WO2021135133A1 - 一类金属锡环化的苝酰亚胺衍生物及制备方法和应用 - Google Patents

一类金属锡环化的苝酰亚胺衍生物及制备方法和应用 Download PDF

Info

Publication number
WO2021135133A1
WO2021135133A1 PCT/CN2020/099587 CN2020099587W WO2021135133A1 WO 2021135133 A1 WO2021135133 A1 WO 2021135133A1 CN 2020099587 W CN2020099587 W CN 2020099587W WO 2021135133 A1 WO2021135133 A1 WO 2021135133A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
perylene imide
cyclized
metal tin
butyl
Prior art date
Application number
PCT/CN2020/099587
Other languages
English (en)
French (fr)
Inventor
陈令成
张文重
肖义
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to JP2020564627A priority Critical patent/JP7144081B2/ja
Priority to US17/138,884 priority patent/US12018041B2/en
Publication of WO2021135133A1 publication Critical patent/WO2021135133A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • C07F7/2208Compounds having tin linked only to carbon, hydrogen and/or halogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to a class of perylene imide derivatives with metal tin cyclization and a preparation method and application thereof, which belong to the field of organic semiconductor materials.
  • Perylene imide is the abbreviation of 3,4,9,10-perylene tetracarboxylic diimide.
  • the entire molecule is composed of a central perylene ring skeleton and two carboxylic acid imides on both sides.
  • Its advantages include strong absorption in the visible light region, high molar extinction coefficient, fluorescence quantum yield, good light stability and thermal stability, etc.
  • It is a class of organic semiconductor materials with excellent performance.
  • the port position of peryleneimide is affected by the electron-withdrawing groups on both sides of the imide, which has strong reactivity and is prone to aromatic electrophilic substitution reaction. It can introduce active groups such as halogen or nitro group into the port of peryleneimide. Position, more complex chemical modification of the parent body.
  • the present invention provides a class of perylene imide derivatives cyclized with metal tin, and a preparation method and application thereof.
  • the present invention adopts the following technical scheme: a class of perylene imide derivatives cyclized with metal tin, which have the following general structural formula:
  • R 1 and R 2 are selected from hydrogen atoms, groups with or without substituents, and the groups with or without substituents are alkyl groups with 1-60 carbon atoms, carbon Alkoxy with 1-60 atoms, cycloalkyl with 3-60 carbon atoms, aryl with 5-60 carbon atoms, alkylaryl with 1-60 carbon atoms, carbon atoms It is an alkyl heteroaryl group of 1-60, an alkyl heterocyclic group of 1-60 carbon atoms, an alkyleneoxyalkyl group of 1-60 carbon atoms, and an alkylene group of 1-60 carbon atoms. Alkyloxyaryl, alkyleneoxyheteroaryl with 1-60 carbon atoms or alkyleneoxyheterocyclic with 1-60 carbon atoms, R 1 and R 2 may be different groups group.
  • the groups with or without substituents are methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tertiary Butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, Cetyl, heptadecyl, octadecyl, nonadecyl, eicosyl, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy Group, sec-butoxy, isobutoxy, tert-butoxy, pentoxy, hexyloxy, heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, twelve Carbon alkoxy, thirteen-carbon alkoxy
  • the substituents are selected from the following groups: alkyl groups, preferably alkyl groups having 1-16 carbon atoms; alkoxy groups, preferably alkoxy groups having 1-16 carbon atoms; aryl groups, preferably having 5 An aryl group of 16 carbon atoms; a cycloalkyl group, preferably a cycloalkyl group having 3 to 16 carbon atoms; a heterocyclic group, preferably a heterocyclic group having 5 to 16 carbon atoms, wherein the heterocyclic group
  • the heteroatoms included are selected from B, Si, O, Sn, N, S, P and Se; heteroaryl groups, especially heteroaryl groups having 1-16 carbon atoms; heteroaralkyl groups, especially those having 5 A heteroaralkyl group composed of an aryl group having 16 carbon atoms and an alkyl moiety having 1-16 carbon atoms; a heteroaralkyloxy group, preferably composed of an aryl group having 5-16 carbon atoms and a heteroaral
  • the substituents are methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, hydroxyl, mercapto, fluorine atom, chlorine atom, bromine At least one of atom, iodine atom, cyano group, aldehyde group, ester group, sulfonic acid group, sulfinic acid group, nitro group, amino group, imino group, carboxyl group and hydrazine group.
  • compound A is mixed with hexa-n-butyl ditin, a catalyst and an organic solvent are added, and the reaction is stirred and heated to obtain the metal tin cyclized perylene Imide derivatives.
  • R 1 and R 2 are the same as those in the general structural formula.
  • the heating temperature of the method for preparing the metal tin cyclized perylene imide derivative is 90-180°C
  • the reaction time is 1-30 hours
  • the mixed amount of hexa-n-butyl ditin is the amount of compound A 0.5-10 times the amount.
  • the solvent is benzene, toluene, xylene, chlorobenzene, dichlorobenzene, tetrahydrofuran, dioxane, nitrogen methyl pyrrolidone, dimethyl formamide, dimethyl acetamide, dimethyl sulfoxide, hexamethyl One or more of phosphoramide, sulfolane, acetonitrile and benzonitrile.
  • the catalyst is palladium acetate or tris(dibenzylideneacetone) dipalladium.
  • the metal tin cyclized perylene imide derivative is used as a new type of photosensitizer, because the singlet oxygen it produces can kill cancer cells and is used in the field of photodynamic therapy and as a catalyst to produce singlet oxygen for catalysis Oxidation-related reaction areas.
  • the metal tin cyclized perylene imide derivative is used as a photoelectric material in the fields of solar cells, organic light-emitting diodes and organic field effect transistors.
  • this metal tin cyclized peryleneimide derivative and its preparation method and application are the first to introduce metal elements into the peryleneimide harbor to form a five-membered ring.
  • the derivative has UV-visible absorption The spectrum has a significant red shift, and the introduction of metallic tin makes the derivative more valuable in the field of optoelectronic materials.
  • the derivative As a photoelectric material, the derivative has great application prospects in the fields of solar cells, organic light-emitting diodes and organic field-effect transistors.
  • the introduction of heavy element tin gives the derivative a strong ability to generate triplet states and can be used as a new type of photosensitizer.
  • this type of photosensitizer Compared with traditional transition metal-modified perylene imide photosensitizers, this type of photosensitizer has a simple structure, can form a ring at the harbor position, and has a simple synthesis method and fewer synthesis steps.
  • the directly connected heavy metal tin improves the ability of perylene imide to generate triplet states and at the same time makes it have a longer triplet life.
  • This derivative provides a new metal element-modified perylene imide as a photosensitizer. .
  • the derivative has low cytotoxicity and easily enters the cell interior, and can be applied in the field of photodynamic therapy.
  • the derivative can also be used as a catalyst in fields such as catalytic oxidation related reactions.
  • Figure 1 is the solution absorption spectrum of tin-cyclized perylene imide derived from 6-undecylamine.
  • Figure 2 is the transient absorption spectrum of 6-undecylamine-derived tin-cyclized perylene imide.
  • Figure 3 is the triplet decay curve of tin-cyclized perylene imide derived from 6-undecylamine.
  • Figure 4 is a graph showing the decay of the UV-visible absorption of DPBF in DCM with time due to the tin cyclized perylene imide derived from 6-undecylamine as a photosensitizer.
  • Figure 5 is an imaging diagram of the effect of 6-undecylamine-derived tin cyclized perylene imide as a photosensitizer on DCFH-DA in cervical cancer cells.
  • the best embodiment of the present invention is the same as Example 2 in the embodiment of the present invention.
  • Example 2 The 6-undecylamine-derived tin cyclized perylene imide obtained in Example 2 was studied for its properties.
  • Figure 3 shows the transient absorption spectrum of the tin-cyclized perylene imide derived from 6-undecylamine.
  • the dynamic absorption at 485nm fits the triplet decay time, the decay time is 17us, 6-eleven
  • the amine-derived tin cyclized perylene imide has a long triplet time life.
  • the triplet energy of the photosensitizer can be transferred to triplet oxygen molecules ( 3 O2), and singlet oxygen molecules ( 1 O2) are produced.
  • the singlet oxygen trapping agent 1,3-diphenylisobenzofuran (DPBF) is used to capture singlet oxygen, and DPBF itself is oxidized by 1 O2, resulting in the absorption peak of DPBF at 414nm in the UV-visible absorption spectrum reduce.
  • the singlet oxygen quantum yield of the photosensitizer molecule can be calculated by monitoring the absorbance change of DPBF at 414nm.
  • Figure 4 shows the decay graph of the UV-Vis absorption of DPBF in DCM with the effect of 6-undecylamine-derived tin cyclized perylene imide as a photosensitizer.
  • the 6-undecylamine-derived tin cyclized perylene imide is obtained by calculation.
  • the singlet oxygen quantum yield of imine is 40%.
  • the fluorescent probe DCFH-DA as a reactive oxygen detection reagent, is non-fluorescent and freely passes through the cell membrane to enter the cell.
  • the reactive oxygen species (singlet oxygen) in the cell can oxidize non-fluorescent DCFH to produce Fluorescent DCF, by detecting the fluorescence intensity of DCF, you can know the level of reactive oxygen species in the cell.
  • Figure 5 shows the effect of 6-undecylamine-derived tin cyclized perylene imide as a photosensitizer on the imaging of DCFH-DA in cervical cancer cells.
  • 6-undecylamine is used. Fluorescence images of cervical cancer cells cultured with derivatized tin-cyclized perylene imide and DCFH-DA under no light and fluorescence images after 10s, 20s, 30s 420nm green light irradiation, as can be seen from this figure, The 6-undecylamine-derived tin cyclized perylene imide is oxidized by the singlet oxygen generated after photosensitization to produce fluorescent DCF, which makes the fluorescence of cervical cancer cells appear through imaging, and the imaging effect changes with time. Well, the fluorescence intensity of cervical cancer cells no longer changes in 20s, indicating that the 6-undecylamine-derived tin cyclized perylene imide has a good singlet oxygen effect in the cell.
  • Example 31 The properties of compounds B4, B6, B10, B14, B16, B17, B20, B22, B25, and B27 are given in the form of the following table, and the test conditions and methods are the same as in Example 30.
  • This metal tin cyclized perylene imide derivative pioneered the introduction of a metal element at the perylene imide port to form a five-membered ring, and the ultraviolet-visible absorption spectrum of the derivative was significantly red shifted.
  • the introduction of tin element makes the derivative more valuable in the field of optoelectronic materials.
  • the derivative As a photoelectric material, the derivative has great application prospects in the fields of solar cells, organic light-emitting diodes and organic field-effect transistors.
  • the introduction of heavy element tin gives the derivative a strong ability to generate triplet states and can be used as a new type of photosensitizer.
  • this type of photosensitizer Compared with traditional transition metal-modified perylene imide photosensitizers, this type of photosensitizer has a simple structure, can form a ring at the harbor position, and has a simple synthesis method and fewer synthesis steps.
  • the directly connected heavy metal tin improves the ability of perylene imide to generate triplet states and at the same time makes it have a longer triplet life.
  • This derivative provides a new metal element-modified perylene imide as a photosensitizer. .
  • the derivative has low cytotoxicity and easily enters the cell interior, and can be applied in the field of photodynamic therapy.
  • the derivative can also be used as a catalyst in fields such as catalytic oxidation related reactions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

公开了一类金属锡环化的苝酰亚胺衍生物及制备方法和应用,其属于有机半导体材料领域。这种金属锡环化的苝酰亚胺衍生物通过钯催化在苝酰亚胺类衍生物的港湾位引入金属锡构成五元金属杂环,突破一直以来苝酰亚胺港湾位只能引进非金属构成杂环的科研现状。金属锡元素的引入使该衍生物在光电材料领域更具研究价值,该衍生物作为光电材料在太阳能电池、有发光二极管和有机场效应晶体管领域都有很大的应用前景。此外,重元素锡的引入使该衍生物具有较强的产生三重态的能力,可作为一种新式光敏剂。直接相连的重金属锡提高了苝酰亚胺产生三重态能力,同时使其具有较长的三重态寿命,提供了一种新的金属元素修饰的苝酰亚胺作为光敏剂的方案。

Description

一类金属锡环化的苝酰亚胺衍生物及制备方法和应用 技术领域
本发明涉及一类金属锡环化的苝酰亚胺衍生物及制备方法和应用,其属于有机半导体材料领域。
背景技术
苝酰亚胺是3,4,9,10-苝四羧酸二酰亚胺的简称,整个分子是由中心苝环骨架和两侧双羧酸酰亚胺组成。其优点有:在可见光区域有强吸收、较高的摩尔消光系数、荧光量子产率、良好的光稳定性和热稳定性等,是一类性能优异的有机半导体材料。苝酰亚胺的港湾位受两侧酰亚胺吸电子基团的影响,反应活性较强,易发生芳香亲电取代反应,能够将卤素或者硝基等活性基团引入苝酰亚胺的港湾位,对母体进行更复杂的化学修饰。近年来,港湾位的成环反应由于可以增加共轭平面、调控分子的电子结构而成为科研工作者竞相研究的热点,其中杂原子(硒原子、氮原子、氧原子、硅原子等杂原子)引入到苝酰亚胺的港湾位成环来调控分子的物理和化学性能成为一大研究热潮。目前所知的构成杂环所引入的原子全为非金属原子,并未涉及金属原子的研究,因此,如何开发一类引入金属原子在港湾位闭环的苝酰亚胺衍生物是一项富有挑战性的工作,而且这类金属环化的苝酰亚胺化合物的光学特性值得探究。到目前为止,也未见涉及金属锡环化的港湾位闭环的苝酰亚胺衍生物。
技术问题
目前所知的构成杂环所引入的原子全为非金属原子,并未涉及金属原子的研究,因此,如何开发一类引入金属原子在港湾位闭环的苝酰亚胺衍生物是一项富有挑战性的工作,而且这类金属环化的苝酰亚胺化合物的光学特性值得探究。到目前为止,也未见涉及金属锡环化的港湾位闭环的苝酰亚胺衍生物。
技术解决方案
为了解决现有技术中存在的问题,本发明提供一类金属锡环化的苝酰亚胺衍生物及制备方法和应用。
为实现本发明的目的,本发明采用如下技术方案:一类金属锡环化的苝酰亚胺衍生物,该衍生物具有如下结构通式:
Figure PCTCN2020099587-appb-000001
其中:R 1、R 2选自氢原子、含有取代基或不含有取代基的基团,所述含有取代基或不含有取代基的基团为碳原子数为1-60的烷基、碳原子数为1-60的烷氧基、碳原子数为3-60的环烷基、碳原子数为5-60的芳基、碳原子数为1-60的烷基芳基、碳原子数为1-60的烷基杂芳基、碳原子数为1-60的烷基杂环基、碳原子数为1-60的亚烷基氧基烷基、碳原子数为1-60的亚烷基氧基芳基、碳原子数为1-60的亚烷基氧基杂芳基或者碳原子数为1-60的亚烷基氧基杂环基,R 1和R 2可为不同基团。
所述的含有取代基或不含有取代基的基团为含有取代基或不含取代基的甲基、乙基、丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、戊基、己基、庚基、辛基、壬基、癸基、十一碳烷基、十二碳烷基、十三碳烷基、十四碳烷基、十五碳烷基、十六碳烷基、十七碳烷基、十八碳烷基、十九碳烷基、二十碳烷基、甲氧基、乙氧基、丙氧基、异丙氧基、正丁氧基、仲丁氧基、异丁氧基、叔丁氧基、戊氧基、己氧基、庚氧基、辛氧基、壬氧基、癸氧基、十一碳烷氧基、十二碳烷氧基、十三碳烷氧基、十四碳烷氧基、十五碳烷氧基、十六碳烷氧基、十七碳烷氧基、十八碳烷氧基、十九碳烷氧基、二十碳烷氧基、苯基、萘基、蒽基、菲基、并四苯基、并五苯基、并六苯基、芘基、茚基、联苯基、芴基、环丁基、环戊基、环己基、环庚基、环辛基、环壬基、环癸基、十一碳环烷基、十二碳环烷基、十三碳环烷基、十四碳环烷基、十五碳环烷基、十六碳环烷基、十七碳环烷基、十八碳环烷基、十九碳环烷基、二十碳环烷基、噻吩基、吡咯基、呋喃基、硒吩基、噻咯基、碲吩基、噁唑基、吡啶基或者嘧啶基,上述杂芳基团的环与上面所述芳基的环稠合衍生的基团或上述杂芳基团的组合。这些组成杂芳基的基团可以含有另外的取代基。
所述的取代基,选自如下基团:烷基,优选具有1-16个碳原子的烷基; 烷氧基,优选具有1-16个碳原子的烷氧基;芳基,优选具有5-16个碳原子的芳基;环烷基,优选具有3-16个碳原子的环烷基;杂环基团,优选具有5-16个碳原子的杂环基团,其中杂环基团包含的杂原子选自B,Si,O,Sn,N,S,P和Se;杂芳基,特别是具有1-16个碳原子的杂芳基;杂芳烷基,特别是由具有5-16个碳原子的芳基和具有1-16个碳原子的烷基部分构成的杂芳烷基;杂芳烷氧基,优选由具有5-16个碳原子的芳基和具有1-16个碳原子的烷氧基构成的杂芳烷氧基;链烯基,特别是乙烯基,烯丙基,2-丁烯基,3-戊烯基等;炔基,特别是炔丙基,3-戊炔基等;氨基类取代基,特别是氨基,甲基氨基,二甲基氨基等;酰基,优选甲酰基,乙酰基,苯甲酰基等;烷硫基,优选甲硫基,乙硫基等;芳硫基,特别是苯硫基等;杂芳硫基,特别是吡啶基硫基等;杂环基,优选咪唑基,吡啶基等;羟基;卤素原子;氰基;醛基;酯基;磺基;亚磺基;硝基;羧基;肼基。最优选地,所述的取代基为甲基、乙基、丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、羟基、巯基、氟原子、氯原子、溴原子、碘原子、氰基、醛基、酯基、磺酸基、亚磺酸基、硝基、氨基、亚氨基、羧基和肼基中的至少一种。
所述的金属锡环化的苝酰亚胺衍生物的制备方法,将化合物A与六正丁基二锡混合,加入催化剂和有机溶剂,搅拌加热反应即得到所述的金属锡环化的苝酰亚胺衍生物。
Figure PCTCN2020099587-appb-000002
其中,R 1,R 2的定义同结构通式中的定义。
优选地,所述的金属锡环化的苝酰亚胺衍生物的制备方法的加热温度为90-180℃,反应时间为1-30小时,六正丁基二锡混合的用量为化合物A用量的0.5-10倍量。
所述溶剂为苯、甲苯、二甲苯、氯苯、二氯苯、四氢呋喃、二氧六环、氮甲基吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、六甲基磷酰胺、环丁砜、乙腈和苯甲腈中的一种或者几种。催化剂为醋酸钯或三(二亚苄基丙酮) 二钯。
所述的金属锡环化的苝酰亚胺衍生物作为一种新式光敏剂,因其产生的单线态氧可以杀死癌细胞而应用于光动力治疗领域以及作为催化剂产生单线态氧应用于催化氧化相关反应领域。所述的金属锡环化的苝酰亚胺衍生物作为一种光电材料应用于太阳能电池、有发光二极管和有机场效应晶体管领域。
有益效果
本发明的有益效果:这种金属锡环化的苝酰亚胺衍生物及制备方法和应用,首创性的在苝酰亚胺港湾位引入金属元素构成五元环,该衍生物的紫外可见吸收光谱得到明显红移,金属锡元素的引入使该衍生物在光电材料领域更具研究价值。该衍生物作为光电材料在太阳能电池、有发光二极管和有机场效应晶体管领域具有很大的应用前景。此外,重元素锡的引入使该衍生物具有较强的产生三重态的能力,可作为一种新式的光敏剂。与传统过渡金属修饰的苝酰亚胺类光敏剂相比,该类光敏剂结构简单,能够在港湾位成环,并且合成方法简单、合成步骤少。直接相连的重金属锡提高了苝酰亚胺产生三重态的能力,同时使其具有较长的三重态寿命,该衍生物提供了一种新的金属元素修饰的苝酰亚胺作为光敏剂的方案。另外,该衍生物细胞毒性小且容易进入细胞内部,能够应用在光动力治疗领域。该衍生物还能够作为催化剂应用于催化氧化相关反应等领域。
附图说明
图1是6-十一胺衍生的锡环化的苝酰亚胺的溶液态的吸收光谱。
图2是6-十一胺衍生的锡环化的苝酰亚胺的瞬态吸收光谱。
图3是6-十一胺衍生的锡环化的苝酰亚胺的三重态衰减曲线。
图4是6-十一胺衍生的锡环化苝酰亚胺作为光敏剂影响DPBF的在DCM中紫外可见吸收随时间衰减图。
图5是6-十一胺衍生的锡环化苝酰亚胺作为光敏剂影响DCFH-DA在宫颈癌细胞内的成像图。
本发明的最佳实施方式
本发明的最佳实施方式同本发明实施方式中的实施例2。
本发明的实施方式
为使本发明的技术方案更加清楚,下面将结合本发明的实施例,对实施 例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
Figure PCTCN2020099587-appb-000003
称取1g的溴代苝酰亚胺、1.9g六正丁基二锡、15mg二苄亚基丙酮二氯化钯、20mg三甲基苯基磷于反应瓶中,加入5ml甲苯,90℃下搅拌6小时。待反应完全,减压旋干反应液,柱层析分离得0.6g产物,产率48%,HRMS:found 762.2470。
实施例2
Figure PCTCN2020099587-appb-000004
称取1g的溴代苝酰亚胺、3.36g六正丁基二锡、12mg二苄亚基丙酮二氯化钯、16mg三甲基苯基磷于反应瓶中,加入5ml甲苯,110℃下搅拌回流3小时。待反应完全,减压旋干反应液,柱层析分离得0.5g产物,产率41%,HRMS(MALDI-TOF):Calculated for C54H70N2O4Sn M-,930.4358,found 930.4310。
实施例3
Figure PCTCN2020099587-appb-000005
称取1g的溴代苝酰亚胺、3.92g六正丁基二锡、5mg醋酸钯于反应瓶中,加入5ml一四二氧六环,120℃下搅拌回流3小时。待反应完全,减压旋干反应液,柱层析分离得0.48g产物,产率40%,HRMS(MALDI-TOF):found 3462.1625。
实施例4
Figure PCTCN2020099587-appb-000006
合成方法参照实施例3。
实施例5
Figure PCTCN2020099587-appb-000007
称取1g的溴代苝酰亚胺、0.76g六正丁基二锡、8mg醋酸钯于反应瓶中,加入5mlDMF,150℃下搅拌3小时。待反应完全,减压旋干反应液,柱层析分离得0.62g产物,产率50%,HRMS(MALDI-TOF):found 706.1746。
实施例6
Figure PCTCN2020099587-appb-000008
称取1g的溴代苝酰亚胺、1.8g六正丁基二锡、8mg醋酸钯于反应瓶中,加入2ml氯苯和2ml甲苯,120℃下搅拌回流3小时。待反应完全,减压旋干反应液,柱层析分离得0.6g产物,产率47%,HRMS(MALDI-TOF):found 734.2022。
实施例7
Figure PCTCN2020099587-appb-000009
称取1g的溴代苝酰亚胺、5.7g六正丁基二锡、20mg醋酸钯于反应瓶中,加入5ml氮甲基吡咯烷酮,180℃下搅拌回流1小时。待反应完全,减压旋干反应液,柱层析分离得0.51g产物,产率40%,HRMS(MALDI-TOF):found 762.2362。
实施例8
Figure PCTCN2020099587-appb-000010
称取1g的溴代苝酰亚胺、0.42g六正丁基二锡、17mg醋酸钯于反应瓶中,加入5ml二氯苯,170℃下搅拌回流1小时。待反应完全,减压旋干反应液,柱层析分离得0.4g产物,产率33%,HRMS(MALDI-TOF):found 832.3262。
实施例9
Figure PCTCN2020099587-appb-000011
称取1g的溴代苝酰亚胺、0.9g六正丁基二锡、36mg醋酸钯于反应瓶中,加入5ml邻二甲苯,70℃下搅拌回流6小时。待反应完全,减压旋干反应液,柱层析分离得0.43g产物,产率35%,HRMS(MALDI-TOF):found 804.2949。
实施例10
Figure PCTCN2020099587-appb-000012
称取1g的溴代苝酰亚胺、0.84g六正丁基二锡、33mg醋酸钯于反应瓶中,加入5mlDMF,70℃下搅拌回流6小时。待反应完全,减压旋干反应液,柱层析分离得0.55g产物,产率45%,HRMS(MALDI-TOF):found 846.3419。
实施例11
Figure PCTCN2020099587-appb-000013
称取1g的溴代苝酰亚胺、0.93g六正丁基二锡、12mg二苄亚基丙酮二氯化钯、15mg三甲基苯基磷于反应瓶中,加入5ml二氧六环,110℃下搅拌回流3小时。待反应完全,减压旋干反应液,柱层析分离得0.34g产物,产率27%,HRMS (MALDI-TOF):found 774.1541。
实施例12
Figure PCTCN2020099587-appb-000014
称取1g的溴代苝酰亚胺、0.75g六正丁基二锡、12mg二苄亚基丙酮二氯化钯、15mg三甲基苯基磷于反应瓶中,加入5ml乙腈,90℃下搅拌回流10小时。待反应完全,减压旋干反应液,柱层析分离得0.45g产物,产率38%,HRMS(MALDI-TOF):found 942.3419。
实施例13
Figure PCTCN2020099587-appb-000015
称取1g的溴代苝酰亚胺、0.78g六正丁基二锡、12mg二苄亚基丙酮二氯化钯、15mg三甲基苯基磷于反应瓶中,加入5ml邻二甲苯,90℃下搅拌回流30小时。待反应完全,减压旋干反应液,柱层析分离得0.45g产物,产率37%,HRMS(MALDI-TOF):found 896.1140。
实施例14
Figure PCTCN2020099587-appb-000016
称取1g的溴代苝酰亚胺、0.79g六正丁基二锡、13mg二苄亚基丙酮二氯化钯、17mg三甲基苯基磷于反应瓶中,加入5ml甲苯,90℃下搅拌回流24小时。待反应完全,减压旋干反应液,柱层析分离得0.52g产物,产率43%,HRMS(MALDI-TOF):found 886.2793。
实施例15
Figure PCTCN2020099587-appb-000017
称取1g的溴代苝酰亚胺、0.83g六正丁基二锡、33mg醋酸钯于反应瓶中,加入2ml环丁砜和2ml六甲基磷酰胺,160℃下搅拌回流9小时。待反应完全,减压旋干反应液,柱层析分离得0.46g产物,产率38%,HRMS(MALDI-TOF):found 850.1854。
实施例16
Figure PCTCN2020099587-appb-000018
称取1g的溴代苝酰亚胺、0.83g六正丁基二锡、6mg醋酸钯于反应瓶中, 加入5ml甲苯,110℃下搅拌回流3小时。待反应完全,减压旋干反应液,柱层析分离得0.38g产物,产率31%,HRMS(MALDI-TOF):found 854.1664。
实施例17
Figure PCTCN2020099587-appb-000019
称取1g的溴代苝酰亚胺、0.8g六正丁基二锡、6mg醋酸钯于反应瓶中,加入5ml一四二氧六环,110℃下搅拌回流3小时。待反应完全,减压旋干反应液,柱层析分离得0.3g产物,产率25%,HRMS(MALDI-TOF):found 874.1854。
实施例18
Figure PCTCN2020099587-appb-000020
称取1g的溴代苝酰亚胺、0.9g六正丁基二锡、7mg醋酸钯于反应瓶中,加入2ml一四二氧六环和2ml二甲基亚砜,150℃下搅拌回流5小时。待反应完全,减压旋干反应液,柱层析分离得0.42g产物,产率34%,HRMS(MALDI-TOF):found 802.1854。
实施例19
Figure PCTCN2020099587-appb-000021
称取1g的溴代苝酰亚胺、0.92g六正丁基二锡、9mg醋酸钯于反应瓶中, 加入2ml乙腈和2ml苯甲腈,100℃下搅拌回流20小时。待反应完全,减压旋干反应液,柱层析分离得0.5g产物,产率40%,HRMS(MALDI-TOF):found 786.0669。
实施例20
Figure PCTCN2020099587-appb-000022
称取1g的溴代苝酰亚胺、0.93g六正丁基二锡、7mg醋酸钯于反应瓶中,加入2ml甲苯和1ml四氢呋喃,130℃下搅拌回流8小时。待反应完全,减压旋干反应液,柱层析分离得0.5g产物,产率40%,HRMS(MALDI-TOF):found 776.1446。
实施例21
Figure PCTCN2020099587-appb-000023
称取1g的溴代苝酰亚胺、0.93g六正丁基二锡、8mg醋酸钯于反应瓶中,加入5ml甲苯,110℃下搅拌回流3小时。待反应完全,减压旋干反应液,柱层析分离得0.48g产物,产率38.1%,HRMS(MALDI-TOF):found 786.2486。
实施例22
Figure PCTCN2020099587-appb-000024
称取1g的溴代苝酰亚胺、0.95g六正丁基二锡、7mg醋酸钯于反应瓶中,加入3ml二甲苯和1ml二氯苯,170℃下搅拌回流5小时。待反应完全,减压旋干反应液,柱层析分离得0.32g产物,产率25.81%,HRMS(MALDI-TOF):found 786.228。
实施例23
Figure PCTCN2020099587-appb-000025
称取1g的溴代苝酰亚胺、0.87g六正丁基二锡、7mg醋酸钯于反应瓶中,加入5ml二氧六环,110℃下搅拌回流3小时。待反应完全,减压旋干反应液,柱层析分离得0.43g产物,产率35%,HRMS(MALDI-TOF):found 816.2698。
实施例24
Figure PCTCN2020099587-appb-000026
称取1g的溴代苝酰亚胺、0.9g六正丁基二锡、7mg醋酸钯于反应瓶中,加入3ml甲苯和1mlDMSO,150℃下搅拌回流4小时。待反应完全,减压旋干反应液,柱层析分离得0.35g产物,产率28%,HRMS(MALDI-TOF):found 794.2378。
实施例25
Figure PCTCN2020099587-appb-000027
称取1g的溴代苝酰亚胺、0.78g六正丁基二锡、6mg醋酸钯于反应瓶中,加入2ml甲苯和1ml苯,120℃下搅拌回流3小时。待反应完全,减压旋干反应液,柱层析分离得0.37g产物,产率31%,HRMS(MALDI-TOF):found 900.2644。
实施例26
Figure PCTCN2020099587-appb-000028
称取1g的溴代苝酰亚胺、0.83g六正丁基二锡、4mg醋酸钯于反应瓶中,加入5mlDMF,110℃下搅拌回流3小时。待反应完全,减压旋干反应液,柱层析分离得0.53g产物,产率43.5%,HRMS(MALDI-TOF):found 850.2276。
实施例27
Figure PCTCN2020099587-appb-000029
称取1g的溴代苝酰亚胺、5.72g六正丁基二锡、8mg醋酸钯于反应瓶中,加入5ml甲苯,110℃下搅拌回流3小时。待反应完全,减压旋干反应液,柱层 析分离得0.42g产物,产率33.6%,HRMS(MALDI-TOF):found 751.1863。
实施例28
Figure PCTCN2020099587-appb-000030
称取1g的溴代苝酰亚胺、0.4g六正丁基二锡、13mg二苄亚基丙酮二氯化钯、17mg三甲基苯基磷于反应瓶中,加入5ml邻二甲苯,110℃下搅拌回流3小时。待反应完全,减压旋干反应液,柱层析分离得0.43g产物,产率35%,HRMS(MALDI-TOF):found 852.2949。
实施例29
Figure PCTCN2020099587-appb-000031
称取1g的溴代苝酰亚胺、7.86g六正丁基二锡、12mg二苄亚基丙酮二氯化钯、16mg三甲基苯基磷于反应瓶中,加入5ml邻二甲苯,110℃下搅拌回流3小时。待反应完全,减压旋干反应液,柱层析分离得0.43g产物,产率35.6%,HRMS(MALDI-TOF):found 890.3065。
实施例30:
将实施例2得到的6-十一胺衍生的锡环化苝酰亚胺进行性质研究。
(1)测试6-十一胺衍生的锡环化苝酰亚胺与6-十一胺衍生的苝酰亚胺的UV-Vis光谱(图1所示),经比较6-十一胺衍生的锡环化苝酰亚胺的吸收光谱有明显红移。
(2)测试6-十一胺衍生的锡环化苝酰亚胺的瞬态吸收光谱(图2所示), 其在400nm-515nm处检测到很强的激发三重态吸收。
(3)图3示出了6-十一胺衍生的锡环化苝酰亚胺的瞬态吸收谱图中485nm处的动态吸收拟合三重态衰减时间,衰减时间为17us,6-十一胺衍生的锡环化苝酰亚胺具有较长的三重态时间寿命。
(4)光敏剂的三重态能量可以传递给三重态的氧气分子( 3O2),而产生单重态的氧气分子( 1O2)。利用单重态氧气的捕获剂1,3-二苯基异苯并呋喃(DPBF)来捕获单重态氧气,同时DPBF自身被 1O2氧化,造成DPBF在紫外可见吸收光谱中414nm处的吸收峰降低。通过监测DPBF在414nm处的吸光度变化可计算光敏剂分子的单线态氧量子产率。图4给出6-十一胺衍生的锡环化苝酰亚胺作为光敏剂影响DPBF的在DCM中紫外可见吸收随时间衰减图,通过计算得到6-十一胺衍生的锡环化苝酰亚胺的单线态氧量子产率为40%。
(5)光敏剂应用于光动力治疗需要自身细胞毒性小且能进入细胞,并且在细胞内实现较好的单线态氧产出。在宫颈癌细胞内,荧光探针DCFH-DA作为一种活性氧检测试剂,本身无荧光且自由穿过细胞膜进入细胞,细胞内的活性氧(单线态氧)可以氧化无荧光的DCFH而生成有荧光的DCF,检测DCF的荧光强度便可以知道细胞内活性氧的水平。图5示出了6-十一胺衍生的锡环化苝酰亚胺作为光敏剂影响DCFH-DA在宫颈癌细胞内的成像图,图中,从左至右依次为用6-十一胺衍生的锡环化苝酰亚胺和DCFH-DA培养的宫颈癌细胞,无光照下荧光图像以及在经历10s,20s,30s的420nm绿光灯照射后的荧光图像,通过该图可以看出,6-十一胺衍生的锡环化苝酰亚胺受光敏化后产生的单线态氧氧化DCFH而产生发荧光的DCF,使宫颈癌细胞出现荧光通过成像显现出来,并且随时间延长成像效果变好,20s的时候宫颈癌细胞的荧光强度便已不再变化,说明6-十一胺衍生的锡环化苝酰亚胺在细胞内具有很好地单线态氧效果。
实施例31:化合物B4、B6、B10、B14、B16、B17、B20、B22、B25、B27的性质以如下表格形式给出,测试条件和方法同实施例30。
化合物B4、B6、B10、B14、B16、B17、B20、B22、B25、B27的性质列表
Figure PCTCN2020099587-appb-000032
Figure PCTCN2020099587-appb-000033
以上所述仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,任何熟悉本发明的技术人员在不脱离本发明技术范围内,当可利用上述提示的技术内容做出些许变动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。
工业实用性
这种金属锡环化的苝酰亚胺衍生物及制备方法和应用,首创性的在苝酰亚胺港湾位引入金属元素构成五元环,该衍生物的紫外可见吸收光谱得到明显红移,金属锡元素的引入使该衍生物在光电材料领域更具研究价值。该衍生物作为光电材料在太阳能电池、有发光二极管和有机场效应晶体管领域具有很大的应用前景。此外,重元素锡的引入使该衍生物具有较强的产生三重态的能力,可作为一种新式的光敏剂。与传统过渡金属修饰的苝酰亚胺类光敏剂相比,该类光敏剂结构简单,能够在港湾位成环,并且合成方法简单、合成步骤少。直接相连的重金属锡提高了苝酰亚胺产生三重态的能力,同时使其具有较长的三重态寿命,该衍生物提供了一种新的金属元素修饰的苝酰亚胺作为光敏剂的方案。另外,该衍生物细胞毒性小且容易进入细胞内部,能够应用在光动力治疗领域。该衍生物还能够作为催化剂应用于催化氧化相关反应等领域。
序列表自由内容
无。

Claims (6)

  1. 一类金属锡环化的苝酰亚胺衍生物,其特征在于,该衍生物具有如下结构通式:
    Figure PCTCN2020099587-appb-100001
    其中:R 1、R 2选自氢原子、含有取代基或不含有取代基的基团,所述含有取代基或不含有取代基的基团为碳原子数为1-60的烷基、碳原子数为1-60的烷氧基、碳原子数为3-60的环烷基、碳原子数为5-60的芳基、碳原子数为1-60的烷基芳基、碳原子数为1-60的烷基杂芳基、碳原子数为1-60的烷基杂环基、碳原子数为1-60的亚烷基氧基烷基、碳原子数为1-60的亚烷基氧基芳基、碳原子数为1-60的亚烷基氧基杂芳基或者碳原子数为1-60的亚烷基氧基杂环基,R 1和R 2可为不同基团。
  2. 根据权利要求1所述的金属锡环化的苝酰亚胺衍生物,其特征在于,所述的含有取代基或不含有取代基的基团为含有取代基或不含取代基的甲基、乙基、丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、戊基、己基、庚基、辛基、壬基、癸基、十一碳烷基、十二碳烷基、十三碳烷基、十四碳烷基、十五碳烷基、十六碳烷基、十七碳烷基、十八碳烷基、十九碳烷基、二十碳烷基、甲氧基、乙氧基、丙氧基、异丙氧基、正丁氧基、仲丁氧基、异丁氧基、叔丁氧基、戊氧基、己氧基、庚氧基、辛氧基、壬氧基、癸氧基、十一碳烷氧基、十二碳烷氧基、十三碳烷氧基、十四碳烷氧基、十五碳烷氧基、十六碳烷氧基、十七碳烷氧基、十八碳烷氧基、十九碳烷氧基、二十碳烷氧基、苯基、萘基、蒽基、菲基、并四苯基、并五苯基、并六苯基、芘基、茚基、联苯基、芴基、环丁基、环戊基、环己基、环庚基、环辛基、环壬基、环癸基、十一碳环烷基、十二碳环烷基、十三碳环烷基、十四碳环烷基、十五碳环烷基、十六碳环烷基、十七碳环烷基、十八碳环烷基、十九碳环烷基、二十碳环烷基、噻吩基、吡咯基、呋喃基、硒吩基、噻咯基、碲吩基、噁唑基、吡啶基或者嘧啶基。
  3. 根据权利要求2所述的金属锡环化的苝酰亚胺衍生物,其特征在于,所述的取代基为甲基、乙基、丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、羟基、巯基、氟原子、氯原子、溴原子、碘原子、氰基、醛基、酯基、磺酸基、亚磺酸基、硝基、氨基、亚氨基、羧基和肼基中的至少一种。
  4. 根据权利要求1所述的金属锡环化的苝酰亚胺衍生物的制备方法,其特征在于,将化合物A与六正丁基二锡混合,加入催化剂和有机溶剂,搅拌加热反应即得到所述的金属锡环化的苝酰亚胺衍生物,
    Figure PCTCN2020099587-appb-100002
    其中,R 1,R 2的定义同权利要求1中的定义。
  5. 根据权利要求4所述的金属锡环化的苝酰亚胺衍生物的制备方法,其特征在于,所述制备方法的加热温度为90-180℃,反应时间为1-30小时,六正丁基二锡混合的用量为化合物A用量的0.5-10倍量;
    所述溶剂为苯、甲苯、二甲苯、氯苯、二氯苯、四氢呋喃、二氧六环、氮甲基吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、六甲基磷酰胺、环丁砜、乙腈和苯甲腈中的一种或者几种;
    所述催化剂为醋酸钯或者三(二亚苄基丙酮)二钯。
  6. 根据权利要求1所述的金属锡环化的苝酰亚胺衍生物的应用,其特征在于,所述的金属锡环化的苝酰亚胺衍生物作为一种新式光敏剂应用于光动力治疗领域,作为催化剂应用于催化氧化相关反应领域,作为一种光电材料应用于太阳能电池、有发光二极管和有机场效应晶体管领域。
PCT/CN2020/099587 2019-12-30 2020-06-30 一类金属锡环化的苝酰亚胺衍生物及制备方法和应用 WO2021135133A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020564627A JP7144081B2 (ja) 2019-12-30 2020-06-30 金属スズ環化のペリレンビスイミド誘導体および調製方法と応用
US17/138,884 US12018041B2 (en) 2019-12-30 2020-12-30 Metal tin cyclized perylene diimide derivative, method for preparing the same, and method for using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911396285.4A CN111039974B (zh) 2019-12-30 2019-12-30 一类金属锡环化的苝酰亚胺衍生物及制备方法和应用
CN201911396285.4 2019-12-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/138,884 Continuation US12018041B2 (en) 2019-12-30 2020-12-30 Metal tin cyclized perylene diimide derivative, method for preparing the same, and method for using the same

Publications (1)

Publication Number Publication Date
WO2021135133A1 true WO2021135133A1 (zh) 2021-07-08

Family

ID=70241917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099587 WO2021135133A1 (zh) 2019-12-30 2020-06-30 一类金属锡环化的苝酰亚胺衍生物及制备方法和应用

Country Status (2)

Country Link
CN (1) CN111039974B (zh)
WO (1) WO2021135133A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039974B (zh) * 2019-12-30 2021-06-15 大连理工大学 一类金属锡环化的苝酰亚胺衍生物及制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022491A1 (ja) * 2015-08-04 2017-02-09 富士フイルム株式会社 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、有機半導体膜、化合物
CN111039974A (zh) * 2019-12-30 2020-04-21 大连理工大学 一类金属锡环化的苝酰亚胺衍生物及制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104892629B (zh) * 2015-06-03 2017-07-21 中国科学院化学研究所 一种苝酰亚胺类中间体化合物及其制备方法
CN108570067B (zh) * 2017-03-14 2020-10-16 中国科学院化学研究所 一种噻咯稠合苝酰亚胺类衍生物及其制备方法
CN108250221A (zh) * 2018-01-29 2018-07-06 南昌大学 一类硒取代的苯并二苝酰亚胺及合成方法和在太阳能电池中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022491A1 (ja) * 2015-08-04 2017-02-09 富士フイルム株式会社 有機薄膜トランジスタ、有機薄膜トランジスタの製造方法、有機薄膜トランジスタ用材料、有機薄膜トランジスタ用組成物、有機半導体膜、化合物
CN111039974A (zh) * 2019-12-30 2020-04-21 大连理工大学 一类金属锡环化的苝酰亚胺衍生物及制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUPTA RAVINDRA KUMAR, SHANKAR RAO DODDAMANE S., PRASAD S. KRISHNA, ACHALKUMAR AMMATHNADU S.: "Columnar Self-Assembly of Electron-Deficient Dendronized Bay -Annulated Perylene Bisimides", CHEMISTRY - A EUROPEAN JOURNAL, JOHN WILEY & SONS, INC, vol. 24, no. 14, 7 March 2018 (2018-03-07), pages 3566 - 3575, XP055826117, ISSN: 0947-6539, DOI: 10.1002/chem.201705290 *
MA ZETONG, XIAO CHENGYI, LIU CHUNMING, MENG DONG, JIANG WEI, WANG ZHAOHUI: "Palladium-Catalyzed Si–C Bond Formation toward Sila-Annulated Perylene Diimides", ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 19, no. 16, 18 August 2017 (2017-08-18), US, pages 4331 - 4334, XP055826116, ISSN: 1523-7060, DOI: 10.1021/acs.orglett.7b02011 *
YARNELL JAMES E., DAVYDENKO IRYNA, DOROVATOVSKII PAVEL V., KHRUSTALEV VICTOR N., TIMOFEEVA TATIANA V., CASTELLANO FELIX N., MARDER: "Positional Effects from σ-Bonded Platinum(II) on Intersystem Crossing Rates in Perylenediimide Complexes: Synthesis, Structures, and Photophysical Properties", THE JOURNAL OF PHYSICAL CHEMISTRY C, AMERICAN CHEMICAL SOCIETY, US, vol. 122, no. 25, 28 June 2018 (2018-06-28), US, pages 13848 - 13862, XP055826115, ISSN: 1932-7447, DOI: 10.1021/acs.jpcc.8b01003 *

Also Published As

Publication number Publication date
CN111039974A (zh) 2020-04-21
CN111039974B (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
Kothavale et al. Novel pyrazino-phenanthroline based rigid donor-π-acceptor compounds: a detail study of optical properties, acidochromism, solvatochromism and structure-property relationship
Khopkar et al. Synthesis, photophysical properties and applications of NIR absorbing unsymmetrical squaraines: A review
Lash et al. Porphyrins with Exocyclic Rings. 13.1 Synthesis and Spectroscopic Characterization of Highly Modified Porphyrin Chromophores with Fused Acenaphthylene and Benzothiadiazole Rings
Kato et al. Bicarbazoles: systematic structure–property investigations on a series of conjugated carbazole dimers
Gupta et al. Carbazole substituted bodipys
Mahadik et al. Design, Synthesis and Opto-electrochemical Properties of Novel Donor–Acceptor Based 2, 3-di (hetero-2-yl) pyrido [2, 3-b] pyrazine amine derivatives as Blue-Orange Fluorescent Materials
Wang et al. Functionalized coumarin derivatives containing aromatic-imidazole unit as organic luminescent materials
Huang et al. Enhancement of the excited-state intramolecular proton transfer process to produce all-powerful DSE molecules for bridging the gap between ACQ and AIE
US20030075216A1 (en) Synthesis of perylene-porphyrin building blocks and polymers thereof for the production of light-harvesting arrays
Sheng et al. Synthesis and semiconducting characteristics of the BF2 complexes of bisbenzothiophene-fused azadipyrromethenes
Kurt et al. Synthesis and photophysical properties of novel hexadeca-substituted phthalocyanines bearing three different groups
Wu et al. Central dicyanomethylene-substituted unsymmetrical squaraines and their application in organic solar cells
Mahadik et al. Synthesis, optical, electrochemical and theoretical studies of 2, 3-Di (pyridin-2-yl) quinoxaline amine derivatives as blue-orange emitters for organic electronics
Aleshinloye et al. Synthesis, characterization, optical and electrochemical properties of a new chiral multichromophoric system based on perylene and naphthalene diimides
Singh et al. Blue-orange emitting carbazole based donor-acceptor derivatives: Synthesis and studies of modulating acceptor unit on opto-electrochemical and theoretical properties
Lipunova et al. 1, 2, 4, 5-Tetrazine derivatives as components and precursors of photo-and electroactive materials
Mao et al. Regioisomerically pure multiaryl coronene derivatives: highly efficient synthesis via bay-extended perylene tetrabutylester
WO2021135133A1 (zh) 一类金属锡环化的苝酰亚胺衍生物及制备方法和应用
Wang et al. Pyrene-fused hexaarylbenzene luminogens: Synthesis, characterization, and aggregation-induced emission enhancement
Bartolomeu et al. Multicomponent reactions mediated by NbCl5 for the synthesis of phthalonitrile-quinoline dyads: Methodology, scope, mechanistic insights and applications in phthalocyanine synthesis
Singh et al. Tandem C–S Coupling and Debrominative Cyclization Enables an Easy Access to β-Thiazole-Fused Porphyrins
Luo et al. Redox-active heteroacene chromophores derived from a nonlinear aromatic diimide
Ipe et al. Synthesis, Structure, and Optical Properties of a Bis-Macrocycle Derived from a Highly Emissive 1, 3, 6, 8-Tetra (1 H-pyrrol-2-yl) pyrene
Kandhadi et al. trans-A 2 B-corrole bearing 2, 3-di (2-pyridyl) quinoxaline (DPQ)/phenothiazine moieties: synthesis, characterization, electrochemistry and photophysics
Jiang et al. Novel syntheses and properties of meso-tetraaryl-octabromo-tetranaphtho [2, 3] porphyrins (Ar 4 Br 8 TNPs)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020564627

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910222

Country of ref document: EP

Kind code of ref document: A1