WO2021135735A1 - 一种卫星基站切换的方法、终端、卫星基站及存储介质 - Google Patents

一种卫星基站切换的方法、终端、卫星基站及存储介质 Download PDF

Info

Publication number
WO2021135735A1
WO2021135735A1 PCT/CN2020/131221 CN2020131221W WO2021135735A1 WO 2021135735 A1 WO2021135735 A1 WO 2021135735A1 CN 2020131221 W CN2020131221 W CN 2020131221W WO 2021135735 A1 WO2021135735 A1 WO 2021135735A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
satellite
pitch angle
satellite base
Prior art date
Application number
PCT/CN2020/131221
Other languages
English (en)
French (fr)
Inventor
侯利明
康绍莉
缪德山
韩波
索士强
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP20911159.0A priority Critical patent/EP4087157A4/en
Priority to US17/787,930 priority patent/US20230045249A1/en
Publication of WO2021135735A1 publication Critical patent/WO2021135735A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18541Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for handover of resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/083Reselecting an access point wherein at least one of the access points is a moving node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/328Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by altitude
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present disclosure relates to the field of satellite communications, and in particular to a method, terminal, satellite base station and storage medium for switching satellite base stations.
  • low-orbit satellite communication systems In order to achieve global coverage, low-orbit satellite communication systems generally require a large number of satellites to form a constellation, and the entire constellation system provides services for users. Due to the low orbit of satellites and fast operation, such as satellites with an orbital height of about 1000km, the earth terminal will be visible to the satellite at the same position on the earth for about 10 minutes. In order to maintain uninterrupted service, the ground needs to conduct frequent operations among multiple satellites. Switch.
  • the reference information of the existing satellite base station handover is generally a decision based on the received signal strength.
  • the terminal obtains the RSSI (Received Signal Strength Indicator, received signal strength indicator) of the current cell and neighboring cells through RRM (Radio Resource Management) measurement, and judges whether to perform cell handover by comparing the RSSI sizes of multiple cells.
  • RSSI Receiveived Signal Strength Indicator, received signal strength indicator
  • the premise of the implementation of this method is that the terminal can obtain downlink signals from multiple cells at the same time, which is difficult and costly to implement; and for satellite broadband communications working in high frequency bands, due to the long propagation path and concentrated beam coverage, the coverage area is The received signal strength of the terminal is low and the change is small, so it is difficult to meet the application requirements of the satellite base station handover of the low-orbit satellite broadband communication system only by detecting the change of the signal strength of the cell.
  • the present disclosure relates to the field of satellite communications, and in particular to a method, terminal, satellite base station and storage medium for switching satellite base stations. To solve the problem that the current method of satellite base station switching is not accurate enough.
  • embodiments of the present disclosure provide a method for handover of a satellite base station, the method including:
  • the terminal determines the pitch angle when accessing the satellite base station
  • the terminal If it is determined that the pitch angle is within a preset range, the terminal performs inter-satellite handover.
  • the upper limit of the preset range is the pre-measured angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located when the terminal leaves the re-coverage area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located and the ground horizontal line when the terminal enters the re-coverage area measured in advance;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • the terminal determining the pitch angle when accessing the satellite base station includes:
  • the terminal uses the measured angle between the beam direction used by the antenna during operation and the ground horizontal line as the elevation angle; or the terminal receives the instruction information sent by the satellite base station to which it is connected, and determines according to the instruction information The pitch angle.
  • the method before the terminal determines the pitch angle when accessing the satellite base station, the method further includes:
  • the terminal determines that the distance from the last inter-satellite handover has reached a preset handover holding time.
  • embodiments of the present disclosure provide a method for handover of a satellite base station, the method including:
  • the terminal determines the pitch angle when accessing the satellite base station
  • the terminal sends the elevation angle to the accessed satellite base station, so that the satellite base station notifies the terminal to perform inter-satellite handover when determining that the elevation angle is within a preset range.
  • the upper limit of the preset range is the pre-measured angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located when the terminal leaves the re-coverage area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located and the ground horizontal line when the terminal enters the re-coverage area measured in advance;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • the terminal determining the pitch angle when accessing the satellite base station includes:
  • the terminal uses the measured angle between the beam direction used by the antenna during operation and the ground horizontal line as the elevation angle; or the terminal receives the instruction information sent by the satellite base station to which it is connected, and determines according to the instruction information The pitch angle.
  • the method before the terminal determines the pitch angle when accessing the satellite base station, the method further includes:
  • the terminal determines that the distance from the last inter-satellite handover has reached a preset handover holding time.
  • embodiments of the present disclosure provide a method for handover of a satellite base station, the method including:
  • the satellite base station receives the pitch angle sent by the terminal; wherein, the pitch angle is the pitch angle of the terminal when accessing the satellite base station;
  • the satellite base station When determining that the pitch angle is within a preset range, the satellite base station notifies the terminal to perform inter-satellite handover.
  • the upper limit of the preset range is the pre-measured angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located when the terminal leaves the re-coverage area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located and the ground horizontal line when the terminal enters the re-coverage area measured in advance;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • the method further includes:
  • the satellite base station sends instruction information to the terminal, so that the terminal determines the pitch angle according to the instruction information.
  • embodiments of the present disclosure provide a terminal, including a processor, a memory, and a transceiver;
  • the processor is used to read the program in the memory and execute:
  • the upper limit of the preset range is the pre-measured angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located when the terminal leaves the re-coverage area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located and the ground horizontal line when the terminal enters the re-coverage area measured in advance;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • the processor is specifically configured to:
  • the measured angle between the beam direction used when the antenna is working and the ground horizontal line is used as the elevation angle; or the instruction information sent by the satellite base station that is accessed is received, and the elevation angle is determined according to the instruction information.
  • the processor is further configured to:
  • embodiments of the present disclosure provide a terminal, including a processor, a memory, and a transceiver;
  • the processor is used to read the program in the memory and execute:
  • the pitch angle is sent to the accessed satellite base station, so that the satellite base station notifies the terminal to perform inter-satellite handover when determining that the pitch angle is within a preset range.
  • the upper limit of the preset range is the pre-measured angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located when the terminal leaves the re-coverage area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line between the terminal and the adjacent base station corresponding to the heavy coverage area when the terminal enters the heavy coverage area measured in advance and the horizontal line of the ground;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • the processor is specifically configured to:
  • the measured angle between the beam direction used when the antenna is working and the ground horizontal line is used as the elevation angle; or the instruction information sent by the satellite base station that is accessed is received, and the elevation angle is determined according to the instruction information.
  • the processor is further configured to:
  • embodiments of the present disclosure provide a satellite base station, including a processor, a memory, and a transceiver;
  • the processor is used to read the program in the memory and execute:
  • the terminal When it is determined that the pitch angle is within a preset range, the terminal is notified to perform inter-satellite handover.
  • the upper limit of the preset range is the pre-measured angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located when the terminal leaves the re-coverage area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located and the ground horizontal line when the terminal enters the re-coverage area measured in advance;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • the processor is further configured to:
  • a terminal including:
  • the first determining module is used to determine the pitch angle when accessing the satellite base station
  • the trigger module is configured to switch between satellites if it is determined that the pitch angle is within a preset range.
  • embodiments of the present disclosure provide a terminal, including:
  • the second determining module is used to determine the pitch angle when accessing the satellite base station
  • the sending module is configured to send the pitch angle to the accessed satellite base station, so that the satellite base station notifies the terminal to perform inter-satellite handover when determining that the pitch angle is within a preset range.
  • embodiments of the present disclosure provide a satellite base station, including:
  • the receiving module receives the pitch angle sent by the terminal; wherein the pitch angle is the pitch angle of the terminal when it accesses the satellite base station;
  • the notification module when determining that the pitch angle is within a preset range, notifies the terminal to perform inter-satellite handover.
  • an embodiment of the present disclosure provides a storage medium on which a processor-readable program is stored, and when the program is executed by the processor, the steps of the method described in the first, second, or third aspect are implemented.
  • the terminal or the satellite base station can determine whether to switch to the satellite base station according to the elevation angle and the preset range, and the elevation angle parameter is easy to obtain, without additional calculation of other reference information, and the current satellite It can be realized on the basis of normal work with the terminal, and the system is simple to implement; according to the preset range, the terminal can accurately determine when the terminal needs to switch the satellite base station, so as to realize fast and accurate satellite base station switching and improve the judgment efficiency of satellite base station switching.
  • FIG. 1 is a schematic diagram of the architecture of a handover system of a satellite base station according to an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of a handover system of a satellite base station according to an embodiment of the disclosure
  • FIG. 3 is a flowchart of the first handover method of a satellite base station according to an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of a pitch angle according to an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of the handover process of the first satellite base station according to an embodiment of the disclosure.
  • FIG. 6 is a complete flow chart of the first handover method of satellite base stations in an embodiment of the disclosure.
  • FIG. 7 is a schematic structural diagram of a first terminal according to an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of the device structure of the first terminal of the embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a handover process of a second type of satellite base station according to an embodiment of the disclosure.
  • FIG. 10 is a complete flowchart of a second method for handover of a satellite base station according to an embodiment of the disclosure.
  • FIG. 11 is a schematic structural diagram of a second type of terminal according to an embodiment of the disclosure.
  • FIG. 12 is a schematic structural diagram of a satellite base station according to an embodiment of the disclosure.
  • FIG. 13 is a schematic diagram of a device structure of a second terminal according to an embodiment of the disclosure.
  • FIG. 14 is a schematic diagram of the structure of a satellite base station apparatus according to an embodiment of the disclosure.
  • 15 is a flowchart of a second method for handover of a satellite base station according to an embodiment of the disclosure.
  • FIG. 16 is a flowchart of a satellite base station handover method applied to a satellite base station according to an embodiment of the disclosure.
  • antenna beam in the embodiments of the present disclosure is the main lobe of the antenna pattern.
  • the spatial distribution of the radio wave energy radiated by the antenna is usually uneven, which is reflected in the directivity of the antenna.
  • the antenna pattern In addition to the main lobe (main beam), the antenna pattern usually has side lobes and back lobes.
  • Antenna beam usually refers to the main lobe or main beam, which is the area where the antenna energy is most concentrated.
  • tellite in the embodiments of the present disclosure refers to artificial satellites, which are built by humans and launched into space by space flight vehicles such as rockets and space shuttles, and surround the earth or other planets like natural satellites.
  • elevation angle in the embodiments of the present disclosure refers to the angle between the beam pointing direction and the ground horizontal direction when the terminal antenna is working.
  • Low Earth orbit refers to a low earth orbit, and refers to an orbit where the spacecraft is at a low altitude from the ground.
  • low-Earth orbit There is no accepted strict definition of low-Earth orbit.
  • near-circular orbits with orbit heights below 2000 kilometers can be called low-Earth orbits.
  • low-Earth orbit satellites are relatively close to the ground, most of the earth observation satellites, geodetic satellites, space stations and some new communication satellite systems use low-Earth orbit.
  • Fig. 1 exemplarily shows a schematic diagram of a system architecture applicable to an embodiment of the present disclosure.
  • a LEO (Low Earth Orbit, low earth orbit) satellite communication system a large number of satellites are required to form a constellation. The entire constellation provides services for users.
  • FIG. 1 exemplarily shows the low-orbit satellite 101 and the low-orbit satellite 102 in the low-orbit satellite communication system, and the ground terminal 103 communicates with the gateway 104 through the satellite in the low-orbit satellite system.
  • LEO Low Earth Orbit, low earth orbit
  • Figure 1 shows the process of the ground terminal 103 switching between the low-orbit satellite 101 and the low-orbit satellite 102.
  • the satellite currently accessed by the ground terminal 103 is the low-orbit satellite 101. Due to the low orbit of the satellite, the operation is fast. For a satellite with an altitude of about 1000km, the earth terminal will be visible to the satellite at the same position on the earth for about 10 minutes. In order to maintain uninterrupted service, the ground terminal needs to switch from a low-orbit satellite 101 to a low-orbit satellite 102.
  • the reference information of the existing satellite base station handover is generally a decision based on the received signal strength.
  • the terminal obtains the RSSI (Received Signal Strength Indicator, received signal strength indicator) of the current cell and neighboring cells through RRM (Radio Resource Management) measurement, and judges whether to perform cell handover by comparing the RSSI sizes of multiple cells.
  • RSSI Receiveived Signal Strength Indicator, received signal strength indicator
  • the premise of the implementation of this method is that the terminal can obtain downlink signals from multiple cells at the same time, which is difficult and costly to implement; and for satellite broadband communications working in high frequency bands, due to the long propagation path and concentrated beam coverage, the coverage area is The received signal strength of the terminal is low and the change is small, so it is difficult to meet the application requirements of the satellite base station handover of the low-orbit satellite broadband communication system only by detecting the change of the signal strength of the cell.
  • the present disclosure provides a satellite base station handover system, as shown in FIG. 2, including a satellite base station 201 and a terminal 202.
  • the terminal 202 determines the elevation angle when accessing the current satellite base station 201, and the terminal 202 determines that the elevation angle is within the preset range, and performs inter-satellite handover; or, the terminal 202 sends the elevation angle to the currently connected satellite base station 201, the satellite base station 201 notifies the terminal to perform inter-satellite handover when it is determined that the pitch angle is within the preset range.
  • the satellite base station refers to: 1.
  • the low-orbit satellite only supports the transparent forwarding mode, while the satellite base station refers to the collection of equipment capable of base station capabilities such as the low-orbit satellite and the ground gateway; 2.
  • the low-orbit satellite has the base station processing capability, then Satellite base stations refer to low-orbit satellites; 3.
  • Low-orbit satellites support part of the base station processing capabilities, while satellite base stations refer to the collection of low-orbit satellites and other equipment that collectively have base station capabilities.
  • the terminal or the satellite base station can determine whether to switch to the satellite base station according to the elevation angle and the preset range, and the elevation angle parameter is easy to obtain, without additional calculation of other reference information, and the current satellite It can be realized on the basis of normal work with the terminal, and the system is simple to implement; according to the preset range, the terminal can accurately determine the time when the terminal needs to switch the satellite base station, thereby realizing fast and accurate satellite base station switching and improving the judgment efficiency of satellite base station switching.
  • Method 1 The terminal performs inter-satellite handover when the terminal determines that the pitch angle is within the preset range.
  • the first satellite base station handover method provided by the embodiment of the present disclosure, as shown in FIG. 3, includes the following steps:
  • Step 301 The terminal determines the pitch angle when accessing the satellite base station
  • Step 302 If it is determined that the pitch angle is within a preset range, the terminal performs inter-satellite handover.
  • the terminal determines the pitch angle when accessing the satellite base station in the following manner:
  • Method 1 The terminal uses the measured angle between the beam direction used when the antenna is working and the ground horizontal line as the elevation angle.
  • the terminal measures the angle with the horizontal line of the ground according to the beam direction used when the antenna is currently working, and uses the measured angle as the elevation angle.
  • the angle between the beam direction used by the current terminal antenna and the ground horizontal line is ⁇ , and the angle ⁇ is taken as the elevation angle.
  • Manner 2 The terminal receives the instruction information sent by the satellite base station that is accessed, and determines the pitch angle according to the instruction information.
  • an optional implementation manner is that the terminal receives the instruction information sent by the satellite base station currently accessed, where the instruction information may include the pitch angle; after receiving the instruction information sent by the satellite base station, the terminal directly reads the instruction information sent by the satellite base station. Take the pitch angle contained in the indication information.
  • Another optional implementation is that after receiving the indication information sent by the currently connected satellite base station, the terminal reads the pitch angle contained in the indication information, and performs a local fitting of the pitch angle according to the operating state of the terminal, and The pitch angle is corrected, and the corrected pitch angle is used as the pitch angle when the terminal accesses the satellite base station.
  • the terminal After determining the pitch angle when accessing the satellite base station, the terminal determines whether the pitch angle is within the preset range, and if it is determined that the pitch angle is within the preset range, the terminal performs inter-satellite handover.
  • the preset range includes an upper limit and a lower limit; where the upper limit of the preset range is measured in advance between the line between the terminal and the adjacent base station corresponding to the re-covered area and the ground horizontal line when the terminal leaves the re-covered area
  • the lower limit of the preset range is the pre-measured angle between the line and the horizontal line of the ground between the terminal and the adjacent base station corresponding to the re-covered area when the terminal enters the re-covered area, where the re-covered area is the terminal access
  • the satellite beam is perpendicular to the ground, the beam angle corresponding to the range that the satellite can cover is ⁇ , and the adjacent satellites are cross-covered, thereby achieving seamless globalization. cover.
  • the satellite base station currently accessed by the terminal is LEO satellite m
  • LEO satellite m and LEO satellite n are adjacent satellite base stations
  • the heavy coverage area is the area where LEO satellite m and LEO satellite n cross-cover
  • the heavy coverage area corresponds to the adjacent
  • the base station is LEO satellite n.
  • the elevation angle of the terminal when accessing the satellite base station is in the preset range (that is, when the terminal is in the heavy coverage area between LEO satellite m and LEO satellite n), it needs to switch from the currently connected LEO satellite m to LEO satellite n .
  • the upper limit of the preset range is the pre-measured angle between the line between the terminal and the adjacent base station corresponding to the re-covered area and the ground horizontal line when the terminal leaves the re-covered area, as shown in Fig. 5, the angle ⁇ 1;
  • the lower limit is the pre-measured angle between the line of the terminal and the adjacent base station corresponding to the heavy coverage area and the horizontal line of the ground when the terminal enters the heavy coverage area, as shown in the angle ⁇ 2 in FIG. 5.
  • the terminal performs inter-satellite handover when determining that the pitch angle is within a preset range
  • the terminal sends a handover request message to the currently accessed satellite base station.
  • the currently accessed satellite base station receives the handover request message, it determines that the terminal needs to perform inter-satellite handover, and then returns a handover response message to the terminal, where the handover response
  • the message contains the information of the target satellite base station that the terminal needs to switch to;
  • the currently connected satellite base station determines that the terminal needs to perform inter-satellite handover, it also needs to notify the target base station that the terminal needs to switch to the target satellite base station;
  • the terminal After receiving the handover response message returned by the currently connected satellite base station, the terminal determines the target satellite base station to be switched to according to the information in the handover response message, and initiates access to the target satellite base station. After the terminal has successfully accessed the target satellite , Complete the inter-satellite switching process.
  • the terminal determines that the elevation angle when accessing the satellite base station is 55 degrees, the terminal performs inter-satellite handover; if the terminal determines that the elevation angle when currently accessing the satellite base station is 75 degrees In this case, the terminal can work normally in the currently accessed satellite base station, and there is no need to switch the satellite base station.
  • the terminal may also receive signals according to the elevation angle and the RSSI (Received Signal Strength Indicator) of the currently connected satellite base station and neighboring satellite base stations obtained through RRM (Radio Resource Management) measurement.
  • the strength indication) information determines whether to perform inter-satellite handover, where the RSSI information includes the signal received power.
  • the terminal performs inter-satellite handover when determining that the pitch angle is within a preset range and the signal reception power of the adjacent satellite base station is not less than the accessed satellite base station.
  • the terminal before determining the pitch angle when the terminal accesses the satellite base station, the terminal determines the distance from the last inter-satellite handover to reach the preset handover holding time.
  • the terminal no longer performs the handover judgment process of the satellite base station within the preset handover holding time, so as to prevent the terminal from making an erroneous handover judgment when the pitch angle is still in the preset range after the satellite base station is switched.
  • the terminal periodically determines the elevation angle when accessing the satellite base station, so as to periodically determine whether to switch the satellite base station;
  • the terminal needs to determine the pitch angle when accessing the satellite base station again in the next cycle, and determine whether the pitch angle is within the preset range.
  • FIG. 6 it is a complete flow chart of the first handover method of a satellite base station according to an embodiment of the present disclosure, including the following steps:
  • Step 601 The terminal determines the pitch angle when accessing the satellite base station
  • Step 602 The terminal judges whether the pitch angle is within a preset range, if yes, execute step 603, if not, execute step 604;
  • Step 603 The terminal performs inter-satellite handover
  • Step 604 The terminal returns to step 601 after determining that the distance from the last inter-satellite handover has reached the preset handover holding time;
  • Step 605 After the terminal determines that the distance from the last determined pitch angle reaches a duration corresponding to a preset period, the terminal returns to step 601;
  • the preset period is a preset period for the terminal to periodically determine the pitch angle when accessing the satellite base station.
  • the first terminal used in the handover method of satellite base station in the embodiment of the present disclosure includes: a processor 700, a memory 701, a transceiver 702, and a bus interface.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 701 can store data used by the processor 700 when performing operations.
  • the transceiver 702 is used to receive and transmit data under the control of the processor 700.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 700 and various circuits of the memory represented by the memory 701 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 701 can store data used by the processor 700 when performing operations.
  • the processes disclosed in the embodiments of the present disclosure may be applied to the processor 700 or implemented by the processor 700.
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 700 or instructions in the form of software.
  • the processor 700 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or execute the The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 701, and the processor 700 reads the information in the memory 701, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 700 is configured to read a program in the memory 701 and execute:
  • the upper limit of the preset range is the pre-measured angle between the line between the terminal and the adjacent base station corresponding to the re-covered area when the terminal leaves the re-covered area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located and the ground horizontal line when the terminal enters the re-coverage area measured in advance;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • processor 700 is specifically configured to:
  • the measured angle between the beam direction used when the antenna is working and the ground horizontal line is used as the elevation angle; or the instruction information sent by the satellite base station that is accessed is received, and the elevation angle is determined according to the instruction information.
  • processor 700 is further configured to:
  • the first terminal of the embodiment of the present disclosure includes:
  • the first determining module 801 is configured to determine the pitch angle when accessing the satellite base station
  • the trigger module 802 is configured to switch between satellites if it is determined that the pitch angle is within a preset range.
  • the upper limit of the preset range is the pre-measured angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located when the terminal leaves the re-coverage area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located and the ground horizontal line when the terminal enters the re-coverage area measured in advance;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • the first determining module 801 is specifically configured to:
  • the measured angle between the beam direction used when the antenna is working and the ground horizontal line is used as the elevation angle; or the instruction information sent by the satellite base station that is accessed is received, and the elevation angle is determined according to the instruction information.
  • the first determining module 801 is further configured to:
  • the embodiment of the present disclosure also provides a storage medium on which a processor-readable program is stored, and when the program is executed by the processor, the steps of the above-mentioned satellite base station handover method are realized.
  • Method 2 When the satellite base station determines that the pitch angle is within a preset range, it notifies the terminal to perform inter-satellite handover.
  • the handover system of the satellite base station as shown in FIG. 2 includes a satellite base station 201 and a terminal 202;
  • the satellite base station 201 is used to receive the pitch angle sent by the terminal; when it is determined that the pitch angle is within a preset range, the terminal is notified to perform inter-satellite handover.
  • the terminal 202 is configured to determine the elevation angle when accessing the satellite base station; send the elevation angle to the accessed satellite base station, so that the satellite base station notifies the terminal to perform inter-satellite handover when the satellite base station determines that the elevation angle is within a preset range.
  • the terminal determines the pitch angle when accessing the satellite base station in the following manner:
  • Method 1 The terminal uses the measured angle between the beam direction used when the antenna is working and the horizontal line of the ground as the elevation angle.
  • the terminal measures the angle with the horizontal line of the ground according to the beam direction used when the antenna is currently working, and uses the measured angle as the elevation angle.
  • Manner 2 The terminal receives the instruction information sent by the satellite base station that is accessed, and determines the pitch angle according to the instruction information.
  • an optional implementation manner is that the terminal receives the instruction information sent by the currently accessed satellite base station, where the instruction information may include the pitch angle, and the terminal directly reads the instruction information sent by the satellite base station after receiving the instruction information sent by the satellite base station. Take the pitch angle contained in the indication information.
  • Another optional implementation is that after receiving the indication information sent by the currently connected satellite base station, the terminal reads the pitch angle contained in the indication information, and performs a local fitting of the pitch angle according to the operating state of the terminal, and The pitch angle is corrected, and the corrected pitch angle is used as the pitch angle when the terminal accesses the satellite base station.
  • the terminal After determining the elevation angle when accessing the satellite base station, the terminal sends the elevation angle to the accessed satellite base station.
  • the satellite base station After receiving the pitch angle, the satellite base station determines whether the pitch angle is within a preset range, and notifies the terminal to perform inter-satellite handover when it is determined that the pitch angle is within the preset range;
  • the preset range includes an upper limit and a lower limit; among them, the upper limit of the preset range is the pre-measured terminal that leaves the re-covered area when the terminal and the adjacent base station corresponding to the re-covered area are located between the straight line and the ground horizontal line. Angle; the lower limit of the preset range is the angle between the straight line between the terminal and the adjacent base station corresponding to the re-covered area and the ground horizontal line when the pre-measured terminal enters the re-covered area, where the re-covered area is the satellite base station that the terminal accesses Cross coverage area with neighboring base stations.
  • the satellite beam is perpendicular to the ground, the beam angle corresponding to the range that the satellite can cover is ⁇ , and the adjacent satellites are cross-covered, thereby achieving seamless globalization. cover.
  • the satellite base station currently accessed by the terminal is LEO satellite m
  • LEO satellite m and LEO satellite n are adjacent satellite base stations
  • the heavy coverage area is the area where LEO satellite m and LEO satellite n cross-cover
  • the heavy coverage area corresponds to the adjacent
  • the base station is LEO satellite n.
  • the elevation angle of the terminal when accessing the satellite base station is in the preset range (that is, when the terminal is in the heavy coverage area between LEO satellite m and LEO satellite n), it needs to switch from the currently connected LEO satellite m to LEO satellite n .
  • the upper limit of the preset range is the pre-measured angle between the line between the terminal and the adjacent base station corresponding to the re-covered area and the ground horizontal line when the terminal leaves the re-covered area, as shown in Fig. 9 as the angle ⁇ 1;
  • the lower limit is the pre-measured angle between the line of the terminal and the adjacent base station corresponding to the heavy coverage area and the ground horizontal line when the terminal enters the heavy coverage area, as shown in the angle ⁇ 2 in FIG. 9.
  • the terminal can send the pitch angle to the satellite base station that is accessed in the following manner:
  • the terminal sends the elevation angle to the connected satellite base station through RRC (Radio Resource Control) signaling;
  • RRC Radio Resource Control
  • the terminal antenna state report information is added to the RRC signaling, and the terminal working state information is carried in the signaling, and the terminal working state information includes the pitch angle.
  • the terminal can also send the pitch angle and the RSSI (Received Signal Strength Indicator, received signal strength indicator) information of the currently connected satellite base station and neighboring satellite base stations obtained through RRM (Radio Resource Management) measurement.
  • RSSI Received Signal Strength Indicator, received signal strength indicator
  • the satellite base station After the satellite base station receives the pitch angle and RSSI information, it judges whether to notify the terminal to trigger the handover of the satellite base station through the pitch angle and the received signal power.
  • the satellite base station notifies the terminal to trigger the handover of the satellite base station when determining that the pitch angle is within a preset range and the signal reception power of the adjacent satellite base station is not less than the accessed satellite base station.
  • the terminal sends the pitch angle to the accessed satellite base station in the following manner:
  • Manner 1 Send through RRC signaling for reporting RRM measurement information.
  • the current 5G protocol stipulates that after the terminal starts to perform RRM measurement, it will send RRM measurement information to the network side; the terminal can put the elevation angle in the RRM measurement information used to report RSSI information, and at the same time send the elevation to the connected satellite base station Angle and RSSI information.
  • the terminal newly adds dedicated RRC signaling, and sends terminal working status information through the newly added RRC signaling.
  • the working status information of the terminal includes the elevation angle, and the dedicated RRC signaling is used to instruct to send the elevation angle to the accessed satellite base station; and
  • the RSSI information is sent to the accessed satellite base station through the existing RRC signaling used to report the RRM measurement information.
  • the terminal after the terminal receives the message sent by the satellite base station informing the terminal to perform inter-satellite handover, the terminal sends a handover request message to the currently accessed satellite base station, and after the currently accessed satellite base station receives the handover request message , It is determined that the terminal needs to perform inter-satellite handover, then a handover response message is returned to the terminal, where the handover response message contains the information of the target satellite base station to which the terminal needs to be switched;
  • the currently connected satellite base station determines that the terminal needs to perform inter-satellite handover, it also needs to notify the target base station that the terminal needs to switch to the target satellite base station;
  • the terminal After receiving the handover response message returned by the currently connected satellite base station, the terminal determines the target satellite base station to be switched to according to the information in the handover response message, and initiates access to the target satellite base station. After the terminal has successfully accessed the target satellite , Complete the inter-satellite switching process.
  • the terminal before determining the pitch angle when the terminal accesses the satellite base station, the terminal determines the distance from the last inter-satellite handover to reach the preset handover holding time.
  • the terminal no longer performs the handover judgment process of the satellite base station within the preset handover holding time, so as to prevent the terminal from making an erroneous handover judgment when the pitch angle is still in the preset range after the satellite base station is switched.
  • a complete flowchart of the second method for handover of a satellite base station includes the following steps:
  • Step 1001 The terminal determines the pitch angle when accessing the satellite base station
  • Step 1002 The terminal sends the elevation angle to the accessed satellite base station
  • Step 1003 The satellite base station determines that the pitch angle is within a preset range
  • Step 1004 The satellite base station notifies the terminal to perform inter-satellite handover;
  • Step 1005 The terminal performs inter-satellite handover.
  • the embodiment of the present disclosure also provides a terminal. Since the principle of the terminal to solve the problem is similar to the handover method of the satellite base station in the embodiment of the present disclosure, the implementation of the terminal can refer to the implementation of the method. No longer.
  • the second terminal used in the handover method of satellite base stations in the embodiment of the present disclosure includes: a processor 1100, a memory 1101, a transceiver 1102, and a bus interface.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1101 may store data used by the processor 1100 when performing operations.
  • the transceiver 1102 is used to receive and send data under the control of the processor 1100.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1100 and various circuits of the memory represented by the memory 1101 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1101 may store data used by the processor 1100 when performing operations.
  • the processes disclosed in the embodiments of the present disclosure may be applied to the processor 1100 or implemented by the processor 1100.
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 1100 or instructions in the form of software.
  • the processor 1100 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or execute the The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1101, and the processor 1100 reads the information in the memory 1101, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1100 is configured to read a program in the memory 1101 and execute:
  • the pitch angle is sent to the accessed satellite base station, so that the satellite base station notifies the terminal to perform inter-satellite handover when determining that the pitch angle is within a preset range.
  • the upper limit of the preset range is the pre-measured angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located when the terminal leaves the re-coverage area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located and the ground horizontal line when the terminal enters the re-coverage area measured in advance;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • processor 1100 is specifically configured to:
  • the measured angle between the beam direction used when the antenna is working and the ground horizontal line is used as the elevation angle; or the instruction information sent by the satellite base station that is accessed is received, and the elevation angle is determined according to the instruction information.
  • processor 1100 is further configured to:
  • a satellite base station includes: a processor 1200, a memory 1201, a transceiver 1202, and a bus interface.
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1201 can store data used by the processor 1200 when performing operations.
  • the transceiver 1202 is used to receive and transmit data under the control of the processor 1200.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1200 and various circuits of the memory represented by the memory 1201 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1201 can store data used by the processor 1200 when performing operations.
  • the processes disclosed in the embodiments of the present disclosure may be applied to the processor 1200 or implemented by the processor 1200.
  • each step of the signal processing flow can be completed by an integrated logic circuit of hardware in the processor 1200 or instructions in the form of software.
  • the processor 1200 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or execute the The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1201, and the processor 1200 reads the information in the memory 1201, and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1200 is configured to read a program in the memory 1201 and execute:
  • the terminal When it is determined that the pitch angle is within a preset range, the terminal is notified to perform inter-satellite handover.
  • the upper limit of the preset range is the pre-measured angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located when the terminal leaves the re-coverage area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located and the ground horizontal line when the terminal enters the re-coverage area measured in advance;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • processor 1200 is further configured to:
  • the second type of terminal in the embodiment of the present disclosure includes:
  • the second determining module 1301 is used to determine the pitch angle when accessing the satellite base station
  • the sending module 1302 is configured to send the pitch angle to the accessed satellite base station, so that the satellite base station notifies the terminal to perform inter-satellite handover when determining that the pitch angle is within a preset range.
  • the upper limit of the preset range is the pre-measured angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located when the terminal leaves the re-coverage area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located and the ground horizontal line when the terminal enters the re-coverage area measured in advance;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • the second determining module 1301 is specifically configured to:
  • the measured angle between the beam direction used when the antenna is working and the ground horizontal line is used as the elevation angle; or the instruction information sent by the satellite base station that is accessed is received, and the elevation angle is determined according to the instruction information.
  • the second determining module 1301 is further configured to:
  • a satellite base station includes:
  • the receiving module 1401 receives the pitch angle sent by the terminal; where the pitch angle is the pitch angle of the terminal when it accesses the satellite base station;
  • the notification module 1402 when determining that the pitch angle is within a preset range, notifies the terminal to perform inter-satellite handover.
  • the upper limit of the preset range is the pre-measured angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located when the terminal leaves the re-coverage area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located and the ground horizontal line when the terminal enters the re-coverage area measured in advance;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • the notification module 1402 is also used to:
  • the embodiment of the present disclosure also provides a storage medium on which a processor-readable program is stored, and when the program is executed by the processor, the steps of the above-mentioned satellite base station handover method are realized.
  • an embodiment of the present disclosure provides a method for handover of a satellite base station.
  • This method corresponds to the second type of terminal in the handover system of a satellite base station in the embodiment of the present disclosure, and the principle of the method to solve the problem is the same as The system is similar, so the implementation of this method can refer to the implementation of the system, and the repetition will not be repeated.
  • a method for handover of a satellite base station includes the following steps:
  • Step 1501 The terminal determines the pitch angle when accessing the satellite base station
  • Step 1502 The terminal sends the elevation angle to the accessed satellite base station, so that the satellite base station notifies the terminal to perform inter-satellite handover when determining that the elevation angle is within a preset range.
  • the upper limit of the preset range is the pre-measured angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located when the terminal leaves the re-coverage area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located and the ground horizontal line when the terminal enters the re-coverage area measured in advance;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • the terminal determining the pitch angle when accessing the satellite base station includes:
  • the terminal uses the measured angle between the beam direction used by the antenna during operation and the ground horizontal line as the elevation angle; or the terminal receives the instruction information sent by the satellite base station to which it is connected, and determines according to the instruction information The pitch angle.
  • the method before the terminal determines the pitch angle when accessing the satellite base station, the method further includes:
  • the terminal determines that the distance from the last inter-satellite handover has reached a preset handover holding time.
  • the embodiment of the present disclosure provides a method for handover of satellite base stations.
  • This method corresponds to the satellite base station in the handover system of the satellite base station of the embodiments of the present disclosure, and the principle of the method to solve the problem is the same as that of the system. Similar, so the implementation of this method can refer to the implementation of the system, and the repetition will not be repeated.
  • a method for handover of a satellite base station includes the following steps:
  • Step 1601 The satellite base station receives the pitch angle sent by the terminal; where the pitch angle is the pitch angle of the terminal when it accesses the satellite base station;
  • Step 1602 when the satellite base station determines that the pitch angle is within the preset range, notify the terminal to perform inter-satellite handover.
  • the upper limit of the preset range is the pre-measured angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located when the terminal leaves the re-coverage area and the horizontal line of the ground;
  • the lower limit of the preset range is the angle between the line where the terminal and the adjacent base station corresponding to the re-coverage area are located and the ground horizontal line when the terminal enters the re-coverage area measured in advance;
  • the heavy coverage area is a cross-covered area between the satellite base station accessed by the terminal and an adjacent base station.
  • the method further includes:
  • the satellite base station sends instruction information to the terminal, so that the terminal determines the pitch angle according to the instruction information.
  • the embodiments of the present disclosure can be provided as a method, a system, or a computer program product. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本公开涉及卫星通信领域,尤其涉及一种卫星基站切换的方法、终端、卫星基站及存储介质。用以解决目前卫星基站切换的方法不够准确的问题。本公开实施例终端确定在接入卫星基站时的俯仰角;若确定所述俯仰角在预设范围内,则所述终端进行星间切换。由于本公开实施例中终端能够根据俯仰角与预设范围进行判断是否要进行接入卫星基站的切换,不需要额外计算其它参考信息,系统实施简便,且根据预设范围能够准确确定终端需要进行卫星基站切换的时机,从而实现快捷准确的卫星基站切换,提高卫星基站切换的判决效率。

Description

一种卫星基站切换的方法、终端、卫星基站及存储介质
相关申请的交叉引用
本公开要求在2020年01月03日提交中国专利局、申请号为202010005112.1、申请名称为“一种卫星基站切换的方法、终端、卫星基站及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及卫星通信领域,尤其涉及一种卫星基站切换的方法、终端、卫星基站及存储介质。
背景技术
为了实现全球覆盖,低轨卫星通信系统一般需要大量卫星组成星座,有整个星座系统为用户提供服务。由于卫星轨道低、运行快,例如轨道高度1000km左右的卫星,地球终端在地球上同一位置对卫星的可见时间大约为10分钟,为了维持不间断的服务,地面需要在多颗卫星间进行频繁的切换。
由于卫星和终端均工作在高频段,其天线波束均具有较强的指向性,地面终端天线波束窄,在接入卫星小区或不同卫星间切换时需要考虑终端的波束指向与卫星的位置关系。
现有的卫星基站切换的参考信息一般为基于接收信号强度的判决。终端通过RRM(Radio Resource Management,无线资源管理)测量获得当前小区和邻小区的RSSI(Received Signal Strength Indicator,接收信号的强度指示),通过比较多个小区的RSSI大小来判断是否进行小区切换。该方法实施的前提是终端能够同时获得多个小区的下行信号,实现难度大、成本高;且对于工作在高频段的卫星宽带通信而言,由于传播路径远、波束覆盖集中,造成覆盖区域内终端的接收信号强度低、变化小,因此仅靠检测小区信号强度变化难以满足低轨卫星宽带通信系统卫星基站切换的应用需求。
发明内容
本公开涉及卫星通信领域,尤其涉及一种卫星基站切换的方法、终端、卫星基站及存储介质。用以解决目前卫星基站切换的方法不够准确的问题。
基于上述问题,第一方面,本公开实施例提供一种卫星基站的切换方法,该方法包括:
终端确定在接入卫星基站时的俯仰角;
若确定所述俯仰角在预设范围内,则所述终端进行星间切换。
可选的,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,所述终端确定在接入卫星基站时的俯仰角,包括:
所述终端将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为所述俯仰角;或所述终端接收接入的卫星基站发送的指示信息,并根据所述指示信息确定所述俯仰角。
可选的,在所述终端确定在接入卫星基站时的俯仰角之前,还包括:
所述终端确定距离上一次进行星间切换达到预设的切换保持时长。
第二方面,本公开实施例提供一种卫星基站的切换方法,该方法包括:
终端确定在接入卫星基站时的俯仰角;
所述终端将所述俯仰角发送给接入的所述卫星基站,以使所述卫星基站在确定所述俯仰角在预设范围内时通知所述终端进行星间切换。
可选的,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,所述终端确定在接入卫星基站时的俯仰角,包括:
所述终端将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为所述俯仰角;或所述终端接收接入的卫星基站发送的指示信息,并根据所述指示信息确定所述俯仰角。
可选的,在所述终端确定在接入卫星基站时的俯仰角之前,还包括:
所述终端确定距离上一次进行星间切换达到预设的切换保持时长。
第三方面,本公开实施例提供一种卫星基站的切换方法,该方法包括:
卫星基站接收终端发送的俯仰角;其中,所述俯仰角为所述终端在接入卫星基站时的俯仰角;
所述卫星基站在确定所述俯仰角在预设范围内时,通知所述终端进行星间切换。
可选的,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,在所述卫星基站接收接入的终端发送的俯仰角之前,还包括:
所述卫星基站向所述终端发送指示信息,以使所述终端根据所述指示信息确定所述俯仰角。
第四方面,本公开实施例提供一种终端,包括处理器、存储器和收发机;
其中,所述处理器,用于读取存储器中的程序并执行:
确定在接入卫星基站时的俯仰角;
若确定所述俯仰角在预设范围内,则进行星间切换。
可选的,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,所述处理器具体用于:
将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为所述俯仰角;或接收接入的卫星基站发送的指示信息,并根据所述指示信息确定所述俯仰角。
可选的,所述处理器还用于:
在确定在接入卫星基站时的俯仰角之前,确定距离上一次进行星间切换达到预设的切换保持时长。
第五方面,本公开实施例提供一种终端,包括处理器、存储器和收发机;
其中,所述处理器,用于读取存储器中的程序并执行:
确定在接入卫星基站时的俯仰角;
将所述俯仰角发送给接入的所述卫星基站,以使所述卫星基站在确定所述俯仰角在预设范围内时通知所述终端进行星间切换。
可选的,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区 域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,所述处理器具体用于:
将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为所述俯仰角;或接收接入的卫星基站发送的指示信息,并根据所述指示信息确定所述俯仰角。
可选的,所述处理器还用于:
在确定在接入卫星基站时的俯仰角之前,确定距离上一次进行星间切换达到预设的切换保持时长。
第六方面,本公开实施例提供一种卫星基站,包括处理器、存储器和收发机;
其中,所述处理器,用于读取存储器中的程序并执行:
接收终端发送的俯仰角;其中,所述俯仰角为所述终端在接入卫星基站时的俯仰角;
在确定所述俯仰角在预设范围内时,通知所述终端进行星间切换。
可选的,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,所述处理器还用于:
向所述终端发送指示信息,以使所述终端根据所述指示信息确定所述俯仰角。
第七方面,本公开实施例提供一种终端,包括:
第一确定模块,用于确定在接入卫星基站时的俯仰角;
触发模块,用于若确定所述俯仰角在预设范围内,则进行星间切换。
第八方面,本公开实施例提供一种终端,包括:
第二确定模块,用于确定在接入卫星基站时的俯仰角;
发送模块,用于将所述俯仰角发送给接入的所述卫星基站,以使所述卫星基站在确定所述俯仰角在预设范围内时通知所述终端进行星间切换。
第九方面、本公开实施例提供一种卫星基站,包括:
接收模块,接收终端发送的俯仰角;其中,所述俯仰角为所述终端在接入卫星基站时的俯仰角;
通知模块,在确定所述俯仰角在预设范围内时,通知所述终端进行星间切换。
第十方面,本公开实施例提供一种存储介质,其上存储有处理器可读程序,该程序被 处理器执行时实现上述第一方面、第二方面或第三方面所述方法的步骤。
由于本公开实施例中,终端或卫星基站能够根据俯仰角与预设范围进行判断是否要进行接入卫星基站的切换,而俯仰角参数获取容易,不需要额外计算其它参考信息,且在当前卫星与终端的正常工作基础上即可以实现,系统实施简单;根据预设范围能够准确确定终端需要进行卫星基站切换的时机,从而实现快捷准确的卫星基站切换,提高卫星基站切换的判决效率。
附图说明
图1为本公开实施例一种卫星基站的切换系统架构示意图;
图2为本公开实施例一种卫星基站的切换系统示意图;
图3为本公开实施例第一种卫星基站的切换方法流程图;
图4为本公开实施例一种俯仰角的示意图;
图5为本公开实施例第一种卫星基站的切换过程示意图;
图6为本公开实施例第一种卫星基站的切换方法的完整流程图;
图7为本公开实施例第一种终端的结构示意图;
图8本公开实施例第一种终端的装置结构示意图;
图9为本公开实施例第二种卫星基站的切换过程示意图;
图10为本公开实施例第二种卫星基站的切换方法的完整流程图;
图11为本公开实施例第二种终端的结构示意图;
图12为本公开实施例一种卫星基站的结构示意图;
图13为本公开实施例第二种终端的装置结构示意图;
图14为本公开实施例一种卫星基站的装置结构示意图;
图15为本公开实施例第二种卫星基站的切换方法流程图;
图16为本公开实施例应用于卫星基站的卫星基站切换方法流程图。
具体实施方式
为了使本领域普通人员更好地理解本公开的技术方案,下面将结合附图,对本公开实施例中的技术方案进行清楚、完整地描述。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描 述的那些以外的顺序实施。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
下面对文中出现的一些术语进行解释:
1、本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
2、本公开实施例中术语“天线波束”,为天线方向图的主瓣,天线所辐射的无线电波能量在空间方向上的分布通常是不均匀的,体现为天线的方向性。天线方向图除了主瓣(主波束)之外,通常还有副瓣和后瓣。天线波束通常指的就是主瓣或主波束,是天线能量最集中的区域。
3、本公开实施例中术语“卫星”,为人造卫星,是由人类建造,以太空飞行载具如火箭、航天飞机等发射到太空中,像天然卫星一样环绕地球或其它行星的装置。
4、本公开实施例中术语“俯仰角”,为终端天线工作时波束指向方向与地面水平方向的夹角。
5、本公开实施例中术语“LEO”,为Low earth orbit的缩写,是指近地轨道,指航天器距离地面高度较低的轨道。近地轨道没有公认的严格定义,一般轨道高度在2000千米以下的近圆形轨道都可以称之为近地轨道。由于近地轨道卫星离地面较近,大多数对地观测卫星、测地卫星、空间站以及一些新的通信卫星系统都采用近地轨道。
本公开实施例描述的网络架构以及业务场景是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
下面将结合附图对本公开作进一步地详细描述。
图1示例性示出了适用于本公开实施例的一种系统架构示意图,如图1所示,在LEO(Low earth orbit,近地轨道)卫星通信系统中,需要大量的卫星组成星座,由整个星座为用户提供服务,图1示例性示出了低轨卫星通信系统中的低轨卫星101和低轨卫星102, 地面终端103通过低轨卫星系统中的卫星与信关站104进行通信。
图1中示出了地面终端103在低轨卫星101和低轨卫星102之间进行切换的过程,地面终端103当前接入的卫星为低轨卫星101,由于卫星轨道低、运行快,例如轨道高度1000km左右的卫星,地球终端在地球上同一位置对卫星的可见时间大约为10分钟,为了维持不间断的服务,地面终端需要从低轨卫星101切换到低轨卫星102。
现有的卫星基站切换的参考信息一般为基于接收信号强度的判决。终端通过RRM(Radio Resource Management,无线资源管理)测量获得当前小区和邻小区的RSSI(Received Signal Strength Indicator,接收信号的强度指示),通过比较多个小区的RSSI大小来判断是否进行小区切换。该方法实施的前提是终端能够同时获得多个小区的下行信号,实现难度大、成本高;且对于工作在高频段的卫星宽带通信而言,由于传播路径远、波束覆盖集中,造成覆盖区域内终端的接收信号强度低、变化小,因此仅靠检测小区信号强度变化难以满足低轨卫星宽带通信系统卫星基站切换的应用需求。
基于上述问题,本公开提供一种卫星基站的切换系统,如图2所示,包括卫星基站201和终端202。终端202确定在接入当前卫星基站201时的俯仰角,终端202确定俯仰角在预设范围时,进行星间切换;或者,终端202将俯仰角发送给当前接入的卫星基站201,卫星基站201在确定俯仰角在预设范围内时通知终端进行星间切换。其中,卫星基站是指:1、低轨卫星仅支持透明转发模式,卫星基站指低轨卫星和地面信关站等联合起来具备基站能力的设备合集;2、低轨卫星具备基站处理能力,则卫星基站指低轨卫星;3、低轨卫星支持部分基站处理能力,则卫星基站指低轨卫星及其他联合起来具备基站能力的设备合集。
由于本公开实施例中,终端或卫星基站能够根据俯仰角与预设范围进行判断是否要进行接入卫星基站的切换,而俯仰角参数获取容易,不需要额外计算其它参考信息,且在当前卫星与终端的正常工作基础上即可以实现,系统实施简单;根据预设范围能够准确确定终端需要进行卫星基站切换的时机,从而实现快捷准确的卫星基站切换,提高卫星基站切换的判决效率。
下面分别针对两种卫星基站的切换方法作进一步说明:
方法一、终端确定俯仰角在预设范围内时进行星间切换。
本公开实施例提供的第一种卫星基站的切换方法,如图3所示,包括以下步骤:
步骤301、终端确定在接入卫星基站时的俯仰角;
步骤302、若确定俯仰角在预设范围内,则终端进行星间切换。
一种可能的实施方式,终端根据下列方式确定接入卫星基站时的俯仰角:
方式1、终端将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为俯仰角。
在具体实施中,终端根据当前天线工作时使用的波束方向,测量与地面水平线之间的夹角,并将测量得到的夹角作为俯仰角。
例如,如图4所示,当前终端天线工作时使用的波束方向与地面水平线之间的夹角为γ,则将夹角γ作为俯仰角。
方式2、终端接收接入的卫星基站发送的指示信息,并根据指示信息确定俯仰角。
在具体实施中,一种可选的实施方式为,终端接收当前接入的卫星基站发送的指示信息,其中指示信息中可以包含俯仰角;终端在接收到卫星基站发送的指示信息后,直接读取指示信息中包含的俯仰角。
另一种可选的实施方式为,终端在接收当前接入的卫星基站发送的指示信息后,读取指示信息中包含的俯仰角,并根据终端的运行状态对俯仰角进行本地拟合,对俯仰角进行修正,并将修正后俯仰角作为终端接入卫星基站时的俯仰角。
终端在确定接入卫星基站时的俯仰角后,判断俯仰角是否在预设范围内,若确定俯仰角在预设范围内,则终端进行星间切换。
一种可能的实施方式,预设范围包括上限和下限;其中,预设范围的上限为预先测量的终端离开重覆盖区域时,终端与重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;预设范围的下限为预先测量的终端进入重覆盖区域时,终端与重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角,其中重覆盖区域为终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
例如,如图5所示,在LEO卫星正常覆盖的情况下,卫星波束垂直于地面,卫星能够覆盖的范围对应的波束角为β,相邻卫星之间交叉覆盖,从而实现对全球的无缝覆盖。假设终端当前接入的卫星基站为LEO卫星m,LEO卫星m与LEO卫星n为相邻卫星基站,重覆盖区域为LEO卫星m和LEO卫星n交叉覆盖的区域,则重覆盖区域对应的相邻基站为LEO卫星n。终端在接入卫星基站时的俯仰角在预设范围时(也即终端在LEO卫星m和LEO卫星n之间的重覆盖区域时),需要从当前接入的LEO卫星m切换到LEO卫星n。
预设范围的上限为预先测量的终端离开重覆盖区域时,终端与重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角,如图5所示的角α1;预设范围的下限为预先测量的终端进入重覆盖区域时,终端与重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角,如图5所示的角α2。
一种可能的实施方式,终端确定俯仰角在预设范围内时进行星间切换;
具体的,终端向当前接入的卫星基站发送切换请求消息,当前接入的卫星基站接收到切换请求消息后,确定终端需要进行星间切换,则向终端返回切换应答消息,其中,该切换应答消息中包含终端需要切换到的目标卫星基站的信息;
当前接入的卫星基站在确定终端需要进行星间切换后,还需要通知目标基站终端需要切换到该目标卫星基站;
终端在接收到当前接入的卫星基站返回的切换应答消息后,根据切换应答消息中的信息确定需要切换到的目标卫星基站,并向目标卫星基站发起接入,终端在目标卫星接入成功后,完成星间切换流程。
例如,假设预设范围为50度到60度,若终端确定在接入卫星基站时的俯仰角为55度,则终端进行星间切换;若终端确定当前接入卫星基站时的俯仰角为75度,则终端可在当前接入的卫星基站中正常工作,不需要进行卫星基站的切换。
另一种可能的实施方式,终端还可以根据俯仰角和通过RRM(Radio Resource Management,无线资源管理)测量获得的当前接入的卫星基站和相邻卫星基站的RSSI(Received Signal Strength Indicator,接收信号的强度指示)信息判断是否进行星间切换,其中,RSSI信息中包含信号接收功率。
具体的,终端在确定俯仰角在预设范围内且相邻卫星基站的信号接收功率不小于接入的卫星基站时,进行星间切换。
一种可能的实施方式,终端在确定在接入卫星基站时的俯仰角之前,确定距离上一次进行星间切换达到预设的切换保持时长。
在具体实施中,终端在预设的切换保持时长内不再进行卫星基站的切换判断过程,从而防止终端在完成切换卫星基站后俯仰角仍在预设范围时发生错误的切换判断。
一种可能的实施方式,终端周期性确定接入卫星基站时的俯仰角,从而实现周期性判断是否切换卫星基站;
具体的,若终端在本周期内确定不需要进行星间切换,则在下一个周期终端还需再次确定接入卫星基站时的俯仰角,判断俯仰角是否在预设范围内。
如图6所示,为本公开实施例第一种卫星基站的切换方法的完整流程图,包括以下步骤:
步骤601、终端确定接入卫星基站时的俯仰角;
步骤602、终端判断俯仰角是否在预设范围内,若是,执行步骤603,若否,执行步骤604;
步骤603、终端进行星间切换;
步骤604、终端确定距离上一次进行星间切换达到预设的切换保持时长后,返回步骤601;
步骤605、终端确定距离上一次确定俯仰角达到一个预设周期对应的时长后,返回步骤601;
其中,该预设周期为预先设定的终端周期性确定接入卫星基站时的俯仰角的周期。
如图7所示,本公开实施例第一种用于卫星基站的切换方法的终端,包括:处理器700、存储器701、收发机702以及总线接口。
处理器700负责管理总线架构和通常的处理,存储器701可以存储处理器700在执行操作时所使用的数据。收发机702用于在处理器700的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器701代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器700负责管理总线架构和通常的处理,存储器701可以存储处理器700在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器700中,或者由处理器700实现。在实现过程中,信号处理流程的各步骤可以通过处理器700中的硬件的集成逻辑电路或者软件形式的指令完成。处理器700可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器701,处理器700读取存储器701中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器700,用于读取存储器701中的程序并执行:
确定在接入卫星基站时的俯仰角;
若确定所述俯仰角在预设范围内,则进行星间切换。
可选的,预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,所述处理器700具体用于:
将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为所述俯仰角;或接收接入的卫星基站发送的指示信息,并根据所述指示信息确定所述俯仰角。
可选的,所述处理器700还用于:
在确定在接入卫星基站时的俯仰角之前,确定距离上一次进行星间切换达到预设的切换保持时长。
如图8所示,本公开实施例第一种终端,包括:
第一确定模块801,用于确定在接入卫星基站时的俯仰角;
触发模块802,用于若确定所述俯仰角在预设范围内,则进行星间切换。
可选的,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,所述第一确定模块801具体用于:
将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为所述俯仰角;或接收接入的卫星基站发送的指示信息,并根据所述指示信息确定所述俯仰角。
可选的,所述第一确定模块801还用于:
在确定在接入卫星基站时的俯仰角之前,确定距离上一次进行星间切换达到预设的切换保持时长。
本公开实施例还提供一种存储介质,其上存储有处理器可读程序,该程序被处理器执行时实现如上述卫星基站的切换方法的步骤。
方法二、卫星基站确定俯仰角在预设范围内时通知终端进行星间切换。
如图2所示的卫星基站的切换系统,包括卫星基站201和终端202;
卫星基站201,用于接收终端发送的俯仰角;在确定俯仰角在预设范围内时,通知终端进行星间切换。
终端202,用于确定在接入卫星基站时的俯仰角;将俯仰角发送给接入的卫星基站,以使卫星基站在确定俯仰角在预设范围内时通知终端进行星间切换。
一种可能的实施方式,终端根据下列方式确定接入卫星基站时的俯仰角:
方式1、终端将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为俯 仰角。
在具体实施中,终端根据当前天线工作时使用的波束方向,测量与地面水平线之间的夹角,并将测量得到的夹角作为俯仰角。
方式2、终端接收接入的卫星基站发送的指示信息,并根据指示信息确定俯仰角。
在具体实施中,一种可选的实施方式为,终端接收当前接入的卫星基站发送的指示信息,其中指示信息中可以包含俯仰角,终端在接收到卫星基站发送的指示信息后,直接读取指示信息中包含的俯仰角。
另一种可选的实施方式为,终端在接收当前接入的卫星基站发送的指示信息后,读取指示信息中包含的俯仰角,并根据终端的运行状态对俯仰角进行本地拟合,对俯仰角进行修正,并将修正后俯仰角作为终端接入卫星基站时的俯仰角。
终端在确定接入卫星基站时的俯仰角后,将俯仰角发送给接入的卫星基站。
一种可能的实施方式,卫星基站在接收到俯仰角后,判断俯仰角是否在预设范围内,在确定俯仰角在预设范围内时通知终端进行星间切换;
需要说明的是,预设范围包括上限和下限;其中,预设范围的上限为预先测量的终端离开重覆盖区域时,终端与重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;预设范围的下限为预先测量的终端进入重覆盖区域时,终端与重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角,其中重覆盖区域为终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
例如,如图9所示,在LEO卫星正常覆盖的情况下,卫星波束垂直于地面,卫星能够覆盖的范围对应的波束角为β,相邻卫星之间交叉覆盖,从而实现对全球的无缝覆盖。假设终端当前接入的卫星基站为LEO卫星m,LEO卫星m与LEO卫星n为相邻卫星基站,重覆盖区域为LEO卫星m和LEO卫星n交叉覆盖的区域,则重覆盖区域对应的相邻基站为LEO卫星n。终端在接入卫星基站时的俯仰角在预设范围时(也即终端在LEO卫星m和LEO卫星n之间的重覆盖区域时),需要从当前接入的LEO卫星m切换到LEO卫星n。
预设范围的上限为预先测量的终端离开重覆盖区域时,终端与重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角,如图9所示的角α1;预设范围的下限为预先测量的终端进入重覆盖区域时,终端与重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角,如图9所示的角α2。
在具体实施中,终端可以通过下列方式将俯仰角发送给接入的卫星基站:
终端通过RRC(Radio Resource Control,无线资源控制)信令将俯仰角发送给接入的卫星基站;
实施中,在RRC信令中新增终端天线状态上报信息,在该信令中携带终端工作状态信息,终端的工作状态信息中包含俯仰角。
另外,终端还可以将俯仰角和通过RRM(Radio Resource Management,无线资源管理)测量获得的当前接入的卫星基站和相邻卫星基站的RSSI(Received Signal Strength Indicator,接收信号的强度指示)信息发送给接入的卫星基站,卫星基站收到俯仰角和RSSI信息后,通过俯仰角和接收信号功率共同判断是否要通知终端触发卫星基站的切换。
具体的,卫星基站在确定俯仰角在预设范围内且相邻卫星基站的信号接收功率不小于接入的卫星基站时,通知终端触发卫星基站的切换。
一种可能的实施方式,终端通过下列方式向接入的卫星基站发送俯仰角:
方式1、通过用于上报RRM测量信息的RRC信令进行发送。
目前的5G协议规定,终端在开始进行RRM测量后,会向网络侧发送RRM测量信息;终端可以将俯仰角放在用于上报RSSI信息的RRM测量信息中,同时向接入的卫星基站发送俯仰角和RSSI信息。
方式2:通过新增的专用RRC信令指示进行发送。
终端新增专用的RRC信令,通过新增的RRC信令发送终端工作状态信息,终端的工作状态信息中包含俯仰角,使用该专用RRC信令指示向接入的卫星基站发送俯仰角;并通过已有的用于上报RRM测量信息的RRC信令向接入的卫星基站发送RSSI信息。
一种可能的实施方式,终端在接收到卫星基站发送的通知终端进行星间切换的消息后,终端向当前接入的卫星基站发送切换请求消息,当前接入的卫星基站接收到切换请求消息后,确定终端需要进行星间切换,则向终端返回切换应答消息,其中,该切换应答消息中包含终端需要切换到的目标卫星基站的信息;
当前接入的卫星基站在确定终端需要进行星间切换后,还需要通知目标基站终端需要切换到该目标卫星基站;
终端在接收到当前接入的卫星基站返回的切换应答消息后,根据切换应答消息中的信息确定需要切换到的目标卫星基站,并向目标卫星基站发起接入,终端在目标卫星接入成功后,完成星间切换流程。
一种可能的实施方式,终端在确定在接入卫星基站时的俯仰角之前,确定距离上一次进行星间切换达到预设的切换保持时长。
在具体实施中,终端在预设的切换保持时长内不再进行卫星基站的切换判断过程,从而防止终端在完成切换卫星基站后俯仰角仍在预设范围时发生错误的切换判断。
如图10所示,为本公开实施例提供的第二种卫星基站的切换方法的完整流程图,包 括以下步骤:
步骤1001、终端确定在接入卫星基站时的俯仰角;
步骤1002、终端将俯仰角发送给接入的卫星基站;
步骤1003、卫星基站确定俯仰角在预设范围内;
步骤1004、卫星基站通知终端进行星间切换;
步骤1005、终端进行星间切换。
基于同一发明构思,本公开实施例中还提供了一种终端,由于该终端解决问题的原理与本公开实施例卫星基站的切换方法相似,因此该终端的实施可以参见方法的实施,重复之处不再赘述。
如图11所示,本公开实施例第二种用于卫星基站的切换方法的终端,包括:处理器1100、存储器1101、收发机1102以及总线接口。
处理器1100负责管理总线架构和通常的处理,存储器1101可以存储处理器1100在执行操作时所使用的数据。收发机1102用于在处理器1100的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1101代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1100负责管理总线架构和通常的处理,存储器1101可以存储处理器1100在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器1100中,或者由处理器1100实现。在实现过程中,信号处理流程的各步骤可以通过处理器1100中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1100可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1101,处理器1100读取存储器1101中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1100,用于读取存储器1101中的程序并执行:
确定在接入卫星基站时的俯仰角;
将所述俯仰角发送给接入的所述卫星基站,以使所述卫星基站在确定所述俯仰角在预 设范围内时通知所述终端进行星间切换。
可选的,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,所述处理器1100具体用于:
将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为所述俯仰角;或接收接入的卫星基站发送的指示信息,并根据所述指示信息确定所述俯仰角。
可选的,所述处理器1100还用于:
在确定在接入卫星基站时的俯仰角之前,确定距离上一次进行星间切换达到预设的切换保持时长。
如图12所示,本公开实施例一种卫星基站,包括:处理器1200、存储器1201、收发机1202以及总线接口。
处理器1200负责管理总线架构和通常的处理,存储器1201可以存储处理器1200在执行操作时所使用的数据。收发机1202用于在处理器1200的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1200代表的一个或多个处理器和存储器1201代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1200负责管理总线架构和通常的处理,存储器1201可以存储处理器1200在执行操作时所使用的数据。
本公开实施例揭示的流程,可以应用于处理器1200中,或者由处理器1200实现。在实现过程中,信号处理流程的各步骤可以通过处理器1200中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1200可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1201,处理器1200读取存储器1201中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1200,用于读取存储器1201中的程序并执行:
接收终端发送的俯仰角;其中,所述俯仰角为所述终端在接入卫星基站时的俯仰角;
在确定所述俯仰角在预设范围内时,通知所述终端进行星间切换。
可选的,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,所述处理器1200还用于:
向所述终端发送指示信息,以使所述终端根据所述指示信息确定所述俯仰角。
如图13所示,本公开实施例第二种终端,包括:
第二确定模块1301,用于确定在接入卫星基站时的俯仰角;
发送模块1302,用于将所述俯仰角发送给接入的所述卫星基站,以使所述卫星基站在确定所述俯仰角在预设范围内时通知所述终端进行星间切换。
可选的,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,第二确定模块1301具体用于:
将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为所述俯仰角;或接收接入的卫星基站发送的指示信息,并根据所述指示信息确定所述俯仰角。
可选的,第二确定模块1301还用于:
在确定在接入卫星基站时的俯仰角之前,确定距离上一次进行星间切换达到预设的切换保持时长。
如图14所示,本公开实施例一种卫星基站,包括:
接收模块1401,接收终端发送的俯仰角;其中,所述俯仰角为所述终端在接入卫星基站时的俯仰角;
通知模块1402,在确定所述俯仰角在预设范围内时,通知所述终端进行星间切换。
可选的,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,通知模块1402还用于:
向所述终端发送指示信息,以使所述终端根据所述指示信息确定所述俯仰角。
本公开实施例还提供一种存储介质,其上存储有处理器可读程序,该程序被处理器执行时实现如上述卫星基站的切换方法的步骤。
基于同一发明构思,本公开实施例中提供一种卫星基站的切换方法,由于该方法对应的是本公开实施例的卫星基站的切换系统中的第二种终端,并且该方法解决问题的原理与该系统相似,因此该方法的实施可以参见系统的实施,重复之处不再赘述。
如图15所示,本公开实施例一种卫星基站的切换方法,包括以下步骤:
步骤1501、终端确定在接入卫星基站时的俯仰角;
步骤1502、终端将俯仰角发送给接入的卫星基站,以使卫星基站在确定俯仰角在预设范围内时通知终端进行星间切换。
可选的,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,所述终端确定在接入卫星基站时的俯仰角,包括:
所述终端将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为所述俯仰角;或所述终端接收接入的卫星基站发送的指示信息,并根据所述指示信息确定所述俯仰角。
可选的,在所述终端确定在接入卫星基站时的俯仰角之前,还包括:
所述终端确定距离上一次进行星间切换达到预设的切换保持时长。
基于同一发明构思,本公开实施例中提供一种卫星基站的切换方法,由于该方法对应的是本公开实施例的卫星基站的切换系统中的卫星基站,并且该方法解决问题的原理与该系统相似,因此该方法的实施可以参见系统的实施,重复之处不再赘述。
如图16所示,本公开实施例一种卫星基站的切换方法,包括以下步骤:
步骤1601、卫星基站接收终端发送的俯仰角;其中,俯仰角为终端在接入卫星基站时的俯仰角;
步骤1602、卫星基站在确定俯仰角在预设范围内时,通知终端进行星间切换。
可选的,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
可选的,在所述卫星基站接收接入的终端发送的俯仰角之前,还包括:
所述卫星基站向所述终端发送指示信息,以使所述终端根据所述指示信息确定所述俯仰角。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (27)

  1. 一种卫星基站的切换方法,其特征在于,该方法包括:
    终端确定在接入卫星基站时的俯仰角;
    若确定所述俯仰角在预设范围内,则所述终端进行星间切换。
  2. 如权利要求1所述的方法,其特征在于,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
    所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
    其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
  3. 如权利要求1所述的方法,其特征在于,所述终端确定在接入卫星基站时的俯仰角,包括:
    所述终端将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为所述俯仰角;或
    所述终端接收接入的卫星基站发送的指示信息,并根据所述指示信息确定所述俯仰角。
  4. 如权利要求1所述的方法,其特征在于,在所述终端确定在接入卫星基站时的俯仰角之前,还包括:
    所述终端确定距离上一次进行星间切换达到预设的切换保持时长。
  5. 一种卫星基站的切换方法,其特征在于,该方法包括:
    终端确定在接入卫星基站时的俯仰角;
    所述终端将所述俯仰角发送给接入的所述卫星基站,以使所述卫星基站在确定所述俯仰角在预设范围内时通知所述终端进行星间切换。
  6. 如权利要求5所述的方法,其特征在于,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
    所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
    其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
  7. 如权利要求5所述的方法,其特征在于,所述终端确定在接入卫星基站时的俯仰角,包括:
    所述终端将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为所述俯仰角;或
    所述终端接收接入的卫星基站发送的指示信息,并根据所述指示信息确定所述俯仰角。
  8. 如权利要求5所述的方法,其特征在于,在所述终端确定在接入卫星基站时的俯仰角之前,还包括:
    所述终端确定距离上一次进行星间切换达到预设的切换保持时长。
  9. 一种卫星基站的切换方法,其特征在于,该方法包括:
    卫星基站接收终端发送的俯仰角;其中,所述俯仰角为所述终端在接入卫星基站时的俯仰角;
    所述卫星基站在确定所述俯仰角在预设范围内时,通知所述终端进行星间切换。
  10. 如权利要求9所述的方法,其特征在于,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
    所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
    其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
  11. 如权利要求9所述的方法,其特征在于,在所述卫星基站接收接入的终端发送的俯仰角之前,还包括:
    所述卫星基站向所述终端发送指示信息,以使所述终端根据所述指示信息确定所述俯仰角。
  12. 一种终端,其特征在于,包括处理器、存储器和收发机;
    其中,所述处理器,用于读取存储器中的程序并执行:
    确定在接入卫星基站时的俯仰角;
    若确定所述俯仰角在预设范围内,则进行星间切换。
  13. 如权利要求12所述的终端,其特征在于,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
    所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
    其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
  14. 如权利要求12所述的终端,其特征在于,所述处理器具体用于:
    将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为所述俯仰角;或
    接收接入的卫星基站发送的指示信息,并根据所述指示信息确定所述俯仰角。
  15. 如权利要求12所述的终端,其特征在于,所述处理器还用于:
    在确定在接入卫星基站时的俯仰角之前,确定距离上一次进行星间切换达到预设的切换保持时长。
  16. 一种终端,其特征在于,包括:
    第一确定模块,用于确定在接入卫星基站时的俯仰角;
    触发模块,用于若确定所述俯仰角在预设范围内,则进行星间切换。
  17. 一种终端,其特征在于,包括处理器、存储器和收发机;
    其中,所述处理器,用于读取存储器中的程序并执行:
    确定在接入卫星基站时的俯仰角;
    将所述俯仰角发送给接入的所述卫星基站,以使所述卫星基站在确定所述俯仰角在预设范围内时通知所述终端进行星间切换。
  18. 如权利要求17所述的终端,其特征在于,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
    所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
    其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
  19. 如权利要求17所述的终端,其特征在于,所述处理器具体用于:
    将测量到的天线工作时使用的波束方向与地面水平线之间的夹角作为所述俯仰角;或
    接收接入的卫星基站发送的指示信息,并根据所述指示信息确定所述俯仰角。
  20. 如权利要求17所述的终端,其特征在于,所述处理器还用于:
    在确定在接入卫星基站时的俯仰角之前,确定距离上一次进行星间切换达到预设的切换保持时长。
  21. 一种终端,其特征在于,包括:
    第二确定模块,用于确定在接入卫星基站时的俯仰角;
    发送模块,用于将所述俯仰角发送给接入的所述卫星基站,以使所述卫星基站在确定所述俯仰角在预设范围内时通知所述终端进行星间切换。
  22. 一种卫星基站,其特征在于,包括处理器、存储器和收发机;
    其中,所述处理器,用于读取存储器中的程序并执行:
    接收终端发送的俯仰角;其中,所述俯仰角为所述终端在接入卫星基站时的俯仰角;
    在确定所述俯仰角在预设范围内时,通知所述终端进行星间切换。
  23. 如权利要求22所述的卫星基站,其特征在于,所述预设范围的上限为预先测量的终端离开重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
    所述预设范围的下限为预先测量的终端进入重覆盖区域时,所述终端与所述重覆盖区域对应的相邻基站所在直线和地面水平线之间的夹角;
    其中,所述重覆盖区域为所述终端接入的卫星基站与相邻基站之间交叉覆盖的区域。
  24. 如权利要求22所述的卫星基站,其特征在于,所述处理器还用于:
    向所述终端发送指示信息,以使所述终端根据所述指示信息确定所述俯仰角。
  25. 一种卫星基站,其特征在于,包括:
    接收模块,接收终端发送的俯仰角;其中,所述俯仰角为所述终端在接入卫星基站时的俯仰角;
    通知模块,在确定所述俯仰角在预设范围内时,通知所述终端进行星间切换。
  26. 一种存储介质,其上存储有处理器可读程序,其特征在于,该程序被处理器执行时实现如权利要求1~4或5~8任一所述方法的步骤。
  27. 一种存储介质,其上存储有处理器可读程序,其特征在于,该程序被处理器执行时实现如权利要求9~11任一所述方法的步骤。
PCT/CN2020/131221 2020-01-03 2020-11-24 一种卫星基站切换的方法、终端、卫星基站及存储介质 WO2021135735A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20911159.0A EP4087157A4 (en) 2020-01-03 2020-11-24 PROCEDURE FOR HANDLING A SATELLITE BASE STATION, TERMINAL, SATELLITE BASE STATION AND STORAGE MEDIA
US17/787,930 US20230045249A1 (en) 2020-01-03 2020-11-24 Method for handover of satellite base station, terminal, satellite base station, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010005112.1A CN113078935B (zh) 2020-01-03 2020-01-03 一种卫星基站切换的方法、终端、卫星基站及存储介质
CN202010005112.1 2020-01-03

Publications (1)

Publication Number Publication Date
WO2021135735A1 true WO2021135735A1 (zh) 2021-07-08

Family

ID=76608388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131221 WO2021135735A1 (zh) 2020-01-03 2020-11-24 一种卫星基站切换的方法、终端、卫星基站及存储介质

Country Status (4)

Country Link
US (1) US20230045249A1 (zh)
EP (1) EP4087157A4 (zh)
CN (1) CN113078935B (zh)
WO (1) WO2021135735A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872679A (zh) * 2021-10-28 2021-12-31 中科南京移动通信与计算创新研究院 星间链路切换方法、卫星基站、终端及存储介质
CN114584198A (zh) * 2022-01-20 2022-06-03 航天科工空间工程发展有限公司 星载激光通信设备在轨自主规避日凌的方法、设备及介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039645B (zh) * 2021-10-26 2024-04-16 中科南京移动通信与计算创新研究院 卫星基站切换方法、装置、电子设备及存储介质
CN118054843B (zh) * 2024-04-16 2024-07-05 深圳疆泰科技有限公司 服务卫星切换控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575678A1 (en) * 1992-05-28 1993-12-29 Trw Inc. Medium-earth-altitude satellite-based cellular telecommunications system
WO1999056408A1 (en) * 1998-04-29 1999-11-04 Hughes Electronics Corporation A method and apparatus for predicting spot beam and satellite handover in a mobile satellite communication network
CN105281958A (zh) * 2015-11-04 2016-01-27 哈尔滨工业大学 用于多层卫星网络环境中的卫星覆盖和星间链路分析方法
CN105682163A (zh) * 2016-01-12 2016-06-15 宇龙计算机通信科技(深圳)有限公司 基站切换控制方法、基站切换控制装置和终端
CN106792946A (zh) * 2017-01-12 2017-05-31 北京邮电大学 卫星网络中一种面向快速终端的自适应切换方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309522B (zh) * 2017-07-28 2021-12-03 广州极飞科技股份有限公司 信号发射以及无人机定位的方法、装置、系统
EP3763056A1 (en) * 2018-03-09 2021-01-13 IPCom GmbH & Co. KG Predictive measurement for non-terrestrial communication
CN110572200A (zh) * 2019-09-10 2019-12-13 北京航空航天大学 中继卫星移动切换方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575678A1 (en) * 1992-05-28 1993-12-29 Trw Inc. Medium-earth-altitude satellite-based cellular telecommunications system
WO1999056408A1 (en) * 1998-04-29 1999-11-04 Hughes Electronics Corporation A method and apparatus for predicting spot beam and satellite handover in a mobile satellite communication network
CN105281958A (zh) * 2015-11-04 2016-01-27 哈尔滨工业大学 用于多层卫星网络环境中的卫星覆盖和星间链路分析方法
CN105682163A (zh) * 2016-01-12 2016-06-15 宇龙计算机通信科技(深圳)有限公司 基站切换控制方法、基站切换控制装置和终端
CN106792946A (zh) * 2017-01-12 2017-05-31 北京邮电大学 卫星网络中一种面向快速终端的自适应切换方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4087157A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872679A (zh) * 2021-10-28 2021-12-31 中科南京移动通信与计算创新研究院 星间链路切换方法、卫星基站、终端及存储介质
CN114584198A (zh) * 2022-01-20 2022-06-03 航天科工空间工程发展有限公司 星载激光通信设备在轨自主规避日凌的方法、设备及介质
CN114584198B (zh) * 2022-01-20 2023-07-07 航天科工空间工程发展有限公司 星载激光通信设备在轨自主规避日凌的方法、设备及介质

Also Published As

Publication number Publication date
CN113078935B (zh) 2022-12-23
CN113078935A (zh) 2021-07-06
US20230045249A1 (en) 2023-02-09
EP4087157A4 (en) 2023-05-31
EP4087157A1 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2021135735A1 (zh) 一种卫星基站切换的方法、终端、卫星基站及存储介质
US11968587B2 (en) Mobility management method, radio access network, terminal and computer storage medium
EP3902325B1 (en) Handover control method and device
US11621772B2 (en) Systems for mitigating service interrupts in satellite systems
CN112787702B (zh) 网络的切换方法和装置
WO2021135858A1 (zh) 指示方法及设备
CN113079546B (zh) 一种低轨卫星间切换方法和装置
US20220386200A1 (en) Network resource configuration method and apparatus
US20230006732A1 (en) Satellite beam offset processing method, device and medium
CN113131984B (zh) 一种卫星覆盖信息的指示方法及设备
EP4142180A1 (en) Method and apparatus for instructing base station to establish connection with gateway stations, and computing device
WO2022083367A1 (zh) 干扰处理方法、装置、设备及可读存储介质
CN114666865A (zh) 一种低轨卫星的通信方法、装置、设备及可读存储介质
EP4044627A1 (en) Network access method and apparatus for terminal, electronic device and storage medium
US20220209854A1 (en) Method and device for determining sending parameters of terminal
EP4050925B1 (en) Method and apparatus for information transmission, device, and storage medium
US20220252736A1 (en) Neighboring cell measurement method and apparatus
CN113765572B (zh) 指示方法及设备
CN115396011A (zh) 卫星通信中的切换方法、通信装置、介质及电子设备
CN112596086A (zh) 一种用于低轨通信卫星移动终端的定位方法、装置及系统
WO2022156519A1 (zh) 一种无线通信的方法及装置
US20240267747A1 (en) Determining counteractions for remedying network anomalies
CN115334527A (zh) 定位方法、设备及处理器可读存储介质
CN115915007A (zh) 终端位置上报方法、设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020911159

Country of ref document: EP

Effective date: 20220803