WO2021134669A1 - Microphone mems piezoélectrique - Google Patents

Microphone mems piezoélectrique Download PDF

Info

Publication number
WO2021134669A1
WO2021134669A1 PCT/CN2019/130904 CN2019130904W WO2021134669A1 WO 2021134669 A1 WO2021134669 A1 WO 2021134669A1 CN 2019130904 W CN2019130904 W CN 2019130904W WO 2021134669 A1 WO2021134669 A1 WO 2021134669A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrating
layer
fixed
mems microphone
balance
Prior art date
Application number
PCT/CN2019/130904
Other languages
English (en)
Chinese (zh)
Inventor
石正雨
童贝
李杨
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/130904 priority Critical patent/WO2021134669A1/fr
Publication of WO2021134669A1 publication Critical patent/WO2021134669A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency

Definitions

  • the utility model relates to the field of piezoelectric MEMS microphones.
  • the existing piezoelectric microphone has a 3-layer (electrode/piezoelectric material/electrode) or 5-layer (electrode/piezoelectric material/electrode/piezoelectric material/electrode) cantilever beam structure.
  • There is a large cantilever beam amplitude and piezoelectric material strain The problem of insufficient electrical signal output due to small size.
  • the purpose of the utility model is to provide a piezoelectric MEMS microphone, which aims to generate greater strain, thereby generating greater output.
  • a piezoelectric MEMS microphone includes:
  • the cantilever beam includes a fixed part fixed on the base and a vibrating part extending from the fixed part and suspended in the back cavity;
  • the cantilever beam includes at least two acoustic sensor layers along the vibration direction and a structural layer sandwiched between two adjacent acoustic sensor layers.
  • the acoustic sensor layer includes a first electrode layer, a second electrode layer, and The piezoelectric layer between the first electrode layer and the second electrode layer.
  • the Young's modulus of the structural layer is smaller than that of the acoustic sensor layer.
  • the thickness of the structure layer is greater than the thickness of the first electrode layer and the thickness of the piezoelectric layer.
  • the thickness of the structural layer is greater than that of the acoustic sensor layer.
  • the fixing portion has an annular structure, at least two of the vibration portions are arranged at intervals along the circumferential direction of the fixing portion, and each of the vibration portions converges from the fixing portion toward the center of the fixing portion.
  • the vibrating part is arranged around the balance part and located at the balance part. Between ⁇ and said fixed portion.
  • the vibrating portion includes an extension portion fixed to the fixed portion and a vibrating arm arranged around the outer circumference of the extension portion and spaced apart from the fixed portion, and the vibrating arm includes an extension portion away from the extension portion.
  • first electrode layer of the extension part and the first electrode layer of the vibrating arm are insulated from each other.
  • the elastic connecting member includes an elastic arm located between the balance portion and the vibrating portion, and bending arms extending from opposite ends of the elastic arm to the balance portion or the vibrating portion, respectively
  • the connecting arms, the extension directions of the two connecting arms are opposite.
  • the balance part or the vibrating part is correspondingly provided with an escape groove for avoiding the elastic connecting member.
  • the balance portion is polygonal, and each vibrating portion is respectively connected to each side of the balance portion.
  • the beneficial effect of the utility model is that the structure layer is arranged between the acoustic sensor layers, so that the radius of curvature of the cantilever beam is larger, and when the same bending angle is generated, greater strain will be generated, thereby generating greater output.
  • FIG. 1 is a schematic diagram of the structure of a piezoelectric MEMS microphone provided by an embodiment of the utility model
  • Figure 2 is a cross-sectional view along A-A of Figure 1;
  • Fig. 3 is a partial enlarged view of B in Fig. 1.
  • Piezoelectric MEMS microphone 1. Substrate; 10. Back cavity; 11. Cantilever beam; 2. Acoustic sensor layer; 21. First electrode layer; 22. Second electrode layer; 23. Piezoelectric layer; 3. Insulation Structural layer; 211, fixed part; 212, vibrating part; 213, balance part; 214, elastic connector; 215, extension part; 216, vibrating arm; 2161, first vibrating arm; 2162, wing part; 2141, elastic arm 2142. Connecting arm; 210. Avoidance slot.
  • a piezoelectric MEMS microphone 100 includes:
  • the cantilever beam 11 includes a fixed portion 211 fixed on the base 1 and a vibration portion 212 extending from the fixed portion 211 and suspended in the back cavity 10;
  • the cantilever beam 11 includes at least two acoustic sensor layers 2 along the vibration direction and a structural layer 3 sandwiched between two adjacent acoustic sensor layers 2.
  • the acoustic sensor layer 2 includes a first electrode layer 21 and a first electrode layer 21.
  • the second electrode layer 22 and the piezoelectric layer 23 provided between the first electrode layer 21 and the second electrode layer 22.
  • the insulating structure layer 3 is arranged between the two acoustic sensor layers 2 so that the radius of curvature of the cantilever beam 11 is larger, and greater strain will be generated when the same bending angle is generated, thereby generating a greater output.
  • the Young's modulus of the structural layer 3 is lower than the first electrode layer 21 and the piezoelectric layer 23, so that the mechanical energy converted from acoustic energy is concentrated in the piezoelectric layer, thereby generating a larger output.
  • the thickness of the structural layer 3 is greater than the thickness of the first electrode layer 21 and the thickness of the piezoelectric layer 23. Furthermore, the radius of curvature of the cantilever beam 11 is larger, and greater strain will be generated when the same bending angle is generated, thereby generating a greater output.
  • the thickness of the insulating structure layer 3 is greater than that of the acoustic sensor layer 2. Furthermore, the radius of curvature of the cantilever beam 11 is larger, and greater strain will be generated when the same bending angle is generated, thereby generating a greater output.
  • the fixed portion 211 has an annular structure, at least two of the vibrating portions 212 are arranged at intervals along the circumferential direction of the fixed portion 211, and each of the vibrating portions 212 extends from the fixed portion 211 toward the center of the fixed portion 211 Converge.
  • the vibrating portion 212 is arranged around the balance portion 213. And it is located between the balance portion 213 and the fixed portion 211.
  • the balance portion 213 is provided to further avoid warping of the free end of the vibrating portion 212 under the action of sound pressure, which causes the vibrating portion 212 at the anchoring portion to be forced to generate an electric signal, and the vibrating portion 212 is distributed along the circumferential direction of the balance portion 213.
  • the Young's modulus of the structural layer 3 is lower than that of the first electrode layer 21 and the piezoelectric layer 23, so that the mechanical energy converted from acoustic energy is concentrated in the piezoelectric layer, thereby generating a larger output.
  • the vibrating portion 212 includes an extension portion 215 fixed to the fixing portion 211 and a vibrating arm 216 arranged around the outer circumference of the extension portion 215 and spaced apart from the fixing portion 211, and the vibrating arm 216 includes
  • the first vibrating arm fixed on the side of the extension portion 215 away from the fixing portion 211 is 2161 and the wings bent and extended from the first vibrating arm 2161 toward the fixing portion 211 and located on both sides of the extension portion 215
  • the wing portion 2162 and the extension portion 215 are spaced apart. In this way, the compactness and structural consistency are improved.
  • the first electrode layer 21 of the extension portion 215 and the first electrode layer 21 of the vibrating arm 216 are insulated from each other.
  • the extension 215 and the vibrating arm 216 are insulated from each other, so that the extension 215 can form an electrode.
  • the extension 215 and the vibrating arm 216 are insulated from each other by surface etching, but the whole is not separated, so that different electrode sensing regions can be provided in the extension 215 on the premise of ensuring that the whole is vibrated.
  • the elastic connecting member 214 includes an elastic arm 2141 located between the balance portion 213 and the vibrating portion 212, and respectively bends and extends from opposite ends of the elastic arm 2141 to the balance portion 213 or
  • the extension directions of the two connecting arms 2142 are opposite.
  • the elastic connecting member 214 has a simple structure, is easy to process, has good consistency, and has good elasticity.
  • the balance portion 213 or the vibrating portion 212 is correspondingly provided with an escape groove 210 for avoiding the elastic connecting member 214.
  • the avoiding groove 210 is provided to accommodate the elastic connecting member 214, so that the structure is compact and the consistency is good.
  • the balance portion 213 is polygonal, and each vibrating portion 212 is connected to each side of the balance portion 213 respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

Le présent modèle d'utilité concerne un microphone MEMS piezoélectrique. Le microphone MEMS piézoélectrique comprend un substrat ayant une cavité arrière, et au moins une traverse en porte-à-faux fixée sur le substrat. La poutre en porte-à-faux comprend une partie fixe qui est fixée sur le substrat et une partie de vibration qui s'étend à partir de la partie fixe et est suspendue dans la cavité arrière. La traverse en porte-à-faux comprend au moins deux couches de capteur acoustique et une couche structurale serrée entre deux couches de capteur acoustique adjacentes dans une direction de vibration. Chaque couche de capteur acoustique comprend une première couche d'électrode, une seconde couche d'électrode, et une couche piézoélectrique disposée entre la première couche d'électrode et la seconde couche d'électrode. Dans le présent modèle d'utilité, la couche structurale est disposée entre les couches de capteur acoustique, de telle sorte que le rayon de courbure de la traverse en porte-à-faux est plus grand, une contrainte plus grande est générée lorsque le même angle de courbure est généré, et une sortie plus grande est ainsi générée.
PCT/CN2019/130904 2019-12-31 2019-12-31 Microphone mems piezoélectrique WO2021134669A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130904 WO2021134669A1 (fr) 2019-12-31 2019-12-31 Microphone mems piezoélectrique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130904 WO2021134669A1 (fr) 2019-12-31 2019-12-31 Microphone mems piezoélectrique

Publications (1)

Publication Number Publication Date
WO2021134669A1 true WO2021134669A1 (fr) 2021-07-08

Family

ID=76686158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130904 WO2021134669A1 (fr) 2019-12-31 2019-12-31 Microphone mems piezoélectrique

Country Status (1)

Country Link
WO (1) WO2021134669A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203066A (zh) * 2006-10-16 2008-06-18 雅马哈株式会社 静电压力换能器及其制造方法
CN102395092A (zh) * 2011-09-27 2012-03-28 清华大学 基于压电悬臂梁的压电扬声器
CN202310094U (zh) * 2011-09-27 2012-07-04 清华大学 一种压电悬臂梁的压电扬声器
US20140053650A1 (en) * 2012-08-21 2014-02-27 Board Of Regents, The University Of Texas System Acoustic sensor
CN110475191A (zh) * 2019-08-29 2019-11-19 武汉大学 一种低空气阻尼mems压电式麦克风

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101203066A (zh) * 2006-10-16 2008-06-18 雅马哈株式会社 静电压力换能器及其制造方法
CN102395092A (zh) * 2011-09-27 2012-03-28 清华大学 基于压电悬臂梁的压电扬声器
CN202310094U (zh) * 2011-09-27 2012-07-04 清华大学 一种压电悬臂梁的压电扬声器
US20140053650A1 (en) * 2012-08-21 2014-02-27 Board Of Regents, The University Of Texas System Acoustic sensor
CN110475191A (zh) * 2019-08-29 2019-11-19 武汉大学 一种低空气阻尼mems压电式麦克风

Similar Documents

Publication Publication Date Title
CN109495829A (zh) 压电式mems麦克风
CN111567063B (zh) 声音换能器
US11337009B2 (en) Piezoelectric MEMS microphone
CN110052391B (zh) 双谐振模式耦合的微机械压电超声波换能器
WO2020140569A1 (fr) Microphone piézoélectrique
US11924610B2 (en) MEMS transducer having a diaphragm made of polymer and method of producing same
WO2007060768A1 (fr) Transducteur electroacoustique
CN109803217B (zh) 压电式麦克风
US9302292B2 (en) Piezoelectric electroacoustic transducer
CN108296155A (zh) 具有v形弹簧的微机电压电超声波换能器
WO2021134669A1 (fr) Microphone mems piezoélectrique
CN112492472B (zh) 压电式麦克风及压电式麦克风装置
CN211378248U (zh) 压电mems麦克风
KR20230060523A (ko) 골전도 소리전달장치
CN110987159B (zh) 声压传感器
WO2018145416A1 (fr) Système de vibration dans un dispositif de production de son et dispositif de production de son
JP2011234569A (ja) 振動発電デバイスおよびその製造方法
CN114222231B (zh) 基于固支梁结构的双晶压电式mems麦克风
CN214381392U (zh) 压电式麦克风
WO2021134672A1 (fr) Microphone mems piézoélectrique
WO2022110349A1 (fr) Microphone piézoélectrique et son procédé de fabrication
KR102030932B1 (ko) 압전 트랜스듀서, 이의 어레이 및 이의 제조 방법
CN203708478U (zh) 采用fpcb连接驱动源的扬声器
CN107508498B (zh) 一种压电振动模块
CN201608894U (zh) 非金属振膜多层压电扬声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958584

Country of ref document: EP

Kind code of ref document: A1