WO2021134908A1 - 一种热塑性弹性体的环保发泡工艺及成型设备 - Google Patents

一种热塑性弹性体的环保发泡工艺及成型设备 Download PDF

Info

Publication number
WO2021134908A1
WO2021134908A1 PCT/CN2020/078157 CN2020078157W WO2021134908A1 WO 2021134908 A1 WO2021134908 A1 WO 2021134908A1 CN 2020078157 W CN2020078157 W CN 2020078157W WO 2021134908 A1 WO2021134908 A1 WO 2021134908A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic elastomer
elastomer particles
heating
foaming
gas
Prior art date
Application number
PCT/CN2020/078157
Other languages
English (en)
French (fr)
Inventor
张小海
Original Assignee
福建兴迅新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建兴迅新材料科技有限公司 filed Critical 福建兴迅新材料科技有限公司
Publication of WO2021134908A1 publication Critical patent/WO2021134908A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3403Foaming under special conditions, e.g. in sub-atmospheric pressure, in or on a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/50Footwear, e.g. shoes or parts thereof

Definitions

  • the invention relates to the technical field of thermoplastic elastomer particle foaming, in particular to an environmentally friendly foaming process and molding equipment for thermoplastic elastomers.
  • the cross-linking method is generally by adding It can be achieved by cross-linking agent, or it can be achieved by radiation cross-linking, but the shortcomings caused by this are also obvious, that is, the cross-linked material will not be recycled, that is, the resulting product is less environmentally friendly. Not satisfied with the current general direction of sustainable development in our country.
  • ETPU shock-absorbing midsole molding methods There are two conventional ETPU shock-absorbing midsole molding methods. One is to first use TPU material to inject the rough sole, and then use supercritical foaming to fully foam the TPU material in a heated and pressurized environment.
  • the other type of foam molding is to foam TPU material particles into ETPU particles by supercritical foaming in a heating and pressurized environment, and then to obtain a foam molding through secondary foaming.
  • the gas can enter the TPU material only after the TPU material is heated to soften. Therefore, heating and pressurizing the TPU material at the same time takes a long time, which is not in line with actual production.
  • the foam molded body formed by the two molding methods still belongs to the category of semi-finished products.
  • the first purpose of the present invention is to address the above shortcomings, and provide a thermoplastic elastomer particles after heating and softening, and then continue to heat and press to increase the gas permeation rate, thereby greatly accelerating the foaming efficiency, and does not require cross-linking It is an environmentally friendly foaming process for processing thermoplastic elastomers that can be recycled into the finished product.
  • the first solution adopted by the present invention to solve the technical problem is: an environmentally friendly foaming process for thermoplastic elastomers, including the following steps:
  • thermoplastic elastomer particles (1) Heat the thermoplastic elastomer particles to a temperature above the softening point
  • the softened thermoplastic elastomer particles are transported to the setting machine under the condition of higher than atmospheric pressure in the transportation mechanism, and during the transportation process, the softened thermoplastic elastomer particles are brought into contact with at least one inert gas, In order to drive the gas into the softened thermoplastic elastomer particles, at the same time, the softened thermoplastic elastomer particles are heated, and the heating temperature is higher than the melting temperature of the thermoplastic elastomer particles by 10-40 degrees Celsius;
  • the conveying mechanism leads the thermoplastic elastomer saturated with inert gas and in a molten state to the mold of the setting machine, maintains the above temperature in the mold of the setting machine, and then reduces the pressure, and the finished product is obtained after foaming and mold setting.
  • thermoplastic elastomer particles are heated by heating equipment.
  • thermoplastic elastomer particles in order to simultaneously heat and press the thermoplastic elastomer particles during the transportation process to make them in a molten state, so that the inert gas can fully enter the material and ensure the full progress of foaming; in step (2), a spiral The conveyor conveys the softened thermoplastic elastomer particles, and a heat conduction channel is arranged on the inner wall of the screw conveyor to heat the softened thermoplastic elastomer particles.
  • the at least one inert gas in the step (2) is a supercritical fluid, which is nitrogen, carbon dioxide or a mixed gas of the two.
  • step (2) the pressure of the conveying mechanism is maintained between 5 MPA and 30 MPA.
  • step (3) the pressure is reduced by exhausting, and the exhaust speed is 5s-600s.
  • thermoplastic elastomer granular material is one of TPE, TPU, TPEE or PEBAX or a mixture of two or more materials.
  • the second object of the present invention is to address the above shortcomings, and provide a thermoplastic elastomer particles after heating and softening, and then heating and pressurizing to increase the gas permeation rate, thereby greatly accelerating the foaming efficiency, and without the need for cross-linking treatment In order to realize the environmentally friendly foaming molding equipment of the thermoplastic elastomer with recyclable finished products.
  • the second solution adopted by the present invention to solve the technical problem is: an environmentally friendly foaming and molding equipment for thermoplastic elastomers, including a heating device for heating the thermoplastic elastomer particles to a temperature above the softening point, and A heating and pressure conveying device that conveys softened thermoplastic elastomer particles under atmospheric pressure and heats them into a molten state, and is used to pass at least one inert gas into the heating and pressure conveying device to drive the inert gas into the molten thermoplastic elastomer
  • a gas generating device and a molding device in the body, the heating and pressure conveying device is connected with the molding device to export the thermoplastic elastomer saturated with inert gas and in a molten state to the mold of the molding device, and the finished product is obtained after foaming and mold setting .
  • an elevator for conveying the softened thermoplastic elastomer particles to the conveying device.
  • thermoplastic elastomer particles are brought into contact with at least one inert gas to drive the gas Into the thermoplastic elastomer particles;
  • the heating and pressurizing conveying device is a screw conveyor
  • the feed end of the screw conveyor is provided with a hopper, and the discharge end of the screw conveyor is connected to the forming device.
  • the screw conveyor includes a shell and a screw rotatably installed in the shell.
  • the inner wall of the shell is provided with a heat conduction
  • the casing is provided with an air inlet for passing gas into the casing to keep the internal pressure of the casing at 5MPA-30MPA.
  • the present invention has the following advantages:
  • the present invention uses a screw conveyor to transport the thermoplastic elastomer particles, and the thermoplastic elastomer particles are heated and pressurized simultaneously during the transportation process.
  • the sealing performance of the screw conveyor is optimized to provide a high-pressure environment.
  • on the wall shell of the screw conveyor Set up a thermal conductive structure to heat the thermoplastic elastomer particles to make the thermoplastic elastomer particles in a molten state.
  • the screw conveyor When the inert gas is continuously input into the screw conveyor so that the molten thermoplastic elastomer is in contact with the inert gas, the screw conveyor continues to rotate, While conveying the thermoplastic elastomer particles, it can also stir the thermoplastic elastomer particles to make them uniformly heated, fully contact with the inert gas, and increase the gas permeability, thereby improving the foaming efficiency and foaming quality;
  • the foaming efficiency of the present invention is higher.
  • the foaming of thermoplastic elastomer particles usually requires heating and pressure, heating to soften the thermoplastic elastomer particles, and pressure to make the inert gas enter the thermoplastic elastomer particles.
  • the traditional foaming process Heating and pressurizing are performed simultaneously, but at the initial stage, when the thermoplastic elastomer particles are not yet softened, the efficiency of gas entry is very low.
  • the present invention adopts the method of first heating and softening the thermoplastic elastomer particles, and then changing a container to inject the gas under pressure. The container is operated at the same time, and the efficiency is higher. In addition, the heating process is carried out in the reactor. Only heating the thermoplastic elastomer particles will not cause their volume expansion.
  • thermoplastic elastomer particles The traditional heating and pressing process in the reactor will cause thermoplastic elastomer particles.
  • the inert gas inside the material partly rushes out to the outside of the material, causing the material to produce a certain expansion, and the reactant capacity in the reactor is less.
  • the current temperature of the material is below the softening point, most of the gas remains in the utility model.
  • the remaining gas will make the material expand and play a role in the subsequent foaming process
  • such a reactor of the same volume will be able to place more materials, thereby increasing the utilization efficiency of the entire reactor and reducing individual materials Cost in the entire production process;
  • the molten thermoplastic elastomer particles filled with gas are injected into the setting machine and directly foamed in the cavity of the mold of the traditional setting machine. It is realized by heating.
  • the mold is directly used to complete the foaming and shaping at the same time, which not only saves the direct cost of the equipment required for foaming, but also realizes the traditional shoe material production equipment-shaping
  • the reuse of the machine greatly reduces the production cost of the enterprise and enhances the market competitiveness of the enterprise.
  • the setting machine only the current shoe material mold needs to be adjusted routinely, and the finished shoes can be obtained, which reduces the cost.
  • the present invention does not carry out cross-linking operation on the thermoplastic elastomer particle material, the finished product formed by it is very convenient to recycle. At the same time, because it forms the foaming and shaping process in the mold of the shaping machine at one time, so There is no need to reheat and shape the foamed product, so it also solves the shrinkage problem caused by non-crosslinking at the same time.
  • Figure 1 is a schematic diagram of the structure of an environmentally friendly foaming molding equipment for thermoplastic elastomers
  • Fig. 2 is a schematic diagram of the structure of the conveying device.
  • Embodiment 1 provides an environmentally friendly foaming process for thermoplastic elastomers, which includes the following steps:
  • thermoplastic elastomer particles (1) Heat the thermoplastic elastomer particles to a temperature above the softening point
  • the softened thermoplastic elastomer particles are transported to the setting machine under the condition of higher than atmospheric pressure in the transportation mechanism, and during the transportation process, the softened thermoplastic elastomer particles are brought into contact with at least one inert gas, To drive the gas into the softened thermoplastic elastomer particles,
  • the softened thermoplastic elastomer particles are heated, and the heating temperature is higher than the melting temperature of the thermoplastic elastomer particles by 10-40 degrees Celsius;
  • the conveying mechanism leads the thermoplastic elastomer saturated with inert gas and in a molten state to the mold of the setting machine, maintains the above temperature in the mold of the setting machine, and then reduces the pressure, and the finished product is obtained after foaming and mold setting.
  • thermoplastic elastomer particles in order to heat the thermoplastic elastomer particles to a temperature above the softening point, so as to be in full contact with the inert gas later; in step (1), the thermoplastic elastomer particles are heated by heating equipment.
  • step (2) in order to simultaneously heat and press the thermoplastic elastomer particles during the conveying process to make them in a molten state, so that the inert gas can fully enter the material and ensure the full progress of foaming; in step (2) , Use a screw conveyor to transport the softened thermoplastic elastomer particles, and set a heat conduction channel on the inner wall of the screw conveyor to heat the softened thermoplastic elastomer particles.
  • At least one inert gas is a supercritical fluid, which is nitrogen, carbon dioxide, or a mixed gas of the two .
  • step (2) in order to maintain a pressure higher than the atmospheric pressure, to drive the gas into the thermoplastic elastomer particles; in step (2), the pressure of the conveying mechanism is maintained between 5 MPA and 30 MPA.
  • thermoplastic elastomer particles in order to make the gas quickly overflow from the thermoplastic elastomer particles, bubbles are formed in the thermoplastic elastomer particles to achieve expansion and foaming; in step (3), the pressure is reduced by exhausting, and the exhaust The gas velocity is 5s-600s.
  • thermoplastic elastomer particle material is one or two or more of TPE, TPU, TPEE or PEBAX. mixture.
  • Embodiment 2 As shown in Figure 1-2, this embodiment provides an environmentally friendly foaming and molding equipment for thermoplastic elastomers, which includes a heating device 1 for heating the thermoplastic elastomer particles to a temperature above the softening point.
  • a heating and pressure conveying device that conveys softened thermoplastic elastomer particles under conditions higher than atmospheric pressure and heats them into a molten state, and is used to pass at least one inert gas into the heating and pressure conveying device to drive the inert gas into
  • the gas generating device 5 in the molten thermoplastic elastomer and the molding device 3 are connected to the molding device 3 to guide the thermoplastic elastomer saturated with inert gas and in a molten state to the mold of the molding device 3 After the foam and mold are shaped, the finished product is obtained.
  • the heating temperature of the heating device 1 is above the softening point temperature of the thermoplastic elastomer particles, the heating temperature of the heating and pressure conveying device is 10-40 degrees Celsius higher than the melting temperature of the thermoplastic elastomer particles, the pressure is 5-30 MPa, and the inert gas is Supercritical fluid is nitrogen, carbon dioxide or a mixture of both.
  • an elevator 4 for conveying the softened thermoplastic elastomer particles to the conveying device.
  • the heating and pressurizing conveying device is a screw conveyor 2
  • the feeding end of the screw conveyor 2 is provided with a feeding hopper 201
  • the screw conveyor 2 includes a housing 202 and a screw 203 rotatably mounted in the housing 202.
  • the inner wall of the housing 202 is provided with a heat conduction pipe 204, and the housing 202 is provided with gas for passing gas into the housing 202.
  • gas for passing gas into the housing 202.
  • the present invention injects molten gas-filled thermoplastic elastomer particles into the setting machine, and directly foams in the cavity of the mold of the traditional setting machine.
  • One-time foaming and setting are performed.
  • the heat transfer oil in the traditional setting machine is used to heat the mold. Realize, when foaming to the end of the process, directly use the mold to make the foaming and the finalization complete at the same time, which not only saves the direct cost of the equipment required for foaming, but also realizes the second time of the traditional shoe material production equipment-the setting machine Utilization, thereby greatly reducing the production cost of the enterprise, and improving the market competitiveness of the enterprise.
  • thermoplastic elastomer particles usually requires heating and pressure.
  • the thermoplastic elastomer particles are softened by heating, and the inert gas enters the thermoplastic elastomer particles by pressure.
  • the traditional foaming process is performed simultaneously with heating and pressure, but In the initial stage, when the thermoplastic elastomer particles have not been softened, the efficiency of gas entry is very low.
  • the present invention adopts the method of first heating and softening the thermoplastic elastomer particles, and then changing a container to inject the gas under pressure. The efficiency is higher, and the heating process is in In the reactor, only heating the thermoplastic elastomer particles will not cause their volume expansion.
  • the inert gas located in the thermoplastic elastomer particles will partly rush out to The outside of the material, so that the material has a certain expansion, but because the current temperature of the material is below the softening point, most of the gas remains inside the material (the remaining gas will expand the material during the secondary foaming process.
  • such a reactor of the same volume will be able to place more materials, thereby improving the utilization efficiency of the entire reactor, thereby reducing the cost of a single material in the entire production process; pressurization is in the process of conveying to the setting machine Completed; the present invention uses a screw conveyor 2 to transport and foam thermoplastic elastomer particles to optimize the sealing performance of the screw conveyor 2 to provide a high-pressure environment.
  • a heat conducting structure is provided on the wall shell of the screw conveyor 2 to facilitate The thermoplastic elastomer particles are heated to make the thermoplastic elastomer particles in a molten state so as to be in contact with the gas.
  • the continuous rotation of the screw conveyor 2 conveys the thermoplastic elastomer particles while agitating the thermoplastic elastomer particles to make them uniformly heated.
  • Contact with gas to improve the foaming efficiency so that the entire foaming process consumes very little energy, and there is no need to raise and lower the temperature of the reactor as in the prior art, which not only reduces energy consumption, reduces costs, but also improves Production efficiency;
  • the present invention does not cross-link the thermoplastic elastomer particle material, so the molded product is very convenient to recycle, and because it forms the foaming and shaping process in the mold of the shaping machine at one time, so No need to foam good products Reheating and setting are carried out, so that it also solves the shrinkage problem caused by non-crosslinking at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

本发明提供一种热塑性弹性体的环保发泡工艺及成型设备,包括以下步骤:将热塑性弹性体颗粒加热至温度达到软化点以上;将软化后的热塑性弹性体颗粒在输送机构内以高于大气压力的条件下向定型机输送,并在输送过程中,使软化后的热塑性弹性体颗粒与至少一种惰性气体接触,同时,对软化后的热塑性弹性体颗粒进行加热;输送机构将饱有惰性气体并呈熔融状态的热塑性弹性体导出至定型机的模具中,经发泡和模具定型后获得成品。本发明采用螺旋输送机输送并发泡热塑性弹性体颗粒,螺旋输送机的不断旋转,输送热塑性弹性体颗粒的同时还能搅动热塑性弹性体颗粒使其均匀受热,充分与气体接触,提高发泡效率。

Description

一种热塑性弹性体的环保发泡工艺及成型设备 技术领域
本发明涉及热塑性弹性体颗粒发泡技术领域,具体涉及一种热塑性弹性体的环保发泡工艺及成型设备。
背景技术
在鞋材领域,更多开始使用诸如TPU或者PEBAX材料等减震材料,为了取得较好的发泡效果,在发泡之前一般都需要对材料进行交联处理,交联的方式一般是通过添加交联剂的方式来实现,又或者是通过辐照交联来实现,但是由此带来的缺点也很明显,那就是交联后的材料将不能回收,即得到的产品环保性较差,不满足目前我国可持续发展的大方向。
常规的ETPU减震中底的成型方式有两种,一种是先采用TPU材料注塑出鞋底毛坯,再在加热加压环境下,采用超临界发泡的方式将TPU材料经过充分发泡之后得到发泡成型体,另一种是,在加热加压环境下,采用超临界发泡的方式将TPU材料颗粒发泡成ETPU颗粒,再经过二次发泡得到发泡成型体。但在实际生产中,只有将TPU材料加热到软化后气体才能进入到TPU材料内,因此同时对TPU材料进行加热加压,需要耗费的时间较长,不符合实际生产。除此之外,两种成型方式成型出来的发泡成型体仍然属于半成品范畴,其与成品的减震中底之间还需要经过定型机进行定型处理的工序,在定型机模压加热定型过程中,未经过交联操作的TPU或PEBAX材料遇到高温会产生较大的收缩,严重影响了整个产品的品质。由此,现有的成型方式效率低并且环保型差,不利于制鞋业的发展。
发明内容
本发明的第一个目的是针对以上不足之处,提供了一种先将热塑性弹性体颗粒加热软后,再继续加热加压,提高气体渗透速度,从而大大加快发泡效率,并且无需交联处理以实现成品可回收的热塑性弹性体的环保发泡工艺。
本发明解决技术问题所采用的第一个方案是:一种热塑性弹性体的环保发泡工艺,包括以下步骤:
(1)将热塑性弹性体颗粒加热至温度达到软化点以上;
(2)将软化后的热塑性弹性体颗粒在输送机构内以高于大气压力的条件下向定型机输送,并在输送过程中,使软化后的热塑性弹性体颗粒与至少一种惰性气体接触,以驱使气体进入软化后的热塑性弹性体颗粒内,同时,对软化后的热塑性弹性体颗粒进行加热,加热的温度高于热塑性弹性体颗粒的熔融温度10-40摄氏度;
(3)输送机构将饱有惰性气体并呈熔融状态的热塑性弹性体导出至定型机的模具中,在定型机的模具中保持上述温度,再降低压力,经发泡和模具定型后获得成品。
进一步地,为了对热塑性弹性体颗粒进行加热,使其温度达到软化点以上,以便后续与惰性气体充分接触;在步骤(1)中,所述热塑性弹性体颗粒采用加热设备进行加热。
进一步地,为了在输送过程中,同步对热塑性弹性体颗粒加热加压,使其呈熔融状态,以便惰性气体充分进入到材料内,保证发泡的充分进行;在步骤(2)中,采用螺旋输送机输送软化后的热塑性弹性体颗粒,并在螺旋输送机内壁上设置导热流道以加热软化后的热塑性弹性体颗粒。
进一步地,为了避免气体与材料发生反应,保证发泡后不留下痕迹;所述步骤(2)中至少一种惰性气体为超临界流体,为氮气、二氧化碳或者二者的混合气体。
进一步地,为了保持高于大气压的压力,以驱使气体进入热塑性弹性体颗粒内;在步骤(2)中,所述输送机构的压力保持在5MPA-30MPA之间。
进一步地,为了使气体快速从热塑性弹性体颗粒内溢出,在热塑性弹性体颗粒内形成气泡,实现膨胀发泡;在步骤(3)中,降低压力采用排气的方式来实现,排气速度为5s-600s。
进一步地,为了保证材料的环保无毒,同时具有高弹性、耐老化等特性;所述热塑性弹性体颗粒材料为TPE、TPU、TPEE或PEBAX之一或者两种或两种以上材料的混合物。
本发明的第二个目的是针对以上不足之处,提供了一种先将热塑性弹性体颗粒加热软化后,再加热加压,提高气体渗透速度,从而大大加快发泡效率,并且无需交联处理以实现成品可回收的热塑性弹性体的环保发泡成型设备。
本发明解决技术问题所采用的第二个方案是:一种热塑性弹性体的环保发泡成型设备,包括用于将热塑性弹性体颗粒加热至温度达到软化点以上的加热装置、用于以高于大气压力的条件输送软化后的热塑性弹性体颗粒并将其加热成熔融状态的加热加压输送装置、用于向加热加压输送装置内通入至少一种惰性气体以驱使惰性气体进入熔融热塑性弹性体内的气体发生装置以及成型装置,所述加热加压输送装置与成型装置连接以将饱有惰性气体并呈熔融状态的热塑性弹性体导出至成型装置的模具中经发泡和模具定型后获得成品。
进一步地,为了在装置间运送材料;所述加热装置与加热加压输送装置之间还设有用于将软化后的热塑性弹性体颗粒运送至输送装置内的提升机。
进一步地,为了在输送的同时,对热塑性弹性体颗粒进行加热,使其处于熔融状态,并保持输送环境的气压高于大气压力,使热塑性弹性体颗粒与至少一种惰性气体接触,以驱使气体进入热塑性弹性体颗粒内;所述加热加压输送装置为螺旋输送机,
螺旋输送机的进料端设有进料斗,螺旋输送机的出料端与成型装置相连,所述螺旋输送机包括外壳和转动安装在外壳内的螺杆,所述外壳的内壁上设有导热管,所述外壳上设有用于向外壳内通入气体以使外壳内压保持在5MPA-30MPA的进气口。
较之现有技术而言,本发明具有以下优点:
1)本发明采用螺旋输送机输送热塑性弹性体颗粒,输送过程同步对热塑性弹性体颗粒加热加压,螺旋输送机的密封性能经过优化,可提供高压环境,同时,在螺旋输送机的壁壳上设置导热结构,以便对热塑性弹性体颗粒进行加热,使热塑性弹性体颗粒处于熔融状态,当向螺旋输送机内不断输入惰性气体,以便熔融热塑性弹性体与惰性气体接触,螺旋输送机的不断旋转,输送热塑性弹性体颗粒的同时还能搅动热塑性弹性体颗粒使其均匀受热,充分与惰性气体接触,提高气体渗透率,进而提高发泡效率和发泡质量;
(2)本发明发泡效率更高,热塑性弹性体颗粒发泡通常都需要加热加压,加热使热塑性弹性体颗粒软化,加压使惰性气体进入热塑性弹性体颗粒内,传统的发泡工艺都是加热加压同步进行,但初始阶段,热塑性弹性体颗粒还未软化时,气体进入的效率很低,本发明采用先将热塑性弹性体颗粒加热软化,再换一个容器加压注入气体,两边的容器同时作业,效率更高,并且,加热过程是在反应釜中进行的,仅仅对热塑性弹性体颗粒加热不会导致其体积膨胀,传统在反应釜进行加热加压工艺会发生热塑性弹性体颗粒类材料内部的惰性气体部分冲出到材料外部,导致材料产生一定的膨胀,反应釜内反应物容量较少,但本实用新型由于材料的当前温度是在软化点以下,故大部分气体还是保留在材料内部(这些保留的气体会在后续发泡过程中让材料发生膨胀发挥作用),如此同样体积的反应釜,将可以放置更多的材料,进而提高整个反应釜的利用效率,进而降低单个材料在整个生产过程中的成本;
(3)本发明将熔融的注满气体的热塑性弹性体颗粒注入定型机内,直接在传统定型机的模具的模腔中进行发泡,一次发泡定型,利用传统定型机中导热油对模具进行加热来实现,在发泡到末端程序时,直接利用模具来让发泡和定型最后同时完成,不仅仅节省了发泡所需的设备直接成本,实现了对传统鞋材生产设备--定型机的再次利用,从而大大降低了企业的生产成本,提升了企业的市场竞争力,对定型机的使用过程中只需要对当前鞋材的模具进行常规调整,即可得到成品鞋,降低了发泡产品到定型过程中的各种人工成本,并且由于发泡和定型同步完成,避免了对完全发泡好的材料进行再次加热,从而导致材料收缩的性能问题,一举多得;
(4)本发明由于对热塑性弹性体颗粒类材料没有进行交联操作,如此其成型出来的成品非常方便回收,同时由于其将发泡和定型的过程在定型机的模具中一次成型,如此其不需要对发泡好的产品进行再次加热和定型,如此其也同时解决了未交联带来的收缩问题。
附图说明
下面参照附图结合实施例对本发明作进一步说明:
图1为热塑性弹性体的环保发泡成型设备的结构示意图;
图2为输送装置的结构示意图。
图中:1-加热装置;2-螺旋输送机;201-进料斗;202-外壳;203-螺杆;204-导热管;205-进气口;3-成型装置;4-提升机;5-气体发生装置。
具体实施方式
下面结合说明书附图和具体实施例对本发明内容进行详细说明:
实施例1:本实施例提供一种热塑性弹性体的环保发泡工艺,包括以下步骤:
(1)将热塑性弹性体颗粒加热至温度达到软化点以上;
(2)将软化后的热塑性弹性体颗粒在输送机构内以高于大气压力的条件下向定型机输送,并在输送过程中,使软化后的热塑性弹性体颗粒与至少一种惰性气体接触,以驱使气体进入软化后的热塑性弹性体颗粒内,
同时,对软化后的热塑性弹性体颗粒进行加热,加热的温度高于热塑性弹性体颗粒的熔融温度10-40摄氏度;
(3)输送机构将饱有惰性气体并呈熔融状态的热塑性弹性体导出至定型机的模具中,在定型机的模具中保持上述温度,再降低压力,经发泡和模具定型后获得成品。
在本实施例中,为了对热塑性弹性体颗粒进行加热,使其温度达到软化点以上,以便后续与惰性气体充分接触;在步骤(1)中,所述热塑性弹性体颗粒采用加热设备进行加热。
在本实施例中,为了在输送过程中,同步对热塑性弹性体颗粒加热加压,使其呈熔融状态,以便惰性气体充分进入到材料内,保证发泡的充分进行;在步骤(2)中,采用螺旋输送机输送软化后的热塑性弹性体颗粒,并在螺旋输送机内壁上设置导热流道以加热软化后的热塑性弹性体颗粒。
在本实施例中,为了避免气体与材料发生反应,保证发泡后不留下痕迹;所述步骤(2)中至少一种惰性气体为超临界流体,为氮气、二氧化碳或者二者的混合气体。
在本实施例中,为了保持高于大气压的压力,以驱使气体进入热塑性弹性体颗粒内;在步骤(2)中,所述输送机构的压力保持在5MPA-30MPA之间。
在本实施例中,为了使气体快速从热塑性弹性体颗粒内溢出,在热塑性弹性体颗粒内形成气泡,实现膨胀发泡;在步骤(3)中,降低压力采用排气的方式来实现,排气速度为5s-600s。
在本实施例中,为了保证材料的环保无毒,同时具有高弹性、耐老化等特性;所述热塑性弹性体颗粒材料为TPE、TPU、TPEE或PEBAX之一或者两种或两种以上材料的混合物。
实施例2:如图1-2所示,本实施例提供一种热塑性弹性体的环保发泡成型设备,包括用于将热塑性弹性体颗粒加热至温度达到软化点以上的加热装置1、用于以高于大气压力的条件输送软化后的热塑性弹性体颗粒并将其加热成熔融状态的加热加压输送装置、用于向加热加压输送装置内通入至少一种惰性气体以驱使惰性气体进入熔融热塑性弹性体内的气体发生装置5以及成型装置3,所述加热加压输送装置与成型装置3连接以将饱有惰性气体并呈熔融状态的热塑性弹性体导出至成型装置3的模具中经发泡和模具定型后获得成品。
加热装置1的加热温度为热塑性弹性体颗粒的软化点温度以上,加热加压输送装置的加热温度高于热塑性弹性体颗粒的熔融温度10-40摄氏度,压力为5-30兆帕,惰性气体为超临界流体,为氮气、二氧化碳或者二者的混合气体。
在本实施例中,为了在装置间运送材料;所述加热装置1与加热加压输送装置之间还设有用于将软化后的热塑性弹性体颗粒运送至输送装置内的提升机4。
在本实施例中,为了在输送的同时,对热塑性弹性体颗粒进行加热,使其处于熔融状态,并保持输送环境的气压高于大气压力,使热塑性弹性体颗粒与至少一种惰性气体接触,以驱使气体进入热塑性弹性体颗粒内;所述加热加压输送装置为螺旋输送机2,螺旋输送机2的进料端设有进料斗201,螺旋输送机2的出料端与成型装置3相连,所述螺旋输送机2包括外壳202和转动安装在外壳202内的螺杆203,所述外壳202的内壁上设有导热管204,所述外壳202上设有用于向外壳202内通入气体以使外壳202内压保持在5MPA-30MPA的进气口205。
本发明将熔融的注满气体的热塑性弹性体颗粒注入定型机内,直接在传统定型机的模具的模腔中进行发泡,一次发泡定型,利用传统定型机中导热油对模具进行加热来实现,在发泡到末端程序时,直接利用模具来让发泡和定型最后同时完成,不仅仅节省了发泡所需的设备直接成本,实现了对传统鞋材生产设备--定型机的再次利用,从而大大降低了企业的生产成本,提升了企业的市场竞争力,对定型机的使用过程中只需要对当前鞋材的模具进行常规调整,即可得到成品鞋,降低了发泡产品到定型过程中的各种人工成本,并且由于发泡和定型同步完成,避免了对完全发泡好的材料进行再次加热,从而导致材料收缩的性能问题,一举多得;本发明发泡效率更高,热塑性弹性体颗粒发泡通常都需要加热加压,通过加热使热塑性弹性体颗粒软化,通过加压使惰性气体进入热塑性弹性体颗粒内,传统的发泡工艺都是加热加压同步进行,但初始阶段,热塑性弹性体颗粒还未软化时,气体进入的效率很低,本发明采用先将热塑性弹性体颗粒加热软化,再换一个容器加压注入气体,效率更高,并且,加热过程是在反应釜中进行的,仅仅对热塑性弹性体颗粒加热不会导致其体积膨胀,对比传统在反应釜进行加热加压工艺会出现的,位于热塑性弹性体颗粒类材料内部的惰性气体会一部分冲出到材料外部,从而让材料产生一定的膨胀,但是由于材料的当前温度是在软化点以下,故大部分气体还是保留在材料内部(这些保留的气体会在二次发泡过程中让材料发生膨胀发挥作用),如此同样体积的反应釜,将可以放置更多的材料,进而提高整个反应釜的利用效率,进而降低单个材料在整个生产过程中的成本;加压是在输送到定型机的过程中完成的;本发明采用螺旋输送机2输送并发泡热塑性弹性体颗粒,对螺旋输送机2的密封性能进行优化,以提供高压环境,同时,在螺旋输送机2的壁壳上设置导热结构,以便对热塑性弹性体颗粒进行加热,使热塑性弹性体颗粒处于熔融状态,以便与气体接触,螺旋输送机2的不断旋转,输送热塑性弹性体颗粒的同时还能搅动热塑性弹性体颗粒使其均匀受热,充分与气体接触,提高发泡效率,如此整个发泡过程中消耗能量极少,不需要和现有技术一样对反应釜进行升温和降温,不仅仅降低了能量消耗,降低了成本,而且还提高了生产效率;本发明由于对热塑性弹性体颗粒类材料没有进行交联操作,如此其成型出来的成品非常方便回收,同时由于其将发泡和定型的过程在定型机的模具中一次成型,如此其不需要对发泡好的产品进行再次加热和定型,如此其也同时解决了未交联带来的收缩问题。
发明的实施例,并非因此限制发明的专利保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种热塑性弹性体的环保发泡工艺,其特征在于:包括以下步骤:
(1)将热塑性弹性体颗粒加热至温度达到软化点以上;
(2)将软化后的热塑性弹性体颗粒在输送机构内以高于大气压力的条件下向定型机输送,并在输送过程中,使软化后的热塑性弹性体颗粒与至少一种惰性气体接触,以驱使气体进入软化后的热塑性弹性体颗粒内,同时,对软化后的热塑性弹性体颗粒进行加热,加热的温度高于热塑性弹性体颗粒的熔融温度10-40摄氏度;
(3)输送机构将饱有惰性气体并呈熔融状态的热塑性弹性体导出至定型机的模具中,在定型机的模具中保持上述温度,再降低压力,经发泡和模具定型后获得成品。
2.根据权利要求1所述的热塑性弹性体的环保发泡工艺,其特征在于:在步骤(1)中,所述热塑性弹性体颗粒采用加热设备进行加热。
3.根据权利要求1所述的热塑性弹性体的环保发泡工艺,其特征在于:在步骤(2)中,采用螺旋输送机输送软化后的热塑性弹性体颗粒,并在螺旋输送机内壁上设置导热流道以加热软化后的热塑性弹性体颗粒。
4.根据权利要求1所述的热塑性弹性体的环保发泡工艺,其特征在于:所述步骤(2)中至少一种惰性气体为超临界流体,为氮气、二氧化碳或者二者的混合气体。
5.根据权利要求1所述的热塑性弹性体的环保发泡工艺,其特征在于:在步骤(2)中,所述输送机构的压力保持在5MPA-30MPA之间。
6.根据权利要求1所述的热塑性弹性体的环保发泡工艺,其特征在于:在步骤(3)中,降低压力采用排气的方式来实现,排气速度为5s-600s。
7.根据权利要求1所述的热塑性弹性体的环保发泡工艺,其特征在于:所述热塑性弹性体颗粒材料为TPE、TPU、TPEE或PEBAX之一或者两种或两种以上材料的混合物。
8.一种热塑性弹性体的环保发泡成型设备,其特征在于:包括用于将热塑性弹性体颗粒加热至温度达到软化点以上的加热装置、用于以高于大气压力的条件输送软化后的热塑性弹性体颗粒并将其加热成熔融状态的加热加压输送装置、用于向加热加压输送装置内通入至少一种惰性气体以驱使惰性气体进入熔融热塑性弹性体内的气体发生装置以及成型装置,所述加热加压输送装置与成型装置连接以将饱有惰性气体并呈熔融状态的热塑性弹性体导出至成型装置的模具中经发泡和模具定型后获得成品。
9.根据权利要求8所述的热塑性弹性体的环保发泡成型设备,其特征在于:所述加热装置与加热加压输送装置之间还设有用于将软化后的热塑性弹性体颗粒运送至输送装置内的提升机。
10.根据权利要求8所述的热塑性弹性体的环保发泡成型设备,其特征在于:所述加热加压输送装置为螺旋输送机,螺旋输送机的进料端设有进料斗,螺旋输送机的出料端与成型装置相连,所述螺旋输送机包括外壳和转动安装在外壳内的螺杆,所述外壳的内壁上设有导热管,所述外壳上设有用于向外壳内通入气体以使外壳内压保持在5MPA-30MPA的进气口。
PCT/CN2020/078157 2019-12-31 2020-04-02 一种热塑性弹性体的环保发泡工艺及成型设备 WO2021134908A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911412291.4A CN111055421A (zh) 2019-12-31 2019-12-31 一种热塑性弹性体的环保发泡工艺及成型设备
CN201911412291.4 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021134908A1 true WO2021134908A1 (zh) 2021-07-08

Family

ID=70305638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078157 WO2021134908A1 (zh) 2019-12-31 2020-04-02 一种热塑性弹性体的环保发泡工艺及成型设备

Country Status (2)

Country Link
CN (1) CN111055421A (zh)
WO (1) WO2021134908A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028739A (zh) * 2006-02-27 2007-09-05 北京中拓机械有限责任公司 一种热塑性树脂制品的气体辅助注射成型工艺
CN103350510A (zh) * 2013-07-04 2013-10-16 浙江海虹控股集团有限公司 一种制备聚合物超临界发泡材料的设备及方法
US20170197342A1 (en) * 2014-05-23 2017-07-13 Zotefoams Plc Method for producing three dimensional foam articles
CN109016320A (zh) * 2018-09-08 2018-12-18 广东奔迪新材料科技有限公司 一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101028739A (zh) * 2006-02-27 2007-09-05 北京中拓机械有限责任公司 一种热塑性树脂制品的气体辅助注射成型工艺
CN103350510A (zh) * 2013-07-04 2013-10-16 浙江海虹控股集团有限公司 一种制备聚合物超临界发泡材料的设备及方法
US20170197342A1 (en) * 2014-05-23 2017-07-13 Zotefoams Plc Method for producing three dimensional foam articles
CN109016320A (zh) * 2018-09-08 2018-12-18 广东奔迪新材料科技有限公司 一种热塑性聚合物颗粒模内模塑发泡成型装置及其成型方法

Also Published As

Publication number Publication date
CN111055421A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2021134907A1 (zh) 一种环保型鞋底的发泡成型工艺及发泡成型设备
KR20110099305A (ko) 자동화 고무 분말 가소화 방법 및 이를 위한 장치
CN105733931A (zh) 一种发酵热能回收设备及热能回收方法
CN105154136B (zh) 一种氯化石蜡的生产工艺和设备
CN104789254B (zh) 一种废旧轮胎胶粒裂解设备及其裂解工艺
CN204490811U (zh) 一种废旧轮胎胶粒裂解设备
TWI708744B (zh) 多模具熱彎成型設備
CN104761130B (zh) 一种以泡沫玻璃废料为原料的泡沫玻璃生产工艺
WO2021134908A1 (zh) 一种热塑性弹性体的环保发泡工艺及成型设备
CN112936703A (zh) 一种泡沫成型工艺
CN208250153U (zh) 一种3d玻璃热吸成型系统
WO2021103340A1 (zh) 一种低温超临界发泡工艺
CN212356552U (zh) 一种石墨烯连续微波膨化装置
CN211729943U (zh) 一种热塑性弹性体的环保发泡成型设备
CN110921671B (zh) 一种连续生产碳化硼的方法
CN104212036A (zh) 一种聚烯烃材料发泡颗粒及其生产方法
CN204109170U (zh) 一种可连续生产聚烯烃材料发泡颗粒的沸腾发泡设备
CN207918015U (zh) 玻璃专用传送装置
CN107473224A (zh) 利用热解油水制备电石的系统及方法
CN104448385B (zh) 集超临界co2流体反应和微波加热于一体的废旧橡胶处理装置
CN2455720Y (zh) 带有外循环换热装置的氯化石蜡生产设备
CN215472903U (zh) 一种新型发泡泡沫注塑模具
CN207983920U (zh) 一种用于网络线生产的螺杆立式注塑机
CN212826422U (zh) 一种聚酰亚胺薄膜固化气体循环利用的控温烘箱
CN113893794B (zh) 氯化聚乙烯的节能型生产系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908834

Country of ref document: EP

Kind code of ref document: A1