WO2021135741A1 - Nfc访问控制电路及nfc装置 - Google Patents
Nfc访问控制电路及nfc装置 Download PDFInfo
- Publication number
- WO2021135741A1 WO2021135741A1 PCT/CN2020/131559 CN2020131559W WO2021135741A1 WO 2021135741 A1 WO2021135741 A1 WO 2021135741A1 CN 2020131559 W CN2020131559 W CN 2020131559W WO 2021135741 A1 WO2021135741 A1 WO 2021135741A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nfc
- pin
- module
- switch
- electrically connected
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 22
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 230000001960 triggered effect Effects 0.000 claims description 17
- 230000000087 stabilizing effect Effects 0.000 claims description 13
- 230000006698 induction Effects 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/72—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
Definitions
- This application belongs to the field of NFC communication technology, and in particular relates to an NFC access control circuit and an NFC device.
- the NFC antenna in the existing NFC device is usually directly electrically connected to the NFC device directly, so as long as the NFC device and other NFC reading and writing devices are within the communication range, corresponding reading and writing operations can be performed.
- the direct electrical connection between the NFC antenna and the NFC device will cause the NFC device to be easily accessed by unauthorized NFC readers, that is, the NFC device can easily be read by other people through the NFC reader without the user’s knowledge.
- For writing operations such as an electronic cash card carried by a user, if someone else puts the NFC reader close to the location where the user places the electronic cash card, the user's balance can be easily deducted without the user's knowledge. It can be seen that the existing NFC device can be directly accessed by the NFC reader and writer device, which poses a greater security risk.
- One of the objectives of the embodiments of the present application is to provide an NFC access control circuit and an NFC device, which aims to solve the problem that the existing NFC device can be directly accessed by the NFC read-write device, which has a relatively large security risk.
- an NFC access control circuit which is applied to an NFC device, and the NFC access control circuit includes an NFC device, an NFC sensor module, a switch module, an access module, and a control module;
- the NFC sensing module is electrically connected to the switch module, and the switch module is electrically connected to the NFC device; the NFC sensing module is also electrically connected to the access module, and the access module is electrically connected to the control module , The control module is electrically connected to the switch module;
- the NFC sensing module is configured to generate an induced current and output a DC voltage when the NFC device is close to the NFC reader/writer device;
- the access module is set to connect the NFC sensing module and the control module only when in a triggering state, so as to trigger the control module;
- the control module is configured to output a high-level signal to the switch module after being triggered to trigger the switch module;
- the switch module is configured to turn on the NFC sensing module and the NFC device when triggered, so that the NFC device can be accessed by the NFC reading and writing device.
- the NFC sensing module includes an NFC antenna and a conversion circuit, the NFC antenna is electrically connected to the AC input end of the conversion circuit, and the DC output end of the conversion circuit is respectively connected to the access module and the conversion circuit.
- the power input terminal of the control module and the power input terminal of the switch module are electrically connected, and the NFC antenna is also electrically connected with the switch module;
- the NFC antenna is configured to generate an AC output when the NFC device is close to the NFC reader/writer; the conversion circuit is configured to convert the AC output generated by the NFC antenna into a DC and output a DC voltage.
- an NFC device including the NFC access control circuit as described in the first aspect.
- the NFC device can be controlled by the NFC access control circuit. NFC read-write device access.
- the NFC access control circuit and NFC device provided by this application include NFC equipment, NFC sensor module, switch module, access module and control module.
- the switch module When the user does not need to use the NFC device, the switch module is disconnected because there is no high-level input. NFC sensor module and NFC device, NFC reader cannot access this NFC device.
- the control module When the user needs to use the NFC device, he only needs to trigger the access module once, and the control module will output a high-level signal to the switch module to turn on the NFC sensor module and the NFC device, so that the NFC device can be accessed.
- the control module will no longer output a high level signal to the switch module, thereby disconnecting the NFC sensor module and the NFC device, so the NFC device cannot be accessed. It can be seen that the NFC access control circuit provided by the present application is not only extremely convenient to operate, but also has no potential safety hazards.
- FIG. 1 is a circuit schematic diagram of an NFC access control circuit provided by an embodiment of the application
- FIG. 2 is a schematic circuit diagram of the NFC sensing module in an embodiment of the application
- FIG. 3 is a schematic circuit diagram of the conversion circuit in the NFC sensor module in the embodiment of the application.
- Fig. 4 is a circuit schematic diagram of a switch module in an embodiment of the application.
- Fig. 5 is a circuit schematic diagram of a control module in an embodiment of the application.
- Fig. 6 is a circuit schematic diagram of an electric interruption delay module according to an embodiment of the application.
- first and second are only provided for ease of description, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features.
- the meaning of "plurality” means two or more than two, unless otherwise specifically defined.
- a switch module is provided between the NFC sensor module and the NFC device, and an access module is provided to control the opening and closing of the switch module.
- the switch module between the NFC sensor module and the NFC device is in a disconnected state, so even if the NFC reader device is close to the NFC device at this time, the NFC reader device cannot perform access.
- the user needs to perform data read and write operations, he only needs to trigger the switch module through the access module to turn on the NFC sensor module and the NFC device. In this way, data read and write operations can be performed.
- the embodiments of this application can be applied to the following scenarios.
- this scenario when a user carries an electronic cash card for fund transaction operations, he needs to bring the electronic cash card close to the NFC reader/writer device of the merchant. Only through the access module can the electronic cash card be accessed by the NFC reader device for fund transaction operations. .
- the electronic cash card to which the embodiment of the present application is applied does not have the problem of potential safety hazards.
- an NFC access control circuit provided by an embodiment of the present application.
- the circuit is applied to an NFC device.
- the circuit includes an NFC device 10, an NFC sensor module 20, a switch module 30, an access module 40, and a control Module 50.
- the NFC sensing module 20 is electrically connected to the switch module 30, and the switch module 30 is electrically connected to the NFC device 10; the NFC sensing module 20 is also electrically connected to the access module 40, and the access The module 40 is electrically connected to the control module 50, and the control module 50 is electrically connected to the switch module 30.
- the NFC sensor module 20 When the NFC device is close to the NFC reader device, the NFC sensor module 20 is set to generate induced current and output a DC voltage. If the NFC sensor module and the NFC device 10 are directly electrically connected at this time, the NFC reader device can directly access this NFC device.
- a switch module 30 is provided between the NFC sensor module 20 and the NFC device 10, and an access module 40 is provided to control the opening and closing of the switch module 30.
- the access module 40 is set to conduct the NFC sensing module 20 and the control module 50 only when in a triggered state to trigger the control module 50; the control module 50 is set to turn on the switch after being triggered
- the module 30 outputs a high-level signal to trigger the switch module 30; the switch module 30 is set to conduct the NFC sensor module 20 and the NFC device 10 when triggered, so that the NFC device can be NFC read-write device access.
- the switch module 30 disconnects the NFC sensor module 20 and the NFC device 10, so others cannot use the NFC reader to access the NFC device.
- the access module 40 only connects the NFC sensor module 20 and the control module 50 in the triggered state to trigger the control module 50; the control module 50 is triggered to switch backwards
- the module 30 outputs a high level to trigger the switch module 30; when the switch module 30 is in the triggered state, the NFC sensor module 20 and the NFC device 10 are turned on, so that the NFC device can be accessed by the NFC reader device.
- the above-mentioned NFC sensor module 20 includes an NFC antenna 201 and a conversion circuit 202; the NFC antenna 201 is electrically connected to the AC input terminal of the conversion circuit 202, and the DC of the conversion circuit 202 The output terminal is respectively electrically connected to the power input terminal of the access module 40, the control module 50, and the power input terminal of the switch module 30, and the NFC antenna 201 is also electrically connected to the switch module 30;
- the NFC antenna 201 is configured to generate an AC output when the NFC device is close to an NFC reader/writer; the conversion circuit 202 is configured to convert the AC output generated by the NFC antenna 201 into a DC and output a DC voltage.
- the NFC antenna 201 When the NFC device is close to the NFC reader/writer device, the NFC antenna 201 will produce AC output. However, since the switch module 30 is provided between the NFC antenna 201 and the NFC device 10, there is no conduction between the NFC antenna 201 and the NFC device 10 .
- a conversion circuit 202 is provided to convert the AC output generated by the NFC antenna 201 into a DC output for controlling the switch module 30.
- the DC output terminal of the conversion circuit 202 is electrically connected with the power input terminal of the control module 50 and the power input terminal of the switch module 30, respectively.
- the control module 50 and the switch module 30 provide operating voltages.
- the conversion circuit 202 includes a rectification circuit 2021 and a voltage stabilization circuit 2022.
- the NFC antenna 201 is electrically connected to the AC input end of the rectification circuit 2021.
- the output terminal is electrically connected to the voltage stabilizing circuit 2022, and the voltage stabilizing circuit 2022 is electrically connected to the access module 40, the power input terminal of the control module 50, and the power input terminal of the switch module 30.
- the rectifier circuit 2021 is configured to rectify the AC output generated by the NFC antenna 201 into a DC output; the voltage stabilizing circuit 2022 is configured to limit and stabilize the DC output voltage of the rectifier circuit 2021.
- the AC output generated by the NFC antenna 201 may not be very stable, so the DC output of the rectifier circuit 2021 may also be unstable. Therefore, the voltage stabilizing circuit 2022 limits and stabilizes the DC output voltage of the rectifier circuit 2021, so as to improve the reliability of the NFC control circuit of this embodiment.
- a pin of the rectifier circuit 2021 and a pin of the voltage stabilizing circuit 2022 are connected to the common ground.
- the rectifier circuit 2021 includes a first rectifier diode D1, a second rectifier diode D2, a third rectifier diode D3, and a fourth rectifier diode D4.
- the anode of the first rectifier diode is electrically connected to the negative stage of the third rectifier diode to serve as the first pin of the AC input terminal of the rectifier circuit 2021; the anode of the second rectifier diode is electrically connected to the negative stage of the fourth rectifier diode to Used as the second pin of the AC input terminal of the rectifier circuit 2021;
- the cathode of the first rectifier diode is electrically connected to the cathode of the second rectifier diode to serve as the first pin of the DC output terminal of the rectifier circuit 2021; the anode of the third rectifier diode is electrically connected to the anode of the second rectifier diode to It is used as the second pin of the DC output terminal of the rectifier circuit 2021.
- the diodes can be switched diodes or Schottky diodes of the same type or different types.
- the above-mentioned voltage stabilizing circuit 2022 includes a voltage stabilizing tube DW1 and a filter capacitor C1; the negative electrode of the voltage stabilizing tube is electrically connected to the first pin of the filter capacitor, and the stabilizer The anode of the pressure tube is electrically connected to the second pin of the filter capacitor.
- the Zener tube is set to limit the DC output voltage of the rectifier circuit 2021, and the filter capacitor is set to stabilize the DC output voltage of the rectifier circuit 2022.
- the aforementioned access module 40 includes an access button, which is electrically connected to the NFC sensing module 20 and the control module 50, respectively; when the access button is in a pressed state, the access button is turned on.
- the NFC sensing module 20 and the control module 50 are used to trigger the control module 50.
- the access will fail; if the user presses the button ( After the button is pressed (or dialed), the button remains in the state after pressing (or after dialing). Although the user can perform this operation, it is easy for the user to forget to return the button to the state before pressing (or dialing) after this operation is completed. Before), the user’s NFC device may still be accessed by the NFC reader device after use.
- the above-mentioned switch module 30 includes a radio frequency switch 301, and the radio frequency switch 301 includes a power input pin, a ground pin (GND), a control pin (CTRL), and a first switch pin. (S1) and the second switch pin (S2).
- the power input pin of the radio frequency switch 301 is electrically connected to the NFC sensor module 20, and the ground pin is grounded, so that the NFC sensor module 20 provides a working voltage for the radio frequency switch 301.
- the control pin of the radio frequency switch 301 is electrically connected to the control module 50, the first switch pin of the radio frequency switch 301 is electrically connected to the NFC sensor module 20, and the second switch pin of the radio frequency switch 301 It is electrically connected to the NFC device 10.
- the radio frequency switch 301 is configured to turn on the electrical connection between the first switch pin and the second switch pin when there is a high level input on the control pin.
- the control pin of the radio frequency switch 301 When the control pin of the radio frequency switch 301 has a high-level signal input, the two switch pins of the radio frequency switch 301 are turned on. In this way, an electrical connection is formed between the NFC sensor module 20 and the NFC device 10, so that the NFC device can be NFC read-write device access.
- the radio frequency switch 301 is SKY13453-385LF of SKYWORKS.
- switch chips with similar functions can also be selected.
- the switch module 30 further includes a pull-down resistor R1, the first pin of the pull-down resistor is electrically connected to the control pin of the radio frequency switch 301, and the second pin is grounded.
- the pull-down resistor is set to disconnect the electrical connection between the first switch pin and the second switch pin when the NFC sensor module 20 just generates a DC output, so as to disconnect the NFC sensor module 20 from Connection of NFC device 10.
- a pull-down resistor is set in series between its control pin and ground. It is ensured that there is no high-level input on the control pin when the power is first turned on, so that the NFC sensor module 20 and the NFC device 10 are disconnected when the power is first turned on, which improves the reliability of the NFC access control circuit of this embodiment.
- the above-mentioned control module 50 includes a first analog switch 501, and the first analog switch 501 includes a power input pin (VCC), a ground pin (GND), and a control pin (CTRL ), switch pin (S) and output pin (OUT).
- VCC power input pin
- GND ground pin
- CTR control pin
- S switch pin
- OUT output pin
- the power input pin of the first analog switch 501 is electrically connected to the NFC sensing module 20, and the ground pin is grounded, so that the NFC sensing module 20 provides a working voltage for the first analog switch 501.
- the control pin of the first analog switch 501 is electrically connected to the access module 40, the switch pin is electrically connected to the power input pin, and the output pin is electrically connected to the switch module 30.
- the first analog switch 501 is set to turn on the switch pin and the output pin when there is a high-level input on the control pin, so that the first analog switch 501 outputs a high-level signal to the switch module 30 .
- control module 50 further includes a second analog switch 502, and the second analog switch 502 includes a power input pin (VCC), a ground pin (GND), a control pin (CTRL), and a switch. Pin (S) and output pin (OUT).
- the power input pin of the second analog switch 502 is electrically connected to the NFC sensing module 20, and the ground pin is grounded, so that the NFC sensing module 20 provides a working voltage for the second analog switch 502.
- the control pin of the second analog switch 502 is electrically connected to the access module 40, the switch pin is electrically connected to the power input pin, and the output pin is respectively connected to the control pin and the control pin of the first analog switch 501.
- the feet are electrically connected.
- the second analog switch 502 is set to turn on the switch pin and the output pin when the control module 50 is triggered and there is a working voltage input, and the output pin is simultaneously connected to the control pin and the first analog
- the control pin of the switch 501 outputs a high-level signal to maintain the conduction between the switch pin and the output pin of the second analog switch 502 and to maintain the switch pin and output pin of the first analog switch 501 Continuity between the feet.
- the user only needs to press the access module 40 (access button) to use the NFC device, but the time that the access module 40 is in the triggered state (that is, the access button is in the pressed state) is very short, so to ensure the entire operation
- the first analog switch 501 and the second analog switch 502 are set to simulate the state when the access button is pressed.
- the implementation process is as follows:
- the NFC sensor module 20 When the user presses the access button, the NFC sensor module 20 simultaneously outputs high-level signals to the control pins of the two analog switches, and the switch pins and output pins of the two analog switches are respectively turned on , And because the switch pin is connected to the power input pin, the output pins of the two analog switches can output high-level signals at this time.
- the NFC sensor module 20 Since the access button is in the pressed state for a very short time, the NFC sensor module 20 will soon not output high-level signals to the control pins of the two analog switches at the same time, so the output pins of the second analog switch 502 are set It is electrically connected to its control pin.
- the second analog switch 502 The output pin will continue to output high-level input to the two control pins at the same time, and then continue to maintain the conduction of the switch pins and output pins of the two analog switches, so that the output pin of the first analog switch 501 continues to The control pin of the switch module 30 outputs a high-level signal. In this way, the NFC device can be accessed by the NFC reader device.
- control module 50 is triggered after the access button is pressed, and as long as there is an input of working voltage, it can continuously output a high-level signal to the switch module 30. Therefore, when the user needs to perform an operation, he only needs to press the access button, which is extremely convenient.
- the NFC access control circuit in this embodiment further includes a power-off delay module 60.
- the first pin of the power-off delay module 60 is connected to the access module 40 and all The control module 50 is electrically connected, and the second pin is grounded; the power-off delay module 60 is configured to take power from the NFC sensor module 20 and store it when the access module 40 is triggered, and then the NFC sensor When the module 20 cannot output a normal voltage, the control module 50 is provided with a high level input for a predetermined time.
- the power-off delay module 60 includes a delay capacitor C2 and a delay resistor R1; the first pin of the delay capacitor and the first pin of the delay resistor One pin is electrically connected to serve as the first pin of the power-off delay module 60; the second pin of the delay capacitor is electrically connected to the second pin of the delay resistor to serve as The second pin of the power-off delay module 60.
- the NFC sensor module 20 will inevitably produce discontinuous DC output due to unstable reasons. In this case, it cannot be guaranteed that the control module 50 can always simulate the triggered state of the access module 40, resulting in the failure of the access operation. Therefore, in order to improve the reliability of the NFC access control circuit, when the output of the NFC sensing module 20 is unstable, the delay capacitor is discharged through the delay resistor to output a high-level signal for a predetermined time to the control module 50 to ensure The smooth operation of the visit has improved reliability.
- the output time is related to the delay capacitance and delay resistance.
- V0 is the initial voltage value of the delay capacitor
- Vt is the time t
- the power-off delay module 60 when the user completes the operation and the NFC sensor module 20 no longer generates output, the power-off delay module 60 will also output a high-level signal for a predetermined time, that is, thereafter Within a predetermined time, the NFC sensing module 20 and the NFC device 10 are still conducting.
- the NFC access control circuit includes an NFC device 10, an NFC sensing module 20, a switch module 30, an access module 40, and a control module 50.
- the switch module 30 has no high-level input, the NFC sensor module 20 and the NFC device 10 are disconnected, and the NFC reader cannot access the NFC device.
- the control module 50 will output a high-level signal to the switch module 30 to turn on the NFC sensor module 20 and the NFC device 10, so that the NFC device can be accessed.
- the control module 50 will no longer output a high-level signal to the switch module 30, thereby disconnecting the NFC sensor module 20 and the NFC device 10, so the NFC device 10 Cannot be accessed. It can be seen that the NFC access control circuit provided by this embodiment is not only extremely convenient to operate, but also has no potential safety hazards.
- an NFC device which includes the above-mentioned NFC access control circuit.
- the NFC access control circuit controls the NFC access control circuit.
- the NFC device can be accessed by an NFC reader device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
本申请公开一种NFC访问控制电路及NFC装置,该NFC访问控制电路包括NFC设备(10)、NFC感应模块(20)、开关模块(30)、访问模块(40)和控制模块(50),当用户需要使用NFC装置时,只需触发一下访问模块(40),控制模块(50)会向开关模块(30)输出高电平信号,导通NFC感应模块(20)和NFC设备(10),从而使得此NFC装置能够被访问。在用户操作完成后且NFC装置离开NFC读写装置后,由于控制模块(50)不再会向开关模块(30)输出高电平信号,从而断开了NFC感应模块(20)和NFC设备(10)。本申请提供的NFC访问控制电路不仅操作极其便利,且不存在安全隐患。
Description
本申请要求于2020年01月02日在中国专利局提交的、申请号为CN202010001257.4、发明名称为“NFC访问控制电路及NFC装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请属于NFC通讯技术领域,尤其涉及NFC访问控制电路及NFC装置。
现有NFC装置中的NFC天线通常直接与NFC设备直接电连接,如此只要此NFC装置和其他NFC读写装置在通信范围内,即可进行相应的读写操作。但是NFC天线与NFC设备直接电连接的方式,会导致NFC装置容易被未授权的NFC读写装置进行访问,即NFC装置容易在用户不知情的情况下被其他人通过NFC读写装置进行数据读写操作,比如用户携带的电子现金卡,假如其他人把NFC读写装置靠近用户放置电子现金卡的位置,便可在用户不知情的条件下轻松扣除用户的余额。由此可见,现有的NFC装置能够直接被NFC读写装置进行访问,存在较大的安全隐患。
本申请实施例的目的之一在于:提供一种NFC访问控制电路及NFC装置,旨在解决现有的NFC装置能直接被NFC读写装置进行访问,存在较大安全隐患的问题。
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种NFC访问控制电路,应用于NFC装置,所述NFC访问控制电路包括NFC设备、NFC感应模块、开关模块、访问模块和控制模块;
所述NFC感应模块与所述开关模块电连接,所述开关模块与所述NFC设备电连接;所述NFC感应模块还与所述访问模块电连接,所述访问模块与所述控制模块电连接,所述控制模块与所述开关模块电连接;
所述NFC感应模块设置为当所述NFC装置靠近NFC读写装置时产生感应电流并输出直流电压;
所述访问模块设置为仅当处于触发状态下导通所述NFC感应模块与所述控制模块,以触发所述控制模块;
所述控制模块设置为被触发后向所述开关模块输出高电平信号,以触发所述开关模块;
所述开关模块设置为当被触发时导通所述NFC感应模块与所述NFC设备,以使所述NFC装置可以被NFC读写装置访问。
在一个实施例中,所述NFC感应模块包括NFC天线、转换电路,所述NFC天线与所述转换电路的交流输入端电连接,所述转换电路的直流输出端分别与所述访问模块、所述控制模块的电源输入端及所述开关模块的电源输入端电连接,所述NFC天线还与所述开关模块电连接;
所述NFC天线设置为当所述NFC装置靠近NFC读写装置时产生交流输出;所述转换电路设置为将NFC天线产生的交流输出转换成直流并输出直流电压。
第二方面,提供了一种NFC装置,包括如第一方面所述的NFC访问控制电路,当所述NFC装置靠近NFC读写装置时,通过所述NFC访问控制电路控制所述NFC装置可以被NFC读写装置访问。
本申请提供的NFC访问控制电路及NFC装置,包括NFC设备、NFC感应模块、开关模块、访问模块和控制模块,当用户不需要使用NFC装置时,由于开关模块没有高电平输入因此断开了NFC感应模块和NFC设备,NFC读写装置无法访问此NFC装置。当用户需要使用NFC装置时,只需触发一下访问模块,控制模块会向开关模块输出高电平信号,导通NFC感应模块和NFC设备,从而使得此NFC装置能够被访问。另外,在用户操作完成后且NFC装置离开NFC读写装置后,由于控制模块不再会向开关模块输出高电平信号,从而断开了NFC感应模块和NFC设备,如此NFC设备无法被访问。可以看出,本申请提供的NFC访问控制电路不仅操作极其便利,且不存在安全隐患。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例所提供的NFC访问控制电路的电路原理图;
图2为本申请实施例中NFC感应模块的电路原理图;
图3为本申请实施例中NFC感应模块中的转换电路的电路原理图;
图4为本申请实施例中开关模块的电路原理图;
图5为本申请实施例中控制模块的电路原理图;
图6为本申请实施例中断电延时模块的电路原理图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不设置为限定本申请。
术语“第一”、“第二”仅设置为便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
现有的NFC装置能够直接被NFC读写装置进行访问,因此存在较大的安全隐患。为了解决此技术问题,在本申请实施例中,在NFC感应模块与NFC设备之间设置一开关模块,并设置一访问模块用来控制开关模块的开断。如此,当用户不需要进行数据读写操作时,NFC感应模块和NFC设备之间由于开关模块处于断开状态,如此,即使此时NFC读写装置靠近此NFC装置,NFC读写装置也不能进行访问。而当用户需进行数据读写操作时,只需通过访问模块触发开关模块,以导通NFC感应模块和NFC设备,如此,即可进行数据读写操作。
举例说明,本申请实施例可以应用到如下所述的场景。在该场景中,用户携带电子现金卡进行资金交易操作时,需把电子现金卡靠近商家的NFC读写装置,通过访问模块才能使电子现金卡可以被NFC读写装置访问,才能进行资金交易操作。在用户不需要使用电子现金卡时,即使其他人将NFC读写装置靠近电子现金卡时,由于用户没有触发访问模块,因此其他人也无法进行扣除用户余额等操作。因此,应用了本申请实施例的电子现金卡不存在安全隐患的问题。
需要注意的是,上述应用场景仅是为了便于理解本申请而示出,本申请的实施方式在此方面不受任何限制。相反,本申请的实施方式可以应设置为适用的任何场景。
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请做进一步详细的说明。
请参阅图1,本申请一实施例提供的一种NFC访问控制电路,所述电路应用于一NFC装置,所述电路包括NFC设备10、NFC感应模块20、开关模块30、访问模块40和控制模块50。
其中,所述NFC感应模块20与所述开关模块30电连接,所述开关模块30与所述NFC设备10电连接;所述NFC感应模块20还与所述访问模块40电连接,所述访问模块40与所述控制模块50电连接,所述控制模块50与所述开关模块30电连接。
当NFC装置靠近NFC读写装置时,NFC感应模块20设置为产生感应电流并输出直流电压,假如此时NFC感应模块与NFC设备10是直接电连接的,则NFC读写装置时可以直接访问此NFC装置的。
因此作为一种改进,本实施例在NFC感应模块20与NFC设备10之间设置开关模块30,并设置一访问模块40用来控制开关模块30的开断。所述访问模块40设置为仅当处于触发状态下导通所述NFC感应模块20与所述控制模块50,以触发所述控制模块50;所述控制模块50设置为被触发后向所述开关模块30输出高电平信号,以触发所述开关模块30;所述开关模块30设置为当被触发时导通所述NFC感应模块20与所述NFC设备10,以使所述NFC装置可以被NFC读写装置访问。
在用户不需要使用NFC装置时,通过开关模块30断开NFC感应模块20与NFC设备10,因此他人无法使用NFC读写装置访问此NFC装置。当用户需要使用NFC装置时,只需触发一下访问模块40,访问模块40仅在处于触发状态下导通NFC感应模块20与控制模块50,以触发控制模块50;控制模块50被触发后向开关模块30输出高电平,以触发开关模块30;开关模块30处于被触发状态时导通NFC感应模块20和NFC设备10,如此,NFC装置就可以被NFC读写装置访问。
在一个实施例中,请参阅图2,上述NFC感应模块20包括NFC天线201、转换电路202;所述NFC天线201与所述转换电路202的交流输入端电连接,所述转换电路202的直流输出端分别与所述访问模块40、所述控制模块50的电源输入端及所述开关模块30的电源输入端电连接,所述NFC天线201还与所述开关模块30电连接;
其中,所述NFC天线201设置为当所述NFC装置靠近NFC读写装置时产生交流输出;所述转换电路202设置为将NFC天线201产生的交流输出转换成直流并输出直流电压。
当NFC装置靠近NFC读写装置时,NFC天线201会产生交流输出,但由于NFC天线201与NFC设备10之间设置有开关模块30,因此NFC天线201与NFC设备10之间是不导通的。
但为了满足用户的使用需求,需要控制开关模块30的导通。相比于交流电信号,直流电信号更适合用于控制电路,因此设置转换电路202将NFC天线201产生的交流输出转换成直流输出,以用于对开关模块30的控制。
另外,由于控制模块50和开关模块30均需要有工作电压的输入才能正常工作,因此转换电路202的直流输出端分别与控制模块50的电源输入端及开关模块30的电源输入端电连接,为控制模块50和开关模块30提供工作电压。
在一个实施例中,请参阅图3,上述转换电路202包括整流电路2021和稳压电路2022,所述NFC天线201与所述整流电路2021的交流输入端电连接,所述整流电路2021的直流输出端与所述稳压电路2022电连接,所述稳压电路2022与所述访问模块40、所述控制模块50的电源输入端及所述开关模块30的电源输入端电连接。
其中,所述整流电路2021设置为将NFC天线201产生的交流输出整流成直流输出;所述稳压电路2022设置为限制和平稳所述整流电路2021的直流输出电压。
NFC天线201产生的交流输出不一定会很稳定,因此会导致整流电路2021的直流输出也不稳定。因此通过稳压电路2022,限制和平稳整流电路2021的直流输出电压,以提高本实施例的NFC控制电路的可靠性。
另外,需要说明的是,整流电路2021的一引脚与稳压电路2022的一引脚共地连接。
再在一个实施例中,请参阅图3,上述整流电路2021包括第一整流二极管D1、第二整流二极管D2、第三整流二极管D3和第四整流二极管D4。
第一整流二极管的正极与第三整流二极管的负级电连接,以用作整流电路2021的交流输入端的第一引脚;第二整流二极管的正极与第四整流二极管的负级电连接,以用作整流电路2021的交流输入端的第二引脚;
第一整流二极管的负极与第二整流二极管的负极电连接,以用作所述整流电路2021的直流输出端的第一引脚;第三整流二极管的正极与第二整流二极管的正极电连接,以用作整流电路2021的直流输出端的第二引脚。
在本实施例中,二极管可选用相同类型或不同类型的开关二极管或肖特基二极管。
再在一个实施例中,请参阅图3,上述稳压电路2022包括稳压管DW1和滤波电容C1;所述稳压管的负极与所述滤波电容的第一引脚电连接,所述稳压管的正极与所述滤波电容的第二引脚电连接。
稳压管设置为限制整流电路2021的直流输出电压,滤波电容设置为平稳整流电路2022的直流输出电压。
在一个实施例中,上述访问模块40包括访问按键,所述访问按键分别与所述NFC感应模块20和所述控制模块50电连接;当所述访问按键处于被按压状态时,导通所述NFC感应模块20与所述控制模块50,以触发所述控制模块50。
当用户需要使用NFC装置时,若用户需要持续按压按键才能进行使用,则不仅用户的使用体验感较差,且在按压过程中若出现按键抖动的情况还会导致访问失败;若用户按压按键(或拨动按键)后按键保持住按压后(或拨动后)的状态,虽然用户能够进行本次操作,但是用户很容易在本次操作完成之后忘记将该按键恢复回按压前(或拨动前)的状态,如此用户的NFC装置在使用过后仍可能会被NFC读写装置访问。
基于此,在本实施例中当用户需要使用NFC装置时,仅需按一下访问按键即可完成此次操作。在本次操作完成后,访问按键处于断开的状态,因此NFC读写装置无法访问此NFC装置。如此,不仅用户使用体验感较好且安全性极高。
在一个实施例中,请参阅图4,上述开关模块30包括射频开关301,所述射频开关301包括电源输入引脚、接地引脚(GND)、控制引脚(CTRL)、第一开关引脚(S1)和第二开关引脚(S2)。
其中,所述射频开关301的电源输入引脚与所述NFC感应模块20电连接,接地引脚接地,以使NFC感应模块20为所述射频开关301提供工作电压。
所述射频开关301的控制引脚与所述控制模块50电连接,所述射频开关301的第一开关引脚与所述NFC感应模块20电连接,所述射频开关301的第二开关引脚与所述NFC设备10电连接。
所述射频开关301设置为在控制引脚存在高电平输入时,导通第一开关引脚和第二开关引脚之间的电连接。
当射频开关301的控制引脚有高电平信号输入时,射频开关301的两个开关引脚导通,如此,NFC感应模块20和NFC设备10之间形成电连接,就可以使NFC装置被NFC读写装置访问。
在本实施例中,射频开关301选用SKYWORKS公司的SKY13453-385LF,当然,也可选用其他具有类似功能的开关芯片。
再在一个实施例中,请参阅图4,上述开关模块30还包括下拉电阻R1,所述下拉电阻的第一引脚与所述射频开关301的控制引脚电连接,第二引脚接地。
其中,所述下拉电阻设置为当所述NFC感应模块20刚产生直流输出时,断开第一开关引脚和第二开关引脚之间的电连接,以断开所述NFC感应模块20与NFC设备10的连接。
为确保开关模块30刚上电时(即NFC感应模块刚产生输出时)能可靠的断开NFC感应模块20与NFC设备10,因此设置下拉电阻串联在其控制引脚与地之间,如此能确保刚上电时控制引脚不存在高电平输入,因此能确保刚上电时断开NFC感应模块20与NFC设备10,提高了本实施例NFC访问控制电路的可靠性。
在一个实施例中,请参阅图5,上述控制模块50包括第一模拟开关501,所述第一模拟开关501包括电源输入引脚(VCC)、接地引脚(GND)、控制引脚(CTRL)、开关引脚(S)和输出引脚(OUT)。
其中,所述第一模拟开关501的电源输入引脚与所述NFC感应模块20电连接,接地引脚接地,以使所述NFC感应模块20为所述第一模拟开关501提供工作电压。
所述第一模拟开关501的控制引脚与所述访问模块40电连接,开关引脚与电源输入引脚电连接,输出引脚与所述开关模块30电连接。
所述第一模拟开关501设置为在控制引脚存在高电平输入时,导通开关引脚和输出引脚,以使所述第一模拟开关501向所述开关模块30输出高电平信号。
再在一个实施例中,上述控制模块50还包括第二模拟开关502,所述第二模拟开关502包括电源输入引脚(VCC)、接地引脚(GND)、控制引脚(CTRL)、开关引脚(S)和输出引脚(OUT)。
其中,所述第二模拟开关502的电源输入引脚与所述NFC感应模块20电连接,接地引脚接地,以使所述NFC感应模块20为所述第二模拟开关502提供工作电压。
所述第二模拟开关502的控制引脚与所述访问模块40电连接,开关引脚与电源输入引脚电连接,输出引脚分别与控制引脚以及所述第一模拟开关501的控制引脚电连接。
所述第二模拟开关502设置为当所述控制模块50被触发后且存在工作电压输入时,导通开关引脚和输出引脚,通过输出引脚同时向控制引脚以及所述第一模拟开关501的控制引脚输出高电平信号,以保持所述第二模拟开关502的开关引脚和输出引脚之间的导通和保持所述第一模拟开关501的开关引脚和输出引脚之间的导通。
在本实施例中,用户只需按一下访问模块40(访问按键)即可使用NFC装置,但访问模块40处于触发状态(即访问按键处于按压状态)的时间非常短,因此为确保整个操作的顺利完成而设置第一模拟开关501和第二模拟开关502,设置为模拟出访问按键处于按压时的状态,实现过程如下:
(1)当用户按下访问按键时,此时NFC感应模块20同时向两个模拟开关的控制引脚输出高电平信号,此时两个模拟开关的开关引脚和输出引脚分别导通,且由于开关引脚与电源输入引脚连接,因此此时两个模拟开关的输出引脚均能输出高电平信号。
(2)由于访问按键处于按压状态的时间非常短,因此NFC感应模块20很快就不同时向两个模拟开关的控制引脚输出高电平信号,因此设置第二模拟开关502的输出引脚电连接于其控制引脚。如此,即使两个模拟开关的控制引脚都失去了来自NFC感应模块20的高电平输入,但是只要存在工作电压的输入(即NFC感应模块20还产生输出),则第二模拟开关502的输出引脚会同时向两个控制引脚继续输出高电平输入,进而继续保持两个模拟开关的开关引脚和输出引脚的导通,从而使第一模拟开关501的输出引脚持续向开关模块30的控制引脚输出高电平信号。如此,NFC装置可以被NFC读写装置访问。
(3)当用户完成操作后且NFC感应模块20不再产生输出,则由于两个模拟开关均失去了工作电压,因此两个模拟开关的输出引脚均不能再输出高电平信号,从而断开NFC感应模块20与NFC设备10。
简单理解,控制模块50在访问按键被按下后被触发,并且只要有工作电压的输入即可持续向开关模块30输出高电平信号。因此,当用户需要进行操作时,仅需按一下访问按键即可,极具便利性。
在一个实施例中,请参阅图6,本实施例中的NFC访问控制电路还包括断电延时模块60,所述断电延时模块60的第一引脚与所述访问模块40及所述控制模块50电连接,第二引脚接地;所述断电延时模块60设置为在所述访问模块40触发时,从所述NFC感应模块20取电并储存,并且在所述NFC感应模块20不能输出正常电压时,向所述控制模块50提供预定时间的高电平输入。
再在一个实施例中,请继续参阅图6,所述断电延时模块60包括延时电容C2和延时电阻R1;所述延时电容的第一引脚与所述延时电阻的第一引脚电连接,以用作所述断电延时模块60的第一引脚;所述延时电容的第二引脚与所述延时电阻的第二引脚电连接,以用作所述断电延时模块60的第二引脚。
NFC感应模块20难免会由于不稳定的原因而产生不连续的直流输出,在这种情况下则不能保证控制模块50能一直模拟访问模块40被触发的状态,导致访问操作失败。因此,为提高NFC访问控制电路的可靠性,在NFC感应模块20的输出不稳定的情况下,延时电容通过延时电阻进行放电,以向控制模块50输出预定时间的高电平信号,确保访问操作的顺利进行,提高了可靠性。输出时间与延时电容和延时电阻有关。举例说明,假设预定时间t为3秒,延时电容和延时电阻可根据公式RC=t/ln(V0/Vt)进行计算,其中,V0为延时电容的初始电压值,Vt为t时刻延时电容的电压值,假设第一或第二模拟开关502的最小高电平信号输入为2.4V,则将Vt设置为2.4V,并假设V0为5V,则根据公式计算出RC=4.09,若选取延时电容为1uF,则延时电阻约为4.7MΩ。
此外,由于设置了断电延时模块60,因此,当用户完成操作后且NFC感应模块20不再产生输出后,断电延时模块60也会输出预定时间的高电平信号,即此后在预定时间内,NFC感应模块20和NFC设备10之间还是导通的。
综上所述,本实施例提供的NFC访问控制电路,包括NFC设备10、NFC感应模块20、开关模块30、访问模块40和控制模块50。当用户不需要使用NFC装置时,由于开关模块30没有高电平输入因此断开了NFC感应模块20和NFC设备10,NFC读写装置无法访问此NFC装置。当用户需要使用NFC装置时,只需触发一下访问模块40,控制模块50会向开关模块30输出高电平信号,导通NFC感应模块20和NFC设备10,从而使得此NFC装置能够被访问。另外,在用户操作完成后且NFC装置离开NFC读写装置后,由于控制模块50不再会向开关模块30输出高电平信号,从而断开了NFC感应模块20和NFC设备10,如此NFC设备10无法被访问。可以看出,本实施例提供的NFC访问控制电路不仅操作极其便利,且不存在安全隐患。
基于同一发明构思,本申请的另一实施例提供的一种NFC装置,包括如上所述的NFC访问控制电路,当所述NFC装置靠近NFC读写装置时,通过所述NFC访问控制电路控制所述NFC装置可以被NFC读写装置访问。
由于本实施例与上述实施例基于同一发明构思,因此其具体实施可以参见前述实施例,重复之处不再赘述。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
Claims (13)
- 一种NFC访问控制电路,应用于NFC装置,其特征在于,所述NFC访问控制电路包括NFC设备、NFC感应模块、开关模块、访问模块和控制模块;所述NFC感应模块与所述开关模块电连接,所述开关模块与所述NFC设备电连接;所述NFC感应模块还与所述访问模块电连接,所述访问模块与所述控制模块电连接,所述控制模块与所述开关模块电连接;所述NFC感应模块设置为当所述NFC装置靠近NFC读写装置时产生感应电流并输出直流电压;所述访问模块设置为仅当处于触发状态下导通所述NFC感应模块与所述控制模块,以触发所述控制模块;所述控制模块设置为被触发后向所述开关模块输出高电平信号,以触发所述开关模块;所述开关模块设置为当被触发时导通所述NFC感应模块与所述NFC设备,以使所述NFC装置可以被NFC读写装置访问。
- 根据权利要求1所述的NFC访问控制电路,其特征在于,所述NFC感应模块包括NFC天线、转换电路,所述NFC天线与所述转换电路的交流输入端电连接,所述转换电路的直流输出端分别与所述访问模块、所述控制模块的电源输入端及所述开关模块的电源输入端电连接,所述NFC天线还与所述开关模块电连接;所述NFC天线设置为当所述NFC装置靠近NFC读写装置时产生交流输出;所述转换电路设置为将NFC天线产生的交流输出转换成直流并输出直流电压。
- 根据权利要求2所述的NFC访问控制电路,其特征在于,所述转换电路包括整流电路和稳压电路,所述NFC天线与所述整流电路的交流输入端电连接,所述整流电路的直流输出端与所述稳压电路电连接,所述稳压电路与所述访问模块、所述控制模块的电源输入端及所述开关模块的电源输入端电连接;所述整流电路设置为将NFC天线产生的交流输出整流成直流输出;所述稳压电路设置为限制和平稳所述整流电路的直流输出电压;所述整流电路包括第一整流二极管、第二整流二极管、第三整流二极管和第四整流二极管;所述第一整流二极管的正极与所述第三整流二极管的负级电连接,以用作所述整流电路的交流输入端的第一引脚;所述第二整流二极管的正极与所述第四整流二极管的负级电连接,以用作所述整流电路的交流输入端的第二引脚;所述第一整流二极管的负极与所述第二整流二极管的负极电连接,以用作所述整流电路的直流输出端的第一引脚;所述第三整流二极管的正极与所述第二整流二极管的正极电连接,以用作所述整流电路的直流输出端的第二引脚。
- 根据权利要求3所述的NFC访问控制电路,其特征在于,所述稳压电路包括稳压管和滤波电容;所述稳压管的负极与所述滤波电容的第一引脚电连接,所述稳压管的正极与所述滤波电容的第二引脚电连接;所述稳压管设置为限制所述整流电路的直流输出电压,所述滤波电容设置为平稳所述整流电路的直流输出电压。
- 根据权利要求1所述的NFC访问控制电路,其特征在于,所述访问模块包括访问按键,所述访问按键分别与所述NFC感应模块和所述控制模块电连接;当所述访问按键处于被按压状态时,导通所述NFC感应模块与所述控制模块,以触发所述控制模块。
- 根据权利要求1所述的NFC访问控制电路,其特征在于,所述开关模块包括射频开关,所述射频开关包括电源输入引脚、接地引脚、控制引脚、第一开关引脚和第二开关引脚;所述射频开关的电源输入引脚与所述NFC感应模块电连接,接地引脚接地,以使所述NFC感应模块为所述射频开关提供工作电压;所述射频开关的控制引脚与所述控制模块电连接,所述射频开关的第一开关引脚与所述NFC感应模块电连接,所述射频开关的第二开关引脚与所述NFC设备电连接;所述射频开关设置为当控制引脚存在高电平输入时,导通第一开关引脚和第二开关引脚之间的电连接,以导通所述NFC感应模块与NFC设备。
- 根据权利要求6所述的NFC访问控制电路,其特征在于,所述开关模块还包括下拉电阻,所述下拉电阻的第一引脚与所述射频开关的控制引脚电连接,第二引脚接地;所述下拉电阻设置为当所述NFC感应模块刚产生直流输出时,断开第一开关引脚和第二开关引脚之间的电连接,以断开所述NFC感应模块与NFC设备的连接。
- 根据权利要求1所述的NFC访问控制电路,其特征在于,所述控制模块包括第一模拟开关,所述第一模拟开关包括电源输入引脚、接地引脚、控制引脚、开关引脚和输出引脚;所述第一模拟开关的电源输入引脚与所述NFC感应模块电连接,接地引脚接地,以使所述NFC感应模块为所述第一模拟开关提供工作电压;所述第一模拟开关的控制引脚与所述访问模块电连接,开关引脚与电源输入引脚电连接,输出引脚与所述开关模块电连接;所述第一模拟开关设置为在控制引脚存在高电平输入时,导通开关引脚和输出引脚,以使所述第一模拟开关向所述开关模块输出高电平信号。
- 根据权利要求8所述的NFC访问控制电路,其特征在于,所述控制模块还包括第二模拟开关,所述第二模拟开关包括电源输入引脚、接地引脚、控制引脚、开关引脚和输出引脚;所述第二模拟开关的电源输入引脚与所述NFC感应模块电连接,接地引脚接地,以使所述NFC感应模块为所述第二模拟开关提供工作电压;所述第二模拟开关的控制引脚与所述访问模块电连接,开关引脚与电源输入引脚电连接,输出引脚分别与控制引脚以及所述第一模拟开关的控制引脚电连接;所述第二模拟开关设置为当所述控制模块被触发后且存在工作电压输入时,导通开关引脚和输出引脚,通过输出引脚同时向控制引脚以及所述第一模拟开关的控制引脚输出高电平信号,以保持所述第二模拟开关的开关引脚和输出引脚之间的导通和保持所述第一模拟开关的开关引脚和输出引脚之间的导通。
- 根据权利要求1所述的NFC访问控制电路,其特征在于,所述NFC读写控制电路还包括断电延时模块,所述断电延时模块的第一引脚与所述访问模块及所述控制模块电连接,第二引脚接地;所述断电延时模块设置为在所述访问模块触发时,从所述NFC感应模块取电并储存,并且在所述NFC感应模块不能输出正常电压时,向所述控制模块提供预定时间的高电平输入。
- 根据权利要求10所述的NFC访问控制电路,其特征在于,所述断电延时模块包括延时电容和延时电阻;所述延时电容的第一引脚与所述延时电阻的第一引脚电连接,以用作所述断电延时模块的第一引脚;所述延时电容的第二引脚与所述延时电阻的第二引脚电连接,以用作所述断电延时模块的第二引脚。
- 根据权利要求11所述的NFC访问控制电路,其特征在于,所述预定时间、所述延时电容和所述延时电阻的计算等式为:RC=t/ln(V0/Vt);其中,V0为延时电容的初始电压值,Vt为t时刻延时电容的电压值,R为延时电阻的电阻值,C为延时电容的电容值,t为预定时间的大小。
- 一种NFC装置,其特征在于,包括如权利要求1所述的NFC访问控制电路,当所述NFC装置靠近NFC读写装置时,通过所述NFC访问控制电路控制所述NFC装置可以被NFC读写装置访问。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010001257.4 | 2020-01-02 | ||
CN202010001257.4A CN113067604B (zh) | 2020-01-02 | 2020-01-02 | Nfc访问控制电路及nfc装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021135741A1 true WO2021135741A1 (zh) | 2021-07-08 |
Family
ID=76558062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/131559 WO2021135741A1 (zh) | 2020-01-02 | 2020-11-25 | Nfc访问控制电路及nfc装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113067604B (zh) |
WO (1) | WO2021135741A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204117180U (zh) * | 2014-10-08 | 2015-01-21 | 北京联云格科技有限公司 | 一种nfc标签及nfc设备 |
US20150154486A1 (en) * | 2013-12-02 | 2015-06-04 | Cambridge Silicon Radio, Ltd. | Protection of an nfc or rfid radio in the presence of strong electromagnetic fields |
WO2016085270A1 (ko) * | 2014-11-27 | 2016-06-02 | 주식회사 아이엠에이 | 탈부착식 버튼형 nfc 태그를 이용한 스마트 단말의 매크로 실행 시스템 및 방법 |
CN107547470A (zh) * | 2016-06-24 | 2018-01-05 | 中兴通讯股份有限公司 | 移动终端及nfc支付控制方法 |
CN207638657U (zh) * | 2017-11-10 | 2018-07-20 | 深圳市文鼎创数据科技有限公司 | 一种用于nfc近场通信的控制电路和智能卡 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103413165B (zh) * | 2013-08-07 | 2017-08-25 | 歌尔股份有限公司 | 控制nfc标签的方法和受控nfc标签 |
CN107911147B (zh) * | 2017-11-10 | 2020-05-19 | 深圳市文鼎创数据科技有限公司 | 一种用于nfc近场通信的控制电路和智能卡 |
CN208689587U (zh) * | 2018-10-10 | 2019-04-02 | 北京中广瑞波科技股份有限公司 | Nfc设备 |
-
2020
- 2020-01-02 CN CN202010001257.4A patent/CN113067604B/zh active Active
- 2020-11-25 WO PCT/CN2020/131559 patent/WO2021135741A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150154486A1 (en) * | 2013-12-02 | 2015-06-04 | Cambridge Silicon Radio, Ltd. | Protection of an nfc or rfid radio in the presence of strong electromagnetic fields |
CN204117180U (zh) * | 2014-10-08 | 2015-01-21 | 北京联云格科技有限公司 | 一种nfc标签及nfc设备 |
WO2016085270A1 (ko) * | 2014-11-27 | 2016-06-02 | 주식회사 아이엠에이 | 탈부착식 버튼형 nfc 태그를 이용한 스마트 단말의 매크로 실행 시스템 및 방법 |
CN107547470A (zh) * | 2016-06-24 | 2018-01-05 | 中兴通讯股份有限公司 | 移动终端及nfc支付控制方法 |
CN207638657U (zh) * | 2017-11-10 | 2018-07-20 | 深圳市文鼎创数据科技有限公司 | 一种用于nfc近场通信的控制电路和智能卡 |
Also Published As
Publication number | Publication date |
---|---|
CN113067604A (zh) | 2021-07-02 |
CN113067604B (zh) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9965667B2 (en) | Fingerprint recogntion sensor and terminal device | |
US9659195B2 (en) | Tone-based wake up circuit for card reader | |
US9473208B2 (en) | Recovering data in a near field communication apparatus | |
US10496869B2 (en) | Fingerprint detection circuit and fingerprint recognition system | |
WO2018035759A1 (zh) | 电容判读电路及指纹辨识系统 | |
US10181790B2 (en) | Direct current voltage conversion circuit and liquid crystal display device | |
US9923605B2 (en) | Electronic apparatus | |
US10741112B2 (en) | Display apparatus and protection circuit thereof | |
US20180114049A1 (en) | Fingerprint sensor device and operation method thereof | |
US20070188214A1 (en) | Semiconductor device | |
WO2021135741A1 (zh) | Nfc访问控制电路及nfc装置 | |
US8649822B2 (en) | Secure digital card | |
WO2020237503A1 (zh) | 一种电容检测电路、电容检测方法、触控芯片以及电子设备 | |
TW202134671A (zh) | 自電容檢測電路以及具有該電容檢測電路的資訊處理裝置 | |
US20100275041A1 (en) | Computer power supply and power status signal generating circuit thereof | |
WO2018119960A1 (zh) | 触控系统及其电源供应电路 | |
JP2005222278A (ja) | 非接触ic媒体用インレットおよび非接触ic媒体ならびにそれを用いた通信システム | |
CN112017579B (zh) | 显示装置及其驱动系统 | |
CN210257715U (zh) | 具有语音识别的电子翻书一体机 | |
CN207817694U (zh) | 一种集成电路总线设备地址检测装置 | |
KR101775875B1 (ko) | 공통 기준 신호로 구동되는 지문 인식 시스템 | |
US9774371B1 (en) | Near field communication device and system | |
TW202343200A (zh) | 行動裝置 | |
JP2002078235A (ja) | 停電検出装置 | |
JPH09121445A (ja) | 異常入力検出回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20910642 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/11/2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20910642 Country of ref document: EP Kind code of ref document: A1 |