物理参数QU1A以产生一第二感测信号SN82。所述操作单元397于所述操作时间TF81之后的一指定时间TG82之内响应所述第二感测信号SN82来以所述指定测量值格式HH81获得一第二测量值VN82。在所述操作单元397于所述指定时间TG82之内借由比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T来确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述操作单元397基于所述测量值VN82来向所述控制装置212传输响应所述控制信号SC81的一控制响应信号SE81,并执行一数据存储控制操作GU81。所述控制响应信号SE81输送所述测量值VN82。所述数据存储控制操作GU81用于导致代表所确定的所述物理参数目标范围RD1ET的一物理参数目标范围码UN8T被记录。例如,所述数据存储控制操作GU81是一确保操作。
所述可变物理参数QU1A相关于一可变时间长度LF8A。例如,所述操作单元397用于测量所述可变时间长度LF8A。所述可变时间长度LF8A基于一时间长度参考范围HJ81和一参考时间长度LJ8T而被特征化。所述时间长度参考范围HJ81由一测量时间长度值参考范围GJ81所代表。所述参考时间长度LJ8T由一测量时间长度值CL8T所代表。所述控制信号SC81进一步输送所述测量时间长度值CL8T。所述操作单元397被配置以从所述控制信号SC81获得所述测量时间长度值CL8T,并检查所获得的所述测量时间长度值CL8T和所述测量时间长度值参考范围GJ81之间的一数值关系KJ81以做出用于控制一特定时间TJ8T 的一计数操作BC8T是否要被执行的一逻辑决定PE81。
在所述逻辑决定PE81是肯定的条件下,所述操作单元397基于所获得的所述测量时间长度值CL8T来执行所述计数操作BC8T。在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET之内的条件下,所述操作单元397基于所述计数操作BC8T来到达所述特定时间TJ8T,并在所述特定时间TJ8T之内执行用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述物理参数应用范围RD1EL的一信号产生操作BY91。
请参阅图10、图11、图12、图13和图14。图10为示出于图1中的所述控制系统861的一实施结构9012的示意图。图11为示出于图1中的所述控制系统861的一实施结构9013的示意图。图12为示出于图1中的所述控制系统861的一实施结构9014的示意图。图13为示出于图1中的所述控制系统861的一实施结构9015的示意图。图14为示出于图1中的所述控制系统861的一实施结构9016的示意图。如图10、图11、图12、图13和图14所示,所述实施结构9012、所述实施结构9013、所述实施结构9014、所述实施结构9015和所述实施结构9016的每一结构包含所述控制装置212和所述控制目标装置130。
请额外参阅图8。在一些实施例中,所述操作单元397被配置以执行与所述物理参数应用范围RD1EL相关的一测量应用功能FA81,并包含耦合于所述感测单元334的一处理单元331、耦合于所述处理单元331的一输入单元337、和耦合于所述处理单元331的一输出单元338。所述测量应用功能FA81被配置以符合与所述物理参数应用范围RD1EL相关的一测量应用功能规格GAL8。所述感测单元334被配置以符合与所述测量值应用范围RN1L相关的一传感器规格FU11。
例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的一感测信号产生HF81。例如,所述测量应用功能FA81是一物理参数控制功能。所述测量应用功能规格GAL8是一物理参数控制功能规格。当所述接收单元337接收所述控制信号SC81时,所述感测单元334感测所述可变物理参数QU1A以产生所述第一感测信号SN81。
在所述输入单元337从一控制装置212接收所述控制信号SC81的条件下,所述处理单元331响应所述第一感测信号SN81来以一指定测量值格式HH81获得所述第一测量值VN81。例如,所述指定测量值格式HH81基于一指定比特数目UY81而被特征化。例如,当所述输入单元337接收所述控制信号SC81时,所述感测单元334感测所述可变物理参数QU1A以执行相依于所述传感器灵敏度YW81的所述感测信号产生HF81,所述感测信号产生 HF81用于产生所述第一感测信号SN81。在所述处理单元331基于所述控制信号SC81而确定所述范围差异DS81的条件下,所述处理单元331导致所述输出单元240输出用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一功能信号SG81。
所述可变物理参数QU1A进一步基于一额定物理参数范围RD1E而被特征化。例如,所述额定物理参数范围RD1E由一额定测量值范围RD1N所代表,并包含由多个不同测量值参考范围RN11、RN12、…所分别代表的多个不同物理参数参考范围RD1E1、RD1E2、…。所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL皆包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中。所述测量应用功能规格GAL8包含所述传感器规格FU11、用于表示所述额定物理参数范围RD1E的一额定物理参数范围表示GA8E、和用于表示所述物理参数应用范围RD1EL的一物理参数应用范围表示GA8L。
所述额定测量值范围RD1N基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和用于转换所述额定物理参数范围表示GA8E的一数据编码操作ZX81来用所述指定测量值格式HH81而被预置,具有一额定范围界限值对DD1A,并包含由多个不同测量值参考范围码EM11、EM12、…所分别代表的所述多个不同测量值参考范围RN11、RN12、…。例如,所述额定范围界限值对DD1A用所述指定测量值格式HH81而被预置。所述多个不同测量值参考范围RN11、RN12、…包含所述测量值目标范围RN1T和所述测量值应用范围RN1L。所述额定测量值范围RD1N和所述额定范围界限值对DD1A皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。
在一些实施例中,所述测量值目标范围RN1T由包含于所述多个不同测量值参考范围码EM11、EM12、…中的一测量值目标范围码EM1T所代表;藉此所述测量值目标范围码EM1T被配置以指示所述物理参数目标范围RD1ET。例如,所述多个不同测量值参考范围码EM11、EM12、…皆基于所述测量应用功能规格GAL8而被预置。所述控制信号SC81借由输送所述测量值目标范围码EM1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。
所述测量值应用范围RN1L由包含于所述多个不同测量值参考范围码EM11、EM12、…中的一测量值应用范围码EM1L所代表,并具有一应用范围界限值对DN1L;藉此所述测量值应用范围码EM1L被配置以指示所述物理参数应用范围RD1EL。例如,所述应用范围界限值对DN1L基于所述物理参数应用范围表示GA8L、所述传感器测量范围表示GW8R和用于转换所述物理参数应用范围表示GA8L的一数据编码操作ZX82来用所述指定测量值格式HH81而被预置。所述测量值应用范围RN1L基于所述物理参数应用范围表示GA8L、所述传感器测量范围表示GW8R和所述数据编码操作ZX82来用所述指定测量值格式HH81而被预置。
在一些实施例中,所述控制目标装置130进一步包含耦合于所述处理单元331的一存储单元332。所述存储单元332存储所预置的所述额定范围界限值对DD1A和一可变物理参数范围码UN8A。所述控制信号SC81进一步输送所述额定范围界限值对DD1A。当所述输入单元337接收所述控制信号SC81时,所述可变物理参数范围码UN8A等于选择自所述多个不同测量值参考范围码EM11、EM12、…的一特定测量值范围码EM14。
例如,所述特定测量值范围码EM14指示基于一感测操作ZS81而被所述处理单元331先前确定的一特定物理参数范围RD1E4。所述特定物理参数范围RD1E4选择自所述多个不同物理参数参考范围RD1E1、RD1E2、…。由所述感测单元334所执行的所述感测操作ZS81用于感测所述可变物理参数QU1A。在所述输入单元337接收所述控制信号SC81之前,所述特定测量值范围码EM14被指定到所述可变物理参数范围码UN8A。
例如,在所述输入单元337接收所述控制信号SC81之前,所述处理单元331获得所述特定测量值范围码EM14。在所述处理单元331于所述输入单元337接收所述控制信号SC81之前基于所述感测操作ZS81而确定所述特定物理参数范围RD1E4的条件下,所述处理单元331借由使用所述存储单元332来将所获得的所述特定测量值范围码EM14指定到所述可变物理参数范围码UN8A。所述特定测量值范围码EM14代表被配置以代表所述特定物理参数范围RD1E4的一特定测量值范围。所述特定测量值范围基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。例如,所述感测单元334借由执行所述感测操作ZS81来执行相依于所述传感器灵敏度YW81的一感测信号产生以产生一感测信号。
在所述输入单元337接收所述控制信号SC81之前,所述处理单元331接收所述感测信号,响应所述感测信号来以所述指定测量值格式HH81获得一特定测量值,并执行用于检查所述特定测量值和所述特定测量值范围之间的一数学关系的一特定检查操作。在所述处理单元331基于所述特定检查操作而确定所述可变物理参数QU1A处于的所述特定物理参数范围RD1E4的条件下,所述处理单元331借由使用所述存储单元332来将所获得的所述特定测量值范围码EM14指定到所述可变物理参数范围码UN8A。所述处理单元331响应用于感测所述可变物理参数QU1A的一特定感测操作来决定所述处理单元331是否要使用所述存储单元332以改变所述可变物理参数范围码UN8A。例如,所述特定感测操作由所述感测单元334所执行。
在一些实施例中,在所述输入单元337接收所述控制信号SC81的条件下,所述处理单元331响应所述控制信号SC81来从所述控制信号SC81和所述存储单元332的其中之一获得一操作参考数据码XU81,并借由运行一数据确定程序NA8A来执行使用所述操作参考 数据码XU81的一数据确定AA8A以确定选择自所述多个不同测量值参考范围码EM11、EM12、…的所述测量值应用范围码EM1L以便从所述多个不同测量值参考范围RN11、RN12、…中选择所述测量值应用范围RN1L。
所述操作参考数据码XU81相同于基于所述测量应用功能规格GAL8而被预置的一可允许参考数据码。所述数据确定程序NA8A基于所述测量应用功能规格GAL8而被建构。所述数据确定AA8A是一数据确定操作AA81和一数据确定操作AA82的其中之一。在所述操作参考数据码XU81借由接入被存储在所述存储单元332中的所述可变物理参数范围码UN8A而被获得以相同于所述特定测量值范围码EM14的条件下,是所述数据确定操作AA81的所述数据确定AA8A基于所获得的所述特定测量值范围码EM14来确定所述测量值应用范围码EM1L。例如,所确定的所述测量值应用范围码EM1L相同或不同于所获得的所述特定测量值范围码EM14。
在所述操作参考数据码XU81从所述控制信号SC81和所述存储单元332的其中之一而被获得以相同于所预置的所述额定范围界限值对DD1A的条件下,是所述数据确定操作AA82的所述数据确定AA8A借由执行使用所述第一测量值VN81和所获得的所述额定范围界限值对DD1A的一科学计算MR81来从所述多个不同测量值参考范围码EM11、EM12、…中选择所述测量值应用范围码EM1L以确定所述测量值应用范围码EM1L。例如,所述科学计算MR81基于一特定经验公式XR81而被执行。所述特定经验公式XR81基于所预置的所述额定范围界限值对DD1A和所述多个不同测量值参考范围码EM11、EM12、…而被预先制定。例如,所述特定经验公式XR81基于所述测量应用功能规格GAL8而被预先制定。
在一些实施例中,所述处理单元331基于所确定的所述测量值应用范围码EM1L来获得所述应用范围界限值对DN1L,并基于所述第一测量值VN81和所获得的所述应用范围界限值对DN1L之间的一数据比较CD81来检查所述第二数学关系KV81以做出所述第一测量值VN81是否为于所选择的所述测量值应用范围RN1L之内的一第一逻辑决定PB81。在所述第一逻辑决定PB81是肯定的条件下,所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL。
所述处理单元331从所述控制信号SC81获得所述测量值目标范围码EM1T。在所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331借由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L来检查所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围关系KE8A以做出所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L是否相等的一逻辑决定PZ81。在所述逻辑决定PZ81是否定的条件下,所述 处理单元331辨识所述范围关系KE8A为一范围相异关系以确定所述范围差异DS81。
例如,在所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331借由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L来检查所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL之间的一范围关系KE9A以做出所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL是否相等的一逻辑决定PZ91。在所述逻辑决定PZ91为否定的条件下,所述处理单元331辨识所述范围关系KE9A为一范围相异关系以确定所述范围差异DB81。在所述逻辑决定PZ81为否定的条件下,所述逻辑决定PZ91为否定的。
所述功能单元335具有所述可变物理参数QU1A。所述可变物理参数QU1A基于不同于所述物理参数目标范围RD1ET的一特定物理参数范围RD1E5而被特征化。在所述操作单元397借由检查所述第二数学关系KV81而导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET的条件下,所述操作单元397接收一用户输入操作BQ81。所述操作单元397响应所述用户输入操作BQ81来向所述功能单元335传输用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述特定物理参数范围RD1E5的所述第二功能信号SG82。例如,所述第二功能信号SG82是一操作信号。
在一些实施例中,所述应用范围界限值对DN1L包含所述测量值应用范围RN1L的一应用范围界限值DN15和相对于所述应用范围界限值DN15的一应用范围界限值DN16。所述控制目标装置130进一步包含耦合于所述输出单元338的一功能单元335。所述功能单元335具有所述可变物理参数QU1A。例如,所述感测单元334耦合于所述功能单元335。所述处理单元331通过所述输出单元338来使所述功能单元335执行与所述可变物理参数QU1A相关的一特定功能操作ZH81。例如,所述特定功能操作ZH81用于导致一触发事件EQ81发生。所述控制装置212响应所述触发事件EQ81来输出所述控制信号SC81。例如,所述功能单元335是一物理参数应用单元。例如,所述功能单元335位于所述控制目标装置130的内部和所述控制目标装置130的外部的其中之一。例如,所述特定功能操作ZH81是一空间运动操作。
例如,在所述应用范围界限值DN15不同于所述应用范围界限值DN16且所述第一测量值VN81是于所述应用范围界限值DN15和所述应用范围界限值DN16之间的条件下,所述处理单元331借由比较所述第一测量值VN81和所获得的所述应用范围界限值对DN1L来做出所述第一逻辑决定PB81以成为肯定的。在所述应用范围界限值DN15、所述应用范围界限值DN16和所述第一测量值VN81是相等的条件下,所述处理单元331借由比较所述第一测量值VN81和所获得的所述应用范围界限值对DN1L来做出所述第一逻辑决定PB81以成 为肯定的。
所述测量应用功能规格GAL8进一步包含一物理参数表示GA8T1。所述物理参数表示GA8T1用于表示在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T。所述存储单元332具有一内存位置YM8L和不同于所述内存位置YM8L的一内存位置YX8T,在所述内存位置YM8L存储所述应用范围界限值对DN1L,并在所述内存位置YX8T存储一控制码CC1T。
例如,所述内存位置YM8L基于所预置的所述测量值应用范围码EM1L而被识别。所述内存位置YX8T基于所预置的所述测量值目标范围码EM1T而被识别。所述控制码CC1T基于所述物理参数表示GA8T1和用于转换所述物理参数表示GA8T1的一数据编码操作ZX91而被预置。例如,所述应用范围界限值对DN1L和所述控制码CC1T分别基于所预置的所述测量值应用范围码EM1L和所预置的所述测量值目标范围码EM1T而被所述存储单元332存储。
在一些实施例中,所述处理单元331借由运行一数据获取程序ND8A来执行使用所确定的所述测量值应用范围码EM1L的一数据获取AD8A以获得所述应用范围界限值对DN1L。例如,所述数据获取AD8A是一数据获取操作AD81和一数据获取操作AD82的其中之一。所述数据获取程序ND8A基于所述测量应用功能规格GAL8而被建构。所述数据获取操作AD81基于所确定的所述测量值应用范围码EM1L来使用所述存储单元332以接入被存储在所述内存位置YM8L的所述应用范围界限值对DN1L以获得所述应用范围界限值对DN1L。
所述数据获取操作AD82依靠所述控制信号SC81和所述存储单元332的其中之一来取得所述额定范围界限值对DD1A,并借由执行使用所确定的所述测量值应用范围码EM1L和所取得的所述额定范围界限值对DD1A的一科学计算MZ81来获得所述应用范围界限值对DN1L。例如,所述额定范围界限值对DD1A包含所述额定测量值范围RD1N的一额定范围界限值DD11和相对于所述额定范围界限值DD11的一额定范围界限值DD12,并基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和所述数据编码操作ZX81来用所述指定测量值格式HH81而被预置。
在所述处理单元331确定所述范围差异DS81的条件下,所述处理单元331基于所获得的所述测量值目标范围码EM1T来使用所述存储单元332以接入被存储在所述内存位置YX8T的所述控制码CC1T,并基于所接入的所述控制码CC1T来执行用于所述测量应用功能FA81的一信号产生控制GY81以控制所述输出单元338。所述输出单元338响应所述信号产生控制GY81来执行用于所述测量应用功能FA81的一信号产生操作BY81以产生一功能信号SG81,所述功能信号SG81用于控制所述功能单元335以导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
在一些实施例中,所述控制装置212是一外部装置。所述多个不同测量值参考范围RN11、RN12、…具有一总参考范围数目NT81。所述总参考范围数目NT81基于所述测量应用功能规格GAL8而被预置。所述处理单元331响应所述控制信号SC81来获得所述总参考范围数目NT81。所述科学计算MR81进一步使用所获得的所述总参考范围数目NT81。所述科学计算MZ81进一步使用所获得的所述总参考范围数目NT81。例如,所述总参考范围数目大于或等于2。例如,所述总参考范围数目NT11≧3;所述总参考范围数目NT11≧4;所述总参考范围数目NT11≧5;所述总参考范围数目NT11≧6;且所述总参考范围数目NT11≦255。
所述功能单元335响应所述功能信号SG81来将所述可变物理参数QU1A从一特定物理参数QU17改变成一特定物理参数QU18。例如,所述特定物理参数QU17是于所述物理参数应用范围RD1EL之内;且所述特定物理参数QU18是于所述物理参数目标范围RD1ET之内。所述测量应用功能规格GAL8进一步包含用于表示所述物理参数目标范围RD1ET的一物理参数候选范围表示GA8T。
所述测量值目标范围RN1T是所述额定测量值范围RD1N的一第一部分,并具有一目标范围界限值对DN1T。例如,所述目标范围界限值对DN1T基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和用于转换所述物理参数候选范围表示GA8T的一数据编码操作ZX83来用所述指定测量值格式HH81而被预置。所述测量值目标范围RN1T基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和所述数据编码操作ZX83来用所述指定测量值格式HH81而被预置。所述测量值应用范围RN1L是所述额定测量值范围RD1N的一第二部分。
所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL是分开的或相邻的。在所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL是分开的条件下,所述测量值目标范围RN1T和所述测量值应用范围RN1L是分开的。在所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL是相邻的条件下,所述测量值目标范围RN1T和所述测量值应用范围RN1L是相邻的。
例如,所述测量值应用范围码EM1L被配置以等于一整数。所述额定范围界限值DD12大于所述额定范围界限值DD11。所述额定范围界限值DD12和所述额定范围界限值DD11之间具有相对于所述额定范围界限值DD11的一相对值VA11。所述相对值VA11等于所述额定范围界限值DD12减去所述额定范围界限值DD11的一计算结果。例如,所述应用范围界限值对DN1L基于所述额定范围界限值DD11、所述额定范围界限值DD12、所述整数、和所述相对值VA11对于所述总参考范围数目NT81的一比率而被预置。所述科学计算MZ81使用 所述额定范围界限值DD11、所述额定范围界限值DD12、所述整数、所述比率和其任意组合的其中之一。
在一些实施例中,所述存储单元332进一步具有不同于所述内存位置YX8T的一内存位置YM8T,并在所述内存位置YM8T存储所述目标范围界限值对DN1T。例如,所述内存位置YM8T基于所预置的所述测量值目标范围码EM1T而被识别。在所述处理单元331于一操作时间TF81之内执行所述信号产生控制GY81之后,所述感测单元334感测所述可变物理参数QU1A以产生一第二感测信号SN82。例如,在所述处理单元331执行所述信号产生控制GY81之后,所述感测单元334感测所述可变物理参数QU1A以执行相依于所述传感器灵敏度YW81的一感测信号产生HF82,所述感测信号产生HF82用于产生所述第二感测信号SN82。
所述处理单元331于所述操作时间TF81之后的一指定时间TG82之内响应所述第二感测信号SN82来以所述指定测量值格式HH81获得一第二测量值VN82。所述处理单元331基于所获得的所述测量值目标范围码EM1T来使用所述存储单元332以接入被存储在所述内存位置YM8T的所述目标范围界限值对DN1T,并借由比较所述第二测量值VN82和所接入的所述目标范围界限值对DN1T来检查所述第二测量值VN82和所述测量值目标范围RN1T之间的一数学关系KV91以做出所述第二测量值VN82是否为于所述测量值目标范围RN1T之内的一逻辑决定PB91。
在所述逻辑决定PB91是肯定的条件下,所述处理单元331于所述指定时间TG82之内确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET,产生一肯定操作报告RL81,并导致所述输出单元338输出输送所述肯定操作报告RL81的一控制响应信号SE81,藉此所述控制响应信号SE81用于导致所述控制装置212获得所述肯定操作报告RL81。例如,所述肯定操作报告RL81表示所述可变物理参数QU1A成功地进入所述物理参数目标范围RD1ET的一操作情况EP81。所述处理单元331借由导致所述输出单元338产生所述控制响应信号SE81来响应所述控制信号SC81。例如,所述处理单元331基于所获得的所述测量值VN82来使所述控制响应信号SE81进一步输送所获得的所述测量值VN82。
在一些实施例中,在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述处理单元331借由做出所述逻辑决定PB91而确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331基于等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的一码差异DF81来使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
当所述输入单元337接收所述控制信号SC81时,所述输出单元338显示一状态指示LB81。例如,所述状态指示LB81用于指示所述可变物理参数QU1A被配置于所述特定物理参数范围RD1E4之内的一特定状态XJ81。在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述处理单元331借由做出所述逻辑决定PB91而确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331进一步基于所述码差异DF81来导致所述输出单元338将所述状态指示LB81改变成一状态指示LB82。例如,所述状态指示LB82用于指示所述可变物理参数QU1A被配置于所述物理参数目标范围RD1ET之内的一特定状态XJ82。
所述控制信号SC81是一电信号SP81和一光信号SQ81的其中之一。所述输入单元337包含一输入组件3371、一输入组件3372和一输入组件3373。所述输入组件3371耦合于所述处理单元331。在所述控制信号SC81是所述电信号SP81的条件下,所述输入组件3371借由接收输送一控制信息CG81的所述电信号SP81来导致所述处理单元331获得所述控制信息CG81。例如,所述控制信息CG81包含所述测量值目标范围码EM1T。
所述输入组件3372耦合于所述处理单元331。在所述控制信号SC81是所述光信号SQ81的条件下,所述输入组件3372接收输送一编码影像FY81的所述光信号SQ81。例如,所述编码影像FY81代表所述控制信息CG81。所述输入组件3373耦合于所述处理单元331,并包含耦合于所述处理单元331的一按钮3801。在所述可变物理参数QU1A基于所述控制信号SC81而被配置于所述物理参数目标范围RD1ET之内的条件下,所述输入组件3373接收使用所述按钮3801的一用户输入操作BQ81,并响应所述用户输入操作BQ81来导致所述处理单元331接收一操作请求信号SJ91。
所述处理单元331响应所述操作请求信号SJ91来确定一特定输入码UW81。例如,所述输入组件3373响应使用所述按钮3801的所述用户输入操作BQ81来提供所述操作请求信号SJ91到所述处理单元331,并藉此使所述处理单元331接收所述操作请求信号SJ91。所述特定输入码UW81选择自所述多个不同测量值参考范围码EM11、EM12、…。
在一些实施例中,在所述控制信号SC81是所述光信号SQ81的条件下,所述输入组件3372感测所述编码影像FY81以确定一编码数据DY81,并译码所述编码数据DY81以提供所述控制信息CG81到所述处理单元331。例如,当所述输入组件3373接收所述用户输入操作BQ81时,所述可变物理参数范围码UN8A等于所预置的所述测量值目标范围码EM1T。所述处理单元331响应所述操作请求信号SJ91来从所述可变物理参数范围码UN8A获得所述测量值目标范围码EM1T。在所述特定输入码UW81不同于所预置的所述测量值目标范围码EM1T的条件下,所述处理单元331基于等于所获得的所述测量值目标范围码EM1T的所 述可变物理参数范围码UN8A和所述特定输入码UW81之间的一码差异DX81来通过所述输出单元338而导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中的一特定物理参数范围RD1E5。
所述感测单元334感测处于一拘束条件FR81的所述可变物理参数QU1A以提供所述第一感测信号SN81到所述处理单元331。例如,所述拘束条件FR81是所述可变物理参数QU1A等于包含于所述额定物理参数范围RD1E中的一特定物理参数QU15。所述处理单元331基于所述第一感测信号SN81来估计所述特定物理参数QU15以获得所述第一测量值VN81。由于处于所述拘束条件FR81的所述可变物理参数QU1A是于所述物理参数应用范围RD1EL之内,所述处理单元331辨识所述第一测量值VN81为于所述测量值应用范围RN1L之内的一可允许值,藉此辨识所述第一测量值VN81和所述测量值应用范围RN1L之间的所述第二数学关系KV81为一数值交集关系,并藉此确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL。
在一些实施例中,所述感测单元334基于与所述感测信号产生HF81相关的所述传感器灵敏度YW81而被特征化,并被配置以符合所述传感器规格FU11。所述传感器规格FU11包含用于表示所述传感器灵敏度YW81的所述传感器灵敏度表示GW81、和用于表示所述传感器测量范围RB8E的所述传感器测量范围表示GW8R。例如,所述额定物理参数范围RD1E被配置以相同于所述传感器测量范围RB8E,或被配置以是所述传感器测量范围RB8E的一部分。所述传感器测量范围RB8E相关于由所述感测单元334所执行的一物理参数感测。所述传感器测量范围表示GW8R基于一第一预置测量单位而被提供。例如,所述第一预置测量单位是一公制测量单位和一英制测量单位的其中之一。
所述额定测量值范围RD1N、所述额定范围界限值对DD1A、所述测量值应用范围RN1L、所述应用范围界限值对DN1L、所述测量值目标范围RN1T、所述目标范围界限值对DN1T和所述多个不同测量值参考范围RN11、RN12、…皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。例如,所述额定测量值范围RD1N和所述额定范围界限值对DD1A皆基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX81来用所述指定测量值格式HH81而被预置。所述测量值应用范围RN1L和所述应用范围界限值对DN1L皆基于所述物理参数应用范围表示GA8L、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX82来用所述指定测量值格式HH81而被预置。
所述测量值目标范围RN1T和所述目标范围界限值对DN1T皆基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编 码操作ZX83来用所述指定测量值格式HH81而被预置。所述额定物理参数范围表示GA8E、所述物理参数应用范围表示GA8L、所述物理参数表示GA8T1和所述物理参数候选范围表示GA8T皆基于一第二预置测量单位而被提供。例如,所述第二预置测量单位是一公制测量单位和一英制测量单位的其中之一,并相同或不同于所述第一预置测量单位。
所述可变物理参数QU1A进一步基于所述传感器测量范围RB8E而被特征化。例如,所述传感器测量范围表示GW8R、所述额定物理参数范围表示GA8E、所述物理参数应用范围表示GA8L、所述物理参数候选范围表示GA8T和所述物理参数表示GA8T1皆属于十进制数据类型。所述第一测量值VN81、所述第二测量值VN82、所述额定范围界限值对DD1A、所述应用范围界限值对DN1L、所述目标范围界限值对DN1T和所述控制码CC1T皆属于所述二进制数据类型,并皆适用于计算机处理。所述传感器规格FU11和所述测量应用功能规格GAL8皆被预置。
在一些实施例中,在所述输入单元337接收所述控制信号SC81之前,所述输入单元337接收包含所预置的所述应用范围界限值对DN1L和一内存地址AM8L的一写入请求信息WN8L。例如,所述内存位置YM8L基于所述内存地址AM8L而被识别;且所述内存地址AM8L基于所预置的所述测量值应用范围码EM1L而被预置。所述处理单元331响应所述写入请求信息WN8L来使用所述存储单元332以将所述写入请求信息WN8L的所述应用范围界限值对DN1L存储到所述内存位置YM8L。
在所述输入单元337接收所述控制信号SC81之前,所述输入单元337接收包含所预置的所述控制码CC1T和一内存地址AX8T的一写入请求信息WC8T。例如,所述内存位置YX8T基于所述内存地址AX8T而被识别;且所述内存地址AX8T基于所预置的所述测量值目标范围码EM1T而被预置。所述处理单元331响应所述写入请求信息WC8T来使用所述存储单元332以将所述写入请求信息WC8T的所述控制码CC1T存储到所述内存位置YX8T。
请参阅图8、图9、图10、图11、图12、图13和图14。一种用于控制一可变物理参数QU1A的方法ML80被公开。所述可变物理参数QU1A基于由一测量值目标范围RN1T所代表的一物理参数目标范围RD1ET和由一测量值应用范围RN1L所代表的一物理参数应用范围RD1EL而被特征化。
所述方法ML80包含下列步骤:感测所述可变物理参数QU1A以产生一第一感测信号SN81;在起到指示所述测量值目标范围RN1T的作用的一控制信号SC81被接收的条件下,响应所述第一感测信号SN81来获得一第一测量值VN81;以及在所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL借由检查所述第一测量值VN81和所述测量值应用范围RN1L之间的一第二数学关系KV81而被确定的条件下,基于所述控制信号SC81而确 定所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围差异DS81以导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
例如,所述控制信号SC81起到指示所述物理参数目标范围RD1ET的作用。在所述可变物理参数QU1A目前所处于的所述物理参数应用范围RD1EL借由检查所述第二数学关系KV81而被确定的条件下,所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL之间的一范围差异DB81基于所述控制信号SC81而被确定以导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
在一些实施例中,所述方法ML80进一步包含一步骤:提供一感测单元334。例如,感测所述可变物理参数QU1A的步骤借由使用所述感测单元334而被执行。所述感测单元334被配置以符合与所述测量值应用范围RN1L相关的一传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的一感测信号产生HF81。
所述第一测量值VN81以一指定测量值格式HH81而被获得。所述测量值目标范围RN1T和所述测量值应用范围RN1L皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。所述测量值目标范围RN1T和所述测量值应用范围RN1L分别具有一目标范围界限值对DN1T和一应用范围界限值对DN1L。
所述控制信号SC81输送所述目标范围界限值对DN1T、所述应用范围界限值对DN1L和一控制码CC1T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预置。所述控制信号SC81借由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。
在一些实施例中,所述方法ML80进一步包含下列步骤:从所述控制信号SC81获得所述应用范围界限值对DN1L;从所述控制信号SC81获得所述目标范围界限值对DN1T;以及从所述控制信号SC81获得所述控制码CC1T。确定所述范围差异DS81的步骤包含下列子步骤:借由比较所述第一测量值VN81和所获得的所述应用范围界限值对DN1L,检查所述第二数学关系KV81以做出所述第一测量值VN81是否为于所述测量值应用范围RN1L之内的一第一逻辑决定PB81;以及在所述第一逻辑决定PB81是肯定的条件下,确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL。
确定所述范围差异DS81的步骤进一步包含下列子步骤:在所述物理参数应用范围RD1EL被确定的条件下,借由比较所获得的所述目标范围界限值对DN1T和所获得的所述应 用范围界限值对DN1L来检查所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围关系KE8A以做出所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L是否相等的一第二逻辑决定PY81;在所述第二逻辑决定PY81是否定的条件下,辨识所述范围关系KE8A为一范围相异关系以确定所述范围差异DS81;以及在所述范围差异DS81被确定的条件下,基于所获得的所述控制码CC1T来执行一信号产生控制GY81以产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一功能信号SG81;
在一些实施例中,所述方法ML80进一步包含下列步骤:在所述信号产生控制GY81于一操作时间TF81之内被执行之后,感测所述可变物理参数QU1A以产生一第二感测信号SN82;于所述操作时间TF81之后的一指定时间TG82之内,响应所述第二感测信号SN82来以所述指定测量值格式HH81获得一第二测量值VN82;以及在所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET于所述指定时间TG82之内借由比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T而被确定的条件下,执行一数据存储控制操作GU81,所述数据存储控制操作GU81用于导致代表所确定的所述物理参数目标范围RD1ET的一物理参数目标范围码UN8T被记录。
在一些实施例中,所述方法ML80进一步包含下列步骤:在所述信号产生控制GY81于一操作时间TF81之内被执行之后,感测所述可变物理参数QU1A以产生一第二感测信号SN82;于所述操作时间TF81之后的一指定时间TG82之内,响应所述第二感测信号SN82来获得一第二测量值VN82;以及在所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET于所述指定时间TG82之内借由比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T而被确定的条件下,执行一数据存储控制操作GU81,所述数据存储控制操作GU81用于导致代表所确定的所述物理参数目标范围RD1ET的一物理参数目标范围码UN8T被记录。
所述可变物理参数QU1A相关于一可变时间长度LF8A。例如,所述可变时间长度LF8A基于一时间长度参考范围HJ81和一参考时间长度LJ8T而被特征化。所述时间长度参考范围HJ81由一测量时间长度值参考范围GJ81所代表。所述参考时间长度LJ8T由一测量时间长度值CL8T所代表。所述控制信号SC81进一步输送所述测量时间长度值CL8T。所述方法ML80进一步包含下列步骤:从所述控制信号SC81获得所述测量时间长度值CL8T;以及检查所获得的所述测量时间长度值CL8T和所述测量时间长度值参考范围GJ81之间的一数值关系KJ81以做出用于控制一特定时间TJ8T的一计数操作BC8T是否要被执行的一逻辑决定PE81。
所述方法ML80进一步包含下列步骤:在所述逻辑决定PE81是肯定的条件下,基于所获得的所述测量时间长度值CL8T来执行所述计数操作BC8T;在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET之内的条件下,基于所述计数操作BC8T来到达所述特定时间TJ8T;以及在所述特定时间TJ8T之内执行用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述物理参数应用范围RD1EL的一信号产生操作BY91。
在一些实施例中,所述方法ML80进一步包含下列步骤:提供一感测单元334,其中感测所述可变物理参数QU1A的步骤借由使用所述感测单元334而被执行;以及执行与所述物理参数应用范围RD1EL相关的一测量应用功能FA81。确定所述范围差异DS81的步骤包含一子步骤:在所述范围差异DS81基于所述控制信号SC81而被确定的条件下,产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一功能信号SG81。
所述测量应用功能FA81被配置以符合与所述物理参数应用范围RD1EL相关的一测量应用功能规格GAL8。所述感测单元334被配置以符合与所述测量值应用范围RN1L相关的一传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的一感测信号产生HF81。所述第一测量值VN81以一指定测量值格式HH81而被获得。例如,所述指定测量值格式HH81基于一指定比特数目UY81而被特征化。
所述可变物理参数QU1A进一步基于一额定物理参数范围RD1E而被特征化。例如,所述额定物理参数范围RD1E由一额定测量值范围RD1N所代表,并包含由多个不同测量值参考范围RN11、RN12、…所分别代表的多个不同物理参数参考范围RD1E1、RD1E2、…。所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL皆包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中。所述测量应用功能规格GAL8包含所述传感器规格FU11、用于表示所述额定物理参数范围RD1E的一额定物理参数范围表示GA8E、和用于表示所述物理参数应用范围RD1EL的一物理参数应用范围表示GA8L。
所述额定测量值范围RD1N基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和用于转换所述额定物理参数范围表示GA8E的一数据编码操作ZX81来用所述指定测量值格式HH81而被预置,具有一额定范围界限值对DD1A,并包含由多个不同测量值参考范围码EM11、EM12、…所分别代表的所述多个不同测量值参考范围RN11、RN12、…。例如,所述额定范围界限值对DD1A用所述指定测量值格式HH81而被预置。所述多个不同测量值参考范围RN11、RN12、…包含所述测量值目标范围RN1T和所述测量值应用范围 RN1L。
在一些实施例中,所述测量值目标范围RN1T由包含于所述多个不同测量值参考范围码EM11、EM12、…中的一测量值目标范围码EM1T所代表。例如,所述多个不同测量值参考范围码EM11、EM12、…皆基于所述测量应用功能规格GAL8而被预置。所述控制信号SC81借由输送所述测量值目标范围码EM1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。
所述测量值应用范围RN1L由包含于所述多个不同测量值参考范围码EM11、EM12、…中的一测量值应用范围码EM1L所代表,并具有一应用范围界限值对DN1L。例如,所述应用范围界限值对DN1L基于所述物理参数应用范围表示GA8L、所述传感器测量范围表示GW8R和用于转换所述物理参数应用范围表示GA8L的一数据编码操作ZX82来用所述指定测量值格式HH81而被预置。
所述方法ML80进一步包含下列步骤:提供一存储空间SU11;以及在所述存储空间SU11中存储所预置的所述额定范围界限值对DD1A和一可变物理参数范围码UN8A。所述控制信号SC81进一步输送所述额定范围界限值对DD1A。当所述控制信号SC81被接收时,所述可变物理参数范围码UN8A等于选择自所述多个不同测量值参考范围码EM11、EM12、…的一特定测量值范围码EM14。
例如,所述特定测量值范围码EM14指示基于一感测操作ZS81而被先前确定的一特定物理参数范围RD1E4。所述特定物理参数范围RD1E4选择自所述多个不同物理参数参考范围RD1E1、RD1E2、…。由所述感测单元334所执行的所述感测操作ZS81用于感测所述可变物理参数QU1A。在所述控制信号SC81被接收之前,所述特定测量值范围码EM14被指定到所述可变物理参数范围码UN8A。
在一些实施例中,所述方法ML80进一步包含下列步骤:在所述控制信号SC81从一控制装置212而被接收的条件下,响应所述控制信号SC81来从所述控制信号SC81和所述存储空间SU11的其中之一获得一操作参考数据码XU81;以及借由运行一数据确定程序NA8A来执行使用所述操作参考数据码XU81的一数据确定AA8A以确定选择自所述多个不同测量值参考范围码EM11、EM12、…的所述测量值应用范围码EM1L以便从所述多个不同测量值参考范围RN11、RN12、…中选择所述测量值应用范围RN1L。
所述操作参考数据码XU81相同于基于所述测量应用功能规格GAL8而被预置的一可允许参考数据码。所述数据确定程序NA8A基于所述测量应用功能规格GAL8而被建构。所述数据确定AA8A是一数据确定操作AA81和一数据确定操作AA82的其中之一。在所述操作参考数据码XU81借由接入被存储在所述存储空间SU11中的所述可变物理参数范围码UN8A 而被获得以相同于所述特定测量值范围码EM14的条件下,是所述数据确定操作AA81的所述数据确定AA8A基于所获得的所述特定测量值范围码EM14来确定所述测量值应用范围码EM1L。例如,所确定的所述测量值应用范围码EM1L相同或不同于所获得的所述特定测量值范围码EM14。
在所述操作参考数据码XU81从所述控制信号SC81和所述存储空间SU11的其中之一而被获得以相同于所预置的所述额定范围界限值对DD1A的条件下,是所述数据确定操作AA82的所述数据确定AA8A借由执行使用所述第一测量值VN81和所获得的所述额定范围界限值对DD1A的一科学计算MR81来从所述多个不同测量值参考范围码EM11、EM12、…中选择所述测量值应用范围码EM1L以确定所述测量值应用范围码EM1L。例如,所述科学计算MR81基于一特定经验公式XR81而被执行,且所述特定经验公式XR81基于所预置的所述额定范围界限值对DD1A和所述多个不同测量值参考范围码EM11、EM12、…而被预先制定。
在一些实施例中,所述方法ML80进一步包含下列步骤:基于所确定的所述测量值应用范围码EM1L,获得所述应用范围界限值对DN1L;以及从所述控制信号SC81获得所述测量值目标范围码EM1T。确定所述范围差异DS81的步骤进一步包含下列子步骤:基于所述第一测量值VN81和所获得的所述应用范围界限值对DN1L之间的一数据比较CD81,检查所述第二数学关系KV81以做出所述第一测量值VN81是否为于所选择的所述测量值应用范围RN1L之内的一第一逻辑决定PB81;以及在所述第一逻辑决定PB81是肯定的条件下,确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL。
确定所述范围差异DS81的步骤进一步包含下列子步骤:在所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL被确定的条件下,借由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L来检查所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围关系KE8A以做出所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L是否相等的一逻辑决定PZ81;以及在所述逻辑决定PZ81是否定的条件下,辨识所述范围关系KE8A为一范围相异关系以确定所述范围差异DS81。
在一些实施例中,所述应用范围界限值对DN1L包含一应用范围界限值DN15和相对于所述应用范围界限值DN15的一应用范围界限值DN16。所述存储空间SU11进一步具有一内存位置YM8L和不同于所述内存位置YM8L的一内存位置YX8T。例如,所述内存位置YM8L基于所预置的所述测量值应用范围码EM1L而被识别。所述内存位置YX8T基于所预置的所述测量值目标范围码EM1T而被识别。所述测量应用功能规格GAL8进一步包含一物理参数表示GA8T1,所述物理参数表示GA8T1用于表示在所述物理参数目标范围RD1ET之内的一 指定物理参数QD1T。
所述方法ML80进一步包含下列步骤:在所述内存位置YM8L存储所述应用范围界限值对DN1L;在所述内存位置YX8T存储一控制码CC1T,其中所述控制码CC1T基于所述物理参数表示GA8T1和用于转换所述物理参数表示GA8T1的一数据编码操作ZX91而被预置;执行与所述可变物理参数QU1A相关的一特定功能操作ZH81,其中所述特定功能操作ZH81用于导致一触发事件EQ81发生;以及借由使用所述控制装置212,响应所述触发事件EQ81来产生所述控制信号SC81。
在一些实施例中,获得所述应用范围界限值对DN1L的步骤包含一子步骤:借由运行一数据获取程序ND8A来执行使用所确定的所述测量值应用范围码EM1L的一数据获取AD8A以获得所述应用范围界限值对DN1L。例如,所述数据获取AD8A是一数据获取操作AD81和一数据获取操作AD82的其中之一。所述数据获取程序ND8A基于所述测量应用功能规格GAL8而被建构。
所述数据获取操作AD81基于所确定的所述测量值应用范围码EM1L来接入被存储在所述内存位置YM8L的所述应用范围界限值对DN1L以获得所述应用范围界限值对DN1L。所述数据获取操作AD82依靠所述控制信号SC81和所述存储空间SU11的其中之一来取得所述额定范围界限值对DD1A,并借由执行使用所确定的所述测量值应用范围码EM1L和所取得的所述额定范围界限值对DD1A的一科学计算MZ81来获得所述应用范围界限值对DN1L。
确定所述范围差异DS81的步骤进一步包含下列子步骤:在所述范围差异DS81被确定的条件下,基于所获得的所述测量值目标范围码EM1T来接入被存储在所述内存位置YX8T的所述控制码CC1T;基于所接入的所述控制码CC1T,执行用于所述测量应用功能FA81的一信号产生控制GY81;以及响应所述信号产生控制GY81,执行用于所述测量应用功能FA81的一信号产生操作BY81以产生一功能信号SG81,所述功能信号SG81用于控制所述功能单元335以导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
在一些实施例中,所述测量应用功能规格GAL8进一步包含用于表示所述物理参数目标范围RD1ET的一物理参数候选范围表示GA8T。所述测量值目标范围RN1T具有一目标范围界限值对DN1T。例如,所述目标范围界限值对DN1T基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和用于转换所述物理参数候选范围表示GA8T的一数据编码操作ZX83来用所述指定测量值格式HH81而被预置。
所述控制装置212是一外部装置。所述方法ML80进一步包含下列步骤:提供不同于所述内存位置YX8T的一内存位置YM8T,其中所述内存位置YM8T于所述存储空间SU11中,并基于所预置的所述测量值目标范围码EM1T而被识别;以及在所述内存位置YM8T存储所 述目标范围界限值对DN1T。
在一些实施例中,所述方法ML80进一步包含下列步骤:在所述信号产生控制GY81于一操作时间TF81之内被执行之后,感测所述可变物理参数QU1A以产生一第二感测信号SN82;于所述操作时间TF81之后的一指定时间TG82之内,响应所述第二感测信号SN82来以所述指定测量值格式HH81获得一第二测量值VN82;基于所获得的所述测量值目标范围码EM1T,接入被存储在所述内存位置YM8T的所述目标范围界限值对DN1T;以及借由比较所述第二测量值VN82和所接入的所述目标范围界限值对DN1T,检查所述第二测量值VN82和所述测量值目标范围RN1T之间的一数学关系KV91以做出所述第二测量值VN82是否为于所述测量值目标范围RN1T之内的一逻辑决定PB91。
所述方法ML80进一步包含下列步骤:在所述逻辑决定PB91是肯定的条件下,于所述指定时间TG82之内确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET,并产生一肯定操作报告RL81,其中所述肯定操作报告RL81表示所述可变物理参数QU1A成功地进入所述物理参数目标范围RD1ET的一操作情况EP81;以及产生输送所述肯定操作报告RL81的一控制响应信号SE81,藉此所述控制响应信号SE81用于导致所述控制装置212获得所述肯定操作报告RL81。
在一些实施例中,所述方法ML80进一步包含一步骤:在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET借由做出所述逻辑决定PB91而被确定的条件下,基于等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的一码差异DF81来将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
所述方法ML80进一步包含下列步骤:当所述控制信号SC81被接收时,显示一状态指示LB81,其中所述状态指示LB81用于指示所述可变物理参数QU1A被配置于所述特定物理参数范围RD1E4之内的一特定状态XJ81;以及在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET借由做出所述逻辑决定PB91而被确定的条件下,基于所述码差异DF81来将所述状态指示LB81改变成一状态指示LB82,其中所述状态指示LB82用于指示所述可变物理参数QU1A被配置于所述物理参数目标范围RD1ET之内的一特定状态XJ82。
所述方法ML80进一步包含下列步骤:在所述控制信号SC81被接收之前,接收包含所预置的所述应用范围界限值对DN1L和一内存地址AM8L的一写入请求信息WN8L,其中所述内存位置YM8L基于所述内存地址AM8L而被识别,且所述内存地址AM8L基于所预置的所 述测量值应用范围码EM1L而被预置;以及响应所述写入请求信息WN8L,将所述写入请求信息WN8L的所述应用范围界限值对DN1L存储到所述内存位置YM8L。
所述方法ML80进一步包含下列步骤:在所述控制信号SC81被接收之前,接收包含所预置的所述控制码CC1T和一内存地址AX8T的一写入请求信息WC8T,其中所述内存位置YX8T基于所述内存地址AX8T而被识别,且所述内存地址AX8T基于所预置的所述测量值目标范围码EM1T而被预置;以及响应所述写入请求信息WC8T,将所述写入请求信息WC8T的所述控制码CC1T存储到所述内存位置YX8T。
请参阅图8、图9、图10、图11、图12、图13和图14。一种用于借由产生一功能信号SG81而控制一可变物理参数QU1A的方法ML82被公开。所述可变物理参数QU1A基于由一测量值目标范围RN1T所代表的一物理参数目标范围RD1ET和由一测量值应用范围RN1L所代表的一物理参数应用范围RD1EL而被特征化。
所述方法ML82包含下列步骤:所述感测单元334感测所述可变物理参数QU1A以产生一第一感测信号SN81;在起到指示所述测量值目标范围RN1T的作用的一控制信号SC81被所述输入单元337接收的条件下,所述处理单元331响应所述第一感测信号SN81来获得一第一测量值VN81;以及在所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL借由检查所述第一测量值VN81和所述测量值应用范围RN1L之间的一第二数学关系KV81而被所述处理单元331确定的条件下,所述处理单元331基于所述控制信号SC81而确定所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的一范围关系KE8A以做出用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的所述功能信号SG81是否要被所述输出单元240产生的一合理决定PW81。
例如,所述控制信号SC81起到指示所述物理参数目标范围RD1ET的作用。在所述可变物理参数QU1A目前所处于的所述物理参数应用范围RD1EL借由检查所述第二数学关系KV81而被确定的条件下,所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL之间的一范围差异DB81基于所述控制信号SC81而被确定以做出所述合理决定PW81。例如,所述物理参数应用范围RD1EJ等于所述物理参数应用范围RD1EL。所述物理参数应用范围RD1EJ由所述测量值指示范围RN1G所代表。所述测量值指示范围RN1G等于测量值应用范围RN1L。所述第一数学关系KG81等于所述第二数学关系KV81。
在一些实施例中,所述方法ML82进一步包含一步骤:所述控制目标装置130提供一感测单元334。例如,感测所述可变物理参数QU1A的步骤借由使用所述感测单元334而被执行。所述感测单元334被配置以符合与所述测量值应用范围RN1L相关的一传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量 范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的一感测信号产生HF81。
所述第一测量值VN81以一指定测量值格式HH81而被所述处理单元331获得。所述测量值目标范围RN1T和所述测量值应用范围RN1L皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。所述测量值目标范围RN1T和所述测量值应用范围RN1L分别具有一目标范围界限值对DN1T和一应用范围界限值对DN1L。
所述控制信号SC81输送所述目标范围界限值对DN1T、所述应用范围界限值对DN1L和一控制码CC1T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预置。所述控制信号SC81借由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T的作用。所述方法ML82进一步包含下列步骤:所述处理单元331从所述控制信号SC81获得所述应用范围界限值对DN1L;所述处理单元331从所述控制信号SC81获得所述目标范围界限值对DN1T;以及所述处理单元331从所述控制信号SC81获得所述控制码CC1T。
确定所述范围关系KE8A的步骤包含下列子步骤:所述处理单元331借由比较所述第一测量值VN81和所获得的所述应用范围界限值对DN1L,检查所述第二数学关系KV81以做出所述第一测量值VN81是否为于所述测量值应用范围RN1L之内的一第一逻辑决定PB81;以及在所述第一逻辑决定PB81是肯定的条件下,所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL。
确定所述范围关系KE8A的步骤包含下列子步骤:在所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL被所述处理单元331确定的条件下,所述处理单元331借由比较所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L来检查所述范围关系KE8A以做出所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L是否相等的一第二逻辑决定PY81;以及在所述第二逻辑决定PY81是否定的条件下,所述处理单元331辨识所述范围关系KE8A为一范围相异关系以做出所述合理决定PW81以成为肯定的。
在一些实施例中,所述方法ML82进一步包含下列步骤:在所述合理决定PW81是肯定的条件下,所述处理单元331基于所获得的所述控制码CC1T来执行一信号产生控制GY81以导致所述输出单元240产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一功能信号SG81;以及在所述信号产生控制GY81于一操作时间TF81之内被所述处理单元331执行之后,所述感测单元334感测所述可变物理参数QU1A以产生一第二 感测信号SN82。
所述方法ML82进一步包含下列步骤:所述处理单元331于所述操作时间TF81之后的一指定时间TG82之内,响应所述第二感测信号SN82来以所述指定测量值格式HH81获得一第二测量值VN82;以及在所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET于所述指定时间TG82之内借由比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T而被所述处理单元331确定的条件下,所述处理单元331执行一数据存储控制操作GU81,所述数据存储控制操作GU81用于导致代表所确定的所述物理参数目标范围RD1ET的一物理参数目标范围码UN8T被所述存储单元332记录。
所述可变物理参数QU1A相关于一可变时间长度LF8A。例如,所述可变时间长度LF8A基于一时间长度参考范围HJ81和一参考时间长度LJ8T而被特征化。所述时间长度参考范围HJ81由一测量时间长度值参考范围GJ81所代表。所述参考时间长度LJ8T由一测量时间长度值CL8T所代表。所述控制信号SC81进一步输送所述测量时间长度值CL8T。所述方法ML82进一步包含下列步骤:所述处理单元331从所述控制信号SC81获得所述测量时间长度值CL8T;以及所述处理单元331检查所获得的所述测量时间长度值CL8T和所述测量时间长度值参考范围GJ81之间的一数值关系KJ81以做出用于控制一特定时间TJ8T的一计数操作BC8T是否要被执行的一逻辑决定PE81。
所述方法ML82进一步包含下列步骤:在所述逻辑决定PE81是肯定的条件下,所述处理单元331基于所获得的所述测量时间长度值CL8T来执行所述计数操作BC8T;在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET之内的条件下,所述处理单元331基于所述计数操作BC8T来到达所述特定时间TJ8T;以及所述处理单元331导致所述输出单元240在所述特定时间TJ8T之内执行用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述物理参数应用范围RD1EL的一信号产生操作BY91。
在一些实施例中,所述方法ML82进一步包含下列步骤:所述控制目标装置130提供一感测单元334,其中感测所述可变物理参数QU1A的步骤借由使用所述感测单元334而被执行;所述操作单元397执行与所述可变物理参数QU1A相关的一测量应用功能FA81;以及在所述合理决定PW81是肯定的条件下,所述处理单元331导致所述输出单元240产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的一功能信号SG81。
所述测量应用功能FA81被配置以符合与所述物理参数应用范围RD1EL相关的一测量应用功能规格GAL8。所述感测单元334被配置以符合与所述测量值应用范围RN1L相关的一传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的 一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的一感测信号产生HF81。
所述第一测量值VN81以一指定测量值格式HH81而被所述处理单元331获得。例如,所述指定测量值格式HH81基于一指定比特数目UY81而被特征化。例如,当所述输入单元337接收所述控制信号SC81时,所述感测单元334感测所述可变物理参数QU1A以执行相依于所述传感器灵敏度YW81的所述感测信号产生HF81,所述感测信号产生HF81用于产生所述第一感测信号SN81。
所述可变物理参数QU1A进一步基于一额定物理参数范围RD1E而被特征化。例如,所述额定物理参数范围RD1E由一额定测量值范围RD1N所代表,并包含由多个不同测量值参考范围RN11、RN12、…所分别代表的多个不同物理参数参考范围RD1E1、RD1E2、…。所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL皆包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中。所述测量应用功能规格GAL8包含所述传感器规格FU11、用于表示所述额定物理参数范围RD1E的一额定物理参数范围表示GA8E、和用于表示所述物理参数应用范围RD1EL的一物理参数应用范围表示GA8L。
在一些实施例中,所述额定测量值范围RD1N基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和用于转换所述额定物理参数范围表示GA8E的一数据编码操作ZX81来用所述指定测量值格式HH81而被预置,具有一额定范围界限值对DD1A,并包含由多个不同测量值参考范围码EM11、EM12、…所分别代表的所述多个不同测量值参考范围RN11、RN12、…。例如,所述额定范围界限值对DD1A用所述指定测量值格式HH81而被预置,且所述多个不同测量值参考范围RN11、RN12、…包含所述测量值目标范围RN1T和所述测量值应用范围RN1L。
所述测量值目标范围RN1T由包含于所述多个不同测量值参考范围码EM11、EM12、…中的一测量值目标范围码EM1T所代表,并具有一目标范围界限值对DN1T;藉此所述测量值目标范围码EM1T被配置以指示所述物理参数目标范围RD1ET。例如,所述多个不同测量值参考范围码EM11、EM12、…皆基于所述测量应用功能规格GAL8而被预置。所述控制信号SC81借由输送所述测量值目标范围码EM1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。
所述测量值应用范围RN1L由包含于所述多个不同测量值参考范围码EM11、EM12、…中的一测量值应用范围码EM1L所代表,并具有一应用范围界限值对DN1L;藉此所述测量值应用范围码EM1L被配置以指示所述物理参数应用范围RD1EL。例如,所述应用范围界限值对DN1L基于所述物理参数应用范围表示GA8L、所述传感器测量范围表示GW8R和用于转 换所述物理参数应用范围表示GA8L的一数据编码操作ZX82来用所述指定测量值格式HH81而被预置。所述测量值应用范围RN1L基于所述物理参数应用范围表示GA8L、所述传感器测量范围表示GW8R和所述数据编码操作ZX82来用所述指定测量值格式HH81而被预置。
在一些实施例中,所述方法ML82进一步包含下列步骤:所述存储单元332提供一存储空间SU11;以及所述存储单元332在所述存储空间SU11中存储所预置的所述额定范围界限值对DD1A和一可变物理参数范围码UN8A。所述控制信号SC81进一步输送所述额定范围界限值对DD1A。当所述控制信号SC81被所述输入单元337接收时,所述可变物理参数范围码UN8A等于选择自所述多个不同测量值参考范围码EM11、EM12、…的一特定测量值范围码EM14。
例如,所述特定测量值范围码EM14指示基于一感测操作ZS81而被所述处理单元331先前确定的一特定物理参数范围RD1E4。所述第一所述特定物理参数范围RD1E4选择自所述多个不同物理参数参考范围RD1E1、RD1E2、…。由所述感测单元334所执行的所述感测操作ZS81用于感测所述可变物理参数QU1A。在所述控制信号SC81被所述输入单元337接收之前,所述特定测量值范围码EM14被所述处理单元331指定到所述可变物理参数范围码UN8A。
例如,在所述输入单元337接收所述控制信号SC81之前,所述处理单元331获得所述特定测量值范围码EM14。在所述处理单元331于所述输入单元337接收所述控制信号SC81之前基于所述感测操作ZS81而确定所述特定物理参数范围RD1E4的条件下,所述处理单元331借由使用所述存储单元332来将所获得的所述特定测量值范围码EM14指定到所述可变物理参数范围码UN8A。所述特定测量值范围码EM14代表被配置以代表所述特定物理参数范围RD1E4的一特定测量值范围。所述特定测量值范围基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。例如,所述感测单元334借由执行所述感测操作ZS81来执行相依于所述传感器灵敏度YW81的一感测信号产生以产生一感测信号。
在所述输入单元337接收所述控制信号SC81之前,所述处理单元331接收所述感测信号,响应所述感测信号来以所述指定测量值格式HH81获得一特定测量值,并执行用于检查所述特定测量值和所述特定测量值范围之间的一数学关系的一特定检查操作。在所述处理单元331基于所述特定检查操作而确定所述可变物理参数QU1A处于的所述特定物理参数范围RD1E4的条件下,所述处理单元331借由使用所述存储单元332来将所获得的所述特定测量值范围码EM14指定到所述可变物理参数范围码UN8A。所述处理单元331响应用于感测所述可变物理参数QU1A的一特定感测操作来决定所述处理单元331是否要使用 所述存储单元332以改变所述可变物理参数范围码UN8A。例如,所述特定感测操作由所述感测单元334所执行。
在一些实施例中,所述方法ML82进一步包含下列步骤:在所述控制信号SC81从一控制装置212而被所述输入单元337接收的条件下,所述处理单元331响应所述控制信号SC81来从所述控制信号SC81和所述存储空间SU11的其中之一获得一操作参考数据码XU81;以及所述处理单元331借由运行一数据确定程序NA8A来执行使用所述操作参考数据码XU81的一数据确定AA8A以确定选择自所述多个不同测量值参考范围码EM11、EM12、…的所述测量值应用范围码EM1L以便从所述多个不同测量值参考范围RN11、RN12、…中选择所述测量值应用范围RN1L。
所述操作参考数据码XU81相同于基于所述测量应用功能规格GAL8而被预置的一可允许参考数据码。所述数据确定程序NA8A基于所述测量应用功能规格GAL8而被建构。所述数据确定AA8A是一数据确定操作AA81和一数据确定操作AA82的其中之一。在所述操作参考数据码XU81借由接入被存储在所述存储空间SU11中的所述可变物理参数范围码UN8A而被所述处理单元331获得以相同于所述特定测量值范围码EM14的条件下,是所述数据确定操作AA81的所述数据确定AA8A基于所获得的所述特定测量值范围码EM14来确定所述测量值应用范围码EM1L。例如,所确定的所述测量值应用范围码EM1L相同或不同于所获得的所述特定测量值范围码EM14。
在所述操作参考数据码XU81从所述控制信号SC81和所述存储空间SU11的其中之一而被所述处理单元331获得以相同于所预置的所述额定范围界限值对DD1A的条件下,是所述数据确定操作AA82的所述数据确定AA8A借由执行使用所述第一测量值VN81和所获得的所述额定范围界限值对DD1A的一科学计算MR81来从所述多个不同测量值参考范围码EM11、EM12、…中选择所述测量值应用范围码EM1L以确定所述测量值应用范围码EM1L。例如,所述科学计算MR81基于一特定经验公式XR81而被执行。所述特定经验公式XR81基于所预置的所述额定范围界限值对DD1A和所述多个不同测量值参考范围码EM11、EM12、…而被预先制定。例如,所述特定经验公式XR81基于所述测量应用功能规格GAL8而被预先制定。
在一些实施例中,所述方法ML82进一步包含下列步骤:所述处理单元331基于所确定的所述测量值应用范围码EM1L,获得所述应用范围界限值对DN1L;以及所述处理单元331从所述控制信号SC81获得所述测量值目标范围码EM1T。确定所述范围关系KE8A的步骤包含下列子步骤:所述处理单元331基于所述第一测量值VN81和所获得的所述应用范围界限值对DN1L之间的一数据比较CD81,检查所述第二数学关系KV81以做出所述第一测 量值VN81是否为于所选择的所述测量值应用范围RN1L之内的一第一逻辑决定PB81;以及在所述第一逻辑决定PB81是肯定的条件下,所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL。
确定所述范围关系KE8A的步骤进一步包含下列子步骤:在所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL被所述处理单元331确定的条件下,所述处理单元331借由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L来检查所述范围关系KE8A以做出所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L是否相等的一逻辑决定PZ81;以及在所述逻辑决定PZ81是否定的条件下,所述处理单元331辨识所述范围关系KE8A为一范围相异关系以做出所述合理决定PW81以成为肯定的。
在一些实施例中,所述应用范围界限值对DN1L包含所述测量值应用范围RN1L的一应用范围界限值DN15和相对于所述应用范围界限值DN15的一应用范围界限值DN16。例如,在所述应用范围界限值DN15不同于所述应用范围界限值DN16且所述第一测量值VN81是于所述应用范围界限值DN15和所述应用范围界限值DN16之间的条件下,所述处理单元331借由比较所述第一测量值VN81和所获得的所述应用范围界限值对DN1L来做出所述第一逻辑决定PB81以成为肯定的。在所述应用范围界限值DN15、所述应用范围界限值DN16和所述第一测量值VN81是相等的条件下,所述处理单元331借由比较所述第一测量值VN81和所获得的所述应用范围界限值对DN1L来做出所述第一逻辑决定PB81以成为肯定的。
所述存储空间SU11进一步具有一内存位置YM8L和不同于所述内存位置YM8L的一内存位置YX8T。例如,所述内存位置YM8L基于所预置的所述测量值应用范围码EM1L而被识别。所述内存位置YX8T基于所预置的所述测量值目标范围码EM1T而被识别。所述测量应用功能规格GAL8进一步包含一物理参数表示GA8T1,所述物理参数表示GA8T1用于表示在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T。
所述方法ML82进一步包含下列步骤:所述存储单元332在所述内存位置YM8L存储所述应用范围界限值对DN1L;所述存储单元332在所述内存位置YX8T存储一控制码CC1T,其中所述控制码CC1T基于所述物理参数表示GA8T1和用于转换所述物理参数表示GA8T1的一数据编码操作ZX91而被预置;所述处理单元331执行与所述可变物理参数QU1A相关的一特定功能操作ZH81,其中所述特定功能操作ZH81用于导致一触发事件EQ81发生;以及借由使用所述控制装置212,响应所述触发事件EQ81来产生所述控制信号SC81。例如,所述应用范围界限值对DN1L和所述控制码CC1T分别基于所预置的所述测量值应用范围码EM1L和所预置的所述测量值目标范围码EM1T而被所述存储单元332存储。
在一些实施例中,获得所述应用范围界限值对DN1L的步骤包含一子步骤:所述处理单元331借由运行一数据获取程序ND8A,执行使用所确定的所述测量值应用范围码EM1L的一数据获取AD8A以获得所述应用范围界限值对DN1L。例如,所述数据获取AD8A是一数据获取操作AD81和一数据获取操作AD82的其中之一。所述数据获取程序ND8A基于所述测量应用功能规格GAL8而被建构。所述数据获取操作AD81基于所确定的所述测量值应用范围码EM1L来接入被存储在所述内存位置YM8L的所述应用范围界限值对DN1L以获得所述应用范围界限值对DN1L。
所述数据获取操作AD82依靠所述控制信号SC81和所述存储空间SU11的其中之一来取得所述额定范围界限值对DD1A,并借由执行使用所确定的所述测量值应用范围码EM1L和所取得的所述额定范围界限值对DD1A的一科学计算MZ81来获得所述应用范围界限值对DN1L。例如,所述额定范围界限值对DD1A包含所述额定测量值范围RD1N的一额定范围界限值DD11和相对于所述额定范围界限值DD11的一额定范围界限值DD12,并基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和所述数据编码操作ZX81来用所述指定测量值格式HH81而被预置。
产生所述功能信号SG81的步骤包含下列子步骤:在所述合理决定PW81是肯定的条件下,所述处理单元331基于所获得的所述测量值目标范围码EM1T来使用所述存储单元332以接入被存储在所述内存位置YX8T的所述控制码CC1T;所述处理单元331基于所接入的所述控制码CC1T,执行用于所述测量应用功能FA81的一信号产生控制GY81;以及所述输出单元338响应所述信号产生控制GY81,执行用于所述测量应用功能FA81的一信号产生操作BY81以产生一功能信号SG81,所述功能信号SG81用于控制所述功能单元335以导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
在一些实施例中,所述控制装置212是一外部装置。所述多个不同测量值参考范围RN11、RN12、…具有一总参考范围数目NT81。所述总参考范围数目NT81基于所述测量应用功能规格GAL8而被预置。所述方法ML82进一步包含一步骤:所述处理单元331响应所述控制信号SC81,获得所述总参考范围数目NT81。所述科学计算MR81进一步使用所获得的所述总参考范围数目NT81。所述科学计算MZ81进一步使用所获得的所述总参考范围数目NT81。例如,所述总参考范围数目大于或等于2。例如,所述总参考范围数目NT11≧3;所述总参考范围数目NT11≧4;所述总参考范围数目NT11≧5;所述总参考范围数目NT11≧6;且所述总参考范围数目NT11≦255。
所述方法ML82进一步包含一步骤:所述功能单元335响应所述功能信号SG81,将所述可变物理参数QU1A从一特定物理参数QU17改变成一特定物理参数QU18。例如,所述特 定物理参数QU17是于所述物理参数应用范围RD1EL之内;且所述特定物理参数QU18是于所述物理参数目标范围RD1ET之内。所述测量应用功能规格GAL8进一步包含用于表示所述物理参数目标范围RD1ET的一物理参数候选范围表示GA8T。
所述测量值目标范围RN1T是所述额定测量值范围RD1N的一第一部分,并具有一目标范围界限值对DN1T。例如,所述目标范围界限值对DN1T基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和用于转换所述物理参数候选范围表示GA8T的一数据编码操作ZX83来用所述指定测量值格式HH81而被预置。所述测量值目标范围RN1T基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和所述数据编码操作ZX83来用所述指定测量值格式HH81而被预置。所述测量值应用范围RN1L是所述额定测量值范围RD1N的一第二部分。
所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL是分开的或相邻的。在所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL是分开的条件下,所述测量值目标范围RN1T和所述测量值应用范围RN1L是分开的。在所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL是相邻的条件下,所述测量值目标范围RN1T和所述测量值应用范围RN1L是相邻的。
例如,所述测量值应用范围码EM1L被配置以等于一整数。所述额定范围界限值DD12大于所述额定范围界限值DD11。所述额定范围界限值DD12和所述额定范围界限值DD11之间具有相对于所述额定范围界限值DD11的一相对值VA11。所述相对值VA11等于所述额定范围界限值DD12减去所述额定范围界限值DD11的一计算结果。例如,所述应用范围界限值对DN1L基于所述额定范围界限值DD11、所述额定范围界限值DD12、所述整数、和所述相对值VA11对于所述总参考范围数目NT81的一比率而被预置。所述科学计算MZ81使用所述额定范围界限值DD11、所述额定范围界限值DD12、所述整数、所述比率和其任意组合的其中之一。
在一些实施例中,所述方法ML82进一步包含下列步骤:所述存储单元332提供不同于所述内存位置YX8T的一内存位置YM8T,其中所述内存位置YM8T于所述存储空间SU11中,并基于所预置的所述测量值目标范围码EM1T而被识别;所述存储单元332在所述内存位置YM8T存储所述目标范围界限值对DN1T;以及在所述信号产生控制GY81于一操作时间TF81之内被所述处理单元331执行之后,所述感测单元334感测所述可变物理参数QU1A以产生一第二感测信号SN82。例如,在所述处理单元331执行所述信号产生控制GY81之后,所述感测单元334感测所述可变物理参数QU1A以执行相依于所述传感器灵敏度YW81的一感测信号产生HF82,所述感测信号产生HF82用于产生所述第二感测信号SN82。
所述方法ML82进一步包含下列步骤:所述处理单元331于所述操作时间TF81之后的一指定时间TG82之内,响应所述第二感测信号SN82来以所述指定测量值格式HH81获得一第二测量值VN82;所述处理单元331基于所获得的所述测量值目标范围码EM1T,使用所述存储单元332以接入被存储在所述内存位置YM8T的所述目标范围界限值对DN1T;以及所述处理单元331借由比较所述第二测量值VN82和所接入的所述目标范围界限值对DN1T,检查所述第二测量值VN82和所述测量值目标范围RN1T之间的一数学关系KV91以做出所述第二测量值VN82是否为于所述测量值目标范围RN1T之内的一逻辑决定PB91。
所述方法ML82进一步包含下列步骤:在所述逻辑决定PB91是肯定的条件下,所述处理单元331于所述指定时间TG82之内确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET,并产生一肯定操作报告RL81,其中所述肯定操作报告RL81表示所述可变物理参数QU1A成功地进入所述物理参数目标范围RD1ET的一操作情况EP81;以及所述处理单元331导致所述输出单元338产生输送所述肯定操作报告RL81的一控制响应信号SE81,藉此所述控制响应信号SE81用于导致所述控制装置212获得所述肯定操作报告RL81。所述处理单元331借由导致所述输出单元338产生所述控制响应信号SE81来响应所述控制信号SC81。
所述方法ML82进一步包含一步骤:在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET借由做出所述逻辑决定PB91而被所述处理单元331确定的条件下,所述处理单元331基于等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的一码差异DF81来将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
所述方法ML82进一步包含下列步骤:当所述控制信号SC81被所述输入单元337接收时,所述输出单元240显示一状态指示LB81,其中所述状态指示LB81用于指示所述可变物理参数QU1A被配置于所述特定物理参数范围RD1E4之内的一特定状态XJ81;以及在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET借由做出所述逻辑决定PB91而被所述处理单元331确定的条件下,所述处理单元331基于所述码差异DF81来导致所述输出单元338将所述状态指示LB81改变成一状态指示LB82。例如,所述状态指示LB82用于指示所述可变物理参数QU1A被配置于所述物理参数目标范围RD1ET之内的一特定状态XJ82。
在一些实施例中,所述控制信号SC81是一电信号SP81和一光信号SQ81的其中之一。所述方法ML82进一步包含下列步骤:在所述控制信号SC81是所述电信号SP81的条件下, 所述处理单元331从输送一控制信息CG81的所述电信号SP81获得所述控制信息CG81,其中所述控制信息CG81包含所述测量值目标范围码EM1T;以及在所述控制信号SC81是所述光信号SQ81的条件下,所述输入单元337借由感测由所述光信号SQ81所输送的一编码影像FY81来确定一编码数据DY81,并译码所述编码数据DY81以导致所述处理单元331获得所述控制信息CG81。例如,所述编码影像FY81代表所述控制信息CG81。
所述方法ML82进一步包含下列步骤:在所述可变物理参数QU1A基于所述控制信号SC81而被配置于所述物理参数目标范围RD1ET之内的条件下,所述输入单元337接收一用户输入操作BQ81;所述处理单元331响应所述用户输入操作BQ81,确定一特定输入码UW81,其中所述特定输入码UW81选择自所述多个不同测量值参考范围码EM11、EM12、…;以及在所述特定输入码UW81不同于所预置的所述测量值目标范围码EM1T的条件下,所述处理单元331基于等于所获得的所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A和所述特定输入码UW81之间的一码差异DX81来通过所述输出单元338而导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中的一特定物理参数范围RD1E5。
在一些实施例中,感测所述可变物理参数QU1A的步骤包含一子步骤:所述感测单元334感测处于一拘束条件FR81的所述可变物理参数QU1A以产生所述第一感测信号SN81。例如,所述拘束条件FR81是所述可变物理参数QU1A等于包含于所述额定物理参数范围RD1E中的一特定物理参数QU15。响应所述第一感测信号SN81来获得所述第一测量值VN81的步骤包含一子步骤:所述处理单元331基于所述第一感测信号SN81,估计所述特定物理参数QU15以获得所述第一测量值VN81。
由于处于所述拘束条件FR81的所述可变物理参数QU1A是于所述物理参数应用范围RD1EL之内,所述处理单元331辨识所述第一测量值VN81为于所述测量值应用范围RN1L之内的一可允许值,藉此辨识所述第一测量值VN81和所述测量值应用范围RN1L之间的所述第二数学关系KV81为一数值交集关系,并藉此确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL。
在一些实施例中,所述感测单元334基于与所述感测信号产生HF81相关的所述传感器灵敏度YW81而被特征化,并被配置以符合所述传感器规格FU11。所述传感器规格FU11包含用于表示所述传感器灵敏度YW81的所述传感器灵敏度表示GW81、和用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R。例如,所述额定物理参数范围RD1E被配置以相同于所述传感器测量范围RB8E,或被配置以是所述传感器测量范围RB8E的一部分。所述传感器测量范围RB8E相关于由所述感测单元334所执行的一物理参数感测。所述传 感器测量范围表示GW8R基于一第一预置测量单位而被提供。例如,所述第一预置测量单位是一公制测量单位和一英制测量单位的其中之一。
所述额定测量值范围RD1N和所述额定范围界限值对DD1A皆基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX81来用所述指定测量值格式HH81而被预置。所述测量值应用范围RN1L和所述应用范围界限值对DN1L皆基于所述物理参数应用范围表示GA8L、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX82来用所述指定测量值格式HH81而被预置。
所述测量值目标范围RN1T和所述目标范围界限值对DN1T皆基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX83来用所述指定测量值格式HH81而被预置。所述额定物理参数范围表示GA8E、所述物理参数应用范围表示GA8L、所述物理参数表示GA8T1和所述物理参数候选范围表示GA8T皆基于一第二预置测量单位而被提供。例如,所述第二预置测量单位是一公制测量单位和一英制测量单位的其中之一,并相同或不同于所述第一预置测量单位。
所述可变物理参数QU1A进一步基于所述传感器测量范围RB8E而被特征化。例如,所述传感器测量范围表示GW8R、所述额定物理参数范围表示GA8E、所述物理参数应用范围表示GA8L、所述物理参数候选范围表示GA8T和所述物理参数表示GA8T1皆属于十进制数据类型。所述第一测量值VN81、所述第二测量值VN82、所述额定范围界限值对DD1A、所述应用范围界限值对DN1L、所述目标范围界限值对DN1T和所述控制码CC1T皆属于所述二进制数据类型,并皆适用于计算机处理。所述传感器规格FU11和所述测量应用功能规格GAL8皆被预置。
在一些实施例中,所述方法ML82进一步包含下列步骤:在所述控制信号SC81被所述输入单元337接收之前,所述输入单元337接收包含所预置的所述应用范围界限值对DN1L和一内存地址AM8L的一写入请求信息WN8L,其中所述内存位置YM8L基于所述内存地址AM8L而被识别,且所述内存地址AM8L基于所预置的所述测量值应用范围码EM1L而被预置;以及所述处理单元331响应所述写入请求信息WN8L,使用所述存储单元332以将所述写入请求信息WN8L的所述应用范围界限值对DN1L存储到所述内存位置YM8L。
所述方法ML82进一步包含下列步骤:在所述控制信号SC81被所述输入单元337接收之前,所述输入单元337接收包含所预置的所述控制码CC1T和一内存地址AX8T的一写入请求信息WC8T,其中所述内存位置YX8T基于所述内存地址AX8T而被识别,且所述内存地址AX8T基于所预置的所述测量值目标范围码EM1T而被预置;以及所述处理单元331响应 所述写入请求信息WC8T,使用所述存储单元332以将所述写入请求信息WC8T的所述控制码CC1T存储到所述内存位置YX8T。
请参阅图15和图16。图15为示出于图1中的所述控制系统861的一实施结构9017的示意图。图16为示出于图1中的所述控制系统861的一实施结构9018的示意图。如图15和图16所示,所述实施结构9017和所述实施结构9018的每一结构包含所述控制装置212和所述控制目标装置130。所述控制目标装置130包含所述操作单元397、所述感测单元334、所述功能单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述输入单元337和所述输出单元338。所述输入单元337包含所述输入组件3371、所述输入组件3372和所述输入组件3373。所述输出单元338包含一输出组件3381、一输出组件3382和一输出组件3383。所述感测单元334、所述功能单元335、所述存储单元332、所述输入组件3371、所述输入组件3372、所述输入组件3373、所述输出组件3381、所述输出组件3382和所述输出组件3383皆耦合于所述处理单元331,并皆受所述处理单元331控制。
在一些实施例中,所述输出组件3381进一步耦合于所述功能单元335。所述处理单元331于所述操作时间TF81之内基于所获得的所述控制码CC1T来执行所述信号产生控制GY81。所述输出组件3381响应所述信号产生控制GY81来执行用于所述测量应用功能FA81的所述信号产生操作BY81以于所述操作时间TF81之内产生所述功能信号SG81。例如,所述功能信号SG81是一控制信号。所述输出组件3381将所述功能信号SG81传输到所述功能单元335。所述功能单元335响应所述功能信号SG81来导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。例如,所述功能信号SG81是一脉冲宽度调变信号、一电位准信号、一驱动信号和一指令信号的其中之一。例如,所述功能单元335位于所述控制目标装置130的内部和所述控制目标装置130的外部的其中之一。
在所述处理单元331检查所述数学关系KV91以确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331确定所述肯定操作报告RL81,并导致所述输出单元338产生输送所述肯定操作报告RL81和所述测量值VN82的所述控制响应信号SE81。所述控制响应信号SE81是一电信号LP81和一光信号LQ81的其中之一。所述输出组件3382是一传输器。所述输出组件3383是一光发射组件。
例如,所述处理单元331借由检查所述数学关系KV91来确定所述可变物理参数QU1A目前于所述物理参数目标范围RD1ET之内的一物理参数情况,并藉此辨识所述可变物理参数QU1A和所述物理参数目标范围RD1ET之间的一物理参数关系KD8T为所述可变物理参数QU1A目前于所述物理参数目标范围RD1ET之内的一物理参数交集关系。例如,所述处理单 元331借由检查所述数学关系KV91来检查所述物理参数关系KD8T。
在所述输出组件3382被配置以产生所述控制响应信号SE81的条件下,所述处理单元331基于所确定的所述肯定操作报告RL81来导致所述输出组件3382向所述控制装置212传输输送所述肯定操作报告RL81的所述电信号LP81。在所述输出组件3383被配置以产生所述控制响应信号SE81的条件下,所述处理单元331基于所确定的所述肯定操作报告RL81来导致所述输出组件3383产生输送所述肯定操作报告RL81的所述光信号LQ81,藉此所述控制装置212从所述输出组件3383接收所产生的所述光信号LQ81。例如,所述光发射组件是一显示组件。所述光信号LQ81输送代表所述肯定操作报告RL81的一编码影像FZ81。例如,所述编码影像FZ81是一条形码影像。例如,所述电信号LP81是一无线电信号。所述光信号LQ81是一红外线信号。
例如,所述控制装置212由一控制装置识别符HA0T所识别。所述控制信号SC81进一步输送所述控制装置识别符HA0T。所述处理单元331响应所述控制信号SC81来从所述控制信号SC81获得所述控制装置识别符HA0T,并基于所获得的所述控制装置识别符HA0T和所确定的所述肯定操作报告RL81来导致所述输出组件3382向所述控制装置212传输输送所述肯定操作报告RL81的所述电信号LP81。
在一些实施例中,所述控制装置212的所述操作单元297被配置以与所述操作单元397有线地或无线地通信;因此,所述操作单元297被配置以向所述操作单元397有线地或无线地传输所述控制信号SC81。例如,所述输入单元337有线地或无线地从所述控制装置212接收所述控制信号SC81。所述控制信号SC81是所述电信号SP81和所述光信号SQ81的其中之一。所述输入组件3371是一接收器,并在所述控制信号SC81是所述电信号SP81的条件下从所述控制装置212接收所述电信号SP81。所述输入组件3372是一读取器,并在所述控制信号SC81是所述光信号SQ81的条件下从所述控制装置212接收输送所述编码影像FY81的所述光信号SQ81。例如,所述编码影像FY81是一条形码影像。例如,所述电信号SP81是一无线电信号。所述光信号SQ81是一红外线信号。
所述功能单元335具有所述可变物理参数QU1A。所述输入单元337进一步包含一输入组件3374。所述输入组件3374耦合于所述处理单元331,受所述处理单元331控制,并在所述可变物理参数QU1A要依靠所述控制装置212而被提供的条件下从所述控制装置212接收一物理参数信号SB81。所述功能单元335从所述输入组件3374接收所述物理参数信号SB81。所述处理单元331通过所述输出组件3381来导致所述功能单元335使用所述物理参数信号SB81以形成取决于所述物理参数信号SB81的所述可变物理参数QU1A。例如,所述输入组件3374是一接收组件。所述控制装置212有线地或无线地传输所述物理参数 信号SB81到所述输入组件3374。
所述物理参数目标范围RD1ET具有一预置物理参数目标范围界限ZD1T1和相对于所述预置物理参数目标范围界限ZD1T1的一预置物理参数目标范围界限ZD1T2。所述目标范围界限值对DN1T包含所述测量值目标范围RN1T的一目标范围界限值DN17和相对于所述目标范围界限值DN17的一目标范围界限值DN18。所述预置物理参数目标范围界限ZD1T1由所述目标范围界限值DN17所代表。所述预置物理参数目标范围界限ZD1T2由所述目标范围界限值DN18所代表。
在一些实施例中,所述触发事件EQ81是一状态改变事件。所述控制装置212包含一操作单元297和耦合于所述操作单元297的一状态改变侦测器475。例如,所述状态改变侦测器475是一极限侦测器和一边缘侦测器的其中之一。所述极限侦测器是一极限开关485。所述状态改变侦测器475被配置以侦测与一预置特征物理参数UL81相关的一特征物理参数到达ZL82。例如,所述预置特征物理参数UL81是一预置极限位置。所述特征物理参数到达ZL82是一极限位置到达。
所述功能单元335包含一物理参数应用区AJ11。所述物理参数应用区AJ11具有一可变物理参数QG1A。所述可变物理参数QG1A相依于所述可变物理参数QU1A,并基于所述预置特征物理参数UL81而被特征化。例如,所述物理参数应用区AJ11是一负载区、一显示区、一感测区、一功率供应区和一环境区的其中之一。所述预置特征物理参数UL81相关于所述可变物理参数QU1A。
在所述输入单元337接收所述控制信号SC81之前,所述输入单元337从所述操作单元297接收一控制信号SC80;所述处理单元331响应所接收的所述控制信号SC80来执行用于控制所述输出单元338的一信号产生控制GY80;所述输出单元338响应所述信号产生控制GY80来产生用于控制所述可变物理参数QU1A的一功能信号SG80;且所述功能单元335从所述输出单元338接收所述功能信号SG80,并响应所接收的所述功能信号SG80来执行与所述可变物理参数QU1A相关的所述特定功能操作ZH81。所述特定功能操作ZH81用于控制所述可变物理参数QG1A,并借由改变所述可变物理参数QG1A来导致所述触发事件EQ81发生。所述可变物理参数QG1A被配置以处于一可变物理状态XA8A。例如,所述操作单元397受所述控制装置212控制以使所述功能单元335执行所述特定功能操作ZH81。所述状态改变侦测器475响应所述特定功能操作ZH81来产生一触发信号SX8A。
在所述可变物理参数QU1A于所述特定物理参数范围RD1E4之内的条件下,所述特定功能操作ZH81导致所述可变物理参数QG1A到达所述预置特征物理参数UL81以形成所述特征物理参数到达ZL82,并借由形成所述特征物理参数到达ZL82来将所述可变物理状态 XA8A从一非特征物理参数到达状态XA81改变成一实际特征物理参数到达状态XA82。所述状态改变侦测器475响应所述特征物理参数到达ZL82来产生所述触发信号SX8A。例如,所述实际特征物理参数到达状态XA82基于所述预置特征物理参数UL81而被特征化。所述状态改变侦测器475响应所述可变物理参数QG1A被从所述非特征物理参数到达状态XA81改变成所述实际特征物理参数到达状态XA82的一状态改变事件来产生所述触发信号SX8A。
例如,所述状态改变侦测器475是一触发应用单元。所述触发事件EQ81是所述可变物理参数QG1A进入所述实际特征物理参数到达状态XA82的所述状态改变事件。所述操作单元297接收所述触发信号SX8A,并响应所接收的所述触发信号SX8A来产生所述控制信号SC81。例如,在所述状态改变侦测器475是所述极限开关485的条件下,所述特征物理参数到达ZL82是等于一可变空间位置的所述可变物理参数QG1A到达等于一预置极限位置的所述预置特征物理参数UL81的一极限位置到达。所述触发信号SX8A是一操作请求信号。
例如,所述操作单元297响应所接收的所述触发信号SX8A来获得包含所述目标范围界限值对DN1T和所述测量值目标范围码EM1T的至少其中之一的一控制应用码UA8T,并基于所述控制应用码UA8T来产生输送所述目标范围界限值对DN1T和所述测量值目标范围码EM1T的至少其中之一的所述控制信号SC81。例如,所述功能单元335借由执行基于所述可变物理参数QU1A而被引起的所述特定功能操作ZH81来在所述物理参数应用区AJ11中形成所述可变物理参数QG1A。在所述物理参数应用区AJ11耦合于所述状态改变侦测器475的条件下,所述状态改变侦测器475侦测所述特征物理参数到达ZL82。
在一些实施例中,所述可变物理参数QU1A是一第一可变电性参数、一第一可变力学参数、一第一可变光学参数、一第一可变温度、一第一可变电压、一第一可变电流、一第一可变电功率、一第一可变电阻、一第一可变电容、一第一可变电感、一第一可变频率、一第一时钟时间、一第一可变时间长度、一第一可变亮度、一第一可变光强度、一第一可变音量、一第一可变数据流量、一第一可变振幅、一第一可变空间位置、一第一可变位移、一第一可变顺序位置、一第一可变角度、一第一可变空间长度、一第一可变距离、一第一可变平移速度、一第一可变角速度、一第一可变加速度、一第一可变力、一第一可变压力和一第一可变机械功率的其中之一。
所述操作单元397被配置以依靠所述控制信号SC81而执行与所述可变物理参数QU1A相关的所述测量应用功能FA81。所述控制目标装置130是多个应用装置的其中之一。所述测量应用功能FA81是多个特定控制功能的其中之一,所述多个特定控制功能包含一光控制功能、一力控制功能、一电控制功能、一磁控制功能和其任意组合。所述多个应用装置包含一功能装置、一继电器、一控制开关装置、一电动机、一照明装置、一门、一贩卖机、 一能量转换器、一负载装置、一定时装置、一玩具、一电器、一打印装置、一显示设备、一移动装置、一扬声器和其任意组合。
所述功能单元335是多个应用目标的其中之一,并被配置以执行一特定应用功能。所述特定应用功能是多个物理参数应用功能的其中之一,所述多个物理参数应用功能包含一光使用功能、一力使用功能、一电使用功能、一磁使用功能和其任意组合。所述多个应用目标包含一电子组件、一致动器、一电阻器、一电容器、一电感器、一继电器、一控制开关、一晶体管、一电动机、一照明单元、一能量转换单元、一负载单元、一定时单元、一打印单元、一显示目标、一扬声器和其任意组合。例如,所述功能单元335是一物理可实现功能单元。
例如,所述可变物理参数QU1A和所述可变物理参数QG1A分别属于一物理参数类型TU11和一物理参数类型TU1G。所述物理参数类型TU11相同或不同于所述物理参数类型TU1G。所述预置特征物理参数UL81属于所述物理参数类型TU1G。所述功能单元335进一步包含具有所述可变物理参数QU1A的一物理参数形成区AU11。所述物理参数应用区AJ11耦合于所述物理参数形成区AU11。例如,所述特定功能操作ZH81用于驱动所述物理参数应用区AJ11以形成所述特征物理参数到达ZL82。例如,所述物理参数形成区AU11是一负载区、一显示区、一感测区、一功率供应区和一环境区的其中之一。例如,所述物理参数类型TU11不同于一时间类型。
所述可变物理参数QG1A是一可变电性参数、一可变力学参数、一可变光学参数、一可变温度、一可变电压、一可变电流、一可变电功率、一可变电阻、一可变电容、一可变电感、一可变频率、一时钟时间、一可变时间长度、一可变亮度、一可变光强度、一可变音量、一可变量据流量、一可变振幅、一可变空间位置、一可变位移、一可变顺序位置、一可变角度、一可变空间长度、一可变距离、一可变平移速度、一可变角速度、一可变加速度、一可变力、一可变压力和一可变机械功率的其中之一。例如,所述可变物理参数QU1A相同或不同于所述可变物理参数QG1A。
请参阅图17、图18和图19。图17为示出于图1中的所述控制系统861的一实施结构9019的示意图。图18为示出于图1中的所述控制系统861的一实施结构9020的示意图。图19为示出于图1中的所述控制系统861的一实施结构9021的示意图。如图17、图18和图19所示,所述实施结构9019、所述实施结构9020和所述实施结构9021的每一结构包含所述控制装置212和所述控制目标装置130。所述控制目标装置130包含所述操作单元397、所述感测单元334、所述功能单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述输入单元337和所述输出单元338。所述输入单元337、所述 输出单元338、所述感测单元334、所述功能单元335和所述存储单元332所述皆受所述处理单元331控制。
在一些实施例中,所述感测单元334感测所述可变物理参数QU1A以产生所述第一感测信号SN81。例如,在所述输入单元337接收所述控制信号SC81的条件下,所述感测单元334感测所述可变物理参数QU1A以产生所述第一感测信号SN81。在所述处理单元331借由执行所述信号产生控制GY81来导致所述输出单元338于所述操作时间TF81之内产生所述功能信号SG81之后,所述感测单元334感测所述可变物理参数QU1A以产生所述第二感测信号SN82。例如,所述感测单元334是一时间感测单元、一电性参数感测单元、一力学参数感测单元、一光学参数感测单元、一温度感测单元、一湿度感测单元、一运动感测单元和一磁性参数感测单元的其中之一。
所述感测单元334包含耦合于所述处理单元331的一感测组件3341,并使用所述感测组件3341以产生所述第一感测信号SN81和所述第二感测信号SN82。所述感测组件3341属于一传感器类型7341,并是第一多个应用传感器的其中之一。所述第一多个应用传感器包含一第一电压传感器、一第一电流传感器、一第一电阻传感器、一第一电容传感器、一第一电感传感器、一第一加速度计、一第一陀螺仪、一第一压力转能器、一第一应变规、一第一定时器、一第一光侦测器、一第一温度传感器和一第一湿度传感器。例如,所述感测组件3341产生一感测信号分量SN811。所述第一感测信号SN81包含所述感测信号分量SN811。
所述感测单元334进一步包含耦合于所述处理单元331的一感测组件3342,并使用所述感测组件3342以产生所述第一感测信号SN81和所述第二感测信号SN82。所述感测组件3342属于一传感器类型7342,并是第二多个应用传感器的其中之一。所述传感器类型7342不同于或独立于所述传感器类型7341。所述第二多个应用传感器包含一第二电压传感器、一第二电流传感器、一第二电阻传感器、一第二电容传感器、一第二电感传感器、一第二加速度计、一第二陀螺仪、一第二压力转能器、一第二应变规、一第二定时器、一第二光侦测器、一第二温度传感器和一第二湿度传感器。
例如,所述感测组件3342产生一感测信号分量SN812。所述第一感测信号SN81进一步包含所述感测信号分量SN812。例如,所述感测单元334属于一传感器类型734。所述传感器类型734相关于所述传感器类型7341和所述传感器类型7342。例如,所述感测单元334、所述感测组件3341和所述感测组件3342分别是一电功率感测单元、一电压传感器和一电流传感器。例如,所述感测单元334、所述感测组件3341和所述感测组件3342分别是一惯性测量单元、一加速度计和一陀螺仪。
在一些实施例中,所述可变物理参数QU1A相依于一可变物理参数JA1A和不同于所述可变物理参数JA1A的一可变物理参数JB1A。例如,所述可变物理参数QU1A、所述可变物理参数JA1A和所述可变物理参数JB1A分别是一可变电功率、一可变电压和一可变电流,并分别属于一第一物理参数类型、一第二物理参数类型和一第三物理参数类型。所述第二物理参数类型和所述第三物理参数类型是不同的或独立的。所述第一物理参数类型相依于所述第二物理参数类型和所述第三物理参数类型。所述感测组件3341感测所述可变物理参数JA1A以产生所述感测信号分量SN811。所述感测组件3342感测所述可变物理参数JB1A以产生所述感测信号分量SN812。
所述处理单元331接收所述感测信号分量SN811和所述感测信号分量SN812。在所述输入单元337接收所述控制信号SC81的条件下,所述处理单元331响应所述感测信号分量SN811和所述感测信号分量SN812来获得所述第一测量值VN81。例如,所述处理单元331响应所述感测信号分量SN811来获得一测量值VN811,响应所述感测信号分量SN812来获得一测量值VN812,并借由执行使用所述测量值VN811和所述测量值VN812的一科学计算MY81来获得所述第一测量值VN81。所述科学计算MY81基于所述第一物理参数类型、所述第二物理参数类型和所述第三物理参数类型而被预先制定。
所述可变物理参数JA1A和所述可变物理参数JB1A的每一物理参数是一可变电性参数、一可变力学参数、一可变光学参数、一可变温度、一可变电压、一可变电流、一可变电功率、一可变电阻、一可变电容、一可变电感、一可变频率、一时钟时间、一可变时间长度、一可变亮度、一可变光强度、一可变音量、一可变量据流量、一可变振幅、一可变空间位置、一可变位移、一可变顺序位置、一可变角度、一可变空间长度、一可变距离、一可变平移速度、一可变角速度、一可变加速度、一可变力、一可变压力和一可变机械功率的其中之一。
在一些实施例中,所述感测单元334被配置以符合所述传感器规格FU11。所述感测单元334借由执行相依于所述传感器灵敏度YW81的所述感测信号产生HF81来产生所述第一感测信号SN81。所述功能单元335包含具有所述可变物理参数QU1A的所述物理参数形成区AU11。在所述输入单元337接收所述控制信号SC81且所述可变物理参数QU1A存在于所述物理参数形成区AU11中的条件下,所述感测单元334感测所述可变物理参数QU1A以产生所述第一感测信号SN81。例如,所述感测单元334耦合于所述物理参数形成区AU11,或位于所述物理参数形成区AU11中。所述处理单元331接收所述第一感测信号SN81,并借由处理所接收的所述第一感测信号SN81来以所述指定测量值格式HH11获得所述第一测量值VN81。
所述处理单元331借由比较所述第一测量值VN81和所获得的所述应用范围界限值对DN1L来执行用于检查所述第一测量值VN81和所述测量值应用范围RN1L之间的所述第二数学关系KV81的一检查操作BV81,并基于所述检查操作BV81来做出所述第一逻辑决定PB81。在一些实施例中,所述处理单元331处理所接收的所述第一感测信号SN81以获得包含所述第一测量值VN81的一测量值序列JN81。所述处理单元331借由比较所述测量值序列JN81和所获得的所述应用范围界限值对DN1L来执行用于检查所述测量值序列JN81和所述测量值应用范围RN1L之间的一数学关系KV85的一检查操作BV85。所述处理单元331基于所述检查操作BV85来做出所述第一逻辑决定PB81。例如,所述检查操作BV85包含所述检查操作BV81。
例如,在处理单元331基于所述数据比较CD81而辨识所述第一测量值VN81为于所述测量值应用范围RN1L之内的一可允许值VG81的条件下,所述处理单元331做出所述第一逻辑决定PB81以成为肯定的。或者,在所述处理单元331辨识所述第二数学关系KV81为一数值交集关系KW81的条件下,所述处理单元331做出所述第一逻辑决定PB81以成为肯定的。
在一些实施例中,所述处理单元331响应所述控制信号SC81来从所述控制信号SC81获得所述测量值目标范围码EM1T。所述处理单元331于所述操作时间TF81之后的所述指定时间TG82之内执行与所述可变物理参数QU1A相关的一验证操作ZU81。在所述处理单元331基于所述验证操作ZU81而确定所述可变物理参数QU1A进入的所述物理参数目标范围RD1ET的条件下,所述处理单元331使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。例如,所述验证操作ZU81于所述操作时间TF81之后的所述指定时间TG82之内响应所述第二感测信号SN82来以所述指定测量值格式HH81获得所述第二测量值VN82。
所述验证操作ZU81基于所获得的所述测量值目标范围码EM1T来获得所述目标范围界限值对DN1T,并借由比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T来检查所述第二测量值VN82和所述测量值目标范围RN1T之间的所述数学关系KV91以做出所述第二测量值VN82是否为于所述测量值目标范围RN1T之内的所述逻辑决定PB91。在所述逻辑决定PB91是肯定的条件下,所述验证操作ZU81确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET,或确定所述可变物理参数QU1A进入的所述物理参数目标范围RD1ET。
例如,所述输出单元338包含耦合于所述处理单元331的一传输器3382(或一输出组件3382)。所述处理单元331基于所述验证操作ZU81来产生一特定操作报告RL8A,并基 于所述特定操作报告RL8A来使所述传输单元384向所述操作单元297传输输送所述特定操作报告RL8A的所述控制响应信号SE81。所述操作单元297从所述控制响应信号SE81获得所述特定操作报告RL8A,并基于所获得的所述特定操作报告RL8A来执行与所述可变物理参数QU1A相关的所述特定实际操作BJ81。例如,所述特定操作报告RL8A包含所述肯定操作报告RL81。
在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述处理单元331基于所述验证操作ZU81而确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331基于等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的所述码差异DF81来使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
在一些实施例中,在所述处理单元331于所述指定时间TG82之内基于所述验证操作ZU81而确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331执行等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的一数据比较CE8T。在所述处理单元331基于所述数据比较CE8T而确定等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的所述码差异DF81的条件下,所述处理单元331使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
例如,在所述处理单元331基于所述数据比较CE8T而确定所述码差异DF81的条件下,所述处理单元331执行所述数据存储控制操作GU81,所述数据存储控制操作GU81用于导致代表所确定的所述物理参数目标范围RD1ET的所述物理参数目标范围码UN8T被所述存储单元332记录。例如,所述物理参数目标范围码UN8T等于所获得的所述测量值目标范围码EM1T。所述数据存储控制操作GU81使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
当所述输入单元337接收所述控制信号SC81时,所述输出组件3383显示所述状态指示LB81。例如,所述状态指示LB81用于指示所述可变物理参数QU1A被配置于所述特定物理参数范围RD1E4之内的所述特定状态XJ81。在所述输入单元337接收所述控制信号SC81之前,所述处理单元331被配置以获得所述特定测量值范围码EM14,并基于所获得的所述特定测量值范围码EM14来导致所述输出单元338显示所述状态指示LB81。
在所述处理单元331基于所述数据比较CE8T而确定所述码差异DF81的条件下,所述 处理单元331基于所获得的所述测量值目标范围码EM1T来导致所述输出组件3383将所述状态指示LB81改变成所述状态指示LB82。例如,所述状态指示LB82用于指示所述可变物理参数QU1A目前于所述物理参数目标范围RD1ET之内的所述特定状态XJ82。
在一些实施例中,所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL皆包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中。所述物理参数目标范围RD1ET相同或不同于所述物理参数应用范围RD1EL。所述可变物理参数QU1A进一步基于一物理参数候选范围RD1E2而被特征化。所述物理参数候选范围RD1E2不同于所述物理参数应用范围RD1EL,并相同或不同于所述物理参数目标范围RD1ET。例如,所述物理参数应用范围RD1EL是一物理参数候选范围。
所述物理参数目标范围RD1ET被配置以对应于一对应物理参数范围RY1ET。所述额定物理参数范围RD1E等于所述物理参数目标范围RD1ET和所述对应物理参数范围RY1ET的一范围组合,并包含所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2。所述测量值目标范围RN1T被配置以对应于一对应测量值范围RX1T。所述额定测量值范围RD1N等于所述测量值目标范围RN1T和所述对应测量值范围RX1T的一范围组合。所述对应物理参数范围RY1ET由所述对应测量值范围RX1T所代表。例如,所述对应测量值范围RX1T基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。
所述测量值目标范围RN1T和所述测量值应用范围RN1L皆包含于所述多个不同测量值参考范围RN11、RN12、…中。所述测量值目标范围RN1T相同或不同于所述测量值应用范围RN1L。所述物理参数候选范围RD1E2由一测量值候选范围RN12所代表。所述测量值候选范围RN12不同于所述测量值应用范围RN1L,并相同或不同于所述测量值目标范围RN1T。所述额定测量值范围RD1N包含所述测量值应用范围RN1L和所述测量值候选范围RN12。例如,所述测量值候选范围RN12基于所述物理参数候选范围RD1E2和所述额定测量值范围RD1N而被预置。所述测量值应用范围RN1L是一测量值候选范围。所述额定测量值范围RD1N基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和所述额定物理参数范围表示GA8E来用所述指定测量值格式HH81而被预置。
在一些实施例中,所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2是分开的或相邻的。在所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2是分开的条件下,所述测量值应用范围RN1L和所述测量值候选范围RN12是分开的。在所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2是相邻的条件下,所述测量值应用范围RN1L和所述测量值候选范围RN12是相邻的。所述多个不同物理参数参考范围RD1E1、 RD1E2、…包含所述物理参数候选范围RD1E2,分别由所述多个不同测量值参考范围RN11、RN12、…所代表,并分别由多个物理参数参考范围码所代表。
所述测量值候选范围RN12由一测量值候选范围码EM12所代表,并具有一候选范围界限值对DN1B,藉此所述测量值候选范围码EM12被配置以指示所述物理参数候选范围RD1E2。例如,所述候选范围界限值对DN1B包含一候选范围界限值DN13和相对于所述候选范围界限值DN13的一候选范围界限值DN14。所述测量值候选范围码EM12和所述候选范围界限值对DN1B皆被预置。所述多个不同测量值参考范围码EM11、EM12、…包含所预置的所述测量值候选范围码EM12。所述多个不同测量值参考范围RN11、RN12、…包含所述测量值候选范围RN12,并分别由所述多个不同测量值参考范围码EM11、EM12、…所代表。例如,所述多个物理参数参考范围码被配置以分别等于所述多个不同测量值参考范围码EM11、EM12、…。
例如,所述触发应用功能规格GAL8进一步包含用于表示所述物理参数候选范围RD1E2的一物理参数候选范围表示GA82。所述测量值候选范围RN12和所述候选范围界限值对DN1B皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。例如,所述测量值候选范围RN12和所述候选范围界限值对DN1B皆基于所述物理参数候选范围表示GA82、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81、和用于转换所述物理参数候选范围表示GA82的的一数据编码操作ZX84来用所述指定测量值格式HH81而被预置。
在一些实施例中,所述测量应用功能规格GAL8用于表示所述额定物理参数范围RD1E和所述多个不同物理参数参考范围RD1E1、RD1E2、…。所述额定测量值范围RD1N、所述额定范围界限值对DD1A、所述多个不同测量值参考范围RN11、RN12、…、及所述多个不同测量值参考范围码EM11、EM12、…皆基于所述测量应用功能规格GAL8而被预置。所述测量应用功能FA81选择自多个不同物理参数控制作用功能。所述存储单元332存储所述测量应用功能规格GAL8。
所述处理单元331根据所述测量应用功能规格GAL8来预先设定所述额定范围界限值对DD1A、所述应用范围界限值对DN1L、所述目标范围界限值对DN1T、所述候选范围界限值对DN1B、…。所述第一感测信号SN81包含感测数据。例如,所述感测数据属于所述二进制数据类型。所述处理单元331基于所述感测数据来以所述指定测量值格式HH81获得所述第一测量值VN81。
在一些实施例中,所述操作单元397被配置以依靠所述控制信号SC81来执行所述测量应用功能FA81。所述处理单元331基于用于所述测量应用功能FA81的所述检查操作BV81 来做出所述第一测量值VN81是否为于所述测量值应用范围RN1L之内的所述第一逻辑决定PB81。在所述第一逻辑决定PB81是肯定的条件下,所述处理单元331借由比较所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L来检查所述范围关系KE8A以做出所述合理决定PW81。
例如,在所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331借由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L来检查所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL之间的所述范围关系KE9A以做出所所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EL是否相等的所述逻辑决定PZ91。在所述逻辑决定PZ91为否定的条件下,所述处理单元331借由辨识所述范围关系KE9A为一范围相异关系来确定所述范围差异DB81以做出所述合理决定PW81以成为肯定的。在所述逻辑决定PZ81为否定的条件下,所述逻辑决定PZ91为否定的。
例如,在所述合理决定PW81是肯定的条件下,所述处理单元331基于所获得的所述控制码CC1T来执行所述信号产生控制GY81以导致所述输出单元338产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的所述功能信号SG81。在所述第一逻辑决定PB81是否定的条件下,所述处理单元331借由执行使用所确定的所述测量值应用范围码EM1L的一科学计算MR82来确定选择自所述多个不同测量值参考范围码EM11、EM12、…的所述测量值候选范围码EM12以便从所述多个不同测量值参考范围RN11、RN12、…中选择所述测量值候选范围RN12。
所述处理单元331基于所确定的所述测量值候选范围码EM12来获得所述候选范围界限值对DN1B,并基于所述第一测量值VN81和所获得的所述候选范围界限值对DN1B之间的一数据比较CD82来检查所述第一测量值VN81和所选择的所述测量值候选范围RN12之间的一数学关系KV82以做出所述第一测量值VN81是否为于所选择的所述测量值候选范围RN12之内的一逻辑决定PB82。在所述逻辑决定PB82是肯定的条件下,所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数候选范围RD1E2。
在所述逻辑决定PB82是肯定的条件下,所述处理单元331借由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值候选范围码EM12来检查所述测量值目标范围RN1T和所选择的所述测量值候选范围RN12之间的一范围关系KE8B以做出所获得的所述测量值目标范围码EM1T和所确定的所述测量值候选范围码EM12是否相等的一逻辑决定PZ82。在所述逻辑决定PZ82是否定的条件下,所述处理单元331导致所述输出单元338产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的所述功能信号 SG81。
例如,在所述逻辑决定PB82是肯定的条件下,所述处理单元331借由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值候选范围码EM12来检查所述物理参数目标范围RD1ET和所选择的所述物理参数候选范围RD1E2之间的一范围关系KE9B以做出所述物理参数目标范围RD1ET和所选择的所述物理参数候选范围RD1E2是否相等的一逻辑决定PZ92。在所述逻辑决定PZ92为否定的条件下,所述处理单元331借由辨识所述范围关系KE9B为一范围相异关系来使用所述输出组件338以产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的所述功能信号SG81。在所述逻辑决定PZ82为否定的条件下,所述逻辑决定PZ92为否定的。
在一些实施例中,在所述可变物理参数QU1A基于所述控制信号SC81而被配置于所述物理参数目标范围RD1ET之内的条件下,包含于所述输入单元337中的所述输入组件3373接收所述用户输入操作BQ81,并响应所述用户输入操作BQ81来提供一输入数据DH81到所述处理单元331。所述处理单元331对于所述输入数据DH81执行一数据编码操作EA81以确定所述特定输入码UW81。所述处理单元331响应于确定所述特定输入码UW81来执行用于所述测量应用功能FA81的一检查操作ZP81以决定所确定的所述特定输入码UW81是否等于所述可变物理参数范围码UN8A。
例如,在所述处理单元331确定所述特定输入码UW81的条件下,所述处理单元331借由使用所述存储单元332来读取等于所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A,并执行用于检查所确定的所述特定输入码UW81和所读取的所述测量值目标范围码EM1T之间的一算术关系KP81的所述检查操作ZP81。所述检查操作ZP81被配置以借由执行用于所述测量应用功能FA81的一数据比较CE81来比较所确定的所述特定输入码UW81和所读取的所述测量值目标范围码EM1T以决定所确定的所述特定输入码UW81和所读取的所述测量值目标范围码EM1T是否不同。
在所述处理单元331借由执行所述数据比较CE81来确定所确定的所述特定输入码UW81和等于所获得的所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A之间的所述码差异DX81的条件下,所述处理单元331导致所述输出组件3381执行用于所述测量应用功能FA81的一信号产生操作BY82以产生一功能信号SG82。例如,所述功能信号SG82是一操作信号和一控制信号的其中之一。所述输出组件3381将所述功能信号SG82传输到所述功能单元335。
所述功能单元335响应所述功能信号SG82来导致所述可变物理参数QU1A从所述物理参数目标范围RD1ET进入所述对应物理参数范围RY1ET。例如,所述功能信号SG82是一脉 冲宽度调变信号、一电位准信号、一驱动信号和一指令信号的其中之一。例如,所述功能单元335响应所述功能信号SG82来导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中的所述特定物理参数范围RD1E5。
例如,所述多个不同测量值参考范围码EM11、EM12、…包含不同于所述测量值目标范围码EM1T的一特定测量值范围码EM15。所述特定测量值范围码EM15被配置以指示所述特定物理参数范围RD1E5。在所确定的所述特定输入码UW81等于所述特定测量值范围码EM15以导致所确定的所述特定输入码UW81和等于所获得的所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A之间具有所述码差异DX81的条件下,所述处理单元331借由执行所述数据比较CE81来确定所述码差异DX81,并响应于确定所述码差异DX81来导致所述输出单元338产生所述功能信号SG82。所述功能单元335响应所述功能信号SG82来导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入包含于所述对应物理参数范围RY1ET中的所述特定物理参数范围RD1E5。
例如,在所述处理单元331导致所述输出组件3381执行所述信号产生操作BY82之后,所述处理单元331于一指定时间之内执行与所述可变物理参数QU1A相关的一验证操作。在所述处理单元331基于所述验证操作而确定所述可变物理参数QU1A进入的所述特定物理参数范围RD1E5的条件下,所述处理单元331将等于所述特定测量值范围码EM15的所确定的所述特定输入码UW81指定到所述可变物理参数范围码UN8A。例如,所述特定物理参数范围RD1E5等于所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2的其中之一。
请参阅图20、图21和图22。图20为示出于图1中的所述控制系统861的一实施结构9022的示意图。图21为示出于图1中的所述控制系统861的一实施结构9023的示意图。图22为示出于图1中的所述控制系统861的一实施结构9024的示意图。如图20、图21和图22所示,所述实施结构9022、所述实施结构9023和所述实施结构9024的每一结构包含所述控制装置212和所述控制目标装置130。所述控制目标装置130包含所述操作单元397、所述感测单元334、所述功能单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述输入单元337和所述输出单元338。
在一些实施例中,所述存储单元332具有所述内存位置YM8L,并在所述内存位置YM8L存储所述应用范围界限值对DN1L。所述内存位置YM8L基于所预置的所述测量值应用范围码EM1L而被识别。例如,所述内存位置YM8L基于所述内存地址AM8L而被识别,或由所述内存地址AM8L所识别。
所述存储单元332具有所述内存位置YM8T和不同于所述内存位置YM8T的所述内存位置YX8T,在所述内存位置YM8T存储所述目标范围界限值对DN1T,并在所述内存位置YX8T存储所述控制码CC1T。例如,所述内存位置YM8T和所述内存位置YX8T皆基于所预置的所述测量值目标范围码EM1T而被识别。所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的所述指定物理参数QD1T而被预置。所述内存位置YM8T基于一内存地址AM8T而被识别,或由所述内存地址AM8T所识别。所述内存位置YX8T基于所述内存地址AX8T而被识别,或由所述内存地址AX8T所识别。所述内存位置YM8L不同于所述内存位置YX8T。
所述存储单元332进一步具有一内存位置YM82和不同于所述内存位置YM82的一内存位置YX82,在所述内存位置YM82存储所述候选范围界限值对DN1B,并在所述内存位置YX82存储一控制码CC12。例如,所述内存位置YM82和所述内存位置YX82皆基于所预置的所述测量值候选范围码EM12而被识别。所述控制码CC12基于在所述物理参数候选范围RD1E2之内的一指定物理参数QD12而被预置。
例如,所述测量应用功能规格GAL8包含一物理参数表示GA812,所述物理参数表示GA812用于表示在所述物理参数目标范围RD1E2之内的所述指定物理参数QD12。所述控制码CC12基于所述物理参数表示GA812和用于转换所述物理参数表示GA812的一数据编码操作ZX92而被预置。所述内存位置YM82基于所述内存地址AM82而被识别,或由所述内存地址AM82所识别。所述内存位置YX82基于所述内存地址AX82而被识别,或由所述内存地址AX82所识别。
例如,所述存储单元332进一步具有一内存位置YX8L,并在所述内存位置YX8L存储一控制码CC1L。所述内存位置YX8L基于一内存地址AX8L而被识别,或由所述内存地址AX8L所识别。所述控制码CC1L基于在所述物理参数应用范围RD1EL之内的一指定物理参数QD1L而被预置。
在一些实施例中,所述应用范围界限值对DN1L、所述目标范围界限值对DN1T和所述候选范围界限值对DN1B皆属于一测量范围界限数据码类型TN81。所述测量范围界限数据码类型TN81由一测量范围界限数据码类型识别符HN81所识别。所述控制码CC1T和所述控制码CC12皆属于一控制码类型TC81。所述控制码类型TC81由一控制码类型识别符HC81所识别。所述测量范围界限数据码类型识别符HN81和所述控制码类型识别符HC81皆被预置。
所述内存地址AM8L基于所预置的所述测量值应用范围码EM1L和所预置的所述测量范围界限数据码类型识别符HN81而被预置。所述内存地址AX8L基于所预置的所述测量值应用范围码EM1L和所预置的所述控制码类型识别符HC81而被预置。所述内存地址AX8T基 于所预置的所述测量值目标范围码EM1T和所预置的所述控制码类型识别符HC81而被预置。所述第三内存地址AM8T基于所预置的所述测量值目标范围码EM1T和所预置的所述测量范围界限数据码类型识别符HN81而被预置。所述内存地址AM82基于所预置的所述测量值候选范围码EM12和所预置的所述测量范围界限数据码类型识别符HN81而被预置。所述内存地址AX82基于所预置的所述测量值候选范围码EM12和所预置的所述控制码类型识别符HC81而被预置。
在一些实施例中,所述处理单元331响应所述控制信号SC81来确定所述测量值应用范围码EM1L,响应所述控制信号SC81来获得所预置的所述测量范围界限数据码类型识别符HN81,基于所确定的所述测量值应用范围码EM1L和所获得的所述测量范围界限数据码类型识别符HN81来获得所述内存地址AM8L,并基于所获得的所述内存地址AM8L来使用所述存储单元332以接入被存储在所述内存位置YM8L的所述应用范围界限值对DN1L以获得所述应用范围界限值对DN1L。
所述处理单元331基于所述第一测量值VN81和所获得的所述应用范围界限值对DN1L之间的所述数据比较CD81来检查所述第二数学关系KV81以做出所述第一测量值VN81是否为于所选择的所述测量值应用范围RN1L之内的所述第一逻辑决定PB81,并在所述第一逻辑决定PB81是肯定的条件下确定所述可变物理参数QU1A目前于的所述物理参数应用范围RD1EL。例如,在所述第一逻辑决定PB81是肯定的条件下,所述处理单元331确定所述可变物理参数QU1A目前于所述物理参数应用范围RD1EL之内的一物理参数情况,并藉此辨识所述可变物理参数QU1A和所述物理参数应用范围RD1EL之间的一物理参数关系KD8L为所述可变物理参数QU1A目前于所述物理参数应用范围RD1EL之内的一物理参数交集关系。所述处理单元331借由检查所述数学关系KV81来检查所述物理参数关系KD8L。例如,在所述物理参数应用范围RD1EJ等于所述物理参数应用范围RD1EL的条件下,所述物理参数关系KC81等于所述物理参数关系KD8L。
所述处理单元331响应所述控制信号SC81来获得所预置的所述控制码类型识别符HC81,并从所述控制信号SC81获得所述测量值目标范围码EM1T。在所述处理单元331确定所述范围差异DS81的条件下,所述处理单元331基于所获得的所述测量值目标范围码EM1T和所获得的所述控制码类型识别符HC81来获得所述内存地址AX8T,并基于所获得的所述内存地址AX8T来使用所述存储单元332以接入被存储在所述内存位置YX8T的所述控制码CC1T。所述处理单元331基于所接入的所述控制码CC1T来导致所述输出单元338执行用于所述测量应用功能FA81的所述信号产生操作BY81以产生所述功能信号SG81,所述功能信号SG81用于控制所述功能单元335以导致所述可变物理参数QU1A进入所述物理参 数目标范围RD1ET。
所述处理单元331基于所获得的所述测量值目标范围码EM1T和所获得的所述测量范围界限数据码类型识别符HN81来获得所述第三内存地址AM8T,并基于所获得的所述第三内存地址AM8T来使用所述存储单元332以接入被存储在所述内存位置YM8T的所述目标范围界限值对DN1T以获得所述目标范围界限值对DN1T。所述处理单元331借由比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T来检查所述第二测量值VN82和所述测量值目标范围RN1T之间的所述数学关系KV91以做出所述第二测量值VN82是否为于所述测量值目标范围RN1T之内的所述逻辑决定PB91。
在一些实施例中,在所述输入单元337接收所述控制信号SC81之前,所述输入组件3371和所述输入组件3372的其中之一接收包含所预置的所述应用范围界限值对DN1L和所预置的所述内存地址AM8L的所述写入请求信息WN8L。例如,所述输入组件3371和所述输入组件3372的其中之一预先从所述控制装置212接收所述写入请求信息WN8L。所述处理单元331响应所述写入请求信息WN8L来使用所述存储单元332以将所述写入请求信息WN8L的所述应用范围界限值对DN1L存储到所述内存位置YM8L。
在所述输入单元337接收所述控制信号SC81之前,所述输入组件3371和所述输入组件3372的其中之一接收包含所预置的所述控制码CC1T和所预置的所述内存地址AX8T的所述写入请求信息WC8T。例如,所述输入组件3371和所述输入组件3372的其中之一预先从所述控制装置212接收所述写入请求信息WC8T。所述处理单元331响应所述写入请求信息WC8T来使用所述存储单元332以将所述写入请求信息WC8T的所述控制码CC1T存储到所述内存位置YX8T。
在所述输入单元337接收所述控制信号SC81之前,所述输入组件3371和所述输入组件3372的其中之一接收包含所预置的所述应用目标界限值对DN1T和所预置的所述第三内存地址AM8T的一写入请求信息WN8T。例如,所述输入组件3371和所述输入组件3372的其中之一预先从所述控制装置212接收所述写入请求信息WN8T。所述处理单元331响应所述写入请求信息WN8T来使用所述存储单元332以将所述写入请求信息WN8T的所述应用目标界限值对DN1T存储到所述内存位置YM8T。
所述存储单元332进一步具有一内存位置YN81,并在所述内存位置YN81存储所述额定范围界限值对DD1A。所述内存位置YN81基于一内存地址AN81而被识别,或由所述内存地址AN81所识别。例如,所述内存地址AN81被预置。在所述输入单元337接收所述控制信号SC81之前,所述输入组件3371和所述输入组件3372的其中之一接收包含所预置的所述额定范围界限值对DD1A和所预置的所述内存地址AN81的一写入请求信息WD81。例如, 所述输入组件3371和所述输入组件3372的其中之一预先从所述控制装置212接收所述写入请求信息WD81。所述处理单元331响应所述写入请求信息WD81来使用所述存储单元332以将所述写入请求信息WD81的所述额定范围界限值对DD1A存储到所述内存位置YN81。
在一些实施例中,所述处理单元331基于所确定的所述测量值候选范围码EM12和所获得的所述测量范围界限数据码类型识别符HN81来获得所述内存地址AM82,并基于所获得的所述内存地址AM82来使用所述存储单元332以接入被存储在所述内存位置YM82的所述候选范围界限值对DN1B以获得所述候选范围界限值对DN1B。
在一些实施例中,所述特定物理参数范围RD1E5由一特定测量值范围RN15所代表。所述特定测量值范围RN15具有一特定范围界限值对DN1E。所述存储单元332进一步具有一内存位置YM85和不同于所述内存位置YM85的一内存位置YX85。所述内存位置YM85基于一内存地址AM85而被识别,并基于所述特定测量值范围码EM15和所述测量范围界限数据码类型识别符HN81而被预置。所述内存位置YX85基于一内存地址AX85而被识别,并基于所述特定测量值范围码EM15和所述控制码类型识别符HC81而被预置。
所述存储单元332在所述内存位置YM85存储所述特定范围界限值对DN1E,并在所述内存位置YX85存储一控制码CC15。所述特定范围界限值对DN1E被配置以代表所述特定物理参数范围RD1E5,并属于所述测量范围界限数据码类型TN81。所述控制码CC15属于所述控制码类型TC81,并基于在所述特定物理参数范围RD1E5之内的一指定物理参数QD5T而被预置。例如,所述控制码CC12、所述控制码CC15、所述控制码CC1L和所述控制码CC1T分别是多个句柄。
在所确定的所述特定输入码UW81等于所预置的所述特定测量值范围码EM15以导致所确定的所述特定输入码UW81和等于所获得的所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A之间具有所述码差异DX81的条件下,所述处理单元331借由执行所述数据比较CE11来确定所述码差异DX81。在所述处理单元331确定所述码差异DX81的条件下,所述处理单元331基于等于所预置的所述特定测量值范围码EM15的所确定的所述特定输入码UW81和所获得的所述控制码类型识别符HC81来获得所述内存地址AX85。
所述处理单元331基于所获得的所述内存地址AX85来使用所述存储单元332以接入被存储在所述内存位置YX85的所述控制码CC15,并基于所接入的所述控制码CC15来导致所述输出单元338执行用于所述测量应用功能FA81的所述信号产生操作BY82以产生所述功能信号SG82,所述功能信号SG82用于控制所述功能单元335以导致所述可变物理参数QU1A进入包含于所述对应物理参数范围RY1ET中的所述特定物理参数范围RD1E5。
在一些实施例中,在所述处理单元331于一操作时间TF82之内导致所述输出单元338 执行所述信号产生操作BY82以产生所述功能信号SG82之后,所述感测单元334感测所述可变物理参数QU1A以产生一感测信号SN83。所述处理单元331于所述操作时间TF82之后的一指定时间TG83响应所述感测信号SN83来获得一测量值VN83。所述处理单元331被配置以基于等于所预置的所述特定测量值范围码EM15的所确定的所述特定输入码UW81和所获得的所述测量范围界限数据码类型识别符HN81来获得所述内存地址AM85,并基于所获得的所述内存地址AM85来使用所述存储单元332以接入被存储在所述内存位置YM85的所述特定范围界限值对DN1E。
在所述处理单元331借由比较所述测量值VN83和所获得的所述特定范围界限值对DN1E来检查所述测量值VN83和所述特定测量值范围RN15之间的一数学关系KV83以确定所述可变物理参数QU1A目前处于的所述特定物理参数范围RD1E5的条件下,所述处理单元331基于所述可变物理参数范围码UN8A和等于所预置的所述特定测量值范围码EM15的所确定的所述特定输入码UW81之间的一码差异来使用所述存储单元332以将所确定的所述特定输入码UW81指定到所述可变物理参数范围码UN8A。
例如,所述处理单元331借由检查所述数学关系KV83来确定所述可变物理参数QU1A目前于所述特定物理参数范围RD1E5之内的一物理参数情况,并藉此辨识所述可变物理参数QU1A和所述特定物理参数范围RD1E5之间的一物理参数关系KD85为所述可变物理参数QU1A目前于所述特定物理参数范围RD1E5之内的一物理参数交集关系。所述处理单元331借由检查所述数学关系KV83来检查所述物理参数关系KD85。
请参阅图23和图24。图23为示出于图1中的所述控制系统861的一实施结构9025的示意图。图24为示出于图1中的所述控制系统861的一实施结构9026的示意图。如图23和图24所示,所述实施结构9025和所述实施结构9026的每一结构包含所述控制装置212和所述控制目标装置130。所述控制目标装置130包含所述操作单元397、所述感测单元334、所述功能单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述输入单元337、所述输出单元338和耦合于所述处理单元331的一定时器339。
在一些实施例中,由所述输入单元337所接收的所述控制信号SC81输送所述控制信息CG81,所述控制信息CG81包含所述目标范围界限值对DN1T、所述额定范围界限值对DD1A、所述控制码CC1T和所述测量值目标范围码EM1T。在所述处理单元331基于所述控制信号SC81而确定所述范围差异DS81的条件下,所述处理单元331基于所获得的所述控制码CC1T来导致所述输出单元338执行所述信号产生操作BY81,所述信号产生操作BY81用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
所述处理单元331从所接收的所述控制信号SC81获得所述测量值目标范围码EM1T和 所述目标范围界限值对DN1T。在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述处理单元331借由比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T来确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331基于等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的所述码差异DF81来使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
例如,所述处理单元331借由比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T来确定所述可变物理参数QU1A目前于所述物理参数目标范围RD1ET之内的一物理参数情况,并藉此辨识所述可变物理参数QU1A和所述物理参数目标范围RD1ET之间的一物理参数关系KD8T为所述可变物理参数QU1A目前于所述物理参数目标范围RD1ET之内的一物理参数交集关系。
在一些实施例中,所述定时器339受所述处理单元331控制,用于测量所述可变时间长度LF8A,并被配置以符合一定时器规格FT11。所述可变时间长度LF8A进一步基于一参考时间长度LJ8T而被特征化。所述控制信号SC81输送代表所述参考时间长度LJ8T的所述测量时间长度值CL8T。例如,所述测量时间长度值CL8T基于所述参考时间长度LJ8T和所述定时器规格FT11的至少其中之一来以一指定计数值格式HH91而被预置。所述测量应用功能规格GAL8包含一时间长度表示GA8KJ。所述时间长度表示GA8KJ用于表示所述参考时间长度LJ8T。例如,所述指定计数值格式HH91基于一指定比特数目UY91而被特征化。
例如,所述测量时间长度值CL8T基于所述时间长度表示GA8KJ、所述定时器规格FT11和用于转换所述时间长度表示GA8KJ的一数据编码操作ZX8KJ来以所述指定计数值格式HH91而被预置。所述处理单元331从所述控制信号SC81获得所述测量时间长度值CL8T,并检查所获得的所述测量时间长度值CL8T和所述测量时间长度值参考范围GJ81之间的所述数值关系KJ81以做出用于控制所述特定时间TJ8T的所述计数操作BC8T是否要被执行的所述逻辑决定PE81。例如,所述测量时间长度值CL8T和所述测量时间长度值参考范围GJ81皆基于所述定时器规格FT11来用所述指定计数值格式HH91而被预置。
在一些实施例中,用于做出所述逻辑决定PE81的所述测量时间长度值参考范围GJ81具有一时间长度范围界限值对LN8A,并代表所述时间长度参考范围HJ81。所述测量时间长度值参考范围GJ81基于所述时间长度参考范围HJ81和所述定时器规格FT11的至少其中之一来用所述指定计数值格式HH91而被预置。例如,所述测量应用功能规格GAL8包含一时间长度参考范围表示GA8HJ,所述时间长度参考范围表示GA8HJ用于表示所述时间长 度参考范围HJ81。所述时间长度参考范围HJ81和所述时间长度范围界限值对LN8A皆基于所述时间长度参考范围表示GA8HJ、所述定时器规格FT11和用于转换所述时间长度参考范围表示GA8HJ的一数据编码操作ZX8HJ来用所述指定计数值格式HH91而被预置。
所述存储单元332存储所述时间长度范围界限值对LN8A。所述处理单元331响应所述控制信号SC81来从所述存储单元332获得所述时间长度范围界限值对LN8A,并借由比较包含于所获得的所述测量时间长度值CL8T和所获得的所述时间长度范围界限值对LN8A来检查所述数值关系KJ81以做出所述逻辑决定PE81。
例如,在所述处理单元331借由检查所述数值关系KJ81而辨识所述数值关系KJ81为一数值交集关系的条件下,所述处理单元331做出所述逻辑决定PE81以成为肯定的。例如,所述时间长度范围界限值对LN8A被预置,并包含所述测量时间长度值参考范围GJ81的一时间长度范围界限值LN81和相对于所述时间长度范围界限值LN81的一时间长度范围界限值LN82。在所述处理单元331借由比较所获得的所述测量时间长度值CL8T和所获得的所述时间长度范围界限值对LN8A而确定所述参考时间长度LJ8T包含于的所述时间长度参考范围HJ81的条件下,所述处理单元331做出所述逻辑决定PE81以成为肯定的。
在一些实施例中,在所述逻辑决定PE81是肯定的条件下,所述处理单元331基于所获得的所述测量时间长度值CL8T来导致所述定时器339执行所述计数操作BC8T。在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET之内的条件下,所述处理单元331基于所述计数操作BC8T来到达所述特定时间TJ8T,并在所述特定时间TJ8T之内导致所述输出单元338执行一信号产生操作BY91,所述信号产生操作BY91用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述对应物理参数范围RY1ET。
例如,在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET内的条件下,所述处理单元331基于所述计数操作BC8T来经历具有一结束时间TZ8T的一应用时间长度LT8T以到达所述特定时间TJ8T。所述处理单元331于所述特定时间TJ8T之内借由执行使用所获得的所述测量值目标范围码EM1T的一科学计算MK81来取得不同于所获得的所述测量值目标范围码EM1T的所述测量值候选范围码EM12。例如,所述控制装置212基于所述参考时间长度LJ8T和所述定时器规格FT11来确定所述测量时间长度值CL8T,并基于所确定的所述测量时间长度值CL8T来输出所述控制信号SC81。所述控制信息CG81进一步包含所述测量时间长度值CL8T。所述控制信号SC81用于导致所述可变物理参数QU1A于所述物理参数目标范围RD1ET之内足有与所述参考时间长度LJ8T匹配的所述应用时间长度LT8T。
在一些实施例中,所述处理单元331基于所取得的所述测量值候选范围码EM12和所获得的所述控制码类型识别符HC81来取得所述内存地址AX82。所述处理单元331基于所取得的所述内存地址AX82来使用所述存储单元332以读取被存储在所述内存位置YX82的所述控制码CC12,并基于所读取的所述控制码CC12来执行用于控制所述输出单元338的一信号产生控制GY91。
所述输出单元338响应所述信号产生控制GY91来执行用于所述测量应用功能FA81的所述信号产生操作BY91以产生一功能信号SG91,所述功能信号SG91用于控制所述功能单元335以导致所述可变物理参数QU1A进入包含于所述对应物理参数范围RY1ET中的一物理参数候选范围RD2E2。例如,所述功能信号SG91是一操作信号和一控制信号的其中之一。所述物理参数候选范围RD2E2是所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2的其中之一,并不同于所述物理参数目标范围RD1ET。例如,所述物理参数候选范围RD2E2是一特定物理参数范围。
例如,在所述逻辑决定PE81是肯定的条件下,所述处理单元331基于所获得的所述测量时间长度值CL8T来导致所述定时器339执行所述计数操作BC8T以到达所述结束时间TZ8T。当所述定时器339借由执行所述计数操作BC8T而到达所述结束时间TZ8T时,所述定时器339向所述处理单元331传输一中断请求信号UH8T以到达所述特定时间TJ8T。所述处理单元331于所述特定时间TJ8T之内响应所述中断请求信号UH8T来执行使用所获得的所述测量值目标范围码EM1T的所述科学计算MK81以取得不同于所获得的所述测量值目标范围码EM1T的所述测量值候选范围码EM12。例如,所述处理单元331借由从所述定时器339接收所述中断请求信号UH8T来辨识所述特定时间TJ8T,并藉此经历所述应用时间长度LT8T。所述特定时间TJ8T相邻于所述结束时间TZ8T。
在一些实施例中,所述可变物理参数QU1A基于所述额定物理参数范围RD1E而被特征化。所述额定物理参数范围RD1E包含所述物理参数目标范围RD1ET、所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2,并由所述额定测量值范围RD1N所代表。例如,所述额定测量值范围RD1N包含所述测量值目标范围RN1T、所述测量值应用范围RN1L和所述测量值候选范围RN12。所述物理参数目标范围RD1ET、所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2分别由所述测量值目标范围RN1T、所述测量值应用范围RN1L和所述测量值候选范围RN12所代表。
所述测量应用功能规格GAL8包含用于表示所述物理参数候选范围RD1E3的一物理参数候选范围表示GA83。所述测量值候选范围RN13基于所述物理参数候选范围表示GA83、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和用于转换所述物理参数候 选范围表示GA83的一数据编码操作ZX87来用所述指定测量值格式HH81而被预置,并由包含于所述多个不同测量值参考范围码EM11、EM12、…中的一测量值候选范围码EM13所代表。
所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2是不同的。所述物理参数目标范围RD1ET相同或不同于所述物理参数应用范围RD1EL。所述物理参数目标范围RD1ET相同或不同于所述物理参数候选范围RD1E2。所述测量值应用范围RN1L和所述测量值候选范围RN12是不同的。所述测量值目标范围RN1T相同或不同于所述测量值应用范围RN1L。所述测量值目标范围RN1T相同或不同于所述测量值候选范围RN12。
在一些实施例中,所述可变物理参数QU1A的所述额定物理参数范围RD1E包含所述多个不同物理参数参考范围RD1E1、RD1E2、…。所述多个不同物理参数参考范围RD1E1、RD1E2、…包含所述物理参数目标范围RD1ET、所述物理参数应用范围RD1EL和所述物理参数候选范围RD1E2。所述可变物理参数QU1A基于所述多个不同物理参数参考范围RD1E1、RD1E2、…而处于多个不同参考状态的其中之一。所述多个不同参考状态包含一第一参考状态、一第二参考状态和一第三参考状态,藉此所述可变物理参数QU1A由一可变目前状态所特征化。所述可变目前状态是所述多个不同参考状态的其中之一。
例如,所述第一参考状态和所述第二参考状态是互补的。在所述可变物理参数QU1A是于所述物理参数应用范围RD1EL之内的条件下,所述可变物理参数QU1A处于所述第一参考状态。在所述可变物理参数QU1A是于所述物理参数候选范围RD1E2之内的条件下,所述可变物理参数QU1A处于所述第二参考状态。在所述可变物理参数QU1A是于所述物理参数目标范围RD1ET之内的条件下,所述可变物理参数QU1A处于所述第三参考状态。所述第三参考状态相同或不同于所述第一参考状态。所述第三参考状态相同或不同于所述第二参考状态。
由所述控制信号SC81所输送的所述控制码CC1T和由所述存储单元332所存储的所述控制码CC1T皆基于在所述物理参数目标范围RD1ET之内的所述指定物理参数QD1T而被预置。在所述处理单元331确定所述范围差异DS81的条件下,所述处理单元331基于所获得的所述控制码CC1T来导致所述输出单元338执行用于所述测量应用功能FA81的所述信号产生操作BY81以产生所述功能信号SG81。
所述功能单元335响应所述功能信号SG81来导致所述可变物理参数QU1A从一目前状态改变成所述第三参考状态,或响应所述功能信号SG81来导致所述可变物理参数QU1A从一特定物理参数QU17改变成一特定物理参数QU18。例如,所述目前状态是所述第一参考状态和所述第二参考状态的其中之一。所述特定物理参数QU17是于所述物理参数应用范 围RD1EL之内,或于所述物理参数候选范围RD1E2之内。所述特定物理参数QU18是于所述物理参数目标范围RD1ET之内。例如,所述特定物理参数QU17是于所述对应物理参数范围RY1ET之内。
在一些实施例中,所述多个不同参考状态分别导致所述功能单元335处于多个不同功能状态。所述多个不同功能状态是不同的,并包含一第一功能状态、一第二功能状态和一第三功能状态。例如,所述第一功能状态和所述第二功能状态是互补的。在所述可变物理参数QU1A是于所述物理参数应用范围RD1EL之内的条件下,所述功能单元335处于所述第一功能状态。在所述可变物理参数QU1A是于所述物理参数候选范围RD1E2之内的条件下,所述功能单元335处于所述第二功能状态。在所述可变物理参数QU1A是于所述物理参数目标范围RD1ET之内的条件下,所述功能单元335处于所述第三功能状态。所述第三功能状态相同或不同于所述第一功能状态。所述第三功能状态相同或不同于所述第二功能状态。
例如,所述测量值目标范围码EM1T是一测量值参考范围号码。所述测量值目标范围RN1T基于所述测量值目标范围码EM1T而被安排于所述额定测量值范围RD1N中。所述测量值应用范围码EM1L是一测量值参考范围号码。所述测量值应用范围RN1L基于所述测量值应用范围码EM1L而被安排于所述额定测量值范围RD1N中。所述测量值候选范围码EM12是一测量值参考范围号码。所述测量值候选范围RN12基于所述测量值候选范围码EM12而被安排于所述额定测量值范围RD1N中。
在一些实施例中,所述物理参数目标范围RD1ET是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述物理参数应用范围RD1EL是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。在所述可变物理参数QU1A是所述第一可变电压的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高电压范围和一相对低电压范围。在所述可变物理参数QU1A是所述第一可变电流的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高电流范围和一相对低电流范围。在所述可变物理参数QU1A是所述第一可变电阻的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高电阻范围和一相对低电阻范围。
在所述可变物理参数QU1A是所述第一可变亮度的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高亮度范围和一相对低亮度范围。在所述可变物理参数QU1A是所述第一可变光强度的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高光强度范围和一相对低光强度范围。在所述可变物理参数QU1A是所述第一可变音量的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别 是一相对高音量范围和一相对低音量范围。在所述可变物理参数QU1A是所述第一可变角速度的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高角速度范围和一相对低角速度范围。
例如,所述物理参数目标范围RD1ET是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述物理参数候选范围RD1E2是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。例如,所述物理参数应用范围RD1EL是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述物理参数候选范围RD1E2是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。例如,所述物理参数目标范围RD1ET是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述特定物理参数范围RD1E4是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。例如,所述物理参数目标范围RD1ET是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述特定物理参数范围RD1E5是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。
在一些实施例中,在所述控制目标装置130是一继电器的条件下,所述功能单元335是一控制开关。在所述功能单元335是所述控制开关的条件下,所述控制开关具有一可变开关状态,并基于所述可变物理参数QU1A而处于一接通状态和一关断状态的其中之一。例如,所述可变开关状态等于所述接通状态和所述关断状态的其中之一,且所述接通状态和所述关断状态是互补的。所述接通状态是所述第一功能状态和所述第二功能状态的其中之一,且所述关断状态是所述第一功能状态和所述第二功能状态的其中另一。
在所述处理单元331确定所述范围差异DS81的条件下,所述处理单元331辨识所述可变目前状态为不同于所述第三参考状态的一特定状态,并藉此产生所述功能信号SG81。所述功能单元335响应所述功能信号SG81来导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET,因此所述可变目前状态被改变成所述第三参考状态。在所述处理单元331确定所述码差异DX81的条件下,所述处理单元331导致所述输出单元338产生所述功能信号SG82。所述功能单元335响应所述功能信号SG82来导致所述可变物理参数QU1A从所述物理参数目标范围RD1ET进入包含于所述对应物理参数范围RY1ET中的所述特定物理参数范围RD1E5;因此,在所述特定物理参数范围RD1E5等于所述物理参数候选范围RD1E2的条件下,所述可变目前状态被改变成所述第二参考状态。
例如,所述可变物理参数QU1A是所述第一可变电流。所述物理参数应用范围RD1EL、所述物理参数候选范围RD1E2和所述物理参数目标范围RD1ET分别是一第一电流参考范围、一第二电流参考范围和一第三电流参考范围。所述控制码CC1L基于在所述第一电流 参考范围之内的一第一指定电流而被预置。所述控制码CC12基于在所述第二电流参考范围之内的一第二指定电流而被预置。所述控制码CC1T基于在所述第三电流参考范围之内的一第三指定电流而被预置。
所述测量时间长度值CL8T基于所述时间长度表示GA8KJ、所述定时器规格FT11和所述数据编码操作ZX8KJ来以所述指定计数值格式HH91而被预置。在所述逻辑决定PE81是肯定的条件下,所述处理单元331基于所获得的所述测量时间长度值CL8T来导致所述定时器339执行所述计数操作BC8T。在所述第一可变电流基于所述控制信号SC81而被配置以于所述第三电流参考范围之内的条件下,所述处理单元331基于所述计数操作BC8T来经历所述应用时间长度LT8T以到达所述特定时间TJ8T,藉此所述第一可变电流在相关于所述计数操作BC8T的所述应用时间长度LT8T之内维持成为于所述第三电流参考范围之内。
例如,在所述可变物理参数QU1A是一可变转速的条件下,所述物理参数应用范围RD1EL、所述物理参数候选范围RD1E2和所述物理参数目标范围RD1ET分别是一第一转速参考范围、一第二转速参考范围和一第三转速参考范围。在所述可变物理参数QU1A是一可变温度的条件下,所述物理参数应用范围RD1EL、所述物理参数候选范围RD1E2和所述物理参数目标范围RD1ET分别是一第一温度参考范围、一第二温度参考范围和一第三温度参考范围。
请参阅图25。图25为示出于图1中的所述控制系统861的一实施结构9027的示意图。如图25所示,所述实施结构9027包含所述控制装置212、所述控制目标装置130和一服务器280。所述控制装置212链接于所述服务器280。所述控制目标装置130包含所述操作单元397、所述感测单元334、所述功能单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述输入单元337、所述输出单元338和耦合于所述处理单元331的一定时器340。所述定时器340受所述处理单元331控制。
在一些实施例中,包含于所述输入单元337中的所述输入组件3374耦合于所述处理单元331,并在所述可变物理参数QU1A要依靠所述控制装置212而被提供的条件下从所述控制装置212接收所述物理参数信号SB81。所述功能单元335从所述输入组件3374接收所述物理参数信号SB81。所述处理单元331导致所述功能单元335使用所述物理参数信号SB81以形成取决于所述物理参数信号SB81的所述可变物理参数QU1A。
所述控制装置212包含所述操作单元297、耦合于所述操作单元297的一存储单元250、和耦合于所述操作单元297的一感测单元560。所述操作单元297执行一读取操作BR81和一感测操作BZ81的其中之一以输出所述物理参数信号SB81。所述读取操作BR81读取被存 储于所述存储单元250和所述服务器280的其中之一中的一物理参数数据记录DU81。所述感测单元560借由执行所述感测操作BZ81来感测一可变物理参数QL1A以导致所述操作单元297输出所述物理参数信号SB81。例如,所述感测单元560受所述操作单元297控制以感测所述可变物理参数QL1A。
例如,所述可变物理参数QU1A属于所述物理参数类型TU11。所述可变物理参数QL1A属于一物理参数类型TL11。所述物理参数类型TU11相同或不同于所述物理参数类型TL11。所述控制装置212处于一应用环境EX81中。所述控制装置212和所述应用环境EX81的其中之一具有所述可变物理参数QL1A。所述物理参数数据记录DU81预先基于一可变物理参数QY1A而被提供。所述可变物理参数QY1A属于所述物理参数类型TL11。例如,所述物理参数类型TU11不同于一时间类型。
在一些实施例中,所述功能单元335包含一驱动电路3355、和耦合于所述驱动电路3355的一物理参数形成部分3351。所述物理参数形成部分3351用于形成所述可变物理参数QU1A,并包含所述物理参数形成区AU11。所述驱动电路3355耦合于所述输入组件3374和所述输出组件3381,并通过所述输出组件3381而受所述处理单元331控制。所述驱动电路3355从所述输入组件3374接收所述物理参数信号SB81,从所述输出组件3381接收所述功能信号SG81,并响应所述功能信号SG81来处理所述物理参数信号SB81以输出一驱动信号SL81。
所述物理参数形成部分3351接收所述驱动信号SL81,并响应所述驱动信号SL81来使所述可变物理参数QU1A处于所述物理参数目标范围RD1ET之内。例如,在所述合理决定PW81是肯定的条件下,所述处理单元331导致所述输出单元240执行用于所述测量应用功能FA81的所述信号产生操作BY81以提供所述功能信号SG81到所述驱动电路3355。所述驱动电路3355响应所述功能信号SG81来驱动所述物理参数形成部分3351以使所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
在一些实施例中,所述额定测量值范围RD1N被配置以具有多个不同测量值参考范围RN11、RN12、…。例如,所述多个不同测量值参考范围RN11、RN12、…具有一总参考范围数目NT81,并包含所述测量值目标范围RN1T。例如,所述总参考范围数目NT81被预置。所述存储单元332存储所述额定范围界限值对DD1A。所述处理单元331被配置以从所述控制信号SC81和所述存储单元332的其中之一获得所述总参考范围数目NT81,从所述控制信号SC81获得所述测量值目标范围码EM1T,并响应所述控制信号SC81来从所述存储单元332获得所述额定范围界限值对DD1A。
所述处理单元331基于所述第一测量值VN81、所获得的所述总参考范围数目NT81和 和所获得的所述额定范围界限值对DD1A来执行所述科学计算MR81来从所述多个不同测量值参考范围码EM11、EM12、…中选择所述测量值应用范围码EM1L以确定所述测量值应用范围码EM1L。例如,所述科学计算MR81基于所预置的所述总参考范围数目NT81和所预置的所述额定范围界限值对DD1A而被预先建构。
所述处理单元331基于所确定的所述测量值应用范围码EM1L、所获得的所述总参考范围数目NT81和所取得的所述额定范围界限值对DD1A来执行所述科学计算MZ81以获得所述应用范围界限值对DN1L。例如,所述科学计算MZ81基于所预置的所述总参考范围数目NT81和所预置的所述额定范围界限值对DD1A而被预先建构。
在一些实施例中,所述处理单元331响应于所述操作时间TF81之内所执行的所述信号产生控制GY81来导致所述定时器340执行一计数操作BE81。所述处理单元331基于所述计数操作BE81来到达所述指定时间TG82,并在所述指定时间TG82响应所述第二感测信号SN82来获得所述第二测量值VN82。
所述可变物理参数QL1A是一第二可变电性参数、一第二可变力学参数、一第二可变光学参数、一第二可变温度、一第二可变电压、一第二可变电流、一第二可变电功率、一第二可变电阻、一第二可变电容、一第二可变电感、一第二可变频率、一第二时钟时间、一第二可变时间长度、一第二可变亮度、一第二可变光强度、一第二可变音量、一第二可变数据流量、一第二可变振幅、一第二可变空间位置、一第二可变位移、一第二可变顺序位置、一第二可变角度、一第二可变空间长度、一第二可变距离、一第二可变平移速度、一第二可变角速度、一第二可变加速度、一第二可变力、一第二可变压力和一第二可变机械功率的其中之一。
所述可变物理参数QY1A是一第三可变电性参数、一第三可变力学参数、一第三可变光学参数、一第三可变温度、一第三可变电压、一第三可变电流、一第三可变电功率、一第三可变电阻、一第三可变电容、一第三可变电感、一第三可变频率、一第三时钟时间、一第三可变时间长度、一第三可变亮度、一第三可变光强度、一第三可变音量、一第三可变数据流量、一第三可变振幅、一第三可变空间位置、一第三可变位移、一第三可变顺序位置、一第三可变角度、一第三可变空间长度、一第三可变距离、一第三可变平移速度、一第三可变角速度、一第三可变加速度、一第三可变力、一第三可变压力和一第三可变机械功率的其中之一。
请参阅图26。图26为示出于图1中的所述控制系统861的一实施结构9028的示意图。如图26所示,所述实施结构9028包含所述控制装置212、所述控制目标装置130和所述服务器280。所述控制装置212、所述控制目标装置130和所述服务器280皆耦合于一网 络410。所述控制装置212通过所述网络410而链接于所述服务器280。所述控制目标装置130包含所述操作单元397、所述感测单元334、所述功能单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述输入单元337和所述输出单元338。所述控制装置212通过所述网络410来向所述控制目标装置130传输所述控制信号SC81。所述控制目标装置130通过所述网络410来向所述控制装置212传输所述控制响应信号SE81。
例如,所述操作单元397包含耦合于所述处理单元331的一通信接口单元386。所述处理单元331通过所述通信接口单元386而耦合于所述网络410。例如,所述通信接口单元386受所述处理单元331控制,并包含耦合于所述处理单元331的所述输出组件3382(或一传输器3382)、和耦合于所述处理单元331的所述输入组件3371(或一接收器3371)。所述处理单元331通过所述通信接口单元386和所述网络410而耦合于所述服务器280。例如,所述通信接口单元386是一有线通信接口单元和一无线通信接口单元的其中之一。
在一些实施例中,所预置的所述测量值目标范围码EM1T是一测量值参考范围号码。所存储的所述可变物理参数范围码UN8A是一可变物理参数范围号码。所述控制信号SC81输送一相对参考范围码ZB81。例如,所述相对参考范围码ZB81是一相对参考范围号码。所述处理单元331从所述控制信号SC81获得所述相对参考范围码ZB81,并在所述输入单元337接收所述控制信号SC81的条件下借由使用所述存储单元332来接入等于一测量值参考范围码EB81的所述可变物理参数范围码UN8A。所述处理单元331基于所获得的所述相对参考范围码ZB81和所接入的所述测量值参考范围码EB81来执行一科学计算MU81以获得所预置的所述测量值目标范围码EM1T。例如,所述科学计算MU81使用所获得的所述相对参考范围码ZB81和所接入的所述测量值参考范围码EB81。
例如,所述处理单元331借由将所获得的所述相对参考范围码ZB81和所接入的所述测量值参考范围码EB81相加来获得所预置的所述测量值目标范围码EM1T。所述控制信号SC81借由输送所述相对参考范围码ZB81来起到指示指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。所述处理单元331执行使用所获得的所述测量值目标范围码EM1T的所述数据获取AD8A以获得所述目标范围界限值对DN1T。在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述处理单元331确定所述可变物理参数QU1A进入的所述物理参数目标范围RD1ET的条件下,所述处理单元331基于等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的所述码差异DF81来使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
在一些实施例中,所述相对参考范围码ZB81等于一相对值VK81和一相对值VK82的 其中之一。所述相对值VK82不同于所述相对值VK81。例如,所述相对值VK81正比于1,或等于1。所述相对值VK82正比于(-1),或等于(-1)。在一第一特定情况中,所述相对参考范围码ZB81等于所述相对值VK81。例如,所述相对值VK81被配置以等于一正整数。在一第二特定情况中,所述相对参考范围码ZB81等于所述相对值VK82。例如,所述相对值VK82被配置以等于一负整数。
所述物理参数目标范围RD1ET具有一第一特定物理参数范围界限和相对于所述第一特定物理参数范围界限的一第二特定物理参数范围界限。在所述第一特定情况中,所述处理单元331响应所述控制信号SC81来从所述控制信号SC81获得等于所述相对值VK81的所述相对参考范围码ZB81,并基于所获得的所述相对参考范围码ZB81来导致所述可变物理参数QU1A具有一第一物理量改变以改变所述可变物理参数QU1A的所述可变目前状态。
例如,在所述第一特定情况中,所述处理单元331基于所获得的所述相对参考范围码ZB81来导致所述可变物理参数QU1A从所述对应物理参数范围RY1ET通过所述第一特定物理参数范围界限以进入所述物理参数目标范围RD1ET。所述第一特定物理参数范围界限是所述预置物理参数目标范围界限ZD1T1和所述预置物理参数目标范围界限ZD1T2的其中之一。例如,在所述第一特定情况中,所述第一物理量改变是一第一物理增量和一第一物理减量的其中之一。
在所述第二特定情况中,所述处理单元331响应所述控制信号SC81来从所述控制信号SC81获得等于所述相对值VK82的所述相对参考范围码ZB81,并基于所获得的所述相对参考范围码ZB81来导致所述可变物理参数QU1A具有与所述第一物理量改变相反的一第二物理量改变以改变所述可变物理参数QU1A的所述可变目前状态。例如,在所述第二特定情况中,所述处理单元331基于所获得的所述相对参考范围码ZB81来导致所述可变物理参数QU1A从所述对应物理参数范围RY1ET通过所述第二特定物理参数范围界限以进入所述物理参数目标范围RD1ET。
所述第二特定物理参数范围界限是所述预置物理参数目标范围界限ZD1T1和所述预置物理参数目标范围界限ZD1T2的其中另一。例如,在所述第二特定情况中,所述第二物理量改变是一第二物理增量和一第二物理减量的其中之一。例如,在所述第二特定情况中的所述相对参考范围码ZB81不同于在所述第一特定情况中的所述相对参考范围码ZB81。
请参阅图27、图28、图29和图30。图27为示出于图1中的所述控制系统861的一实施结构9029的示意图。图28为示出于图1中的所述控制系统861的一实施结构9030的示意图。图29为示出于图1中的所述控制系统861的一实施结构9031的示意图。图30为示出于图1中的所述控制系统861的一实施结构9032的示意图。如图27、图28、图29 和图30所示,所述实施结构9029、所述实施结构9030、所述实施结构9031和所述实施结构9032的每一结构包含所述控制装置212和所述控制目标装置130。所述控制目标装置130包含所述操作单元397、所述感测单元334、所述功能单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述输入单元337、所述输出单元338和耦合于所述处理单元331的一定时器342。
在一些实施例中,所述定时器342受所述处理单元331控制,并用于测量一时钟时间TH1A。所述定时器342被配置以符合一定时器规格FT21。所述可变物理参数QU1A相关于所述时钟时间TH1A。所述时钟时间TH1A基于多个不同时间参考区间HR1E1、HR1E2、…而被特征化。所述多个不同时间参考区间HR1E1、HR1E2、…分别由多个时间值参考范围RQ11、RQ12、…所代表,并基于一预置时间参考区间顺序QB81而被排列。所述多个时间值参考范围RQ11、RQ12、…基于所述预置时间参考区间顺序QB81而被排列。
所述多个时间值参考范围RQ11、RQ12、…皆基于所述定时器规格FT21来用一指定计数值格式HH95而被预置,并分别由多个时间值参考范围码EL11、EL12、…所代表。所述存储单元332进一步具有多个不同内存位置YS81、YS82、…,并在所述多个不同内存位置YS81、YS82、…分别存储多个物理参数指定范围码UQ11、UQ12、…。所述多个不同时间参考区间HR1E1、HR1E2、…分别由多个时间参考区间码所代表。例如,所述多个时间参考区间码被配置以分别等于所述多个时间值参考范围码EL11、EL12、…。因此,所述多个时间值参考范围码EL11、EL12、…被配置以分别指示所述多个不同时间参考区间HR1E1、HR1E2、…。例如,所述指定计数值格式HH95基于一指定比特数目UY95而被特征化。
所述多个时间值参考范围码EL11、EL12、…包含一时间值目标范围码EL1T和一时间值候选范围码EL12。所述多个不同时间参考区间HR1E1、HR1E2、…包含一时间目标区间HR1ET和一时间候选区间HR1E2。所述时间值目标范围码EL1T和所述时间值候选范围码EL12被配置以分别指示所述时间目标区间HR1ET和所述时间候选区间HR1E2。所述多个时间值参考范围RQ11、RQ12、…包含一时间值目标范围RQ1T和一时间值候选范围RQ12。所述时间目标区间HR1ET和所述时间候选区间HR1E2分别由所述时间值目标范围RQ1T和所述时间值候选范围RQ12所代表。
在一些实施例中,所述多个不同内存位置YS81、YS82、…分别基于所述多个时间值参考范围码EL11、EL12、…而被识别。例如,所述多个不同内存位置YS81、YS82、…分别基于多个内存地址AS81、AS82、…而被识别,或分别由所述多个内存地址AS81、AS82、…所识别。所述多个内存地址AS81、AS82、…分别基于所述多个时间值参考范围码EL11、EL12、…而被预置。例如,所述时钟时间TH1A进一步基于一额定时间区间HR1E而被特征 化。所述额定时间区间HR1E包含所述多个不同时间参考区间HR1E1、HR1E2、…,并由一额定时间值范围HR1N所代表。所述额定时间值范围HR1N包含所述多个时间值参考范围RQ11、RQ12、…,并基于所述额定时间区间HR1E和所述定时器规格FT21来用所述指定计数值格式HH95而被预置。
例如,所述测量应用功能规格GAL8包含一额定时间区间表示GA8HE和一时间参考区间表示GA8HR。所述额定时间区间表示GA8HE用于表示所述额定时间区间HR1E。所述时间参考区间表示GA8HR用于表示所述多个不同时间参考区间HR1E1、HR1E2、…。所述额定时间值范围HR1N基于所述额定时间区间表示GA8HE、所述定时器规格FT21和用于转换所述额定时间区间表示GA8HE的一数据编码操作ZX8HE来用所述指定计数值格式HH95而被预置。所述多个时间值参考范围RQ11、RQ12、…基于所述时间参考区间表示GA8HR、所述定时器规格FT21和用于转换所述时间参考区间表示GA8HR的一数据编码操作ZX8HR来用所述指定计数值格式HH95而被预置。
所述多个物理参数指定范围码UQ11、UQ12、…被配置以分别基于所述多个时间值参考范围码EL11、EL12、…而被存储,并包含一物理参数目标范围码UQ1T和一物理参数候选范围码UQ12。所述多个物理参数指定范围码UQ11、UQ12、…皆选择自所述多个不同测量值参考范围码EM11、EM12、…。所述物理参数目标范围码UQ1T代表所述可变物理参数QU1A被期望在所述时间目标区间HR1ET内处于的一物理参数目标范围RK1ET,并被配置以基于所述时间值目标范围码EL1T而被存储在一内存位置YS8T。所述内存位置YS8T基于一内存地址AS8T而被识别。所述多个时间值参考范围码EL11、EL12、…皆基于所述测量应用功能规格GAL8而被预置。
所述物理参数候选范围码UQ12代表所述可变物理参数QU1A被期望在所述时间候选区间HR1E2内处于的一物理参数候选范围RK1E2,并被配置以基于所述时间值候选范围码EL12而被存储在一内存位置YS82。所述内存位置YS82基于一内存地址AS82而被识别。所述物理参数目标范围RK1ET和所述物理参数候选范围RK1E2皆选择自所述多个不同物理参数参考范围RD1E1、RD1E2、…。例如,所述时间候选区间HR1E2相邻于所述时间目标区间HR1ET。
例如,在所述物理参数目标范围码UQ1T等于所预置的所述测量值目标范围码EM1T的条件下,所述物理参数目标范围RK1ET相同于所述物理参数目标范围RD1ET。在所述物理参数目标范围码UQ12等于所预置的所述测量值候选范围码EM12的条件下,所述物理参数候选范围RK1E2相同于所述物理参数候选范围RD1E2。例如,所述时间目标区间HR1ET和所述时间候选区间HR1E2之间具有一预置时间间隔。
在一些实施例中,当所述输入单元337接收所述控制信号SC81时,所述物理参数目标范围码UQ1T等于所预置的所述测量值目标范围码EM1T。所述控制信号SC81输送所预置的所述时间值目标范围码EL1T。所述处理单元331从所述控制信号SC81获得所输送的所述时间值目标范围码EL1T,基于所获得的所述时间值目标范围码EL1T来获得所述内存地址AS8T,并基于所获得的所述内存地址AS8T来接入被存储在所述内存位置YS8T的所述物理参数目标范围码UQ1T以获得所预置的所述测量值目标范围码EM1T。
例如,在所述物理参数目标范围码UQ1T等于所预置的所述测量值目标范围码EM1T的条件下,所述控制信号SC81借由输送所预置的所述时间值目标范围码EL1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。所述处理单元331执行使用所获得的所述测量值目标范围码EM1T的所述数据获取AD8A以获得所述目标范围界限值对DN1T。
在一些实施例中,在所述处理单元331借由比较所述第一测量值VN81和所获得的所述应用范围界限值对DN1L而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331借由比较所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L来检查所述测量值目标范围RN1T和所述测量值应用范围RN1L之间的所述范围关系KE8A以做出所获得的所述目标范围界限值对DN1T和所获得的所述应用范围界限值对DN1L是否相等的所述第二逻辑决定PY81。在所述第二逻辑决定PY81是否定的条件下,所述处理单元331辨识所述范围关系KE8A为所述范围相异关系以确定所述范围差异DS81。例如,所述处理单元331基于所确定的所述测量值应用范围码EM1L来获得所预定的所述应用范围界限值对DN1L。
在一些实施例中,在所述处理单元331借由比较所述第一测量值VN81和所获得的所述应用范围界限值对DN1L而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EL的条件下,所述处理单元331借由比较所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L来做出所获得的所述测量值目标范围码EM1T和所确定的所述测量值应用范围码EM1L是否相等的所述逻辑决定PZ81。在所述逻辑决定PZ81是否定的条件下,所述处理单元331辨识所述范围关系KE8A为所述范围相异关系以确定所述范围差异DS81。
在所述处理单元331确定所述范围差异DS81的条件下,所述处理单元331于所述操作时间TF81之内执行用于产生所述功能信号SG81的所述信号产生控制GY81。所述功能信号SG81用于导致所述可变物理参数QU1A进入相同于所述物理参数目标范围RD1ET的所述物理参数目标范围RK1ET。所述处理单元331于所述操作时间TF81之后的所述指定时间 TG82之内执行与所述可变物理参数QU1A相关的所述验证操作ZU81。在所述处理单元331于所述指定时间TG82之内基于所述验证操作ZU81而确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331执行等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的所述数据比较CE8T。
在所述处理单元331基于所述数据比较CE8T而确定等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的所述码差异DF81的条件下,所述处理单元331使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
在一些实施例中,所述定时器342被配置以借由使用所述时间值目标范围RQ1T来代表所述时间目标区间HR1ET,并被配置以借由使用所述时间值候选范围RQ12来代表所述时间候选区间HR1E2。所述控制信号SC81进一步输送代表一时钟参考时间TR81的一时钟参考时间值NR81。例如,所述时钟参考时间TR81接近一目前时间。例如,所述时钟参考时间TR81与所述目前时间的一时间差异在一预置时间长度内。所述时钟参考时间值NR81基于所述时钟参考时间TR81和所述定时器规格FT21来以所述指定计数值格式HH95而被预置。
所述控制信息CG81包含所述时间值目标范围码EL1T和所述时钟参考时间值NR81。例如,所述测量应用功能规格GAL8包含一时钟时间表示GA8TR。所述时钟时间表示GA8TR用于表示所述时钟参考时间TR81。所述时钟参考时间值NR81基于所述时钟时间表示GA8TR、所述定时器规格FT21和用于转换所述时钟时间表示GA8TR的一数据编码操作ZX8TR来以所述指定计数值格式HH95而被预置。
所述处理单元331响应所述控制信号SC81来从所述控制信号SC81获得所述时钟参考时间值NR81。例如,包含于所述控制装置212中的所述操作单元297被配置以获得所预置的所述时间值目标范围码EL1T和所预置的所述时钟参考时间值NR81,并基于所获得的所述时钟参考时间值NR81和所获得的所述时间值目标范围码EL1T来输出输送所述控制信息CG81的所述控制信号SC81。
在一些实施例中,所述处理单元331基于所获得的所述时钟参考时间值NR81来导致所述定时器342在一启动时间TT82之内启动,并藉此导致所述定时器342在所述启动时间TT82之内产生一时钟时间信号SY80。所述时钟时间信号SY80是一初始时间信号,并以所述指定计数值格式HH95输送一初始计数值NY80。例如,所述初始计数值NY80等于所述时钟参考时间值NR81。
例如,所述定时器342被配置以具有一可变计数值NY8A。在所述输入单元337从所述控制装置212接收输送所述时钟参考时间值NR81的所述控制信号SC81的条件下,所述处理单元331基于所获得的所述时钟参考时间值NR81来启动所述定时器342以执行用于所述测量应用功能FA81的一计数操作BD81以改变所述可变计数值NY8A。所述可变计数值NY8A在所述启动时间TT82之内被配置以等于所述初始计数值NY80,并以所述指定计数值格式HH95而被提供。例如,所述初始计数值NY80被配置以相同于所获得的所述时钟参考时间值NR81。
在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET之内的条件下,所述处理单元331基于所述计数操作BD81来到达一操作时间TY81。在所述操作时间TY81之内,所述定时器342感测所述时钟时间TH1A以导致所述可变计数值NY8A等于一特定计数值NY81,并藉此产生输送所述特定计数值NY81的一时钟时间信号SY81。例如,所述操作时间TY81是一指定时间。
所述处理单元331在所述操作时间TY81之内从所述时钟时间信号SY81以所述指定计数值格式HH95获得所述特定计数值NY81,并在所述操作时间TY81之内借由执行使用所获得的所述时间值目标范围码EL1T的一科学计算MK85来获得所述时间值候选范围码EL12以便检查所获得的所述特定计数值NY81和所述时间值候选范围RQ12之间的一数学关系KQ81。
在一些实施例中,所述时间值目标范围RQ1T具有一目标范围界限值对DQ1T。所述目标范围界限值对DQ1T包含一目标范围界限值DQ17和相对于所述目标范围界限值DQ17的一目标范围界限值DQ18。所述时间值目标范围RQ1T和所述目标范围界限值对DQ1T皆基于所述时间目标区间HR1ET和所述定时器规格FT21来用所述指定计数值格式HH95而被预置。所述时间值候选范围RQ12具有一候选范围界限值对DQ1B。所述候选范围界限值对DQ1B包含一候选范围界限值DQ13和相对于所述候选范围界限值DQ13的一候选范围界限值DQ14。所述时间值候选范围RQ12和所述候选范围界限值对DQ1B皆基于所述时间候选区间HR1E2和所述定时器规格FT21来用所述指定计数值格式HH95而被预置。
例如,所述测量应用功能规格GAL8包含一时间候选区间表示GA8HT和一时间候选区间表示GA8H2。所述时间候选区间表示GA8HT用于表示所述时间目标区间HR1ET。所述时间候选区间表示GA8H2用于表示所述时间候选区间HR1E2。所述时间值目标范围RQ1T和所述目标范围界限值对DQ1T皆基于所述时间候选区间表示GA8HT、所述定时器规格FT21和用于转换所述时间候选区间表示GA8HT的一数据编码操作ZX8HT来用所述指定计数值格式HH95而被预置。所述时间值候选范围RQ12和所述候选范围界限值对DQ1B皆基于所述时间 候选区间表示GA8H2、所述定时器规格FT21和用于转换所述时间候选区间表示GA8H2的一数据编码操作ZX8H2来用所述指定计数值格式HH95而被预置。
例如,在所述操作时间TY81之内,所述物理参数候选范围码UQ12等于所预置的所述测量值候选范围码EM12。所述存储单元332存储所述目标范围界限值对DQ1T和所述候选范围界限值对DQ1B。所述目标范围界限值对DQ1T和所述候选范围界限值对DQ1B分别基于所述时间值目标范围码EL1T和所述时间值候选范围码EL12而被存储在所述存储单元332中。
所述处理单元331被配置以在所述操作时间TY81之内基于所获得的所述时间值候选范围码EL12来从所述存储单元332获得所述候选范围界限值对DQ1B,并借由比较所获得的所述特定计数值NY81和所获得的所述候选范围界限值对DQ1B来执行用于检查所述特定计数值NY81和所述时间值候选范围RQ12之间的所述数学关系KQ81的一检查操作ZQ81。在所述处理单元331于所述操作时间TY81之内基于所述检查操作ZQ81而确定所述时钟时间TH1A目前处于的所述时间候选区间HR1E2的条件下,所述处理单元331基于所获得的所述时间值候选范围码EL12来获得所述内存地址AS82,并于所述操作时间TY81之内基于所获得的所述内存地址AS82来接入被存储在所述内存位置YS82的所述物理参数候选范围码UQ12以获得所述物理参数候选范围码UQ12。
例如,所述处理单元331基于所述检查操作ZQ81来确定所述时钟时间TH1A目前于所述时间候选区间HR1E2之内的一时间情况,并藉此辨识所述时钟时间TH1A和所述时间候选区间HR1E2之间的一时间关系为所述时钟时间TH1A目前于所述时间候选区间HR1E2之内的一时间交集关系。在所述处理单元331从所述内存位置YS82获得所述物理参数候选范围码UQ12的条件下,所述处理单元331于所述操作时间TY81之内执行用于所述测量应用功能FA81的一检查操作ZP85以决定所获得的所述物理参数候选范围码UQ12是否等于所述可变物理参数范围码UN8A。
在一些实施例中,在所述处理单元331从所述内存位置YS82获得所述物理参数候选范围码UQ12的条件下,所述处理单元331借由使用所述存储单元332来读取等于所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A,并执行用于检查所获得的所述物理参数候选范围码UQ12和所读取的所述测量值目标范围码EM1T之间的一算术关系KP85的所述检查操作ZP85。所述检查操作ZP85被配置以借由执行用于所述测量应用功能FA81的一数据比较CE85来比较所获得的所述物理参数候选范围码UQ12和所读取的所述测量值目标范围码EM1T以决定所获得的所述物理参数候选范围码UQ12和所读取的所述测量值目标范围码EM1T是否不同。
在所述处理单元331借由执行所述数据比较CE85来确定所获得的所述物理参数候选范围码UQ12和等于所获得的所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A之间的一码差异DX85的条件下,所述处理单元331于所述操作时间TY81之内导致所述输出组件3381执行用于所述测量应用功能FA81的一信号产生操作BY85以产生一功能信号SG85。例如,所述功能信号SG85是一控制信号。所述输出组件3381将所述功能信号SG85传输到所述功能单元335。所述功能单元335响应所述功能信号SG85来导致所述可变物理参数QU1A从所述物理参数目标范围RD1ET进入所述对应物理参数范围RY1ET。例如,在所述处理单元331从所述内存位置YS12获得等于所预置的所述测量值候选范围码EM12的所述物理参数候选范围码UQ12的条件下,所述功能单元335响应所述功能信号SG85来导致所述可变物理参数QU1A进入相同于所述物理参数候选范围RD1E2的所述物理参数候选范围RK1E2。
在一些实施例中,所述控制装置212包含所述操作单元297和耦合于所述操作单元297的所述状态改变侦测器475。所述多个物理参数指定范围码UQ11、UQ12、…属于一物理参数指定范围码类型TS81。所述物理参数指定范围码类型TS81由一物理参数指定范围码类型识别符HS81所识别。所述物理参数指定范围码类型识别符HS81被预置。所述内存地址AS8T基于所预置的所述物理参数指定范围码类型识别符HS81和所预置的所述时间值目标范围码EL1T而被预置。所述内存地址AS82基于所预置的所述物理参数指定范围码类型识别符HS81和所预置的所述时间值候选范围码EL12而被预置。
在所述输入单元337接收所述控制信号SC81之前,所述操作单元297被配置以取得所预置的所述物理参数目标范围码UQ1T、所预置的所述物理参数指定范围码类型识别符HS81和所预置的所述时间值目标范围码EL1T,并预先基于所取得的所述物理参数指定范围码类型识别符HS81和所取得的所述时间值目标范围码EL1T来取得所述内存地址AS8T。所述操作单元297基于所取得的所述物理参数目标范围码UQ1T和所取得的所述内存地址AS8T来提供一写入请求信息WS8T到所述输入单元337。所述写入请求信息WS8T包含所取得的所述物理参数目标范围码UQ1T和所取得的所述内存地址AS8T。
例如,在所述输入单元337接收所述控制信号SC81之前,所述输入单元337从所述操作单元297接收所述写入请求信息WS8T。所述处理单元331从所接收的所述写入请求信息WS8T获得所包含的所述物理参数目标范围码UQ1T和所包含的所述内存地址AS8T,并基于所获得的所述物理参数目标范围码UQ1T和所获得的所述内存地址AS8T来使用所述存储单元332以在所述内存位置YS8T存储所获得的所述物理参数目标范围码UQ1T。
在所述输入单元337接收所述控制信号SC81之前,所述操作单元297被配置以取得 所述物理参数候选范围码UQ12和所预置的所述时间值候选范围码EL12,并预先基于所取得的所述物理参数指定范围码类型识别符HS81和所取得的所述时间值候选范围码EL12来取得所述内存地址AS82。所述处理单元331基于所取得的所述物理参数候选范围码UQ12和所取得的所述内存地址AS82来来提供一写入请求信息WS82到所述输入单元337。所述写入请求信息WS82包含所取得的所述物理参数候选范围码UQ12和所取得的所述内存地址AS82。
例如,在所述输入单元337接收所述控制信号SC81之前,所述输入单元337从所述操作单元29接收所述写入请求信息WS82。所述处理单元331从所接收的所述写入请求信息WS82获得所包含的所述物理参数候选范围码UQ12和所包含的所述内存地址AS82,并基于所获得的所述物理参数候选范围码UQ12和所获得的所述内存地址AS82来使用所述存储单元332以在所述内存位置YS82存储所获得的所述物理参数候选范围码UQ12。
请参阅图31、图32和图33。图31为示出于图1中的所述控制系统861的一实施结构9033的示意图。图32为示出于图1中的所述控制系统861的一实施结构9034的示意图。图33为示出于图1中的所述控制系统861的一实施结构9035的示意图。如图31、图32和图33所示,所述实施结构9033、所述实施结构9034和所述实施结构9035的每一结构包含所述控制装置212和所述控制目标装置130。所述控制装置212包含所述操作单元297和所述状态改变侦测器475。
所述控制目标装置130包含所述操作单元397、所述存储单元332、所述感测单元334和所述功能单元335和一功能单元735。所述操作单元397包含所述处理单元331、所述输入单元337和所述输出单元338。例如,所述功能单元735是一物理参数应用单元。所述状态改变侦测器475是一触发应用单元,并响应所述触发事件EQ81来提供所述触发信号SX8A到所述操作单元297。例如,所述触发信号SX8A是一操作请求信号。
在一些实施例中,所述控制目标装置130进一步包含耦合于所述操作单元397的一功能单元735和耦合于所述操作单元397的一复用器363。所述功能单元735耦合于所述输出单元338,并包含一物理参数形成区AU21。所述物理参数形成区AU21具有一可变物理参数QU2A。所述复用器363具有一输入端3631、一输入端3632、一控制端363C和一输出端363P。所述控制端363C耦合于所述处理单元331。例如,所述功能单元735是一物理可实现功能单元,并具有相似于所述功能单元335的一功能结构。例如,所述功能单元735设置于所述控制目标装置130的内部和所述控制目标装置130的外部的其中之一。
所述输入端3631耦合于所述物理参数形成区AU11。所述输入端3632耦合于所述物理参数形成区AU21。所述输出端363P耦合于所述感测单元334。例如,所述可变物理参数 QU1A和所述可变物理参数QU2A分别是一第四可变电性参数和一第五可变电性参数。例如,所述第四可变电性参数和所述第五可变电性参数分别是一第四可变电压和一第五可变电压。所述输入端3631和所述输出端363P之间具有一第一功能关系。所述第一功能关系等于一第一导通关系和一第一关断关系的其中之一。
所述输入端3632和所述输出端363P之间具有一第二功能关系。所述第二功能关系等于一第二导通关系和一第二关断关系的其中之一。在所述第一功能关系等于所述第一导通关系的条件下,所述感测单元334用于通过所述输出端363P和所述输入端3631来感测所述可变物理参数QU1A,并通过所述输出端363P和所述输入端3631而耦合于所述物理参数形成区AU11。
在所述第二功能关系等于所述第二导通关系的条件下,所述感测单元334用于通过所述输出端363P和所述输入端3632来感测所述可变物理参数QU2A,并通过所述输出端363P和所述输入端3632而耦合于所述物理参数形成区AU21。例如,所述复用器363受所述处理单元331控制,并是一模拟复用器。例如,所述感测单元334在一操作时间TX81通过所述复用器363来感测所述可变物理参数QU1A,并在与所述操作时间TX81不同的一操作时间TX82通过所述复用器363来感测所述可变物理参数QU2A。
例如,所述存储单元332、所述感测单元334、所述复用器363、所述功能单元335和所述功能单元735皆耦合于所述操作单元397,并皆受所述处理单元331控制。所述控制装置212和所述控制目标装置130是分开的或接触的。所述操作单元397和所述功能单元335是分开的或接触的。所述操作单元397和所述功能单元735是分开的或接触的。所述操作单元397和所述感测单元334是分开的或接触的。所述控制装置212用于控制所述可变物理参数QU2A。
在一些实施例中,所述功能单元335由一功能单元识别符HA2T所识别。所述功能单元735由一功能单元识别符HA22所识别。所述功能单元335和所述功能单元735分别位于不同空间位置,并皆通过所述输出单元338而耦合于所述处理单元331。所述功能单元识别符HA2T和所述功能单元识别符HA22皆基于所述测量应用功能规格GAL8而被预置。所述控制信号SC81进一步输送所述功能单元识别符HA2T和所述功能单元识别符HA22的至少其中之一。
所述输入单元337从所述操作单元297接收所述控制信号SC81。在所述控制信号SC81输送所述功能单元识别符HA2T的条件下,所述处理单元331响应所述控制信号SC81来选择所述功能单元335以进行控制。在所述控制信号SC81输送所述功能单元识别符HA22的条件下,所述处理单元331响应所述控制信号SC81来选择所述功能单元735以进行控制。 例如,所述功能单元识别符HA2T是一第一功能单元号码。所述功能单元识别符HA22是一第二功能单元号码。
例如,所述功能单元335和所述功能单元735是分开的,或由设置于所述功能单元335和所述功能单元735之间的一材料层70U所隔开。所述功能单元335、所述材料层70U和所述功能单元735皆耦合于一支撑媒介70M。所述控制目标装置130包含所述材料层70U,或所述材料层70U设置于所述控制目标装置130之外。所述控制目标装置130包含所述支撑媒介70M,或所述支撑媒介70M设置于所述控制目标装置130之外。例如,所述支撑媒介70M耦合于所述操作单元397。
在一些实施例中,在所述控制信号SC81输送所述功能单元识别符HA2T的条件下,所述处理单元331响应所述控制信号SC81来从所述控制信号SC81获得所述功能单元识别符HA2T,并基于所获得的所述功能单元识别符HA2T来导致所述感测单元334感测所述可变物理参数QU1A,并藉此从所述感测单元334接收所述第一感测信号SN81。所述处理单元331基于所接收的所述第一感测信号SN81来以所述指定测量值格式HH81获得所述第一测量值VN81,并基于所获得的所述功能单元识别符HA2T来向所述功能单元335传输所述功能信号SG81、所述功能信号SG82和所述功能信号SG91的至少其中之一。
例如,所述处理单元331响应所述控制信号SC81来基于所获得的所述功能单元识别符HA2T而提供一控制信号SD81到所述控制端363C。例如,所述控制信号SD81是一选择控制信号,并起到指示所述输入端3631的作用。所述复用器363响应所述控制信号SD81来导致所述输入端3631和所述输出端363P之间的所述第一功能关系等于所述第一导通关系。在所述第一功能关系等于所述第一导通关系的条件下,所述感测单元334感测所述可变物理参数QU1A以产生所述第一感测信号SN81,因此所述处理单元331从所述感测单元334接收所述第一感测信号SN81。
所述存储单元332具有所述存储空间SU11。所述存储单元332进一步基于所预置的所述功能单元识别符HA2T来在所述存储空间SU11中存储所述额定范围界限值对DD1A、所述可变物理参数范围码UN8A、所述目标范围界限值对DN1T、所述控制码CC1T、所述候选范围界限值对DN1B、所述控制码CC12和所述时间长度范围界限值对LN8A。所述处理单元331进一步基于所获得的所述功能单元识别符HA2T来使用所述存储单元332以接入所述额定范围界限值对DD1A、所述可变物理参数范围码UN8A、所述目标范围界限值对DN1T、所述控制码CC1T、所述候选范围界限值对DN1B、所述控制码CC12和所述时间长度范围界限值对LN8A的其中任一。
在一些实施例中,所述第一内存地址AM8T基于所预置的所述功能单元识别符HA2T、 所预置的所述测量值目标范围码EM1T和所预置的所述测量范围界限数据码类型识别符HN81而被预置。所述处理单元331响应所述控制信号SC81来使用所获得的所述功能单元识别符HA2T、所获得的所述测量值目标范围码EM1T和所获得的所述测量范围界限数据码类型识别符HN81来获得所述第一内存地址AM8T,并基于所获得的所述第一内存地址AM8T来使用所述存储单元332以接入被存储在所述第一内存位置YM8T的所述目标范围界限值对DN1T以获得所述目标范围界限值对DN1T。
例如,所述内存地址AX8T基于所预置的所述功能单元识别符HA2T、所预置的所述测量值目标范围码EM1T和所预置的所述控制码类型识别符HC81而被预置。在所述处理单元331确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET的条件下,所述处理单元331基于所获得的所述功能单元识别符HA2T、所获得的所述测量值目标范围码EM1T和所获得的所述控制码类型识别符HC81来获得所述内存地址AX8T,并基于所获得的所述内存地址AX8T来使用所述存储单元332以接入被存储在所述内存位置YX8T的所述控制码CC1T以获得所述控制码CC1T。例如,所述存储空间SU11进一步具有所述测量时间长度值CL8T。所述处理单元331响应所述控制信号SC81来从所述存储空间SU11获得所述测量时间长度值CL8T。
在一些实施例中,在所述处理单元331确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET的条件下,所述处理单元331基于所获得的所述功能单元识别符HA2T和所获得的所述控制码CC1T来执行用于控制所述输出单元338的所述信号产生控制GY81。所述输出单元338响应所述信号产生控制GY81来执行用于所述测量应用功能FA81的所述信号产生操作BY81以产生所述功能信号SG81,并导致所述输出单元338向所述功能单元335传输所述功能信号SG81。所述功能信号SG81用于控制所述功能单元335以导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
例如,所述输出单元338包含一输出端338P和一输出端338Q。所述输出端338P耦合于所述功能单元335。所述输出端338P耦合于所述功能单元735。所述输出端338P和所述输出端338Q分别位于不同空间位置。所预置的所述功能单元识别符HA2T被配置以指示所述输出端338P。所预置的所述功能单元识别符HA22被配置以指示所述输出端338Q。例如,所述控制信号SC81借由输送被配置以指示所述输出端338P的所述功能单元识别符HA2T来使所述处理单元331选择所述功能单元335以进行控制。所述信号产生控制GY81起到指示所述输出端338P的作用,并用于导致所述输出单元338接收一控制信号SF81。
所述控制信号SF81起到指示所述输出端338P的作用。所述输出单元338响应所述信号产生控制GY81和所述控制信号SF81的其中之一来执行使用所述输出端338P的所述信 号产生操作BY81以向所述功能单元335传输所述功能信号SG81。例如,所述信号产生控制GY81用于导致所述处理单元331提供所述控制信号SF81到所述输出单元338。
在一些实施例中,所述输入单元337从所述控制装置212接收一控制信号SC97。所述控制信号SC97输送所述功能单元识别符HA22。在所述控制信号SC97输送所述功能单元识别符HA22的条件下,所述处理单元331响应所述控制信号SC97来从所述控制信号SC97获得所述功能单元识别符HA22,并基于所获得的所述功能单元识别符HA22来提供一控制信号SD82到所述控制端363C。例如,所述控制信号SD82是一选择控制信号,起到指示所述输入端3632的作用,并不同于所述控制信号SD81。例如,所述控制信号SC97是所述控制信号SC81。在所述控制信号SC81输送所述功能单元识别符HA22的条件下,所述处理单元331响应所述控制信号SC81来从所述控制信号SC81获得所述功能单元识别符HA22。
所述复用器363响应所述控制信号SD82来导致所述输入端3632和所述输出端363P之间的所述第二功能关系等于所述第二导通关系。在所述第二功能关系等于所述第二导通关系的条件下,所述感测单元334感测所述可变物理参数QU1A以产生一感测信号SN91。所述处理单元331从所述感测单元334接收所述感测信号SN91,并基于所接收的所述感测信号SN91来以所述指定测量值格式HH81获得一测量值VN91。例如,所述控制信号SC97借由输送被配置以指示所述输出端338Q的所述功能单元识别符HA22来使所述处理单元331选择所述功能单元735以进行控制。
在一特定情况中,所述处理单元331基于所获得的所述测量值VN91和所获得的所述功能单元识别符HA22来执行用于控制所述输出单元338的一信号产生控制GY97。所述信号产生控制GY97起到指示所述输出端338Q的作用,并用于导致所述输出单元338接收一控制信号SF97。所述控制信号SF97起到指示所述输出端338Q的作用。所述输出单元338响应所述信号产生控制GY97和所述控制信号SF97的其中之一来执行使用所述输出端338Q的一信号产生操作BY97以向所述功能单元735传输一功能信号SG97。所述功能信号SG97用于控制所述可变物理参数QU2A,并是一操作信号和一控制信号的其中之一。例如,所述信号产生控制GY97用于导致所述处理单元331提供所述控制信号SF97到所述输出单元338。
例如,所述处理单元331响应所述控制信号SC81来提供用于控制所述复用器363的所述控制信号SD81到所述复用器363。所述复用器363响应所述控制信号SD81来使所述感测单元334在所述操作时间TX81之内通过所述复用器363执行用于感测所述可变物理参数QU1A的一感测操作ZW81。所述感测单元334借由执行所述感测操作ZW81来提供所述感测信号SN81到所述处理单元331。
所述处理单元331响应所述控制信号SC81来提供用于控制所述复用器363的所述控制信号SD82到所述复用器363。所述复用器363响应所述控制信号SD82来使所述感测单元334在所述操作时间TX82之内通过所述复用器363执行用于感测所述可变物理参数QU2A的一感测操作ZW82。所述感测单元334借由执行所述感测操作ZW82来提供所述感测信号SN91到所述操作单元397。所述操作时间TX82不同于所述操作时间TX81。所述操作单元397在一特定情况YA82中基于所述感测信号SN91来向所述功能单元735传输用于控制所述可变物理参数QU2A的所述功能信号SG97。
请参阅图34,其为示出于图1中的所述控制系统861的实施结构9510的示意图。所述实施结构9510包含控制装置212和控制目标装置130。所述控制装置212用于控制所述控制目标装置130。所述控制目标装置130包含可变物理参数QU1A、感测单元334和操作单元397。所述可变物理参数QU1A基于由测量值目标范围RN1T所代表的物理参数目标范围RD1ET和对应于所述物理参数目标范围RD1ET的对应物理参数范围RY1ET而被特征化。
例如,所述物理参数应用范围RD1EJ对应于所述物理参数目标范围RD1ET,并等于所述对应物理参数范围RY1ET。所述对应物理参数范围RY1ET由一对应测量值范围RX1T所代表。所述物理参数目标范围RD1ET由所述测量值指示范围RN1G所代表。所述测量值指示范围RN1G等于一测量值目标范围RN1T。
所述感测单元334感测所述可变物理参数QU1A以产生第一感测信号SN81。所述操作单元397耦合于所述感测单元334。在所述操作单元397接收起到指示所述测量值目标范围RN1T的作用的控制信号SC81的条件下,所述操作单元397响应所述第一感测信号SN81来获得第一测量值VN81,并响应所述控制信号SC81来执行用于检查所述第一测量值VN81和所述测量值目标范围RN1T之间的第二数学关系KV51的第一检查操作BV51。在所述操作单元397基于所述第一检查操作BV51而确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET的条件下,所述操作单元397导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
例如,所述第一数学关系KG81等于所述第二数学关系KV51。所述控制信号SC81起到指示所述物理参数目标范围RD1ET的作用。在所述操作单元397基于所述第一检查操作BV51而确定所述可变物理参数QU1A目前所处于的所述对应物理参数范围RY1ET的条件下,所述操作单元397基于所述控制信号SC81来导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
请参阅图35,其为示出于图1中的所述控制系统861的实施结构9511的示意图。请额外参阅图34。在一些实施例中,所述感测单元334被配置以符合与所述测量值目标范围 RN1T相关的传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示传感器灵敏度YW81的传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的感测信号产生HF81。所述第一测量值VN81以指定测量值格式HH81而被所述操作单元397获得。
所述测量值目标范围RN1T具有目标范围界限值对DN1T。所述对应物理参数范围RY1ET由对应测量值范围RX1T所代表。所述测量值目标范围RN1T和所述对应测量值范围RX1T的范围组合等于额定测量值范围RD1N。例如,所述测量值目标范围RN1T、所述对应测量值范围RX1T和所述额定测量值范围RD1N皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。例如,所述测量值目标范围RN1T、所述对应测量值范围RX1T和所述额定测量值范围RD1N皆基于所述传感器测量范围表示GW8R和所述传感器灵敏度表示GW81来用所述指定测量值格式HH81而被预置。所述额定测量值范围RD1N具有额定范围界限值对DD1A。
所述控制信号SC81输送所述目标范围界限值对DN1T、所述额定范围界限值对DD1A和控制码CC1T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的指定物理参数QD1T而被预置。所述控制信号SC81通过输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。所述操作单元397从所述控制信号SC81获得所述目标范围界限值对DN1T,并通过比较所述第一测量值VN81和所获得的所述目标范围界限值对DN1T来执行所述第一检查操作BV51。
所述操作单元397基于所述第一检查操作BV51来做出所述第一测量值VN81是否为于所述对应测量值范围RX1T之内的逻辑决定PB51。在所述逻辑决定PB51是肯定的条件下,所述操作单元397确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET。所述操作单元397从所述控制信号SC81获得所述额定范围界限值对DD1A,并通过比较所述第一测量值VN81和所获得的所述额定范围界限值对DD1A来执行用于检查所述第一测量值VN81和所述额定测量值范围RD1N之间的第三数学关系KM51的第二检查操作BM51。
所述操作单元397进一步基于所述第二检查操作BM51来做出所述逻辑决定PB51。所述操作单元397从所述控制信号SC81获得所述控制码CC1T。在所述操作单元397确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET的条件下,所述操作单元397基于所获得的所述控制码CC1T来执行信号产生控制GY81以产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的功能信号SG81。
在一些实施例中,在所述操作单元397于操作时间TF81之内执行所述信号产生控制 GY81之后,所述感测单元334感测所述可变物理参数QU1A以产生第二感测信号SN82。所述操作单元397于所述操作时间TF81之后的指定时间TG82之内响应所述第二感测信号SN82来以所述指定测量值格式HH81获得第二测量值VN82。在所述操作单元397于所述指定时间TG82之内通过比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T来确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述操作单元397基于所述第二测量值VN82来向所述控制装置212传输响应所述控制信号SC81的一控制响应信号SE81,并执行数据存储控制操作GU81。所述控制响应信号SE81输送所述测量值VN82。所述数据存储控制操作GU81用于导致代表所确定的所述物理参数目标范围RD1ET的物理参数目标范围码UN8T被记录。例如,所述数据存储控制操作GU81是一确保操作。
所述可变物理参数QU1A相关于可变时间长度LF8A。例如,所述操作单元397用于测量所述可变时间长度LF8A。所述可变时间长度LF8A基于时间长度参考范围HJ81和参考时间长度LJ8T而被特征化。所述时间长度参考范围HJ81由测量时间长度值参考范围GJ81所代表。所述参考时间长度LJ8T由测量时间长度值CL8T所代表。所述控制信号SC81进一步输送所述测量时间长度值CL8T。所述操作单元397被配置以从所述控制信号SC81获得所述测量时间长度值CL8T,并检查所获得的所述测量时间长度值CL8T和所述测量时间长度值参考范围GJ81之间的数值关系KJ81以做出用于控制特定时间TJ8T的计数操作BC8T是否要被执行的逻辑决定PE81。
在所述逻辑决定PE81是肯定的条件下,所述操作单元397基于所获得的所述测量时间长度值CL8T来执行所述计数操作BC8T。在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET之内的条件下,所述操作单元397基于所述计数操作BC8T来到达所述特定时间TJ8T,并在所述特定时间TJ8T之内执行用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述对应物理参数范围RY1ET的信号产生操作BY91。
请参阅图36、图37、图38、图39和图40。图36为示出于图1中的所述控制系统861的实施结构9512的示意图。图37为示出于图1中的所述控制系统861的实施结构9513的示意图。图38为示出于图1中的所述控制系统861的实施结构9514的示意图。图39为示出于图1中的所述控制系统861的实施结构9515的示意图。图40为示出于图1中的所述控制系统861的实施结构9516的示意图。请额外参阅图34。如图36、图37、图38、图39和图40所示,所述实施结构9512、所述实施结构9513、所述实施结构9514、所述实施结构9515和所述实施结构9516的每一结构包含所述控制装置212和所述控制目标装 置130。
请额外参阅图34。在一些实施例中,所述操作单元397被配置以执行与所述物理参数目标范围RD1ET相关的测量应用功能FA81,并包含耦合于所述感测单元334的处理单元331、耦合于所述处理单元331的输入单元337、和耦合于所述处理单元331的输出单元338。所述测量应用功能FA81被配置以符合与所述物理参数目标范围RD1ET相关的测量应用功能规格GAL8。所述感测单元334被配置以符合与所述测量值目标范围RN1T相关的传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示传感器灵敏度YW81的传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的感测信号产生HF81。例如,所述测量应用功能FA81是一物理参数控制功能。所述测量应用功能规格GAL8是一物理参数控制功能规格。
在所述输入单元337从控制装置212接收所述控制信号SC81的条件下,所述处理单元331响应所述第一感测信号SN81来以指定测量值格式HH81获得所述第一测量值VN81。例如,所述指定测量值格式HH81基于指定比特数目UY81而被特征化。所述控制目标装置130进一步包含耦合于所述输出单元338的功能单元335、和耦合于所述处理单元331的存储单元332。例如,当所述输入单元337接收所述控制信号SC81时,所述感测单元334感测所述可变物理参数QU1A以执行相依于所述传感器灵敏度YW81的所述感测信号产生HF81,所述感测信号产生HF81用于产生所述第一感测信号SN81。例如,所述功能单元335是一物理参数应用单元。当所述接收单元337接收所述控制信号SC81时,所述感测单元334感测所述可变物理参数QU1A以产生所述第一感测信号SN81。
所述对应物理参数范围RY1ET由对应测量值范围RX1T所代表。所述物理参数目标范围RD1ET和所述对应物理参数范围RY1ET的范围组合等于额定物理参数范围RD1E。所述测量应用功能规格GAL8包含所述传感器规格FU11、用于表示所述额定物理参数范围RD1E的额定物理参数范围表示GA8E、和用于表示所述物理参数目标范围RD1ET的物理参数候选范围表示GA8T。所述测量值目标范围RN1T和所述对应测量值范围RX1T的范围组合等于额定测量值范围RD1N。例如,所述功能单元335设置于所述控制目标装置130的内部,或设置于所述控制目标装置130的外部。
在一些实施例中,所述额定测量值范围RD1N代表所述额定物理参数范围RD1E,基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和用于转换所述额定物理参数范围表示GA8E的数据编码操作ZX81来用所述指定测量值格式HH81而被预置,并具有额定范围界限值对DD1A。例如,所述额定范围界限值对DD1A用所述指定测量值格式 HH81而被预置。所述测量值目标范围RN1T由测量值目标范围码EM1T所代表,并具有目标范围界限值对DN1T;藉此所述测量值目标范围码EM1T被配置以指示所述物理参数目标范围RD1ET。例如,所述测量值目标范围码EM1T基于所述测量应用功能规格GAL8而被预置。
所述目标范围界限值对DN1T包含所述测量值目标范围RN1T的目标范围界限值DN17和相对于所述目标范围界限值DN17的目标范围界限值DN18,并基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和用于转换所述物理参数候选范围表示GA8T的数据编码操作ZX82来用所述指定测量值格式HH81而被预置。所述控制信号SC81通过输送所述测量值目标范围码EM1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。所述测量值目标范围RN1T基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和所述数据编码操作ZX82来用所述指定测量值格式HH81而被预置。
在一些实施例中,所述测量应用功能规格GAL8进一步包含物理参数表示GA8T1。所述物理参数表示GA8T1用于表示在所述物理参数目标范围RD1ET之内的指定物理参数QD1T。所述存储单元332储存所述额定范围界限值对DD1A,具有内存位置YM8T和不同于所述内存位置YM8T的内存位置YX8T,在所述内存位置YM8T储存所述目标范围界限值对DN1T,并在所述内存位置YX8T储存控制码CC1T。
例如,所述内存位置YM8T和所述内存位置YX8T皆基于所述测量值目标范围码EM1T而被识别。所述控制码CC1T基于所述物理参数表示GA8T1和用于转换所述物理参数表示GA8T1的数据编码操作ZX91而被预置。所述目标范围界限值对DN1T和所述控制码CC1T皆基于所预置的所述测量值目标范围码EM1T而被所述存储单元332储存。
所述功能单元335具有所述可变物理参数QU1A。例如,所述感测单元334耦合于所述功能单元335。所述控制信号SC81进一步输送所述额定范围界限值对DD1A。所述处理单元331响应所述控制信号SC81来从所述控制信号SC81和所述存储单元332的其中之一获得所述额定范围界限值对DD1A,响应所述控制信号SC81来从所述控制信号SC81获得所述测量值目标范围码EM1T,并通过运行数据获取程序ND5A来执行使用所获得的所述测量值目标范围码EM1T的数据获取AD5A以获得所述目标范围界限值对DN1T。例如,所述数据获取AD5A是数据获取操作AD51和数据获取操作AD52的其中之一。所述数据获取程序ND5A基于所述测量应用功能规格GAL8而被构建。
所述数据获取操作AD51基于所获得的所述测量值目标范围码EM1T来使用所述存储单元332以存取被储存在所述内存位置YM8T的所述目标范围界限值对DN1T以获得所述目标范围界限值对DN1T。所述数据获取操作AD52通过执行使用所获得的所述测量值目标范围 码EM1T和所获得的所述额定范围界限值对DD1A的科学计算MZ51来获得所述目标范围界限值对DN1T。
在一些实施例中,所述处理单元331基于所述第一测量值VN81和所获得的所述目标范围界限值对DN1T之间的数据比较CD51来执行所述第一检查操作BV51,并基于所述第一检查操作BV51来做出所述第一测量值VN81是否为于所述对应测量值范围RX1T之内的逻辑决定PB51。在所述逻辑决定PB51是肯定的条件下,所述处理单元331确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET。
例如,在所述目标范围界限值DN17不同于所述目标范围界限值DN18且所述第一测量值VN81是于所述目标范围界限值DN17和所述目标范围界限值DN18之间的条件下,所述处理单元331通过比较所述第一测量值VN81和所存取的所述第一测量范围界限数据码DN1A来做出所述逻辑决定PB51以成为否定的。在所述目标范围界限值DN17、所述目标范围界限值DN18和所述第一测量值VN81是相等的条件下,所述处理单元331通过比较所述第一测量值VN81和所存取的所述第一测量范围界限数据码DN1A来做出所述逻辑决定PB51以成为否定的。
在所述处理单元331确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET的条件下,所述处理单元331基于所获得的所述测量值目标范围码EM1T来使用所述存储单元332以存取被储存在所述内存位置YX8T的所述控制码CC1T,并基于所存取的所述控制码CC1T来执行用于所述测量应用功能FA81的信号产生控制GY81以控制所述输出单元338。所述输出单元338响应所述信号产生控制GY81来执行用于所述测量应用功能FA81的信号产生操作BY81以产生功能信号SG81,所述功能信号SG81用于控制所述功能单元335以导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
在一些实施例中,所述控制装置212是外部装置。所述处理单元331通过所述输出单元338来使所述功能单元335执行与所述可变物理参数QU1A相关的特定功能操作ZH81。例如,所述特定功能操作ZH81用于导致触发事件EQ81发生。所述控制装置212响应所述触发事件EQ81来输出所述控制信号SC81。所述额定测量值范围RD1N被配置以具有多个不同测量值参考范围RN11、RN12、…。例如,所述多个不同测量值参考范围RN11、RN12、…具有总参考范围数目NT81,分别由多个不同测量值参考范围码EM11、EM12、…所代表,并包含所述测量值目标范围RN1T。
所述总参考范围数目NT81基于所述测量应用功能规格GAL8而被预置。所述多个不同测量值参考范围码EM11、EM12、…包含所预置的所述测量值目标范围码EM1T,并皆基于所述测量应用功能规格GAL8而被预置。所述控制信号SC81进一步输送所述总参考范围数 目NT81。所述处理单元331响应所述控制信号SC81来从所述控制信号SC81和所述存储单元332的其中之一获得所述总参考范围数目NT81。所述科学计算MZ51进一步使用所获得的所述总参考范围数目NT81。例如,所述总参考范围数目大于或等于2。例如,所述总参考范围数目NT11≧3;所述总参考范围数目NT11≧4;所述总参考范围数目NT11≧5;所述总参考范围数目NT11≧6;且所述总参考范围数目NT11≦255。
所述功能单元335响应所述功能信号SG81来将所述可变物理参数QU1A从特定物理参数QU17改变成特定物理参数QU18。例如,所述特定物理参数QU17是于所述对应物理参数范围RY1ET之内;且所述特定物理参数QU18是于所述物理参数目标范围RD1ET之内。所述测量应用功能规格GAL8进一步包含用于表示所述对应物理参数范围RY1ET的对应物理参数范围表示GA8TY。所述对应测量值范围RX1T基于所述对应物理参数范围表示GA8TY、所述传感器测量范围表示GW8R和用于转换所述对应物理参数范围表示GA8TY的数据编码操作ZX83来用所述指定测量值格式HH81而被预置。
在一些实施例中,所述可变物理参数QU1A进一步基于所述额定物理参数范围RD1E而被特征化。所述额定物理参数范围RD1E包含多个不同物理参数参考范围RD1E1、RD1E2、…。例如,所述多个不同物理参数参考范围RD1E1、RD1E2、…包含所述物理参数目标范围RD1ET。所述测量值目标范围RN1T是所述额定测量值范围RD1N的第一部分。所述对应测量值范围RX1T是所述额定测量值范围RD1N的第二部分,相邻于所述测量值目标范围RN1T,并互补于所述测量值目标范围RN1T。
所述额定测量值范围RD1N等于所述测量值目标范围RN1T和互补于所述测量值目标范围RN1T的所述对应测量值范围RX1T的范围组合,并具有所述额定范围界限值对DD1A。例如,所述额定范围界限值对DD1A包含所述额定测量值范围RD1N的额定范围界限值DD11和相对于所述额定范围界限值DD11的额定范围界限值DD12,并基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和所述数据编码操作ZX81来用所述指定测量值格式HH81而被预置。
例如,所述测量值目标范围码EM1T被配置以等于整数。所述额定范围界限值DD12大于所述额定范围界限值DD11。所述额定范围界限值DD12和所述额定范围界限值DD11之间具有相对于所述额定范围界限值DD11的相对值VA11。所述相对值VA11等于所述额定范围界限值DD12减去所述额定范围界限值DD11的计算结果。例如,所述目标范围界限值对DN1T基于所述额定范围界限值DD11、所述额定范围界限值DD12、所述整数、和所述相对值VA11对于所述总参考范围数目NT81的比率而被预置。所述科学计算MZ51使用所述额定范围界限值DD11、所述额定范围界限值DD12、所述整数、所述比率和其任意组合的其中之一。
所述处理单元331基于所述第一测量值VN81和所获得的所述额定范围界限值对DD1A之间的数据比较CD52来执行用于检查所述第一测量值VN81和所述额定测量值范围RD1N之间的第三数学关系KM51的第二检查操作BM51。所述处理单元331进一步基于所述第二检查操作BM51来做出所述逻辑决定PB51。
在一些实施例中,在所述处理单元331于操作时间TF81之内执行所述信号产生控制GY81之后,所述感测单元334感测所述可变物理参数QU1A以产生第二感测信号SN82。例如,在所述处理单元331执行所述信号产生控制GY81之后,所述感测单元334感测所述可变物理参数QU1A以执行相依于所述传感器灵敏度YW81的感测信号产生HF82,所述感测信号产生HF82用于产生所述第二感测信号SN82。
所述处理单元331于所述操作时间TF81之后的指定时间TG82之内响应所述第二感测信号SN82来以所述指定测量值格式HH81获得第二测量值VN82。所述处理单元331通过比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T来检查所述第二测量值VN82和所述测量值目标范围RN1T之间的数学关系KV91以做出所述第二测量值VN82是否为于所述测量值目标范围RN1T之内的逻辑决定PB91。
在所述逻辑决定PB91是肯定的条件下,所述处理单元331于所述指定时间TG82之内确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET,产生肯定操作报告RL81,并导致所述输出单元338输出输送所述肯定操作报告RL81的控制响应信号SE81,藉此所述控制响应信号SE81用于导致所述控制装置212获得所述肯定操作报告RL81。例如,所述肯定操作报告RL81表示所述可变物理参数QU1A成功地进入所述物理参数目标范围RD1ET的操作情况EP81。所述处理单元331通过导致所述输出单元338产生所述控制响应信号SE81来响应所述控制信号SC81。例如,所述处理单元331基于所获得的所述测量值VN82来使所述控制响应信号SE81进一步输送所获得的所述测量值VN82。
在一些实施例中,所述存储单元332进一步储存可变物理参数范围码UN8A。当所述输入单元337接收所述控制信号SC81时,所述可变物理参数范围码UN8A等于选择自所述多个不同测量值参考范围码EM11、EM12、…的特定测量值范围码EM14。例如,所述特定测量值范围码EM14指示基于感测操作ZS81而被所述处理单元331先前确定的特定物理参数范围RD1E4。所述特定物理参数范围RD1E4选择自所述多个不同物理参数参考范围RD1E1、RD1E2、…。由所述感测单元334所执行的所述感测操作ZS81用于感测所述可变物理参数QU1A。在所述输入单元337接收所述控制信号SC81之前,所述特定测量值范围码EM14被指定到所述可变物理参数范围码UN8A。
例如,在所述输入单元337接收所述控制信号SC81之前,所述处理单元331获得所 述特定测量值范围码EM14。在所述处理单元331于所述输入单元337接收所述控制信号SC81之前基于所述感测操作ZS81而确定所述特定物理参数范围RD1E4的条件下,所述处理单元331通过使用所述存储单元332来将所获得的所述特定测量值范围码EM14指定到所述可变物理参数范围码UN8A。所述特定测量值范围码EM14代表被配置以代表所述特定物理参数范围RD1E4的特定测量值范围。所述特定测量值范围基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。例如,所述感测单元334通过执行所述感测操作ZS81来执行相依于所述传感器灵敏度YW81的感测信号产生以产生感测信号。
在所述输入单元337接收所述控制信号SC81之前,所述处理单元331接收所述感测信号,响应所述感测信号来以所述指定测量值格式HH81获得特定测量值,并执行用于检查所述特定测量值和所述特定测量值范围之间的数学关系的特定检查操作。在所述处理单元331基于所述特定检查操作而确定所述可变物理参数QU1A处于的所述特定物理参数范围RD1E4的条件下,所述处理单元331通过使用所述存储单元332来将所获得的所述特定测量值范围码EM14指定到所述可变物理参数范围码UN8A。所述处理单元331响应用于感测所述可变物理参数QU1A的特定感测操作来决定所述处理单元331是否要使用所述存储单元332以改变所述可变物理参数范围码UN8A。例如,所述特定感测操作由所述感测单元334所执行。
在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述处理单元331通过做出所述逻辑决定PB91而确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331基于等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的码差异DF81来使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
当所述输入单元337接收所述控制信号SC81时,所述输出单元338显示状态指示LB81。例如,所述状态指示LB81用于指示所述可变物理参数QU1A被配置于所述特定物理参数范围RD1E4之内的特定状态XJ81。在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述处理单元331通过做出所述逻辑决定PB91而确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET的条件下,所述处理单元331进一步基于所述第码差异DF81来导致所述输出单元338将所述状态指示LB81改变成状态指示LB82。例如,所述状态指示LB82用于指示所述可变物理参数QU1A被配置于所述物理参数目标范围RD1ET之内的特定状态XJ82。
在一些实施例中,所述控制信号SC81是电信号SP81和光信号SQ81的其中之一。所述输入单元337包含输入组件3371、输入组件3372和输入组件3373。所述输入组件3371耦合于所述处理单元331。在所述控制信号SC81是所述电信号SP81的条件下,所述输入组件3371通过接收输送控制信息CG81的所述电信号SP81来导致所述处理单元331获得所述控制信息CG81。例如,所述控制信息CG81包含所述测量值目标范围码EM1T。
所述输入组件3372耦合于所述处理单元331。在所述控制信号SC81是所述光信号SQ81的条件下,所述输入组件3372接收输送编码影像FY81的所述光信号SQ81。例如,所述编码影像FY81代表所述控制信息CG81。所述输入组件3373耦合于所述处理单元331,并包含耦合所述处理单元331的一按钮3801。在所述可变物理参数QU1A基于所述控制信号SC81而被配置于所述物理参数目标范围RD1ET之内的条件下,所述输入组件3373接收使用所述按钮3801的用户输入操作BQ81,并响应所述用户输入操作BQ81来导致所述处理单元331接收一操作请求信号SJ91。
所述处理单元331响应所述操作请求信号SJ91来确定特定输入码UW81。例如,所述输入组件3373响应使用所述按钮3801的所述用户输入操作BQ81来提供所述操作请求信号SJ91到所述处理单元331,并藉此使所述处理单元331接收所述操作请求信号SJ91。所述特定输入码UW81选择自所述多个不同测量值参考范围码EM11、EM12、…。
在所述控制信号SC81是所述光信号SQ81的条件下,所述输入组件3372感测所述编码影像FY81以确定编码数据DY81,并解码所述编码数据DY81以提供所述控制信息CG81到所述处理单元331。例如,当所述输入组件3373接收所述用户输入操作BQ81时,所述可变物理参数范围码UN8A等于所预置的所述测量值目标范围码EM1T。所述处理单元331响应所述操作请求信号SJ91来从所述可变物理参数范围码UN8A获得所述测量值目标范围码EM1T。在所述特定输入码UW81不同于所预置的所述测量值目标范围码EM1T的条件下,所述处理单元331基于等于所获得的所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A和所述特定输入码UW81之间的码差异DX81来通过所述输出单元338而导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述对应物理参数范围RY1ET。
在一些实施例中,所述感测单元334感测处于拘束条件FR81的所述可变物理参数QU1A以提供所述第一感测信号SN81到所述处理单元331。例如,所述拘束条件FR81是所述可变物理参数QU1A等于包含于所述额定物理参数范围RD1E中的特定物理参数QU15。所述处理单元331基于所述第一感测信号SN81来估计所述特定物理参数QU15以获得所述第一测量值VN81。
在处理单元331基于所述数据比较CD51和所述数据比较CD52而辨识所述第一测量值VN81为于所述测量值目标范围RN1T之外并于所述额定测量值范围RD1N之内的可允许值VG51的条件下,所述处理单元331做出所述逻辑决定PB51以成为肯定的。由于处于所述拘束条件FR81的所述可变物理参数QU1A是于所述物理参数目标范围RD1ET之外并于所述额定物理参数范围RD1E之内,所述处理单元331基于所述数据比较CD51和所述数据比较CD52而辨识所述第一测量值VN81为于所述对应测量值范围RX1T之内的所述可允许值VG51。
在一些实施例中,所述感测单元334基于与所述感测信号产生HF81相关的所述传感器灵敏度YW81而被特征化,并被配置以符合所述传感器规格FU11。所述传感器规格FU11包含用于表示所述传感器灵敏度YW81的所述传感器灵敏度表示GW81、和用于表示所述传感器测量范围RB8E的所述传感器测量范围表示GW8R。例如,所述额定物理参数范围RD1E被配置以相同于所述传感器测量范围RB8E,或被配置以是所述传感器测量范围RB8E的一部分。所述传感器测量范围RB8E相关于由所述感测单元334所执行的物理参数感测。所述传感器测量范围表示GW8R基于第一预置测量单位而被提供。例如,所述第一预置测量单位是公制测量单位和英制测量单位的其中之一。
所述额定测量值范围RD1N、所述额定范围界限值对DD1A、所述测量值目标范围RN1T、所述目标范围界限值对DN1T和所述对应测量值范围RX1T皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。例如,所述额定测量值范围RD1N和所述额定范围界限值对DD1A皆基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX81来用所述指定测量值格式HH81而被预置。所述测量值目标范围RN1T和所述目标范围界限值对DN1T皆基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX82来用所述指定测量值格式HH81而被预置。
所述对应测量值范围RX1T基于所述对应物理参数范围表示GA8TY、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX83来用所述指定测量值格式HH81而被预置。所述额定物理参数范围表示GA8E、所述物理参数表示GA8T1、所述物理参数候选范围表示GA8T和所述对应物理参数范围表示GA8TY皆基于第二预置测量单位而被提供。例如,所述第二预置测量单位是公制测量单位和英制测量单位的其中之一,并相同或不同于所述第一预置测量单位。例如,所述对应物理参数范围表示GA8TY基于所述额定物理参数范围表示GA8E和所述物理参数候选范围表示GA8T而被导出。
所述可变物理参数QU1A进一步基于所述传感器测量范围RB8E而被特征化。例如,所述传感器测量范围表示GW8R、所述额定物理参数范围表示GA8E、所述物理参数候选范围表示GA8T、所述对应物理参数范围表示GA8TY和所述物理参数表示GA8T1皆属于十进制数据类型。所述第一测量值VN81、所述第二测量值VN82、所述额定范围界限值对DD1A、所述目标范围界限值对DN1T和所述控制码CC1T皆属于所述二进制数据类型,并皆适用于电脑处理。所述传感器规格FU11和所述测量应用功能规格GAL8皆被预置。
在一些实施例中,在所述输入单元337接收所述控制信号SC81之前,所述输入单元337接收包含所预置的所述目标范围界限值对DN1T和内存地址AM8T的写入请求信息WN8T。例如,所述第内存位置YM8T基于所述内存地址AM8T而被识别。所述内存地址AM8T基于所预置的所述测量值目标范围码EM1T而被预置。所述处理单元331响应所述写入请求信息WN8T来使用所述存储单元332以将所述写入请求信息WN8T的所述目标范围界限值对DN1T储存到所述内存位置YM8T。
在所述输入单元337接收所述控制信号SC81之前,所述输入单元337接收包含所预置的所述控制码CC1T和内存地址AX8T的写入请求信息WC8T。例如,所述内存位置YX8T基于所述内存地址AX8T而被识别。所述内存地址AX8T基于所预置的所述测量值目标范围码EM1T而被预置。所述处理单元331响应所述写入请求信息WC8T来使用所述存储单元332以将所述写入请求信息WC8T的所述控制码CC1T储存到所述内存位置YX8T。
请参阅图34、图35、图36、图37、图38、图39和图40。一种用于控制可变物理参数QU1A的方法ML86被公开。所述可变物理参数QU1A基于由测量值目标范围RN1T所代表的物理参数目标范围RD1ET和对应于所述物理参数目标范围RD1ET的对应物理参数范围RY1ET而被特征化。
所述方法ML86包含下列步骤:感测所述可变物理参数QU1A以产生第一感测信号SN81;在起到指示所述测量值目标范围RN1T的作用的控制信号SC81被接收的条件下,响应所述第一感测信号SN81来获得第一测量值VN81;响应所述控制信号SC81,执行用于检查所述第一测量值VN81和所述测量值目标范围RN1T之间的第二数学关系KV51的第一检查操作BV51;以及在所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET基于所述第一检查操作BV51而被确定的条件下,导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
例如,所述控制信号SC81起到指示所述物理参数目标范围RD1ET的作用。在所述可变物理参数QU1A目前所处于的所述对应物理参数范围RY1ET基于所述第一检查操作BV51而被确定的条件下,所述可变物理参数QU1A基于所述控制信号SC81而被导致进入所述物 理参数目标范围RD1ET。
在一些实施例中,所述方法ML86进一步包含步骤:提供感测单元334。例如,感测所述可变物理参数QU1A的步骤通过使用所述感测单元334而被执行。所述感测单元334被配置以符合与所述测量值目标范围RN1T相关的传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示传感器灵敏度YW81的传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的感测信号产生HF81。所述第一测量值VN81以指定测量值格式HH81而被获得。
所述测量值目标范围RN1T具有目标范围界限值对DN1T。所述对应物理参数范围RY1ET由对应测量值范围RX1T所代表。所述测量值目标范围RN1T和所述对应测量值范围RX1T的范围组合等于额定测量值范围RD1N。例如,所述测量值目标范围RN1T、所述对应测量值范围RX1T和所述额定测量值范围RD1N皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。所述额定测量值范围RD1N具有额定范围界限值对DD1A。
所述控制信号SC81输送所述目标范围界限值对DN1T、所述额定范围界限值对DD1A和控制码CC1T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的指定物理参数QD1T而被预置。所述控制信号SC81通过输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。
执行所述第一检查操作BV51的步骤包含下列子步骤:从所述控制信号SC81获得所述目标范围界限值对DN1T;以及通过比较所述第一测量值VN81和所获得的所述目标范围界限值对DN1T,执行所述第一检查操作BV51。所述方法ML86进一步包含下列步骤:从所述控制信号SC81获得所述额定范围界限值对DD1A;以及通过比较所述第一测量值VN81和所获得的所述额定范围界限值对DD1A,执行用于检查所述第一测量值VN81和所述额定测量值范围RD1N之间的第三数学关系KM51的第二检查操作BM51。
在一些实施例中,导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的步骤包含下列子步骤:基于所述第一检查操作BV51和所述第二检查操作BM51,做出所述第一测量值VN81是否为于所述对应测量值范围RX1T之内的逻辑决定PB51;在所述逻辑决定PB51是肯定的条件下,确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET;从所述控制信号SC81获得所述控制码CC1T;以及在所述对应物理参数范围RY1ET被确定的条件下,基于所获得的所述控制码CC1T来执行信号产生控制GY81以产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的功能信号SG81。
所述方法ML86进一步包含下列步骤:在所述信号产生控制GY81于操作时间TF81之内被执行之后,感测所述可变物理参数QU1A以产生第二感测信号SN82;于所述操作时间TF81之后的指定时间TG82之内,响应所述第二感测信号SN82来以所述指定测量值格式HH81获得第二测量值VN82;以及在所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET于所述指定时间TG82之内通过比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T而被确定的条件下,执行数据存储控制操作GU81,所述数据存储控制操作GU81用于导致代表所确定的所述物理参数目标范围RD1ET的物理参数目标范围码UN8T被记录。
所述可变物理参数QU1A相关于可变时间长度LF8A。例如,所述可变时间长度LF8A基于时间长度参考范围HJ81和参考时间长度LJ8T而被特征化。所述时间长度参考范围HJ81由测量时间长度值参考范围GJ81所代表。所述参考时间长度LJ8T由测量时间长度值CL8T所代表。所述控制信号SC81进一步输送所述测量时间长度值CL8T。所述方法ML86进一步包含下列步骤:从所述控制信号SC81获得所述测量时间长度值CL8T;以及检查所获得的所述测量时间长度值CL8T和所述测量时间长度值参考范围GJ81之间的数值关系KJ81以做出用于控制特定时间TJ8T的计数操作BC8T是否要被执行的逻辑决定PE81。
所述方法ML86进一步包含下列步骤:在所述逻辑决定PE81是肯定的条件下,基于所获得的所述测量时间长度值CL8T来执行所述计数操作BC8T;在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET之内的条件下,基于所述计数操作BC8T来到达所述特定时间TJ8T;以及在所述特定时间TJ8T之内,执行用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述对应物理参数范围RY1ET的信号产生操作BY91。
在一些实施例中,所述方法ML86进一步包含下列步骤:提供感测单元334,其中感测所述可变物理参数QU1A的步骤通过使用所述感测单元334而被执行;以及执行与所述物理参数目标范围RD1ET相关的测量应用功能FA81。所述测量应用功能FA81被配置以符合与所述物理参数目标范围RD1ET相关的测量应用功能规格GAL8。
所述感测单元334被配置以符合与所述测量值目标范围RN1T相关的传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示传感器灵敏度YW81的传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的感测信号产生HF81。所述第一测量值VN81以指定测量值格式HH81而被获得。例如,所述指定测量值格式HH81基于指定比特数目UY81而被特征化。
所述对应物理参数范围RY1ET由对应测量值范围RX1T所代表。所述物理参数目标范围RD1ET和所述对应物理参数范围RY1ET的范围组合等于额定物理参数范围RD1E。所述测量应用功能规格GAL8包含所述传感器规格FU11、用于表示所述额定物理参数范围RD1E的额定物理参数范围表示GA8E、和用于表示所述物理参数目标范围RD1ET的物理参数候选范围表示GA8T。所述测量值目标范围RN1T和所述对应测量值范围RX1T的范围组合等于额定测量值范围RD1N。
所述额定测量值范围RD1N代表所述额定物理参数范围RD1E,基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和用于转换所述额定物理参数范围表示GA8E的数据编码操作ZX81来用所述指定测量值格式HH81而被预置,并具有额定范围界限值对DD1A。例如,所述额定范围界限值对DD1A用所述指定测量值格式HH81而被预置。
在一些实施例中,所述测量值目标范围RN1T由测量值目标范围码EM1T所代表,并具有目标范围界限值对DN1T。例如,所述测量值目标范围码EM1T基于所述测量应用功能规格GAL8而被预置。所述目标范围界限值对DN1T包含目标范围界限值DN17和相对于所述目标范围界限值DN17的目标范围界限值DN18,并基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和用于转换所述物理参数候选范围表示GA8T的数据编码操作ZX82来用所述指定测量值格式HH81而被预置。
所述控制信号SC81通过输送所述测量值目标范围码EM1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用,并从控制装置212而被接收。所述测量应用功能规格GAL8进一步包含物理参数表示GA8T1。所述物理参数表示GA8T1用于表示在所述物理参数目标范围RD1ET之内的指定物理参数QD1T。所述控制信号SC81进一步输送所述额定范围界限值对DD1A。
在一些实施例中,所述方法ML86进一步包含下列步骤:提供存储空间SU11,其中所述存储空间SU11具有内存位置YM8T和不同于所述内存位置YM8T的内存位置YX8T,且所述内存位置YM8T和所述内存位置YX8T皆基于所述测量值目标范围码EM1T而被识别;在所述存储空间SU11中储存所述额定范围界限值对DD1A;在所述内存位置YM8T储存所述目标范围界限值对DN1T;在所述内存位置YX8T储存控制码CC1T,其中所述控制码CC1T基于所述物理参数表示GA8T1和用于转换所述物理参数表示GA8T1的数据编码操作ZX91而被预置;以及响应所述控制信号SC81,从所述控制信号SC81和所述存储空间SU11的其中之一获得所述额定范围界限值对DD1A。
执行所述第一检查操作BV51的步骤包含下列子步骤:响应所述控制信号SC81,从所述控制信号SC81获得所述测量值目标范围码EM1T;通过运行数据获取程序ND5A,执行使 用所获得的所述测量值目标范围码EM1T的数据获取AD5A以获得所述目标范围界限值对DN1T,其中所述数据获取AD5A是数据获取操作AD51和数据获取操作AD52的其中之一,且所述数据获取程序ND5A基于所述测量应用功能规格GAL8而被构建;以及基于所述第一测量值VN81和所获得的所述目标范围界限值对DN1T之间的数据比较CD51,执行所述第一检查操作BV51。
所述数据获取操作AD51基于所获得的所述测量值目标范围码EM1T来存取被储存在所述内存位置YM8T的所述目标范围界限值对DN1T以获得所述目标范围界限值对DN1T。所述数据获取操作AD52通过执行使用所获得的所述测量值目标范围码EM1T和所获得的所述额定范围界限值对DD1A的科学计算MZ51来获得所述目标范围界限值对DN1T。
在一些实施例中,导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的步骤包含下列子步骤:基于所述第一检查操作BV51,做出所述第一测量值VN81是否为于所述对应测量值范围RX1T之内的逻辑决定PB51;以及在所述逻辑决定PB51是肯定的条件下,确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET。
导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的步骤进一步包含下列子步骤:在所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET被确定的条件下,基于所获得的所述测量值目标范围码EM1T来存取被储存在所述内存位置YX8T的所述控制码CC1T;基于所存取的所述控制码CC1T,执行用于所述测量应用功能FA81的信号产生控制GY81;以及响应所述信号产生控制GY81,执行用于所述测量应用功能FA81的信号产生操作BY81以产生功能信号SG81,所述功能信号SG81用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
在一些实施例中,所述控制装置212是外部装置。所述方法ML88进一步包含下列步骤:执行与所述可变物理参数QU1A相关的特定功能操作ZH81,其中所述特定功能操作ZH81用于导致触发事件EQ81发生;以及通过使用所述控制装置212,响应所述触发事件EQ81来产生所述控制信号SC81。所述额定测量值范围RD1N被配置以具有多个不同测量值参考范围RN11、RN12、…。例如,所述多个不同测量值参考范围RN11、RN12、…分别由多个不同测量值参考范围码EM11、EM12、…所代表,并包含所述测量值目标范围RN1T。
所述多个不同测量值参考范围码EM11、EM12、…包含所预置的所述测量值目标范围码EM1T,并皆基于所述测量应用功能规格GAL8而被预置。所述测量应用功能规格GAL8进一步包含用于表示所述对应物理参数范围RY1ET的对应物理参数范围表示GA8TY。所述对应测量值范围RX1T基于所述对应物理参数范围表示GA8TY、所述传感器测量范围表示GW8R和用于转换所述对应物理参数范围表示GA8TY的数据编码操作ZX83来用所述指定测量值 格式HH81而被预置。所述可变物理参数QU1A进一步基于所述额定物理参数范围RD1E而被特征化。所述额定物理参数范围RD1E包含多个不同物理参数参考范围RD1E1、RD1E2、…。例如,所述多个不同物理参数参考范围RD1E1、RD1E2、…包含所述物理参数目标范围RD1ET。
在一些实施例中,所述方法ML86进一步包含步骤:在所述存储空间SU11中储存可变物理参数范围码UN8A。当所述控制信号SC81被接收时,所述可变物理参数范围码UN8A等于选择自所述多个不同测量值参考范围码EM11、EM12、…的特定测量值范围码EM14。例如,所述特定测量值范围码EM14指示基于基于感测操作ZS81而被先前确定的特定物理参数范围RD1E4。所述特定物理参数范围RD1E4选择自所述多个不同物理参数参考范围RD1E1、RD1E2、…。由所述感测单元334所执行的所述感测操作ZS81用于感测所述可变物理参数QU1A。在所述输入单元337接收所述控制信号SC81之前,所述特定测量值范围码EM14被指定到所述可变物理参数范围码UN8A。
所述方法ML86进一步包含步骤:基于所述第一测量值VN81和所获得的所述额定范围界限值对DD1A之间的数据比较CD52,执行用于检查所述第一测量值VN81和所述额定测量值范围RD1N之间的第三数学关系KM51的第二检查操作BM51。导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的步骤包含子步骤:基于所述第一检查操作BV51和所述第二检查操作BM51,做出所述逻辑决定PB51。在所述第一测量值VN81基于所述数据比较CD51和所述数据比较CD52而被辨识为于所述测量值目标范围RN1T之外并于所述额定测量值范围RD1N之内的可允许值VG51的条件下,所述逻辑决定PB51被做出成为肯定的。
在一些实施例中,所述方法ML86进一步包含下列步骤:在所述信号产生控制GY81于操作时间TF81之内被执行之后,感测所述可变物理参数QU1A以产生第二感测信号SN82;于所述操作时间TF81之后的指定时间TG82之内,响应所述第二感测信号SN82来以所述指定测量值格式HH81获得第二测量值VN82;以及通过比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T,检查所述第二测量值VN82和所述测量值目标范围RN1T之间的数学关系KV91以做出所述第二测量值VN82是否为于所述测量值目标范围RN1T之内的逻辑决定PB91。
所述方法ML86进一步包含下列步骤:在所述逻辑决定PB91是肯定的条件下,于所述指定时间TG82之内确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET,并产生肯定操作报告RL81,其中所述肯定操作报告RL81表示所述可变物理参数QU1A成功地进入所述物理参数目标范围RD1ET的操作情况EP81;以及输出输送所述肯定操作报告RL81的控制响应信号SE81,藉此所述控制响应信号SE81用于导致所述控制装置212获得所述肯定操作报告RL81。
所述方法ML86进一步包含步骤:在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET通过做出所述逻辑决定PB91而被确定的条件下,基于等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的码差异DF81来将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
所述方法ML86进一步包含下列步骤:当所述控制信号SC81被接收时,显示状态指示LB81,其中所述状态指示LB81用于指示所述可变物理参数QU1A被配置于所述特定物理参数范围RD1E4之内的特定状态XJ81;以及在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET通过做出所述逻辑决定PB91而被确定的条件下,基于所述码差异DF81来将所述状态指示LB81改变成状态指示LB82,其中所述状态指示LB82用于指示所述可变物理参数QU1A被配置于所述物理参数目标范围RD1ET之内的特定状态XJ82。
在一些实施例中,所述方法ML86进一步包含下列步骤:在所述控制信号SC81被接收之前,接收包含所预置的所述目标范围界限值对DN1T和内存地址AM8T的写入请求信息WN8T,其中所述内存位置YM8T基于所述内存地址AM8T而被识别,且所述内存地址AM8T基于所预置的所述测量值目标范围码EM1T而被预置;以及响应所述写入请求信息WN8T,将所述写入请求信息WN8T的所述目标范围界限值对DN1T储存到所述内存位置YM8T。
所述方法ML86进一步包含下列步骤:在所述控制信号SC81被接收之前,接收包含所预置的所述控制码CC1T和内存地址AX8T的写入请求信息WC8T,其中所述内存位置YX8T基于所述内存地址AX8T而被识别,且所述内存地址AX8T基于所预置的所述测量值目标范围码EM1T而被预置;以及响应所述写入请求信息WC8T,将所述写入请求信息WC8T的所述控制码CC1T储存到所述内存位置YX8T。
请参阅图34、图35、图36、图37、图38、图39和图40。一种用于通过产生功能信号SG81而控制可变物理参数QU1A的方法ML88被公开。所述可变物理参数QU1A基于由测量值目标范围RN1T所代表的物理参数目标范围RD1ET和对应于所述物理参数目标范围RD1ET的对应物理参数范围RY1ET而被特征化。
所述方法ML88包含下列步骤:所述感测单元334感测所述可变物理参数QU1A以产生第一感测信号SN81;在起到指示所述测量值目标范围RN1T的作用的控制信号SC81被所述输入单元337接收的条件下,所述处理单元331响应所述第一感测信号SN81来获得第一测量值VN81;所述处理单元331响应所述控制信号SC81,执行用于检查所述第一测量值VN81和所述测量值目标范围RN1T之间的第二数学关系KV51的第一检查操作BV51;以及 所述处理单元331基于所述第一检查操作BV51,确定所述可变物理参数QU1A和所述对应物理参数范围RY1ET之间的物理参数关系KH81以做出用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的所述功能信号SG81是否要被产生的合理决定PW81。
例如,所述物理参数应用范围RD1EJ对应于所述物理参数目标范围RD1ET,并等于所述对应物理参数范围RY1ET。所述对应物理参数范围RY1ET由一对应测量值范围RX1T所代表。所述物理参数目标范围RD1ET由所述测量值指示范围RN1G所代表。所述测量值指示范围RN1G等于一测量值目标范围RN1T。所述第一数学关系KG81等于所述第二数学关系KV51。例如,所述控制信号SC81起到指示所述物理参数目标范围RD1ET的作用。所述物理参数关系KC81等于所述物理参数关系KH81。
在一些实施例中,所述方法ML88进一步包含步骤:所述控制目标装置130提供感测单元334。例如,感测所述可变物理参数QU1A的步骤通过使用所述感测单元334而被执行。所述感测单元334被配置以符合与所述测量值目标范围RN1T相关的传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示传感器灵敏度YW81的传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的感测信号产生HF81。所述第一测量值VN81以指定测量值格式HH81而被所述处理单元331获得。
所述测量值目标范围RN1T具有目标范围界限值对DN1T。所述对应物理参数范围RY1ET由对应测量值范围RX1T所代表。所述测量值目标范围RN1T和所述对应测量值范围RX1T的范围组合等于额定测量值范围RD1N。例如,所述测量值目标范围RN1T、所述对应测量值范围RX1T和所述额定测量值范围RD1N皆基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。所述额定测量值范围RD1N具有额定范围界限值对DD1A。
所述控制信号SC81输送所述目标范围界限值对DN1T、所述额定范围界限值对DD1A和控制码CC1T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的指定物理参数QD1T而被预置。所述控制信号SC81通过输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。
执行所述第一检查操作BV51的步骤包含下列子步骤:所述处理单元331从所述控制信号SC81获得所述目标范围界限值对DN1T;以及所述处理单元331通过比较所述第一测量值VN81和所获得的所述目标范围界限值对DN1T,执行所述第一检查操作BV51。所述方法ML88进一步包含下列步骤:所述处理单元331从所述控制信号SC81获得所述额定范围界限值对DD1A;以及所述处理单元331通过比较所述第一测量值VN81和所获得的所述额 定范围界限值对DD1A,执行用于检查所述第一测量值VN81和所述额定测量值范围RD1N之间的第三数学关系KM51的第二检查操作BM51。
在一些实施例中,确定所述物理参数关系KH81以做出所述合理决定PW81的步骤包含下列子步骤:所述处理单元331基于所述第一检查操作BV51和所述第二检查操作BM51,做出所述第一测量值VN81是否为于所述对应测量值范围RX1T之内的逻辑决定PB51;以及所述处理单元331基于所述逻辑决定PB51,确定所述物理参数关系KH81以做出所述合理决定PW81。基于所述逻辑决定PB51来确定所述物理参数关系KH81的子步骤包含子步骤:在所述逻辑决定PB51是肯定的条件下,所述处理单元331辨识所述物理参数关系KH81为物理参数交集关系以做出所述合理决定PW81以成为肯定的。
所述方法ML88进一步包含下列步骤:所述处理单元331从所述控制信号SC81获得所述控制码CC1T;以及在所述合理决定PW81是肯定的条件下,所述处理单元331基于所获得的所述控制码CC1T来执行信号产生控制GY81以导致所述输出单元338产生用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的所述功能信号SG81。
所述方法ML88进一步包含下列步骤:在所述信号产生控制GY81于操作时间TF81之内被所述处理单元331执行之后,所述感测单元334感测所述可变物理参数QU1A以产生第二感测信号SN82;所述处理单元331于所述操作时间TF81之后的指定时间TG82之内,响应所述第二感测信号SN82来以所述指定测量值格式HH81获得第二测量值VN82;以及在所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET于所述指定时间TG82之内通过比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T而被所述处理单元331确定的条件下,所述处理单元331执行数据存储控制操作GU81,所述数据存储控制操作GU81用于导致代表所确定的所述物理参数目标范围RD1ET的物理参数目标范围码UN8T被所述存储单元332记录。
在一些实施例中,所述可变物理参数QU1A相关于可变时间长度LF8A。例如,所述可变时间长度LF8A基于时间长度参考范围HJ81和参考时间长度LJ8T而被特征化。所述时间长度参考范围HJ81由测量时间长度值参考范围GJ81所代表。所述参考时间长度LJ8T由测量时间长度值CL8T所代表。所述控制信号SC81进一步输送所述测量时间长度值CL8T。所述操作单元397进一步包含定时器339。所述方法ML88进一步包含下列步骤:所述处理单元331从所述控制信号SC81获得所述测量时间长度值CL8T;以及所述处理单元331检查所获得的所述测量时间长度值CL8T和所述测量时间长度值参考范围GJ81之间的数值关系KJ81以做出用于控制特定时间TJ8T的计数操作BC8T是否要被所述定时器339执行的逻辑决定PE81。
所述方法ML88进一步包含下列步骤:在所述逻辑决定PE81是肯定的条件下,所述处理单元331基于所获得的所述测量时间长度值CL8T来导致所述定时器339执行所述计数操作BC8T;在所述可变物理参数QU1A基于所述控制信号SC81而被配置以于所述物理参数目标范围RD1ET之内的条件下,所述处理单元331基于所述计数操作BC8T来到达所述特定时间TJ8T;以及所述处理单元331导致所述输出单元338在所述特定时间TJ8T之内执行用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述对应物理参数范围RY1ET的信号产生操作BY91。
在一些实施例中,所述方法ML88进一步包含下列步骤:所述控制目标装置130提供感测单元334,其中感测所述可变物理参数QU1A的步骤通过使用所述感测单元334而被执行;以及所述操作单元397执行与所述物理参数目标范围RD1ET相关的测量应用功能FA81。所述测量应用功能FA81被配置以符合与所述物理参数目标范围RD1ET相关的测量应用功能规格GAL8。
所述感测单元334被配置以符合与所述测量值目标范围RN1T相关的传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示传感器灵敏度YW81的传感器灵敏度表示GW81。所述传感器灵敏度YW81相关于由所述感测单元334所执行的感测信号产生HF81。所述第一测量值VN81以指定测量值格式HH81而被所述处理单元331获得。例如,所述指定测量值格式HH81基于指定比特数目UY81而被特征化。例如,当所述输入单元337接收所述控制信号SC81时,所述感测单元334感测所述可变物理参数QU1A以执行相依于所述传感器灵敏度YW81的所述感测信号产生HF81,所述感测信号产生HF81用于产生所述第一感测信号SN81。
在一些实施例中,所述对应物理参数范围RY1ET由对应测量值范围RX1T所代表。所述物理参数目标范围RD1ET和所述对应物理参数范围RY1ET的范围组合等于额定物理参数范围RD1E。所述测量应用功能规格GAL8包含所述传感器规格FU11、用于表示所述额定物理参数范围RD1E的额定物理参数范围表示GA8E、和用于表示所述物理参数目标范围RD1ET的物理参数候选范围表示GA8T。所述测量值目标范围RN1T和所述对应测量值范围RX1T的范围组合等于额定测量值范围RD1N。
所述额定测量值范围RD1N代表所述额定物理参数范围RD1E,基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和用于转换所述额定物理参数范围表示GA8E的数据编码操作ZX81来用所述指定测量值格式HH81而被预置,并具有额定范围界限值对DD1A。例如,所述额定范围界限值对DD1A用所述指定测量值格式HH81而被预置。所述测量值目标范围RN1T由测量值目标范围码EM1T所代表,并具有目标范围界限值对DN1T; 藉此所述测量值目标范围码EM1T被配置以指示所述物理参数目标范围RD1ET。
例如,所述测量值目标范围码EM1T基于所述测量应用功能规格GAL8而被预置。所述目标范围界限值对DN1T包含所述测量值目标范围RN1T的目标范围界限值DN17和相对于所述目标范围界限值DN17的目标范围界限值DN18,并基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和用于转换所述物理参数候选范围表示GA8T的数据编码操作ZX82来用所述指定测量值格式HH81而被预置。所述测量值目标范围RN1T基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和所述数据编码操作ZX82来用所述指定测量值格式HH81而被预置。
所述控制信号SC81通过输送所述测量值目标范围码EM1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用,并从控制装置212而被接收。所述测量应用功能规格GAL8进一步包含物理参数表示GA8T1。所述物理参数表示GA8T1用于表示在所述物理参数目标范围RD1ET之内的指定物理参数QD1T。所述控制信号SC81进一步输送所述额定范围界限值对DD1A。
在一些实施例中,所述方法ML88进一步包含下列步骤:所述存储单元332提供存储空间SU11,其中所述存储空间SU11具有内存位置YM8T和不同于所述内存位置YM8T的内存位置YX8T,且所述内存位置YM8T和所述内存位置YX8T皆基于所述测量值目标范围码EM1T而被识别;以及所述存储单元332在所述存储空间SU11中储存所述额定范围界限值对DD1A。
所述方法ML88进一步包含下列步骤:所述存储单元332在所述内存位置YM8T储存所述目标范围界限值对DN1T;所述存储单元332在所述内存位置YX8T储存控制码CC1T,其中所述控制码CC1T基于所述物理参数表示GA8T1和用于转换所述物理参数表示GA8T1的数据编码操作ZX91而被预置;以及所述处理单元331响应所述控制信号SC81,从所述控制信号SC81和所述存储空间SU11的其中之一获得所述额定范围界限值对DD1A。所述目标范围界限值对DN1T和所述控制码CC1T皆基于所预置的所述测量值目标范围码EM1T而被所述存储单元332储存。
执行所述第一检查操作BV51的步骤包含下列子步骤:所述处理单元331响应所述控制信号SC81,从所述控制信号SC81获得所述测量值目标范围码EM1T;所述处理单元331通过运行数据获取程序ND5A,执行使用所获得的所述测量值目标范围码EM1T的数据获取AD5A以获得所述目标范围界限值对DN1T,其中所述数据获取AD5A是数据获取操作AD51和数据获取操作AD52的其中之一,且所述数据获取程序ND5A基于所述测量应用功能规格GAL8而被构建;以及所述处理单元331基于所述第一测量值VN81和所获得的所述目标范 围界限值对DN1T之间的数据比较CD51,执行所述第一检查操作BV51。
所述数据获取操作AD51基于所获得的所述测量值目标范围码EM1T来使用所述存储单元332以存取被储存在所述内存位置YM8T的所述目标范围界限值对DN1T以获得所述目标范围界限值对DN1T。所述数据获取操作AD52通过执行使用所获得的所述测量值目标范围码EM1T和所获得的所述额定范围界限值对DD1A的科学计算MZ51来获得所述目标范围界限值对DN1T。
在一些实施例中,确定所述物理参数关系KH81以做出所述合理决定PW81的步骤包含下列子步骤:所述处理单元331基于所述第一检查操作BV51,做出所述第一测量值VN81是否为于所述对应测量值范围RX1T之内的逻辑决定PB51;以及所述处理单元331基于所述逻辑决定PB51,确定所述物理参数关系KH81以做出所述合理决定PW81。基于所述逻辑决定PB51来确定所述物理参数关系KH81的子步骤包含子步骤:在所述逻辑决定PB51是肯定的条件下,所述处理单元331辨识所述物理参数关系KH81为物理参数交集关系以做出所述合理决定PW81以成为肯定的。
例如,在所述目标范围界限值DN17不同于所述目标范围界限值DN18且所述第一测量值VN81是于所述目标范围界限值DN17和所述目标范围界限值DN18之间的条件下,所述处理单元331通过比较所述第一测量值VN81和所存取的所述第一测量范围界限数据码DN1A来做出所述逻辑决定PB51以成为否定的。在所述目标范围界限值DN17、所述目标范围界限值DN18和所述第一测量值VN81是相等的条件下,所述处理单元331通过比较所述第一测量值VN81和所存取的所述第一测量范围界限数据码DN1A来做出所述逻辑决定PB51以成为否定的。
所述方法ML88进一步包含下列步骤:在所述合理决定PW81是肯定的条件下,所述处理单元331基于所获得的所述测量值目标范围码EM1T来存取被储存在所述内存位置YX8T的所述控制码CC1T;所述处理单元331基于所存取的所述控制码CC1T,执行用于所述测量应用功能FA81的信号产生控制GY81以控制所述输出单元338;以及所述输出单元338响应所述信号产生控制GY81,执行用于所述测量应用功能FA81的信号产生操作BY81以产生所述功能信号SG81,所述功能信号SG81用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
在一些实施例中,所述控制装置212是外部装置。所述方法ML88进一步包含下列步骤:所述处理单元331通过所述输出单元338来使所述功能单元335执行与所述可变物理参数QU1A相关的特定功能操作ZH81,其中所述特定功能操作ZH81用于导致触发事件EQ81发生;以及通过使用所述控制装置212,响应所述触发事件EQ81来产生所述控制信号SC81。 所述额定测量值范围RD1N被配置以具有多个不同测量值参考范围RN11、RN12、…。
例如,所述多个不同测量值参考范围RN11、RN12、…具有总参考范围数目NT81,分别由多个不同测量值参考范围码EM11、EM12、…所代表,并包含所述测量值目标范围RN1T。所述总参考范围数目NT81基于所述测量应用功能规格GAL8而被预置。所述多个不同测量值参考范围码EM11、EM12、…包含所预置的所述测量值目标范围码EM1T,并皆基于所述测量应用功能规格GAL8而被预置。所述控制信号SC81进一步输送所述总参考范围数目NT81。
所述方法ML88进一步包含步骤:所述处理单元331响应所述控制信号SC81,从所述控制信号SC81和所述存储空间SU11的其中之一获得所述总参考范围数目NT81。所述科学计算MZ51进一步使用所获得的所述总参考范围数目NT81。例如,所述总参考范围数目大于或等于2。例如,所述总参考范围数目NT11≧3;所述总参考范围数目NT11≧4;所述总参考范围数目NT11≧5;所述总参考范围数目NT11≧6;且所述总参考范围数目NT11≦255。
所述方法ML88进一步包含步骤:所述功能单元335响应所述功能信号SG81,将所述可变物理参数QU1A从特定物理参数QU17改变成特定物理参数QU18。例如,所述特定物理参数QU17是于所述对应物理参数范围RY1ET之内;且所述特定物理参数QU18是于所述物理参数目标范围RD1ET之内。所述测量应用功能规格GAL8进一步包含用于表示所述对应物理参数范围RY1ET的对应物理参数范围表示GA8TY。所述对应测量值范围RX1T基于所述对应物理参数范围表示GA8TY、所述传感器测量范围表示GW8R和用于转换所述对应物理参数范围表示GA8TY的数据编码操作ZX83来用所述指定测量值格式HH81而被预置。
在一些实施例中,所述可变物理参数QU1A进一步基于所述额定物理参数范围RD1E而被特征化。所述额定物理参数范围RD1E包含多个不同物理参数参考范围RD1E1、RD1E2、…。例如,所述多个不同物理参数参考范围RD1E1、RD1E2、…包含所述物理参数目标范围RD1ET。所述测量值目标范围RN1T是所述额定测量值范围RD1N的第一部分。所述对应测量值范围RX1T是所述额定测量值范围RD1N的第二部分,相邻于所述测量值目标范围RN1T,并互补于所述测量值目标范围RN1T。
所述额定测量值范围RD1N等于所述测量值目标范围RN1T和互补于所述测量值目标范围RN1T的所述对应测量值范围RX1T的范围组合,并具有所述额定范围界限值对DD1A。例如,所述额定范围界限值对DD1A包含所述额定测量值范围RD1N的额定范围界限值DD11和相对于所述额定范围界限值DD11的额定范围界限值DD12,并基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R和所述数据编码操作ZX81来用所述指定测量值格式HH81而被预置。
例如,所述测量值目标范围码EM1T被配置以等于整数。所述额定范围界限值DD12大于所述额定范围界限值DD11。所述额定范围界限值DD12和所述额定范围界限值DD11之间具有相对于所述额定范围界限值DD11的相对值VA11。所述相对值VA11等于所述额定范围界限值DD12减去所述额定范围界限值DD11的计算结果。例如,所述目标范围界限值对DN1T基于所述额定范围界限值DD11、所述额定范围界限值DD12、所述整数、和所述相对值VA11对于所述总参考范围数目NT81的比率而被预置。所述科学计算MZ51使用所述额定范围界限值DD11、所述额定范围界限值DD12、所述整数、所述比率和其任意组合的其中之一。
所述方法ML88进一步包含步骤:所述处理单元331基于所述第一测量值VN81和所获得的所述额定范围界限值对DD1A之间的数据比较CD52,执行用于检查所述第一测量值VN81和所述额定测量值范围RD1N之间的第三数学关系KM51的第二检查操作BM51。确定所述物理参数关系KH81以做出所述合理决定PW81的步骤包含子步骤:所述处理单元331基于所述第一检查操作BV51和所述第二检查操作BM51,做出所述逻辑决定PB51。
在一些实施例中,所述方法ML88进一步包含下列步骤:在所述信号产生控制GY81于操作时间TF81之内被所述处理单元331执行之后,所述感测单元334感测所述可变物理参数QU1A以产生第二感测信号SN82;所述处理单元331于所述操作时间TF81之后的指定时间TG82之内,响应所述第二感测信号SN82来以所述指定测量值格式HH81获得第二测量值VN82;以及所述处理单元331通过比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T,检查所述第二测量值VN82和所述测量值目标范围RN1T之间的数学关系KV91以做出所述第二测量值VN82是否为于所述测量值目标范围RN1T之内的逻辑决定PB91。
所述方法ML88进一步包含下列步骤:在所述逻辑决定PB91是肯定的条件下,所述处理单元331于所述指定时间TG82之内确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET,并产生肯定操作报告RL81,其中所述肯定操作报告RL81表示所述可变物理参数QU1A成功地进入所述物理参数目标范围RD1ET的操作情况EP81;以及所述处理单元331使所述输出单元338输出输送所述肯定操作报告RL81的控制响应信号SE81,藉此所述控制响应信号SE81用于导致所述控制装置212获得所述肯定操作报告RL81。
例如,在所述处理单元331执行所述信号产生控制GY81之后,所述感测单元334感测所述可变物理参数QU1A以执行相依于所述传感器灵敏度YW81的感测信号产生HF82,所述感测信号产生HF82用于产生所述第二感测信号SN82。所述处理单元331通过导致所述输出单元338产生所述控制响应信号SE81来响应所述控制信号SC81。
在一些实施例中,所述方法ML88进一步包含步骤:所述存储单元332在所述存储空 间SU11中储存可变物理参数范围码UN8A。当所述控制信号SC81被接收时,所述可变物理参数范围码UN8A等于选择自所述多个不同测量值参考范围码EM11、EM12、…的特定测量值范围码EM14。例如,所述特定测量值范围码EM14指示基于感测操作ZS81而被所述处理单元331先前确定的特定物理参数范围RD1E4。所述特定物理参数范围RD1E4选择自所述多个不同物理参数参考范围RD1E1、RD1E2、…。由所述感测单元334所执行的所述感测操作ZS81用于感测所述可变物理参数QU1A。在所述输入单元337接收所述控制信号SC81之前,所述特定测量值范围码EM14被指定到所述可变物理参数范围码UN8A。
例如,在所述输入单元337接收所述控制信号SC81之前,所述处理单元331获得所述特定测量值范围码EM14。在所述处理单元331于所述输入单元337接收所述控制信号SC81之前基于所述感测操作ZS81而确定所述特定物理参数范围RD1E4的条件下,所述处理单元331通过使用所述存储单元332来将所获得的所述特定测量值范围码EM14指定到所述可变物理参数范围码UN8A。所述特定测量值范围码EM14代表被配置以代表所述特定物理参数范围RD1E4的特定测量值范围。所述特定测量值范围基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预置。例如,所述感测单元334通过执行所述感测操作ZS81来执行相依于所述传感器灵敏度YW81的感测信号产生以产生感测信号。
在所述输入单元337接收所述控制信号SC81之前,所述处理单元331接收所述感测信号,响应所述感测信号来以所述指定测量值格式HH81获得特定测量值,并执行用于检查所述特定测量值和所述特定测量值范围之间的数学关系的特定检查操作。在所述处理单元331基于所述特定检查操作而确定所述可变物理参数QU1A处于的所述特定物理参数范围RD1E4的条件下,所述处理单元331通过使用所述存储单元332来将所获得的所述特定测量值范围码EM14指定到所述可变物理参数范围码UN8A。所述处理单元331响应用于感测所述可变物理参数QU1A的特定感测操作来决定所述处理单元331是否要使用所述存储单元332以改变所述可变物理参数范围码UN8A。例如,所述特定感测操作由所述感测单元334所执行。
所述方法ML88进一步包含步骤:在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET通过做出所述逻辑决定PB91而被所述处理单元331确定的条件下,所述处理单元331基于等于所述特定测量值范围码EM14的所述可变物理参数范围码UN8A和所获得的所述测量值目标范围码EM1T之间的码差异DF81来使用所述存储单元332以将所获得的所述测量值目标范围码EM1T指定到所述可变物理参数范围码UN8A。
所述方法ML88进一步包含下列步骤:当所述控制信号SC81被所述输入单元337接收时,所述输出单元338显示状态指示LB81,其中所述状态指示LB81用于指示所述可变物理参数QU1A被配置于所述特定物理参数范围RD1E4之内的特定状态XJ81;以及在所述特定测量值范围码EM14不同于所获得的所述测量值目标范围码EM1T且所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET通过做出所述逻辑决定PB91而被所述处理单元331确定的条件下,所述处理单元331基于所述码差异DF81来导致所述输出单元338将所述状态指示LB81改变成状态指示LB82。例如,所述状态指示LB82用于指示所述可变物理参数QU1A被配置于所述物理参数目标范围RD1ET之内的特定状态XJ82。
在一些实施例中,所述控制信号SC81是电信号SP81和光信号SQ81的其中之一。所述方法ML88进一步包含下列步骤:在所述控制信号SC81是所述电信号SP81的条件下,所述处理单元331从输送控制信息CG81的所述电信号SP81获得所述控制信息CG81,其中所述控制信息CG81包含所述测量值目标范围码EM1T;以及在所述控制信号SC81是所述光信号SQ81的条件下,所述输入单元337通过感测由所述光信号SQ81所输送的编码影像FY81来确定编码数据DY81,并解码所述编码数据DY81以导致所述处理单元331获得所述控制信息CG81。例如,所述编码影像FY81代表所述控制信息CG81。
所述方法ML88进一步包含下列步骤:在所述可变物理参数QU1A基于所述控制信号SC81而被配置于所述物理参数目标范围RD1ET之内的条件下,所述输入单元337接收用户输入操作BQ81;所述处理单元331响应所述用户输入操作BQ81,确定特定输入码UW81,其中所述特定输入码UW81选择自所述多个不同测量值参考范围码EM11、EM12、…;以及在所述特定输入码UW81不同于所预置的所述测量值目标范围码EM1T的条件下,所述处理单元331基于等于所获得的所述测量值目标范围码EM1T的所述可变物理参数范围码UN8A和所述特定输入码UW81之间的码差异DX81来通过所述输出单元338而导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述对应物理参数范围RY1ET。
在一些实施例中,感测所述可变物理参数QU1A的步骤包含子步骤:所述感测单元334感测处于拘束条件FR81的所述可变物理参数QU1A以产生所述第一感测信号SN81。例如,所述拘束条件FR81是所述可变物理参数QU1A等于包含于所述额定物理参数范围RD1E中的特定物理参数QU15。响应所述第一感测信号SN81来获得所述第一测量值VN81的步骤包含子步骤:所述处理单元331基于所述第一感测信号SN81,估计所述特定物理参数QU15以获得所述第一测量值VN81。
在所述第一测量值VN81基于所述数据比较CD51和所述数据比较CD52而被辨识为于所述测量值目标范围RN1T之外并于所述额定测量值范围RD1N之内的可允许值VG51的条 件下,所述逻辑决定PB51被所述处理单元331做出以成为肯定的。由于处于所述拘束条件FR81的所述可变物理参数QU1A是于所述物理参数目标范围RD1ET之外并于所述额定物理参数范围RD1E之内,所述处理单元331基于所述数据比较CD51和所述数据比较CD52而辨识所述第一测量值VN81为于所述对应测量值范围RX1T之内的所述可允许值VG51。
在一些实施例中,所述感测单元334基于与所述感测信号产生HF81相关的所述传感器灵敏度YW81而被特征化,并被配置以符合所述传感器规格FU11。所述传感器规格FU11包含用于表示所述传感器灵敏度YW81的所述传感器灵敏度表示GW81、和用于表示传感器测量范围RB8E的传感器测量范围表示GW8R。例如,所述额定物理参数范围RD1E被配置以相同于所述传感器测量范围RB8E,或被配置以是所述传感器测量范围RB8E的一部分。所述传感器测量范围RB8E相关于由所述感测单元334所执行的物理参数感测。所述传感器测量范围表示GW8R基于第一预置测量单位而被提供。例如,所述第一预置测量单位是公制测量单位和英制测量单位的其中之一。
所述额定测量值范围RD1N和所述额定范围界限值对DD1A皆基于所述额定物理参数范围表示GA8E、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX81来用所述指定测量值格式HH81而被预置。所述测量值目标范围RN1T和所述目标范围界限值对DN1T皆基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX82来用所述指定测量值格式HH81而被预置。
所述对应测量值范围RX1T基于所述对应物理参数范围表示GA8TY、所述传感器测量范围表示GW8R、所述传感器灵敏度表示GW81和所述数据编码操作ZX83来用所述指定测量值格式HH81而被预置。所述额定物理参数范围表示GA8E、所述物理参数表示GA8T1、所述物理参数候选范围表示GA8T和所述对应物理参数范围表示GA8TY皆基于第二预置测量单位而被提供。例如,所述第二预置测量单位是公制测量单位和英制测量单位的其中之一,并相同或不同于所述第一预置测量单位。例如,所述对应物理参数范围表示GA8TY基于所述额定物理参数范围表示GA8E和所述物理参数候选范围表示GA8T而被导出。
所述可变物理参数QU1A进一步基于所述传感器测量范围RB8E而被特征化。例如,所述传感器测量范围表示GW8R、所述额定物理参数范围表示GA8E、所述物理参数候选范围表示GA8T、所述对应物理参数范围表示GA8TY和所述物理参数表示GA8T1皆属于十进制数据类型。所述第一测量值VN81、所述第二测量值VN82、所述额定范围界限值对DD1A、所述目标范围界限值对DN1T和所述控制码CC1T皆属于所述二进制数据类型,并皆适用于电脑处理。所述传感器规格FU11和所述测量应用功能规格GAL8皆被预置。
在一些实施例中,所述方法ML88进一步包含下列步骤:在所述控制信号SC81被所述输入单元337接收之前,所述输入单元337接收包含所预置的所述目标范围界限值对DN1T和内存地址AM8T的写入请求信息WN8T,其中所述内存位置YM8T基于所述内存地址AM8T而被识别,且所述内存地址AM8T基于所预置的所述测量值目标范围码EM1T而被预置;以及所述处理单元331响应所述写入请求信息WN8T,使用所述存储单元332以将所述写入请求信息WN8T的所述目标范围界限值对DN1T储存到所述内存位置YM8T。
所述方法ML88进一步包含下列步骤:在所述控制信号SC81被所述输入单元337接收之前,所述输入单元337接收包含所预置的所述控制码CC1T和内存地址AX8T的写入请求信息WC8T,其中所述内存位置YX8T基于所述内存地址AX8T而被识别,且所述内存地址AX8T基于所预置的所述测量值目标范围码EM1T而被预置;以及所述处理单元331响应所述写入请求信息WC8T,使用所述存储单元332以将所述写入请求信息WC8T的所述控制码CC1T储存到所述内存位置YX8T。
请参阅图41。图41为示出于图1中的所述控制系统861的实施结构9517的示意图。如图41所示,所述实施结构9517包含所述控制装置212和所述控制目标装置130。所述控制目标装置130包含所述操作单元397、所述感测单元334、所述功能单元335和所述存储单元332。所述操作单元397包含所述处理单元331、所述输入单元337和所述输出单元338。所述输入单元337、所述输出单元338、所述感测单元334、所述功能单元335和所述存储单元332所述皆受所述处理单元331控制。
所述处理单元331处理所接收的所述第一感测信号SN81以获得包含所述第一测量值VN81的测量值序列JN81。所述处理单元331通过比较所述测量值序列JN81和所获得的所述目标范围界限值对DN1T来执行用于检查所述测量值序列JN81和所述测量值目标范围RN1T之间的数学关系KV55的检查操作BV55。所述处理单元331通过比较所述测量值序列JN81和所获得的所述额定范围界限值对DD1A来执行用于检查所述测量值序列JN81和所述额定测量值范围RD1N之间的数学关系KM55的检查操作BM55。所述处理单元331基于所述检查操作BV55和所述检查操作BM55来做出所述逻辑决定PB51。所述检查操作BV55和所述检查操作BM55分别包含所述第一检查操作BV51和所述第二检查操作BM51。
例如,在处理单元331基于所述数据比较CD51和所述数据比较CD52而辨识所述第一测量值VN81为于所述测量值目标范围RN1T之外并于所述额定测量值范围RD1N之内的所述可允许值VG51的条件下,所述处理单元331做出所述逻辑决定PB51以成为肯定的。或者,在所述处理单元331辨识所述第二数学关系KV51为数值无交集关系并辨识所述第三数学关系KM51为数值交集关系KN81的条件下,所述处理单元331做出所述逻辑决定PB51 以成为肯定的。在所述逻辑决定PB51是否定的条件下,所述处理单元331确定所述可变物理参数QU1A目前处于的所述物理参数目标范围RD1ET,并导致所述可变物理参数QU1A维持于所述物理参数目标范围RD1ET之内。
所述处理单元331基于所述第一测量值VN81和所获得的所述目标范围界限值对DN1T之间的所述数据比较CD51来执行所述第一检查操作BV51,基于所述第一检查操作BV51来做出所述第一测量值VN81是否为于所述对应测量值范围RX1T之内的所述逻辑决定PB51,并在所述逻辑决定PB51是肯定的条件下确定所述可变物理参数QU1A目前处于的所述对应物理参数范围RY1ET。例如,在所述逻辑决定PB51是肯定的条件下,所述处理单元331确定所述可变物理参数QU1A目前于所述对应物理参数范围RY1ET之内的物理参数情况,并藉此辨识所述可变物理参数QU1A和所述对应物理参数范围RY1ET之间的所述物理参数关系KH81为所述可变物理参数QU1A目前于所述对应物理参数范围RY1ET之内的物理参数交集关系。在所述物理参数应用范围RD1EJ等于所述对应物理参数范围RY1ET的条件下,所述物理参数关系KC81等于所述物理参数关系KH81。
请参阅图42。图42为示出于图1中的所述控制系统861的一实施结构9601的示意图。如图42所示,所述实施结构9601包含所述控制目标装置130和所述控制装置212。所述控制目标装置130用于控制具有一可变物理参数QU1A的一功能单元335。所述可变物理参数QU1A基于一物理参数目标范围RD1ET和不同于所述物理参数目标范围RD1ET的一物理参数应用范围RD1EJ而被特征化。所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ的其中之一由一测量值指示范围RN1G所代表。所述测量值指示范围RN1G具有一指示范围界限值对DN1G。
所述控制目标装置130包含一感测单元334和一操作单元397。所述感测单元334感测所述可变物理参数QU1A以产生一第一感测信号SN81。所述操作单元397耦合于所述感测单元334。在所述操作单元397接收起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81的条件下,所述操作单元397响应所述第一感测信号SN81来获得一第一测量值VN81。在所述操作单元397藉由检查所述第一测量值VN81和所述测量值指示范围RN1G之间的一第一数学关系KG81而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EJ的条件下,所述操作单元397基于所述控制信号SC81而向所述功能单元335传输一功能信号SG81。所述功能信号SG81用于导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET。
例如,所述控制信号SC81输送所述指示范围界限值对DN1G。所述操作单元397从所述控制信号SC81获得所输送的所述指示范围界限值对DN1G,并藉由比较所述第一测量值 VN81和所获得的所述指示范围界限值对DN1G来检查所述第一数学关系KG81。所述功能信号SG81被所述功能单元335使用以导致所述可变物理参数QU1A从所述物理参数应用范围RD1EJ进入所述物理参数目标范围RD1ET。所述感测单元334被配置以符合一传感器规格FU11。所述指示范围界限值对DN1G基于所述传感器规格FU11而被预置。例如,所述指示范围界限值对DN1G等于所述应用范围界限值对DN1L和所述目标范围界限值对DN1T的其中之一。
在一些实施例中,所述控制信号SC81进一步输送一控制码CC1T。所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预置。所述操作单元397从所述控制信号SC81获得所输送的所述控制码CC1T。在所述操作单元397藉由检查所述第一数学关系KG81而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EJ的条件下,所述操作单元397基于所获得的所述控制码CC1T而向所述功能单元335传输所述功能信号SG81。
请参阅图43。图43为示出于图1中的所述控制系统861的一实施结构9602的示意图。如图43所示,所述实施结构9602包含所述控制目标装置130和所述控制装置212。所述控制目标装置130用于控制具有一可变物理参数QU1A的一功能单元335。所述可变物理参数QU1A基于一物理参数目标范围RD1ET和不同于所述物理参数目标范围RD1ET的一物理参数应用范围RD1EJ而被特征化。所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ的其中之一由一测量值指示范围RN1G所代表。
所述控制目标装置130包含一感测单元334和一操作单元397。所述感测单元334感测所述可变物理参数QU1A以产生一第一感测信号SN81。所述操作单元397耦合于所述感测单元334。在所述操作单元397从所述控制装置212接收起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81的条件下,所述操作单元397响应所述第一感测信号SN81来获得一第一测量值VN81。
在所述操作单元397藉由检查所述第一测量值VN81和所述测量值指示范围RN1G之间的一第一数学关系KG81而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EJ的条件下,所述操作单元397基于所述控制信号SC81而向所述功能单元335传输一功能信号SG81。所述控制装置212是一移动装置和一遥控器的其中之一。在所述控制装置212是所述移动装置的条件下,所述操作单元397从所述控制装置212通过一无线链接LK81而接收所述控制信号SC81,或所述控制信号SC81是一无线电信号。在所述控制装置212是所述遥控器的条件下,所述控制信号SC81是一光信号SQ81。所述功能信号SG81用于导致所述可变物理参数QU1A从所述物理参数应用范围RD1EJ进入所述物理参数目标范围 RD1ET。
在一些实施例中,所述控制目标装置130进一步用于控制具有一可变物理参数QU2A的一功能单元735,并进一步包含耦合于所述操作单元397的一复用器363。所述复用器363耦合于所述功能单元335和所述功能单元735,并受所述操作单元397控制。所述操作单元397响应所述控制信号SC81来提供用于控制所述复用器363的一控制信号SD81到所述复用器363。所述复用器363响应所述控制信号SD81来使所述感测单元334在一操作时间TX81之内通过所述复用器363执行用于感测所述可变物理参数QU1A的一感测操作ZQ81。所述感测单元334借由执行所述感测操作ZQ81来提供所述第一感测信号SN81到所述操作单元397。
所述操作单元397响应所述控制信号SC81来提供用于控制所述复用器363的一控制信号SD82到所述复用器363。所述复用器363响应所述控制信号SD82来使所述感测单元334在一操作时间TX82之内通过所述复用器363执行用于感测所述可变物理参数QU2A的一感测操作ZQ82。所述感测单元334借由执行所述感测操作ZQ82来提供所述感测信号SN91到所述操作单元397。所述操作时间TX82不同于所述操作时间TX81。所述操作单元397在一特定情况YA82中基于所述感测信号SN91来向所述功能单元735传输用于控制所述可变物理参数QU2A的一功能信号SG97。
请参阅图44。图44为示出于图1中的所述控制系统861的一实施结构9603的示意图。如图44所示,所述实施结构9603包含所述控制目标装置130和所述控制装置212。所述控制目标装置130用于控制具有一可变物理参数QU1A的一功能单元335。所述可变物理参数QU1A基于一物理参数目标范围RD1ET、不同于所述物理参数目标范围RD1ET的一物理参数应用范围RD1EJ、和不同于所述物理参数目标范围RD1ET的一特定物理参数范围RD2E2而被特征化。所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ的其中之一由一测量值指示范围RN1G所代表。
所述控制目标装置130包含一感测单元334和一操作单元397。所述感测单元334感测所述可变物理参数QU1A以产生一第一感测信号SN81。所述操作单元397耦合于所述感测单元334,并包含一定时器339。在所述操作单元397接收起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81的条件下,所述操作单元397响应所述第一感测信号SN81来获得一第一测量值VN81。在所述操作单元397藉由检查所述第一测量值VN81和所述测量值指示范围RN1G之间的一第一数学关系KG81而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EJ的条件下,所述操作单元397基于所述控制信号SC81而向所述功能单元335传输一功能信号SG81。
所述功能信号SG81被所述功能单元335使用以导致所述可变物理参数QU1A从所述物理参数应用范围RD1EJ进入所述物理参数目标范围RD1ET。在所述操作单元397藉由检查所述第一数学关系KG81而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EJ的条件下,所述操作单元397藉由使用所述定时器339来到达一特定时间TJ8T,并在所述特定时间TJ8T之内向所述功能单元335传输一功能信号SG91。所述功能信号SG91被所述功能单元335使用以导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述特定物理参数范围RD2E2。例如,所述特定物理参数范围RD2E2是所述物理参数应用范围RD1EJ。
在一些实施例中,所述控制目标装置130进一步用于控制具有一可变物理参数QU2A的一功能单元735。所述功能单元335和所述功能单元735分别位于不同空间位置。所述功能单元335由一功能单元识别符HA2T所识别。所述功能单元735由一功能单元识别符HA22所识别。所述操作单元397包含一输出端338P和一输出端338Q。所述输出端338P耦合于所述功能单元335。所述输出端338Q耦合于所述功能单元735。所述输出端338P和所述输出端338Q分别位于不同空间位置。
在所述控制信号SC81输送用于间接指示所述输出端338P的所述功能单元识别符HA2T的条件下,所述操作单元397响应所述控制信号SC81来选择所述功能单元335以进行控制。在所述操作单元397藉由检查所述第一数学关系KG81而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EJ的条件下,所述操作单元397基于所述控制信号SC81而使所述输出端338P向所述功能单元335传输所述功能信号SG81。
在所述控制信号SC81输送用于间接指示所述输出端338Q的所述功能单元识别符HA22的条件下,所述操作单元397响应所述控制信号SC81来选择所述功能单元735以进行控制,并在一特定情况YD82中基于所述控制信号SC81而使所述输出端338Q向所述功能单元735传输用于控制所述可变物理参数QU2A的一功能信号SG97。
请参阅图45。图45为示出于图1中的所述控制系统861的一实施结构9604的示意图。如图45所示,所述实施结构9604包含所述控制目标装置130和所述控制装置212。所述控制目标装置130用于控制具有一可变物理参数QU1A的一功能单元335。所述可变物理参数QU1A基于一物理参数目标范围RD1ET、不同于所述物理参数目标范围RD1ET的一物理参数应用范围RD1EJ、和不同于所述物理参数目标范围RD1ET的一特定物理参数范围RD1E5而被特征化。所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ的其中之一由一测量值指示范围RN1G所代表。
所述控制目标装置130包含一感测单元334和一操作单元397。所述感测单元334感 测所述可变物理参数QU1A以产生一第一感测信号SN81。所述操作单元397耦合于所述感测单元334,并包含一按钮3801。在所述操作单元397接收起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81的条件下,所述操作单元397响应所述第一感测信号SN81来获得一第一测量值VN81。在所述操作单元397藉由检查所述第一测量值VN81和所述测量值指示范围RN1G之间的一第一数学关系KG81而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EJ的条件下,所述操作单元397基于所述控制信号SC81而向所述功能单元335传输一功能信号SG81。
所述功能信号SG81被所述功能单元335使用以导致所述可变物理参数QU1A从所述物理参数应用范围RD1EJ进入所述物理参数目标范围RD1ET。在所述可变物理参数QU1A基于所述功能信号SG81而被配置以处于所述物理参数目标范围RD1ET的条件下,所述操作单元397接收使用所述按钮3801的一用户输入操作BQ81。所述操作单元397响应所述用户输入操作BQ81来向所述功能单元335传输一第二功能信号SG82。所述第二功能信号SG82被所述功能单元335使用以导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述特定物理参数范围RD1E5。例如,所述特定物理参数范围RD1E5是所述物理参数应用范围RD1EJ。
所述可变物理参数QU1A基于不同于所述特定物理参数范围RD1E5的一特定物理参数范围RD1E6而被特征化。在所述可变物理参数QU1A基于所述第二功能信号SG82而被配置以处于所述特定物理参数范围RD1E5的条件下,所述操作单元397接收使用所述按钮3801的一用户输入操作BQ82。所述操作单元397响应所述用户输入操作BQ82来向所述功能单元335传输一功能信号SG83。所述功能信号SG83被所述功能单元335使用以导致所述可变物理参数QU1A离开所述特定物理参数范围RD1E5以进入所述特定物理参数范围RD1E6。例如,所述特定物理参数范围RD1E6是所述物理参数目标范围RD1ET。
请参阅图46。图46为示出于图1中的所述控制系统861的一实施结构9605的示意图。如图46所示,所述实施结构9605包含所述控制目标装置130和所述控制装置212。所述控制目标装置130用于控制具有一可变物理参数QU1A的一功能单元335。所述可变物理参数QU1A基于一物理参数目标范围RD1ET和不同于所述物理参数目标范围RD1ET的一物理参数应用范围RD1EJ而被特征化。所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ的其中之一由一测量值指示范围RN1G所代表。
所述控制目标装置130包含一感测单元334和一操作单元397。所述感测单元334感测所述可变物理参数QU1A以产生一第一感测信号SN81。所述操作单元397耦合于所述感测单元334。在所述操作单元397从所述控制装置212接收起到指示所述物理参数目标范 围RD1ET的作用的一控制信号SC81的条件下,所述操作单元397响应所述第一感测信号SN81来获得一第一测量值VN81。在所述操作单元397藉由检查所述第一测量值VN81和所述测量值指示范围RN1G之间的一第一数学关系KG81而确定所述可变物理参数QU1A目前处于的所述物理参数应用范围RD1EJ的条件下,所述操作单元397基于所述控制信号SC81而向所述功能单元335传输一功能信号SG81。
所述功能信号SG81被所述功能单元335使用以导致所述可变物理参数QU1A从所述物理参数应用范围RD1EJ进入所述物理参数目标范围RD1ET。所述物理参数目标范围RD1ET由具有一目标范围界限值对DN1T的一测量值目标范围RN1T所代表。所述控制信号SC81输送所述目标范围界限值对DN1T。在所述操作单元397传输所述功能信号SG81之后,该感测单元334感测所述可变物理参数QU1A以产生一第二感测信号SN12。
所述操作单元397从所述控制信号SC81获得所输送的所述目标范围界限值对DN1T,并响应所述第二感测信号SN82来获得一第二测量值VN82。在所述操作单元397藉由比较所述第二测量值VN82和所获得的所述目标范围界限值对DN1T而确定所述可变物理参数目前处于的所述物理参数目标范围的条件下,所述操作单元397向所述控制装置212传输输送所述第二测量值VN82的一控制响应信号SE81。所述第二测量值VN82被所述控制装置212使用以执行与所述可变物理参数QU1A相关的一特定实际操作BJ81。
请参阅图47,其为示出于图1中的所述控制系统861的一实施结构8010的示意图。所述实施结构8010包含一控制目标装置130和用于控制所述控制目标装置130的一控制装置212。所述控制目标装置130具有一可变物理参数QU1A。所述可变物理参数QU1A基于由一测量值目标范围RN1T所代表的一物理参数目标范围RD1ET而被特征化。用于控制所述可变物理参数QU1A的所述控制装置212包一感测单元260和一操作单元297。
所述感测单元260感测一可变物理参数QP1A以产生一感测信号SM81。例如,所述可变物理参数QP1A基于由一测量值应用范围RM1L所代表的一物理参数应用范围RC1EL而被特征化。所述操作单元297耦合于所述感测单元260。在一触发事件EQ81发生的条件下,所述操作单元297响应所述感测信号SM81来获得一测量值VM81。在所述操作单元297借由检查所述测量值VM81和所述测量值应用范围RM1L之间的一数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述操作单元297产生起到指示所述测量值目标范围RN1T的作用的一控制信号SC81。
例如,在所述操作单元297借由检查所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述操作单元297产生起到指示所述物理参数目标范围RD1ET的作用的 所述控制信号SC81。例如,所述测量值VM81是一物理参数测量值。
请参阅图48。图48为示出于图1中的所述控制系统861的一实施结构8011的示意图。如图48所示,所述实施结构8011包含所述控制装置212和所述控制目标装置130。在一些实施例中,所述感测单元260被配置以符合与所述测量值应用范围RM1L相关的一传感器规格FQ11。例如,所述传感器规格FQ11包含用于表示一传感器测量范围RA8E的一传感器测量范围表示GQ8R、和用于表示一传感器灵敏度YQ81的一传感器灵敏度表示GQ81。所述传感器灵敏度YQ81相关于由所述感测单元260所执行的一感测信号产生HE81。所述可变物理参数QU1A进一步依靠一感测单元334而被控制。所述感测单元334被配置以符合与所述测量值目标范围RN1T相关的一传感器规格FU11。
例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相同或不同于所述传感器灵敏度YQ81。所述测量值VM81以一指定测量值格式HQ81而被所述操作单元297获得。所述可变物理参数QP1A进一步基于不同于所述物理参数应用范围RC1EL的一物理参数候选范围RC1E2而被特征化。所述测量值应用范围RM1L和代表所述物理参数候选范围RC1E2的一测量值候选范围RM12皆基于所述传感器测量范围表示GQ8R和所述所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预置。所述测量值目标范围RN1T基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一而被预置,并具有一目标范围界限值对DN1T。
在一些实施例中,所述可变物理参数QU1A相关于一可变时间长度LF8A。例如,所述可变时间长度LF8A基于一参考时间长度LJ8T而被特征化。所述参考时间长度LJ8T由一测量时间长度值CL8T所代表。所述控制信号SC81输送所述目标范围界限值对DN1T、所述测量时间长度值CL8T和一控制码CC1T,并用于导致所述可变物理参数QU1A于所述物理参数目标范围RD1ET之内足有与所述参考时间长度LJ8T匹配的一应用时间长度LT8T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预先设定。所述控制信号SC81借由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。
所述测量值应用范围RM1L具有一应用范围界限值对DM1L。例如,所述应用范围界限值对DM1L被预置。所述操作单元297响应所述触发事件EQ81来获得所述应用范围界限值对DM1L,并借由比较所述测量值VM81和所获得的所述应用范围界限值对DM1L来检查所述数学关系KA81。所述测量值候选范围RM12具有一候选范围界限值对DM1B。例如,所述候选范围界限值对DM1B被预置。所述操作单元297响应所述触发事件EQ81来获得所预置的 所述候选范围界限值对DM1B。例如,当所述触发事件EQ81发生时,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。
例如,所述操作单元297包含一触发应用单元281。所述触发事件EQ81相关于所述触发应用单元281。所述触发应用单元281响应所述触发事件EQ81来产生一操作请求信号SX81。所述操作单元297响应所述操作请求信号SX81来基于所述感测信号SM81而获得所述测量值VM81,并响应所述操作请求信号SX81来获得所述应用范围界限值对DM1L。
在一些实施例中,所述物理参数应用范围RC1EL被配置以对应于在所述物理参数应用范围RC1EL之外的一对应物理参数范围RW1EL。在所述操作单元297借由检查所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述对应物理参数范围RW1EL的条件下,所述操作单元297执行所述测量值VM81和所获得的所述参考范围界限值对DM1B之间的一数据比较CA91。在所述操作单元297基于所述数据比较CA91而确定所述可变物理参数QP1A目前处于的所述物理参数候选范围RC1E2的条件下,所述操作单元297产生用于控制所述可变物理参数QU1A的一控制信号SC82,所述控制信号SC82不同于所述控制信号SC81。
在所述操作单元297借由检查所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述操作单元297被配置以获得包含所述目标范围界限值对DN1T、所述测量时间长度值CL8T和所述控制码CC1T的一控制数据码CK8T,基于所述控制数据码CK8T来执行用于产生所述控制信号SC81的一信号产生控制GS81,并执行一数据存储控制操作GT81,所述数据存储控制操作GT81用于导致代表所确定的所述物理参数应用范围RC1EL的一物理参数应用范围码UM8L被记录。所述可变物理参数QU1A和所述可变物理参数QP1A分别属于一物理参数类型TU11和一物理参数类型TP11。例如,所述物理参数类型TU11相同或不同于所述物理参数类型TP11。例如,所述数据存储控制操作GT81是一确保操作。
请参阅图49、图50、图51、图52和图53。图49为示出于图1中的所述控制系统861的一实施结构8012的示意图。图50为示出于图1中的所述控制系统861的一实施结构8013的示意图。图51为示出于图1中的所述控制系统861的一实施结构8014的示意图。图52为示出于图1中的所述控制系统861的一实施结构8015的示意图。图53为示出于图1中的所述控制系统861的一实施结构8016的示意图。如图49、图50、图51、图52和图53所示,所述实施结构8012、所述实施结构8013、所述实施结构8014、所述实施结构8015和所述实施结构8016的每一结构包含所述控制装置212和所述控制目标装置130。
请额外参阅图47。在一些实施例中,所述可变物理参数QU1A和所述可变物理参数QP1A分别被形成于一实际位置LD81和不同于所述实际位置LD81的一实际位置LC81。所述操作 单元297被配置以执行与所述物理参数应用范围RC1EL相关的一测量应用功能FB81,并包含耦合于所述感测单元260的一处理单元230、和耦合于所述处理单元230的一输出单元240。所述测量应用功能FB81被配置以符合与所述物理参数应用范围RC1EL相关的一测量应用功能规格GBL8。例如,所述测量应用功能FB81是一触发应用功能。所述测量应用功能规格GBL8是一触发应用功能规格。
所述感测单元260被配置以符合与所述测量值应用范围RM1L相关的一传感器规格FQ11。例如,所述传感器规格FQ11包含用于表示一传感器测量范围RA8E的一传感器测量范围表示GQ8R、和用于表示一传感器灵敏度YQ81的一传感器灵敏度表示GQ81。所述传感器灵敏度YQ81相关于由所述感测单元260所执行的一感测信号产生HE81。例如,当所述触发事件EQ81发生时,所述感测单元260感测所述可变物理参数QP1A以执行相依于所述传感器灵敏度YQ81的所述感测信号产生HE81,所述感测信号产生HE81用于产生所述感测信号SM81。
所述可变物理参数QU1A进一步依靠一感测单元334而被控制。所述感测单元334被配置以符合与所述测量值目标范围RN1T相关的一传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相同或不同于所述传感器灵敏度YQ81。
在一些实施例中,在所述触发事件EQ81发生的条件下,所述处理单元230响应所述感测信号SM81来以一指定测量值格式HQ81获得所述测量值VM81。例如,所述指定测量值格式HQ81基于一指定比特数目UX81而被特征化。在所述处理单元230确定所述物理参数应用范围RC1EL的条件下,所述处理单元230导致所述输出单元240产生所述控制信号SC81。所述可变物理参数QP1A进一步基于一额定物理参数范围RC1E而被特征化。例如,所述额定物理参数范围RC1E由一额定测量值范围RC1N所代表,并包含由多个不同测量值参考范围RM11、RM12、…所分别代表的多个不同物理参数参考范围RC1E1、RC1E2、…。
所述多个不同物理参数参考范围RC1E1、RC1E2、…包含所述物理参数应用范围RC1EL。所述测量应用功能规格GBL8包含所述传感器规格FQ11、用于表示所述额定物理参数范围RC1E的一额定物理参数范围表示GB8E、和用于表示所述物理参数应用范围RC1EL的一物理参数应用范围表示GB8L。所述物理参数目标范围RD1ET由一物理参数候选范围表示GA8T所表示。例如,所述物理参数候选范围表示GA8T被预置。
所述额定测量值范围RC1N基于所述额定物理参数范围表示GB8E、所述传感器测量范围表示GQ8R和用于转换所述额定物理参数范围表示GB8E的一数据编码操作ZR81来用所 述指定测量值格式HQ81而被预置,具有一额定范围界限值对DC1A,并包含由多个不同测量值参考范围码EH11、EH12、…所分别代表的所述多个不同测量值参考范围RM11、RM12、…。例如,所述额定范围界限值对DC1A用所述指定测量值格式HQ81而被预置。所述额定测量值范围RC1N和所述额定范围界限值对DC1A皆基于所述传感器测量范围表示GQ8R和所述所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预置。
在一些实施例中,所述多个不同测量值参考范围RM11、RM12、…包含所述测量值应用范围RM1L。所述测量值应用范围RM1L由包含于所述多个不同测量值参考范围码EH11、EH12、…中的一测量值应用范围码EH1L所代表,并具有一应用范围界限值对DM1L;藉此所述测量值应用范围码EH1L被配置以指示所述物理参数应用范围RC1EL。例如,所述多个不同测量值参考范围码EH11、EH12、…皆基于所述测量应用功能规格GBL8而被预置。
所述应用范围界限值对DM1L包含所述测量值应用范围RM1L的一应用范围界限值DM15和相对于所述应用范围界限值DM15的一应用范围界限值DM16,并基于所述物理参数应用范围表示GB8L、所述传感器测量范围表示GQ8R和用于转换所述物理参数应用范围表示GB8L的一数据编码操作ZR82来用所述指定测量值格式HQ81而被预置。所述测量值应用范围RM1L基于所述物理参数应用范围表示GB8L、所述传感器测量范围表示GQ8R和所述数据编码操作ZR82来用所述指定测量值格式HQ81而被预置。
所述测量值目标范围RN1T基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和用于转换所述物理参数候选范围表示GA8T的一数据编码操作ZX83而被预置。所述控制装置212进一步包含耦合于所述处理单元230的一存储单元250,并包含耦合于所述处理单元230的一触发应用单元281。所述存储单元250存储所预置的所述额定范围界限值对DC1A和一可变物理参数范围码UM8A。例如,所述测量值目标范围RN1T具有一目标范围界限值对DN1T。
在一些实施例中,当与所述触发应用单元281相关的所述触发事件EQ81发生时,所述可变物理参数范围码UM8A等于选择自所述多个不同测量值参考范围码EH11、EH12、…的一特定测量值范围码EH14。例如,所述特定测量值范围码EH14指示基于基于一感测操作ZM81而被所述处理单元230先前确定的一特定物理参数范围RC1E4。所述特定物理参数范围RC1E4选择自所述多个不同物理参数参考范围RC1E1、RC1E2、…。由所述感测单元260所执行的所述感测操作ZM81用于感测所述可变物理参数QP1A。在所述触发事件EQ81发生之前,所述特定测量值范围码EH14被指定到所述可变物理参数范围码UM8A。
例如,在所述触发事件EQ81发生之前,所述处理单元230获得所述特定测量值范围码EH14。在所述处理单元230于所述触发事件EQ81发生之前基于所述感测操作ZM81而确 定所述特定物理参数范围RC1E4的条件下,所述处理单元230借由使用所述存储单元250来将所获得的所述特定测量值范围码EH14指定到所述可变物理参数范围码UM8A。所述特定测量值范围码EH14代表被配置以代表所述特定物理参数范围RC1E4的一特定测量值范围。所述特定测量值范围基于所述传感器测量范围表示GQ8R和所述所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预置。例如,所述感测单元260借由执行所述感测操作ZM81来执行相依于所述传感器灵敏度YQ81的一感测信号产生以产生一感测信号。
在所述触发事件EQ81发生之前,所述处理单元230接收所述感测信号,响应所述感测信号来以所述指定测量值格式HQ81获得一特定测量值,并执行用于检查所述特定测量值和所述特定测量值范围之间的一数学关系的一特定检查操作。在所述处理单元230基于所述特定检查操作而确定所述可变物理参数QP1A处于的所述特定物理参数范围RC1E4的条件下,所述处理单元230借由使用所述存储单元250来将所获得的所述特定测量值范围码EH14指定到所述可变物理参数范围码UM8A。所述处理单元230响应用于感测所述可变物理参数QP1A的一特定感测操作来决定所述处理单元230是否要使用所述存储单元250以改变所述可变物理参数范围码UM8A。例如,所述特定感测操作由所述感测单元260所执行。
在一些实施例中,所述触发应用单元281响应所述触发事件EQ81来提供一操作请求信号SX81到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SX81。在所述触发事件EQ81发生的条件下,所述处理单元230响应所述操作请求信号SX81来从所述存储单元250获得一操作参考数据码XK81,并借由运行一数据确定程序NE8A来执行使用所述操作参考数据码XK81的一数据确定AE8A以确定选择自所述多个不同测量值参考范围码EH11、EH12、…的所述测量值应用范围码EH1L以便从所述多个不同测量值参考范围RM11、RM12、…中选择所述测量值应用范围RM1L。
所述操作参考数据码XK81相同于基于所述测量应用功能规格GBL8而被预置的一可允许参考数据码。所述数据确定程序NE8A基于所述测量应用功能规格GBL8而被构建。所述数据确定AE8A是一数据确定操作AE81和一数据确定操作AE82的其中之一。在所述操作参考数据码XK81借由存取被存储在所述存储单元250中的所述可变物理参数范围码UM8A而被获得以相同于所述特定测量值范围码EH14的条件下,是所述数据确定操作AE81的所述数据确定AE8A基于所获得的所述特定测量值范围码EH14来确定所述测量值应用范围码EH1L。例如,所确定的所述测量值应用范围码EH1L相同或不同于所获得的所述特定测量值范围码EH14。
在所述操作参考数据码XK81借由存取被存储在所述存储单元250中的所述额定范围界限值对DC1A而被获得以相同于所预置的所述额定范围界限值对DC1A的条件下,是所述数据确定操作AE82的所述数据确定AE8A借由执行使用所述测量值VM81和所获得的所述额定范围界限值对DC1A的一科学计算MF81来从所述多个不同测量值参考范围码EH11、EH12、…中选择所述测量值应用范围码EH1L以确定所述测量值应用范围码EH1L。例如,所述科学计算MF81基于一特定经验公式XP81而被执行。所述特定经验公式XP81基于所预置的所述额定范围界限值对DC1A和所述多个不同测量值参考范围码EH11、EH12、…而被预先制定。例如,所述特定经验公式XP81基于所述测量应用功能规格GBL8而被预先制定。
所述处理单元230基于所确定的所述测量值应用范围码EH1L来获得所述应用范围界限值对DM1L,并基于所述测量值VM81和所获得的所述应用范围界限值对DM1L之间的一数据比较CA81来检查所述数学关系KA81以做出所述测量值VM81是否为于所选择的所述测量值应用范围RM1L之内的一逻辑决定PH81。在所述逻辑决定PH81是肯定的条件下,所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL。
例如,所述处理单元230响应所述操作请求信号SX81来基于所述感测信号SM81而获得所述测量值VM81,并响应所述操作请求信号SX81来获得所述应用范围界限值对DM1L。所述触发应用单元281响应所述触发事件EQ81来提供所述操作请求信号SX81到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SX81。
例如,在所述应用范围界限值DM15不同于所述应用范围界限值DM16且所述测量值VM81是于所述应用范围界限值DM15和所述应用范围界限值DM16之间的条件下,所述处理单元230借由比较所述测量值VM81和所获得的所述应用范围界限值对DM1L来做出所述逻辑决定PH81以成为肯定的。在所述应用范围界限值DM15、所述应用范围界限值DM16和所述测量值VM81是相等的条件下,所述处理单元230借由比较所述测量值VM81和所获得的所述应用范围界限值对DM1L来做出所述逻辑决定PH81以成为肯定的。
在一些实施例中,所述控制装置212具有所述可变物理参数QP1A。所述可变物理参数QU1A存在于所述控制目标装置130中。所述触发事件EQ81是一触发作用事件、一用户输入事件、一信号输入事件、一状态改变事件、一识别媒介出现事件和一整数溢位事件的其中之一,并被应用到所述测量应用功能FB81。在是所述触发作用事件的所述触发事件EQ81要发生的条件下,所述控制目标装置130被配置以执行与所述可变物理参数QU1A相关的所述特定功能操作ZH81。例如,所述特定功能操作ZH81用于导致所述触发作用事件发生,并是一空间运动操作。
所述测量应用功能FB81相关于一内存单元25Y1。所述测量值目标范围RN1T由一测量值目标范围码EM1T所代表;藉此所述测量值目标范围码EM1T被配置以指示所述物理参数目标范围RD1ET。例如,所述测量值目标范围码EM1T基于所述测量应用功能规格GBL8而被预置。所预置的所述测量值应用范围码EH1L和所预置的所述测量值目标范围码EM1T之间具有一数学关系KY81。
所述内存单元25Y1具有一内存位置PM8L和不同于所述内存位置PM8L的一内存位置PV8L,在所述内存位置PM8L存储所述应用范围界限值对DM1L,并在所述内存位置PV8L存储一控制数据码CK8T。例如,所述内存位置PM8L和所述内存位置PV8L皆基于所预置的所述测量值应用范围码EH1L而被识别。所述控制数据码CK8T包含所述测量值目标范围码EM1T。例如,所述应用范围界限值对DM1L和所述控制数据码CK8T皆基于所预置的所述测量值应用范围码EH1L而被所述内存单元25Y1存储。
在一些实施例中,所述处理单元230借由运行一数据获取程序NF8A来执行使用所确定的所述测量值应用范围码EH1L的一数据获取AF8A以获得所述应用范围界限值对DM1L。例如,所述数据获取AF8A是一数据获取操作AF81和一数据获取操作AF82的其中之一。所述数据获取程序NF8A基于所述测量应用功能规格GBL8而被构建。所述数据获取操作AF81基于所确定的所述测量值应用范围码EH1L来使用所述内存单元25Y1以存取被存储在所述内存位置PM8L的所述应用范围界限值对DM1L以获得所述应用范围界限值对DM1L。
所述数据获取操作AF82借由读取被存储在所述存储单元250中的所述额定范围界限值对DC1A来取得所预置的所述额定范围界限值对DC1A,并借由执行使用所确定的所述测量值应用范围码EH1L和所取得的所述额定范围界限值对DC1A的一科学计算MG81来获得所述应用范围界限值对DM1L。例如,所述额定范围界限值对DC1A包含所述额定测量值范围RC1N的一额定范围界限值DC11和相对于所述额定范围界限值DC11的一额定范围界限值DC12,并基于所述额定物理参数范围表示GB8E、所述传感器测量范围表示GQ8R和所述数据编码操作ZR81来用所述指定测量值格式HQ81而被预置。
在一些实施例中,在所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230执行使用所确定的所述测量值应用范围码EH1L的一数据获取AG8A以获得一控制应用码UA8T。例如,所述数据获取AG8A是一数据获取操作AG81和一数据获取操作AG82的其中之一。
所述数据获取操作AG81基于所确定的所述测量值应用范围码EH1L来使用所述内存单元25Y1以存取被存储在所述内存位置PV8L的所述控制数据码CK8T以获得等于所述控制数据码CK8T的所述控制应用码UA8T。所述数据获取操作AG82借由执行使用所确定的所述 测量值应用范围码EH1L和所述数学关系KY81的一科学计算MQ81来获得等于所预置的所述测量值目标范围码EM1T的所述控制应用码UA8T。
所述处理单元230基于所获得的所述控制应用码UA8T来在一操作时间TD81之内执行用于所述测量应用功能FB81的一信号产生控制GS81以控制所述输出单元240。所述输出单元240响应所述信号产生控制GS81来执行用于所述测量应用功能FB81的一信号产生操作BS81以产生所述控制信号SC81。例如,所述控制信号SC81借由输送所述测量值目标范围码EM1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用,并用于导致所述可变物理参数QU1A于所述物理参数目标范围RD1ET之内。
在一些实施例中,所述多个不同物理参数参考范围RC1E1、RC1E2、…进一步包含不同于所述物理参数应用范围RC1EL的一物理参数候选范围RC1E2。所述多个不同测量值参考范围RM11、RM12、…具有一总参考范围数目NS81,并进一步包含代表所述物理参数候选范围RC1E2的一测量值候选范围RM12。所述测量应用功能规格GBL8进一步包含用于表示所述物理参数候选范围RC1E2的一物理参数候选范围表示GB82。
所述测量值候选范围RM12由不同于所述测量值应用范围码EH1L的一测量值候选范围码EH12所代表,具有一候选范围界限值对DM1B,并被配置以代表所述物理参数候选范围RC1E2;藉此所述测量值候选范围码EH12被配置以指示所述物理参数候选范围RC1E2。例如,所述候选范围界限值对DM1B基于所述物理参数候选范围表示GB82、所述传感器测量范围表示GQ8R和用于转换所述物理参数候选范围表示GB82的一数据编码操作ZR83来用所述指定测量值格式HQ81而被预置。
所述测量值候选范围RM12基于所述物理参数候选范围表示GB82、所述传感器测量范围表示GQ8R和所述数据编码操作ZR83来用所述指定测量值格式HQ81而被预置。所述总参考范围数目NS81基于所述测量应用功能规格GBL8而被预置。所述处理单元230响应所述触发事件EQ81来获得所述总参考范围数目NS81。所述科学计算MF81进一步使用所获得的所述总参考范围数目NS81。所述科学计算MG81进一步使用所获得的所述总参考范围数目NS81。例如,所述总参考范围数目NS81大于或等于2。例如,所述总参考范围数目NS81≧3;所述总参考范围数目NS81≧4;所述总参考范围数目NS81≧5;所述总参考范围数目NS81≧6;且所述总参考范围数目NS81≦255。
在一些实施例中,所述控制目标装置130接收所述控制信号SC81,从所接收的所述控制信号SC81获得所述测量值目标范围码EM1T,并基于所获得的所述测量值目标范围码EM1T来导致所述可变物理参数QU1A于所述物理参数目标范围RD1ET之内。例如,所述控制信号SC81输送基于所述控制应用码UA8T而被确定的一控制信息CG81。所述控制信息 CG81包含所述测量值目标范围码EM1T。例如,所述控制信息CG81包含所述目标范围界限值对DN1T和所述控制码CC1T。
所述测量值应用范围RM1L是所述额定测量值范围RC1N的一第一部分。所述测量值候选范围RM12是所述额定测量值范围RC1N的一第二部分。所述物理参数应用范围RC1EL和所述物理参数候选范围RC1E2是分开的或相邻的。在所述物理参数应用范围RC1EL和所述物理参数候选范围RC1E2是分开的条件下,所述测量值应用范围RM1L和所述测量值候选范围RM12是分开的。在所述物理参数应用范围RC1EL和所述物理参数候选范围RC1E2是相邻的条件下,所述测量值应用范围RM1L和所述测量值候选范围RM12是相邻的。
例如,所述测量值应用范围码EH1L被配置以等于一整数。所述额定范围界限值DC12大于所述额定范围界限值DC11。所述额定范围界限值DC12和所述额定范围界限值DC11之间具有相对于所述额定范围界限值DC11的一相对值VC11。所述相对值VC11等于所述额定范围界限值DC12减去所述额定范围界限值DC11的一计算结果。例如,所述应用范围界限值对DM1L基于所述额定范围界限值DC11、所述额定范围界限值DC12、所述整数、和所述相对值VC11对于所述总参考范围数目NS81的一比率而被预置。所述科学计算MG81使用所述额定范围界限值DC11、所述额定范围界限值DC12、所述整数、所述比率和其任意组合的其中之一。
在一些实施例中,在所述逻辑决定PH81是否定的条件下,所述处理单元230借由执行使用所确定的所述测量值应用范围码EH1L的一科学计算MF82来确定选择自所述多个不同测量值参考范围码EH11、EH12、…的所述测量值候选范围码EH12以便从所述多个不同测量值参考范围RM11、RM12、…中选择所述测量值候选范围RM12。
所述处理单元230基于所确定的所述测量值候选范围码EH12来获得所述候选范围界限值对DM1B,并基于所述测量值VM81和所获得的所述候选范围界限值对DM1B之间的一数据比较CA91来检查所述测量值VM81和所选择的所述测量值候选范围RM12之间的一数学关系KA91以做出所述测量值VM81是否为于所选择的所述测量值候选范围RM12之内的一逻辑决定PH91。在所述逻辑决定PH91是肯定的条件下,所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数候选范围RC1E2。
在所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数候选范围RC1E2的条件下,所述处理单元230导致所述输出单元240执行用于所述测量应用功能FB81的一信号产生操作BS91以产生用于控制所述可变物理参数QU1A的一控制信号SC82,所述控制信号SC82不同于所述控制信号SC81。
在所述特定测量值范围码EH14不同于所确定的所述测量值应用范围码EH1L且所述处 理单元230借由做出所述逻辑决定PH81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于等于所述特定测量值范围码EH14的所述可变物理参数范围码UM8A和所确定的所述测量值应用范围码EH1L之间的一码差异DA81来使用所述存储单元250以将所确定的所述测量值应用范围码EH1L指定到所述可变物理参数范围码UM8A。在所述触发事件EQ81是所述可变物理参数QP1A从所述特定物理参数范围RC1E4进入所述物理参数应用范围RC1EL的所述状态改变事件的条件下,所述处理单元230基于所述码差异DA81来确定是所述状态改变事件的所述触发事件EQ81。
在一些实施例中,所述操作单元297进一步包含一响应区域AC1、一读取器220和一输入单元270。所述响应区域AC1用于执行所述测量应用功能FB81。所述读取器220,耦合于所述响应区域AC1。所述输入单元270,耦合于所述处理单元230。在所述触发事件EQ81是所述识别媒介出现事件且所述处理单元230通过所述读取器220而辨识了出现于所述响应区域AC1的一识别媒介310的条件下,所述处理单元230基于所述感测信号SM81来获得所述测量值VM81。例如,所述操作单元297依靠所述识别媒介310来控制所述可变物理参数QU1A。
例如,所述识别媒介310记录所述应用范围界限值对DM1L和所述控制数据码CK8T。例如,所述读取器220是所述触发应用单元281,响应与所述识别媒介310相关的所述触发事件EQ81来产生所述操作请求信号SX81,提供所述操作请求信号SX81到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SX81。所述处理单元230响应所述操作请求信号SX81来使所述读取器220读取所记录的所述应用范围界限值对DM1L和所记录的所述控制数据码CK8T,并藉此通过所述读取器220来从所述识别媒介310获得所记录的所述应用范围界限值对DM1L和所记录的所述控制数据码CK8T。
当所述触发事件EQ81发生时,所述输出单元240显示一状态指示LA81。例如,所述状态指示LA81用于指示所述可变物理参数QP1A被配置于所述特定物理参数范围RC1E4之内的一特定状态XH81。在所述特定测量值范围码EH14不同于所确定的所述测量值应用范围码EH1L且所述处理单元230借由做出所述逻辑决定PH81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230进一步基于所述码差异DA81来导致所述输出单元240将所述状态指示LA81改变成一状态指示LA82。例如,所述状态指示LA82用于指示所述可变物理参数QP1A被配置于所述物理参数应用范围RC1EL之内的一特定状态XH82。
在所述输入单元270于所述操作时间TD81之后的一指定时间TW81之内从所述控制目标装置130接收响应所述控制信号SC81而被产生的一控制响应信号SE81的条件下,所述 处理单元230响应所述控制响应信号SE81来执行与所述可变物理参数QU1A相关的一特定实际操作BJ81。例如,所述处理单元230从所述控制响应信号SE81获得所输送的所述测量值VN82,并基于所获得的所述测量值VN82来使所述输出单元240显示与所获得的所述测量值VN82相关的一测量信息LZ82。
在所述操作时间TD81之后,所述感测单元260感测所述可变物理参数QP1A以产生一感测信号SM82。例如,在所述操作时间TD81之后,所述感测单元260感测所述可变物理参数QP1A以执行相依于所述传感器灵敏度YQ81的一感测信号产生HE82,所述感测信号产生HE82用于产生所述感测信号SM82。
在一些实施例中,所述处理单元230于所述操作时间TD81之后的一指定时间TE82之内响应所述感测信号SM82来以所述指定测量值格式HQ81获得一测量值VM82。所述处理单元230于所述指定时间TE82之内借由执行使用所确定的所述测量值应用范围码EH1L的一科学计算MF83来获得包含于所述多个不同测量值参考范围码EH11、EH12、…中的一特定测量值范围码EH17。例如,所述特定测量值范围码EH17不同于所确定的所述测量值应用范围码EH1L,并代表包含于所述多个不同测量值参考范围RM11、RM12、…中的一特定测量值范围RM17。
所述特定测量值范围RM17代表包含于所述多个不同物理参数参考范围RC1E1、RC1E2、…中的一特定物理参数范围RC1E7。所述处理单元230基于所述特定测量值范围码EH17来执行用于检查所述测量值VM82和所述特定测量值范围RM17之间的一第四数学关系KA83的一检查操作BA83。
在一些实施例中,在所述处理单元230于所述指定时间TE82之内基于所述检查操作BA83而确定所述可变物理参数QP1A目前处于的所述特定物理参数范围RC1E7的条件下,所述处理单元230导致所述输出单元240产生用于控制所述可变物理参数QU1A的一控制信号SC83,并使用所述存储单元250以将所述特定测量值范围码EH17指定到所述可变物理参数范围码UM8A。例如,所述控制信号SC83不同于所述控制信号SC81。
在所述触发事件EQ81发生的条件下,所述感测单元260感测处于一拘束条件FP81的所述可变物理参数QP1A以提供所述感测信号SM81到所述处理单元230。例如,所述拘束条件FP81是所述可变物理参数QP1A等于包含于所述额定物理参数范围RC1E中的一特定物理参数QP11。所述处理单元230基于所述感测信号SM81来估计所述特定物理参数QP11以获得所述测量值VM81。由于处于所述拘束条件FP81的所述可变物理参数QP1A是于所述物理参数应用范围RC1EL之内,所述处理单元230辨识所述测量值VM81为于所述测量值应用范围RM1L之内的一可允许值,藉此辨识所述测量值VM81和所述测量值应用范围RM1L 之间的所述数学关系KA81为一数值交集关系,并藉此确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL。
在一些实施例中,所述感测单元260基于与所述感测信号产生HE81相关的所述传感器灵敏度YQ81而被特征化,并被配置以符合所述传感器规格FQ11。所述传感器规格FQ11包含用于表示所述传感器灵敏度YQ81的所述传感器灵敏度表示GQ81、和用于表示所述传感器测量范围RA8E的所述传感器测量范围表示GQ8R。例如,所述额定物理参数范围RC1E被配置以相同于所述传感器测量范围RA8E,或被配置以是所述传感器测量范围RA8E的一部分。所述传感器测量范围RA8E相关于由所述感测单元260所执行的一物理参数感测。所述传感器测量范围表示GQ8R基于一第一预置测量单位而被提供。例如,所述第一预置测量单位是一公制测量单位和一英制测量单位的其中之一。
所述额定测量值范围RC1N、所述额定范围界限值对DC1A、所述测量值应用范围RM1L、所述应用范围界限值对DM1L、所述测量值候选范围RM12、所述候选范围界限值对DM1B和所述多个不同测量值参考范围RM11、RM12、…皆基于所述传感器测量范围表示GQ8R和所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预置。例如,所述额定测量值范围RC1N和所述额定范围界限值对DC1A皆基于所述额定物理参数范围表示GB8E、所述传感器测量范围表示GQ8R、所述传感器灵敏度表示GQ81和所述数据编码操作ZR81来用所述指定测量值格式HQ81而被预置。所述测量值应用范围RM1L和所述应用范围界限值对DM1L皆基于所述物理参数应用范围表示GB8L、所述传感器测量范围表示GQ8R、所述传感器灵敏度表示GQ81和所述数据编码操作ZR82来用所述指定测量值格式HQ81而被预置。
所述测量值候选范围RM12和所述候选范围界限值对DM1B皆基于所述物理参数候选范围表示GB82、所述传感器测量范围表示GQ8R、所述传感器灵敏度表示GQ81和所述数据编码操作ZR83来用所述指定测量值格式HQ81而被预置。所述额定物理参数范围表示GB8E、所述物理参数应用范围表示GB8L、所述物理参数候选范围表示GA8T和所述物理参数候选范围表示GB82皆基于一第二预置测量单位而被提供。例如,所述第二预置测量单位是一公制测量单位和一英制测量单位的其中之一,并相同或不同于所述第一预置测量单位。
所述感测单元334基于与一感测信号产生相关的所述传感器灵敏度YW81而被特征化,并被配置以符合所述传感器规格FU11。所述传感器规格FU11包含用于表示所述传感器灵敏度YW81的所述传感器灵敏度表示GW81、和用于表示所述传感器测量范围RB8E的所述传感器测量范围表示GW8R。例如,所述物理参数目标范围RD1ET被配置以是所述传感器测量范围RB8E的一部分。所述传感器测量范围RB8E相关于由所述感测单元334所执行的一物理参数感测。所述传感器测量范围表示GW8R基于一第三预置测量单位而被提供。例如, 所述第三预置测量单位是一公制测量单位和一英制测量单位的其中之一。
所述可变物理参数QU1A进一步基于所述传感器测量范围RB8E而被特征化。所述可变物理参数QP1A进一步基于所述传感器测量范围RA8E而被特征化。例如,所述传感器测量范围表示GQ8R、所述额定物理参数范围表示GB8E、所述物理参数应用范围表示GB8L、所述物理参数候选范围表示GA8T、所述物理参数候选范围表示GB82和所述传感器测量范围表示GW8R皆属于十进制数据类型。所述测量值VM81、所述测量值VM82、所述额定范围界限值对DC1A、所述应用范围界限值对DM1L、所述目标范围界限值对DN1T和所述候选范围界限值对DM1B皆属于所述二进制数据类型,并皆适用于计算机处理。所述传感器规格FQ11、所述传感器规格FU11和所述测量应用功能规格GBL8皆被预置。
在一些实施例中,所述内存位置PM8L基于一内存地址FM8L而被识别。所述内存地址FM8L基于所预置的所述测量值应用范围码EH1L而被预置。所述内存位置PV8L基于一内存地址FV8L而被识别。所述内存地址FV8L基于所预置的所述测量值应用范围码EH1L而被预置。
在所述触发事件EQ81发生之前,所述处理单元230被配置以取得所预置的所述测量值应用范围码EH1L、所预置的所述应用范围界限值对DM1L和所预置的所述控制数据码CK8T,基于所取得的所述测量值应用范围码EH1L来获得所述内存地址FM8L,并基于所取得的所述应用范围界限值对DM1L和所获得的所述内存地址FM8L来导致所述操作单元297提供包含所取得的所述应用范围界限值对DM1L和所获得的所述内存地址FM8L的一写入请求信息WB8L。例如,所述写入请求信息WB8L用于导致所述内存单元25Y1在所述内存位置PM8L存储所输送的所述应用范围界限值对DM1L。
在所述触发事件EQ81发生之前,所述处理单元230基于所取得的所述测量值应用范围码EH1L来获得所述内存地址FV8L,并基于所取得的所述控制数据码CK8T和所获得的所述内存地址FV8L来导致所述操作单元297提供包含所取得的所述控制数据码CK8T和所获得的所述内存地址FV8L的一写入请求信息WA8L。例如,所述写入请求信息WA8L用于导致所述内存单元25Y1在所述内存位置PV8L存储所输送的所述控制数据码CK8T。所述控制装置212耦合于一服务器280。所述识别媒介310是一电子标签350、一条形码媒介360和一生物识别作用媒介370的其中之一。所述电子标签350、所述存储单元250和所述服务器280的其中之一中包含所述内存单元25Y1。
在一些实施例中,所述额定物理参数范围RC1E包含一特定物理参数QP15,并由所述额定测量值范围RC1N所代表。所述感测单元260感测处于所述拘束条件FP81的所述可变物理参数QP1A以提供所述感测信号SM81到所述处理单元230。例如,所述拘束条件FP81 是所述可变物理参数QP1A等于所述特定物理参数QP15。在所述触发事件EQ81发生的条件下,所述处理单元230基于所述感测信号SM81来估计所述特定物理参数QP15以获得所述测量值VM81。
请参阅图47、图48、图49、图50、图51、图52、和图53。一种用于控制一可变物理参数QU1A的方法MM80被公开。所述可变物理参数QU1A基于由一测量值目标范围RN1T所代表的一物理参数目标范围RD1ET而被特征化。所述方法MM80包含下列步骤:提供一可变物理参数QP1A,其中所述可变物理参数QP1A基于由一测量值应用范围RM1L所代表的一物理参数应用范围RC1EL而被特征化;感测所述可变物理参数QP1A以产生一感测信号SM81;在一触发事件EQ81发生的条件下,响应所述感测信号SM81来获得一测量值VM81;以及在所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL借由检查所述测量值VM81和所述测量值应用范围RM1L之间的一数学关系KA81而被确定的条件下,产生起到指示所述测量值目标范围RN1T的作用的一控制信号SC81。
在一些实施例中,在所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL借由检查所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81而被确定的条件下,起到指示所述物理参数目标范围RD1ET的作用的所述控制信号SC81被产生。所述方法MM80进一步包含一步骤:提供一感测单元260。例如,感测所述可变物理参数QP1A的步骤借由使用所述感测单元260而被执行。所述感测单元260被配置以符合与所述测量值应用范围RM1L相关的一传感器规格FQ11。例如,所述传感器规格FQ11包含用于表示一传感器测量范围RA8E的一传感器测量范围表示GQ8R、和用于表示一传感器灵敏度YQ81的一传感器灵敏度表示GQ81。所述传感器灵敏度YQ81相关于由所述感测单元260所执行的一感测信号产生HE81。
所述可变物理参数QU1A进一步依靠一感测单元334而被控制。所述感测单元334被配置以符合与所述测量值目标范围RN1T相关的一传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相同或不同于所述传感器灵敏度YQ81。所述测量值VM81以一指定测量值格式HQ81而被获得。
所述可变物理参数QP1A进一步基于不同于所述物理参数应用范围RC1EL的一物理参数候选范围RC1E2而被特征化。所述测量值应用范围RM1L和代表所述物理参数候选范围RC1E2的一测量值候选范围RM12皆基于所述传感器测量范围表示GQ8R和所述所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预置。所述测量值目标范围RN1T基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一而被预置,并具有 一目标范围界限值对DN1T。
所述可变物理参数QU1A相关于一可变时间长度LF8A。例如,所述可变时间长度LF8A基于一参考时间长度LJ8T而被特征化。所述参考时间长度LJ8T由一测量时间长度值CL8T所代表。所述控制信号SC81输送所述目标范围界限值对DN1T、所述测量时间长度值CL8T和一控制码CC1T,并用于导致所述可变物理参数QU1A于所述物理参数目标范围RD1ET之内足有与所述参考时间长度LJ8T匹配的一应用时间长度LT8T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预先设定。所述控制信号SC81借由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。
所述测量值应用范围RM1L具有一应用范围界限值对DM1L。例如,所述应用范围界限值对DM1L被预置。所述测量值候选范围RM12具有一候选范围界限值对DM1B。例如,所述候选范围界限值对DM1B被预置。所述方法MM80进一步包含下列步骤:响应所述触发事件EQ81,获得所述应用范围界限值对DM1L;以及响应所述触发事件EQ81,获得所预置的所述候选范围界限值对DM1B。
在一些实施例中,产生所述控制信号SC81的步骤包含一子步骤:借由比较所述测量值VM81和所获得的所述应用范围界限值对DM1L,检查所述数学关系KA81。所述可变物理参数QU1A和所述可变物理参数QP1A分别属于一物理参数类型TU11和一物理参数类型TP11。例如,所述物理参数类型TU11相同或不同于所述物理参数类型TP11。所述物理参数应用范围RC1EL被配置以对应于在所述物理参数应用范围RC1EL之外的一对应物理参数范围RW1EL。
所述方法MM80进一步包含下列步骤:在所述可变物理参数QP1A目前处于的所述对应物理参数范围RW1EL借由检查所述数学关系KA81而被确定的条件下,执行所述测量值VM81和所获得的所述参考范围界限值对DM1B之间的一数据比较CA91;以及在所述可变物理参数QP1A目前处于的所述物理参数候选范围RC1E2基于所述数据比较CA91而被确定的条件下,产生用于控制所述可变物理参数QU1A的一控制信号SC82,所述控制信号SC82不同于所述控制信号SC81。
产生所述控制信号SC81的步骤进一步包含下列子步骤:在所述物理参数应用范围RC1EL借由检查所述数学关系KA81而被确定的条件下,获得包含所述目标范围界限值对DN1T、所述测量时间长度值CL8T和所述控制码CC1T的一控制数据码CK8T;以及基于所述控制数据码CK8T,执行用于产生所述控制信号SC81的一信号产生控制GS81。所述方法MM80进一步包含一步骤:在所述物理参数应用范围RC1EL借由检查所述数学关系KA81而被确 定的条件下,执行一数据存储控制操作GT81。所述数据存储控制操作GT81用于导致代表所确定的所述物理参数应用范围RC1EL的一物理参数应用范围码UM8L被记录。
在一些实施例中,所述可变物理参数QU1A和所述可变物理参数QP1A分别被形成于一实际位置LD81和不同于所述实际位置LD81的一实际位置LC81。所述方法MM80进一步包含下列步骤:提供一感测单元260,其中感测所述可变物理参数QP1A的步骤借由使用所述感测单元260而被执行;以及执行与所述物理参数应用范围RC1EL相关的一测量应用功能FB81。所述测量应用功能FB81被配置以符合与所述物理参数应用范围RC1EL相关的一测量应用功能规格GBL8。
所述感测单元260被配置以符合与所述测量值应用范围RM1L相关的一传感器规格FQ11。例如,所述传感器规格FQ11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YQ81的一传感器灵敏度表示GQ81。所述传感器灵敏度YQ81相关于由所述感测单元260所执行的一感测信号产生HE81。所述可变物理参数QU1A进一步依靠一感测单元334而被控制。所述感测单元334被配置以符合与所述测量值目标范围RN1T相关的一传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相同或不同于所述传感器灵敏度YQ81。
所述测量值VM81以一指定测量值格式HQ81而被获得。例如,所述指定测量值格式HQ81基于一指定比特数目UX81而被特征化。所述可变物理参数QP1A进一步基于一额定物理参数范围RC1E而被特征化。例如,所述额定物理参数范围RC1E由一额定测量值范围RC1N所代表,并包含由多个不同测量值参考范围RM11、RM12、…所分别代表的多个不同物理参数参考范围RC1E1、RC1E2、…。
在一些实施例中,所述多个不同物理参数参考范围RC1E1、RC1E2、…包含所述物理参数应用范围RC1EL。所述测量应用功能规格GBL8包含所述传感器规格FQ11、用于表示所述额定物理参数范围RC1E的一额定物理参数范围表示GB8E、和用于表示所述物理参数应用范围RC1EL的一物理参数应用范围表示GB8L。所述物理参数目标范围RD1ET由一物理参数候选范围表示GA8T所表示。
所述额定测量值范围RC1N基于所述额定物理参数范围表示GB8E、所述传感器测量范围表示GQ8R和用于转换所述额定物理参数范围表示GB8E的一数据编码操作ZR81来用所述指定测量值格式HQ81而被预置,具有一额定范围界限值对DC1A,并包含由多个不同测量值参考范围码EH11、EH12、…所分别代表的所述多个不同测量值参考范围RM11、RM12、…。 例如,所述额定范围界限值对DC1A用所述指定测量值格式HQ81而被预置。
所述多个不同测量值参考范围RM11、RM12、…包含所述测量值应用范围RM1L。所述测量值应用范围RM1L由包含于所述多个不同测量值参考范围码EH11、EH12、…中的一测量值应用范围码EH1L所代表,并具有一应用范围界限值对DM1L。例如,所述多个不同测量值参考范围码EH11、EH12、…皆基于所述测量应用功能规格GBL8而被预置。
所述应用范围界限值对DM1L包含一应用范围界限值DM15和相对于所述应用范围界限值DM15的一应用范围界限值DM16,并基于所述物理参数应用范围表示GB8L、所述传感器测量范围表示GQ8R和用于转换所述物理参数应用范围表示GB8L的一数据编码操作ZR82来用所述指定测量值格式HQ81而被预置。所述测量值目标范围RN1T基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和用于转换所述物理参数候选范围表示GA8T的一数据编码操作ZX83而被预置。
在一些实施例中,所述方法MM80进一步包含下列步骤:提供一存储空间SS11;以及在所述存储空间SS11中存储所预置的所述额定范围界限值对DC1A和一可变物理参数范围码UM8A。当所述触发事件EQ81发生时,所述可变物理参数范围码UM8A等于选择自所述多个不同测量值参考范围码EH11、EH12、…的一特定测量值范围码EH14。
例如,所述特定测量值范围码EH14指示基于基于一感测操作ZM81而被先前确定的一特定物理参数范围RC1E4。所述特定物理参数范围RC1E4选择自所述多个不同物理参数参考范围RC1E1、RC1E2、…。由所述感测单元260所执行的所述感测操作ZM81用于感测所述可变物理参数QP1A。在所述触发事件EQ81发生之前,所述特定测量值范围码EH14被指定到所述可变物理参数范围码UM8A。
所述方法MM80进一步包含下列步骤:响应所述触发事件EQ81,接收一操作请求信号SX81;在所述触发事件EQ81发生的条件下,响应所述操作请求信号SX81来从所述存储空间SS11获得一操作参考数据码XK81;以及借由运行一数据确定程序NE8A来执行使用所述操作参考数据码XK81的一数据确定AE8A以确定选择自所述多个不同测量值参考范围码EH11、EH12、…的所述测量值应用范围码EH1L以便从所述多个不同测量值参考范围RM11、RM12、…中选择所述测量值应用范围RM1L。
在一些实施例中,所述操作参考数据码XK81相同于基于所述测量应用功能规格GBL8而被预置的一可允许参考数据码。所述数据确定程序NE8A基于所述测量应用功能规格GBL8而被构建。所述数据确定AE8A是一数据确定操作AE81和一数据确定操作AE82的其中之一。在所述操作参考数据码XK81借由存取被存储在所述存储空间SS11中的所述可变物理参数范围码UM8A而被获得以相同于所述特定测量值范围码EH14的条件下,是所述数据确 定操作AE81的所述数据确定AE8A基于所获得的所述特定测量值范围码EH14来确定所述测量值应用范围码EH1L。例如,所确定的所述测量值应用范围码EH1L相同或不同于所获得的所述特定测量值范围码EH14。
在所述操作参考数据码XK81借由存取被存储在所述存储空间SS11中的所述额定范围界限值对DC1A而被获得以相同于所预置的所述额定范围界限值对DC1A的条件下,是所述数据确定操作AE82的所述数据确定AE8A借由执行使用所述测量值VM81和所获得的所述额定范围界限值对DC1A的一科学计算MF81来从所述多个不同测量值参考范围码EH11、EH12、…中选择所述测量值应用范围码EH1L以确定所述测量值应用范围码EH1L。例如,所述科学计算MF81基于一特定经验公式XP81而被执行。所述特定经验公式XP81基于所预置的所述额定范围界限值对DC1A和所述多个不同测量值参考范围码EH11、EH12、…而被预先制定。
所述方法MM80进一步包含一步骤:基于所确定的所述测量值应用范围码EH1L,获得所述应用范围界限值对DM1L。产生所述控制信号SC81的步骤包含下列子步骤:基于所述测量值VM81和所获得的所述参考范围界限值对DM1A之间的一数据比较CA81,检查所述数学关系KA81以做出所述测量值VM81是否为于所选择的所述测量值应用范围RM1L之内的一逻辑决定PH81;以及在所述逻辑决定PH81是肯定的条件下,确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL。
在一些实施例中,所述可变物理参数QU1A存在于一控制目标装置130中。所述触发事件EQ81是一触发作用事件、一用户输入事件、一信号输入事件、一状态改变事件、一识别媒介出现事件和一整数溢位事件的其中之一,并被应用到所述测量应用功能FB81。所述测量值目标范围RN1T由一测量值目标范围码EM1T所代表,并具有一目标范围界限值对DN1T。例如,所述测量值目标范围码EM1T基于所述测量应用功能规格GBL8而被预置。所预置的所述测量值应用范围码EH1L和所预置的所述测量值目标范围码EM1T之间具有一数学关系KY81。
所述方法MM80进一步包含下列步骤:在是所述触发作用事件的所述触发事件EQ81要发生的条件下,借由使用所述控制目标装置130来执行与所述可变物理参数QU1A相关的一特定功能操作ZH81,其中所述特定功能操作ZH81用于导致所述触发作用事件发生;以及提供相关于所述测量应用功能FB81的一内存空间SA1。例如,所述内存空间SA1具有一内存位置PM8L和不同于所述内存位置PM8L的一内存位置PV8L。例如,所述存储空间SS11包含所述内存空间SA1。
所述方法MM80进一步包含下列步骤:在所述内存位置PM8L存储所述参考范围界限值 对DM1A;以及在所述内存位置PV8L存储一控制数据码CK8T。例如,所述内存位置PM8L和所述内存位置PV8L皆基于所预置的所述测量值参考范围码EH1L而被识别。所述控制数据码CK8T包含所述测量值目标范围码EM1T。
在一些实施例中,获得所述应用范围界限值对DM1L的步骤包含一子步骤:借由运行一数据获取程序NF8A来执行使用所确定的所述测量值应用范围码EH1L的一数据获取AF8A以获得所述应用范围界限值对DM1L。例如,所述数据获取AF8A是一数据获取操作AF81和一数据获取操作AF82的其中之一。所述数据获取程序NF8A基于所述测量应用功能规格GBL8而被构建。
所述数据获取操作AF81基于所确定的所述测量值应用范围码EH1L来使用所述内存单元25Y1以存取被存储在所述内存位置PM8L的所述应用范围界限值对DM1L以获得所述应用范围界限值对DM1L。所述数据获取操作AF82借由读取被存储在所述存储空间SS11中的所述额定范围界限值对DC1A来取得所述额定范围界限值对DC1A,并借由执行使用所确定的所述测量值应用范围码EH1L和所取得的所述额定范围界限值对DC1A的一科学计算MG81来获得所述应用范围界限值对DM1L。
在一些实施例中,产生所述控制信号SC81的步骤进一步包含一子步骤:在所述物理参数应用范围RC1EL被确定的条件下,执行使用所确定的所述测量值应用范围码EH1L的一数据获取AG8A以获得一控制应用码UA8T。例如,所述数据获取AG8A是一数据获取操作AG81和一数据获取操作AG82的其中之一。
所述数据获取操作AG81基于所确定的所述测量值参考范围码EH1L来存取被存储在所述内存位置PV8L的所述控制数据码CK8T以获得等于所述控制数据码CK8T的所述控制应用码UA8T。所述数据获取操作AG82借由执行使用所确定的所述测量值应用范围码EH1L和所述数学关系KY81的一科学计算MQ81来获得等于所预置的所述测量值目标范围码EM1T的所述控制应用码UA8T。
产生所述控制信号SC81的步骤进一步包含下列子步骤:基于所获得的所述控制应用码UA8T,在一操作时间TD81之内执行用于所述测量应用功能FB81的一信号产生控制GS81;以及响应所述信号产生控制GS81,执行用于所述测量应用功能FB81的一信号产生操作BS81以产生所述控制信号SC81。例如,所述控制信号SC81借由输送所述测量值目标范围码EM1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用,并用于导致所述可变物理参数QU1A于所述物理参数目标范围RD1ET之内。
在一些实施例中,所述方法MM80进一步包含下列步骤:在所述特定测量值范围码EH14不同于所确定的所述测量值应用范围码EH1L且所述物理参数应用范围RC1EL借由做出所 述逻辑决定PH81而被确定的条件下,基于等于所述特定测量值范围码EH14的所述可变物理参数范围码UM8A和所确定的所述测量值参考范围码EH1L之间的一码差异DA81来将所确定的所述测量值参考范围码EH1L指定到所述可变物理参数范围码UM8A;以及在所述触发事件EQ81是所述可变物理参数QP1A从所述特定物理参数范围RC1E4进入所述物理参数应用范围RC1EL的所述状态改变事件的条件下,基于所述码差异DA81来确定是所述状态改变事件的所述触发事件EQ81。
所述方法MM80进一步包含下列步骤:当所述触发事件EQ81发生时,显示一状态指示LA81,其中所述状态指示LA81用于指示所述可变物理参数QP1A被配置于所述特定物理参数范围RC1E4之内的一特定状态XH81;以及在所述特定测量值范围码EH14不同于所确定的所述测量值应用范围码EH1L且所述物理参数应用范围RC1EL借由做出所述逻辑决定PH81而被确定的条件下,基于所述码差异DA81来将所述状态指示LA81改变成一状态指示LA82。例如,所述状态指示LA82用于指示所述可变物理参数QP1A被配置于所述物理参数应用范围RC1EL之内的一特定状态XH82。
请参阅图47、图48、图49、图50、图51、图52和图53。一种用于借由产生一控制信号SC81而控制一可变物理参数QU1A的方法MM82被公开。所述可变物理参数QU1A基于由一测量值目标范围RN1T所代表的一物理参数目标范围RD1ET而被特征化。所述方法MM82包含下列步骤:所述控制装置212提供一可变物理参数QP1A,其中所述可变物理参数QP1A基于由一测量值应用范围RM1L所代表的一物理参数应用范围RC1EL而被特征化;以及所述感测单元260感测所述可变物理参数QP1A以产生一感测信号SM81。
所述方法MM82包含进一步下列步骤:在一触发事件EQ81发生的条件下,所述处理单元230响应所述感测信号SM81来获得一测量值VM81;以及所述处理单元230借由检查所述测量值VM81和所述测量值应用范围RM1L之间的一数学关系KA81,确定所述可变物理参数QP1A和所述物理参数应用范围RC1EL之间的一物理参数关系KB81以做出起到指示所述测量值目标范围RN1T的作用的所述控制信号SC81是否要被产生的一合理决定PA81。
在一些实施例中,所述处理单元230借由检查所述数学关系KA81,确定所述物理参数关系KB81以做出起到指示所述物理参数目标范围RD1ET的作用的所述控制信号SC81是否要被产生的所述合理决定PA81。所述方法MM82进一步包含一步骤:提供一感测单元260。例如,感测所述可变物理参数QP1A的步骤借由使用所述感测单元260而被执行。所述感测单元260被配置以符合与所述测量值应用范围RM1L相关的一传感器规格FQ11。例如,所述传感器规格FQ11包含用于表示一传感器测量范围RA8E的一传感器测量范围表示GQ8R、和用于表示一传感器灵敏度YQ81的一传感器灵敏度表示GQ81。所述传感器灵敏度 YQ81相关于由所述感测单元260所执行的一感测信号产生HE81。
所述可变物理参数QU1A进一步依靠一感测单元334而被控制。所述感测单元334被配置以符合与所述测量值目标范围RN1T相关的一传感器规格FU11。例如,所述传感器规格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相同或不同于所述传感器灵敏度YQ81。所述测量值VM81以一指定测量值格式HQ81而被所述处理单元230获得。
所述可变物理参数QP1A进一步基于不同于所述物理参数应用范围RC1EL的一物理参数候选范围RC1E2而被特征化。所述测量值应用范围RM1L和代表所述物理参数候选范围RC1E2的一测量值候选范围RM12皆基于所述传感器测量范围表示GQ8R和所述所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预置。所述测量值目标范围RN1T基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一而被预置,并具有一目标范围界限值对DN1T。
所述可变物理参数QU1A相关于一可变时间长度LF8A。例如,所述可变时间长度LF8A基于一参考时间长度LJ8T而被特征化。所述参考时间长度LJ8T由一测量时间长度值CL8T所代表。所述控制信号SC81输送所述目标范围界限值对DN1T、所述测量时间长度值CL8T和一控制码CC1T,并用于导致所述可变物理参数QU1A于所述物理参数目标范围RD1ET之内足有与所述参考时间长度LJ8T匹配的一应用时间长度LT8T。例如,所述控制码CC1T基于在所述物理参数目标范围RD1ET之内的一指定物理参数QD1T而被预先设定。所述控制信号SC81借由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。
所述测量值应用范围RM1L具有一应用范围界限值对DM1L。例如,其中所述应用范围界限值对DM1L被预置。所述测量值候选范围RM12具有一候选范围界限值对DM1B。例如,其中所述候选范围界限值对DM1B被预置。所述方法MM82进一步包含下列步骤:所述处理单元230响应所述触发事件EQ81,获得所述应用范围界限值对DM1L;以及所述处理单元230响应所述触发事件EQ81,获得所预置的所述候选范围界限值对DM1B。
在一些实施例中,确定所述物理参数关系KB81的步骤包含一子步骤:所述处理单元230基于所述测量值VM81和所获得的所述应用范围界限值对DM1L之间的一数据比较CA81,检查所述数学关系KA81。所述可变物理参数QU1A和所述可变物理参数QP1A分别属于一物理参数类型TU11和一物理参数类型TP11。例如,所述物理参数类型TU11相同或不同于所述物理参数类型TP11。所述物理参数应用范围RC1EL被配置以对应于在所述物理参数应用 范围RC1EL之外的一对应物理参数范围RW1EL。
所述方法MM82进一步包含下列步骤:在所述可变物理参数QP1A目前处于的所述对应物理参数范围RW1EL借由检查所述数学关系KA81而被所述处理单元230确定的条件下,所述处理单元230执行所述测量值VM81和所获得的所述参考范围界限值对DM1B之间的一数据比较CA91;以及在所述可变物理参数QP1A目前处于的所述物理参数候选范围RC1E2基于所述数据比较CA91而被所述处理单元230确定的条件下,所述处理单元230导致所述输出单元240产生用于控制所述可变物理参数QU1A的一控制信号SC82。所述控制信号SC82不同于所述控制信号SC81。
所述方法MM82进一步包含下列步骤:在所述合理决定PA81是肯定的条件下,所述处理单元230获得包含所述目标范围界限值对DN1T、所述测量时间长度值CL8T和所述控制码CC1T的一控制数据码CK8T;所述处理单元230基于所述控制数据码CK8T,执行用于产生所述控制信号SC81的一信号产生控制GS81;以及在所述物理参数关系KB81基于所述数据比较CA81而被所述处理单元230辨识为一物理参数交集关系以确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230执行一数据存储控制操作GT81。所述数据存储控制操作GT81用于导致代表所确定的所述物理参数应用范围RC1EL的一物理参数应用范围码UM8L被所述存储单元250记录。
在一些实施例中,所述可变物理参数QU1A和所述可变物理参数QP1A分别被形成于一实际位置LD81和不同于所述实际位置LD81的一实际位置LC81。所述方法MM82进一步包含下列步骤:所述控制装置212提供一感测单元260,其中感测所述可变物理参数QP1A的步骤借由使用所述感测单元260而被执行;以及所述操作单元297执行与所述物理参数应用范围RC1EL相关的一测量应用功能FB81。所述测量应用功能FB81被配置以符合与所述物理参数应用范围RC1EL相关的一测量应用功能规格GBL8。
所述感测单元260被配置以符合与所述测量值应用范围RM1L相关的一传感器规格FQ11。例如,所述传感器规格FQ11包含用于表示一传感器测量范围RA8E的一传感器测量范围表示GQ8R、和用于表示一传感器灵敏度YQ81的一传感器灵敏度表示GQ81。所述传感器灵敏度YQ81相关于由所述感测单元260所执行的一感测信号产生HE81。例如,当所述触发事件EQ81发生时,所述感测单元260感测所述可变物理参数QP1A以执行相依于所述传感器灵敏度YQ81的所述感测信号产生HE81,所述感测信号产生HE81用于产生所述感测信号SM81。
所述可变物理参数QU1A进一步依靠一感测单元334而被控制。所述感测单元334被配置以符合与所述测量值目标范围RN1T相关的一传感器规格FU11。例如,所述传感器规 格FU11包含用于表示一传感器测量范围RB8E的一传感器测量范围表示GW8R、和用于表示一传感器灵敏度YW81的一传感器灵敏度表示GW81。所述传感器灵敏度YW81相同或不同于所述传感器灵敏度YQ81。
在一些实施例中,所述测量值VM81以一指定测量值格式HQ81而被所述处理单元230获得。例如,所述指定测量值格式HQ81基于一指定比特数目UX81而被特征化。所述可变物理参数QP1A进一步基于一额定物理参数范围RC1E而被特征化。例如,所述额定物理参数范围RC1E由一额定测量值范围RC1N所代表。包含由多个不同测量值参考范围RM11、RM12、…所分别代表的多个不同物理参数参考范围RC1E1、RC1E2、…。
所述多个不同物理参数参考范围RC1E1、RC1E2、…包含所述物理参数应用范围RC1EL。所述测量应用功能规格GBL8包含所述传感器规格FQ11、用于表示所述额定物理参数范围RC1E的一额定物理参数范围表示GB8E、和用于表示所述物理参数应用范围RC1EL的一物理参数应用范围表示GB8L。所述物理参数目标范围RD1ET由一物理参数候选范围表示GA8T所表示。例如,所述物理参数候选范围表示GA8T被预置。
所述额定测量值范围RC1N基于所述额定物理参数范围表示GB8E、所述传感器测量范围表示GQ8R和用于转换所述额定物理参数范围表示GB8E的一数据编码操作ZR81来用所述指定测量值格式HQ81而被预置,具有一额定范围界限值对DC1A,并包含由多个不同测量值参考范围码EH11、EH12、…所分别代表的所述多个不同测量值参考范围RM11、RM12、…。例如,所述额定范围界限值对DC1A用所述指定测量值格式HQ81而被预置。所述额定测量值范围RC1N和所述额定范围界限值对DC1A皆基于所述传感器测量范围表示GQ8R和所述所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预置。
在一些实施例中,所述多个不同测量值参考范围RM11、RM12、…包含所述测量值应用范围RM1L。所述测量值应用范围RM1L由包含于所述多个不同测量值参考范围码EH11、EH12、…中的一测量值应用范围码EH1L所代表,并具有一应用范围界限值对DM1L;藉此所述测量值应用范围码EH1L被配置以指示所述物理参数应用范围RC1EL。例如,所述多个不同测量值参考范围码EH11、EH12、…皆基于所述测量应用功能规格GBL8而被预置。
所述应用范围界限值对DM1L包含所述测量值应用范围RM1L的一应用范围界限值DM15和相对于所述应用范围界限值DM15的一应用范围界限值DM16,并基于所述物理参数应用范围表示GB8L、所述传感器测量范围表示GQ8R和用于转换所述物理参数应用范围表示GB8L的一数据编码操作ZR82来用所述指定测量值格式HQ81而被预置。
所述测量值应用范围RM1L基于所述物理参数应用范围表示GB8L、所述传感器测量范围表示GQ8R和所述数据编码操作ZR82来用所述指定测量值格式HQ81而被预置。所述测 量值目标范围RN1T基于所述物理参数候选范围表示GA8T、所述传感器测量范围表示GW8R和用于转换所述物理参数候选范围表示GA8T的一数据编码操作ZX83而被预置。
在一些实施例中,所述方法MM82进一步包含下列步骤:所述存储单元250提供一存储空间SS11;以及所述存储单元250在所述存储空间SS11中存储所预置的所述额定范围界限值对DC1A和一可变物理参数范围码UM8A。当所述触发事件EQ81发生时,所述可变物理参数范围码UM8A等于选择自所述多个不同测量值参考范围码EH11、EH12、…的一特定测量值范围码EH14。
例如,所述特定测量值范围码EH14指示基于基于一感测操作ZM81而被所述处理单元230先前确定的一特定物理参数范围RC1E4。所述特定物理参数范围RC1E4选择自所述多个不同物理参数参考范围RC1E1、RC1E2、…。由所述感测单元260所执行的所述感测操作ZM81用于感测所述可变物理参数QP1A。在所述触发事件EQ81发生之前,所述特定测量值范围码EH14被指定到所述可变物理参数范围码UM8A。
例如,在所述触发事件EQ81发生之前,所述处理单元230获得所述特定测量值范围码EH14。在所述处理单元230于所述触发事件EQ81发生之前基于所述感测操作ZM81而确定所述特定物理参数范围RC1E4的条件下,所述处理单元230借由使用所述存储单元250来将所获得的所述特定测量值范围码EH14指定到所述可变物理参数范围码UM8A。所述特定测量值范围码EH14代表被配置以代表所述特定物理参数范围RC1E4的一特定测量值范围。所述特定测量值范围基于所述传感器测量范围表示GQ8R和所述所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预置。例如,所述感测单元260借由执行所述感测操作ZM81来执行相依于所述传感器灵敏度YQ81的一感测信号产生以产生一感测信号。
在所述触发事件EQ81发生之前,所述处理单元230接收所述感测信号,响应所述感测信号来以所述指定测量值格式HQ81获得一特定测量值,并执行用于检查所述特定测量值和所述特定测量值范围之间的一数学关系的一特定检查操作。在所述处理单元230基于所述特定检查操作而确定所述可变物理参数QP1A处于的所述特定物理参数范围RC1E4的条件下,所述处理单元230借由使用所述存储单元250来将所获得的所述特定测量值范围码EH14指定到所述可变物理参数范围码UM8A。所述处理单元230响应用于感测所述可变物理参数QP1A的一特定感测操作来决定所述处理单元230是否要使用所述存储单元250以改变所述可变物理参数范围码UM8A。例如,所述特定感测操作由所述感测单元260所执行。
在一些实施例中,所述方法MM82进一步包含下列步骤:响应与所述触发应用单元281 相关的所述触发事件EQ81,接收一操作请求信号SX81;在所述触发事件EQ81发生的条件下,所述处理单元230响应所述操作请求信号SX81来从所述存储空间SS11获得一操作参考数据码XK81;以及所述处理单元230借由运行一数据确定程序NE8A来执行使用所述操作参考数据码XK81的一数据确定AE8A以确定选择自所述多个不同测量值参考范围码EH11、EH12、…的所述测量值应用范围码EH1L以便从所述多个不同测量值参考范围RM11、RM12、…中选择所述测量值应用范围RM1L。
所述操作参考数据码XK81相同于基于所述测量应用功能规格GBL8而被预置的一可允许参考数据码。所述数据确定程序NE8A基于所述测量应用功能规格GBL8而被构建。所述数据确定AE8A是一数据确定操作AE81和一数据确定操作AE82的其中之一。在所述操作参考数据码XK81借由存取被存储在所述存储空间SS11中的所述可变物理参数范围码UM8A而被所述处理单元230获得以相同于所述特定测量值范围码EH14的条件下,是所述数据确定操作AE81的所述数据确定AE8A基于所获得的所述特定测量值范围码EH14来确定所述测量值应用范围码EH1L。例如,所确定的所述测量值应用范围码EH1L相同或不同于所获得的所述特定测量值范围码EH14。
在所述操作参考数据码XK81借由存取被存储在所述存储空间SS11中的所述额定范围界限值对DC1A而被所述处理单元230获得以相同于所预置的所述额定范围界限值对DC1A的条件下,是所述数据确定操作AE82的所述数据确定AE8A借由执行使用所述测量值VM81和所获得的所述额定范围界限值对DC1A的一科学计算MF81来从所述多个不同测量值参考范围码EH11、EH12、…中选择所述测量值应用范围码EH1L以确定所述测量值应用范围码EH1L。例如,所述科学计算MF81基于一特定经验公式XP81而被执行。所述特定经验公式XP81基于所预置的所述额定范围界限值对DC1A和所述多个不同测量值参考范围码EH11、EH12、…而被预先制定。例如,所述特定经验公式XP81基于所述测量应用功能规格GBL8而被预先制定。
在一些实施例中,所述方法MM82进一步包含一步骤:所述处理单元230基于所确定的所述测量值应用范围码EH1L,获得所述应用范围界限值对DM1L。确定所述物理参数关系KB81的步骤包含下列子步骤:所述处理单元230基于所述测量值VM81和所获得的所述应用范围界限值对DM1L之间的一数据比较CA81,检查所述数学关系KA81以做出所述测量值VM81是否为于所选择的所述测量值应用范围RM1L之内的一逻辑决定PH81;以及在所述逻辑决定PH81是肯定的条件下,所述处理单元230借由辨识所述物理参数关系KB81为一物理参数交集关系来做出所述合理决定PA81以成为肯定的。
例如,在所述应用范围界限值DM15不同于所述应用范围界限值DM16且所述测量值 VM81是于所述应用范围界限值DM15和所述应用范围界限值DM16之间的条件下,所述处理单元230借由比较所述测量值VM81和所获得的所述应用范围界限值对DM1L来做出所述逻辑决定PH81以成为肯定的。在所述应用范围界限值DM15、所述应用范围界限值DM16和所述测量值VM81是相等的条件下,所述处理单元230借由比较所述测量值VM81和所获得的所述应用范围界限值对DM1L来做出所述逻辑决定PH81以成为肯定的。
在一些实施例中,所述可变物理参数QU1A存在于一控制目标装置130中。所述触发事件EQ81是一触发作用事件、一用户输入事件、一信号输入事件、一状态改变事件、一识别媒介出现事件和一整数溢位事件的其中之一,并被应用到所述测量应用功能FB81。所述测量值目标范围RN1T由一测量值目标范围码EM1T所代表,并具有一目标范围界限值对DN1T;藉此所述测量值目标范围码EM1T被配置以指示所述物理参数目标范围RD1ET。例如,所述测量值目标范围码EM1T基于所述测量应用功能规格GBL8而被预置。所预置的所述测量值应用范围码EH1L和所预置的所述测量值目标范围码EM1T之间具有一数学关系KY81。
所述方法MM82进一步包含下列步骤:在是所述触发作用事件的所述触发事件EQ81要发生的条件下,借由使用所述控制目标装置130来执行与所述可变物理参数QU1A相关的一特定功能操作ZH81,其中所述特定功能操作ZH81用于导致所述触发作用事件发生;所述操作单元297提供用于执行所述测量应用功能FB81的一响应区域AC1;以及所述内存单元25Y1提供相关于所述测量应用功能FB81的一内存空间SA1。例如,所述内存空间SA1具有一内存位置PM8L和不同于所述内存位置PM8L的一内存位置PV8L。例如,所述存储空间SS11包含所述内存空间SA1。
所述方法MM82进一步包含下列步骤:所述内存单元25Y1在所述内存位置PM8L存储所述应用范围界限值对DM1L;以及所述内存单元25Y1在所述内存位置PV8L存储一控制数据码CK8T。例如,所述内存位置PM8L和所述内存位置PV8L皆基于所预置的所述测量值应用范围码EH1L而被识别。所述控制数据码CK8T包含所述测量值目标范围码EM1T。例如,所述应用范围界限值对DM1L和所述控制数据码CK8T皆基于所预置的所述测量值应用范围码EH1L而被存储。
在一些实施例中,获得所述应用范围界限值对DM1L的步骤包含一子步骤:所述处理单元230借由运行一数据获取程序NF8A来执行使用所确定的所述测量值应用范围码EH1L的一数据获取AF8A以获得所述应用范围界限值对DM1L。例如,所述数据获取AF8A是一数据获取操作AF81和一数据获取操作AF82的其中之一。所述数据获取程序NF8A基于所述测量应用功能规格GBL8而被构建。所述数据获取操作AF81基于所确定的所述测量值应用范围码EH1L来使用所述内存单元25Y1以存取被存储在所述内存位置PM8L的所述应用范 围界限值对DM1L以获得所述应用范围界限值对DM1L。
所述数据获取操作AF82借由读取被存储在所述存储空间SS11中的所述额定范围界限值对DC1A来取得所述额定范围界限值对DC1A,并借由执行使用所确定的所述测量值应用范围码EH1L和所取得的所述额定范围界限值对DC1A的一科学计算MG81来获得所述应用范围界限值对DM1L。例如,所述额定范围界限值对DC1A包含所述额定测量值范围RC1N的一额定范围界限值DC11和相对于所述额定范围界限值DC11的一额定范围界限值DC12,并基于所述额定物理参数范围表示GB8E、所述传感器测量范围表示GQ8R和所述数据编码操作ZR81来用所述指定测量值格式HQ81而被预置。
在一些实施例中,所述方法MM82进一步包含一步骤:在所述合理决定PA81是肯定的条件下,所述处理单元230执行使用所确定的所述测量值应用范围码EH1L的一数据获取AG8A以获得一控制应用码UA8T。例如,所述数据获取AG8A是一数据获取操作AG81和一数据获取操作AG82的其中之一。
所述数据获取操作AG81基于所确定的所述测量值应用范围码EH1L来存取被存储在所述内存位置PV8L的所述控制数据码CK8T以获得等于所述控制数据码CK8T的所述控制应用码UA8T。所述数据获取操作AG82借由执行使用所确定的所述测量值应用范围码EH1L和所述数学关系KY81的一科学计算MQ81来获得等于所预置的所述测量值目标范围码EM1T的所述控制应用码UA8T。
所述方法MM82进一步包含下列步骤:所述处理单元230基于所获得的所述控制应用码UA8T,在一操作时间TD81之内执行用于所述测量应用功能FB81的一信号产生控制GS81以控制所述输出单元240;以及所述输出单元240响应所述信号产生控制GS81,执行用于所述测量应用功能FB81的一信号产生操作BS81以产生所述控制信号SC81。例如,所述控制信号SC81借由输送所述测量值目标范围码EM1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用,并用于导致所述可变物理参数QU1A于所述物理参数目标范围RD1ET之内。
在一些实施例中,所述多个不同物理参数参考范围RC1E1、RC1E2、…进一步包含不同于所述物理参数应用范围RC1EL的一物理参数候选范围RC1E2。所述多个不同测量值参考范围RM11、RM12、…具有一总参考范围数目NS81,并进一步包含代表所述物理参数候选范围RC1E2的一测量值候选范围RM12。所述测量应用功能规格GBL8进一步包含用于表示所述物理参数候选范围RC1E2的一物理参数候选范围表示GB82。
所述测量值候选范围RM12由不同于所述测量值应用范围码EH1L的一测量值候选范围码EH12所代表,具有一候选范围界限值对DM1B,并被配置以代表所述物理参数候选范围 RC1E2;藉此所述测量值候选范围码EH12被配置以指示所述物理参数候选范围RC1E2。例如,所述候选范围界限值对DM1B基于所述物理参数候选范围表示GB82、所述传感器测量范围表示GQ8R和用于转换所述物理参数候选范围表示GB82的一数据编码操作ZR83来用所述指定测量值格式HQ81而被预置。
所述测量值候选范围RM12基于所述物理参数候选范围表示GB82、所述传感器测量范围表示GQ8R和所述数据编码操作ZR83来用所述指定测量值格式HQ81而被预置。所述总参考范围数目NS81基于所述测量应用功能规格GBL8而被预置。所述方法MM82进一步包含一步骤:所述处理单元230响应所述触发事件EQ81,获得所述总参考范围数目NS81。所述科学计算MF81进一步使用所获得的所述总参考范围数目NS81。所述科学计算MG81进一步使用所获得的所述总参考范围数目NS81。例如,所述总参考范围数目NS81大于或等于2。例如,所述总参考范围数目NS81≧3;所述总参考范围数目NS81≧4;所述总参考范围数目NS81≧5;所述总参考范围数目NS81≧6;且所述总参考范围数目NS81≦255。
所述方法MM82进一步包含下列步骤:借由使用所述控制目标装置130,接收所述控制信号SC81;借由使用所述控制目标装置130,从所接收的所述控制信号SC81获得所述测量值目标范围码EM1T;以及借由使用所述控制目标装置130,基于所获得的所述测量值目标范围码EM1T来导致所述可变物理参数QU1A于所述物理参数目标范围RD1ET之内。例如,所述控制信号SC81输送基于所述控制应用码UA8T而被确定的一控制信息CG81。所述控制信息CG81包含所述测量值目标范围码EM1T。例如,所述控制信息CG81包含所述目标范围界限值对DN1T和所述控制码CC1T。
所述测量值应用范围RM1L是所述额定测量值范围RC1N的一第一部分。所述测量值候选范围RM12是所述额定测量值范围RC1N的一第二部分。所述物理参数应用范围RC1EL和所述物理参数候选范围RC1E2是分开的或相邻的。在所述物理参数应用范围RC1EL和所述物理参数候选范围RC1E2是分开的条件下,所述测量值应用范围RM1L和所述测量值候选范围RM12是分开的。在所述物理参数应用范围RC1EL和所述物理参数候选范围RC1E2是相邻的条件下,所述测量值应用范围RM1L和所述测量值候选范围RM12是相邻的。
例如,所述测量值应用范围码EH1L被配置以等于一整数。所述额定范围界限值DC12大于所述额定范围界限值DC11。所述额定范围界限值DC12和所述额定范围界限值DC11之间具有相对于所述额定范围界限值DC11的一相对值VC11。所述相对值VC11等于所述额定范围界限值DC12减去所述额定范围界限值DC11的一计算结果。例如,所述应用范围界限值对DM1L基于所述额定范围界限值DC11、所述额定范围界限值DC12、所述整数、和所述相对值VC11对于所述总参考范围数目NS81的一比率而被预置。所述科学计算MG81使用 所述额定范围界限值DC11、所述额定范围界限值DC12、所述整数、所述比率和其任意组合的其中之一。
在一些实施例中,所述方法MM82进一步包含下列步骤:在所述逻辑决定PH81是否定的条件下,所述处理单元230借由执行使用所确定的所述测量值应用范围码EH1L的一科学计算MF82来确定选择自所述多个不同测量值参考范围码EH11、EH12、…的所述测量值候选范围码EH12以便从所述多个不同测量值参考范围RM11、RM12、…中选择所述测量值候选范围RM12;以及所述处理单元230基于所确定的所述测量值候选范围码EH12,获得所述候选范围界限值对DM1B。
所述方法MM82进一步包含下列步骤:所述处理单元230基于所述测量值VM81和所获得的所述候选范围界限值对DM1B之间的一数据比较CA91,检查所述测量值VM81和所选择的所述测量值候选范围RM12之间的一数学关系KA91以做出所述测量值VM81是否为于所选择的所述测量值候选范围RM12之内的一逻辑决定PH91;在所述逻辑决定PH91是肯定的条件下,所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数候选范围RC1E2;以及在所述可变物理参数QP1A目前处于的所述物理参数候选范围RC1E2被所述处理单元230确定的条件下,所述处理单元230导致所述输出单元240执行用于所述测量应用功能FB81的一信号产生操作BS91以产生用于控制所述可变物理参数QU1A的一控制信号SC82。所述控制信号SC82不同于所述控制信号SC81。
所述方法MM82进一步包含一步骤:在所述特定测量值范围码EH14不同于所确定的所述测量值应用范围码EH1L且所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL借由做出所述逻辑决定PH81而被确定的条件下,所述处理单元230基于等于所述特定测量值范围码EH14的所述可变物理参数范围码UM8A和所确定的所述测量值应用范围码EH1L之间的一码差异DA81来使用所述存储单元250以将所确定的所述测量值应用范围码EH1L指定到所述可变物理参数范围码UM8A。
所述方法MM82进一步包含一步骤:在所述触发事件EQ81是所述可变物理参数QP1A从所述特定物理参数范围RC1E4进入所述物理参数应用范围RC1EL的所述状态改变事件的条件下,所述处理单元230基于所述码差异DA81来确定是所述状态改变事件的所述触发事件EQ81。获得所述测量值VM81的步骤包含一子步骤:在所述触发事件EQ81是所述识别媒介出现事件且出现于所述响应区域AC1的一识别媒介310被所述处理单元230辨识了的条件下,所述处理单元230基于所述感测信号SM81来获得所述测量值VM81。
在一些实施例中,所述方法MM82进一步包含下列步骤:当所述触发事件EQ81发生时,所述输出单元240显示一状态指示LA81,其中所述状态指示LA81用于指示所述可变物理 参数QP1A被配置于所述特定物理参数范围RC1E4之内的一特定状态XH81;以及在所述特定测量值范围码EH14不同于所确定的所述测量值应用范围码EH1L且所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL借由做出所述逻辑决定PH81而被所述处理单元230确定的条件下,所述处理单元230基于所述码差异DA81来将所述状态指示LA81改变成一状态指示LA82。例如,所述状态指示LA82用于指示所述可变物理参数QP1A被配置于所述物理参数应用范围RC1EL之内的一特定状态XH82。
所述方法MM82进一步包含下列步骤:在响应所述控制信号SC81而被所述控制目标装置130产生的一控制响应信号SE81于所述操作时间TD81之后的一指定时间TW81之内从所述控制目标装置130而被所述输入单元270接收的条件下,所述处理单元230响应所述控制响应信号SE81来执行与所述可变物理参数QU1A相关的一特定实际操作BJ81;在所述操作时间TD81之后,所述感测单元260感测所述可变物理参数QP1A以产生一感测信号SM82;以及于所述操作时间TD81之后的一指定时间TE82之内,所述处理单元230响应所述感测信号SM82来以所述指定测量值格式HQ81获得一测量值VM82。
例如,在所述操作时间TD81之后,所述感测单元260感测所述可变物理参数QP1A以执行相依于所述传感器灵敏度YQ81的一感测信号产生HE82,所述感测信号产生HE82用于产生所述感测信号SM82。所述方法MM82进一步包含一步骤:所述处理单元230于所述指定时间TE82之内,借由执行使用所确定的所述测量值应用范围码EH1L的一科学计算MF83来获得包含于所述多个不同测量值参考范围码EH11、EH12、…中的一特定测量值范围码EH17。
例如,所述特定测量值范围码EH17不同于所确定的所述测量值应用范围码EH1L,并代表包含于所述多个不同测量值参考范围RM11、RM12、…中的一特定测量值范围RM17。所述特定测量值范围RM17代表包含于所述多个不同物理参数参考范围RC1E1、RC1E2、…中的一特定物理参数范围RC1E7。
在一些实施例中,所述方法MM82进一步包含下列步骤:所述处理单元230基于所述特定测量值范围码EH17,执行用于检查所述测量值VM82和所述特定测量值范围RM17之间的一第四数学关系KA83的一检查操作BA83;以及在所述可变物理参数QP1A目前处于的所述特定物理参数范围RC1E7于所述指定时间TE82之内基于所述检查操作BA83而被所述处理单元230确定的条件下,所述处理单元230导致所述输出单元240产生用于控制所述可变物理参数QU1A的一控制信号SC83,并将所述特定测量值范围码EH17指定到所述可变物理参数范围码UM8A。例如,所述控制信号SC83不同于所述控制信号SC81。
感测所述可变物理参数QP1A的步骤包含一子步骤:在所述触发事件EQ81发生的条件 下,所述感测单元260感测处于一拘束条件FP81的所述可变物理参数QP1A以提供所述感测信号SM81到所述处理单元230。例如,所述拘束条件FP81是所述可变物理参数QP1A等于包含于所述额定物理参数范围RC1E中的一特定物理参数QP11。获得所述测量值VM81的步骤包含一子步骤:所述处理单元230基于所述感测信号SM81,估计所述特定物理参数QP11以获得所述测量值VM81。
由于处于所述拘束条件FP81的所述可变物理参数QP1A是于所述物理参数应用范围RC1EL之内,所述处理单元230辨识所述测量值VM81为于所述测量值应用范围RM1L之内的一可允许值,藉此辨识所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81为一数值交集关系,并藉此确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL。
在一些实施例中,所述感测单元260基于与所述感测信号产生HE81相关的所述传感器灵敏度YQ81而被特征化,并被配置以符合所述传感器规格FQ11。所述传感器规格FQ11包含用于表示所述传感器灵敏度YQ81的所述传感器灵敏度表示GQ81、和用于表示所述传感器测量范围RA8E的所述传感器测量范围表示GQ8R。例如,所述额定物理参数范围RC1E被配置以相同于所述传感器测量范围RA8E,或被配置以是所述传感器测量范围RA8E的一部分。所述传感器测量范围RA8E相关于由所述感测单元260所执行的一物理参数感测。所述传感器测量范围表示GQ8R基于一第一预置测量单位而被提供。例如,所述第一预置测量单位是一公制测量单位和一英制测量单位的其中之一。
所述额定测量值范围RC1N、所述额定范围界限值对DC1A、所述测量值应用范围RM1L、所述应用范围界限值对DM1L、所述测量值候选范围RM12、所述候选范围界限值对DM1B和所述多个不同测量值参考范围RM11、RM12、…皆基于所述传感器测量范围表示GQ8R和所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预置。例如,所述额定测量值范围RC1N和所述额定范围界限值对DC1A皆基于所述额定物理参数范围表示GB8E、所述传感器测量范围表示GQ8R、所述传感器灵敏度表示GQ81和所述数据编码操作ZR81来用所述指定测量值格式HQ81而被预置。所述测量值应用范围RM1L和所述应用范围界限值对DM1L皆基于所述物理参数应用范围表示GB8L、所述传感器测量范围表示GQ8R、所述传感器灵敏度表示GQ81和所述数据编码操作ZR82来用所述指定测量值格式HQ81而被预置。
所述测量值候选范围RM12和所述候选范围界限值对DM1B皆基于所述物理参数候选范围表示GB82、所述传感器测量范围表示GQ8R、所述传感器灵敏度表示GQ81和所述数据编码操作ZR83来用所述指定测量值格式HQ81而被预置。所述额定物理参数范围表示GB8E、所述物理参数应用范围表示GB8L、所述物理参数候选范围表示GA8T和所述物理参数候选 范围表示GB82皆基于一第二预置测量单位而被提供。例如,所述第二预置测量单位是一公制测量单位和一英制测量单位的其中之一,并相同或不同于所述第一预置测量单位。
所述感测单元334基于与一感测信号产生相关的所述传感器灵敏度YW81而被特征化,并被配置以符合所述传感器规格FU11。所述传感器规格FU11包含用于表示所述传感器灵敏度YW81的所述传感器灵敏度表示GW81、和用于表示所述传感器测量范围RB8E的所述传感器测量范围表示GW8R。例如,所述物理参数目标范围RD1ET被配置以是所述传感器测量范围RB8E的一部分。所述传感器测量范围RB8E相关于由所述感测单元334所执行的一物理参数感测。所述传感器测量范围表示GW8R基于一第三预置测量单位而被提供。例如,所述第三预置测量单位是一公制测量单位和一英制测量单位的其中之一。
所述可变物理参数QU1A进一步基于所述传感器测量范围RB8E而被特征化。所述可变物理参数QP1A进一步基于所述传感器测量范围RA8E而被特征化。例如,所述传感器测量范围表示GQ8R、所述额定物理参数范围表示GB8E、所述物理参数应用范围表示GB8L、所述物理参数候选范围表示GA8T、所述物理参数候选范围表示GB82和所述传感器测量范围表示GW8R皆属于十进制数据类型。所述测量值VM81、所述测量值VM82、所述额定范围界限值对DC1A、所述应用范围界限值对DM1L、所述目标范围界限值对DN1T和所述候选范围界限值对DM1B皆属于所述二进制数据类型,并皆适用于计算机处理。所述传感器规格FQ11、所述传感器规格FU11和所述测量应用功能规格GBL8皆被预置。
在一些实施例中,所述内存位置PM8L基于一内存地址FM8L而被识别。所述内存地址FM8L基于所预置的所述测量值应用范围码EH1L而被预置。所述内存位置PV8L基于一内存地址FV8L而被识别。所述内存地址FV8L基于所预置的所述测量值应用范围码EH1L而被预置。
所述方法MM82进一步包含下列步骤:在所述触发事件EQ81发生之前,所述处理单元230取得所预置的所述测量值应用范围码EH1L、所预置的所述应用范围界限值对DM1L和所预置的所述控制数据码CK8T;所述处理单元230基于所取得的所述测量值应用范围码EH1L,获得所述内存地址FM8L;以及在所述触发事件EQ81发生之前,所述处理单元230基于所取得的所述应用范围界限值对DM1L和所获得的所述内存地址FM8L,提供包含所取得的所述应用范围界限值对DM1L和所获得的所述内存地址FM8L的一写入请求信息WB8L。例如,所述写入请求信息WB8L用于在所述内存位置PM8L存储所输送的所述应用范围界限值对DM1L。
所述方法MM82进一步包含下列步骤:所述处理单元230基于所取得的所述测量值应用范围码EH1L,获得所述内存地址FV8L;以及在所述触发事件EQ81发生之前,所述处理 单元230基于所取得的所述控制数据码CK8T和所获得的所述内存地址FV8L,提供包含所取得的所述控制数据码CK8T和所获得的所述内存地址FV8L的一写入请求信息WA8L。例如,所述写入请求信息WA8L用于导致所述内存单元25Y1在所述内存位置PV8L存储所输送的所述控制数据码CK8T。所述识别媒介310是一电子标签350、一条形码媒介360和一生物识别作用媒介370的其中之一。
请参阅图56,其为示出于图1中的所述控制系统861的一实施结构8017的示意图。如图56所示,所述实施结构8017包含所述控制装置212、所述控制目标装置130和所述服务器280。在一些实施例中,所述处理单元230借由比较所获得的所述测量值VM81和所获得的所述应用范围界限值对DM1L来执行用于检查所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81的一检查操作BA81。在所述处理单元230基于所述检查操作BA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,在所述处理单元230导致所述输出单元240产生用于控制所述可变物理参数QU1A的所述控制信号SC81。例如,所述可变物理参数QP1A对应于所述可变物理参数QU1A。
所述控制装置212设置于一应用环境EX81中。所述可变物理参数QP1A存在于一物理参数形成区AT11中。所述控制装置212和所述应用环境EX81的其中之一具有所述可变物理参数QP1A。例如,所述感测单元260耦合于具有所述可变物理参数QP1A的所述物理参数形成区AT11。所述可变物理参数QU1A存在于一物理参数形成区AU11中。例如,在所述物理参数形成区AT11位于所述应用环境EX81中的条件下,所述物理参数形成区AT11邻接于所述控制装置212。例如,所述感测单元260包含所述物理参数形成区AT11。
例如,所述物理参数形成区AU11和所述物理参数形成区AT11是分开的,并分别被形成于所述实际位置LD81和所述实际位置LC81;藉此,所述可变物理参数QU1A和所述可变物理参数QP1A分别被形成于所述实际位置LD81和不同于所述实际位置LD81的所述实际位置LC81。例如,所述物理参数形成区AT11是一负载区、一显示区、一感测区、一功率供应区和一环境区的其中之一。例如,所述物理参数形成区AU11是一负载区、一显示区、一感测区、一功率供应区和一环境区的其中之一。
所述可变物理参数QP1A基于对应于所述物理参数应用范围RC1EL的所述对应物理参数范围RW1EL而被特征化。所述对应物理参数范围RW1EL由一对应测量值范围RV1L所代表。所述测量值应用范围RM1L和所述对应测量值范围RV1L的一范围组合等于所述额定测量值范围RC1N。所述对应测量值范围RV1L基于所述传感器测量范围表示GQ8R和所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预置。例如,所述对应测量值范围RV1L基于所述对应物理参数范围RW1EL和所述额定测量值范围RC1N而被预置。
所述测量应用功能FB81相关于所述内存单元25Y1。在所述触发事件EQ81被应用到所述测量应用功能FB81的条件下,所述处理单元230耦合于所述内存单元25Y1。例如,所述存储单元250包含所述内存单元25Y1。在所述处理单元230基于所述测量值VM81和所获得的所述应用范围界限值对DM1L之间的所述数据比较CA81而辨识所述数学关系KA81为一数值交集关系KU81的条件下,所述处理单元230做出所述逻辑决定PH81以成为肯定的。
在一些实施例中,在所述逻辑决定PH81是肯定的条件下,所述处理单元230确定所述可变物理参数QP1A目前于所述物理参数应用范围RC1EL之内的一物理参数情况,并藉此辨识所述可变物理参数QP1A和所述物理参数应用范围RC1EL之间的一物理参数关系KB81为所述可变物理参数QP1A目前于所述物理参数应用范围RC1EL之内的一物理参数交集关系。例如,所述处理单元230借由检查所述数学关系KA81来检查所述物理参数关系KB81。
在所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230执行使用所确定的所述测量值应用范围码EH1L的所述数据获取AG8A以获得所述控制应用码UA8T,并基于所获得的所述控制应用码UA8T来导致所述输出单元240执行用于所述测量应用功能FB81的所述信号产生操作BS81以产生用于控制所述控制目标装置130的所述控制信号SC81。
例如,所述处理单元230处理所接收的所述感测信号SM81以获得包含所述测量值VM81的一测量值序列JM81。所述处理单元230借由比较所述测量值序列JM81和所获得的所述应用范围界限值对DM1L来执行用于检查所述测量值序列JM81和所述测量值应用范围RM1L之间的一数学关系KA85的一检查操作BA85。所述处理单元230基于所述检查操作BA85来做出所述逻辑决定PH81。所述检查操作BA85包含所述检查操作BA81。
在一些实施例中,所述应用范围界限值对DM1L属于一测量范围界限数据码类型TM81。所述测量范围界限数据码类型TM81由一测量范围界限数据码类型识别符HM81所识别。所述控制数据码CK8T属于一控制数据码类型TK81。所述控制数据码类型TK81由一控制数据码类型识别符HK81所识别。所述测量范围界限数据码类型识别符HM81和所述控制数据码类型识别符HK81皆被预置。所述内存位置PM8L基于所述内存地址FM8L而被识别,或由所述内存地址FM8L所识别。所述内存位置PV8L基于所述内存地址FV8L而被识别,或由所述内存地址FV8L所识别。
所述内存地址FM8L基于所预置的所述测量值应用范围码EH1L和所预置的所述测量范围界限数据码类型识别符HM81而被预置。所述内存地址FV8L基于所预置的所述测量值应 用范围码EH1L和所预置的所述控制数据码类型识别符HK81而被预置。所述处理单元230被配置以获得所预置的所述测量范围界限数据码类型识别符HM81。所述数据获取操作AF81基于所确定的所述测量值应用范围码EH1L和所获得的所述测量范围界限数据码类型识别符HM81来获得所述内存地址FM8L,并基于所获得的所述内存地址FM8L来使用所述内存单元25Y1以存取被存储在所述内存位置PM8L的所述应用范围界限值对DM1L。
在一些实施例中,所述多个不同测量值参考范围RM11、RM12、…具有所述总参考范围数目NS81。例如,所述总参考范围数目NS81被预置。所述存储单元250存储所述总参考范围数目NS81和所述额定范围界限值对DC1A。所述处理单元230响应所述触发事件EQ81来执行多个科学计算以获得所预置的所述总参考范围数目NS81和所预置的所述额定范围界限值对DC1A,或响应所述触发事件EQ81来从所述存储单元250获得所述总参考范围数目NS81和所述额定范围界限值对DC1A。
在所述处理单元230获得所述测量值VM81的条件下,所述数据确定操作AE82借由执行使用所获得的所述测量值VM81、所获得的所述总参考范围数目NS81和所获得的所述额定范围界限值对DC1A的所述科学计算MF81来获得所预置的所述测量值应用范围码EH1L以便检查所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81。例如,所述科学计算MF81基于所预置的所述总参考范围数目NS81和所预置的所述额定范围界限值对DC1A而被预先构建。所述数据获取操作AF82借由执行使用所确定的所述测量值应用范围码EH1L、所获得的所述额定范围界限值对DC1A和所获得的所述总参考范围数目NS81的所述科学计算MG81来获得所述应用范围界限值对DM1L。
在一些实施例中,所述处理单元230被配置以获得所预置的所述控制数据码类型识别符HK81。在所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于所确定的所述测量值应用范围码EH1L和所获得的所述控制数据码类型识别符HK81来获得所述内存地址FV8L,基于所获得的所述内存地址FV8L来使用所述内存单元25Y1以存取被存储在所述内存位置PV8L的所述控制数据码CK8T,并基于所存取的所述控制数据码CK8T来导致所述输出单元240执行所述信号产生操作BS81以产生所述控制信号SC81。
例如,所述处理单元230响应所述触发事件EQ81来导致所述可变物理参数QP1A在所述物理参数形成区AT11中形成。在所述可变物理参数QP1A存在于所述物理参数形成区AT11中的条件下,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。例如,所述物理参数形成区AT11是一用户接口区。
请参阅图57。图57为示出于图1中的所述控制系统861的一实施结构8018的示意图。 如图57所示,所述实施结构8018包含一识别媒介310、所述控制装置212、所述控制目标装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于依靠所述识别媒介310而控制存在于所述控制目标装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述输入单元270和所述输出单元240。所述处理单元230耦合于所述服务器280。
在一些实施例中,所述测量应用功能FB81是一识别应用功能。所述触发事件EQ81是一识别媒介出现事件。所述操作单元297包含所述响应区域AC1和所述读取器220。所述响应区域AC1用于执行所述测量应用功能FB81。所述读取器220耦合于所述响应区域AC1和所述处理单元230。在所述识别媒介310出现于所述响应区域AC1的所述触发事件EQ81发生的条件下,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。
所述处理单元230接收所述感测信号SM81,并响应所述触发事件EQ81来处理所接收的所述感测信号SM81以获得所述测量值VM81。例如,在所述处理单元230通过所述读取器220而辨识了出现于所述响应区域AC1的所述识别媒介310的条件下,所述处理单元230处理所接收的所述感测信号SM81以获得所述测量值VM81。
所述识别媒介310由一识别媒介识别符HU11所识别,记录所述识别媒介识别符HU11、所述应用范围界限值对DM1L和所述控制数据码CK8T,并是一电子标签350、一条形码媒介360和一生物识别作用媒介370的其中之一。在所述识别媒介310出现于所述响应区域AC1的条件下,所述读取器220借由执行用于所述识别应用功能的一读取操作BX81来读取所述识别媒介310以获得一读取数据DB81。所述处理单元230基于所述读取数据DB81来确定等于所述识别媒介识别符HU11的一识别媒介辨识码CU81,并藉此辨识所述识别媒介310。例如,所述处理单元230响应所述操作请求信号SX81来使所述读取器220读取所记录的所述识别媒介识别符HU11、所记录的所述应用范围界限值对DM1L和所记录的所述控制数据码CK8T,并藉此通过所述读取器220来从所述识别媒介310获得所记录的所述识别媒介识别符HU11、所记录的所述应用范围界限值对DM1L和所记录的所述控制数据码CK8T。
在所述处理单元230获得所述测量值VM81的条件下,所述处理单元230执行用于检查所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81的所述检查操作BA81。在所述处理单元230基于所述检查操作BA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230导致所述输出单元240产生所述控制信号SC81。
在一些实施例中,所述实施结构8018进一步包含一控制目标装置630。所述控制装置 212由一控制装置识别符HA0T所识别,并用于控制所述控制目标装置630。所述输出单元240具有一输出端240P和一输出端240Q;藉此所述操作单元297具有所述输出端240P和所述输出端240Q。所述输出端240P和所述输出端240Q分别位于不同空间位置。所述控制目标装置130耦合于所述输出端240P,并由一控制目标装置识别符HA1T所识别。所述控制目标装置630耦合于所述输出端240Q,并由一控制目标装置识别符HA12所识别。
例如,所述控制装置识别符HA0T是一控制装置号码,并被预置。所述控制目标装置识别符HA1T被配置以指示所述输出端240P,是一第一控制目标装置号码,并被预置。所述控制目标装置识别符HA12被配置以指示所述输出端240Q,是一第二控制目标装置号码,并被预置。所述内存位置PM8L基于所述内存地址FM8L而被识别。所述内存地址FM8L基于所预置的所述测量值应用范围码EH1L和所预置的所述控制目标装置识别符HA1T而被预置。所述内存位置PV8L基于所述内存地址FV8L而被识别。所述内存地址FV8L基于所预置的所述测量值应用范围码EH1L和所预置的所述控制目标装置识别符HA12而被预置。
在一些实施例中,所述处理单元230响应所述触发事件EQ81来获得所预置的所述控制目标装置识别符HA1T。所述数据获取操作AF81基于所获得的所述控制目标装置识别符HA1T和所确定的所述测量值应用范围码EH1L来获得所述内存地址FM8L,并基于所获得的所述内存地址FM8L来使用所述内存单元25Y1以存取被存储在所述内存位置PM8L的所预置的所述应用范围界限值对DM1L。在所述处理单元230确定所述可变物理参数QP1A目前于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于所获得的所述控制目标装置识别符HA1T和所确定的所述测量值应用范围码EH1L来获得所述内存地址FV8L,并基于所获得的所述内存地址FV8L来使用所述内存单元25Y1以存取被存储在所述内存位置PV8L的所述控制数据码CK8T。
所述处理单元230基于所获得的所述控制目标装置识别符HA1T和所获得的所述控制数据码CK8T来执行用于所述测量应用功能FB81的所述信号产生控制GS81以控制所述输出单元240。所述信号产生控制GS81起到指示所述输出端240P的作用,并用于导致所述处理单元230提供一控制信号SH81到所述输出单元240。所述控制信号SH81起到指示所述输出端240P的作用。所述输出单元240响应所述信号产生控制GS81和所述控制信号SH81的其中之一来执行使用所述输出端240P的所述信号产生操作BS81以向所述控制目标装置130传输所述控制信号SC81。
在一些实施例中,所述处理单元230被配置以获得所预置的所述控制装置识别符HA0T。所述控制信号SC81包含所获得的所述控制装置识别符HA0T、所获得的所述控制目标装置识别符HA1T和所获得的所述控制码CC1T的至少其中之一。在一特定情况中,所述处理单 元230响应一触发事件EQ21来获得所预置的所述控制目标装置识别符HA12,并基于所获得的所述控制目标装置识别符HA12来执行一信号产生控制GS89以控制所述输出单元240。所述信号产生控制GS89起到指示所述输出端240Q的作用。所述输出单元240响应所述信号产生控制GS89来使用所述输出端240Q以向所述控制目标装置630传输一控制信号SC89。所述控制信号SC89用于控制所述控制目标装置630。
例如,所述存储单元250存储所预置的所述控制装置识别符HA0T、所预置的所述控制目标装置识别符HA1T和所预置的所述控制目标装置识别符HA12。所述处理单元230被配置以从所述存储单元250获得所预置的所述控制装置识别符HA0T。所述处理单元230响应所述触发事件EQ81来从所述存储单元250获得所预置的所述控制目标装置识别符HA1T。所述处理单元230响应所述触发事件EQ21来从所述存储单元250获得所预置的所述控制目标装置识别符HA12。
例如,所述存储单元250具有一第一应用内存位置和一第二应用内存位置,在所述第一应用内存位置存储所述额定范围界限值对DC1A,并在所述第二应用内存位置存储所述可变物理参数范围码UM8A。所述第一应用内存位置由一第一应用内存地址所识别,或基于所述第一应用内存地址而被识别。所述第二应用内存位置由一第二应用内存地址所识别,或基于所述第二应用内存地址而被识别。所述第一应用内存地址和所述第二应用内存地址皆基于所预置的所述控制目标装置识别符HA1T而被预置。
所述数据获取操作AF82基于所获得的所述控制目标装置识别符HA1T来获得所述第一应用内存地址,并基于所获得的所述第一应用内存地址来使用所述存储单元250以读取被存储在所述第一应用内存位置的所述额定范围界限值对DC1A以取得所预置的所述额定范围界限值对DC1A。所述处理单元230被配置以基于所获得的所述控制目标装置识别符HA1T而获得所述第二应用内存地址,并基于所获得的所述第二应用内存地址来使用所述存储单元250以存取被存储在所述第二应用内存位置的所述可变物理参数范围码UM8A。
所述物理参数目标范围RD1ET具有一预置物理参数目标范围界限ZD1T1和相对于所述预置物理参数目标范围界限ZD1T1的一预置物理参数目标范围界限ZD1T2。所述目标范围界限值对DN1T包含所述测量值目标范围RN1T的一目标范围界限值DN17和相对于所述目标范围界限值DN17的一目标范围界限值DN18。所述预置物理参数目标范围界限ZD1T1由所述目标范围界限值DN17所代表。所述预置物理参数目标范围界限ZD1T2由所述目标范围界限值DN18所代表。
请参阅图56。图56为示出于图1中的所述控制系统861的一实施结构8019的示意图。如图56所示,所述实施结构8019包含所述控制装置212、所述控制目标装置130和所述 服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于依靠所述触发事件EQ81而控制存在于所述控制目标装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述输入单元270和所述输出单元240。所述处理单元230耦合于所述服务器280。
在一些实施例中,所述测量应用功能FB81是一信号输入应用功能。所述触发事件EQ81是一信号输入事件。在所述输入单元270接收一触发信号ST81的所述触发事件EQ81发生的条件下,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。例如,所述触发信号ST81由一功能开关470和一信号产生器472的其中之一所提供。例如,所述服务器280包含所述内存单元25Y1。所述输入单元270耦合于所述功能开关470和所述信号产生器472的至少其中之一。例如,所述输入单元270是所述触发应用单元281,响应所述触发信号ST81来提供所述操作请求信号SX81到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SX81。
在一些实施例中,所述测量应用功能FB81是一用户输入应用功能。所述触发事件EQ81是一用户输入事件。所述控制装置212进一步包含耦合于所述处理单元230的一电应用目标WJ11。在所述输入单元270接收一用户输入操作JU81的所述触发事件EQ81发生的条件下,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。所述用户输入操作JU81用于选择所述电应用目标WJ11。例如,所述控制装置212由一用户295所使用。所述用户输入操作JU81由所述用户295所执行。例如,所述电应用目标WJ11是一电应用单元。
所述电应用目标WJ11是一感测目标和一显示目标的其中之一。在所述电应用目标WJ11是所述感测目标的条件下,所述输入单元270包含所述电应用目标WJ11。在所述电应用目标WJ11是所述显示目标的条件下,所述输出单元240包含所述电应用目标WJ11。所述输入单元270是所述触发应用单元281,响应所述用户输入操作JU81来提供一操作请求信号SZ81到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SZ81。所述处理单元230响应所述操作请求信号SZ81来确定所述触发事件EQ81。例如,在所述处理单元230确定所述触发事件EQ81的条件下,所述处理单元230基于所述感测信号SM81来获得所述测量值VM81。
请参阅图57和图58。图57为示出于图1中的所述控制系统861的一实施结构8020的示意图。图58为示出于图1中的所述控制系统861的一实施结构8021的示意图。如图57和图58所示,所述实施结构8020和所述实施结构8021的每一结构包含所述控制装置212、所述控制目标装置130和所述服务器280。所述控制装置212链接于所述服务器280。 所述控制装置212用于依靠所述触发事件EQ81而控制存在于所述控制目标装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述输入单元270和所述输出单元240。所述处理单元230耦合于所述服务器280。
在一些实施例中,所述控制目标装置130包含一操作单元397、耦合于所述操作单元397的所述感测单元334、和耦合于所述操作单元397的一功能单元335。所述功能单元335受所述操作单元397控制,并包含具有所述可变物理参数QU1A的所述物理参数形成区AU11。所述可变物理参数QU1A进一步基于包含所述物理参数目标范围RD1ET的一额定物理参数范围RD1E而被特征化。所述额定物理参数范围RD1E由一额定测量值范围RD1N所代表,并包含由多个不同测量值参考范围RN11、RN12、…所分别代表的多个不同物理参数参考范围RD1E1、RD1E2、…。所述多个不同物理参数参考范围RD1E1、RD1E2、…包含所述物理参数目标范围RD1ET和一物理参数候选范围RD1E2。例如,所述功能单元335是一物理参数应用单元。
所述额定测量值范围RD1N包含所述多个不同测量值参考范围RN11、RN12、…,并基于所述额定物理参数范围表示GB8E、所述传感器测量范围表示GQ8R和用于转换所述额定物理参数范围表示GB8E的所述数据编码操作ZR81来用所述指定测量值格式HQ81而被预置。所述多个不同测量值参考范围RN11、RN12、…包含所述测量值目标范围RN1T和代表所述物理参数候选范围RD1E2的一测量值候选范围RN12。所述测量值候选范围RN12由一测量值候选范围码EM12所代表,并具有一候选范围界限值对DN1B,藉此所述测量值候选范围码EM12被配置以指示所述物理参数候选范围RD1E2。在所述触发事件EQ81发生之前,所述可变物理参数QU1A被配置以于一特定物理参数范围RD1E4之内。所述特定物理参数范围RD1E4包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中。
在一些实施例中,由所述控制目标装置130所引起的所述触发作用事件是一状态改变事件。所述控制装置212进一步包含耦合于所述处理单元230的一状态改变侦测器475。例如,所述状态改变侦测器475是一极限侦测器和一边缘侦测器的其中之一。所述极限侦测器是一极限开关485。所述状态改变侦测器475被配置以侦测与一预置特征物理参数UL81相关的一特征物理参数到达ZL82。例如,所述预置特征物理参数UL81是一预置极限位置。所述特征物理参数到达ZL82是一极限位置到达。
所述功能单元335包含一物理参数应用区AJ11。所述物理参数应用区AJ11具有一可变物理参数QG1A。所述可变物理参数QG1A相依于所述可变物理参数QU1A,并基于所述预置特征物理参数UL81而被特征化。例如,所述物理参数应用区AJ11是一负载区、一显示 区、一感测区、一功率供应区和一环境区的其中之一。所述预置特征物理参数UL81相关于所述可变物理参数QU1A。
在所述触发事件EQ81发生之前,所述操作单元397从所述输出单元240接收一控制信号SC80。所述操作单元397响应所接收的所述控制信号SC80来执行一信号产生控制GY80以产生用于控制所述可变物理参数QU1A的一功能信号SG80。所述功能单元335从所述操作单元397接收所述功能信号SG80,并响应所接收的所述功能信号SG80来执行与所述可变物理参数QU1A相关的所述特定功能操作ZH81。所述特定功能操作ZH81用于控制所述可变物理参数QG1A,并借由改变所述可变物理参数QG1A来导致所述触发事件EQ81发生。所述可变物理参数QG1A被配置以处于一可变物理状态XA8A。例如,所述操作单元397受所述控制装置212控制以使所述功能单元335执行所述特定功能操作ZH81。例如,所述额定测量值范围RD1N具有一额定范围界限值对DD1A。所述状态改变侦测器475响应所述特定功能操作ZH81来产生一触发信号SX8A。
在所述可变物理参数QU1A于所述触发事件EQ81之前被配置以于所述特定物理参数范围RD1E4之内的条件下,所述特定功能操作ZH81导致所述可变物理参数QG1A到达所述预置特征物理参数UL81以形成所述特征物理参数到达ZL82,并借由形成所述特征物理参数到达ZL82来将所述可变物理状态XA8A从一非特征物理参数到达状态XA81改变成一实际特征物理参数到达状态XA82。所述状态改变侦测器475响应所述特征物理参数到达ZL82来产生所述触发信号SX8A。例如,所述实际特征物理参数到达状态XA82基于所述预置特征物理参数UL81而被特征化。所述状态改变侦测器475响应所述可变物理参数QG1A被从所述非特征物理参数到达状态XA81改变成所述实际特征物理参数到达状态XA82的一状态改变事件来产生所述触发信号SX8A。例如,所述状态改变侦测器475是一触发应用单元,并响应所述特征物理参数到达ZL82来提供所述触发信号SX8A到所述处理单元230。所述触发信号SX8A是一操作请求信号。
在一些实施例中,所述输入单元270耦合于所述状态改变侦测器475。所述触发事件EQ81是所述可变物理参数QG1A进入所述实际特征物理参数到达状态XA82的所述状态改变事件。所述输入单元270和所述处理单元230的其中之一接收所述触发信号SX8A。所述处理单元230响应所接收的所述触发信号SX8A来获得所述控制应用码UA8T,并基于所获得的所述控制应用码UA8T来在所述操作时间TD81之内执行用于所述测量应用功能FB81的所述信号产生控制GS81以导致所述输出单元240产生所述控制信号SC81。例如,所述操作请求信号SX81等于所述触发信号SX8A。
例如,所述触发应用单元281相关于一触发事件EQ80,响应所述触发事件EQ80来产 生一操作请求信号SX80,提供所述操作请求信号SX80到所述处理单元230,并藉此使述处理单元230接收所述操作请求信号SX80。所述处理单元230响应所述操作请求信号SX80来使所述输出单元240向所述输入单元337传输所述控制信号SC80。
例如,所述输入单元270包含一触控屏幕2701。在所述电应用目标WJ11是所述感测目标的条件下,所述触控屏幕2701包含所述电应用目标WJ11。所述触控屏幕2701是所述触发应用单元281,并响应使用所述电应用目标WJ11的所述用户输入操作JU81来提供所述操作请求信号SX81到所述处理单元230。
例如,在所述状态改变侦测器475是所述极限开关485的条件下,所述特征物理参数到达ZL82是等于一可变空间位置的所述可变物理参数QG1A到达等于一预置极限位置的所述预置特征物理参数UL81的一极限位置到达。例如,所述功能单元335借由执行基于所述可变物理参数QU1A而被引起的所述特定功能操作ZH81来在所述物理参数应用区AJ11中形成所述可变物理参数QG1A。在所述物理参数应用区AJ11耦合于所述状态改变侦测器475的条件下,所述状态改变侦测器475侦测所述特征物理参数到达ZL82。
例如,所述处理单元230响应所接收的所述触发信号SX8A来使用所述感测信号SM81以获得所述测量值VM81。在所述处理单元230借由检查所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230执行使用所确定的所述测量值应用范围码EH1L的所述数据获取AG8A以获得所述控制应用码UA8T,并基于所获得的所述控制应用码UA8T来导致所述输出单元240产生起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用的所述控制信号SC81。
在一些实施例中,所述可变物理参数QU1A是一第一可变电性参数、一第一可变力学参数、一第一可变光学参数、一第一可变温度、一第一可变电压、一第一可变电流、一第一可变电功率、一第一可变电阻、一第一可变电容、一第一可变电感、一第一可变频率、一第一时钟时间、一第一可变时间长度、一第一可变亮度、一第一可变光强度、一第一可变音量、一第一可变数据流量、一第一可变振幅、一第一可变空间位置、一第一可变位移、一第一可变顺序位置、一第一可变角度、一第一可变空间长度、一第一可变距离、一第一可变平移速度、一第一可变角速度、一第一可变加速度、一第一可变力、一第一可变压力和一第一可变机械功率的其中之一。
所述操作单元397被配置以依靠所述控制信号SC81而执行与所述可变物理参数QU1A相关的一测量应用功能FA81。所述控制目标装置130是多个应用装置的其中之一。所述测量应用功能FA81是多个特定控制功能的其中之一,所述多个特定控制功能包含一光控制 功能、一力控制功能、一电控制功能、一磁控制功能和其任意组合。所述多个应用装置包含一功能装置、一继电器、一控制开关装置、一电动机、一照明装置、一门、一贩卖机、一能量转换器、一负载装置、一定时装置、一玩具、一电器、一打印装置、一显示设备、一移动装置、一扬声器和其任意组合。
所述功能单元335是多个应用目标的其中之一,并被配置以执行一特定应用功能。所述特定应用功能是多个物理参数应用功能的其中之一,所述多个物理参数应用功能包含一光使用功能、一力使用功能、一电使用功能、一磁使用功能和其任意组合。所述多个应用目标包含一电子组件、一致动器、一电阻器、一电容器、一电感器、一继电器、一控制开关、一晶体管、一电动机、一照明单元、一能量转换单元、一负载单元、一定时单元、一打印单元、一显示目标、一扬声器和其任意组合。例如,所述功能单元335是一物理可实现功能单元。
例如,所述可变物理参数QU1A和所述可变物理参数QG1A分别属于所述物理参数类型TU11和一物理参数类型TU1G。所述物理参数类型TU11相同或不同于所述物理参数类型TU1G。所述预置特征物理参数UL81属于所述物理参数类型TU1G。所述物理参数应用区AJ11耦合于所述物理参数形成区AU11。例如,所述特定功能操作ZH81用于驱动所述物理参数应用区AJ11以形成所述特征物理参数到达ZL82。例如,所述物理参数类型TU11不同于一时间类型。
所述可变物理参数QG1A是一可变电性参数、一可变力学参数、一可变光学参数、一可变温度、一可变电压、一可变电流、一可变电功率、一可变电阻、一可变电容、一可变电感、一可变频率、一时钟时间、一可变时间长度、一可变亮度、一可变光强度、一可变音量、一可变数据流量、一可变振幅、一可变空间位置、一可变位移、一可变顺序位置、一可变角度、一可变空间长度、一可变距离、一可变平移速度、一可变角速度、一可变加速度、一可变力、一可变压力和一可变机械功率的其中之一。例如,所述可变物理参数QU1A相同或不同于所述可变物理参数QG1A。
请参阅图59、图60、图61和图62。图59为示出于图1中的所述控制系统861的一实施结构8022的示意图。图60为示出于图1中的所述控制系统861的一实施结构8023的示意图。图61为示出于图1中的所述控制系统861的一实施结构8024的示意图。图62为示出于图1中的所述控制系统861的一实施结构8025的示意图。如图59、图60、图61和图62所示,所述实施结构8022、所述实施结构8023、所述实施结构8024和所述实施结构8025的每一结构包含所述控制装置212、所述控制目标装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212包含所述物理参数形成区 AT11、所述操作单元297、所述感测单元260和所述存储单元250。所述操作单元297包含所述处理单元230、所述输入单元270和所述输出单元240。
在一些实施例中,所述多个不同物理参数参考范围RC1E1、RC1E2、…包含所述物理参数应用范围RC1EL、所述物理参数候选范围RC1E2和一物理参数候选范围RC1E3。所述多个不同测量值参考范围RM11、RM12、…包含所述测量值应用范围RM1L、所述测量值候选范围RM12和一测量值候选范围RM13。所述测量值候选范围RM12由所述测量值候选范围码EH12所代表,藉此所述测量值候选范围码EM12被配置以指示所述物理参数候选范围RC1E2。所述测量值候选范围RM13基于所述传感器测量范围表示GQ8R和所述所述传感器规格FQ11的其中之一来用所述指定测量值格式HQ81而被预置。
所述测量应用功能规格GBL8包含包含用于表示所述物理参数候选范围RC1E3的一物理参数候选范围表示GB83。例如,所述测量值候选范围RM13基于所述物理参数候选范围表示GB83、所述传感器测量范围表示GQ8R、所述传感器灵敏度表示GQ81和用于转换所述物理参数候选范围表示GB83的一数据编码操作ZR87来用所述指定测量值格式HQ81而被预置,并由包含于所述多个不同测量值参考范围码EH11、EH12、…中的一测量值候选范围码EH13所代表。
所述多个不同物理参数参考范围RC1E1、RC1E2、…分别由多个不同物理参数参考范围码所代表。例如,所述额定物理参数范围RC1E的所述多个不同物理参数参考范围码被配置以分别等于所述多个不同测量值参考范围码EH11、EH12、…。所述物理参数应用范围RC1EL、所述物理参数候选范围RC1E2和所述物理参数候选范围RC1E3是不同的,并分别由所述测量值应用范围RM1L、所述测量值候选范围RM12和所述测量值候选范围RM13所代表。例如,所述电子标签350包含所述内存单元25Y1。
在一些实施例中,所述测量应用功能规格GBL8用于表示所述额定物理参数范围RC1E和所述多个不同物理参数参考范围RC1E1、RC1E2、…。所述额定测量值范围RC1N、所述额定范围界限值对DC1A、所述多个不同测量值参考范围RM11、RM12、…、及所述多个不同测量值参考范围码EH11、EH12、…皆基于所述测量应用功能规格GBL8而被预置。所述测量应用功能FB81选择自多个不同触发作用功能。所述存储单元250存储所述测量应用功能规格GBL8。
所述处理单元230根据所述测量应用功能规格GBL8来预先设定所述额定范围界限值对DC1A、所述应用范围界限值对DM1L、所述目标范围界限值对DN1T、所述候选范围界限值对DM1B、…。所述感测信号SM81包含感测数据。例如,所述感测数据属于所述二进制数据类型。所述处理单元230基于所述感测数据来以所述指定测量值格式HQ81获得所述 测量值VM81。
在一些实施例中,所述操作单元397接收所述控制信号SC81。在所述操作单元397基于所述控制信号SC81来执行一信号产生操作BY81以导致所述可变物理参数QU1A进入所述物理参数目标范围RD1ET的条件下,所述操作单元397响应所述信号产生操作BY81来输出所述控制响应信号SE81。例如,所述控制响应信号SE81输送一肯定操作报告RL81。所述肯定操作报告RL81表示所述可变物理参数QU1A成功地进入所述物理参数目标范围RD1ET的一操作情况EP81。例如,所述操作单元397的所述处理单元331基于所获得的所述测量值VN82来使所述控制响应信号SE81进一步输送所获得的所述测量值VN82。
在所述操作单元297于所述指定时间TW81之内接收所述控制响应信号SE81的条件下,所述操作单元297响应所述控制响应信号SE81来执行所述特定实际操作BJ81。例如,在所述处理单元230于所述指定时间TW81之内从所述控制响应信号SE81获得所述肯定操作报告RL81的条件下,所述处理单元230基于所获得的所述特定操作报告RL8A和所获得的所述肯定操作报告RL81的其中之一来执行与所述可变物理参数QU1A相关的所述特定实际操作BJ81。所述操作单元397借由产生所述控制响应信号SE81来响应所述控制信号SC81。
在一些实施例中,在所述逻辑决定PH81是否定的条件下,所述处理单元230确定所述可变物理参数QP1A目前处于的所述对应物理参数范围RW1EL。在所述逻辑决定PH91是肯定的条件下,所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数候选范围RC1E2。在所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数候选范围RC1E2的条件下,所述处理单元230导致所述输出单元240执行用于所述测量应用功能FB81的所述信号产生操作BS91以产生用于控制所述可变物理参数QU1A的所述控制信号SC82,所述控制信号SC82不同于所述控制信号SC81。
例如,所述物理参数候选范围RC1E2被配置以对应于包含于所述额定物理参数范围RD1E中的所述物理参数候选范围RD1E2。在所述物理参数候选范围RD1E2不同于所述物理参数目标范围RD1ET的条件下,所述控制信号SC82用于导致所述可变物理参数QU1A于所述物理参数候选范围RD1E2之内。例如,所述操作单元397从所述输出单元240接收所述控制信号SC82。所述操作单元397响应所述控制信号SC82来导致所述可变物理参数QU1A于所述物理参数候选范围RD1E2之内。所述控制信号SC82借由输送所述测量值候选范围码EM12和所述候选范围界限值对DN1B的其中之一来起到指示所述测量值候选范围RN12和所述物理参数候选范围RD1E2的至少其中之一的作用。
在一些实施例中,在所述处理单元230基于所述检查操作BA83而确定所述可变物理参数QP1A目前处于的所述特定物理参数范围RC1E7的条件下,所述处理单元230导致所 述输出单元240产生用于控制所述可变物理参数QU1A的所述控制信号SC83,并使用所述存储单元250以将所述特定测量值范围码EH17指定到所述可变物理参数范围码UM8A。例如,所述控制信号SC83不同于所述控制信号SC81。
例如,所述特定物理参数范围RC1E7被配置以对应于包含于多个不同物理参数参考范围RD1E1、RD1E2、…中的一特定物理参数范围RD1E7。在所述特定物理参数范围RD1E7不同于所述物理参数目标范围RD1ET的条件下,所述控制信号SC83用于导致所述可变物理参数QU1A于所述特定物理参数范围RD1E7之内。
例如,所述操作单元397从所述输出单元240接收所述控制信号SC83。所述操作单元397响应所述控制信号SC83来导致所述可变物理参数QU1A于所述特定物理参数范围RD1E7之内。所述特定物理参数范围RD1E7由包含于所述多个不同测量值参考范围RN11、RN12、…中的一特定测量值范围RN17所代表。所述特定测量值范围RN17由一特定测量值范围码EM17所代表,基于所述传感器测量范围表示GW8R和所述传感器规格FU11的其中之一来用所述指定测量值格式HH81而被预设,并具有一特定范围界限值对DN1K,藉此所述测量值候选范围码EM17被配置以指示所述特定物理参数范围RD1E7。所述控制信号SC83借由输送所述特定测量值范围码EM17和所述特定范围界限值对DN1K的其中之一来起到指示所述特定测量值范围RN17和所述特定物理参数范围RD1E7的至少其中之一的作用。
在一些实施例中,在所述触发事件EQ81发生之前,所述处理单元230被配置以取得所预置的所述控制目标装置识别符HA1T、所预置的所述应用范围界限值对DM1L、所预置的所述测量范围界限数据码类型识别符HM81和所预置的所述测量值应用范围码EH1L,并基于所取得的所述控制目标装置识别符HA1T、所取得的所述测量范围界限数据码类型识别符HM81和所取得的所述测量值应用范围码EH1L来取得所述内存地址FM8L。在所述触发事件EQ81发生之前,所述处理单元230基于所取得的所述应用范围界限值对DM1L和所取得的所述内存地址FM8L来导致所述操作单元297提供所述写入请求信息WB8L。例如,所述写入请求信息WB8L输送所取得的所述应用范围界限值对DM1L和所取得的所述内存地址FM8L,并用于导致所述内存单元25Y1在所述内存位置PM8L存储所取得的所述应用范围界限值对DM1L。
在所述触发事件EQ81发生之前,所述处理单元230被配置以取得所预置的所述控制目标装置识别符HA1T、所预置的所述控制数据码CK8T、所预置的所述控制数据码类型识别符HK81和所预置的所述测量值应用范围码EH1L,并基于所取得的所述控制目标装置识别符HA1T、所取得的所述控制数据码类型识别符HK81和所取得的所述测量值应用范围码EH1L来取得所述内存地址FV8L。在所述触发事件EQ81发生之前,所述处理单元230基于 所取得的所述控制数据码CK8T和所取得的所述内存地址FV8L来导致所述操作单元297提供所述写入请求信息WA8L。例如,所述写入请求信息WA8L输送所取得的所述控制数据码CK8T和所取得的所述内存地址FV8L,并用于导致所述内存单元25Y1在所述内存位置PV8L存储所取得的所述控制数据码CK8T。
在一些实施例中,所述输入单元270和所述输出单元240的其中之一包含耦合于所述处理单元230的一用户接口区AP11。在所述触发事件EQ81发生之前,所述处理单元230依靠所述用户接口区AP11来获得一输入数据DG81和一输入数据DG82,基于所述输入数据DG81来取得所预置的所述应用范围界限值对DM1L,并基于所述输入数据DG82来取得所预置的所述控制数据码CK8T。例如,所述处理单元230借由对所述输入数据DG81执行一数据编码操作ZR9A来取得所预置的所述应用范围界限值对DM1L,并借由对所述输入数据DG82执行一数据编码操作ZR9B来取得所预置的所述控制数据码CK8T。
所述输入单元270接收用于操作所述用户接口区AP11的一用户输入操作BU85,并响应所述用户输入操作BU85来导致所述处理单元230从所述输入单元270获得所述输入数据DG81。所述输入单元270接收用于操作所述用户接口区AP11的一用户输入操作BU86,并响应所述用户输入操作BU86来导致所述处理单元230从所述输入单元270获得所述输入数据DG82。
在一些实施例中,所述感测单元260和所述输出单元240的其中之一包含耦合于所述处理单元230的一电应用目标WK11。所述电应用目标WK11基于一目标顺序位置UK11而被安排于一电应用目标组GK11中。例如,所述电应用目标组GK11位于所述物理参数形成区AT11中。所述可变物理参数QP1A基于所述目标顺序位置UK11而被特征化。所述电应用目标WK11是一显示目标和一感测目标的其中之一。在所述电应用目标WK11是所述显示目标的条件下,所述电应用目标组GK11是一显示目标组。在所述电应用目标WK11是所述感测目标的条件下,所述电应用目标组GK11是一感测目标组。所述目标顺序位置UK11由一目标位置号码NB11所代表。例如,所述感测单元260和所述输出单元240的其中之一包含所述物理参数形成区AT11。
所述感测单元260借由感测用于选择所述电应用目标WK11的一用户输入操作BU83来感测处于一限制条件FP8M的所述可变物理参数QP1A以产生用于获得所述测量值VM81的所述感测信号SM81。例如,所述限制条件FP8M是所述可变物理参数QP1A等于所述目标顺序位置UK11。例如,所述感测单元260接收用于选择所述电应用目标WK11的所述用户输入操作BU83,并响应所述用户输入操作BU83来感测处于所述限制条件FP8M的所述可变物理参数QP1A以产生所述感测信号SM81。所述处理单元230基于所述感测信号SM81来以所 述指定测量值格式HQ81获得等于所述目标位置号码NB11的所述测量值VM81。
所述控制装置212是一计算装置、一通信装置、一用户装置、一移动装置、一遥控器、一电子装置、一便携设备、一桌上型装置、一相对固定装置、一固定装置、一智能电话和其任意组合的其中之一。所述电子标签350是一被动式电子标签、一主动式电子标签、一半主动式电子标签、一无线电子标签和一有线电子标签的其中之一。例如,所述控制装置212通过在所述输出单元240和所述操作单元397之间的一实际链接LK8A而向所述控制目标装置130传输所述控制信号SC81。所述实际链接LK8A是一有线链接和一无线链接LK81的其中之一。
在一些实施例中,所述额定物理参数范围RC1E包含一特定物理参数QP11,并由所述额定测量值范围RC1N所代表。所述感测单元260感测处于所述拘束条件FP81的所述可变物理参数QP1A以提供所述感测信号SM81到所述处理单元230。例如,所述拘束条件FP81是所述可变物理参数QP1A等于所述特定物理参数QP11。在所述触发事件EQ81发生的条件下,所述处理单元230基于所述感测信号SM81来估计所述特定物理参数QP11以获得所述测量值VM81。例如,在所述特定物理参数QP11等于所述目标顺序位置UK11的条件下,所述拘束条件FP81等于所述限制条件FP8M。
所述控制信号SC81是一电信号SP81和一光信号SQ81的其中之一。所述输出单元240包含一输出组件450、一显示组件460和一输出组件455。所述输出组件450耦合于所述处理单元230,并在所述控制信号SC81是所述电信号SP81的条件下,用于输出所述电信号SP81。例如,所述输出组件450是一传输组件。当所述触发事件EQ81发生时,所述显示组件460显示所述状态指示LA81。在所述特定测量值范围码EH14不同于所确定的所述测量值应用范围码EH1L且所述处理单元230借由做出所述逻辑决定PH81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于所述码差异DA81来导致所述显示组件460将所述状态指示LA81改变成所述状态指示LA82。
所述显示组件460耦合于所述处理单元230,并用于显示与所述测量值VM81相关的一测量信息LY81。所述处理单元230从所述控制响应信号SE81获得所输送的所述测量值VN82,并根据所获得的所述测量值VN82来使所述显示组件460显示与所获得的所述测量值VN82相关的所述测量信息LZ82。在所述控制信号SC81是所述光信号SQ81的条件下,所述显示组件460用于输出所述光信号SQ81。例如,所述感测单元260和所述显示组件460的其中之一包含所述电应用目标组GK11。所述输出组件455耦合于所述处理单元230。例如,所述处理单元230被配置以导致所述输出组件455向所述控制目标装置130传输一 物理参数信号SB81。所述可变物理参数QU1A基于所述物理参数信号SB81而被形成。例如,所述输出组件455是一传输组件。所述显示组件460是一传输组件,所述传输组件用于传输所述光信号SQ81。例如,所述电信号SP81是一无线电信号。所述光信号SQ81是一红外线信号。
在一些实施例中,所述控制装置212耦合于所述服务器280,并进一步包含耦合于所述感测单元260的一物理参数形成单元290。例如,在所述可变物理参数QP1A要由所述物理参数形成单元290产生的条件下,所述物理参数形成单元290产生所述可变物理参数QP1A。所述输入单元270包含一输入组件440和一输入组件445(或一接收组件445)。所述输入组件440耦合于所述处理单元230。例如,所述输入组件440和所述显示组件460的其中之一包含所述用户接口区AP11。
所述输入组件445耦合于所述处理单元230,用于接收所述控制响应信号SE81,并包含一接收组件4451和一接收组件4452。所述接收组件4451和所述读取器4452皆耦合于所述处理单元230。所述控制响应信号SE81是一电信号LP81和一光信号LQ81的其中之一。在所述控制响应信号SE81是所述电信号LP81的条件下,所述接收组件4451用于接收所述电信号LP81。在所述控制响应信号SE81是所述光信号LQ81的条件下,所述接收组件4452用于接收所述光信号LQ81。例如,所述接收组件4452是一读取器。
在一些实施例中,所述接收组件445是一输入组件,耦合于所述处理单元230,并受所述处理单元230控制。所述处理单元331基于所述肯定操作报告RL81(或所述特定操作报告RL8A)和所获得的所述测量值VN82来使所述传输器3382(或所述输出组件3382)向所述接收组件445传输所述控制响应信号SE81。所述控制响应信号SE81输送所述特定操作报告RL8A和所获得的所述测量值VN82的至少其中之一。
所述接收组件445接收所述控制响应信号SE81。所述处理单元230响应所述控制响应信号SE81来执行与所述可变物理参数QU1A相关的所述特定实际操作BJ81。例如,所述处理单元331使所述传输器3382(或所述输出组件3382)通过在所述传输器3382和所述接收组件445之间的一实际链接LK9A而向所述接收组件445传输所述控制响应信号SE81。所述实际链接LK9A是一有线链接和一无线链接LK91的其中之一。
例如,所述电子标签350、所述存储单元250和所述服务器280的其中之一中包含所述内存单元25Y1。例如,所述电信号LP81是一无线电信号。所述光信号LQ81是一红外线信号。所述接收组件4452用于接收所述光信号LQ81。例如,在所述控制装置212是所述遥控器的条件下,所述控制信号SC81是所述光信号SQ81。在所述控制装置212是所述遥控器的条件下,所述控制响应信号SE81是所述光信号LQ81。例如,所述触发事件EQ81是 所述感测单元260接收一用户输入操作BU83的一用户输入事件。所述感测单元260响应所述用户输入操作BU83来使所述处理单元230接收所述感测信号SM81。所述处理单元230响应所述感测信号SM81来获得所述测量值VM81。
所述应用环境EX81、所述输入组件440、所述显示组件460和所述物理参数形成单元290的其中之一具有所述物理参数形成区AT11。所述处理单元230借由执行用于所述测量应用功能FB81的一特定功能操作BH82来导致所述物理参数形成区AT11具有所述可变物理参数QP1A,并藉此导致所述感测单元260感测处于所述拘束条件FP81的所述可变物理参数QP1A。所述电子标签350、所述存储单元250和所述服务器280的其中之一中包含所述内存单元25Y1。所述感测单元260、所述存储单元250、所述输出组件450、所述显示组件460、所述输出组件455、所述输入组件440、所述接收组件4451、所述接收组件4452和所述物理参数形成单元290皆受所述处理单元230控制。例如,所述感测单元260、所述输入组件440和所述显示组件460的其中之一包含具有所述电应用目标组GK11的所述物理参数形成区AT11。
所述可变物理参数QP1A是一第二可变电性参数、一第二可变力学参数、一第二可变光学参数、一第二可变温度、一第二可变电压、一第二可变电流、一第二可变电功率、一第二可变电阻、一第二可变电容、一第二可变电感、一第二可变频率、一第二时钟时间、一第二可变时间长度、一第二可变亮度、一第二可变光强度、一第二可变音量、一第二可变数据流量、一第二可变振幅、一第二可变空间位置、一第二可变位移、一第二可变顺序位置、一第二可变角度、一第二可变空间长度、一第二可变距离、一第二可变平移速度、一第二可变角速度、一第二可变加速度、一第二可变力、一第二可变压力和一第二可变机械功率的其中之一。
在一些实施例中,所述物理参数应用范围RC1EL是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述特定物理参数范围RC1E4是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。在所述可变物理参数QP1A是所述第二可变电压的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高电压范围和一相对低电压范围。在所述可变物理参数QP1A是所述第二可变电流的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高电流范围和一相对低电流范围。在所述可变物理参数QP1A是所述第二可变电阻的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高电阻范围和一相对低电阻范围。
在所述可变物理参数QP1A是所述第二可变空间位置的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高位置范围和一相对低位置范围。在所述可 变物理参数QP1A是所述第二可变压力的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高压力范围和一相对低压力范围。在所述可变物理参数QP1A是所述第二可变长度的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高长度范围和一相对低长度范围。在所述可变物理参数QP1A是所述第二可变角速度的条件下,所述相对高物理参数范围和所述相对低物理参数范围分别是一相对高角速度范围和一相对低角速度范围。
例如,所述物理参数应用范围RC1EL是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述物理参数候选范围RC1E2是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。例如,所述物理参数应用范围RC1EL是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述特定物理参数范围RC1E7是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。例如,所述物理参数候选范围RC1E2是一相对高物理参数范围和一相对低物理参数范围的其中之一;且所述物理参数候选范围RC1E3是所述相对高物理参数范围和所述相对低物理参数范围的其中另一。
在一些实施例中,在所述可变物理参数QP1A是于所述物理参数应用范围RC1EL之内的条件下,所述可变物理参数QP1A处于一第一参考状态。在所述可变物理参数QP1A是于所述特定物理参数范围RC1E4之内的条件下,所述可变物理参数QP1A处于一第二参考状态。在所述可变物理参数QP1A是于所述物理参数候选范围RC1E2之内的条件下,所述可变物理参数QP1A处于一第三参考状态。在所述可变物理参数QP1A是于所述特定物理参数范围RC1E7之内的条件下,所述可变物理参数QP1A处于一第四参考状态。所述第一参考状态相同或不同于所述第二参考状态。所述第二参考状态不同于所述第三参考状态。所述第一参考状态不同于所述第四参考状态。
例如,所述测量值应用范围码EH1L是一测量值参考范围号码。所述测量值应用范围RM1L基于所述测量值应用范围码EH1L而被安排于所述额定测量值范围RC1N中。所述测量值候选范围码EH12是一测量值参考范围号码。所述测量值候选范围RM12基于所述测量值候选范围码EH12而被安排于所述额定测量值范围RC1N中。所述测量值目标范围码EM1T是一测量值参考范围号码。所述测量值目标范围RN1T基于所述测量值目标范围码EM1T而被安排于所述额定测量值范围RD1N中。
例如,所述可变物理参数QP1A是所述第二可变电压。所述物理参数应用范围RC1EL、所述特定物理参数范围RC1E4和所述物理参数候选范围RD1E2分别是一第一电压参考范围、一第二电压参考范围和一第三电压参考范围。例如,在所述可变物理参数QP1A是所述第二可变位移的条件下,所述物理参数应用范围RC1EL、所述特定物理参数范围RC1E4 和所述物理参数候选范围RD1E2分别是一第一位移参考范围、一第二位移参考范围和一第三位移参考范围。例如,在所述可变物理参数QP1A是所述第二时钟时间的条件下,所述物理参数应用范围RC1EL、所述特定物理参数范围RC1E4和所述物理参数候选范围RD1E2分别是一第一时钟时间参考范围、一第二时钟时间参考范围和一第三时钟时间参考范围。
例如,所述操作单元297包含耦合于所述处理单元230的一通信接口单元246。所述处理单元230通过所述通信接口单元246而耦合于所述网络410。例如,所述通信接口单元246受所述处理单元230控制,并包含耦合于所述处理单元230的所述输出组件450(或一传输组件450)和耦合于所述处理单元230的所述接收组件4451。所述处理单元230通过所述通信接口单元246而耦合于所述网络410。例如,所述处理单元230通过所述通信接口单元246和所述网络410而耦合于所述服务器280,并使所述通信接口单元246通过所述网络410而向所述通信接口单元386传输所述控制信号SC81、所述控制信号SC82和所述控制信号SC83的任一信号。
所述操作单元397包含耦合于所述处理单元331的所述通信接口单元386。所述通信接口单元386受所述处理单元331控制,并包含耦合于所述处理单元331的所述输出组件3382(或所述传输器3382)、和耦合于所述处理单元331的所述输入组件3371(或所述接收器3371)。所述处理单元331通过所述通信接口单元386而耦合于所述网络410。所述通信接口单元246通过所述网络410而有线地或无线地链接于所述通信接口单元386。所述处理单元230使所述通信接口单元246(或所述传输组件450)通过所述网络410向所述接收器3371传输所述控制信号SC81、所述控制信号SC82和所述控制信号SC83的任一信号。
所述通信接口单元386通过所述网络410而有线地或无线地链接于所述通信接口单元246,并通过所述网络410接收所述控制信号SC81、所述控制信号SC82和所述控制信号SC83的任一信号。例如,所述通信接口单元386是一有线通信接口单元和一无线通信接口单元的其中之一。所述网络410是一有线网络和一无线网络的其中之一。例如,所述处理单元331使所述通信接口单元386通过所述网络410向所述接收组件445传输所述控制响应信号SE81。
例如,所述传输组件450和所述接收器3371之间具有所述实际链接LK8A。所述接收组件445和所述传输器3382之间具有所述实际链接LK9A。所述处理单元230使所述通信接口单元246(或所述传输组件450)通过所述实际链接LK8A向所述通信接口单元386(或所述接收器3371)传输所述控制信号SC81、所述控制信号SC82和所述控制信号SC83的任一信号。所述处理单元331使所述通信接口单元386(或所述传输器3382)通过所述实 际链接LK9A向所述接收组件445传输所述控制响应信号SE81。
请参阅图63、图64和图65。图63为示出于图1中的所述控制系统861的一实施结构8026的示意图。图64为示出于图1中的所述控制系统861的一实施结构8027的示意图。图65为示出于图1中的所述控制系统861的一实施结构8028的示意图。如图63、图64和图65所示,所述实施结构8026、所述实施结构8027和所述实施结构8028的每一结构包含所述控制装置212、所述控制目标装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于控制存在于所述控制目标装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述输入单元270和所述输出单元240,并耦合于所述服务器280。
在一些实施例中,所述测量应用功能FB81相关于所述内存单元25Y1。所述内存单元25Y1存储所述控制数据码CK8T。所述控制数据码CK8T是一控制信息码CM82、一控制信息码CM83、一控制信息码CM84和一控制信息码CM85的其中之一。所述控制信息CG81是一控制数据信息CN82、一控制数据信息CN83、一控制数据信息CN84和一控制数据信息CN85的其中之一。
在所述控制数据码CK8T是所述控制信息码CM82的条件下,所述控制信号SC81是输送所述控制数据信息CN82的一指令信号SW82。所述控制信息码CM82和所述控制数据信息CN82皆包含所述测量值目标范围码EM1T。所述控制信号SC81借由输送所述测量值目标范围码EM1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用,并用于导致所述可变物理参数QU1A进入由所述测量值目标范围RN1T所代表的所述物理参数目标范围RD1ET。
在所述控制数据码CK8T是所述控制信息码CM83的条件下,所述控制信号SC81是输送所述控制数据信息CN83的一指令信号SW83。所述控制信息码CM83和所述控制数据信息CN83皆包含所述目标范围界限值对DN1T、所述额定范围界限值对DD1A和所述控制码CC1T。例如,所述控制信息码CM83和所述控制数据信息CN83皆进一步包含所述测量值目标范围码EM1T。所述控制信号SC81借由输送所述目标范围界限值对DN1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用,并用于导致所述可变物理参数QU1A进入由所述测量值目标范围RN1T所代表的所述物理参数目标范围RD1ET。
在一些实施例中,在所述控制数据码CK8T是所述控制信息码CM84的条件下,所述控制信号SC81是输送所述控制数据信息CN84的一指令信号SW84。所述控制信息码CM84和所述控制数据信息CN84皆包含一相对参考范围码ZB81。所述控制信号SC81借由输送所述 相对参考范围码ZB81来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用,并用于导致所述可变物理参数QU1A进入由所述测量值目标范围RN1T所代表的所述物理参数目标范围RD1ET。
例如,所述操作单元397包含一定时器339。所述定时器339用于测量所述可变时间长度LF8A,并被配置以符合一定时器规格FT11。所述控制数据码CK8T和所述控制信息CG81皆进一步包含所述测量时间长度值CL8T。所述处理单元230基于所述参考时间长度LJ8T和所述定时器规格FT11来以一指定计数值格式HH91设定所述测量时间长度值CL8T,并基于所获得的所述控制数据码CK8T来导致所述输出单元240执行所述信号产生操作BS81以产生输送所述测量时间长度值CL8T的所述控制信号SC81。例如,所述指定计数值格式HH91基于一指定比特数目UY91而被特征化。例如,所述测量时间长度值CL8T基于所述定时器规格FT11来用所述指定计数值格式HH91而被预置。
所述测量应用功能规格GBL8包含一时间长度表示GB8KJ。所述时间长度表示GB8KJ用于表示所述参考时间长度LJ8T。例如,所述测量时间长度值CL8T基于所述时间长度表示GB8KJ、所述定时器规格FT11和用于转换所述时间长度表示GB8KJ的一数据编码操作ZR8KJ来用所述指定计数值格式HH91而被预置。所述存储单元250存储包含所述测量时间长度值CL8T的所述控制数据码CK8T。所述处理单元230被配置以从所述存储单元250获得所述控制数据码CK8T。
在一些实施例中,所述控制目标装置130存储一物理参数目标范围码UQ1T。在所述控制数据码CK8T是所述控制信息码CM85的条件下,所述控制信号SC81是输送所述控制数据信息CN85的一指令信号SW85。所述控制信息码CM85和所述控制数据信息CN85皆包含一时间值目标范围码EL1T和一时钟参考时间值NR81。所述时间值目标范围码EL1T被预置。在所述物理参数目标范围码UQ1T等于所预置的所述测量值目标范围码EM1T的条件下,所述控制信号SC81借由输送所预置的所述时间值目标范围码EL1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用,并用于导致所述可变物理参数QU1A进入由所述测量值目标范围RN1T所代表的所述物理参数目标范围RD1ET。
所述操作单元397进一步包含一定时器342。所述定时器342用于测量一时钟时间TH1A,并被配置以符合一定时器规格FT21。所述可变物理参数QU1A相关于所述时钟时间TH1A。所述时钟时间TH1A基于一时钟参考时间TR81而被特征化。所述触发事件EQ81在一触发时间TT81发生。所述触发时间TT81是一目前时间。所述时钟参考时间值NR81基于所述时钟参考时间TR81和所述定时器规格FT21来以一指定计数值格式HH95而被预置。所述时钟参考时间TR81与所述触发时间TT81的一时间差异在一预置时间长度内。所述定 时器规格FT11和所述定时器规格FT21皆被预置。例如,所述指定计数值格式HH95基于一指定比特数目UY95而被特征化。
所述时钟时间TH1A基于一时间目标区间HR1ET而被特征化。所述时间目标区间HR1ET包含所述时钟参考时间TR81,并由一时间值目标范围RQ1T所代表。所述时间值目标范围RQ1T基于所述定时器规格FT21来用所述指定计数值格式HH95而被预置。所述时间值目标范围码EL1T被配置以指示所述时间目标区间HR1ET,并基于所述测量应用功能规格GBL8而被预置。所述物理参数目标范围码UQ1T代表所述可变物理参数QU1A被期望在所述时间目标区间HR1ET内处于的一物理参数目标范围RK1ET。所述物理参数目标范围RK1ET选择自所述多个不同物理参数参考范围RD1E1、RD1E2、…。
在一些实施例中,在所述可变物理参数QP1A相同于所述时钟时间TH1A的条件下,所述感测单元260感测所述时钟时间TH1A以产生所述感测信号SM81,并作为一定时器。例如,在所述可变物理参数QP1A相同于所述时钟时间TH1A的条件下,所述测量值应用范围码EH1L相同于所述时间值目标范围码EL1T。所述处理单元230响应所述触发事件EQ81来执行所述数据确定AE8A以确定相同于所述时间值目标范围码EL1T的所述测量值应用范围码EH1L。
例如,在所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230执行使用所确定的所述测量值应用范围码EH1L的所述数据获取AG8A以获得相同于所述控制数据码CK8T的所述控制应用码UA8T。在所获得的所述控制数据码CK8T包含所预置的所述时钟参考时间值NR81和所预置的所述时间值目标范围码EL1T的条件下,所述处理单元230基于所获得的所述控制数据码CK8T来导致所述输出单元240执行所述信号产生操作BS81以产生输送所获得的所述时钟参考时间值NR81和所获得的所述时间值目标范围码EL1T的所述控制信号SC81。
例如,所述物理参数控制功能规格GBL8包含一时钟时间表示GB8TR。所述时钟时间表示GB8TR用于表示所述时钟参考时间TR81。所述时钟参考时间值NR81基于所述时钟时间表示GB8TR、所述定时器规格FT21和用于转换所述时钟时间表示GB8TR的一数据编码操作ZR8TR来用所述指定计数值格式HH95而被预置。
在一些实施例中,所述控制目标装置130进一步包含耦合于所述操作单元397的一存储单元332。所述存储单元332具有一内存位置YM8T和不同于所述内存位置YM8T的一内存位置YX8T。例如,所述内存位置YM8T基于一内存地址AM8T而被识别。所述内存位置YX8T基于一内存地址AX8T而被识别。所述内存地址AM8T和所述内存地址AX8T皆基于所预置的所述测量值目标范围码EM1T而被预置。
在所述触发事件EQ81发生之前,所述处理单元230依靠所述用户界面区AP11来从所述输入单元270获得一输入数据DJ81,对于所述输入数据DJ81执行一数据编码操作EJ81以确定所预置的所述目标范围界限值对DN1T,被配置以获得所预置的所述测量值目标范围码EM1T,并基于所获得的所述测量值目标范围码EM1T来取得所述内存地址AM8T。例如,在所述触发事件EQ81发生之前,所述输入单元270接收用于操作所述用户接口区AP11的一用户输入操作JV81,并响应所述用户输入操作JV81来提供所述输入数据DJ81到所述处理单元230。
在所述触发事件EQ81发生之前,所述处理单元230基于所确定的所述目标范围界限值对DN1T和所取得的所述内存地址AM8T来导致所述输出单元240提供一写入请求信息WN8T到所述操作单元397。所述写入请求信息WN8T包含所确定的所述目标范围界限值对DN1T和所取得的所述内存地址AM8T。所述操作单元397响应所述写入请求信息WN8T来导致所述存储单元332在所述内存位置YM8T存储所述目标范围界限值对DN1T。
在一些实施例中,在所述触发事件EQ81发生之前,所述处理单元230依靠所述用户接口区AP11来从所述输入单元270获得一输入数据DJ82,对于所述输入数据DJ82执行一数据编码操作EJ82以确定所预置的所述控制码CC1T,并基于所获得的所述测量值目标范围码EM1T来取得所述内存地址AX8T。例如,在所述触发事件EQ81发生之前,所述输入单元270接收用于操作所述用户接口区AP11的一用户输入操作JV82,并响应所述用户输入操作JV82来提供所述输入数据DJ82到所述处理单元230。
在所述触发事件EQ81发生之前,所述处理单元230基于所确定的所述控制码CC1T和所取得的所述内存地址AX8T来导致所述输出单元240提供一写入请求信息WC8T到所述操作单元397。所述写入请求信息WC8T包含所确定的所述控制码CC1T和所取得的所述内存地址AX8T。所述操作单元397响应所述写入请求信息WC8T来导致所述存储单元332在所述内存位置YX8T存储所述控制码CC1T。
所述存储单元332进一步具有一内存位置YN81。例如,所述内存位置YN81基于一内存地址AN81而被识别。所述内存地址AN81被预置。在所述触发事件EQ81发生之前,所述处理单元230依靠所述用户接口区AP11来从所述输入单元270获得一输入数据DJ83,对于所述输入数据DJ83执行一数据编码操作EJ83以确定所预置的所述额定范围界限值对DD1A,并被配置以取得所预置的所述内存地址AN81。例如,在所述触发事件EQ81发生之前,所述输入单元270接收用于操作所述用户接口区AP11的一用户输入操作JV83,并响应所述用户输入操作JV83来提供所述输入数据DJ83到所述处理单元230。
在所述触发事件EQ81发生之前,所述处理单元230基于所确定的所述额定范围界限 值对DD1A和所取得的所述内存地址AN81来导致所述输出单元240提供所述写入请求信息WD81到所述操作单元397。所述写入请求信息WD81包含所确定的所述额定范围界限值对DD1A和所取得的所述内存地址AN81。所述操作单元397响应所述写入请求信息WD81来导致所述存储单元332在所述内存位置YN81存储所述额定范围界限值对DD1A。
请参阅图66和图67。图66为示出于图1中的所述控制系统861的一实施结构8029的示意图。图67为示出于图1中的所述控制系统861的一实施结构8030的示意图。如图66和图67所示,所述实施结构8029和所述实施结构8030的每一结构包含所述控制装置212、所述控制目标装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于控制存在于所述控制目标装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述输入单元270和所述输出单元240。
在一些实施例中,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。例如,在所述触发事件EQ81发生的条件下,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。在所述处理单元230借由执行所述信号产生控制GS81来导致所述输出单元240于所述操作时间TD81之内产生所述控制信号SC81之后,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM82。例如,所述感测单元260是一时间感测单元、一电性参数感测单元、一力学参数感测单元、一光学参数感测单元、一温度感测单元、一湿度感测单元、一运动感测单元和一磁性参数感测单元的其中之一。
例如,所述感测单元260包含耦合于所述处理单元230的一感测组件261,并使用所述感测组件261以产生所述感测信号SM81和所述感测信号SM82。所述感测组件261属于一传感器类型661,并是第一多个应用传感器的其中之一。所述第一多个应用传感器包含一第一电压传感器、一第一电流传感器、一第一电阻传感器、一第一电容传感器、一第一电感传感器、一第一加速度计、一第一陀螺仪、一第一压力转能器、一第一应变规、一第一定时器、一第一光侦测器、一第一温度传感器和一第一湿度传感器。例如,所述感测组件261产生一感测信号分量SM811。所述第一感测信号SM81包含所述感测信号分量SM811。例如,所述控制数据码CK8T进一步包含所述测量时间长度值CL8T。所述测量时间长度值CL8T基于所述参考时间长度LJ8T而被预置。
所述感测单元260进一步包含耦合于所述处理单元230的一感测组件262,并使用所述感测组件262以产生所述感测信号SM81和所述感测信号SM82。所述感测组件262属于一传感器类型662,并是第二多个应用传感器的其中之一。所述传感器类型662不同于或 独立于所述传感器类型661。所述第二多个应用传感器包含一第二电压传感器、一第二电流传感器、一第二电阻传感器、一第二电容传感器、一第二电感传感器、一第二加速度计、一第二陀螺仪、一第二压力转能器、一第二应变规、一第二定时器、一第二光侦测器、一第二温度传感器和一第二湿度传感器。
例如,所述感测组件262产生一感测信号分量SM812。所述感测信号SM81进一步包含所述感测信号分量SM812。例如,所述感测单元260属于一传感器类型660。所述传感器类型660相关于所述传感器类型661和所述传感器类型662。例如,所述感测单元260、所述感测组件260和所述感测组件262分别是一电功率感测单元、一电压传感器和一电流传感器。例如,所述感测单元260、所述感测组件260和所述感测组件262分别是一惯性测量单元、一加速度计和一陀螺仪。
在一些实施例中,所述可变物理参数QP1A相依于一可变物理参数JC1A和不同于所述可变物理参数JC1A的一可变物理参数JD1A。例如,所述可变物理参数QP1A、所述可变物理参数JC1A和所述可变物理参数JD1A分别是一可变电功率、一可变电压和一可变电流,并分别属于一第一物理参数类型、一第二物理参数类型和一第三物理参数类型。所述第二物理参数类型和所述第三物理参数类型是不同的或独立的。所述第一物理参数类型相依于所述第二物理参数类型和所述第三物理参数类型。所述感测组件261感测所述可变物理参数JC1A以产生所述感测信号分量SM811。所述感测组件262感测所述可变物理参数JD1A以产生所述感测信号分量SM812。
所述处理单元230接收所述感测信号分量SM811和所述感测信号分量SM812。在所述触发事件EQ81发生的条件下,所述处理单元230响应所述感测信号分量SM811和所述感测信号分量SM812来获得所述测量值VM81。例如,所述处理单元230响应所述感测信号分量SM811来获得一测量值VM811,响应所述感测信号分量SM812来获得一测量值VM812,并借由执行使用所述测量值VM811和所述测量值VM812的一科学计算MX81来获得所述测量值VM81。所述科学计算MX81基于所述第一物理参数类型、所述第二物理参数类型和所述第三物理参数类型而被预先制定。
所述可变物理参数JC1A和所述可变物理参数JD1A的每一物理参数是一可变电性参数、一可变力学参数、一可变光学参数、一可变温度、一可变电压、一可变电流、一可变电功率、一可变电阻、一可变电容、一可变电感、一可变频率、一时钟时间、一可变时间长度、一可变亮度、一可变光强度、一可变音量、一可变数据流量、一可变振幅、一可变空间位置、一可变顺序位置、一可变角度、一可变空间长度、一可变距离、一可变平移速度、一可变角速度、一可变加速度、一可变力、一可变压力和一可变机械功率的其中之一。
在一些实施例中,所述处理单元230基于所述测量值VM81和所获得的所述候选范围界限值对DM1B之间的所述数据比较CA91来检查所述测量值VM81和所选择的所述测量值候选范围RM12之间的所述数学关系KA91以做出所述测量值VM81是否为于所选择的所述测量值候选范围RM12之内的所述逻辑决定PH91。在所述逻辑决定PH91是肯定的条件下,所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数候选范围RC1E2。
例如,在所述处理单元230辨识所述数学关系KA91为一数值交集关系条件下,所述处理单元230做出所述逻辑决定PH91以成为肯定的。例如,在所述逻辑决定PH91是肯定的条件下,处理单元230确定所述可变物理参数QP1A目前于所述物理参数候选范围RC1E2之内的一物理参数情况,并藉此辨识所述可变物理参数QP1A和所述物理参数候选范围RC1E2之间的一物理参数关系KB82为所述可变物理参数QP1A目前于所述物理参数候选范围RC1E2之内的一物理参数交集关系。例如,所述处理单元230借由检查所述数学关系KA91来检查所述物理参数关系KB82。
在一些实施例中,所述内存单元25Y1进一步具有一内存位置PM82和不同于所述内存位置PM82的一内存位置PV82,在所述内存位置PM82存储所述候选范围界限值对DM1B,并在所述内存位置PV82存储一控制数据码CK82。例如,所述内存位置PM82和所述内存位置PV82皆基于所预置的所述测量值候选范围码EH12而被识别。所述内存位置PM82由一内存地址FM82所识别,或基于所述内存地址FM82而被识别。所述内存位置PV82由一内存地址FV82所识别,或基于所述内存地址FV82而被识别。所述内存地址FM82和所述内存地址FV82皆基于所预置的所述测量值候选范围码EH12而被预置。
例如,所述候选范围界限值对DM1B和所述控制数据码CK82分别属于所述测量范围界限数据码类型TM81和所述控制数据码类型TK81。所述内存地址FM82基于所预置的所述控制目标装置识别符HA1T、所预置的所述测量值候选范围码EH12和所预置的所述测量范围界限数据码类型识别符HM81而被预置。所述内存地址FV82基于所预置的所述控制目标装置识别符HA1T、所预置的所述测量值候选范围码EH12和和所预置的所述控制数据码类型识别符HK81而被预置。
所述控制数据码CK82基于所述物理参数候选范围RC1E2而被预置。所述处理单元230基于所获得的所述控制目标装置识别符HA1T、所获得的所述测量值候选范围码EH12和所获得的所述测量范围界限数据码类型识别符HM81来获得所述内存地址FM82,并基于所获得的所述内存地址FM82来使用所述内存单元25Y1以存取被存储在所述内存位置PM82的所述候选范围界限值对DM1B以获得所述候选范围界限值对DM1B。
在所述处理单元230确定所述可变物理参数QP1A目前处于的所述物理参数候选范围 RC1E2的条件下,所述处理单元230基于所获得的所述控制目标装置识别符HA1T、所获得的所述测量值候选范围码EH12和所获得的所述控制数据码类型识别符HK81来获得所述内存地址FV82,基于所获得的所述内存地址FV82来使用所述内存单元25Y1以存取被存储在所述内存位置PV82的所述控制数据码CK82,并基于所获得的所述控制目标装置识别符HA1T和所存取的所述控制数据码CK82来导致所述输出单元240执行使用所述输出端240的所述信号产生操作BS91以产生用于控制所述可变物理参数QU1A的所述控制信号SC82,所述控制信号SC82不同于所述控制信号SC81。例如,所述控制信号SC82用于导致所述可变物理参数QU1A于所述物理参数候选范围RD1E2之内。
请参阅图68。图68为示出于图1中的所述控制系统861的一实施结构8031的示意图。如图68所示,所述实施结构8031包含所述控制装置212、所述控制目标装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于依靠所述触发事件EQ81而控制存在于所述控制目标装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述输入单元270和所述输出单元240。所述处理单元230耦合于所述服务器280。例如,所述感测单元260相同于所述状态改变侦测器475。
在一些实施例中,所述输入单元270和所述处理单元230皆耦合于所述状态改变侦测器475。所述触发事件EQ81是所述可变物理参数QG1A进入所述实际特征物理参数到达状态XA82的所述状态改变事件。所述可变物理参数QG1A被导致以到达所述预置特征物理参数UL81以形成所述特征物理参数到达ZL82。所述状态改变侦测器475借由侦测所述特征物理参数到达ZL82来产生所述触发信号SX8A。所述预置特征物理参数UL81由一特征物理参数值VL81所代表。
所述存储单元250具有一内存位置PM91,并在所述内存位置PM91存储相关于所述状态改变侦测器475的所述特征物理参数值VL81。所述内存位置PM91由一内存地址FM91所识别,或基于所述内存地址FM91而被识别。所述内存地址FM91基于所预置的所述控制目标装置识别符HA1T而被预置。所述输入单元270和所述处理单元230的其中之一接收所述触发信号SX8A。所述处理单元230响应所接收的所述触发信号SX8A来使用所获得的所述控制目标装置识别符HA1T以获得所述内存地址FM91,并基于所获得的所述内存地址FM91来存取被存储在所述内存位置PM91的所述特征物理参数值VL81以获得所述特征物理参数值VL81。所述处理单元230借由执行使用所获得的所述特征物理参数值VL81的一科学计算MQ83来获得等于所预置的所述测量值目标范围码EM1T的所述控制应用码UA8T。
所述处理单元230基于所获得的所述控制目标装置识别符HA1T和所获得的所述控制 应用码UA8T来在所述操作时间TD81之内执行用于所述测量应用功能FB81的所述信号产生控制GS81以控制所述输出单元240。所述信号产生控制GS81起到指示所述输出端240P的作用,并用于导致所述处理单元230提供所述控制信号SH81到所述输出单元240。所述控制信号SH81起到指示所述输出端240P的作用。所述输出单元240响应所述信号产生控制GS81和所述控制信号SH81的其中之一来执行使用所述输出端240P的所述信号产生操作BS81以产生输送所述测量值目标范围码EM1T的所述控制信号SC81。例如,所述科学计算MQ83基于一特定经验公式而被执行。所述特定经验公式基于所预置的所述特征物理参数值VL81而被预先制定。
所述测量应用功能FB81被配置以符合与所述物理参数应用范围RC1EL相关的所述测量应用功能规格GBL8,并包含一特征物理参数表示。所述测量应用功能规格GBL8被预先制定。所述特征物理参数表示用于表示所述预置特征物理参数UL81。所述特征物理参数值VL81基于所述特征物理参数表示和用于转换所述特征物理参数表示的一数据编码操作而被预置。例如,所述特定经验公式基于所预置的所述特征物理参数值VL81和所述测量应用功能规格GBL8的至少其中之一而被预先制定。
请参阅图69。图69为示出于图1中的所述控制系统861的一实施结构8032的示意图。如图69所示,所述实施结构8032包含所述控制装置212、所述控制目标装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于依靠所述触发事件EQ81而控制存在于所述控制目标装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述输入单元270和所述输出单元240。所述处理单元230耦合于所述服务器280。例如,所述感测单元260相同于所述状态改变侦测器475。
在一些实施例中,所述可变物理参数QP1A相同于所述可变物理参数QG1A。相同于所述可变物理参数QG1A的所述可变物理参数QP1A位于所述应用环境EX81中。所述状态改变侦测器475耦合于所述处理单元230。在所述可变物理参数QU1A于所述特定物理参数范围RD1E4之内的条件下,所述特定功能操作ZH81导致所述可变物理参数QG1A到达所述预置特征物理参数UL81以形成所述特征物理参数到达ZL82,并借由形成所述特征物理参数到达ZL82来将所述可变物理状态XA8A从所述非特征物理参数到达状态XA81改变成所述实际特征物理参数到达状态XA82。例如,所述实际特征物理参数到达状态XA82基于所述预置特征物理参数UL81而被特征化。
所述状态改变侦测器475感测所述可变物理参数QG1A以产生所述感测信号SM81,并响应所述特征物理参数到达ZL82来导致所述感测信号SM81具有一信号状态改变UZ81。例 如,所述信号状态改变UZ81导致所述可变物理参数QP1A从所述特定物理参数范围RC1E4进入所述物理参数应用范围RC1EL。所述触发事件EQ81是所述可变物理参数QG1A进入所述实际特征物理参数到达状态XA82的所述状态改变事件。例如,在所述物理参数形成区AT11位于所述应用环境EX81中的条件下,所述物理参数形成区AT11邻接于所述控制装置212。
在一些实施例中,在所述触发事件EQ81发生的条件下,所述处理单元230响应所述感测信号SM81来获得所述测量值VM81。在所述处理单元230借由检查所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230导致所述输出单元240产生起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用的所述控制信号SC81。
例如,在所述可变物理参数QG1A处于所述非特征物理参数到达状态XA81的条件下,所述可变物理参数QP1A于所述特定物理参数范围RC1E4之内。在所述可变物理参数QG1A处于所述实际特征物理参数到达状态XA82的条件下,所述可变物理参数QP1A于所述物理参数应用范围RC1EL之内。所预置的所述特定测量值范围码EH14和所预置的所述测量值应用范围码EH1L分别用于指示所述非特征物理参数到达状态XA81和所述实际特征物理参数到达状态XA82。例如,在所述物理参数应用区AJ11位于所述应用环境EX81中的条件下,所述物理参数应用区AJ11邻接于所述控制装置212。
请参阅图70、图71、图72和图73。图70为示出于图1中的所述控制系统861的一实施结构8033的示意图。图71为示出于图1中的所述控制系统861的一实施结构8034的示意图。图72为示出于图1中的所述控制系统861的一实施结构8035的示意图。图73为示出于图1中的所述控制系统861的一实施结构8036的示意图。如图70、图71、图72和图73所示,所述实施结构8033、所述实施结构8034、所述实施结构8035和所述实施结构8036的每一结构包含所述控制装置212、所述控制目标装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于依靠所述触发事件EQ81而控制存在于所述控制目标装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述输入单元270和所述输出单元240。所述处理单元230耦合于所述服务器280。
在一些实施例中,所述可变物理参数QU1A由一可变目前状态所特征化,或处于所述可变目前状态。所述输入单元270包含一电使用目标275和相关于所述电使用目标275的一电使用目标276。所述电使用目标275和所述电使用目标276皆耦合于所述处理单元230。 所述电使用目标275由一电使用目标识别符HZ11所识别,并是一电使用单元。所述电使用目标276由一电使用目标识别符HZ12所识别,并是一电使用单元。所述电使用目标识别符HZ11和所述电使用目标识别符HZ12皆基于所述测量应用功能规格GBL8而被预置。
所述存储单元250具有一内存位置PK81和不同于所述内存位置PK81的一内存位置PK82。所述存储单元250在所述内存位置PK81存储代表一预置增量的一相对值VK81,并在所述内存位置PK82存储代表一预置减量的一相对值VK82。例如,所述电应用目标WJ11是所述电使用目标275和所述电使用目标276的其中之一。所述电使用目标275和所述电使用目标276分别位于不同空间位置。
所述内存位置PK81由一内存地址FK81所识别,或基于所述内存地址FK81而被识别。所述内存位置PK82由一内存地址FK82所识别,或基于所述内存地址FK82而被识别。所述内存地址FK81基于所述电使用目标识别符HZ11而被预置;藉此,所述电使用目标275相关于所述相对值VK81。所述内存地址FK82基于所述电使用目标识别符HZ12而被预置;藉此,所述电使用目标276相关于所述相对值VK82。
例如,所述电使用目标识别符HZ11和所述相对值VK81之间具有一数学关系KV8W;藉此,所述电使用目标275相关于所述相对值VK81。所述电使用目标识别符HZ12和所述相对值VK82之间具有一数学关系KV9W;藉此,所述电使用目标276相关于所述相对值VK82。所述电使用目标275用于导致所述可变物理参数QU1A具有一第一物理量改变以改变所述可变物理参数QU1A的所述可变目前状态。所述电使用目标276用于导致所述可变物理参数QU1A具有与所述第一物理量改变相反的一第二物理量改变以改变所述可变物理参数QU1A的所述可变目前状态。
在一些实施例中,所述触发事件EQ81依靠所述电使用目标275和所述电使用目标276的其中之一而发生,并导致所述处理单元230接收所述操作请求信号SZ81。在所述触发事件EQ81依靠所述电使用目标275而发生的条件下,所述处理单元230响应所述操作请求信号SZ81来获得所述电使用目标识别符HZ11,并基于所获得的所述电使用目标识别符HZ11来获得所述相对值VK81。在所述触发事件EQ81依靠所述电使用目标276而发生的条件下,所述处理单元230响应所述操作请求信号SZ81来获得所述电使用目标识别符HZ12,并基于所获得的所述电使用目标识别符HZ12来获得所述相对值VK82。
所述触发事件EQ81是所述输入单元270接收一用户输入操作JU81的一用户输入事件。所述输入单元270响应是所述用户输入事件的所述触发事件EQ81来提供一操作请求信号SZ81到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SZ81。在所述触发事件EQ81依靠所述电使用目标275而发生的条件下,所述输入单元270依靠所述 电使用目标275来提供一输入信号SM87到所述处理单元230。在所述触发事件EQ81依靠所述电使用目标276而发生的条件下,所述输入单元270依靠所述电使用目标276来提供一输入信号SM88到所述处理单元230。所述操作请求信号SZ81是所述输入信号SM87和所述输入信号SM88的其中之一。所述处理单元230响应所述操作请求信号SZ81来使用所述感测信号SM81以获得所述测量值VM81。
所述用户输入操作JU81是一用户输入操作JW81和一用户输入操作JW82的其中之一。在一第一特定情况中,所述使用者输入操作JU81是所述用户输入操作JW81。在一第二特定情况中,所述用户输入操作JU81是所述用户输入操作JW82。所述存储单元250存储所述相对值VK81和不同于所述相对值VK81的所述相对值VK82。例如,所述相对值VK81正比于1,或等于1。所述相对值VK82正比于(-1),或等于(-1)。
在一些实施例中,在所述第一特定情况中,所述输入单元270接收用于选择所述电使用目标275的所述用户输入操作JW81以导致所述触发事件EQ81发生。所述输入单元270响应所述用户输入操作JW81来产生作为所述操作请求信号SZ81的所述输入信号SM87。在所述电使用目标275接收所述用户输入操作JW81之前,所述可变物理参数QP1A于所述特定物理参数范围RC1E4之内。例如,所述触发事件EQ81是所述输入单元270接收用于选择所述电使用目标275的所述用户输入操作JW81的所述用户输入事件。
在所述触发事件EQ81发生的条件下,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。所述处理单元230接收所述输入信号SM87,响应所述输入信号SM87来使用所述感测信号SM81以获得等于所述测量值VM81的一测量值VM87,并响应所述输入信号SM87来执行一数据获取AF9A以获得所述电使用目标识别符HZ11。例如,当所述触发事件EQ81发生时,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。
在所述处理单元230借由检查所述测量值VM87和所述测量值应用范围RM1L之间的所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于所获得的所述电使用目标识别符HZ11来获得所述相对值VK81。例如,所述处理单元230基于所获得的所述电使用目标识别符HZ11来获得所述内存地址FK81,并基于所获得的所述内存地址FK81来存取被存储在所述内存位置PK81的所述相对值VK81以获得所述相对值VK81。例如,所述处理单元230借由执行使用所获得的所述电使用目标识别符HZ11和所述数学关系KV8W的一科学计算MR85来获得所述相对值VK81。
在一些实施例中,所确定的所述物理参数应用范围RC1EL由所确定的所述测量值应用 范围码EH1L所指示。在所述第一特定情况中,所述处理单元230借由执行使用所确定的所述测量值应用范围码EH1L和所获得的所述相对值VK81的一科学计算MQ85来获得等于所预置的所述测量值目标范围码EM1T的所述控制应用码UA8T。例如,所述科学计算MQ85包含使用所确定的所述测量值应用范围码EH1L和所获得的所述相对值VK81的一第一算术运算。
在所述第一特定情况中,所述处理单元230基于所获得的所述控制应用码UA8T来在所述操作时间TD81之内执行用于所述测量应用功能FB81的所述信号产生控制GS81以导致所述输出单元240产生输送所述相对参考范围码ZB81和所述测量值目标范围码EM1T的其中之一的所述控制信号SC81。例如,所述控制信号SC81借由输送所述相对参考范围码ZB81和所述测量值目标范围码EM1T的其中之一来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。
所述物理参数目标范围RD1ET被配置以对应于一对应物理参数范围RY1ET。所述额定物理参数范围RD1E等于所述物理参数目标范围RD1ET和所述对应物理参数范围RY1ET的一范围组合,并包含所述物理参数候选范围RD1E2。所述物理参数目标范围RD1ET具有一第一特定物理参数范围界限和相对于所述第一特定物理参数范围界限的一第二特定物理参数范围界限。在所述第一特定情况中,所述控制目标装置130的所述操作单元397响应所述控制信号SC81来导致所述可变物理参数QU1A具有所述第一物理量改变以改变所述可变物理参数QU1A的所述可变目前状态。
例如,在所述第一特定情况中,所述控制目标装置130的所述操作单元397响应所述控制信号SC81来导致所述可变物理参数QU1A从所述对应物理参数范围RY1ET通过所述第一特定物理参数范围界限以进入所述物理参数目标范围RD1ET。所述第一特定物理参数范围界限是所述预置物理参数目标范围界限ZD1T1和所述预置物理参数目标范围界限ZD1T2的其中之一。例如,在所述第一特定情况中,所述第一物理量改变是一第一物理增量和一第一物理减量的其中之一。例如,在所述第一特定情况中,所述物理参数应用范围RD1EL相邻于所述第一特定物理参数范围界限。
在一些实施例中,在所述第二特定情况中,所述输入单元270接收用于选择所述电使用目标276的所述用户输入操作JW82以导致所述触发事件EQ81发生。所述输入单元270响应所述用户输入操作JW82来产生作为所述操作请求信号SZ81的所述输入信号SM88。在所述电使用目标276接收所述用户输入操作JW82之前,所述可变物理参数QP1A于所述特定物理参数范围RC1E4之内。例如,所述触发事件EQ81是所述输入单元270接收用于选择所述电使用目标276的所述用户输入操作JW82的所述用户输入事件。
在所述触发事件EQ81发生的条件下,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。所述处理单元230接收所述输入信号SM88,响应所述输入信号SM88来使用所述感测信号SM81以获得等于所述测量值VM81的一测量值VM88,并响应所述输入信号SM88来执行一数据获取AF9B以获得所述电使用目标识别符HZ12。
在所述处理单元230借由检查所述测量值VM88和所述测量值应用范围RM1L之间的所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于所获得的所述电使用目标识别符HZ12来获得所述相对值VK82。例如,所述处理单元230基于所获得的所述电使用目标识别符HZ12来获得所述内存地址FK82,并基于所获得的所述内存地址FK82来存取被存储在所述内存位置PK82的所述相对值VK82以获得所述相对值VK82。例如,所述处理单元230借由执行使用所获得的所述电使用目标识别符HZ12和所述数学关系KV9W的一科学计算MR86来获得所述相对值VK82。
在一些实施例中,所确定的所述物理参数应用范围RC1EL由所确定的所述测量值应用范围码EH1L所指示。在所述第二特定情况中,所述处理单元230借由执行使用所确定的所述测量值应用范围码EH1L和所获得的所述相对值VK82的一科学计算MQ86来获得等于所预置的所述测量值目标范围码EM1T的所述控制应用码UA8T。例如,所述科学计算MQ86包含使用所确定的所述测量值应用范围码EH1L和所获得的所述相对值VK82的一第二算术运算。
在所述第二特定情况中,所述处理单元230基于所获得的所述控制应用码UA8T来在所述操作时间TD81之内执行用于所述测量应用功能FB81的所述信号产生控制GS81以导致所述输出单元240产生输送所述相对参考范围码ZB81和所述测量值目标范围码EM1T的其中之一的所述控制信号SC81。在所述第二特定情况中,所述控制目标装置130的所述操作单元397响应所述控制信号SC81来导致所述可变物理参数QU1A具有与所述第一物理量改变相反的所述第二物理量改变以改变所述可变物理参数QU1A的所述可变目前状态。
例如,在所述第二特定情况中,所述控制目标装置130的所述操作单元397响应所述控制信号SC81来导致所述可变物理参数QU1A从所述对应物理参数范围RY1ET通过所述第二特定物理参数范围界限以进入所述物理参数目标范围RD1ET。所述第二特定物理参数范围界限是所述预置物理参数目标范围界限ZD1T1和所述预置物理参数目标范围界限ZD1T2的其中另一。例如,在所述第二特定情况中,所述第二物理量改变是一第二物理增量和一第二物理减量的其中之一。例如,在所述第二特定情况中的所述相对参考范围码ZB81不同于在所述第一特定情况中的所述相对参考范围码ZB81。例如,在所述第二特定情况中, 所述物理参数应用范围RD1EL相邻于所述第二特定物理参数范围界限。
在一些实施例中,在所述处理单元230于所述第一特定情况中获得所述相对值VK81的条件下,所述处理单元230基于所获得的所述相对值VK81来执行所述信号产生控制GS81以导致所述输出单元240产生所述控制信号SC81。例如,所述控制信号SC81输送等于所述相对值VK81所述相对参考范围码ZB81。所述相对值VK81被配置以等于一正整数。
例如,在所述处理单元230于所述第二特定情况中获得所述相对值VK82的条件下,所述处理单元230基于所获得的所述相对值VK82来执行所述信号产生控制GS81以导致所述输出单元240产生所述控制信号SC81。例如,所述控制信号SC81输送等于所述相对值VK82所述相对参考范围码ZB81。所述相对值VK82被配置以等于一负整数。
在一些实施例中,所述存储单元250进一步具有一内存位置PF81和不同于所述内存位置PF81的一内存位置PF82。所述存储单元250在所述内存位置PF81存储所预置的所述电使用目标识别符HZ11,并在所述内存位置PF82存储所预置的所述电使用目标识别符HZ12。所述内存位置PF81由一内存地址FF81所识别,或基于所述内存地址FF81而被识别。所述内存位置PF82由一内存地址FF82所识别,或基于所述内存地址FF82而被识别。
所述内存地址FF81和所述内存地址FF82皆被预置。所述电使用目标275通过所述处理单元230而耦合于所述内存位置PF81。所述电使用目标276通过所述处理单元230而耦合于所述内存位置PF82。例如,所述输入信号SM87输送一输入数据DJ87。所述输入信号SM88输送一输入数据DJ88。
在所述第一特定情况中,所述数据获取AF9A是一数据获取操作AF91和一数据获取操作AF92的其中之一。所述数据获取操作AF91借由使用所预置的所述内存地址FF81来存取被存储在所述内存位置PF81的所述电使用目标识别符HZ11以获得所预置的所述电使用目标识别符HZ11。所述数据获取操作AF92基于一预置数据导出规则YU81来处理所述输入数据DJ87以获得所预置的所述电使用目标识别符HZ11。
在所述第二特定情况中,所述数据获取AF9B是一数据获取操作AF93和一数据获取操作AF94的其中之一。所述数据获取操作AF93借由使用所预置的所述内存地址FF82来存取被存储在所述内存位置PF82的所述电使用目标识别符HZ12以获得所预置的所述电使用目标识别符HZ12。所述数据获取操作AF94基于所述预置数据导出规则YU81来处理所述输入数据DJ88以获得所预置的所述电使用目标识别符HZ12。
在一些实施例中,所述控制装置212由所述用户295所使用,并包含耦合于所述处理单元230的一用户接口区AP21。所述用户接口区AP21具有所述电使用目标275和所述电使用目标276,或者所述电使用目标275和所述电使用目标276皆位于所述用户接口区AP21 中。所述输入单元270包含所述输入组件440。所述输出单元240包含所述显示组件460。例如,所述输入组件440和所述显示组件460的其中之一包含所述用户接口区AP21。
例如,所述用户输入操作JW81由所述用户295所执行。所述电使用目标275是一第一感测目标和一第一显示目标的其中之一。在所述电使用目标275是所述第一感测目标的条件下,所述输入组件440包含所述电使用目标275。在所述电使用目标275是所述第一显示目标的条件下,所述显示组件460包含所述电使用目标275。例如,所述第一感测目标是一第一按钮目标。所述第一显示目标是一第一图符目标。
例如,所述用户输入操作JW82由所述用户295所执行。所述电使用目标276是一第二感测目标和一第二显示目标的其中之一。在所述电使用目标276是所述第二感测目标的条件下,所述输入组件440包含所述电使用目标276。在所述电使用目标276是所述第二显示目标的条件下,所述显示组件460包含所述电使用目标276。例如,所述第二感测目标是一第二按钮目标。所述第二显示目标是一第二图符目标。
在一些实施例中,所述输入单元270依靠所述电使用目标275来提供所述输入信号SM87到所述处理单元230。所述输入单元270依靠所述电使用目标276来提供所述输入信号SM88到所述处理单元230。例如,在所述电使用目标275被配置以存在于所述输入组件440的条件下,所述电使用目标275接收所述用户输入操作JW81来导致所述输入组件440提供所述输入信号SM87到所述处理单元230。
例如,所述输入单元270进一步包含一指向装置441。在所述触发事件EQ81发生之前,所述处理单元230被配置以导致所述显示组件460显示一选择工具YJ81、所述电使用目标275和所述电使用目标276。所述指向装置441用于控制所述选择工具YJ81。在所述电使用目标275被配置以存在于所述显示组件460的条件下,所述指向装置441接收用于选择所述电使用目标275的所述用户输入操作JW81来导致所述指向装置441提供所述输入信号SM87到所述处理单元230。例如,所述用户输入操作JW81被配置以依靠所述指向装置441和所述选择工具YJ81来选择所述电使用目标275。例如,所述选择工具YJ81是一光标。
例如,在所述电使用目标276被配置以存在于所述输入组件440的条件下,所述电使用目标276接收所述用户输入操作JW82来导致所述输入组件440提供所述输入信号SM88到所述处理单元230。在所述电使用目标276被配置以存在于所述显示组件460的条件下,所述指向装置441接收用于选择所述电使用目标276的所述用户输入操作JW82来导致所述指向装置441提供所述输入信号SM88到所述处理单元230。例如,所述用户输入操作JW82被配置以依靠所述指向装置441和所述选择工具YJ81来选择所述电使用目标276。
请参阅图74和图75。图74为示出于图1中的所述控制系统861的一实施结构8037的示意图。图75为示出于图1中的所述控制系统861的一实施结构8038的示意图。如图74和图75所示,所述实施结构8037和所述实施结构8038的每一结构包含所述控制装置212、所述控制目标装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于依靠所述触发事件EQ81而控制存在于所述控制目标装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述输入单元270和所述输出单元240。所述处理单元230耦合于所述服务器280。
在一些实施例中,所述控制装置212包含所述用户接口区AP21和相关于所述用户接口区AP21的一用户接口区AP22。所述用户接口区AP21和所述用户接口区AP22皆耦合于所述处理单元230。所述用户接口区AP22具有耦合于所述处理单元230的一电应用目标WK11和耦合于所述处理单元230的一电应用目标WK12。所述电应用目标WK11和所述电应用目标WK12分别位于不同空间位置,并皆属于所述电应用目标组GK11。所述用户接口区AP22包含所述物理参数形成区AT11。例如,所述电应用目标组GK11位于所述物理参数形成区AT11中。
所述电应用目标WK11基于所述目标顺序位置UK11而被安排于所述电应用目标组GK11中。所述电应用目标WK12基于与所述目标顺序位置UK11不同的一目标顺序位置UK12而被安排于所述电应用目标组GK11中。所述可变物理参数QP1A基于所述目标顺序位置UK11和所述目标顺序位置UK12而被特征化。所述目标顺序位置UK11由所述目标位置号码NB11所代表。所述目标顺序位置UK12由不同于所述目标位置号码NB11的一目标位置号码NB12所代表。
所述目标位置号码NB11和所述目标位置号码NB12皆基于所述测量应用功能规格GBL8而被预置。例如,所述电应用目标组GK11由多个电应用目标WK11、WK12、…所组成。所述多个电应用目标WK11、WK12、…根据一电应用目标顺序YB11而被排列,并分别基于多个目标顺序位置UK11、UK12、…而被排列于所述电应用目标组GK11中。所述可变物理参数QP1A等于与所述电应用目标顺序YB11相关的一可变顺序位置。例如,所述可变物理参数QP1A在一特定时间等于所述多个目标顺序位置UK11、UK12、…的其中之一。
在一些实施例中,在所述触发事件EQ81发生的条件下,所述感测单元260借由感测用于选择所述电应用目标WK11的所述用户输入操作BU83来感测处于所述限制条件FP8M的所述可变物理参数QP1A以产生用于获得所述测量值VM81的所述感测信号SM81。例如,所述限制条件FP8M是所述可变物理参数QP1A等于所述目标顺序位置UK11。例如,在所述 触发事件EQ81发生的条件下,所述感测单元260接收用于选择所述电应用目标WK11的所述用户输入操作BU83,并响应所述用户输入操作BU83来感测处于所述限制条件FP8M的所述可变物理参数QP1A以产生所述感测信号SM81。例如,所述输入单元270包含所述感测单元260。例如,所述感测单元260位于所述用户接口区AP22中。
例如,所述处理单元230响应所述触发事件EQ81来执行与一指定时间TD71相关的一时间控制GF81。在所述感测单元260于所述指定时间TD71之内接收所述用户输入操作BU83的条件下,所述处理单元230于所述指定时间TD71之内接收所述感测信号SM81,并基于所述感测信号SM81来以所述指定测量值格式HQ81获得等于所述目标位置号码NB11的所述测量值VM81。例如,所述操作单元297包含耦合于所述处理单元230的一定时器539。所述定时器539受所述处理单元230控制。所述时间控制GF81用于控制所述定时器539。
在所述感测单元260于所述指定时间TD71之内未能接收所述用户输入操作BU83的一特定条件下,所述处理单元230禁止执行所述检查操作BA81。例如,所述指定时间TD71具有一结束时间点。在所述处理单元230通过所述定时器539响应所述结束时间点而确定所述特定条件的条件下,所述处理单元230禁止执行所述检查操作BA81。
例如,在所述触发事件EQ81发生的条件下,所述感测单元260于一指定时间TD71之内接收所述用户输入操作BU83。在所述触发事件EQ81发生的条件下,所述处理单元230接收所述感测信号SM81,并于所述指定时间TD71之内基于所述感测信号SM81来以所述指定测量值格式HQ81获得等于所述目标位置号码NB11的所述测量值VM81。
在一些实施例中,所述用户接口区AP21具有耦合于所述处理单元230的所述电应用目标WJ11。所述触发事件EQ81是所述输入单元270接收所述使用者输入操作JU81的所述用户输入事件。在所述触发事件EQ81发生的条件下,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。所述用户输入操作JU81用于选择所述电应用目标WJ11。所述输入单元270响应所述用户输入操作JU81和所述用户输入事件的其中之一来提供所述操作请求信号SZ81到所述处理单元230。
所述处理单元230响应所述操作请求信号SZ81来导致所述感测单元260感测用于选择所述电应用目标WK11的所述用户输入操作BU83,并借由侦测处于所述限制条件FP8M的所述可变物理参数QP1A来产生所述感测信号SM81。例如,所述用户输入操作BU83和所述用户输入操作JU81皆由所述用户295所执行。例如,所述电应用目标WJ11用于选择所述控制目标装置130以进行控制。
在一些实施例中,所述输入单元270包含所述输入组件440。所述输出单元240包含所述显示组件460。例如,所述输入组件440包含所述用户接口区AP21和所述用户接口区 AP22。例如,所述显示组件460包含所述用户接口区AP21和所述用户接口区AP22。例如,所述输入组件440包含所述用户接口区AP21;且所述显示组件460包含所述用户界面区AP22。例如,所述输入组件440包含所述用户接口区AP22;且所述显示组件460包含所述用户界面区AP21。
例如,所述电应用目标WJ11是一感测目标和一显示目标的其中之一。在所述电应用目标WJ11是所述感测目标的条件下,所述输入组件440包含所述电应用目标WJ11。在所述电应用目标WJ11是所述显示目标的条件下,所述显示组件460包含所述电应用目标WJ11。在所述电应用目标WJ11被配置以存在于所述输入组件440的条件下,所述电应用目标WJ11接收所述用户输入操作JU81来导致所述输入组件440提供所述操作请求信号SZ81到所述处理单元230。
例如,所述输入单元270进一步包含所述指向装置441。在所述触发事件EQ81发生之前,所述处理单元230被配置以导致所述显示组件460显示所述选择工具YJ81和所述电应用目标WJ11。所述指向装置441用于控制所述选择工具YJ81。例如,在所述电应用目标WJ11被配置以存在于所述显示组件460的条件下,所述指向装置441接收用于选择所述电应用目标WJ11的所述用户输入操作JU81来导致所述指向装置441提供所述操作请求信号SZ81到所述处理单元230。所述用户输入操作JU81被配置以依靠所述指向装置441和所述选择工具YJ81来选择所述电应用目标WJ11。
在一些实施例中,在所述触发事件EQ81发生之前,所述处理单元230被配置以导致所述电应用目标WJ11、所述电使用目标275和所述电使用目标276的至少其中之一出现于所述用户接口区AP21中,并被配置以导致所述电应用目标组GK11出现于所述用户接口区AP22中。在所述电应用目标WJ11出现于所述用户接口区AP21中且所述电应用目标组GK11出现于所述用户接口区AP22中的条件下,所述输入单元270接收所述用户输入操作JU81的所述触发事件EQ81发生。
例如,所述处理单元230响应所述触发事件EQ81来导致所述电应用目标组GK11出现于所述用户接口区AP22中。所述输入单元270响应所述触发事件EQ81来提供所述操作请求信号SZ81到所述处理单元230。所述处理单元230响应所述操作请求信号SZ81来导致所述电应用目标组GK11出现于所述用户接口区AP22中。在所述电应用目标组GK11出现于所述用户接口区AP22中的条件下,所述感测单元260于所述指定时间TD71之内接收所述用户输入操作BU83,并响应所述用户输入操作BU83来提供所述感测信号SM81到所述处理单元230。例如,在所述输入组件440包含所述感测单元260的条件下,所述感测单元260包含所述电应用目标组GK11。
在一些实施例中,在所述输入组件440包含所述感测单元260且所述感测单元260包含所述电应用目标组GK11的条件下,属于所述电应用目标组GK11的所述电应用目标WK11接收所述用户输入操作BU83来导致所述感测单元260提供所述感测信号SM81到所述处理单元230。
例如,在所述指向装置441包含所述感测单元260且所述显示组件460受所述处理单元230控制以显示所述电应用目标组GK11的条件下,所述指向装置441接收用于选择所述电应用目标WK11的所述用户输入操作BU83来导致所述感测单元260提供所述感测信号SM81到所述处理单元230。例如,所述处理单元230被配置以导致所述显示组件460显示所述选择工具YJ81和所述电应用目标组GK11。所述指向装置441用于控制所述选择工具YJ81。所述用户输入操作BU83被配置以依靠所述指向装置441和所述选择工具YJ81来选择所述电应用目标WK11。
请参阅图76、图77、图78和图79。图76为示出于图1中的所述控制系统861的一实施结构8039的示意图。图77为示出于图1中的所述控制系统861的一实施结构8040的示意图。图78为示出于图1中的所述控制系统861的一实施结构8041的示意图。图79为示出于图1中的所述控制系统861的一实施结构8042的示意图。如图76、图77、图78和图79所示,所述实施结构8039、所述实施结构8040、所述实施结构8041和所述实施结构8042的每一结构包含所述控制装置212、所述控制目标装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于依靠所述触发事件EQ81而控制存在于所述控制目标装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述输入单元270和所述输出单元240。所述处理单元230耦合于所述服务器280。
在一些实施例中,所述控制目标装置130包含所述操作单元397、所述功能单元335、所述感测单元334、一功能单元735和一复用器363。所述操作单元397具有一输出端338P和一输出端338Q。所述输出端338P和所述输出端338Q分别位于不同空间位置。所述功能单元335、所述感测单元334、所述功能单元735和所述复用器363皆耦合于所述操作单元397。所述输出端338P耦合于所述功能单元335。所述功能单元735包含一物理参数形成区AU21,并耦合于所述输出端338Q。所述物理参数形成区AU21具有一可变物理参数QU2A。例如,所述功能单元735是一物理可实现功能单元,并具有相似于所述功能单元335的一功能结构。例如,所述功能单元735是一物理参数应用单元。
所述感测单元334用于通过所述复用器363而感测多个实际物理参数的其中之一。所述多个实际物理参数包含所述可变物理参数QU1A和所述可变物理参数QU2A。所述控制装 置212用于控制所述可变物理参数QU2A。所述复用器363具有一输入端3631、一输入端3632、一控制端363C和一输出端363P。
所述控制端363C耦合于所述操作单元397。所述输入端3631耦合于所述物理参数形成区AU11。所述输入端3632耦合于所述物理参数形成区AU21。所述输出端363P耦合于所述感测单元334。例如,所述可变物理参数QU1A和所述可变物理参数QU2A分别是一第三可变电性参数和一第四可变电性参数。例如,所述第三可变电性参数和所述第四可变电性参数分别是一第三可变电压和一第四可变电压。所述输入端3631和所述输出端363P之间具有一第一功能关系。所述第一功能关系等于一第一导通关系和一第一关断关系的其中之一。
所述输入端3632和所述输出端363P之间具有一第二功能关系。所述第二功能关系等于一第二导通关系和一第二关断关系的其中之一。在所述第一功能关系等于所述第一导通关系的条件下,所述感测单元334用于通过所述输出端363P和所述输入端3631来感测所述可变物理参数QU1A,并通过所述输出端363P和所述输入端3631而耦合于所述物理参数形成区AU11。在所述第二功能关系等于所述第二导通关系的条件下,所述感测单元334用于通过所述输出端363P和所述输入端3632来感测所述可变物理参数QU2A,并通过所述输出端363P和所述输入端3632而耦合于所述物理参数形成区AU21。例如,所述复用器363受所述操作单元397控制,并是一模拟复用器。
在一些实施例中,所述控制装置212和所述应用环境EX81的其中之一具有一物理参数形成区AT21。所述物理参数形成区AT21具有一可变物理参数QP2A。所述控制装置212进一步包含耦合于所述处理单元230的一复用器263。所述复用器263具有一输入端2631、一输入端2632、一控制端263C和一输出端263P。所述控制端263C耦合于所述处理单元230。
所述输入端2631耦合于所述物理参数形成区AT11。所述输入端2632耦合于所述物理参数形成区AT21。所述输出端263P耦合于所述感测单元260。例如,所述可变物理参数QP1A和所述可变物理参数QP2A分别是一第五可变电性参数和一第六可变电性参数。例如,所述第五可变电性参数和所述第六可变电性参数分别是一第五可变电压和一第六可变电压。所述输入端2631和所述输出端263P之间具有一第三功能关系。所述第三功能关系等于一第三导通关系和一第三关断关系的其中之一。
所述输入端2632和所述输出端263P之间具有一第四功能关系。所述第四功能关系等于一第四导通关系和一第四关断关系的其中之一。在所述第三功能关系等于所述第三导通关系的条件下,所述感测单元260用于通过所述输出端263P和所述输入端2631来感测所 述可变物理参数QP1A,并通过所述输出端263P和所述输入端2631而耦合于所述物理参数形成区AT11。
在所述第四功能关系等于所述第四导通关系的条件下,所述感测单元260用于通过所述输出端263P和所述输入端2632来感测所述可变物理参数QP2A,并通过所述输出端263P和所述输入端2632而耦合于所述物理参数形成区AT21。例如,所述复用器263受所述处理单元230控制,并是一模拟复用器。例如,所述感测单元260在一操作时间TB81通过所述复用器263来感测所述可变物理参数QP1A,并在与所述操作时间TB81不同的一操作时间TB82通过所述复用器263来感测所述可变物理参数QP2A。
在一些实施例中,所述功能单元335由一功能单元识别符HA2T所识别。所述功能单元735由一功能单元识别符HA22所识别。所述功能单元335和所述功能单元735分别位于不同空间位置,并皆耦合于所述操作单元397。所述功能单元识别符HA2T和所述功能单元识别符HA22皆基于所述测量应用功能规格GBL8而被预置。为了控制所述功能单元335,所述控制信号SC81进一步输送所述功能单元识别符HA2T。所述操作单元397从所述控制装置212接收所述控制信号SC81。所述操作单元397响应所述控制信号SC81来选择所述功能单元335以进行控制。例如,所述功能单元识别符HA2T被配置以指示所述输出端338P,并是一第一功能单元号码。所述功能单元识别符HA22被配置以指示所述输出端338Q,并是一第二功能单元号码。
所述控制装置212进一步包含耦合于所述处理单元230的一电使用目标285、和耦合于所述处理单元230的一电使用目标286。所述电使用目标285由一电使用目标识别符HZ2T所识别,并是一电使用单元。所述电使用目标286由一电使用目标识别符HZ22所识别,并是一电使用单元。所述电使用目标识别符HZ2T和所述电使用目标识别符HZ22皆基于所述测量应用功能规格GBL8而被预置。在所述触发事件EQ81依靠所述电使用目标285而发生的条件下,所述处理单元230响应所述触发事件EQ81来选择所述功能单元335以进行控制。在所述触发事件EQ81依靠所述电使用目标286而发生的条件下,所述处理单元230响应所述触发事件EQ81来选择所述功能单元735以进行控制。
在一些实施例中,所述存储单元250具有一内存位置XC9T和一内存位置XC92,在所述内存位置XC9T存储所述功能单元识别符HA2T,并在所述内存位置XC92存储所述功能单元识别符HA22。所述内存位置XC9T由一内存地址EC9T所识别,或基于所述内存地址EC9T而被识别。所述内存地址EC9T基于所述电使用目标识别符HZ2T而被预置;藉此,所述电使用目标285相关于所述功能单元识别符HA2T。例如,所述电使用目标识别符HZ2T和所述功能单元识别符HA2T之间具有一数学关系KK91;藉此,所述电使用目标285相关于所 述功能单元识别符HA2T。
所述内存位置XC92由一内存地址EC92所识别,或基于所述内存地址EC92而被识别。所述内存地址EC92基于所述电使用目标识别符HZ22而被预置;藉此,所述电使用目标286相关于所述功能单元识别符HA22。例如,所述电使用目标识别符HZ22和所述功能单元识别符HA22之间具有一数学关系KK92;藉此,所述电使用目标286相关于所述功能单元识别符HA22。
在一些实施例中,所述触发事件EQ81依靠所述电使用目标285而发生,并导致所述处理单元230接收一操作请求信号SZ91。在所述触发事件EQ81依靠所述电使用目标285而发生的条件下,所述处理单元230响应所述操作请求信号SZ91来获得所述测量值VM81和所述电使用目标识别符HZ2T,并基于所获得的所述电使用目标识别符HZ2T来获得所述功能单元识别符HA2T。所述处理单元230基于所获得的所述功能单元识别符HA2T来导致所述输出组件450和所述输出组件455的其中之一向所述通信接口单元386传输所述控制信号SC81、所述控制信号SC82和所述控制信号SC83的任一信号。
例如,所述触发事件EQ81是所述输入单元270接收一用户输入操作JU91的一用户输入事件。所述输入单元270响应是所述用户输入事件的所述触发事件EQ81来提供所述操作请求信号SZ91到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SZ91。在所述触发事件EQ81依靠所述电使用目标285而发生的条件下,所述输入单元270依靠所述电使用目标285来提供所述操作请求信号SZ91到所述处理单元230。所述处理单元230响应所述操作请求信号SZ91来提供一控制信号SV81到所述控制端263C。例如,所述控制信号SV81是一选择控制信号,并起到指示所述输入端2631的作用。所述复用器263响应所述控制信号SV81来导致所述输入端2631和所述输出端263P之间的所述第三功能关系等于所述第三导通关系。
在所述第三功能关系等于所述第三导通关系的条件下,所述感测单元260感测所述可变物理参数QP1A以产生所述感测信号SM81。所述处理单元230从所述感测单元260接收所述感测信号SM81,并基于所接收的所述感测信号SM81来以所述指定测量值格式HQ81获得所述测量值VM81。例如,所述电使用目标285和所述电使用目标286被配置以分别对应于所述功能单元335和所述功能单元735,皆耦合于所述处理单元230,并分别位于不同空间位置。
在一些实施例中,所述输入单元270接收用于选择所述电使用目标285的所述用户输入操作JU91以导致所述触发事件EQ81发生。所述输入单元270响应所述用户输入操作JU91来产生所述操作请求信号SZ91。所述处理单元230接收所述操作请求信号SZ91,响应所 述操作请求信号SZ91来使用所述感测信号SM81以获得所述测量值VM81,并响应所述操作请求信号SZ91来执行一数据获取AF9C以获得所述电使用目标识别符HZ2T。
例如,所述存储单元250包含所述存储空间SS11。所述存储空间SS11具有所预置的所述额定范围界限值对DC1A、所述可变物理参数范围码UM8A、所述电使用目标识别符HZ2T、所述电使用目标识别符HZ22、所述功能单元识别符HA2T、所述电使用目标识别符HZ11、所述电使用目标识别符HZ12、所述相对值VK81和所述相对值VK82。
在一些实施例中,所述处理单元230被配置以基于所获得的所述电使用目标识别符HZ2T来获得所述内存地址EC9T,并基于所获得的所述内存地址EC9T来存取被存储在所述内存位置XC9T的所述功能单元识别符HA2T以获得所述功能单元识别符HA2T。在所述处理单元230借由检查所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于所获得的所述功能单元识别符HA2T和所存取的所述控制数据码CK8T来执行所述信号产生控制GS81以导致所述输出组件450和所述输出组件455的其中之一产生所述控制信号SC81,并导致所述输出组件450和所述输出组件455的其中之一向所述通信接口单元386传输所述控制信号SC81。
例如,所述控制信号SC81输送所述功能单元识别符HA2T。所述控制信号SC81借由输送被配置以指示所述输出端338P的所述功能单元识别符HA2T来使所述处理单元331选择所述功能单元335以进行控制。例如,所述控制信号SC81输送所述功能单元识别符HA2T和所述测量值目标范围码EM1T。所述操作单元397响应所述控制信号SC81来从所述控制信号SC81获得所述测量值目标范围码EM1T和所述功能单元识别符HA2T。在一第三特定情况中,所述操作单元397基于所获得的所述测量值目标范围码EM1T和所获得的所述功能单元识别符HA2T来执行使用所述输出端338P的所述信号产生操作BY81以向所述功能单元335传输一功能信号SG81。所述功能单元335响应所述功能信号SG81来导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET。例如,所述控制码CC1T、所述控制码CC1L和所述控制码CC12分别是多个句柄。
在一些实施例中,在所述控制信号SC81输送所述功能单元识别符HA2T和所述测量值目标范围码EM1T的条件下,所述操作单元397响应所述控制信号SC81来从所述控制信号SC81获得所述功能单元识别符HA2T和所述测量值目标范围码EM1T,并基于所获得的所述功能单元识别符HA2T来提供一控制信号SD81到所述控制端363C。例如,所述控制信号SD81是一选择控制信号,并起到指示所述输入端3631的作用。所述复用器363响应所述控制信号SD81来导致所述输入端3631和所述输出端363P之间的所述第一功能关系等于 所述第一导通关系。在所述第一功能关系等于所述第一导通关系的条件下,所述感测单元334感测所述可变物理参数QU1A以产生一感测信号SN81。
所述操作单元397从所述感测单元334接收所述感测信号SN81,并基于所接收的所述感测信号SN81来获得一测量值VN81。在所述第三特定情况中,所述操作单元397基于所获得的所述测量值VN81、所获得的所述测量值目标范围码EM1T和所获得的所述功能单元识别符HA2T来执行使用所述输出端338P的所述信号产生操作BY81以向所述功能单元335传输所述功能信号SG81。
在一些实施例中,所述存储空间SS11进一步具有一内存位置PF9T。所述存储单元250在所述内存位置PF9T存储所预置的所述电使用目标识别符HZ2T。所述内存位置PF9T由一内存地址FF9T所识别,或基于所述内存地址FF9T而被识别。所述内存地址FF9T被预置。所述电使用目标285通过所述处理单元230而耦合于所述内存位置PF9T。例如,所述操作请求信号SZ91输送一输入数据DJ91。例如,所述存储空间SS11包含所述内存空间SA1。
所述数据获取AF9C是一数据获取操作AF95和一数据获取操作AF96的其中之一。所述数据获取操作AF95借由使用所预置的所述内存地址PF9T来存取被存储在所述内存位置PF9T的所述电使用目标识别符HZ2T以获得所预置的所述电使用目标识别符HZ2T。所述数据获取操作AF96基于一预置数据导出规则YU91来处理所述输入数据DJ91以获得所预置的所述电使用目标识别符HZ2T。
在一些实施例中,在所述输入单元270接收用于选择所述电使用目标286的一用户输入操作JU92的一触发事件发生的条件下,所述输入单元270响应所述用户输入操作JU92来提供一操作请求信号SZ92到所述处理单元230,并藉此导致所述处理单元230接收所述操作请求信号SZ92。所述处理单元230响应所述操作请求信号SZ92来获得一测量值VM91和所述电使用目标识别符HZ22,并基于所获得的所述电使用目标识别符HZ22来获得所述功能单元识别符HA22。
所述处理单元230基于所获得的所述测量值VM91和所获得的所述功能单元识别符HA22来导致所述输出组件450和所述输出组件455的其中之一向所述通信接口单元386传输一控制信号SC97。所述控制信号SC97用于控制所述可变物理参数QU2A,并输送所述功能单元识别符HA22。例如,所述控制信号SC97是所述控制信号SC81。在所述控制信号SC81输送所述功能单元识别符HA22的条件下,所述处理单元331响应所述控制信号SC81来从所述控制信号SC81获得所述功能单元识别符HA22。
例如,所述输入单元270响应用于选择所述电使用目标286的所述用户输入操作JU92来提供所述操作请求信号SZ92到所述处理单元230,并藉此使所述处理单元230接收所述 操作请求信号SZ92。所述处理单元230响应所述操作请求信号SZ92来提供一控制信号SV82到所述控制端263C。例如,所述控制信号SV82是一选择控制信号,起到指示所述输入端2632的作用,并不同于所述控制信号SV81。所述复用器263响应所述控制信号SV82来导致所述输入端2632和所述输出端263P之间的所述第四功能关系等于所述第四导通关系。在所述第四功能关系等于所述第四导通关系的条件下,所述感测单元260感测所述可变物理参数QP2A以产生一感测信号SM91。所述处理单元230从所述感测单元260接收所述感测信号SM91,并基于所接收的所述感测信号SM91来获得所述测量值VM91。
在一些实施例中,所述操作单元397响应所述控制信号SC97来从所述控制信号SC97获得所述功能单元识别符HA22,并基于所获得的所述功能单元识别符HA22来提供一控制信号SD82到所述控制端363C。例如,所述控制信号SD82是一选择控制信号,并起到指示所述输入端3632的作用。所述复用器363响应所述控制信号SD82来导致所述输入端3632和所述输出端363P之间的所述第二功能关系等于所述第二导通关系。在所述第二功能关系等于所述第二导通关系的条件下,所述感测单元334感测所述可变物理参数QU2A以产生一感测信号SN91。
所述操作单元397从所述感测单元334接收所述感测信号SN91,并基于所接收的所述感测信号SN91来获得一测量值VN91。所述操作单元397基于所获得的所述测量值VN91和所获得的所述功能单元识别符HA22来执行使用所述输出端338Q的一信号产生操作BY97以向所述功能单元735传输一功能信号SG97。所述功能信号SG97用于控制所述可变物理参数QU2A。例如,所述功能信号SG97是一操作信号、一控制信号、一脉冲宽度调变信号、一电平信号和一驱动信号的其中之一。例如,所述控制信号SC97借由输送被配置以指示所述输出端338Q的所述功能单元识别符HA22来使所述处理单元331选择所述功能单元735以进行控制。
例如,所述用户输入操作JU81是所述使用者输入操作JU91和所述使用者输入操作JU92的其中之一。所述触发事件EQ81是所述输入组件440接收用于选择所述电使用目标286的所述用户输入操作JU92的一使用者输入事件。在所述输入组件440接收使用所述电使用目标285的所述使用者输入操作JU91的条件下,所述处理单元230响应所述使用者输入操作JU91来使所述输出组件450和所述输出组件455的其中之一向所述通信接口单元386传输所述控制信号SC81。在所述输入组件440接收使用所述电使用目标286的所述使用者输入操作JU92的条件下,所述处理单元230响应所述使用者输入操作JU92来使所述输出组件450和所述输出组件455的其中之一向所述通信接口单元386传输所述控制信号SC97。
在一些实施例中,所述处理单元230使所述通信接口单元246通过所述实际链接LK1A向所述通信接口单元386有线地或无线地传输所述控制信号SC81、所述控制信号SC82、所述控制信号SC83和所述控制信号SC97的任一信号。所述处理单元331使所述通信接口单元386通过所述实际链接LK2A向所述通信接口单元246有线地或无线地传输所述控制响应信号SE11。例如,所述通信接口单元246与所述通信接口单元386有线地或无线地通信。
例如,在所述控制装置212是所述移动装置的条件下,所述处理单元230使所述通信接口单元246通过所述无线链接LK11和所述无线网络的其中之一向所述通信接口单元386传输所述控制信号SC81、所述控制信号SC82、所述控制信号SC83和所述控制信号SC97的任一信号。在所述控制装置210是所述移动装置的条件下,所述处理单元331使所述通信接口单元386通过所述无线链接LK21和所述无线网络的其中之一向所述通信接口单元246有线地或无线地传输所述控制响应信号SE11。例如,在所述控制装置210是所述遥控器的条件下,所述控制信号SC81、所述控制信号SC82、所述控制信号SC83、所述控制信号SC97和所述控制响应信号SE11分别是多个光信号。
在一些实施例中,所述用户接口区AP21具有所述电使用目标285和所述电使用目标286。所述使用者输入操作JU91由所述用户295所执行。所述电使用目标285是一第三感测目标和一第三显示目标的其中之一。在所述电使用目标285是所述第三感测目标的条件下,所述输入组件440包含所述电使用目标285。在所述电使用目标285是所述第三显示目标的条件下,所述显示组件460包含所述电使用目标285。例如,所述第三感测目标是一第三按钮目标。所述第三显示目标是一第三图符目标。例如,所述用户接口区AP21是所述用户接口区AP11。
所述电使用目标286是一第四感测目标和一第四显示目标的其中之一。在所述电使用目标286是所述第四感测目标的条件下,所述输入组件440包含所述电使用目标286。在所述电使用目标286是所述第四显示目标的条件下,所述显示组件460包含所述电使用目标286。例如,所述第四感测目标是一第四按钮目标。所述第三显示目标是一第四图符目标。所述操作单元297包含一指向装置441。例如,所述输入组件440包含所述指向装置441。例如,所述输入组件440是所述指向装置441。
例如,在所述电使用目标285被配置以存在于所述输入组件440的条件下,所述电使用目标285接收所述用户输入操作JU91来导致所述输入组件440提供所述操作请求信号SZ91到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SZ91。在所述电使用目标285被配置以存在于所述显示组件460的条件下,所述指向装置441接收用 于选择所述电使用目标285的所述用户输入操作JU91来导致所述指向装置441提供所述操作请求信号SZ91到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SZ91。例如,所述用户输入操作JU91被配置以依靠所述指向装置441和所述选择工具YJ81来选择所述电使用目标285。例如,所述选择工具YJ81是一光标。例如,所述输入组件440接收所述用户输入操作JU91和所述用户输入操作JU92的任一操作。
在一些实施例中,所预置的所述额定范围界限值对DC1A、所述可变物理参数范围码UM8A、所述相对值VK81和所述相对值VK82皆进一步基于所预置的所述功能单元识别符HA2T而被存储在所述存储空间SS11中。所述处理单元230进一步基于所述功能单元识别符HA2T来使用所述存储单元250以存取所预置的所述额定范围界限值对DC1A、所述可变物理参数范围码UM8A、所述相对值VK81和所述相对值VK82的其中任一。
所预置的所述应用范围界限值对DM1L、所预置的所述控制数据码CK8T、所预置的所述候选范围界限值对DM1B和所预置的控制数据码CK82皆进一步基于所预置的所述功能单元识别符HA2T而被存储在所述内存空间SA1中。所述处理单元230进一步基于所述功能单元识别符HA2T来使用所述内存单元25Y1以存取所预置的所述应用范围界限值对DM1L、所预置的所述控制数据码CK8T、所预置的所述候选范围界限值对DM1B和所预置的控制数据码CK82的其中任一。
例如,所述内存地址FM8L基于所预置的所述功能单元识别符HA2T、所预置的所述测量值应用范围码EH1L和所预置的所述测量范围界限数据码类型识别符HM81而被预置。所述处理单元230响应所述触发事件EQ81来获得所述功能单元识别符HA2T。所述数据获取操作AF81基于所获得的所述功能单元识别符HA2T、所确定的所述测量值应用范围码EH1L和所获得的所述测量范围界限数据码类型识别符HM81来获得所述内存地址FM8L,并基于所获得的所述内存地址FM8L来使用所述内存单元25Y1以存取被存储在所述内存位置PM8L的所预置的所述应用范围界限值对DM1L。
例如,所述内存地址FV8L基于所预置的所述功能单元识别符HA2T、所预置的所述测量值应用范围码EH1L和所预置的所述控制数据码类型识别符HK81而被预置。在所述处理单元230确定所述可变物理参数QP1A目前于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于所获得的所述功能单元识别符HA2T、所确定的所述测量值应用范围码EH1L和所获得的所述控制数据码类型识别符HK81来获得所述内存地址FV8L,并基于所获得的所述内存地址FV8L来使用所述内存单元25Y1以存取被存储在所述内存位置PV8L的所述控制数据码CK8T。
请参阅图80。图80为示出于图1中的所述控制系统861的一实施结构8043的示意图。 如图80所示,所述实施结构8043包含所述控制装置212、所述控制目标装置130和所述服务器280。所述控制装置212链接于所述服务器280。所述控制装置212用于依靠所述触发事件EQ81而控制存在于所述控制目标装置130中的所述可变物理参数QU1A,并包含所述操作单元297和所述感测单元260。所述操作单元297包含所述处理单元230、所述输入单元270和所述输出单元240。所述处理单元230耦合于所述服务器280。
在一些实施例中,所述操作单元297包含耦合于所述处理单元230的一定时器545、耦合于所述处理单元230的所述电应用目标WJ11、和耦合于所述处理单元230的一定时器546。所述定时器545用于测量所述时钟时间TH1A,并被配置以符合一定时器规格FW22。所述定时器545受所述处理单元230控制而感测所述时钟时间TH1A以产生一时钟时间信号SK91。例如,所述用户接口区AP11具有所述电应用目标WJ11。所述电应用目标WJ11是一第五按钮目标和一第五图符目标的其中之一。所述电应用目标WJ11是一电应用单元。
在所述感测单元260被配置以相同于所述定时器545的条件下,所述感测信号SM81被配置以相同于所述时钟时间信号SK91,所述传感器规格FQ11被配置以相同于所述定时器规格FW22,且所述可变物理参数QP1A被配置以相同于所述时钟时间TH1A。所述内存单元25Y1存储相同于所述控制信息码CM85的所述控制数据码CK8T。例如,在所述可变物理参数QP1A被配置以相同于所述时钟时间TH1A的条件下,所述测量值应用范围码EH1L相同于所述时间值目标范围码EL1T。所述定时器规格FW22被预置。
所述触发事件EQ81是所述输入单元270接收所述用户输入操作JU81的所述用户输入事件。所述用户输入操作JU81用于选择所述电应用目标WJ11。所述输入单元270响应所述触发事件EQ81来提供所述操作请求信号SZ81到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SZ81。在所述用户输入事件发生的条件下,所述处理单元230响应所述操作请求信号SZ81来使用所述时钟时间信号SK91以获得所述测量值VM81。例如,所述时钟时间信号SK91以一指定计数值格式HQ92输送一特定计数值NP91。所述指定计数值格式HQ92基于一指定比特数目UX92而被特征化。
在一些实施例中,所述触发应用单元281响应所述触发事件EQ81来提供所述操作请求信号SX81到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SX81。所述处理单元230响应所述操作请求信号SX81来获得所述控制应用码UA8T,并基于所获得的所述控制应用码UA8T来使所述输出单元240向所述控制目标装置130传输输送所述控制信息CG81的所述控制信号SC81。例如,所述控制应用码UA8T包含或是所述控制数据码CK8T。
所述触发应用单元281是所述状态改变侦测器475、所述读取器220、所述输入单元 270、所述触控屏幕2701、所述输入组件440、所述输入组件445、所述接收组件4451、所述接收组件4452、所述指向装置441、所述输出单元240、所述显示组件460、所述感测单元260和所述定时器546的其中之一。所述触发事件EQ81是一触发作用事件、一用户输入事件、一信号输入事件、一状态改变事件、一识别媒介出现事件和一整数溢位事件的其中之一。在所述触发事件EQ81是所述整数溢位事件的条件下,是所述触发应用单元281的所述定时器546响应与所述处理单元230相关的一时间控制GE81而导致所述整数溢位事件发生。例如,所述处理单元230被配置以执行用于控制所述定时器546的所述时间控制GE81。所述定时器546响应所述时间控制GE81来形成所述整数溢位事件。
在一些实施例中,所述处理单元230使用所述时钟时间信号SK91以获得等于所述特定计数值NP91的所述测量值VM81。所述处理单元230响应所述触发事件EQ81来执行所述数据确定AE8A以确定相同于所述时间值目标范围码EL1T的所述测量值应用范围码EH1L。在所述处理单元230借由检查所述测量值VM81和所述测量值应用范围RM1L之间的所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230基于所确定的所述测量值应用范围码EH1L来从所述内存单元25Y1获得相同于所述控制信息码CM85的所述控制应用码UA8T。例如,在所述感测单元260被配置以相同于所述定时器545的条件下,所述指定测量值格式HQ81被配置以相同于所述指定计数值格式HQ92。
例如,所述控制信息码CM85包含所预置的所述时间值目标范围码EL1T和所预置的所述时钟参考时间值NR81。所述处理单元230基于所获得的所述控制应用码UA8T来在所述操作时间TD81之内执行用于所述测量应用功能FB81的所述信号产生控制GS81以导致所述输出单元240产生输送所述控制数据信息CN85的所述控制信号SC81。例如,所述控制数据信息CN85包含所预置的所述时间值目标范围码EL1T和所预置的所述时钟参考时间值NR81。在所述物理参数目标范围码UQ1T等于所预置的所述测量值目标范围码EM1T的条件下,所述控制信号SC81借由输送所预置的所述时间值目标范围码EL1T来起到指示所述测量值目标范围RN1T和所述物理参数目标范围RD1ET的至少其中之一的作用。
例如,所述输入组件440包含所述用户接口区AP11和设置于所述用户接口区AP11中的所述电应用目标WJ11(或所述第五按钮目标)。例如,所述显示组件460包含所述用户接口区AP11和设置于所述用户接口区AP11中的所述电应用目标WJ11(或所述第五按钮目标)。例如,所述输入组件440包含所述触控屏幕2701。所述触控屏幕2701包含所述用户接口区AP11和设置于所述用户接口区AP11中的所述电应用目标WJ11(或所述第五按钮目标),并接收所述用户输入操作JU81。
在一些实施例中,所述控制目标装置130包含所述操作单元397、所述功能单元335和所述存储单元332。包含于所述操作单元397中的所述定时器342用于测量所述时钟时间TH1A,并被配置以符合所述定时器规格FT21。所述可变物理参数QU1A相关于所述时钟时间TH1A。所述时钟时间TH1A基于一时间目标区间HR1ET而被特征化。所述时间目标区间HR1ET由一时间值目标范围RQ1T所代表。所述时间值目标范围码EL1T被配置以指示所述时间目标区间HR1ET。
所述存储单元332具有一内存位置YS8T,并在所述内存位置YS8T存储所述物理参数目标范围码UQ1T。所述物理参数目标范围码UQ1T代表所述可变物理参数QU1A被期望在所述时间目标区间HR1ET内处于的一物理参数目标范围RK1ET,并被配置以基于所述时间值目标范围码EL1T而被存储在所述内存位置YS8T。所述内存位置YS8T基于一内存地址AS8T而被识别。所述内存地址AS8T基于所述时间值目标范围码EL1T而被预置。所述物理参数目标范围RK1ET选择自所述多个不同物理参数参考范围RD1E1、RD1E2、…。
在一些实施例中,当所述操作单元397接收所述控制信号SC81时,所述物理参数目标范围码UQ1T等于所预置的所述测量值目标范围码EM1T。所述控制信号SC81输送所预置的所述时间值目标范围码EL1T。所述操作单元397从所述控制信号SC81获得所输送的所述时间值目标范围码EL1T,基于所获得的所述时间值目标范围码EL1T来获得所述内存地址AS8T,并基于所获得的所述内存地址AS8T来存取被存储在所述内存位置YS8T的所述物理参数目标范围码UQ1T以获得所预置的所述测量值目标范围码EM1T。
所述操作单元397基于所获得的所述测量值目标范围码EM1T来执行用于所述测量应用功能FA81的所述信号产生操作BY81以向所述功能单元335传输所述功能信号SG81。所述功能单元335响应所述功能信号SG81来导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET。所述操作单元397从所述控制信号SC81获得所输送的所述时钟参考时间值NR81,基于所获得的所述时钟参考时间值NR81来导致所述定时器342在一启动时间TT82之内启动,并藉此导致所述定时器342在所述启动时间TT82之内产生一时钟时间信号SY80。所述时钟时间信号SY80是一初始时间信号,并以所述指定计数值格式HH95输送一初始计数值NY80。例如,所述初始计数值NY80被配置以相同于所述时钟参考时间值NR81。
请参阅图81。图81为示出于图1中的所述控制系统861的一实施结构9801的示意图。如图81所示,所述实施结构9801包含所述控制装置212和所述控制目标装置130。所述控制目标装置130具有一感测单元334。所述控制装置212用于控制所述控制目标装置130。例如,所述感测单元334感测一可变物理参数QU1A以产生一第一感测信号SN81。所述可变物理参数QU1A基于一物理参数目标范围RD1ET而被特征化。所述控制装置212包含一 感测单元260和一操作单元297。
所述感测单元260感测一可变物理参数QP1A以产生一感测信号SM81。例如,所述可变物理参数QP1A基于由一测量值应用范围RM1L所代表的一物理参数应用范围RC1EL而被特征化。所述操作单元297耦合于所述感测单元260。在一触发事件EQ81发生的条件下,所述操作单元297响应所述感测信号SM81来获得一测量值VM81。
在所述操作单元297藉由检查所述测量值VM81和所述测量值应用范围RM1L之间的一数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述操作单元297向所述控制目标装置130传输起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81。例如,所述第一感测信号SN81和所述控制信号SC81被所述控制目标装置130使用以导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET。
在一些实施例中,所述感测单元334被配置以符合一传感器规格FU11。所述可变物理参数QU1A进一步基于不同于所述物理参数目标范围RD1ET的一物理参数应用范围RD1EJ而被特征化。所述物理参数目标范围RD1ET和所述物理参数应用范围RD1EJ的其中之一特定范围RD1EG由一测量值指示范围RN1G所代表。所述测量值指示范围RN1G具有一指示范围界限值对DN1G,并基于所述传感器规格FU11而被预置。
在所述操作单元297藉由检查所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述操作单元297被配置以获得所述指示范围界限值对DN1G,并基于获得的所述指示范围界限值对DN1G来使所述控制信号SC81输送所获得的所述指示范围界限值对DN1G。所输送的所述所述指示范围界限值对DN1G用于使所述控制目标装置130检查所述可变物理参数QU1A和所述特定范围RD1EG之间的一物理参数关系KD8G以便导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET。
请参阅图82。图82为示出于图1中的所述控制系统861的一实施结构9802的示意图。如图82所示,所述实施结构9802包含所述控制装置212和所述控制目标装置130。所述控制装置212用于控制具有一可变物理参数QU1A的所述控制目标装置130。例如,所述可变物理参数QU1A基于一物理参数目标范围RD1ET而被特征化。所述控制装置212包含一感测单元260和一操作单元297。
所述感测单元260感测一可变物理参数QP1A以产生一感测信号SM81。例如,所述可变物理参数QP1A基于由一测量值应用范围RM1L所代表的一物理参数应用范围RC1EL而被特征化。所述操作单元297耦合于所述感测单元260,并包含一触控屏幕2701。在一触发事件EQ81发生的条件下,所述操作单元297响应所述感测信号SM81来获得一测量值VM81。 在所述操作单元297藉由检查所述测量值VM81和所述测量值应用范围RM1L之间的一数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述操作单元297向所述控制目标装置130传输起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81。
例如,所述触控屏幕2701包含一按钮目标WP11。所述触发事件EQ81是所述操作单元297接收使用所述按钮目标WP11的一使用者输入操作JU81。所述操作单元297响应所述使用者输入操作JU81来提供一操作请求信号SX81,并响应所述操作请求信号SX81来使用所述感测信号SM81以获得所述测量值VM81。所述控制信号SC81被所述控制目标装置130使用以导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET。
在一些实施例中,所述操作单元297包含一处理单元230、一传输组件450和所述触控屏幕2701。所述触控屏幕2701和所述传输组件450皆耦合于所述处理单元230。所述触控屏幕2701接收所述使用者输入操作JU81,并响应所述使用者输入操作JU81来提供所述操作请求信号SX81到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SX81。例如,所述电应用目标WJ11是耦合于所述处理单元230的所述按钮目标WP11。
所述测量值应用范围RM1L具有一应用范围界限值对DM1L。所述处理单元230响应所述操作请求信号SX81来使用所述感测信号SM81以获得所述测量值VM81。所述处理单元230响应所述操作请求信号SX81来获得所述应用范围界限值对DN1L,并藉由比较所述测量值VM81和所获得的所述应用范围界限值对DM1L来检查所述数学关系KA81。在所述处理单元230藉由检查所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230使所述传输组件450向所述控制目标装置130传输所述控制信号SC81。
请参阅图83。图83为示出于图1中的所述控制系统861的一实施结构9803的示意图。如图83所示,所述实施结构9803包含所述控制装置212和所述控制目标装置130。所述控制装置212用于控制具有一可变物理参数QU1A的所述控制目标装置130。例如,所述可变物理参数QU1A基于一物理参数目标范围RD1ET而被特征化。所述控制装置212包含一感测单元260和一操作单元297。
所述感测单元260感测一可变物理参数QP1A以产生一感测信号SM81。例如,所述可变物理参数QP1A基于由一测量值应用范围RM1L所代表的一物理参数应用范围RC1EL而被特征化。所述操作单元297耦合于所述感测单元260。在一触发事件EQ81发生的条件下,所述操作单元297响应所述感测信号SM81来获得一测量值VM81。在所述操作单元297藉由检查所述测量值VM81和所述测量值应用范围RM1L之间的一数学关系KA81而确定所述 可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述操作单元297向所述控制目标装置130传输起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81。
所述控制装置212是一移动装置和一遥控器的其中之一。在所述控制装置212是所述移动装置的条件下,所述控制信号SC81通过一无线链接LK81而被传输。在所述控制装置212是所述遥控器的条件下,所述控制信号SC81是一光信号SQ81。所述控制信号SC81被所述控制目标装置130使用以导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET。
在一些实施例中,所述光信号SQ81是一红外线信号。所述移动装置在一移动状态中向所述控制目标装置130传输所述控制信号SC81。所述可变物理参数QU1A进一步基于不同于所述物理参数目标范围RD1ET的一特定物理参数范围RD1E5而被特征化。所述特定物理参数范围RD1E5由一特定物理参数范围码UN85所代表。
所述操作单元297包含一处理单元230、和耦合于所述处理单元230的一通信接口单元246。所述通信接口单元246包含耦合于所述处理单元230的一接收组件445、和耦合于所述处理单元230的一传输组件450。在所述可变物理参数QU1A基于所述控制信号SC81而被配置于所述物理参数目标范围RD1ET之内的条件下,所述接收组件445从一外部装置610接收起到指示所述特定物理参数范围RD1E5的作用的一操作请求信号SJ71。所述操作请求信号SJ71藉由输送所述特定物理参数范围码UN85来起到指示所述特定物理参数范围RD1E5的作用。
所述处理单元230从所述操作请求信号SJ71获得所输送的所述特定物理参数范围码UN85,并基于所获得的所述特定物理参数范围码UN85来使所述传输组件450向所述控制目标装置130传输一控制信号SC85。所述控制信号SC85用于导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述特定物理参数范围RD1E5。所述外部装置610相同或不同于所述控制目标装置130。
在一些实施例中,所述控制目标装置130包含一操作单元397和耦合于所述操作单元397的一功能单元335。所述操作单元397包含一处理单元331、一接收器3371和一输出组件3381。所述接收器3371和所述输出组件3381皆耦合于所述处理单元331。所述功能单元335通过所述输出组件3381而耦合于所述处理单元331。
在所述控制装置212是所述移动装置的条件下,所述处理单元230使所述传输组件450通过所述无线链接LK81而向所述接收器3371传输所述控制信号SC81和所述控制信号SC85的任一信号。所述处理单元331响应所述控制信号SC85来使所述输出组件3381产生一功 能信号SG85。所述功能单元335接收所述功能信号SG85,并响应所述功能信号SG85来导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述特定物理参数范围RD1E5。
请参阅图84。图84为示出于图1中的所述控制系统861的一实施结构9804的示意图。如图84所示,所述实施结构9804包含所述控制装置212和所述控制目标装置130。所述控制装置212用于控制具有一可变物理参数QU1A的所述控制目标装置130。例如,所述可变物理参数QU1A基于一物理参数目标范围RD1ET而被特征化。所述控制装置212包含一感测单元260和一操作单元297。所述感测单元260感测一可变物理参数QP1A以产生一感测信号SM81。例如,所述可变物理参数QP1A基于由一测量值应用范围RM1L所代表的一物理参数应用范围RC1EL而被特征化。
所述操作单元297耦合于所述感测单元260。在一触发事件EQ81发生的条件下,所述操作单元297响应所述感测信号SM81来获得一测量值VM81。在所述操作单元297藉由检查所述测量值VM81和所述测量值应用范围RM1L之间的一数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述操作单元297于一操作时间TD81之内执行一信号产生控制GS81以向所述控制目标装置130传输起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81。
例如,所述控制信号SC81被所述控制目标装置130使用以导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET,并用于执行与所述可变物理参数QU1A和所述物理参数目标范围RD1ET之间的一物理参数关系KD8T相关的一验证操作ZU81。例如,所述验证操作ZU81包含做出所述可变物理参数QU1A是否处于所述物理参数目标范围RD1ET的一逻辑决定PB91。
在一些实施例中,在所述操作单元297于所述操作时间TD81之后的一指定时间TW81之内从所述控制目标装置130接收响应所述验证操作ZU81而被输出的一控制响应信号SE81的条件下,所述操作单元297响应所述控制响应信号SE81来执行与所述可变物理参数QU1A相关的一特定实际操作BJ81。
所述控制目标装置130具有一感测单元334。所述感测单元334被配置以符合一传感器规格FU11。所述物理参数目标范围RD1ET由一测量值目标范围RN1T所代表。所述测量值目标范围RN1T具有一目标范围界限值对DN1T,并基于所述传感器规格FU11而被预置。例如,所述控制信号SC81输送所述目标范围界限值对DN1T。所述感测单元334感测所述可变物理参数QU1A以产生一第二感测信号SN82。所述第二感测信号SN82和所输送的所述目标范围界限值对DN1T被所述控制目标装置130使用以执行所述验证操作ZU81。
请参阅图85。图85为示出于图1中的所述控制系统861的一实施结构9805的示意图。如图85所示,所述实施结构9805包含所述控制装置212和所述控制目标装置130。所述控制装置212用于依靠一识别媒介310而控制具有一可变物理参数QU1A的所述控制目标装置130。例如,所述可变物理参数QU1A基于一物理参数目标范围RD1ET而被特征化。所述控制装置212包含一感测单元260和一操作单元297。所述感测单元260感测一可变物理参数QP1A以产生一感测信号SM81。例如,所述可变物理参数QP1A基于由一测量值应用范围RM1L所代表的一物理参数应用范围RC1EL而被特征化。
所述操作单元297耦合于所述感测单元260,包含一读取器220,并藉由使用所述读取器220而辨识所述识别媒介310。在与所述识别媒介310相关的一识别媒介出现事件EQ8P发生的条件下,所述操作单元297响应所述感测信号SM81来获得一测量值VM81。在所述操作单元297藉由检查所述测量值VM81和所述测量值应用范围RM1L之间的一数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下。所述操作单元297向所述控制目标装置130传输起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81。所述控制信号SC81被所述控制目标装置130使用以导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET。
在一些实施例中,所述控制目标装置130设置于所述控制装置212的内部和所述控制装置212的外部的其中之一。在所述控制目标装置130位于所述控制装置212的内部的条件下,所述控制装置212包含所述控制目标装置130。例如,所述识别媒介出现事件EQ1P是一触发事件EQ81,并相关于所述识别媒介310和所述读取器220。所述测量值应用范围RM1L具有一应用范围界限值对DM1L。例如,所述操作单元297响应所述识别媒介出现事件EQ8P来生成一操作请求信号SX81,并响应所述操作请求信号SX81来使用所述感测信号SN81以获得所述测量值VM81。
所述识别媒介310记录所述应用范围界限值对DM1L。所述操作单元297响应所述识别媒介出现事件EQ8P来从所述识别媒介310读取所记录的所述应用范围界限值对DM1L以获得所述应用范围界限值对DM1L,并藉由比较所述测量值VM81和所读取的所述应用范围界限值对DM1L来检查所述数学关系KA81。例如,所述操作单元297进一步包含一处理单元230和一传输组件450。所述感测单元260、所述读取器220和所述传输组件450皆耦合于所述处理单元230。
所述读取器220响应所述识别媒介出现事件EQ8P来向所述处理单元230传输所述操作请求信号SX81。所述处理单元230响应所述操作请求信号SX81来使用所述感测信号SM81以获得所述测量值VM81,响应所述操作请求信号SX81来通过所述读取器220而获得所记 录的所述应用范围界限值对DM1L,并基于用于检查所述数学关系KA81的一检查操作BA81来使所述传输组件450向所述控制目标装置130传输所述控制信号SC81。
请参阅图86。图86为示出于图1中的所述控制系统861的一实施结构9806的示意图。如图86所示,所述实施结构9806包含所述控制装置212和所述控制目标装置130。所述控制装置212用于控制具有一可变物理参数QU1A的所述控制目标装置130。例如,所述可变物理参数QU1A基于一物理参数目标范围RD1ET而被特征化。所述控制装置212包含一极限开关485、一感测单元260和一操作单元297。
所述控制目标装置130藉由执行与所述可变物理参数QU1A相关的一特定功能操作ZH81来使所述极限开关485产生一触发信号SX8A。所述感测单元260感测一可变物理参数QP1A以产生一感测信号SM81。例如,所述可变物理参数QP1A基于由一测量值应用范围RM1L所代表的一物理参数应用范围RC1EL而被特征化。
所述操作单元297耦合于所述极限开关485和所述感测单元260,并响应所述触发信号SX8A来使用所述感测信号SM81以获得一测量值VM81。在所述操作单元297藉由检查所述测量值VM81和所述测量值应用范围RM1L之间的一数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述操作单元297向所述控制目标装置130传输起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81。所述控制信号SC81被所述控制目标装置130使用以导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET。
在一些实施例中,所述测量值应用范围RM1L具有一应用范围界限值对DM1L。所述特定功能操作ZH81是一空间运动操作。所述操作单元297接收所述触发信号SX8A,响应所述触发信号SX8A来获得所述应用范围界限值对DM1L,并藉由比较所述测量值VM81和所获得的所述应用范围界限值对DM1L来检查所述数学关系KA81。例如,所述可变物理参数QU1A是一可变电性参数。在所述控制目标装置130执行所述特定功能操作ZH81之前,所述控制目标装置130从所述控制装置212接收一控制信号SC80,并响应所述控制信号SC80来执行所述特定功能操作ZH81。例如,所述极限开关485耦合于所述控制目标装置130,并是一状态改变侦测器475。
例如,所述操作单元297包含一处理单元230、一触发应用单元281和一传输组件450。所述感测单元260、所述触发应用单元281、所述极限开关485和所述传输组件450皆耦合于所述处理单元230。所述触发应用单元281响应一触发事件EQ10来生成一操作请求信号SX80,提供所述操作请求信号SX80到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SX80。所述处理单元230响应所述操作请求信号SX80来使所述传 输组件450向所述控制目标装置130传输所述控制信号SC80。
请参阅图87。图87为示出于图1中的所述控制系统861的一实施结构9807的示意图。如图87所示,所述实施结构9807包含所述控制装置212和所述控制目标装置130。所述控制装置212用于控制具有一可变物理参数QU1A的所述控制目标装置130。例如,所述可变物理参数QU1A基于一物理参数目标范围RD1ET和不同于所述物理参数目标范围RD1ET的一特定物理参数范围RD1E5而被特征化。所述控制装置212包含一感测单元260和一操作单元297。
所述感测单元260感测一可变物理参数QP1A以产生一感测信号SM81。例如,所述可变物理参数QP1A基于由一测量值应用范围RM1L所代表的一物理参数应用范围RC1EL而被特征化。所述操作单元297耦合于所述感测单元260,并包含一电应用目标WJ11。在一触发事件EQ81发生的条件下,所述操作单元297响应所述感测信号SM81来获得一测量值VM81。在所述操作单元297藉由检查所述测量值VM81和所述测量值应用范围RM1L之间的一数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述操作单元297向所述控制目标装置130传输起到指示所述物理参数目标范围RD1ET的作用的一控制信号SC81。
例如,所述触发事件EQ81是所述操作单元297接收使用所述电应用目标WJ11的一使用者输入操作JU81。所述操作单元297响应所述使用者输入操作JU81来提供一操作请求信号SX81,并响应所述操作请求信号SX81来使用所述感测信号SM81以获得所述测量值VM81。所述控制信号SC81被所述控制目标装置130使用以导致所述可变物理参数QU1A处于所述物理参数目标范围RD1ET。所述电应用目标WJ11是一电应用单元。
在所述可变物理参数QU1A基于所述控制信号SC81而被配置以处于所述物理参数目标范围RD1ET的条件下,所述操作单元297接收一使用者输入操作JU82。所述操作单元297响应所述使用者输入操作JU82来产生一操作请求信号SJ61,并响应所述操作请求信号SJ61来向所述控制目标装置130传输一控制信号SC85。所述控制信号SC85起到指示所述特定物理参数范围RD1E5的作用,并被所述控制目标装置130使用以导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述特定物理参数范围RD1E5。
在一些实施例中,所述特定物理参数范围RD1E5由一特定物理参数范围码UN85所代表。所述操作单元297包含一处理单元230、耦合于所述处理单元230的所述电应用目标WJ11、耦合于所述处理单元230的一电应用目标WJ12、和耦合于所述处理单元230的一通信接口单元246。所述电应用目标WJ12是一电应用单元,并相同或不同于所述电应用目标WJ11。所述操作单元297响应使用所述电应用目标WJ11的所述使用者输入操作JU81来导 致所述处理单元230接收一操作请求信号SX81,并响应所述操作请求信号SX81来检查所述数学关系KA81。
在所述操作单元297藉由检查所述数学关系KA81而确定所述可变物理参数QP1A目前处于的所述物理参数应用范围RC1EL的条件下,所述处理单元230使所述通信接口单元246向所述通信接口单元386传输所述控制信号SC81。所述电应用目标WJ12是一按钮目标和一图符目标的其中之一。所述操作单元297包含耦合于所述处理单元230的一输入组件440、和耦合于所述处理单元230的一显示组件460。例如,所述输入组件440、所述显示组件460和所述触控屏幕2701的其中之一包含所述电应用目标WJ11。所述输入组件440、所述显示组件460和所述触控屏幕2701的其中之一包含所述电应用目标WJ12。所述控制信号SC85被所述控制目标装置130和所述处理单元331的其中之一使用以使所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述特定物理参数范围RD1E5。
在一些实施例中,所述使用者输入操作JU82由一使用者295所执行。所述输入组件440响应使用所述电应用目标WJ11的所述使用者输入操作JU81来提供所述操作请求信号SX81到所述处理单元230。所述输入组件440接收发生于所述使用者输入操作JU81之后的所述使用者输入操作JU82,响应使用所述电应用目标WJ12的所述使用者输入操作JU82来提供所述操作请求信号SJ61到所述处理单元230,并藉此使所述处理单元230接收所述操作请求信号SJ61。例如,所述输入组件440、所述显示组件460和所述触控屏幕2701的其中之一包含所述电应用目标WJ11和所述电应用目标WJ12。例如,所述电应用目标WJ12是所述电应用目标WJ11。在所述电应用目标WJ12不同于所述电应用目标WJ11的条件下,所述电应用目标WJ11和所述电应用目标WJ12位于不同空间位置。
所述处理单元230响应所述操作请求信号SJ61来确定等于所述特定物理参数范围码UN85的一特定输入码UW81,并基于所述特定输入码UW81来使所述通信接口单元246向所述通信接口单元386传输所述控制信号SC85。所述控制信号SC85被所述控制目标装置130使用以导致所述可变物理参数QU1A离开所述物理参数目标范围RD1ET以进入所述第二特定物理参数范围RD1E5。
在一些实施例中,在所述可变物理参数QU1A基于所述控制信号SC85而被配置以处于所述特定物理参数范围RD1E5的条件下,所述输入组件440接收使用所述电应用目标WJ12的一使用者输入操作JU8A,响应所述使用者输入操作JU8A来生成一操作请求信号SJ6A,并提供所述操作请求信号SJ6A到所述处理单元230。例如,在所述可变物理参数QU1A处于所述特定物理参数范围RD1E5的条件下,所述电应用目标WJ12接收所述使用者输入操作JU1A以使所述输入组件440接收所述使用者输入操作JU8A。
所述处理单元230响应所述操作请求信号SJ6A来使所述通信接口单元246向所述通信接口单元386传输一控制信号SC8A。所述控制信号SC8A起到指示不同于所述特定物理参数范围RD1E5的一特定物理参数范围RD1EA的作用,并被所述控制目标装置130和所述处理单元331的其中之一使用以导致所述可变物理参数QU1A离开所述特定物理参数范围RD1E5以进入包含于所述多个不同物理参数参考范围RD1E1、RD1E2、…中的所述特定物理参数范围RD1EA。例如,所述特定物理参数范围RD1EA相同于所述物理参数目标范围RD1ET。
提出于此之本公开多数变形例与其他实施例,将对于熟习本项技艺者理解到具有呈现于上述说明与相关附图的教导的益处。因此,吾人应理解到本公开并非受限于所公开之特定实施例,而变形例与其他实施例意图是包含在以下的权利要求之范畴之内。
符号说明:
130、630:控制目标装置
212:控制装置
220:读取器
230、331:处理单元
240、338:输出单元
246、386:通信接口单元
250、332:存储单元
25Y1:内存单元
260、334:感测单元
261、262、3341、3342:感测组件
263、363:复用器
2631、2632、3631、3632:输入端
263C、363C:控制端
240P、240Q、263P、363P、338P、338Q:输出端
270、337:输入单元
2701:触控屏幕
275、276、285、286:电使用目标
280:服务器
281:触发应用单元
290:物理参数形成单元
295:用户
297、397:操作单元
310:识别媒介
335、735:功能单元
3351:物理参数形成部分
3355:驱动电路
3371:输入组件
3372:输入组件
3373:输入组件
3374、440、445:输入组件
3381、3382、3383、450、455:输出组件
339、340、539、342、545、546:定时器
350:电子标签
360:条形码媒介
370:生物识别作用媒介
3801:按钮
410:网络
441:指向装置
4451、4452:接收组件
460:显示组件
470:功能开关
472:信号产生器
475:状态改变侦测器
485:极限开关
610:外部装置
70M:支撑媒介
70U:材料层
660、661、662、734、7341、7342:传感器类型
861:控制系统
861、8611、8612、8613、8614、8615、8616、9010、9011、9012、9013、9014、9015、9016、9017、9018、9019、9020、9021、9022、9023、9024、9025、9026、9027、9028、 9029、9030、9031、9032、9033、9034、9035、9510、9511、9512、9513、9514、9515、9516、9517、9601、9602、9603、9604、9605、8010、8011、8012、8013、8014、8015、8016、8017、8018、8019、8020、8021、8022、8023、8024、8025、8026、8027、8028、8029、8030、8031、8032、8033、8034、8035、8036、8037、8038、8039、8040、8041、8042、8043、9801、9802、9803、9804、9805、9806、9807:实施结构
AA81:数据确定操作
AA82:数据确定操作
AA8A、AE8A:数据确定
AC1:响应区域
AD81:数据获取操作
AD82:数据获取操作
AD8A、AF8A、AF9C、AG8A:数据获取
AE81、AE82:数据确定操作
AF81、AF82、AF95、AF96、AG81、AG82:数据获取操作
AJ11:物理参数应用区
AM82、AM85、AM8T、AN81、AS81、AS82、AS8T、AX82、AX85、AX8L、EC92、EC9T、FF9T、FM8L、FV8L:内存地址
AM8L:内存地址
AP11、AP21、AP22:用户接口区
AT11、AT21、AU11、AU21:物理参数形成区
AX8T:内存地址
BA83、BV81、BV85、ZP81、ZP85、ZQ81:检查操作
BC8T、BD81、BE81:计数操作
BH82、ZH81:特定功能操作
BJ81:特定实际操作
BQ81、JU81、JU91、JU92、JV81、JV82、JV83:用户输入操作
BS81、BS91、BY81、BY85、BY91、BY97:信号产生操作
BR81:读取操作
BZ81、ZM81、ZS81:感测操作
CA81、CA91、CD81、CD82、CE81、CE85、CE8T:数据比较
CC12、CC15、CC1L、CC1T:控制码
CG81:控制信息
CK8T:控制数据码
CL8T:测量时间长度值
CM82、CM83、CM84、CM85:控制信息码
CN82、CN83、CN84、CN85:控制数据信息
DA81、DX85:码差异
DC11、DC12、DD11、DD12:额定范围界限值
DC1A、DD1A:额定范围界限值对
DF81:码差异
DH81、DJ81、DJ82、DJ83、DJ91:输入数据
DM15、DM16:应用范围界限值
DM1B、DN1B、DQ1B:候选范围界限值对
DM1L、DN1L:应用范围界限值对
DN15:应用范围界限值
DN16:应用范围界限值
DN17、DN18、DQ17、DQ18:目标范围界限值
DN1E:特定范围界限值对
DN1T、DQ1T:目标范围界限值对
DQ13、DQ14:候选范围界限值
DS81:范围差异
DU81:物理参数数据记录
DX81:码差异
DY81:编码数据
EA81、EJ81、EJ82、EJ83、ZR81、ZR82、ZR83、ZR8KJ、ZR8TR、ZX87、ZX8HE、ZX8HR、ZX8H2、ZX8HJ、ZX8HT、ZX8KJ、ZX8TR、ZX92:数据编码操作
EB81、EH11、EM11:测量值参考范围码
EH12:测量值参考范围码、测量值候选范围码
EH14、EH17、EM14、EM15:特定测量值范围码
EH1L、EM1L:测量值应用范围码
EL11:时间值参考范围码
EL1T:时间值目标范围码
EL12:时间值参考范围码、时间值候选范围码
EM12:测量值参考范围码、测量值候选范围码
EM13:测量值候选范围码
EM1T:测量值目标范围码
EP81:操作情况
EQ81:触发事件
EX81:应用环境
FA81、FB81:测量应用功能
FP81、FR81:拘束条件
FQ11、FU11:传感器规格
FT11、FT21、FW22:定时器规格
FY81、FZ81:编码影像
GA812、GA8T1:物理参数表示
GA83、GB82:物理参数候选范围表示
GA8E、GB8E:额定物理参数范围表示
GA8L、GB8L:物理参数应用范围表示
GA8HE:额定时间区间表示
GA8HR:时间参考区间表示
GA8H2、GA8HT:时间候选区间表示
GA8HJ:时间长度参考范围表示
GA8KJ、GB8KJ:时间长度表示
GA8T:物理参数候选范围表示
GA8TR、GB8TR:时钟时间表示
GAL8、GBL8:测量应用功能规格
GJ81:测量时间长度值参考范围
GQ81、GW81:传感器灵敏度表示
GQ8R、GW8R:传感器测量范围表示
GS81、GY81、GY91:信号产生控制
GT81、GU81:数据存储控制操作
HA0T:控制装置识别符
HA22、HA2T:功能单元识别符
HC81:控制码类型识别符
HE81、HE82、HF81、HF82:感测信号产生
HH81、HQ81:指定测量值格式
HH91、HH95、HQ92:指定计数值格式
HJ81:时间长度参考范围
HK81:控制数据码类型识别符
HM81:测量范围界限数据码类型识别符
HR1E1:时间参考区间
HR1ET:时间目标区间
HR1E2:时间参考区间、时间候选区间
HZ22、HZ2T:电使用目标识别符
JA1A、JB1A、QG1A、QL1A、QP1A、QP2A、QU1A、QY1A:可变物理参数
JN81:测量值序列
KA81、KA91、KQ81、KV83、KV85、KY81、KK91、KK92:数学关系
KE8A、KE8B:范围关系
KJ81:数值关系
KP81、KP85:算术关系
KV81:第二数学关系
KV91:数学关系
KW81:数值交集关系
LA81、LA82:状态指示
LB81:状态指示
LB82:状态指示
LC81、LD81:实际位置
LF8A:可变时间长度
LJ8T:参考时间长度
LN8A:时间长度范围界限值对
LN81、LN82:时间长度范围界限值
LP81、SP81:电信号
LQ81、SQ81:光信号
LT8T:应用时间长度
LY81:测量信息
MF81、MF83、MG81、MQ81、MK81、MK85、MR82、MU81:科学计算
MR81:科学计算
MZ81:科学计算
NA8A、NE8A:数据确定程序
ND8A、NF8A:数据获取程序
NP91:特定计数值
NR81:时钟参考时间值
NS81:总参考范围数目
NT81:总参考范围数目
NY80:初始计数值
NY81:特定计数值
NY8A:可变计数值
PB81:第一逻辑决定
PB82、PH81、PH91、PZ82:逻辑决定
PB91:逻辑决定
PE81:逻辑决定
PF9T、PM8L、PV8L、XC9T、XC92、YM82、YM85、YN81、YX82、YX85、YX8L:内存位置
PW81:合理决定
PY81:第二逻辑决定
PZ81:逻辑决定
QB81:预置时间参考区间顺序
QD12、QD1L、QD1T、QD5T:指定物理参数
QP15:特定物理参数
QU17:特定物理参数
QU18:特定物理参数
QU15:特定物理参数
RA8E、RB8E:传感器测量范围
RC1E、RD1E:额定物理参数范围
RC1E1、RD1E1:物理参数参考范围
RC1E2:物理参数参考范围、物理参数候选范围
RC1E3、RD1E3、RK1E2:物理参数候选范围
RC1E4、RC1E7:特定物理参数范围
RC1EL、RD1EL:物理参数应用范围
RC1N、RD1N:额定测量值范围
RD1E2:物理参数参考范围、物理参数候选范围
RD1E4:特定物理参数范围
RD1E5、RD1E6:特定物理参数范围
RD1ET、RK1ET:物理参数目标范围
RD2E2:物理参数候选范围、特定物理参数范围
RL81:肯定操作报告
RM11、RN11:测量值参考范围
RM12:测量值参考范围、测量值候选范围
RM17、RN15:特定测量值范围
RM1L、RN1L:测量值应用范围
RN12:测量值参考范围、测量值候选范围
RN13:测量值候选范围
RN1T:测量值目标范围
RQ11:时间值参考范围
RQ1T:时间值目标范围
RQ12:时间值参考范围、时间值候选范围
RW1EL、RY1ET:对应物理参数范围
RX1T:对应测量值范围
SB81:物理参数信号
SC80、SC81、SC82、SC83、SC97、SD81、SD82、SF81、SF97、SV81、SV82:控制信号
SE81:控制响应信号
SG81、SG82、SG85、SG91、SG97:功能信号
SK91、SY80、SY81:时钟时间信号
SL81:驱动信号
SM81、SM82、SM91、SN83、SN91:感测信号
SN81:第一感测信号
SN82:第二感测信号
SN811、SN812:感测信号分量
SS11、SU11:存储空间
SW82、SW83、SW84、SW85:指令信号
SX8A:触发信号
SX80、SX81、SZ81、SZ91、SZ92:操作请求信号
TD81、TF81、TF82、TY81:操作时间
TE82、TG82、TG83、TW81:指定时间
TH1A:时钟时间
TJ8T:特定时间
TK81:控制数据码类型
TL11、TP11、TU11、TU1G:物理参数类型
TM81:测量范围界限数据码类型
TR81:时钟参考时间
TT81:触发时间
TT82:启动时间
TZ8T:结束时间
UA8T:控制应用码
UH8T:中断请求信号
UL81:预置特征物理参数
UM8A、UN8A:可变物理参数范围码
UM8L:物理参数应用范围码
UN85:特定物理参数范围码
UN8T、UQ1T:物理参数目标范围码
UQ11:物理参数指定范围码
UQ12:物理参数指定范围码、物理参数候选范围码
UW81:特定输入码
UX81、UX92、UY81、UY91、UY95:指定比特数目
VA11、VC11、VK81、VK82:相对值
VG81:可允许值
VM81、VM82、VM91、VN83、VN91:测量值
VN81:第一测量值
VN82:第二测量值
WA8L、WB8L、WD81、WN8T、WS82、WS8T:写入请求信息
WC8T:写入请求信息
WJ11、WJ12:电应用目标
WN8L:写入请求信息
XA8A:可变物理状态
XA81:非特征物理参数到达状态
XA82:实际特征物理参数到达状态
XH81、XH82:特定状态
XJ81:特定状态
XJ82:特定状态
XK81、XU81:操作参考数据码
XP81、XR81:特定经验公式
YJ81:选择工具
YM8L:内存位置
YM8T:内存位置
YQ81、YW81:传感器灵敏度
YS81、YS82、YS8T:内存位置
YU91:预置数据导出规则
YX8T:内存位置
ZB81:相对参考范围码
ZD1T1、ZD1T2:预置物理参数目标范围界限
ZL82:特征物理参数到达
ZU81:验证操作
ZX81:数据编码操作
ZX82:数据编码操作
ZX83:数据编码操作
ZX91:数据编码操作

Claims (12)

  1. 一种用于控制可变物理参数的控制目标装置,其中所述可变物理参数基于物理参数目标范围和不同于所述物理参数目标范围的物理参数应用范围而被特征化,且所述物理参数目标范围和所述物理参数应用范围的其中之一由测量值指示范围所代表,所述控制目标装置包含:
    感测单元,感测所述可变物理参数以产生第一感测信号;以及
    操作单元,耦合于所述感测单元,在所述操作单元接收起到指示所述物理参数目标范围的作用的控制信号的条件下响应所述第一感测信号来获得第一测量值,并在所述操作单元借由检查所述第一测量值和所述测量值指示范围之间的第一数学关系而确定所述可变物理参数目前处于的所述物理参数应用范围的条件下,导致所述可变物理参数进入所述物理参数目标范围。
  2. 根据权利要求1所述的控制目标装置,其中:
    所述可变物理参数相关于可变时间长度;
    所述操作单元从控制装置接收所述控制信号,并包含用于测量所述可变时间长度的定时器,其中所述可变时间长度基于时间长度参考范围和参考时间长度而被特征化,所述时间长度参考范围由测量时间长度值范围所代表,且所述参考时间长度由测量时间长度值所代表;
    所述控制装置是移动装置和遥控器的其中之一;
    在所述控制装置是所述遥控器的条件下,所述控制信号是光信号;
    所述控制信号输送所述测量时间长度值;
    所述操作单元被配置以从所述控制信号获得所述测量时间长度值,并检查所获得的所述测量时间长度值和所述测量时间长度值范围之间的数值关系以做出用于控制特定时间的计数操作是否要被执行的逻辑决定;以及
    在所述逻辑决定是肯定的条件下,所述操作单元基于所获得的所述测量时间长度值来使用所述定时器以执行所述计数操作,在所述可变物理参数基于所述控制信号而被配置以于所述物理参数目标范围之内的条件下基于所述计数操作来到达所述特定时间,并在所述特定时间之内执行用于导致所述可变物理参数离开所述物理参数目标范围以进入所述物理参数应用范围的信号产生操作。
  3. 根据权利要求1所述的控制目标装置,其中:
    所述物理参数应用范围由所述测量值指示范围所代表,其中所述测量值指示范围等于测量值应用范围;
    所述感测单元被配置以符合与所述测量值指示范围相关的传感器规格,其中所述传感器规格包含用于表示传感器测量范围的传感器测量范围表示;
    所述第一测量值以指定测量值格式而被获得;
    所述物理参数目标范围由测量值目标范围所代表;
    所述测量值目标范围和所述测量值应用范围皆基于所述传感器测量范围表示和所述传感器规格的其中之一来用所述指定测量值格式而被预设;
    所述测量值目标范围和所述测量值应用范围分别具有目标范围界限值对和应用范围界限值对;
    所述控制信号输送所述目标范围界限值对、所述应用范围界限值对和控制码,其中所述控制码基于在所述物理参数目标范围之内的指定物理参数而被预设,且所述控制信号借由输送所述目标范围界限值对来起到指示所述测量值目标范围和所述物理参数目标范围的至少其中之一的作用;
    所述操作单元从所述控制信号获得所述应用范围界限值对,借由比较所述第一测量值和所获得的所述应用范围界限值对来检查所述第一测量值和所述测量值应用范围之间的第二数学关系以做出所述第一测量值是否为于所述测量值应用范围之内的第一逻辑决定,并在所述第一逻辑决定是肯定的条件下确定所述可变物理参数目前处于的所述所述物理参数应用范围,其中所述第一数学关系等于所述第二数学关系;
    所述操作单元从所述控制信号获得所述目标范围界限值对,在所述操作单元确定所述可变物理参数目前处于的所述物理参数应用范围的条件下借由比较所获得的所述目标范围界限值对和所获得的所述应用范围界限值对来检查所述测量值目标范围和所述测量值应用范围之间的范围关系以做出所获得的所述目标范围界限值对和所获得的所述应用范围界限值对是否相等的第二逻辑决定;
    在所述第二逻辑决定是否定的条件下,所述操作单元辨识所述范围关系为范围相异关系以确定所述物理参数目标范围和所述物理参数应用范围之间的范围差异;
    所述操作单元从所述控制信号获得所述控制码,并在所述操作单元确定所述范围差异的条件下基于所获得的所述控制码来执行信号产生控制以产生用于导致所述可变物理参数进入所述物理参数目标范围的功能信号;
    在所述操作单元于操作时间之内执行所述信号产生控制之后,所述感测单元感测所述可变物理参数以产生第二感测信号;
    所述操作单元从控制装置接收所述控制信号,并于所述操作时间之后的指定时间之内响应所述第二感测信号来以所述指定测量值格式获得第二测量值;以及
    在所述操作单元于所述指定时间之内借由比较所述第二测量值和所获得的所述目标范围界限值对来确定所述可变物理参数目前处于的所述物理参数目标范围的条件下,所述操作单元向所述控制装置传输响应所述控制信号的控制响应信号,并执行数据存储控制操作,其中所述控制响应信号输送所述第二测量值,所述控制响应信号被所述控制装置使用以执行与所述可变物理参数相关的特定实际操作,且所述数据存储控制操作用于导致代表所确定的所述物理参数目标范围的物理参数目标范围码被记录。
  4. 根据权利要求1所述的控制目标装置,进一步包含耦合于所述操作单元的功能单元,其中:
    所述物理参数应用范围对应于所述物理参数目标范围,并等于对应物理参数范围,其中所述对应物理参数范围由对应测量值范围所代表;
    所述物理参数目标范围由所述测量值指示范围所代表,其中所述测量值指示范围等于测量值目标范围;
    所述感测单元被配置以符合与所述测量值指示范围相关的传感器规格,其中所述传感器规格包含用于表示传感器测量范围的传感器测量范围表示;
    所述第一测量值以指定测量值格式而被获得;
    所述可变物理参数进一步基于额定物理参数范围而被特征化,其中所述额定物理参数范围包含所述物理参数目标范围和所述物理参数应用范围,并由额定测量值范围所代表;
    所述测量值目标范围、所述对应测量值范围和所述额定测量值范围皆基于所述传感器测量范围表示和所述传感器规格的其中之一来用所述指定测量值格式而被预设;
    所述测量值目标范围和所述额定测量值范围分别具有目标范围界限值对和额定范围界限值对;
    所述控制信号输送所述目标范围界限值对、所述额定范围界限值对和控制码,其中所述控制码基于在所述物理参数目标范围之内的指定物理参数而被预设,且所述控制信号借由输送所述目标范围界限值对来起到指示所述测量值目标范围和所述物理参数目标范围的至少其中之一的作用;
    所述操作单元从所述控制信号获得所述目标范围界限值对,并通过比较所述第一测量值和所获得的所述目标范围界限值对来执行用于检查所述第一测量值和所述测量值目标范围之间的第二数学关系的第一检查操作,其中所述第一数学关系等于所述第二数学关系;
    所述操作单元基于所述第一检查操作来做出所述第一测量值是否为于所述对应测量值范围之内的逻辑决定,并在所述逻辑决定是肯定的条件下确定所述可变物理参数目前处于的所述对应物理参数范围;
    所述操作单元从所述控制信号获得所述额定范围界限值对,并通过比较所述第一测量值和所获得的所述额定范围界限值对来执行用于检查所述第一测量值和所述额定测量值范围之间的第三数学关系的第二检查操作;
    所述操作单元包含按钮,进一步基于所述第二检查操作来做出所述逻辑决定,并从所述控制信号获得所述控制码;
    在所述操作单元确定所述可变物理参数目前处于的所述对应物理参数范围的条件下,所述操作单元基于所获得的所述控制码来执行信号产生控制以向所述功能单元传输用于导致所述可变物理参数进入所述物理参数目标范围的第一功能信号;
    所述功能单元具有所述可变物理参数;
    所述可变物理参数基于不同于所述物理参数目标范围的特定物理参数范围而被特征化;
    在所述操作单元借由检查所述第一数学关系而导致所述可变物理参数处于所述物理参数目标范围的条件下,所述操作单元接收使用所述按钮的用户输入操作;以及
    所述操作单元响应所述用户输入操作来向所述功能单元传输用于导致所述可变物理参数离开所述物理参数目标范围以进入所述特定物理参数范围的第二功能信号。
  5. 一种用于借由产生功能信号而控制可变物理参数的方法,其中所述可变物理参数基于物理参数目标范围和不同于所述物理参数目标范围的物理参数应用范围而被特征化,且所述物理参数目标范围和所述物理参数应用范围的其中之一由测量值指示范围所代表,所述方法包含下列步骤:
    感测所述可变物理参数以产生第一感测信号;
    在起到指示所述物理参数目标范围的作用的控制信号被接收的条件下,响应所述第一感测信号来获得第一测量值;
    执行用于检查所述第一测量值和所述测量值指示范围之间的第一数学关系的关系检查;以及
    基于所述关系检查,确定所述可变物理参数和所述物理参数应用范围之间的物理参数关系以做出用于导致所述可变物理参数进入所述物理参数目标范围的所述功能信号是否要被产生的合理决定。
  6. 根据权利要求5所述的方法,其中:
    所述可变物理参数相关于可变时间长度;
    所述方法进一步包含步骤:提供用于测量所述可变时间长度的定时器,其中所述可变时间长度基于时间长度参考范围和参考时间长度而被特征化,所述时间长度参考范围由测量时间长度值范围所代表,且所述参考时间长度由测量时间长度值所代表;
    所述控制信号从控制装置而被接收,并输送所述测量时间长度值;
    所述控制装置是移动装置和遥控器的其中之一;
    在所述控制装置是所述遥控器的条件下,所述控制信号是光信号;以及
    所述方法进一步包含下列步骤:
    从所述控制信号获得所述测量时间长度值;
    检查所获得的所述测量时间长度值和所述测量时间长度值范围之间的数值关系以做出用于控制特定时间的计数操作是否要被执行的逻辑决定;
    在所述逻辑决定是肯定的条件下,基于所获得的所述测量时间长度值来使所述定时器执行所述计数操作;
    在所述可变物理参数基于所述控制信号而被配置以于所述物理参数目标范围之内的条件下,基于所述计数操作来到达所述特定时间;以及
    在所述特定时间之内,执行用于导致所述可变物理参数离开所述物理参数目标范围以进入所述物理参数应用范围的信号产生操作。
  7. 根据权利要求5所述的方法,其中:
    所述物理参数应用范围由所述测量值指示范围所代表,其中所述测量值指示范围等于测量值应用范围;
    所述方法进一步包含步骤:提供感测单元,其中感测所述可变物理参数的步骤借由使用所述感测单元而被执行,所述感测单元被配置以符合与所述测量值指示范围相关的传感器规格,且所述传感器规格包含用于表示传感器测量范围的传感器测量范围表示;
    所述第一测量值以指定测量值格式而被获得;
    所述物理参数目标范围由测量值目标范围所代表;
    所述测量值目标范围和所述测量值应用范围皆基于所述传感器测量范围表示和所述传感器规格的其中之一来用所述指定测量值格式而被预设;
    所述测量值目标范围和所述测量值应用范围分别具有目标范围界限值对和应用范围界限值对;
    所述控制信号输送所述目标范围界限值对、所述应用范围界限值对和控制码,其中所述控制码基于在所述物理参数目标范围之内的指定物理参数而被预设,且所述控制信号借 由输送所述目标范围界限值对来起到指示所述测量值目标范围和所述物理参数目标范围的至少其中之一的作用;
    所述方法进一步包含步骤:从所述控制信号获得所述应用范围界限值对、所述目标范围界限值对和所述控制码;
    执行所述关系检查的步骤包含子步骤:借由比较所述第一测量值和所获得的所述应用范围界限值对,检查所述第一测量值和所述测量值应用范围之间的第二数学关系,其中所述第一数学关系等于所述第二数学关系;
    确定所述物理参数关系以做出所述合理决定的步骤包含下列子步骤:
    基于所述关系检查,做出所述第一测量值是否为于所述测量值应用范围之内的第一逻辑决定;
    在所述第一逻辑决定是肯定的条件下,确定所述可变物理参数目前处于的所述所述物理参数应用范围;
    在所述可变物理参数目前处于的所述物理参数应用范围被确定的条件下,借由比较所获得的所述目标范围界限值对和所获得的所述应用范围界限值对来检查所述测量值目标范围和所述测量值应用范围之间的范围关系以做出所获得的所述目标范围界限值对和所获得的所述应用范围界限值对是否相等的第二逻辑决定;以及
    在所述第二逻辑决定是否定的条件下,辨识所述范围关系为范围相异关系以做出所述合理决定以成为肯定的,其中所述范围关系被辨识为所述范围相异关系以使所述物理参数目标范围和所述物理参数应用范围之间的范围差异被确定;以及
    所述方法进一步包含下列步骤:
    在所述合理决定为肯定的条件下,基于所获得的所述控制码来执行信号产生控制以产生用于导致所述可变物理参数进入所述物理参数目标范围的功能信号;
    在所述信号产生控制于操作时间之内被执行之后,借由使用所述感测单元来感测所述可变物理参数以产生第二感测信号;
    于所述操作时间之后的指定时间之内,响应所述第二感测信号来以所述指定测量值格式获得第二测量值;以及
    在所述可变物理参数目前处于的所述物理参数目标范围于所述指定时间之内借由比较所述第二测量值和所获得的所述目标范围界限值对而被确定的条件下,向所述控制装置传输响应所述控制信号的控制响应信号,并执行数据存储控制操作,其中所述控制响应信号输送所述第二测量值,所述控制响应信号被所述控制装置使用以执行与所述可变物 理参数相关的特定实际操作,且所述数据存储控制操作用于导致代表所确定的所述物理参数目标范围的物理参数目标范围码被记录。
  8. 根据权利要求5所述的方法,其中:
    所述物理参数应用范围对应于所述物理参数目标范围,并等于对应物理参数范围,其中所述对应物理参数范围由对应测量值范围所代表;
    所述物理参数目标范围由所述测量值指示范围所代表,其中所述测量值指示范围等于测量值目标范围;
    所述方法进一步包含步骤:提供感测单元,其中感测所述可变物理参数的步骤借由使用所述感测单元而被执行,所述感测单元被配置以符合与所述测量值指示范围相关的传感器规格,且所述传感器规格包含用于表示传感器测量范围的传感器测量范围表示;
    所述第一测量值以指定测量值格式而被获得;
    所述可变物理参数进一步基于额定物理参数范围而被特征化,其中所述额定物理参数范围包含所述物理参数目标范围和所述物理参数应用范围,并由额定测量值范围所代表;
    所述测量值目标范围、所述对应测量值范围和所述额定测量值范围皆基于所述传感器测量范围表示和所述传感器规格的其中之一来用所述指定测量值格式而被预设;
    所述测量值目标范围和所述额定测量值范围分别具有目标范围界限值对和额定范围界限值对;
    所述控制信号输送所述目标范围界限值对、所述额定范围界限值对和控制码,其中所述控制码基于在所述物理参数目标范围之内的指定物理参数而被预设,且所述控制信号借由输送所述目标范围界限值对来起到指示所述测量值目标范围和所述物理参数目标范围的至少其中之一的作用;
    所述方法进一步包含步骤:从所述控制信号获得所述目标范围界限值对、所述额定范围界限值对和所述控制码;
    执行所述关系检查的步骤包含子步骤:通过比较所述第一测量值和所获得的所述目标范围界限值对,执行用于检查所述第一测量值和所述测量值目标范围之间的第二数学关系的第一检查操作,其中所述第一数学关系等于所述第二数学关系,且所述关系检查等于所述第一检查操作;
    确定所述物理参数关系以做出所述合理决定的步骤包含下列子步骤:
    基于所述关系检查,做出所述第一测量值是否为于所述对应测量值范围之内的逻辑决定;以及
    在所述逻辑决定是肯定的条件下,确定所述可变物理参数目前处于的所述对应物理参数范围以做出所述合理决定以成为肯定的;
    所述方法进一步包含步骤:通过比较所述第一测量值和所获得的所述额定范围界限值对,执行用于检查所述第一测量值和所述额定测量值范围之间的第三数学关系的第二检查操作;
    基于所述关系检查来做出所述逻辑决定的子步骤包含子步骤:基于所述第一检查操作和所述第二检查操作,做出所述逻辑决定;
    所述方法进一步包含步骤:在所述合理决定为肯定的条件下,基于所获得的所述控制码来执行信号产生控制以产生用于导致所述可变物理参数进入所述物理参数目标范围的第一功能信号;
    所述可变物理参数基于不同于所述物理参数目标范围的特定物理参数范围而被特征化;以及
    所述方法进一步包含下列步骤:
    提供按钮;
    在所述可变物理参数借由检查所述第一数学关系而被导致处于所述物理参数目标范围的条件下,接收使用所述按钮的用户输入操作;以及
    响应所述用户输入操作,产生用于导致所述可变物理参数离开所述物理参数目标范围以进入所述特定物理参数范围的第二功能信号。
  9. 一种用于控制可变物理参数的方法,其中所述可变物理参数基于物理参数目标范围和不同于所述物理参数目标范围的物理参数应用范围而被特征化,且所述物理参数目标范围和所述物理参数应用范围的其中之一由测量值指示范围所代表,所述方法包含下列步骤:
    感测所述可变物理参数以产生第一感测信号;
    在起到指示所述物理参数目标范围的作用的控制信号被接收的条件下,响应所述第一感测信号来获得第一测量值;以及
    在所述可变物理参数目前处于的所述物理参数应用范围借由检查所述第一测量值和所述测量值指示范围之间的第一数学关系而被确定的条件下,导致所述可变物理参数进入所述物理参数目标范围。
  10. 根据权利要求9所述的方法,其中:
    所述可变物理参数相关于可变时间长度;
    所述方法进一步包含步骤:提供用于测量所述可变时间长度的定时器,其中所述可变时间长度基于时间长度参考范围和参考时间长度而被特征化,所述时间长度参考范围由测量时间长度值范围所代表,且所述参考时间长度由测量时间长度值所代表;
    所述控制信号从控制装置而被接收,并输送所述测量时间长度值;
    所述控制装置是移动装置和遥控器的其中之一;
    在所述控制装置是所述遥控器的条件下,所述控制信号是光信号;以及
    所述方法进一步包含下列步骤:
    从所述控制信号获得所述测量时间长度值;
    检查所获得的所述测量时间长度值和所述测量时间长度值范围之间的数值关系以做出用于控制特定时间的计数操作是否要被执行的逻辑决定;
    在所述逻辑决定是肯定的条件下,基于所获得的所述测量时间长度值来使所述定时器执行所述计数操作;
    在所述可变物理参数基于所述控制信号而被配置以于所述物理参数目标范围之内的条件下,基于所述计数操作来到达所述特定时间;以及
    在所述特定时间之内,执行用于导致所述可变物理参数离开所述物理参数目标范围以进入所述物理参数应用范围的信号产生操作。
  11. 根据权利要求9所述的方法,其中:
    所述物理参数应用范围由所述测量值指示范围所代表,其中所述测量值指示范围等于测量值应用范围;
    所述方法进一步包含步骤:提供感测单元,其中感测所述可变物理参数的步骤借由使用所述感测单元而被执行,所述感测单元被配置以符合与所述测量值指示范围相关的传感器规格,且所述传感器规格包含用于表示传感器测量范围的传感器测量范围表示;
    所述第一测量值以指定测量值格式而被获得;
    所述物理参数目标范围由测量值目标范围所代表;
    所述测量值目标范围和所述测量值应用范围皆基于所述传感器测量范围表示和所述传感器规格的其中之一来用所述指定测量值格式而被预设;
    所述测量值目标范围和所述测量值应用范围分别具有目标范围界限值对和应用范围界限值对;
    所述控制信号输送所述目标范围界限值对、所述应用范围界限值对和控制码,其中所述控制码基于在所述物理参数目标范围之内的指定物理参数而被预设,且所述控制信号借 由输送所述目标范围界限值对来起到指示所述测量值目标范围和所述物理参数目标范围的至少其中之一的作用;
    所述方法进一步包含步骤:从所述控制信号获得所述应用范围界限值对、所述目标范围界限值对和所述控制码;
    导致所述可变物理参数进入所述物理参数目标范围的步骤包含下列子步骤:
    借由比较所述第一测量值和所获得的所述应用范围界限值对,检查所述第一测量值和所述测量值应用范围之间的第二数学关系以做出所述第一测量值是否为于所述测量值应用范围之内的第一逻辑决定,其中所述第一数学关系等于所述第二数学关系;
    在所述第一逻辑决定是肯定的条件下,确定所述可变物理参数目前处于的所述所述物理参数应用范围;
    在所述可变物理参数目前处于的所述物理参数应用范围被确定的条件下,借由比较所获得的所述目标范围界限值对和所获得的所述应用范围界限值对来检查所述测量值目标范围和所述测量值应用范围之间的范围关系以做出所获得的所述目标范围界限值对和所获得的所述应用范围界限值对是否相等的第二逻辑决定;
    在所述第二逻辑决定是否定的条件下,辨识所述范围关系为范围相异关系以确定所述物理参数目标范围和所述物理参数应用范围之间的范围差异;以及
    在所述范围差异被确定的条件下,基于所获得的所述控制码来执行信号产生控制以产生用于导致所述可变物理参数进入所述物理参数目标范围的功能信号;以及
    所述方法进一步包含下列步骤:
    在所述信号产生控制于操作时间之内被执行之后,借由使用所述感测单元来感测所述可变物理参数以产生第二感测信号;
    于所述操作时间之后的指定时间之内,响应所述第二感测信号来以所述指定测量值格式获得第二测量值;以及
    在所述可变物理参数目前处于的所述物理参数目标范围于所述指定时间之内借由比较所述第二测量值和所获得的所述目标范围界限值对而被确定的条件下,向所述控制装置传输响应所述控制信号的控制响应信号,并执行数据存储控制操作,其中所述控制响应信号输送所述第二测量值,所述控制响应信号被所述控制装置使用以执行与所述可变物理参数相关的特定实际操作,且所述数据存储控制操作用于导致代表所确定的所述物理参数目标范围的物理参数目标范围码被记录。
  12. 根据权利要求9所述的方法,其中:
    所述物理参数应用范围对应于所述物理参数目标范围,并等于对应物理参数范围,其中所述对应物理参数范围由对应测量值范围所代表;
    所述物理参数目标范围由所述测量值指示范围所代表,其中所述测量值指示范围等于测量值目标范围;
    所述方法进一步包含步骤:提供感测单元,其中感测所述可变物理参数的步骤借由使用所述感测单元而被执行,所述感测单元被配置以符合与所述测量值指示范围相关的传感器规格,且所述传感器规格包含用于表示传感器测量范围的传感器测量范围表示;
    所述第一测量值以指定测量值格式而被获得;
    所述可变物理参数进一步基于额定物理参数范围而被特征化,其中所述额定物理参数范围包含所述物理参数目标范围和所述物理参数应用范围,并由额定测量值范围所代表;
    所述测量值目标范围、所述对应测量值范围和所述额定测量值范围皆基于所述传感器测量范围表示和所述传感器规格的其中之一来用所述指定测量值格式而被预设;
    所述测量值目标范围和所述额定测量值范围分别具有目标范围界限值对和额定范围界限值对;
    所述控制信号输送所述目标范围界限值对、所述额定范围界限值对和控制码,其中所述控制码基于在所述物理参数目标范围之内的指定物理参数而被预设,且所述控制信号借由输送所述目标范围界限值对来起到指示所述测量值目标范围和所述物理参数目标范围的至少其中之一的作用;
    所述方法进一步包含步骤:从所述控制信号获得所述目标范围界限值对、所述额定范围界限值对和所述控制码;
    导致所述可变物理参数进入所述物理参数目标范围的步骤包含下列子步骤:
    通过比较所述第一测量值和所获得的所述目标范围界限值对,执行用于检查所述第一测量值和所述测量值目标范围之间的第二数学关系的第一检查操作,其中所述第一数学关系等于所述第二数学关系;
    基于所述第一检查操作,做出所述第一测量值是否为于所述对应测量值范围之内的逻辑决定;
    在所述逻辑决定是肯定的条件下,确定所述可变物理参数目前处于的所述对应物理参数范围;以及
    在所述可变物理参数目前处于的所述对应物理参数范围被确定的条件下,基于所获得的所述控制码来执行信号产生控制以产生用于导致所述可变物理参数进入所述物理参数目标范围的第一功能信号;
    所述方法进一步包含步骤:通过比较所述第一测量值和所获得的所述额定范围界限值对,执行用于检查所述第一测量值和所述额定测量值范围之间的第三数学关系的第二检查操作;
    基于所述第一检查操作来做出所述逻辑决定的子步骤包含子步骤:基于所述第一检查操作和所述第二检查操作,做出所述逻辑决定;
    所述可变物理参数基于不同于所述物理参数目标范围的特定物理参数范围而被特征化;以及
    所述方法进一步包含下列步骤:
    提供按钮;
    在所述可变物理参数借由检查所述第一数学关系而被导致处于所述物理参数目标范围的条件下,接收使用所述按钮的用户输入操作;以及
    响应所述用户输入操作,产生用于导致所述可变物理参数离开所述物理参数目标范围以进入所述特定物理参数范围的第二功能信号。
PCT/CN2020/141401 2019-12-31 2020-12-30 用于控制可变物理参数的控制目标装置及方法 WO2021136374A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080091274.XA CN114930255A (zh) 2019-12-31 2020-12-30 用于控制可变物理参数的控制目标装置及方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201911410185.2 2019-12-31
CN201911410185.2A CN113126486B (zh) 2019-12-31 2019-12-31 用于控制可变物理参数的控制装置及方法
CN201911421090.0A CN113126482A (zh) 2019-12-31 2019-12-31 控制目标装置及用于控制可变物理参数的方法
CN201911418652.6A CN113126481A (zh) 2019-12-31 2019-12-31 控制目标装置及用于控制可变物理参数的方法
CN201911421090.0 2019-12-31
CN201911418652.6 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021136374A1 true WO2021136374A1 (zh) 2021-07-08

Family

ID=76687088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141401 WO2021136374A1 (zh) 2019-12-31 2020-12-30 用于控制可变物理参数的控制目标装置及方法

Country Status (2)

Country Link
CN (1) CN114930255A (zh)
WO (1) WO2021136374A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030215A1 (en) * 1997-12-05 1999-06-17 Rosemount Inc. Multiple range transition method and apparatus for process control sensors
US7411505B2 (en) * 2004-09-24 2008-08-12 Intel Corporation Switch status and RFID tag
CN102844643A (zh) * 2010-04-19 2012-12-26 高通股份有限公司 动态传感器量程选择
CN104062487A (zh) * 2013-03-20 2014-09-24 鸿富锦精密工业(武汉)有限公司 电压检测系统
CN105278364A (zh) * 2014-06-04 2016-01-27 山洋电气株式会社 产品规格设定装置和具备产品规格设定装置的风扇电机
CN105372469A (zh) * 2014-08-13 2016-03-02 浙江巨磁智能技术有限公司 调节电流传感器量程的方法及使用该方法的传感器
CN108696604A (zh) * 2017-04-04 2018-10-23 谷歌有限责任公司 用于感测用户输入的设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030215A1 (en) * 1997-12-05 1999-06-17 Rosemount Inc. Multiple range transition method and apparatus for process control sensors
US7411505B2 (en) * 2004-09-24 2008-08-12 Intel Corporation Switch status and RFID tag
CN102844643A (zh) * 2010-04-19 2012-12-26 高通股份有限公司 动态传感器量程选择
CN104062487A (zh) * 2013-03-20 2014-09-24 鸿富锦精密工业(武汉)有限公司 电压检测系统
CN105278364A (zh) * 2014-06-04 2016-01-27 山洋电气株式会社 产品规格设定装置和具备产品规格设定装置的风扇电机
CN105372469A (zh) * 2014-08-13 2016-03-02 浙江巨磁智能技术有限公司 调节电流传感器量程的方法及使用该方法的传感器
CN108696604A (zh) * 2017-04-04 2018-10-23 谷歌有限责任公司 用于感测用户输入的设备

Also Published As

Publication number Publication date
CN114930255A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
JP5507771B2 (ja) ユーザインタフェースを介する不満の定量化
US10068088B2 (en) Method, computer program and system that uses behavioral biometric algorithms
JP2018073424A (ja) 検出されたビデオイベントに基づく動的触覚生成
EP2736233B1 (en) Method for controlling portable device by using humidity sensor and portable device thereof
CN109274309A (zh) 马达控制方法、装置、电子设备及存储介质
KR20100133538A (ko) 휴대용 단말기에서 모션 인식 장치 및 방법
WO2021136374A1 (zh) 用于控制可变物理参数的控制目标装置及方法
WO2021136253A1 (zh) 用于控制可变物理参数的功能装置及方法
TWI734334B (zh) 控制目標裝置及用於控制可變物理參數的方法
TWI741471B (zh) 控制目標裝置及用於控制可變物理參數的方法
TWI791391B (zh) 用於控制可變物理參數的控制裝置及系統及方法
TWI734335B (zh) 用於控制可變物理參數的控制裝置及方法
WO2021136260A1 (zh) 用于控制可变物理参数的控制装置及方法
AU2022439126A1 (en) Electronic device and operation method thereof
TWI742502B (zh) 用於控制可變物理參數的控制裝置及方法
TWI775592B (zh) 用於控制照明裝置的控制裝置及方法
TWI854268B (zh) 用於控制可變物理參數的控制裝置及方法
CN113127272B (zh) 屏幕检测方法和屏幕检测的电子设备
CN113126486B (zh) 用于控制可变物理参数的控制装置及方法
CN113126482A (zh) 控制目标装置及用于控制可变物理参数的方法
KR102443782B1 (ko) 미래 상호작용 예측 기반의 타겟 사용자 예측 방법 및 시스템
KR102484000B1 (ko) 센싱데이터의 저장방법에 따른 물류상태 관리 방법 및 장치
RU2671305C1 (ru) Способ осуществления автоматизированной аутентификации пользователя на основании его подписи
CN105549860A (zh) 控制方法、控制装置及电子装置
CN105554378A (zh) 控制方法、控制装置及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909173

Country of ref document: EP

Kind code of ref document: A1