WO2021135422A1 - Procédé pour calculer rapidement une déformation d'inclinaison d'un mât circulaire sur la base d'un nuage de points laser - Google Patents

Procédé pour calculer rapidement une déformation d'inclinaison d'un mât circulaire sur la base d'un nuage de points laser Download PDF

Info

Publication number
WO2021135422A1
WO2021135422A1 PCT/CN2020/116796 CN2020116796W WO2021135422A1 WO 2021135422 A1 WO2021135422 A1 WO 2021135422A1 CN 2020116796 W CN2020116796 W CN 2020116796W WO 2021135422 A1 WO2021135422 A1 WO 2021135422A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
tower
circular
height
automatically
Prior art date
Application number
PCT/CN2020/116796
Other languages
English (en)
Chinese (zh)
Inventor
刘安涛
毛玉丽
张海生
郝建奇
任立华
张焕杰
黄真辉
柴春鹏
赵贞欣
李伟
陈明
霍思燕
Original Assignee
中国电建集团河北省电力勘测设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电建集团河北省电力勘测设计研究院有限公司 filed Critical 中国电建集团河北省电力勘测设计研究院有限公司
Publication of WO2021135422A1 publication Critical patent/WO2021135422A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • G01C2009/066Electric or photoelectric indication or reading means optical

Definitions

  • the invention relates to a method for quickly calculating the tilt deformation of a circular pole tower based on a laser point cloud, and belongs to the technical field of tilt detection.
  • Electricity is an important energy resource in the world, and its power facilities are an important infrastructure in the world. Therefore, the monitoring and maintenance of power facilities is particularly important, especially the inclination and deformation monitoring of power towers, wind turbine towers, etc.
  • the so-called tilt of the tower is the phenomenon that the center of the tower deviates from the plumb weight due to the uneven top surface of the foundation column.
  • the upper covering rock may cause ground cracks, rock mass dislocation, collapse, and ground collapse due to local environmental or external forces such as gravity, stress and natural forces. And other geological phenomena, and then major safety accidents such as towers or wind turbines twisting, tilting, or even toppling.
  • the inclination of poles and towers is one of the main threats that affect the stable operation of power transmission lines and wind farms. Therefore, the inclination monitoring of power poles and wind turbine towers is an important content of power detection.
  • the traditional tilt measurement method is the total station measurement or the plane mirror method. These two tilt measurement methods are not accurate enough and not rigorous enough to fully reflect the tilt and deformation of the power tower and the wind turbine tower.
  • the development of terrestrial 3D laser scanning technology has greatly improved the efficiency, accuracy and data volume of data acquisition, which has made a qualitative leap compared with traditional surveying.
  • the distance values of thousands of target points are acquired at one time, and the position and posture of the launch point are determined by auxiliary measuring equipment, and then the three-dimensional coordinates, reflectivity and texture of the target point are obtained to construct High-precision, high-resolution ground model and real three-dimensional modeling.
  • laser scanning can obtain a large amount of point information, which can better characterize the surface model of the object.
  • Determining the tilting deformation of the poles and towers is of great significance for maintaining the safety of lines and wind turbines, and is an important technical means to ensure the safety of power facilities operation and maintenance and maintain national energy security.
  • the purpose of the present invention is to provide a method for quickly calculating the tilt deformation of a circular pole tower based on a laser point cloud, which has the effects of fast calculation speed, economical application, automatic realization of tilt deformation measurement at any height, and high accuracy.
  • a method for quickly calculating the tilt and deformation of a circular tower based on a laser point cloud including the following steps:
  • step one the scanning rack site is empty and the ground object is single; and the scanning angle is 30 degrees.
  • Step 2 The automatic extraction of point cloud data of the circular pole tower includes the following steps:
  • step 2 Repeat step 1 to traverse the point cloud and extract all the useful point clouds in a small range of the circular tower;
  • step 3 Repeat step 3 until all round tower point clouds are found, and the round tower point cloud data will be automatically obtained.
  • step 3 the circular point cloud data of the height layer of 2mm thickness is automatically intercepted from the position of the pole tower with a height of 2 meters, and the height of each additional 1 meter is automatically intercepted in turn. Ring point cloud data.
  • Step 3 The grid size is 0.1m ⁇ 0.1m, and the threshold value is set to 100.
  • the scanning rack station of the present invention has an open selection point and a single ground object, and it is easy to obtain the point cloud data of the pole and tower.
  • the invention automatically screens and reduces the data volume of the point cloud data obtained by scanning, and removes the noise point cloud far away from the tower.
  • the point cloud is automatically filtered through the coordinates of the erection position and the approximate height of the tower, and the point cloud in a small range of the circular tower is extracted, and the redundant noise point cloud is filtered out.
  • the invention adopts the principle of least squares to perfectly fit the center position of the cross section at any height, so as to realize the rapid acquisition of the inclination rate of the inclination deformation.
  • Figure 1 is the technical route of the present invention
  • Fig. 2 is a schematic diagram of the central axis of the cross section of the present invention.
  • Leica ScanStation P50 uses Leica ScanStation P50 to complete field point cloud data collection.
  • Leica P50 adopts high-precision angle and distance measurement technology, WFD waveform digitization technology, Mixed Pixels technology and HDR image technology. It has a longer range and more powerful performance. Its scanning effective distance exceeds 500 meters. 360-degree panoramic scanning, the scanning rate is as high as 1,000,000 points/sec.
  • the application of multiple technologies reduces the noise in the scanning range, eliminates the phenomenon of object edge smearing, increases the accuracy of the edge range, widens the scanning range, reduces the number of stations, and meets the needs of large scenes, long distances and various scanning tasks. It can well meet the needs of pole tower tilt measurement.
  • the invention discloses a method for quickly calculating the tilting deformation of a circular pole tower based on a laser point cloud. As shown in Fig. 1 is the technical route of the invention, which includes the following steps:
  • the principle of selecting the scanning rack station is that the rack site should be as open as possible, and the ground objects should be as simple as possible, so that the point cloud data of the tower can be easily obtained.
  • the distance between the rack site and the circular tower is generally 1/2 or one time the height of the tower.
  • the scanning angle range can be set to 30 degrees according to the height and distance of the tower, and the reflecting prism is controlled to rotate at a uniform speed; for each circular tower, choose two relative erection positions, and try to use the least amount of point cloud data to achieve the panoramic view of the circular tower Scan to reduce redundant noise data outside the circular tower.
  • the point cloud data obtained by scanning is automatically screened and reduced, and the noise point cloud far away from the tower is removed.
  • the point cloud is automatically filtered through the coordinates of the erection position and the approximate height of the tower, and the point cloud in a small range of the circular tower is extracted, and the redundant noise point cloud is filtered out.
  • the grid density segmentation is performed on the point cloud in a small area of the circular tower. Considering that the number of projection points of the circular tower point cloud on the horizontal plane is large, and there is a big difference with the surrounding point data, the grid point cloud threshold can be set , If the number of points in the grid is greater than the threshold, it will be calibrated as a circular tower point cloud.
  • step two The specific operation steps of step two are as follows:
  • the point cloud is automatically screened and reduced by the position coordinates of the scanning station and the approximate height of the tower. Starting from any point cloud, calculate the distance from the position of the scanning station. If the distance is less than the height of the tower, the point cloud is marked as a useful point , Otherwise it is marked as noise;
  • step 2 Repeat step 1 to traverse the point cloud and extract all the useful point clouds in a small range of the circular tower;
  • step 3 Repeat step 3 until all round tower point clouds are found, and the round tower point cloud data will be automatically obtained.
  • the present invention For the point cloud data of a circular pole tower or wind turbine tower, first obtain the bottom point cloud elevation information, considering that the base height of the bottom of the pole tower is generally about 1 meter. In order to eliminate the influence of the bottom information of the pole tower, the present invention adds a position of 2 meters from the bottom elevation. According to the tower height value H ⁇ 1mm of this height, the ring point cloud data of 2mm thickness of the height layer will be automatically intercepted; for each increase in height by 1 meter, the ring point cloud data of the height layer of 2mm thickness will be automatically intercepted in turn.
  • the sampling interval setting can also be adjusted manually according to the inclination of the circular tower and wind turbine tower.
  • the sampling interval can be set smaller so that the inclination curve can accurately reflect the circular tower and wind turbine tower.
  • the inclination state of the tube rather than a partial, rough, and incomplete reflection of the inclination state of the tower and wind turbine, cannot fully and accurately reflect the problem.
  • the cross section of each height of the circular tower body is a circle.
  • the scanner obtains the point cloud data of the tower body, the points on the surface of the tower body are scanned as the reflection source, so the cross section of the tower body point cloud is a circle.
  • the present invention first selects three points with a certain interval from each thin layer point cloud ring, and roughly determines the circle equation of the point cloud ring.
  • the points on the point cloud ring should basically satisfy the circle equation, with only a few abnormal points. Not on the circular trajectory. If a point deviates from the circle trajectory, it is calibrated as an abnormal point and eliminated, and a point cloud ring that satisfies the circle equation is obtained.
  • the least squares algorithm is used to fit the point cloud ring of the circular tower or wind turbine tower. Accurately obtain the center coordinates of each point cloud ring, and obtain the tilt and deformation information of each layer relative to the bottom layer;
  • (X c , y c ) are the coordinates of the center of the fitting circle, and R is the radius of the fitting circle (unit: m).
  • the inclination rate expresses the relative relationship.
  • the center of any cross section of the target should form a central axis, as shown in Figure 2.
  • a reference datum needs to be set when calculating the inclination rate, in accordance with the "Building Deformation Measurement Code" .
  • the center of the cross section at the bottom end of the tower body is set as the reference datum
  • the offset of the center of the cross section of different height h relative to the reference datum center is d
  • the inclination rate of this height is :
  • Step 5 of the present invention adopts the principle of least squares to perfectly fit the center position of the cross section at any height, so as to realize the tilt deformation. Obtain the tilt rate quickly.
  • the algorithm of the present invention is reliable, the calculation speed is fast, can automatically realize the tilt deformation measurement work at any height, and the tilt rate measurement accuracy is high at the same time,

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

La présente invention concerne un procédé pour calculer rapidement une déformation d'inclinaison d'un mât circulaire sur la base d'un nuage de points laser, le procédé appartenant au domaine technique de la mesure d'inclinaison. Le procédé comporte les étapes suivantes : I, sélectionner un angle de balayage et une station raisonnables d'une trame de balayage ; II, réaliser une segmentation de densité de grille pour réaliser une extraction automatique de données de nuage de points d'un mât circulaire ; III, capturer automatiquement des données de couche mince à n'importe quelle altitude à partir des données extraites à l'étape II ; IV, éliminer les points anormaux de chaque anneau de nuage de points de couche mince dans les données de couche mince capturées à l'étape III pour obtenir un anneau de nuage de points satisfaisant une équation de cercle ; V, ajuster automatiquement le centre de l'anneau de nuage de points et ajuster la position centrale d'une couche mince à n'importe quelle altitude ; et VI, calculer un décalage se produisant sur un centre de référence de base obtenu à l'étape V et calculer ensuite rapidement le taux d'inclinaison du mât circulaire selon une formule de calcul. Le procédé présente les effets avantageux d'être rapide en termes de vitesse de calcul et abordable, il permet d'obtenir automatiquement une mesure de déformation d'inclinaison à n'importe quelle altitude et d'être de précision élevée.
PCT/CN2020/116796 2019-12-31 2020-09-22 Procédé pour calculer rapidement une déformation d'inclinaison d'un mât circulaire sur la base d'un nuage de points laser WO2021135422A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911411076.2A CN111174761A (zh) 2019-12-31 2019-12-31 一种基于激光点云的圆形杆塔倾斜变形快速计算方法
CN201911411076.2 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135422A1 true WO2021135422A1 (fr) 2021-07-08

Family

ID=70646506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116796 WO2021135422A1 (fr) 2019-12-31 2020-09-22 Procédé pour calculer rapidement une déformation d'inclinaison d'un mât circulaire sur la base d'un nuage de points laser

Country Status (2)

Country Link
CN (1) CN111174761A (fr)
WO (1) WO2021135422A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111174761A (zh) * 2019-12-31 2020-05-19 中国电建集团河北省电力勘测设计研究院有限公司 一种基于激光点云的圆形杆塔倾斜变形快速计算方法
CN111830528A (zh) * 2020-06-29 2020-10-27 西安交通大学 基于激光点云的杆塔特征点自动识别及倾斜参数自动测量方法
CN114460092A (zh) * 2022-01-27 2022-05-10 中船重工(武汉)凌久电气有限公司 一种基于三维激光扫描的分片式混塔健康检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495710A (ja) * 1990-08-06 1992-03-27 Hotsukou Denshiya:Kk 鉄塔傾斜検出装置
CN106918311A (zh) * 2017-01-20 2017-07-04 山东科技大学 基于车载激光点云数据的单株树树冠投影面积自动计算方法
CN108764012A (zh) * 2018-03-27 2018-11-06 国网辽宁省电力有限公司电力科学研究院 基于多帧联合的车载激光雷达数据的城市道路杆状物识别算法
CN109059791A (zh) * 2018-06-29 2018-12-21 山东鲁能智能技术有限公司 电力设备变形监测方法及装置
CN109344750A (zh) * 2018-09-20 2019-02-15 浙江工业大学 一种基于结构描述子的复杂结构三维对象识别方法
CN109613514A (zh) * 2018-12-29 2019-04-12 中国科学院遥感与数字地球研究所 一种基于机载LiDAR点云数据的杆塔倾斜预警方法
CN110030951A (zh) * 2019-05-14 2019-07-19 武汉大学 一种基于三维激光扫描技术的引水竖井缺陷检测方法
CN111174761A (zh) * 2019-12-31 2020-05-19 中国电建集团河北省电力勘测设计研究院有限公司 一种基于激光点云的圆形杆塔倾斜变形快速计算方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495710A (ja) * 1990-08-06 1992-03-27 Hotsukou Denshiya:Kk 鉄塔傾斜検出装置
CN106918311A (zh) * 2017-01-20 2017-07-04 山东科技大学 基于车载激光点云数据的单株树树冠投影面积自动计算方法
CN108764012A (zh) * 2018-03-27 2018-11-06 国网辽宁省电力有限公司电力科学研究院 基于多帧联合的车载激光雷达数据的城市道路杆状物识别算法
CN109059791A (zh) * 2018-06-29 2018-12-21 山东鲁能智能技术有限公司 电力设备变形监测方法及装置
CN109344750A (zh) * 2018-09-20 2019-02-15 浙江工业大学 一种基于结构描述子的复杂结构三维对象识别方法
CN109613514A (zh) * 2018-12-29 2019-04-12 中国科学院遥感与数字地球研究所 一种基于机载LiDAR点云数据的杆塔倾斜预警方法
CN110030951A (zh) * 2019-05-14 2019-07-19 武汉大学 一种基于三维激光扫描技术的引水竖井缺陷检测方法
CN111174761A (zh) * 2019-12-31 2020-05-19 中国电建集团河北省电力勘测设计研究院有限公司 一种基于激光点云的圆形杆塔倾斜变形快速计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIE HONGQUAN, YANG TAO;XU DEWEI;QIN YAZHOU;LU XIA;WANG CHEN: "Experimental Study on the Tilt of Wind Turbine Tower by Using Laser Point Cloud Data", BULLETIN OF SURVEYING AND MAPPING, no. 12, 1 January 2017 (2017-01-01), pages 38 - 42, XP055828278, ISSN: 0494-0911, DOI: 10.13474/j.cnki.11-2246.2017.0375 *

Also Published As

Publication number Publication date
CN111174761A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2021135422A1 (fr) Procédé pour calculer rapidement une déformation d'inclinaison d'un mât circulaire sur la base d'un nuage de points laser
CN107388992A (zh) 一种基于三维激光扫描的高耸塔筒垂直度检测方法
CN106846308B (zh) 基于点云的地形图精度的检测方法和装置
CN103389136B (zh) 基于三维激光扫描技术的外浮顶立式金属罐容积测量方法
CN111830528A (zh) 基于激光点云的杆塔特征点自动识别及倾斜参数自动测量方法
CN104237868B (zh) 一种多功能实用型激光雷达扫描标靶
CN111174771A (zh) 一种立柱垂直度测量方法
CN113804118B (zh) 一种基于三维激光点云几何特征的建筑物变形监测方法
CN111322994A (zh) 基于无人机倾斜摄影的房屋密集区大比例尺地籍测量方法
CN111578919B (zh) 用于提高高耸塔筒结构垂直度检测精度的方法
CN110806175B (zh) 一种基于三维激光扫描技术的干滩监测方法
CN106844983B (zh) 一种提高建筑物防台风能力的方法
CN113124782B (zh) 一种基于点云抗差自适应的建构筑物垂直度检测方法
CN207894374U (zh) 一种基于cmos的超高层建筑相对水平位移在线监测装置
CN105516584A (zh) 全景影像采集系统、基于其的测量天际线的装置和方法
CN113029098B (zh) 一种风电塔筒倾斜度检测装置及使用方法
CN109724573A (zh) 基于三维激光检测系统获取房屋指标参数的扫描方法
CN109470222A (zh) 一种超高层建筑工程测量的监理控制方法
CN103020966A (zh) 一种基于建筑物轮廓约束的航空与地面LiDAR数据自动配准方法
CN108195736A (zh) 一种三维激光点云提取植被冠层间隙率的方法
CN106813590A (zh) 外浮顶储罐变形检测方法
CN113865570B (zh) 一种钢结构圆形立柱垂直度测量方法
CN103065295A (zh) 一种基于建筑物角点自修正的航空与地面LiDAR数据高精度自动配准方法
CN116295313A (zh) 掘进机的实时定位系统
CN108917711A (zh) 一种隧道工程三维激光扫描分段测量方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908914

Country of ref document: EP

Kind code of ref document: A1