WO2021136193A1 - 一种自动调整照射方向的照明装置 - Google Patents

一种自动调整照射方向的照明装置 Download PDF

Info

Publication number
WO2021136193A1
WO2021136193A1 PCT/CN2020/140237 CN2020140237W WO2021136193A1 WO 2021136193 A1 WO2021136193 A1 WO 2021136193A1 CN 2020140237 W CN2020140237 W CN 2020140237W WO 2021136193 A1 WO2021136193 A1 WO 2021136193A1
Authority
WO
WIPO (PCT)
Prior art keywords
lighting device
value
acceleration
tracked object
acceleration value
Prior art date
Application number
PCT/CN2020/140237
Other languages
English (en)
French (fr)
Inventor
孙国涛
张正华
郑天航
Original Assignee
苏州欧普照明有限公司
欧普照明股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州欧普照明有限公司, 欧普照明股份有限公司 filed Critical 苏州欧普照明有限公司
Publication of WO2021136193A1 publication Critical patent/WO2021136193A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V21/00Supporting, suspending, or attaching arrangements for lighting devices; Hand grips
    • F21V21/14Adjustable mountings
    • F21V21/15Adjustable mountings specially adapted for power operation, e.g. by remote control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the invention belongs to the field of lamp control, and in particular relates to a lighting device capable of accurately controlling the illumination direction.
  • the intelligentization of lighting equipment has become an inevitable trend, and its intelligent development can be developed in multiple dimensions.
  • One of the important directions is the control closely related to the parameters of the lighting equipment itself. , Such as the control of brightness and color temperature, and so on.
  • a very key parameter is the control of the illumination direction of the lighting equipment. By adjusting the illumination direction, the illuminated object can be presented in the most suitable illumination direction, making it look more real and perfect, and at the same time more Artistic.
  • the control of the illumination direction of traditional lighting equipment is usually done manually. After the equipment is installed in a specific position, the illumination direction of the lighting equipment is artificially adjusted according to the condition of the illuminated object, and then the corresponding adjustment position is determined.
  • lighting products are generally installed on the ceiling, so if you want to adjust, you generally need to use a specific tool (such as a ladder) to adjust the direction of illumination. This process is time-consuming and labor-intensive, and the adjustment process is cumbersome.
  • the purpose of the present invention is to solve the problem of inconvenient adjustment of the lighting equipment after installation in the prior art, and to propose a new type of lighting equipment that can precisely control the illumination direction.
  • a lighting device that automatically adjusts the illumination direction, including a direction-adjustable lighting device, and an acceleration sensor for tracking the tracked object
  • the acceleration sensor is installed on the tracked object
  • the direction is adjustable
  • the lighting device and the acceleration sensor are connected in a wireless manner
  • the acceleration sensor is configured to detect the reference acceleration value and the sampling acceleration value of the tracked object, as well as the deflection angle when moving, and send the detected information to Direction adjustable lighting equipment
  • the direction adjustable lighting equipment calculates the coordinate value of the tracked object after moving according to the initial coordinates of the tracked object, the reference acceleration value and the sampling acceleration value, and the deflection angle during movement; and according to With its own coordinate information, the coordinate value of the tracked object after moving, and the vertical height from the direction-adjustable lighting device to the tracked object, the rotation angle of the lamp body module in the direction-adjustable lighting device is calculated to realize the tracking of the tracked object.
  • the reference acceleration value of the tracked object is an acceleration value measured when the tracked object is stationary.
  • the acceleration sensor periodically measures the sampled acceleration value of the tracked object and the deflection angle.
  • the displacement value corresponding to the nth sampling point the displacement value corresponding to the n-1th sampling point + (the speed value corresponding to the nth sampling point-the speed corresponding to the n-1th sampling point Value)*sampling period/2.
  • the direction adjustable lighting device includes a horizontal motor and a swing motor.
  • the calculation of the rotation angle of the lamp body module by the direction-adjustable lighting device includes calculating the rotation angles of the horizontal motor and the swing motor in the direction-adjustable lighting device.
  • the direction-adjustable lighting device sends pulse signals to the horizontal motor and the swing motor in it, respectively, to control the horizontal motor and the swing motor to rotate to a calculated angle.
  • the lamp body module includes a light source module.
  • the lighting device that automatically adjusts the illumination direction of the present invention can perform timely tracking and lighting according to the movement of the tracked object, and can be applied to multiple occasions where light tracking is required, and the user no longer needs to manually or through Other adjustment equipment adjusts the direction of the lighting equipment to realize the automation of light tracking.
  • the acceleration is double-integrated, and the integration method is optimized for each integration, so that the calculated displacement value is more accurate, and the accuracy of the automatic tracking lighting is improved.
  • FIG. 1 is a schematic diagram of the overall structure of a preferred direction adjustable lighting device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the split structure of each module of the direction adjustable lighting device according to the embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the internal structure of each module of a preferred direction adjustable lighting device according to an embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional view of a preferred direction adjustable lighting device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a preferred direction adjustment module according to an embodiment of the present invention.
  • Fig. 6a is a schematic structural diagram of a preferred horizontal motor according to an embodiment of the present invention.
  • Figure 6b is a schematic structural diagram of a preferred horizontal suspension interface according to an embodiment of the present invention.
  • Figure 6c is a schematic structural diagram of a preferred horizontal motor shaft hoop in an embodiment of the present invention.
  • Figure 7a is a schematic structural diagram of a preferred swing motor according to an embodiment of the present invention.
  • Fig. 7b is a schematic structural diagram of a preferred swing suspension interface piece according to an embodiment of the present invention.
  • Fig. 7c is a schematic structural diagram of a hoop for a rotating shaft in a swing motor according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a preferred direction adjustable lighting system according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of tracking smaller objects of a preferred direction adjustable light system according to an embodiment of the present invention.
  • Fig. 10 is a schematic diagram of tracking a larger object of a preferred direction adjustable light system according to an embodiment of the present invention. The description of the figures for Figures 11-15 is missing
  • Fig. 1 is a schematic diagram of the overall structure of a preferred direction adjustable lighting device according to an embodiment of the present invention.
  • the direction adjustable lighting device 10 includes a power supply module 1, a direction adjustment module 2, and a lamp body module 3.
  • the power module 1 is suspended on the track or directly mounted on the top of the ceiling and connected to the mains to take power and convert the voltage into the lamp body module 3 to supply power, and there is an opening at the bottom of the power module 1 for wiring;
  • the direction adjustment module 2 is rotatably connected with the power supply module 1 and the lamp body module 3; the direction adjustment module 2 can move relative to the power supply module 1 in the direction of the long axis of the adjustment module 2, and the lamp body module 3 can be opposite to each other.
  • the direction adjustment module 2 makes a left and right swing movement around the short axis of the direction adjustment module 2.
  • Fig. 2 is a schematic diagram of the disassembly structure of each module of a preferred direction adjustable lighting device according to an embodiment of the present invention.
  • the direction-adjustable lighting device has been divided into three parts, namely the power supply module 1, the direction adjustment module 2, and the lamp body module 3.
  • the above three modules can be assembled separately to form a module during manufacture. After the three modules are assembled separately, the three modules are assembled into a complete direction adjustable lighting device.
  • the direction adjustment module 2 is provided with two interface pieces that can be driven by the motor in the module to connect to the power supply module 1 and the lamp body module 3 respectively.
  • the power supply module 1 is arranged above the direction adjustment module 2 and connects to the horizontal suspension interface pieces. 241.
  • the lamp body module 3 is arranged on the side wall of the direction adjustment module, and is connected to the swing suspension interface 251.
  • the two suspension interfaces are connected with the output shaft of the motor without gap, and can be rotated under the drive of the motor shaft. .
  • the horizontal suspension interface 241 is rigidly connected to the power module 1 by screws. Because the power module 1 is fixedly installed, the direction adjustment module 2 makes a horizontal rotation relative to the power module 1 when the output shaft of the horizontal motor rotates.
  • Fig. 3 is a schematic diagram of the internal structure of each module of a preferred direction adjustable lighting device according to an embodiment of the present invention.
  • the direction adjustment module 2 includes a main control module 23, a light source driving module 26, a wireless communication module 27, and a horizontal motor 24 and a swing motor 25.
  • the lamp body module 3 includes a housing 30, a light source module 31 housed in the housing 30, and a heat dissipation component 32, and may also include an optical module (300) housed in the housing and arranged in the light emitting direction of the light source module.
  • the power module 1 takes power from the mains and converts the mains, and the output voltage is 36V or 24V isolated safety voltage to the main control module 23 in the direction adjustment module 2 to drive the horizontal motor 24 and the swing motor 25.
  • the horizontal motor 24 drives the direction adjustment module 2 to rotate horizontally. Since the lamp body module 3 and the direction adjustment module 2 can be connected to swing, the horizontal motor 24 drives the direction adjustment module 2 to rotate horizontally, and the lamp body module 3 also follows the direction adjustment module 2 Rotate horizontally.
  • the swing motor 25 can drive the lamp body module 3 to swing left and right.
  • the light source driving module 26 is plugged into the main control module 23, takes power from the main control module 23, converts the voltage into a safe voltage matching the light source module 31, and supplies power to the light source module 31. If the power of the light source module 31 is changed, the corresponding light source driving module 26 can be replaced.
  • the wireless communication module 27 is connected to the main control module 23, can accept the control signal sent by the user, and send the control signal to the main control module 23 to control the rotation of the two motors, and adjust the current irradiation angle and posture of the lamp body module 3 .
  • Fig. 4 is a schematic cross-sectional view of a preferred direction adjustable lighting device according to an embodiment of the present invention.
  • the light source module 31 in the lamp body module 3 includes a light source substrate and a light source 311 disposed on the light source substrate.
  • the optical module may include an optical lens 312, but may also be a light distribution element such as a reflector, a light guide element, a combination of multiple lens groups and a reflector.
  • the optical module is an optical lens 312, and the optical lens 312 controls the light emitted from the light source 311 so that the light emitted from the light source module 31 irradiates the illuminated object at a certain beam angle.
  • a heat dissipation member 32 is provided at the rear end of the light source 311 to absorb the heat generated by the light source 311 and spread it to the surrounding air environment.
  • the heat dissipation component 32 is made of metal material, and a plurality of heat dissipation bars are arranged on the outer surface of the heat dissipation component 32 to increase the heat dissipation area and improve the heat dissipation efficiency.
  • the heat dissipation member 32 is preferably an aluminum die-cast part.
  • Fig. 5 is a schematic structural diagram of a preferred direction adjustment module according to an embodiment of the present invention.
  • the direction adjustment module 2 also includes a first housing 22 and a second housing 21. After disassembling the first housing 22 and the second housing 21, you can see the inside of the direction adjustment module 2 Electrical components.
  • the horizontal motor 24 is fixed to the first housing 22 through the horizontal motor fixing bracket 242, the horizontal suspension interface 241 is located between the horizontal motor fixing bracket 242 and the first housing 22, and the horizontal suspension interface 241 is on the horizontal motor output shaft (not shown).
  • the horizontal interface gasket 243 can reduce the friction with the first housing 22 under the driving of the mark) in FIG. 5.
  • the horizontal motor 24 is also provided with a horizontal limit switch 244, and the horizontal limit switch is used to limit the rotation range of the horizontal motor 24.
  • the swing motor 25 is also fixed to the first housing 22 by the swing motor fixing bracket 252, and the swing suspension interface 251 is located between the swing motor fixing bracket 252 and the first housing 22, on the swing motor shaft (not shown in FIG. 5). ) Is driven by a swing and rotation movement, and the swing interface gasket 253 reduces the friction between the first housing 22 and the swing motor fixing bracket 252.
  • a swing limit switch 244 is also provided on the swing motor 24, and the swing limit switch is used to limit the rotation range of the swing motor 24.
  • both the horizontal motor 24 and the swing motor 25 use stepping deceleration motors, only one direction limit is used, and the limit position is used as the initial zero angle position.
  • the number of driving pulses of the motor is counted.
  • the angle of the motor relative to the 0-angle position can be known, and the number of pulses can be defined to increase when rotating in the forward direction, and to reduce the number of pulses when rotating in the reverse direction.
  • the maximum number of pulses to limit the maximum rotation angle of the motor output shaft.
  • the motor shaft needs to be restored to the zero angle position, which can eliminate the loss of step during use and the loss of angle information after power off.
  • Fig. 6a is a schematic structural diagram of a preferred horizontal motor according to an embodiment of the present invention
  • Fig. 6b is a schematic structural diagram of a preferred horizontal suspension interface component according to an embodiment of the present invention
  • Fig. 6c is a schematic structural diagram of a preferred horizontal motor inner rotating shaft hoop according to an embodiment of the present invention .
  • the horizontal motor 24 further includes a horizontal motor main body 248, a horizontal motor rotating shaft 249, a rotating shaft hoop 246, and a horizontal interface second gasket is provided between the horizontal motor main body 248 and the horizontal suspension interface 241 245.
  • the horizontal interface second gasket 245 can reduce the friction between the horizontal motor main body 248 and the horizontal suspension interface 241.
  • a collision protrusion 247 is provided at the lower end of the edge of the horizontal suspension interface 241.
  • the horizontal suspension interface 241 is fixed at the bottom of the power module 1 through the screw locking hole 41, and the number of the screw locking hole 41 is multiple.
  • the horizontal motor rotating shaft 249 is inserted into the rotating shaft hole 42 on the horizontal suspension interface 241.
  • the horizontal motor 24 drives the direction adjustment module 2 Rotate.
  • a wire hole 43 is provided on the horizontal suspension interface 241 for passing the wire between the power supply module 1 and the direction adjustment module 2.
  • the rotating shaft hoop 246 is disposed between the horizontal suspension interface 241 and the horizontal motor rotating shaft 249.
  • the rotating shaft hoop 246 is provided with a screw fixing hole 51, a screw locking hole 52, and a rotating shaft hole 53.
  • the rotating shaft hoop 246 is sleeved on the horizontal motor rotating shaft 249 through the rotating shaft hole 53, and the rotating shaft hoop 246 is locked on the horizontal motor rotating shaft 249 through the screw locking hole 52 on the rotating shaft hoop 246.
  • the rotating shaft holding hoop 246 not only the horizontal motor rotating shaft 249 and the horizontal suspension interface 241 can be tightly fixed, but also the rotation gap between the two can be eliminated.
  • Fig. 7a is a schematic structural diagram of a preferred swing motor according to an embodiment of the present invention
  • Fig. 7b is a schematic structural schematic diagram of a preferred swing suspension interface member according to an embodiment of the present invention.
  • the swing motor 25 further includes a swing motor main body 258, a swing motor rotating shaft 259, and a swing hoop 256.
  • a swing interface second gasket is provided between the swing motor main body 258 and the swing suspension interface 251. 255.
  • the second gasket 255 of the swing interface can reduce the friction between the swing motor main body 258 and the swing suspension interface 251.
  • a collision protrusion 257 is provided on the edge of the swing suspension interface 251.
  • the swing suspension interface 251 is fixed on the lamp body module 3 through the screw locking hole 64.
  • the rotating shaft 259 of the swing motor is inserted into the rotating shaft hole 63 on the swing suspension interface 251.
  • the oscillating motor 25 rotates, the rotating shaft 259 of the oscillating motor and the oscillating suspension interface 251 drive the lamp body module 3 to rotate.
  • the oscillating hoop 256 is disposed between the oscillating suspension interface 251 and the rotating shaft 259 of the oscillating motor.
  • the rotating shaft hoop 256 is provided with a screw fixing hole 71, a screw locking hole 72, and a rotating shaft hole 73.
  • the rotating shaft hoop 256 is sleeved on the horizontal motor rotating shaft 259 through the rotating shaft hole 73, and a screw is used to pass through the screw locking hole 72 on the rotating shaft hoop 256 to lock the swing hoop 256 on the swing motor rotating shaft 259 ;
  • FIG. 8 is a schematic structural diagram of a preferred direction adjustable lighting system according to an embodiment of the present invention.
  • the direction adjustable lighting system 101 includes a direction adjustable lighting device 10 and an acceleration sensor 103.
  • the direction-adjustable lighting device 10 can be fixedly installed on the ceiling, the acceleration sensor 103 is arranged on the tracked object D, and the tracked object D is placed under the direction-adjustable lighting device 10.
  • the acceleration sensor 103 and the direction-adjustable lighting device are connected to the wireless communication module 27 in the direction-adjustable lighting device 10 in a wireless manner, and the wireless manner may be wifi, zigbee, Bluetooth, etc.
  • Fig. 9 is a schematic diagram of preferred coordinates of the tracked object according to an embodiment of the present invention.
  • the tracked object D is placed under the direction-adjustable lighting device 10, and the vertical projection of the direction-adjustable lighting device 10 on the plane where the acceleration sensor 103 is located is set as the origin (0, 0), that is, On the coordinate axis, the vertical height from the direction-adjustable lighting device 10 to the plane where the acceleration sensor 103 is located is H.
  • the initial position of the acceleration sensor 103 is A(a1, b1).
  • the user needs to preset the vertical height H from the direction-adjustable lighting device 10 to the surface of the tracked object D and the initial position A (a1, b1) of the acceleration sensor 103 into the direction-adjustable lighting device 10 in advance.
  • FIG. 10 is a schematic diagram of a preferred flow for measuring acceleration according to an embodiment of the present invention.
  • the flow of the method for the acceleration sensor 103 to measure the acceleration of the tracked object D is as follows:
  • Step S11 initialization of sampling parameters
  • the sampling parameters need to be initialized, for example, the sampling period, the sampling time, and the system clock need to be set.
  • Step S12 Obtain an acceleration reference value
  • the acceleration value measured when the object is stationary is the acceleration reference value.
  • Step S13 data sampling is performed on the acceleration of the movement of the object
  • the acceleration sensor 103 After the object moves, the acceleration sensor 103 performs data sampling on the acceleration of the object movement and the deflection angle, and stores the sampled data in the memory.
  • Step S14 The acceleration sensor 103 periodically sends the acceleration sample value, the deflection angle, and the acceleration reference value to the direction adjustable lighting device 10.
  • FIG. 11 is a schematic diagram of a flow of calculating the displacement of a tracked object by a preferred direction-adjustable lighting device according to an embodiment of the present invention.
  • the direction-adjustable lighting device 10 receives the acceleration sample value, deflection angle, and acceleration reference value sent by the acceleration sensor 103, it processes the acceleration data.
  • the acceleration sample value is calibrated.
  • Point's calibrated acceleration value acceleration sampling value-acceleration reference value.
  • Fig. 12 is a schematic diagram of a preferred calibration of acceleration sampling values in an embodiment of the present invention. Without any label
  • X-axis acceleration calibrated acceleration value*Cos(A)
  • Y-axis direction acceleration calibrated acceleration value*Sin(A)
  • A is the deflection angle measured by the acceleration sensor 103 at the sampling point.
  • acceleration is the rate of change of velocity
  • velocity is the rate of change of position
  • acceleration is the derivative of speed
  • Integral and derivative are the opposite. If the acceleration of an object is known, then the position of the object can be obtained by double integration. Assuming that the initial condition is 0, then the following formula:
  • Fig. 13 is a schematic diagram of a preferred acceleration sampling signal according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of the error generated in the preferred integration process of the embodiment of the present invention.
  • the part above the curve is the error area. , This error will always accumulate.
  • 15 is a schematic diagram of the preferred embodiment of the present invention to reduce the error in the integration process.
  • the result area can be seen as a combination of two small areas, where area 1 is the value of the previous sample (square), area 2 It is a triangle, which is half of the difference between the current sample and the previous sample.
  • Sample n represents the nth sampling value, that is, the nth acceleration sampling value
  • Sample n-1 represents the n-1th sampling value
  • T represents the time value of the 1 sampling period
  • Area n represents the nth time
  • the integral value corresponding to the sampled value is the speed value.
  • the speed value calculated by the above formula 4 will be much more accurate.
  • the distance value can be obtained through the second integration.
  • the formula 4 can also be used to reduce the error in calculating the distance value.
  • the displacement values in the X-axis and Y-axis directions can be calculated separately. Since the direction-adjustable lighting device 10 has learned the initial coordinates of the acceleration sensor 103, plus the displacement values of the acceleration sensor 103 in the X-axis and Y-axis directions, The coordinate value after the movement of the acceleration sensor 103 is obtained. For example, the acceleration sensor 103 moves to the point B (a2, b2) in FIG. 9.
  • the direction-adjustable lighting device 10 can calculate the coordinates (a2, b2) of the acceleration sensor 103 according to its own coordinates (0,0), and the vertical distance H from the direction-adjustable lighting device 10 to the plane where the acceleration sensor 103 is located, which can be calculated

Abstract

一种自动调整照射方向的照明装置,包括方向可调照明设备(10),以及用于追踪被跟踪物体的加速度传感器(103);加速度传感器(103)安装在被跟踪物体上;方向可调照明设备(10)和加速度传感器(103)之间通过无线方式连接;加速度传感器(103),配置为检测被跟踪物体的基准加速度值和采样加速度值,以及移动时的偏准角度,并将检测到的信息发送给方向可调照明设备(10);方向可调照明设备(10),根据被跟踪物体的初始坐标,基准加速度值和采样加速度值,以及移动时的偏准角度计算出被跟踪物体移动后的坐标值;并根据自身的坐标信息,被跟踪物体移动后的坐标值,以及方向可调照明设备(10)到被跟踪物体的垂直高度,计算出方向可调照明设备(10)中灯体模块(3)的旋转角度,实现对被跟踪物体的追踪。

Description

一种自动调整照射方向的照明装置 技术领域
本发明属于灯具控制领域,具体涉及一种可精确控制照射方向的照明设备。
背景技术
随着智能控制技术和通信技术的发展,照明设备的智能化已经成为必然趋势,且其智能化的发展可以在多种维度上进行发展,其中一个重要的方向就是与照明设备本身参数息息相关的控制,例如对亮度和色温的控制,等等。在商业照明领域,一个很关键的参数就是照明设备的照射方向的控制,通过对照射方向的调整,可以使得被照物在最合适的照射方向下呈现,使其看上去更加真实完美,同时更具艺术感。
传统的照明设备的照射方向的控制通常都是通过人工来完成的,在设备安装到特定位置后,人为的根据被照物的情况进行调整照明设备的照射方向,然后确定出相应的调整位置。通常来说,照明产品一般都安装在天棚吊顶上,这样,如果去调整,一般都需要借助特定的工具(如梯子)来进行调整照射方向。此过程耗时耗力,调整过程繁琐。
发明内容
本发明的目的,就是解决上述现有技术中存在的照明设备安装后调整不方便的问题,提出了一种新型的可精确控制照射方向的照明设备。
本发明的技术方案:一种自动调整照射方向的照明装置,包括方向可调照明设备,以及用于追踪被跟踪物体的加速度传感器;所述加速度传感器安装在被跟踪物体上;所述方向可调照明设备和所述加速度传感器之间通过无线方式连接;所述加速度传感器,配置为检测被跟踪物体的基准加速度值和采样加速度值,以及移动时的偏准角度,并将检测到的信息发送给方向可调照明设备;所述方向可调照明设备,根据被跟踪物体的初始坐标,基准加速 度值和采样加速度值,以及移动时的偏准角度计算出被跟踪物体移动后的坐标值;并根据自身的坐标信息,被跟踪物体移动后的坐标值,以及方向可调照明设备到被跟踪物体的垂直高度,计算出方向调摄照明设备中灯体模块的旋转角度,实现对被跟踪物体的追踪。
进一步的,所述被跟踪物体的基准加速度值为被跟踪物体静止时测得的加速度值。
进一步的,当被跟踪物体移动时,所述加速度传感器周期性测量被跟踪物体的采样加速度值,以及偏准角度。
进一步的,所述方向可调照明设备对加速度值进行校准,校准后加速度值=采样加速度值-基准加速度值。
进一步的,被跟踪物体移动后的坐标值=被跟踪物体初始坐标+位移值;所述位移值可将校准后加速度值进行二次积分得到。
进一步的,所述校准后加速度值第一次积分得到速度值,再将速度值积分得到位移值;在第一次积分过程中,第n采样点对应的速度值=第n-1采样点对应的速度值+(第n采样点对应的加速度值-第n-1采样点对应的加速度值)*采样周期/2。
进一步的,在第二次积分过程中,第n采样点对应的位移值=第n-1采样点对应的位移值+(第n采样点对应的速度值-第n-1采样点对应的速度值)*采样周期/2。
进一步的,所述方向可调照明设备包括水平马达和摆动马达。
进一步的,所述方向可调照明设备计算出灯体模块的旋转角度,包括,分别计算出方向可调照明设备内水平马达和摆动马达的旋转角度。
进一步的,所述方向可调照明设备向其内的水平马达和摆动马达分别发送脉冲信号,控制水平马达和摆动马达旋转到计算的角度。
进一步的,所述灯体模块内包括光源模组。
本发明的有益效果为:本发明中的自动调整照射方向的照明设备可以根 据被跟踪物体的移动情况进行及时的跟踪照明,能够适用与多个需要灯光跟踪的场合,不再需要用户手动或通过其他调整设备调节照明设备的方向,实现了灯光跟踪的自动化。并且在计算被跟踪物体位移时,通过对加速度进行二次积分,并且在每次积分时,优化积分方式,使得计算出的位移值更为准确,提高自动跟踪照明的精准性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例优选的方向可调照明设备整体结构示意图;
图2为本发明实施例优选的方向可调照明设备各模块分拆结构示意图;
图3为本发明实施例优选的方向可调照明设备各模块内部结构示意图;
图4为本发明实施例优选的方向可调照明设备的截面示意图;
图5为本发明实施例优选的方向调节模块的结构示意图;
图6a为本发明实施例优选的水平马达的结构示意图;
图6b为本发明实施例优选的水平悬挂接口件的结构示意图;
图6c为本发明实施例优选的水平马达内转轴抱箍的结构示意图;
图7a为本发明实施例优选的摆动马达的结构示意图;
图7b为本发明实施例优选的摆动悬挂接口件的结构示意图;
图7c为本发明实施例优选的摆动马达内转轴抱箍的结构示意图;
图8为本发明实施例优选的方向可调灯光系统的架构示意图;
图9为本发明实施例优选的方向可调灯光系统的对较小物体追踪的示意图;
图10为本发明实施例优选的方向可调灯光系统的对较大物体追踪的示意图。缺少图11-15的附图说明
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
下面结合附图对本发明作进一步说明。
图1为本发明实施例优选的方向可调照明设备整体结构示意图。
如图1所示,方向可调照明设备10包括,电源模块1,方向调节模块2,以及灯体模块3。其中,电源模块1,悬挂于轨道或者直接明装于天花板的顶部并与市电连接以取电及进行电压转换为灯体模块3供电,在电源模块1底部留有开孔用于走线;方向调节模块2,分别和电源模块1,以及灯体模块3可旋转地连接;方向调节模块2可相对于电源模块1绕调节模块2的长轴方向做旋转方向运动,灯体模块3可相对于方向调节模块2绕方向调节模块2的短轴方向作左右摇摆运动。
图2为本发明实施例优选的方向可调照明设备各模块分拆结构示意图。
如图2所示,已将方向可调照明设备进行了分拆,形成了三个部分,分别为电源模块1,方向调节模块2,以及灯体模块3。上述三个模块在制造时可分别进行组装形成模块,在三个模块分别组装完后,再将三个模块组装成一个完整的方向可调照明设备。
方向调节模块2上设置有2个可在模块内马达驱动下转动的接口件,分别对接电源模块1和灯体模块3,电源模块1设置于方向调节模块2的上方,并对接水平悬挂接口件241,灯体模块3设置于方向调节模块的侧壁一侧,并对接摆动悬挂接口件251。2个悬挂接口件与马达的输出转轴无间隙连接,在马达转轴的带动下,可作旋转运动。水平悬挂接口件241通过螺钉刚性的与电源模块1连接,因为电源模块1固定安装,所以方向调节模块2在水平 马达输出转轴旋转时作相对电源模块1做水平旋转运动。
图3为本发明实施例优选的方向可调照明设备各模块内部结构示意图。
如图3所示,方向调节模块2包括,主控模块23、光源驱动模块26、无线通信模块27,以及水平马达24和摆动马达25。
灯体模块3包括壳体30、收容于壳体30内的光源模组31,以及散热部件32,还可以包括收容于壳体内并设置于光源模组出光方向的光学模组(300)。电源模块1从市电取电并对市电进行转换,输出电压为36V或24V的隔离安全电压到方向调节模块2内的主控模块23以驱动水平马达24和摆动马达25。水平马达24驱动方向调节模块2水平旋转,由于灯体模块3与方向调节模块2可摆动连接,因此,水平马达24驱动方向调节模块2水平旋转的同时,灯体模块3也跟着方向调节模块2水平旋转。摆动马达25可驱动灯体模块3左右摆动旋转。
光源驱动模块26插接在主控模块23上,从主控模块23上取电,并将电压转换为匹配光源模组31的安全电压,给光源模组31供电。如果光源模组31的功率变更,替换相应的光源驱动模块26即可。无线通信模块27挂接在主控模块23上,可接受用户发送的控制信号,并将控制信号发送给主控模块23以控制2个马达的旋转,调节灯体模块3当前的照射角度和姿态。
图4为本发明实施例优选的方向可调照明设备的截面示意图。
如图4所示,灯体模块3内的光源模组31,包括光源基板及设置于光源基板的光源311。光学模组可以包括光学透镜312,但还可以是反射器、导光元件、多个透镜组透镜与反射器组合等配光元件。于本发明优选实施例中,光学模组为光学透镜312,光学透镜312控制从光源311发出的光线,使从光源模组31发出的光以一定的光束角度照射到被照射物体上。在光源311的后端设置散热部件32,吸收光源311产生的热量并将其传播到周围的空气环境中。散热部件32为金属材质,在其外表面设置有多条散热条,增大散热面积,提高散热的效率。散热部件32优选为铝压铸件。
图5为本发明实施例优选的方向调节模块的结构示意图。
如图5所示,方向调节模块2还包括,第一壳体22、第二壳体21,拆开第一壳体22和第二壳体21后,即可看到方向调节模块2内部的电器元件。水平马达24通过水平马达固定支架242固定于第一壳体22上,水平悬挂接口件241位于水平马达固定支架242和第一壳体22之间,水平悬挂接口件241在水平马达输出轴(未在图5中标示)的带动下可作旋转运动,由水平接口垫片243减小与第一壳体22之间的摩擦力。水平马达24上还设置有水平限位开关244,水平限位开关用于限制水平马达24的转动幅度。
摆动马达25也由摆动马达固定支架252固定于第一壳体22上,摆动悬挂接口件251位于摆动马达固定支架252与第一壳体22之间,在摆动马达转轴(未在图5中标示)的带动下作摆动旋转运动,由摆动接口垫片253减小第一壳体22和摆动马达固定支架252之间的摩擦力。摆动马达24上还设置有摆动限位开关244,摆动限位开关用于限制摆动马达24的转动幅度。
由于水平马达24和摆动马达25都采用了步进减速马达,只做一个方向的限位,限位的位置作为起始零角度位置,利用步进马达驱动的特性,计数马达的驱动脉冲数即可得知马达相对于0角度位置的角度,可定义正向旋转时脉冲数增加,反向旋转时脉冲数减少。同时限制最大脉冲数以限制马达输出轴的最大旋转角度。为了保证马达旋转角度控制的准确性,方向可调照明设备断电后的再上电,马达转轴需要恢复到零角度位置,即可消除使用过程中的失步和断电后的角度信息丢失。
图6a为本发明实施例优选的水平马达的结构示意图;图6b为本发明实施例优选的水平悬挂接口件的结构示意图;图6c为本发明实施例优选的水平马达内转轴抱箍的结构示意图。
如图6a-6c所示,水平马达24还包括水平马达主体248,水平马达转动轴249,转轴抱箍246,在水平马达主体248和水平悬挂接口件241之间设置有水平接口第二垫片245,水平接口第二垫片245可减小水平马达主体248 和水平悬挂接口件241之间的摩擦力。此外,在水平悬挂接口件241边缘的下端设置有碰撞凸247,在旋转到水平限位开关244位置时,碰撞水平限位开关244实现水平马达24的止转限位和初始位置的确定。
水平悬挂接口件241通过螺钉锁紧孔41固定在电源模块1的底部,螺钉锁紧孔41的数量为多个。水平马达转动轴249插入到水平悬挂接口件241上的转轴孔42内。当水平马达24转动时,由于水平马达转动轴249与水平悬挂接口件241固定连接,且水平悬挂接口件241固定在电源模块1上,因此,水平马达24转动时,水平马达24带动方向调节模块2转动。在所述水平悬挂接口件241上设置有过线孔43,用于穿过电源模块1和方向调节模块2之间的导线。
转轴抱箍246设置在水平悬挂接口件241和水平马达转动轴249之间,转轴抱箍246上设置有螺钉固定孔51、螺钉锁紧孔52,以及转轴孔53。其中,转轴抱箍246通过转轴孔53套接在水平马达转动轴249上,并使用螺钉穿过转轴抱箍246上的螺钉锁紧孔52将转轴抱箍246锁紧在水平马达转动轴249上;同时,使用螺钉穿过转轴抱箍246上的螺钉固定孔51和水平悬挂接口件241的抱箍件锁定螺钉孔44将转轴抱箍246和和水平悬挂接口件241固定锁紧。通过转轴抱箍246这个件,不但可以将水平马达转动轴249和水平悬挂接口件241紧密固定,还可消除两者之间的旋转间隙。
图7a为本发明实施例优选的摆动马达的结构示意图;图7b为本发明实施例优选的摆动悬挂接口件的结构示意图;图7c为本发明实施例优选的摆动马达内转轴抱箍的结构示意图。
如图7a-7c所示,摆动马达25还包括摆动马达主体258,摆动马达转动轴259,摆动抱箍256,在摆动马达主体258和摆动悬挂接口件251之间设置有摆动接口第二垫片255,摆动接口第二垫片255可减小摆动马达主体258和摆动悬挂接口件251之间的摩擦力。此外,在摆动悬挂接口件251边缘设置有碰撞凸257,在旋转到摆动限位开关254位置时,碰撞图5中的摆动限 位开关254实现摆动马达25的止转限位和初始位置的确定。
摆动悬挂接口件251通过螺钉锁紧孔64固定在灯体模块3上。摆动马达转动轴259插入到摆动悬挂接口件251上的转轴孔63内。当摆动马达25转动时,通过摆动马达转动轴259,以及摆动悬挂接口件251带动灯体模块3转动。
摆动抱箍256设置在摆动悬挂接口件251和摆动马达转动轴259之间,转轴抱箍256上设置有螺钉固定孔71、螺钉锁紧孔72,以及转轴孔73。其中,转轴抱箍256通过转轴孔73套接在水平马达转动轴259上,并使用螺钉穿过转轴抱箍256上的螺钉锁紧孔72将摆动抱箍256锁紧在摆动马达转动轴259上;同时,使用螺钉穿过转轴抱箍256上的螺钉固定孔71和水平悬挂接口件251的抱箍件锁定螺钉孔62将转轴抱箍256和和摆动悬挂接口件251固定锁紧。通过摆动抱箍256这个件,不但可以将摆动马达转动轴259和摆动悬挂接口件251紧密固定,还可消除两者之间的旋转间隙。
图8为本发明实施例优选的方向可调灯光系统的架构示意图。
如图8所示,方向可调灯光系统101包括,方向可调照明设备10和加速度传感器103。方向可调照明设备10可固定安装在天花板上,加速传感器103设置在被追踪物体D上,被追踪物体D放置在方向可调照明设备10的下方。加速度传感器103和方向可调照明设备通过无线方式与方向可调照明设备10内的无线通信模块27连接,其中的无线方式可以是wifi、zigbee、蓝牙等。
图9为本发明实施例优选的被追踪物体的坐标示意图。
如图9所示,被追踪物体D放置在方向可调照明设备10的下方,将方向可调照明设备10在加速度传感器103所在的平面上的垂直投影设置为原点(0,0),即形成坐标轴,方向可调照明设备10到加速度传感器103所在的平面的垂直高度为H。例如,加速度传感器103的初始位置是A(a1,b1)。用户需要预先将方向可调照明设备10到被追踪物体D表面的垂直高度H,以及加速度传感器103的初始位置A(a1,b1)预先设置到方向可调照明设备10内。
图10为本发明实施例优选的测量加速度流程示意图。
如图10所示,加速度传感器103测量被追踪物体D的加速度的方法流程如下:
步骤S11、采样参数初始化;
具体的,在进行加速度测量之前,需要先对采样参数进行初始化,例如,设置采样周期、采样时间,以及对系统时钟等。
步骤S12、获取加速度基准值;
具体的,当物体静止时,测量该物体静止时的加速度值即为加速度基准值。
步骤S13、对物体移动的加速度进行数据采样;
当物体移动后,加速度传感器103对物体移动的加速度,以及偏转角度进行数据采样,并将采样数据存入到存储器中。
步骤S14、加速度传感器103周期性地将加速度采样值、偏转角度,以及加速度基准值发送给方向可调照明设备10。
图11为本发明实施例优选的方向可调照明设备计算被追踪物体位移的流程示意图。
如图11所示,当方向可调照明设备10接收到加速度传感器103发送的加速度采样值、偏转角度,以及加速度基准值后,对加速度数据进行处理,首先对加速度采样值进行校准,每个采样点的校准后加速度值=加速度采样值-加速度基准值。
图12为本发明实施例优选的对加速度采样值进行校准的示意图。没有任何标号
经过加速度校准后,即可计算出被追踪物体D分别在X轴和Y轴方向的加速度。X轴方向加速度=校准后加速度值*Cos(A),Y轴方向加速度=校准后加速度值*Sin(A),A为加速度传感器103在该采样点测得的偏转角度。
有了每个采样点在X轴和Y轴的校准后加速度值后,即可进行积分运算 得到速度值。加速度是速度的变化速率,速度是位置的变化速率。换句话说,速度是位置的导数,加速度是速度的导数,因此如下公式:
Figure PCTCN2020140237-appb-000001
积分和导数相反,如果一个物体的加速度已知,那么可以利用二重积分获得物体的位置,假设初始条件为0,那么有如下公式:
Figure PCTCN2020140237-appb-000002
图13为本发明实施例优选的加速度采样信号示意图。
如图13所示,由加速度计算速度值的公式如下:
Figure PCTCN2020140237-appb-000003
其中Δx=(b-a)/n  公式3
如果采样时间趋近于0,那么结论将是正确的。但在实际中,将会产生如图14所示的误差,图14为本发明实施例优选的积分过程中产生误差示意图,在图14中,曲线以上的部分为误差区域,在处理的过程中,这个误差将会一直累积。
图15为本发明实施例优选的减少积分过程中误差示意图,为了减少误差,假设结果区域能够看成由两块小的区域的组合,其中区域1是前一次采样的值(方形),区域2是一个三角形,是当前采样和前一次采样之差的一半。
通过这种方法,得到一个一阶近似(插值)的信号:
Area n=Area n-1+(Sample n-Sample n-1)*T/2  公式4
其中Sample n代表第n次的采样值,即第n次的加速度采样值,Sample n-1代表第n-1次的采样值,T表示1次采样周期的时间值,Area n代表第n次采样值对应的积分值,即速度值。经过上述公式4计算得到的速度值将精确很多。
经过上述公式4得到速度值后,再经过第二次积分,可得到距离值,在 由速度值计算得到位移值的方法,同样可使用公式4,来减少在计算距离值时的误差。最终分别可计算出在X轴和Y轴方向的位移值,由于方向可调照明设备10已获知了加速度传感器103的初始坐标,加上加速度传感器103在X轴和Y轴方向的位移值,可得到加速度传感器103移动后的坐标值,例如加速度传感器103移动到图9上的B点(a2,b2)。方向可调照明设备10可根据自身坐标(0,0),计算出的加速度传感器103坐标(a2,b2),以及方向可调照明设备10到加速度传感器103所在平面的垂直距离H,可计算出方向可调照明设备10内的水平马达24的旋转角度和摆动马达25的旋转角度。当计算出水平马达24的旋转角度和摆动马达25的旋转角度后,即可驱动水平马达24和摆动马达25旋转到对应角度,完成对被追踪物体D的照明追踪。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (11)

  1. 一种自动调整照射方向的照明装置,包括方向可调照明设备,以及用于追踪被跟踪物体的加速度传感器;其中,
    所述加速度传感器安装在被跟踪物体上;
    所述方向可调照明设备和所述加速度传感器之间通过无线方式连接;
    所述加速度传感器,配置为检测被跟踪物体的基准加速度值和采样加速度值,以及移动时的偏准角度,并将检测到的信息发送给方向可调照明设备;
    所述方向可调照明设备,根据被跟踪物体的初始坐标,基准加速度值和采样加速度值,以及移动时的偏准角度计算出被跟踪物体移动后的坐标值;
    并根据自身的坐标信息,被跟踪物体移动后的坐标值,以及方向可调照明设备到被跟踪物体的垂直高度,计算出方向调摄照明设备中灯体模块的旋转角度,实现对被跟踪物体的追踪。
  2. 根据权利要求1所述的自动调整照射方向的照明装置,其中,
    所述被跟踪物体的基准加速度值为被跟踪物体静止时测得的加速度值。
  3. 根据权利要求2所述的自动调整照射方向的照明装置,其中,
    当被跟踪物体移动时,所述加速度传感器周期性测量被跟踪物体的采样加速度值,以及偏准角度。
  4. 根据权利要求3所述的自动调整照射方向的照明装置,其中,
    所述方向可调照明设备对加速度值进行校准,校准后加速度值=采样加速度值-基准加速度值。
  5. 根据权利要求4所述的自动调整照射方向的照明装置,其中,
    被跟踪物体移动后的坐标值=被跟踪物体初始坐标+位移值;
    所述位移值可将校准后加速度值进行二次积分得到。
  6. 根据权利要求5所述的自动调整照射方向的照明装置,其中,
    所述校准后加速度值第一次积分得到速度值,再将速度值积分得到位移值;
    在第一次积分过程中,第n采样点对应的速度值=第n-1采样点对应的速度值+(第n采样点对应的加速度值-第n-1采样点对应的加速度值)*采样周期/2。
  7. 根据权利要求6所述的自动调整照射方向的照明装置,其中,
    在第二次积分过程中,第n采样点对应的位移值=第n-1采样点对应的位移值+(第n采样点对应的速度值-第n-1采样点对应的速度值)*采样周期/2。
  8. 根据权利要求1所述的自动调整照射方向的照明装置,其中,
    所述方向可调照明设备包括水平马达和摆动马达。
  9. 根据权利要求8所述的自动调整照射方向的照明装置,其中,
    所述方向可调照明设备计算出灯体模块的旋转角度,包括,
    分别计算出方向可调照明设备内水平马达和摆动马达的旋转角度。
  10. 根据权利要求9所述的自动调整照射方向的照明装置,其中,
    所述方向可调照明设备向其内的水平马达和摆动马达分别发送脉冲信号,控制水平马达和摆动马达旋转到计算的角度。
  11. 根据权利要求10所述的自动调整照射方向的照明装置,其中,
    所述灯体模块内包括光源模组。
PCT/CN2020/140237 2019-12-31 2020-12-28 一种自动调整照射方向的照明装置 WO2021136193A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922466650.6U CN211375431U (zh) 2019-12-31 2019-12-31 一种自动调整照射方向的照明装置
CN201922466650.6 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021136193A1 true WO2021136193A1 (zh) 2021-07-08

Family

ID=72155382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140237 WO2021136193A1 (zh) 2019-12-31 2020-12-28 一种自动调整照射方向的照明装置

Country Status (2)

Country Link
CN (1) CN211375431U (zh)
WO (1) WO2021136193A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211375431U (zh) * 2019-12-31 2020-08-28 欧普照明股份有限公司 一种自动调整照射方向的照明装置
CN111913501A (zh) * 2020-08-31 2020-11-10 上海光联照明有限公司 一种基于可调节姿态灯具的灯控系统和灯具姿态调节方法
CN112379699B (zh) * 2020-11-19 2023-10-27 广州彩熠灯光股份有限公司 一种灯具挂载方向调节方法、系统、存储介质及终端
CN115649460B (zh) * 2022-09-09 2023-09-19 国网山东省电力公司潍坊供电公司 一种无人机高空探照系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3243710C2 (zh) * 1982-11-25 1991-12-12 Delma, Elektro- Und Medizinische Apparatebaugesellschaft Mbh, 7200 Tuttlingen, De
CN103090251A (zh) * 2012-12-28 2013-05-08 王波兰 照明角度自动调节的led台灯系统
CN103471589A (zh) * 2013-09-25 2013-12-25 武汉大学 一种室内行人行走模式识别和轨迹追踪的方法
CN103822175A (zh) * 2014-02-20 2014-05-28 中国长江三峡集团公司 一种自动跟踪照明系统
DE102013014078A1 (de) * 2013-08-27 2015-03-05 Michael Boettcher Automatisierte OP-Leuchtenjustierung mittels 3D-Motion-Tracking
CN107567169A (zh) * 2017-09-30 2018-01-09 广州市浩洋电子股份有限公司 一种舞台灯光自动跟踪系统及其控制方法
CN108758576A (zh) * 2018-06-22 2018-11-06 梁建军 一种智能照明随动控制系统
CN211375431U (zh) * 2019-12-31 2020-08-28 欧普照明股份有限公司 一种自动调整照射方向的照明装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3243710C2 (zh) * 1982-11-25 1991-12-12 Delma, Elektro- Und Medizinische Apparatebaugesellschaft Mbh, 7200 Tuttlingen, De
CN103090251A (zh) * 2012-12-28 2013-05-08 王波兰 照明角度自动调节的led台灯系统
DE102013014078A1 (de) * 2013-08-27 2015-03-05 Michael Boettcher Automatisierte OP-Leuchtenjustierung mittels 3D-Motion-Tracking
CN103471589A (zh) * 2013-09-25 2013-12-25 武汉大学 一种室内行人行走模式识别和轨迹追踪的方法
CN103822175A (zh) * 2014-02-20 2014-05-28 中国长江三峡集团公司 一种自动跟踪照明系统
CN107567169A (zh) * 2017-09-30 2018-01-09 广州市浩洋电子股份有限公司 一种舞台灯光自动跟踪系统及其控制方法
CN108758576A (zh) * 2018-06-22 2018-11-06 梁建军 一种智能照明随动控制系统
CN211375431U (zh) * 2019-12-31 2020-08-28 欧普照明股份有限公司 一种自动调整照射方向的照明装置

Also Published As

Publication number Publication date
CN211375431U (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
WO2021136193A1 (zh) 一种自动调整照射方向的照明装置
US20100318319A1 (en) Projection apparatus
EP3236141B1 (en) Driving device and lighting apparatus
US7433028B2 (en) Laser surveying instrument
US20080062413A1 (en) Apparatus and Method for Characterizing a Light Source
SE506753C2 (sv) Anordning för bestämning av formen av en vägyta
WO2008104927A2 (en) Computer-controlled lighting system
CN108689240B (zh) 一种能够有效减少滑动摩擦的高精度张力可调控的走线装置
US8291607B2 (en) Goniometric positioning system
WO2019024729A1 (zh) 距离测定方法及距离测定系统
US11067385B2 (en) Laser centering tool
CN101059368A (zh) 分布光度计
JP2019503496A (ja) レーザーレベルルーラー
JP2011214885A (ja) 輝度分布測定装置
CN212963684U (zh) 一种便携式计量装置
CN211698224U (zh) 一种多功能在线便携式测谱仪
CN2374844Y (zh) 激光直角投线仪
JP2013101793A (ja) レーザーポインタを用いたトンネル内照明器具取付角度の精度向上による路面輝度の管理方法
WO2021051488A1 (zh) 角位移测量装置、激光雷达及角度调节方法
CN218935803U (zh) 一种调节光源与相机夹角的视觉支架
CN206161978U (zh) 用于光学投影仪的装配结构及其安装工具
CN110908224B (zh) 投影装置及其控制方法
CN219986235U (zh) 光学组件及3d打印设备
CN106441467B (zh) 玻璃转子流量计的流量自动调节装置
CN110703273B (zh) 一种激光辅助视觉实时位置测量装置及其测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909892

Country of ref document: EP

Kind code of ref document: A1