WO2021134540A1 - 混合断路器、混合断路系统及断路方法 - Google Patents

混合断路器、混合断路系统及断路方法 Download PDF

Info

Publication number
WO2021134540A1
WO2021134540A1 PCT/CN2019/130683 CN2019130683W WO2021134540A1 WO 2021134540 A1 WO2021134540 A1 WO 2021134540A1 CN 2019130683 W CN2019130683 W CN 2019130683W WO 2021134540 A1 WO2021134540 A1 WO 2021134540A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
circuit breaker
parallel
hybrid
leakage discharge
Prior art date
Application number
PCT/CN2019/130683
Other languages
English (en)
French (fr)
Inventor
姚远
杜峰
刘臻
陈维刚
Original Assignee
西门子股份公司
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 西门子(中国)有限公司 filed Critical 西门子股份公司
Priority to PCT/CN2019/130683 priority Critical patent/WO2021134540A1/zh
Priority to CN201980102004.1A priority patent/CN114667656B/zh
Priority to DE112019007926.3T priority patent/DE112019007926T5/de
Publication of WO2021134540A1 publication Critical patent/WO2021134540A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere

Definitions

  • the present invention relates to the field of power systems, in particular to a hybrid circuit breaker, a hybrid circuit breaker system and a circuit breaker method.
  • solid state circuit breakers Due to the fast protection requirements of the DC grid, solid state circuit breakers (SSCB, solid state circuit breakers) are widely used.
  • SSCB solid state circuit breakers
  • the capacitance existing in the solid state circuit breaker will leak high-frequency current to the ground.
  • the leakage current will increase the potential risk of human ventricular fibrillation (ventricular fibrillation).
  • the capacitance existing in the solid state circuit breaker includes the parasitic capacitance of the switch and the capacitance of the damping circuit.
  • the common mode voltage between the line and the ground produces high-frequency leakage current flowing through the human body.
  • the frequency of the leakage current is very high and varies greatly, and the high-frequency current will flow through the capacitor even after the semiconductor circuit breaker MSS is opened.
  • FIG 1 is a schematic view of the hybrid circuit breaker shown in Figure 1, the mixing circuit breaker 100 includes a semiconductor circuit breaker 1 and in parallel with the MSS in the semiconductor absorption circuit breaker AC 1 and the MSS 1 is connected in series to the semiconductor circuit breaker The mechanical contact of MSS 1 is MC 1 .
  • Figure 2 is a circuit connection diagram of the semiconductor circuit breaker and its absorption circuit of the hybrid circuit breaker. Since the semiconductor circuit breaker MSS 1 is connected to the DC+ and DC- circuits, it has the same structure on the DC+ and DC- circuits respectively, namely Each includes two IGBT gate-level circuit structures.
  • the semiconductor circuit breaker MSS 1 includes a first IGBT gate-level circuit SS 1 and a second IGBT gate-level circuit SS 2 connected in series, which are connected in series to the capacitor C 1 and the resistor R 1 in parallel to the first IGBT gate.
  • the stage circuit SS 1 and the second IGBT gate stage circuit SS 2 serve as a sink circuit.
  • the DC-up semiconductor circuit breaker MSS 1 includes a third IGBT gate-level circuit SS 3 and a fourth IGBT gate-level circuit SS 4 connected in series, which are connected in series to the capacitor C 2 and the resistor R 2 in parallel to the third IGBT gate-level circuit SS 3 and the fourth IGBT gate circuit SS 4 serve as a sink circuit.
  • the first IGBT gate-level circuit SS 1 has a parasitic capacitance CP 1
  • the second IGBT gate-level circuit SS 2 has a parasitic capacitance CP 2
  • the third IGBT gate-level circuit SS 3 has a parasitic capacitance CP 3
  • the fourth IGBT gate-level circuit SS 4 has a parasitic capacitance CP 4.
  • the existence of the parasitic capacitance causes the prior art hybrid circuit breaker to be unable to be turned off by only relying on power electronic switches.
  • the high-frequency leakage current flows through the capacitors C 1 and C 2 and the parasitic capacitors CP 1 , CP 2 , CP 3 and CP 4 .
  • the ground fault current is the sum of the leakage current flowing through the absorption circuit and the parasitic capacitance
  • the leakage current flowing through the absorption circuit and the parasitic capacitance needs to be considered.
  • the prior art also provides some solutions to solve this problem, such as using TVS and MOV absorption circuits, but it cannot solve the problem of leakage current through parasitic capacitance.
  • the prior art also solves this problem by guiding the leakage current to the ground before it flows to the human body. However, the components that shunt the leakage current will flow through these components every second, which will continue to affect the normal working state of the entire power system.
  • the first aspect of the present invention provides a hybrid circuit breaker, which includes: a power supply having two output terminals; a semiconductor circuit breaker, one end of which is connected to an output terminal of the power supply; and an energy absorber, which Connected in parallel to the semiconductor circuit breaker; a first mechanical contact connected to the other end of the semiconductor circuit breaker; a first leakage discharge circuit connected to one end of the semiconductor circuit breaker and the first mechanical contact In addition, the first leakage discharge circuit is connected in series with the protection line.
  • a first mechanical switch is also connected between the first leakage discharge circuit and the protection line.
  • a second mechanical switch is also connected between the second leakage discharge circuit and the protection line.
  • the hybrid circuit breaker further includes: a second leakage discharge circuit, one end of which is connected between the power supply and the semiconductor circuit breaker, and the second leakage discharge circuit is connected in series with the protection line.
  • the second leakage discharge circuit includes two circuit structures, wherein the circuit structure is a parallel circuit, the parallel circuit includes two parallel branches, and each parallel branch includes two IGBTs connected in series.
  • the gate-level circuit wherein the IGBT gate-level circuit includes an npn transistor and a diode, wherein the connection point between the two IGBT gate-level circuits connected in series in a parallel branch and the two IGBT gates of the other parallel circuit
  • a resistor is also connected between the connection points between the level circuits, and a buffer circuit is also connected in parallel with the triode of each IGBT gate level circuit.
  • the second leakage discharge circuit includes two circuit structures, wherein the circuit structure is a parallel circuit, and the parallel circuit includes two parallel branches, wherein each parallel branch includes two MOSFETs connected in series.
  • a switching circuit wherein a resistor is also connected between the connection point between the two MOSFET switching circuits connected in series in one parallel branch and the connection point between the two MOSFET switching circuits in the other parallel circuit, and each The MOSFET switch circuit is also connected with a buffer circuit in parallel.
  • the hybrid circuit breaker further includes: a second mechanical contact connected in series between the power supply and the semiconductor circuit breaker, wherein one end of the second leakage discharge circuit is connected to Between the semiconductor circuit breaker and the second mechanical contact.
  • the first leakage discharge circuit includes two circuit structures, wherein the circuit structure is a parallel circuit, the parallel circuit includes two parallel branches, and each parallel branch includes two IGBTs connected in series.
  • the gate-level circuit wherein the IGBT gate-level circuit includes a triode and a diode, and the connection point between the two IGBT gate-level circuits connected in series in one parallel branch and the two IGBT gate-level circuits of the other parallel circuit
  • a resistor is also connected between the connection points between the circuits, and a buffer circuit is also connected in parallel with the triode of each of the IGBT gate-level circuits.
  • the first leakage discharge circuit includes two circuit structures, wherein the circuit structure is a parallel circuit, and the parallel circuit includes two parallel branches, wherein each parallel branch includes two MOSFETs connected in series.
  • a switching circuit wherein a resistor is also connected between the connection point between the two MOSFET switching circuits connected in series in one parallel branch and the connection point between the two MOSFET switching circuits in the other parallel circuit, and each The MOSFET switch circuit is also connected with a buffer circuit in parallel.
  • the second aspect of the present invention provides a hybrid circuit breaker method, wherein the hybrid circuit breaker method is implemented in the hybrid circuit breaker provided by the first aspect of the invention, wherein the hybrid circuit breaker method includes the following steps: When it occurs at the load end, the first leakage discharge circuit is opened; when a ground fault occurs at the power supply end, the second leakage discharge circuit is opened.
  • a third aspect of the present invention provides a hybrid circuit breaker system, wherein the circuit breaker system includes the hybrid circuit breaker according to the first aspect of the invention, and the hybrid circuit breaker system includes: a processor; and a memory coupled with the processor, The memory has instructions stored therein, which when executed by the processor cause the electronic device to perform actions, the actions including: when a ground fault occurs at the load end, opening the first leakage discharge circuit; When a ground fault occurs at the power supply terminal, the second leakage discharge circuit is opened.
  • the hybrid circuit breaker provided by the present invention can discharge the leakage current that may flow through the human body in advance, thereby avoiding the risk of electric shock to the human body.
  • the leakage discharge circuit in the hybrid circuit breaker provided by the present invention is flexibly configured, it can be integrated into the hybrid circuit breaker, or can be designed as an independent accessory component.
  • the control logic of the leakage discharge circuit is very simple, the control signal is sufficient to control the leakage discharge circuit, and the existing detection current is sufficient for the controller to determine the control logic of the leakage discharge circuit, and no additional signals are needed. Since the leakage discharge circuit uses IGBT gate-level circuits or MOFETs, the cost is not high.
  • the leakage discharge circuit when the leakage discharge circuit is opened, a current loop that dominates the leakage current will be established. Under normal conditions, when the leakage discharge circuit is closed, the impedance of the current is very high, so almost no current flows through the leakage discharge circuit.
  • the switch and diode in the hybrid circuit breaker provided by the present invention enable the capacitance of each connection of the leakage discharge circuit to be controlled by the diode, so silicon MOSFET/IGBT can be used.
  • the resistance of the leakage discharge circuit limits the current flowing through the leakage discharge circuit, which can contact the current demand of each component.
  • Figure 1 is a schematic diagram of the structure of a hybrid circuit breaker
  • Figure 2 is a circuit connection diagram of the semiconductor circuit breaker of the hybrid circuit breaker and its absorption circuit
  • Fig. 3 is a schematic structural diagram of a hybrid circuit breaker according to a specific embodiment of the present invention.
  • Figure 4 is a circuit connection diagram of the power system
  • Fig. 5 is a schematic circuit diagram of a leakage discharge circuit of a hybrid circuit breaker according to a specific embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the hybrid circuit breaker provided by the present invention, which has different structures according to different application scenarios.
  • FIG 4 is a circuit connection diagram of the power system, which is particularly a DC power system.
  • the AC power supply S 1 supplies power to two power supply branches B 1 and B 2 connected in parallel, and the power supply branches B 1 and B 2 respectively have an AC/DC converter (AC/DC converter).
  • the specific power supply branches B 1 and B 2 are also connected in series with a protection device PD 1 and PD 2 respectively .
  • under the protection devices PD 1 and PD 2 are also a first parallel branch, a second parallel branch, and a third parallel branch.
  • the parallel branch and the fourth parallel branch are also a first parallel branch, a second parallel branch, and a third parallel branch.
  • the first parallel branch has a protection device PD 11
  • the second parallel road has a protection device PD 12
  • the third parallel branch has a protection device PD 21
  • the fourth parallel road has a protection device PD 22 .
  • the DC power system also includes a battery source B 3 and a photovoltaic power source B 4 , wherein the battery source B 3 and the photovoltaic power source B 4 are also connected in series with protection devices PD 3 and PD 4 respectively .
  • Under the protection devices PD 3 and PD 4 there are also a fifth parallel branch, a sixth parallel branch and a seventh parallel branch.
  • the fifth parallel branch is connected in series with a protection device PD 31
  • the sixth parallel branch is connected in series with a protection device PD 32
  • the seventh parallel branch is connected in series with a protection device PD 41 .
  • the hybrid circuit breaker provided by the present invention can be applied to protection devices PD 1 , PD 2 , PD 3 , PD 4 , PD 11 , PD 12 , PD 21 , PD 22 , PD 31 , PD 32 , PD 41 Either.
  • the hybrid circuit breaker provided by the present invention can be applied to a DC power system and an AC power system.
  • the hybrid circuit breaker 200 provided by the present invention includes a power supply (not shown), a semiconductor circuit breaker MSS 2 , an energy absorber AC 2 , a first mechanical contact MC 21 and A first leakage discharge circuit FLCC 21 .
  • the power supply has two output terminals, a first output terminal In 1 and a second output terminal In 2 respectively .
  • the first output terminal In 1 serves as the first input terminal of the hybrid circuit breaker 200
  • the second output terminal In 2 serves as The second input terminal of the hybrid circuit breaker 200.
  • One end of the semiconductor circuit breaker MSS 2 is connected to the first output terminal In 1 of the power supply, the energy absorber AC 2 is connected in parallel to the semiconductor circuit breaker MSS 2 , and the first mechanical contact MC 21 is connected to the semiconductor circuit breaker Between the other end MSS 2 and a load (not shown), one end of the first leakage discharge circuit FLCC 21 is connected between the semiconductor circuit breaker MSS 2 and the first mechanical contact MC 21 , and the first A leakage discharge circuit is connected in series on the protection line PE between the power supply and the load. Wherein, the load is connected to the first output terminal Out 1 and the second output terminal Out 2 of the hybrid circuit breaker 200.
  • the leakage current in the circuit will be discharged through the first leakage discharge circuit FLCC 21 provided by the present invention. Therefore, if a person contacts the rear end of the MC 21 at the first mechanical point of the hybrid circuit breaker 200, because The leakage current is discharged through the first leakage discharge circuit FLCC 21 in advance without risk of electric shock.
  • the hybrid circuit breaker 300 also includes a second leakage discharge circuit FLCC 22 , one end of which is connected between the power supply and the semiconductor circuit breaker MSS 2 , and the second The leakage discharge circuit FLCC 22 is connected in series on the protection line PE between the power supply and the load.
  • the hybrid circuit breaker 300 includes two leakage discharge circuits. The leakage current in the circuit will be discharged through the first leakage discharge circuit FLCC 21 and the second leakage discharge circuit FLCC 22 provided by the present invention, so the human body Neither the front end of the second mechanical contact MC 22 nor the rear end of the first mechanical contact MC 21 of the hybrid circuit breaker 200 will get an electric shock.
  • the hybrid circuit breaker 400 further includes a second mechanical contact MC 22 , wherein the second mechanical contact MC 22 is connected in series with the power supply and the semiconductor circuit breaker MSS 2 In between, one end of the second leakage discharge circuit FLCC 22 is connected between the semiconductor circuit breaker MSS 2 and the second mechanical contact MC 22 .
  • a mechanical contact is not enough to shut off, so a second mechanical contact assist is additionally added.
  • a first mechanical switch S 21 is also connected between the first leakage discharge circuit FLCC 21 and the protection line PE, and a first mechanical switch S 21 is also connected between the second leakage discharge circuit FLCC 22 and the protection line PE There is a second mechanical switch S 22 .
  • the first mechanical switch S 21 and the second mechanical switch S 22 are used to isolate the protection line PE.
  • the first mechanical contact MC 21, the second mechanical contact MC 22 and the semiconductor circuit breaker MSS 2 in the hybrid circuit breaker 400 are closed, and the first leakage discharge circuit FLCC 21 and its first mechanical switch S 21 are connected to each other.
  • the second leakage discharge circuit FLCC 22 and its second mechanical switch S 22 are open.
  • the turn-off sequence of the components in the hybrid circuit breaker 400 should be to first open the semiconductor circuit breaker MSS 2 and close the first mechanical switch S 21 , then close the first leakage discharge circuit FLCC 21 , and then open the first mechanical contact MC 21 , Then the first leakage discharge circuit FLCC 21 is disconnected, and finally the second mechanical contact MC 22 is disconnected.
  • the first leakage discharge circuit FLCC 21 is opened, it bears most of the voltage drop even when the first mechanical switch S 21 is closed. Therefore, the rated voltages of the first mechanical switch S 21 and the first mechanical switch S 22 are relieved.
  • the leakage discharge circuit FLCC 21 After the first leakage discharge circuit FLCC 21 is closed, the current passing through the branch is discharged through the first leakage discharge circuit FLCC 21. Therefore, the rated current of the first mechanical switch S 21 and the first mechanical switch S 22 does not need to be too large. Therefore, when a ground fault occurs, the leakage current will be discharged through the first leakage discharge circuit FLCC 21 before it may flow through the human body. When the power system is working normally, the leakage discharge circuit provided by the present invention has very little current flowing to the ground through itself.
  • Fig. 5 is a schematic circuit diagram of a leakage discharge circuit of a hybrid circuit breaker according to a specific embodiment of the present invention.
  • the first leakage discharge circuit FLCC 21 includes two circuit structures 20 as shown in FIG. 5, and therefore needs to be respectively connected to the protection line PE from DC+ and DC-.
  • the circuit structure 20 is a parallel circuit, and the parallel circuit includes two parallel branches, and each parallel branch includes two series-connected IGBT gate-level circuits.
  • the IGBT gate-level circuit includes a triode.
  • a resistor R is also connected between the connection point between the two IGBT gate-level circuits connected in series in one parallel branch and the connection point between the two IGBT gate-level circuits of the other parallel circuit, and each The triode of the IGBT gate-level circuit is also connected with a buffer circuit in parallel.
  • the first parallel branch includes a first IGBT gate-level circuit S 1 and a second IGBT gate-level circuit S 2 connected in series
  • the second parallel branch includes a third IGBT gate-level circuit S 3 and a fourth IGBT gate connected in series.
  • Level circuit S 4 .
  • the first IGBT gate-level circuit S 1 includes a first npn transistor T 1 and a first diode D 1
  • the second IGBT gate-level circuit S 2 includes a second npn transistor T 1 and a second diode D 2
  • the anode of the first diode D 1 is connected to the emitter of the first npn transistor T 1
  • the cathode of the first diode D 1 is connected to the emitter of the second npn transistor T 1
  • the second diode D 2 is connected to the cathode connected to the collector of the second npn transistor T 1.
  • the third IGBT gate-level circuit S 3 includes a third npn transistor T 3 and a third diode D 3
  • the fourth IGBT gate-level circuit S 4 includes a fourth npn transistor T 4 and a fourth diode D 4
  • the cathode of the third diode D 3 is connected to the collector of the third npn transistor T 3
  • the anode of the third diode D 3 is connected to the collector of the fourth npn transistor T 4
  • the positive electrode of the fourth diode D 4 is connected to the emitter of the fourth npn transistor T 4 poles.
  • the above-mentioned diode acts as a reverse blocking function.
  • the series-connected first resistor RS 1 and the first capacitor CS 1 are connected in parallel with the first npn transistor T 1 to serve as a buffer circuit of the first IGBT gate circuit S 1
  • the series-connected second resistor RS 2 and the second capacitor CS 2 is connected in parallel to the second npn transistor T 2 to act as a buffer circuit for the second IGBT gate level circuit S 2
  • a third resistor RS 3 and a third capacitor CS 3 connected in series are connected in parallel to the third npn transistor T 3 to act as a third IGBT gate level circuits S 3 of the buffer circuit
  • a fourth resistor RS in series with the CS 4 4 and the fourth capacitor connected in parallel to the fourth npn transistor T 4 as the fourth IGBT gate level circuits S buffer circuit 4.
  • the second leakage discharge circuit also includes two circuit structures, wherein the circuit structure is a parallel circuit, the parallel circuit includes two parallel branches, and each parallel branch includes two series connected circuits.
  • the IGBT gate-level circuit wherein the IGBT gate-level circuit includes an npn transistor and a diode. For the sake of brevity, I won't repeat it.
  • the second leakage discharge circuit includes two circuit structures, wherein the circuit structure is a parallel circuit, and the parallel circuit includes two parallel branches, wherein each parallel branch includes two series connected circuits.
  • MOSFET switching circuit wherein a resistor is also connected between the connection point between the two MOSFET switching circuits connected in series in one parallel branch and the connection point between the two MOSFET switching circuits in the other parallel circuit, and each The MOSFET switch circuit is also connected with a buffer circuit in parallel.
  • the first leakage discharge circuit includes two circuit structures, wherein the circuit structure is a parallel circuit, and the parallel circuit includes two parallel branches, wherein each parallel branch includes two series connected circuits.
  • MOSFET switching circuit wherein a resistor is also connected between the connection point between the two MOSFET switching circuits connected in series in one parallel branch and the connection point between the two MOSFET switching circuits in the other parallel circuit, and each The MOSFET switch circuit is also connected with a buffer circuit in parallel.
  • the purpose of the leakage discharge circuit is to form a low-impedance current path, which can shunt the leakage current through the human body.
  • the leakage discharge circuit When the leakage discharge circuit is not working, all the switching elements in the hybrid circuit breaker provided by the present invention will be disconnected, and the current will hardly flow through the leakage discharge circuit.
  • the leakage discharge circuit works, all the switching elements in the hybrid circuit breaker provided by the present invention will be disconnected, so the leakage current will flow through the leakage discharge circuit.
  • the current path from point A to point B in Fig. 5 will be in a low impedance state, and most of its impedance is composed of resistor R. Since the resistance R is lower than the resistance of the human body, the leakage current will be shunted from the human body in advance when a ground fault occurs.
  • the leakage current is discharged through the path P1 as shown in FIG. 5, and when the second gate-level circuit S2 and the third gate-level circuit S3 are closed, The leakage current is discharged through the path P2 as shown in FIG. 5.
  • the simulation is performed below by simulating a ground fault.
  • the ground fault resistance is 750 ohms, which is equal to the human body resistance, and suppose that the ground fault occurs in the busbar of the hybrid circuit breaker as shown in Figure 3(c).
  • the fault current i fault and the current flowing through the leakage discharge circuit are detected.
  • the simulation result is that compared with the prior art, the fault current i fault in the hybrid circuit breaker provided by the present invention is reduced to 0.05A after 0.107s.
  • the fault current i fault of the prior art solid circuit breaker shown in Fig. 1 reaches 0.4A.
  • the second aspect of the present invention provides a hybrid circuit breaker method, wherein the hybrid circuit breaker method is implemented in the hybrid circuit breaker provided by the first aspect of the invention, wherein the hybrid circuit breaker method includes the following steps: When it occurs at the load end, the first leakage discharge circuit is opened; when the ground fault occurs at the power supply end, the second leakage discharge circuit is opened.
  • a third aspect of the present invention provides a hybrid circuit breaker system, wherein the circuit breaker system includes the hybrid circuit breaker according to the first aspect of the invention, and the hybrid circuit breaker system includes: a processor; and a memory coupled with the processor, The memory has instructions stored therein, which when executed by the processor cause the electronic device to perform actions, the actions including: when a ground fault occurs at the load end, opening the first leakage discharge circuit; When a ground fault occurs at the power supply terminal, the second leakage discharge circuit is opened.
  • the hybrid circuit breaker provided by the present invention can discharge the leakage current that may flow through the human body in advance, thereby avoiding the risk of electric shock to the human body.
  • the leakage discharge circuit in the hybrid circuit breaker provided by the present invention is flexibly configured, it can be integrated into the hybrid circuit breaker, or can be designed as an independent accessory component.
  • the control logic of the leakage discharge circuit is very simple, the control signal is sufficient to control the leakage discharge circuit, and the existing detection current is sufficient for the controller to determine the control logic of the leakage discharge circuit, and no additional signals are needed. Since the leakage discharge circuit uses silicon IGBT gate circuit or MOSFET, the cost is not high.
  • the leakage discharge circuit when the leakage discharge circuit is opened, a current loop that dominates the leakage current will be established. Under normal conditions, when the leakage discharge circuit is closed, the impedance of the current is very high, so almost no current flows through the leakage discharge circuit.
  • the switch and diode in the hybrid circuit breaker provided by the present invention enable the capacitance of each connection of the leakage discharge circuit to be controlled by the diode, so silicon MOSFET/IGBT can be used.
  • the resistance of the leakage discharge circuit limits the current flowing through the leakage discharge circuit, which can relieve the current demand of each component.

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Electronic Switches (AREA)

Abstract

一种混合断路器(200)、混合断路系统及断路方法,其中,混合断路器(200)包括:一个电源,其具有两个输出端(In 1、In 2);一个半导体断路器(MSS 2),其一端连接于电源的一个输出端(In 1);一个能量吸收器(AC 2),其并联于半导体断路器(MSS 2);一个第一机械接触(MC 21),其连接于半导体断路器(MSS 2)的另一端;一个第一漏电放电电路(FLCC 21),其一端连接于半导体断路器(MSS 2)和第一机械接触(MC 21)之间,并且,第一漏电放电电路(FLCC 21)串联于保护线(PE)上。在接地故障发生时,该混合断路器能够将本来可能流经人体的漏电流提前泄放掉,从而避免人体触电危险。

Description

混合断路器、混合断路系统及断路方法 技术领域
本发明涉及电力系统领域,尤其涉及混合断路器、混合断路系统及断路方法。
背景技术
由于直流电网的快速保护需求,固态断路器(SSCB,solid state circuit breakers)被广泛应用。然而,在接地故障中,半导体断路器MSS断开以后,固态断路器中存在的电容会漏高频电流到地端。当这样的接地故障由于人体触电导致,漏电流会增加人体心室纤维性颤动(ventricular fibrillation)的潜在风险。固态断路器中存在的电容包括开关的寄生电容和阻尼电路的电容。
其中,在人体触电状况下,线路和地之间的共模电压产生了流过人体的高频漏电流。其中,漏电流的频率很高并且变化很大,高频电流即使在半导体断路器MSS断开以后也会流过电容。并且,通过减少半导体断路器MSS中的寄生电容来缓解漏电流的方式控制成本很难,特别是在高额电流情况下。
图1是混合断路器的结构示意图,如图1所示,混合断路器100包括一个半导体断路器MSS 1和并联于所述半导体断路器MSS 1的吸收电路AC 1以及串联于所述半导体断路器MSS 1的机械接触MC 1。图2是混合断路器的半导体断路器及其吸收电路的电路连接图,由于半导体断路器MSS 1连接在DC+和DC-两路上,因此其分别在DC+和DC-两路上具有相同的结构,即分别包括两个IGBT门级电路结构。具体地,在DC+上,半导体断路器MSS 1包括串联的第一IGBT门级电路SS 1和第二IGBT门级电路SS 2,串联于电容C 1和电阻R 1并联于所述第一IGBT门级电路SS 1和第二IGBT门级电路SS 2以充当吸收电路。同理,在DC-上半导体断路器MSS 1包括串联的第三IGBT门级电路SS 3和第四IGBT门级电路SS 4,串联于电容C 2和电阻R 2并联于第三IGBT门级电路SS 3和第四IGBT门 级电路SS 4以充当吸收电路。
然而,第一IGBT门级电路SS 1具有寄生电容CP 1,第二IGBT门级电路SS 2具有寄生电容CP 2,第三IGBT门级电路SS 3具有寄生电容CP 3,第四IGBT门级电路SS 4具有寄生电容CP 4,寄生电容的存在导致现有技术的混合断路器仅依靠电力电子开关无法关断,当发生接地故障时,系统中存在漏电流沿着图2虚线所示的路径流动,造成开关无法完全关断。其中,高频漏电流流过电容C 1和C 2以及寄生电容CP 1、CP 2、CP 3和CP 4
由于接地故障电流是流过吸收电路以及寄生电容的漏电流的总和,因此流过吸收电路以及寄生电容的漏电流都需要考虑。现有技术也提供了一些方案来解决这个问题,例如利用TVS和MOV吸收电路,然而并不能解决通过寄生电容的漏电流问题。现有技术也通过将漏电流在流到人体之前引导到地端来解决这个问题,然而,分流漏电流的元件每秒都会流过这些元件,这样就会持续影响整个电力系统的平常工作状态。
发明内容
本发明第一方面提供了一种混合断路器,其中,包括:一个电源,其具有两个输出端;一个半导体断路器,其一端连接于所述电源的一个输出端;一个能量吸收器,其并联于所述半导体断路器;一个第一机械接触,其连接于所述半导体断路器的另一端;一个第一漏电放电电路,其一端连接于所述半导体断路器和所述第一机械接触之间,并且,所述第一漏电放电电路串联于保护线上。
进一步地,所述第一漏电放电电路和所述保护线之间还连接有一个第一机械开关。
进一步地,所述第二漏电放电电路和所述保护线之间还连接有一个第二机械开关。
进一步地,所述混合断路器还包括:一个第二漏电放电电路,其一端连接于电源和所述半导体断路器之间,并且,所述第二漏电放电电路串联于所述保护线上。
进一步地,所述第二漏电放电电路包括两个电路结构,其中,所述电路结构是一个并联电路,所述并联电路包括两个并联支路,其中每个并联支路上包括两个串联的IGBT门级电路,其中,所述IGBT门级电路 包括一个npn三极管和一个二极管,其中,在一个并联支路串联的两个IGBT门级电路之间的连接点和另一个并联电路的两个IGBT门级电路之间的连接点之间还连接有一个电阻,并且每个所述IGBT门级电路的三极管还并联有一个缓冲电路。
进一步地,所述第二漏电放电电路包括两个电路结构,其中,所述电路结构是一个并联电路,所述并联电路包括两个并联支路,其中每个并联支路上包括两个串联的MOSFET开关电路,其中,在一个并联支路串联的两个MOSFET开关电路之间的连接点和另一个并联电路的两个MOSFET开关电路之间的连接点之间还连接有一个电阻,并且每个所述MOSFET开关电路还并联有一个缓冲电路。
进一步地,所述混合断路器还包括:一个第二机械接触,所述第二机械接触串联于所述电源和所述半导体断路器之间,其中,所述第二漏电放电电路的一端连接于所述半导体断路器和所述第二机械接触之间。
进一步地,所述第一漏电放电电路包括两个电路结构,其中,所述电路结构是一个并联电路,所述并联电路包括两个并联支路,其中每个并联支路上包括两个串联的IGBT门级电路,其中,所述IGBT门级电路包括一个三极管和一个二极管,其中,在一个并联支路串联的两个IGBT门级电路之间的连接点和另一个并联电路的两个IGBT门级电路之间的连接点之间还连接有一个电阻,并且每个所述IGBT门级电路的三极管还并联有一个缓冲电路。
进一步地,所述第一漏电放电电路包括两个电路结构,其中,所述电路结构是一个并联电路,所述并联电路包括两个并联支路,其中每个并联支路上包括两个串联的MOSFET开关电路,其中,在一个并联支路串联的两个MOSFET开关电路之间的连接点和另一个并联电路的两个MOSFET开关电路之间的连接点之间还连接有一个电阻,并且每个所述MOSFET开关电路还并联有一个缓冲电路。
本发明第二方面提供了一种混合断路方法,其中,所述混合断路方法是在本发明第一方面提供的的混合断路器中执行,其中,所述混合断路方法包括如下步骤:当接地故障发生在负载端时,打开所述第一漏电放电电路;当接地故障发生在电源端时,打开所述第二漏电放电电路。
本发明第三方面提供了混合断路系统,其中,所述断路系统包括本 发明第一方面所述的混合断路器,所述混合断路系统包括:处理器;以及与所述处理器耦合的存储器,所述存储器具有存储于其中的指令,所述指令在被处理器执行时使所述电子设备执行动作,所述动作包括:当接地故障发生在负载端时,打开所述第一漏电放电电路;当接地故障发生在电源端时,打开所述第二漏电放电电路。
在接地故障发生时,本发明提供的混合断路器能够将本来可能流经人体的漏电流提前泄放掉,从而避免人体触电危险。并且,本发明提供的混合断路器中的漏电放电电路是灵活配置的,其可以整合到混合断路器中,也能够设计为一个独立的附属元件。漏电放电电路的控制逻辑非常简单,控制信号足以控制漏电放电电路,现有的探测电流对控制器来说足以确定漏电放电电路的控制逻辑,并不需要额外信号。由于漏电放电电路利用IGBT门级电路或者MOFET,因此造价不高。
此外,在漏电放电电路打开时,主导漏电流的电流回路会建立。在平常状况下,漏电放电电路关闭时,电流的阻抗很高,因此几乎没有电流流过漏电放电电路。当漏电放电电路关闭时,本发明提供的混合断路器中的开关和二极管使得漏电放电电路每联的电容都通过二极管控制,因此能够利用硅的MOSFET/IGBT。漏电放电电路的电阻限制了流经该漏电放电电路的电流,其能够接触每个元件额电流的需求。
附图说明
图1是混合断路器的结构示意图;
图2是混合断路器的半导体断路器及其吸收电路的电路连接图;
图3是根据本发明一个具体实施例的混合断路器的结构示意图;
图4是电力系统的电路连接图;
图5是根据本发明一个具体实施例的混合断路器的漏电放电电路的电路示意图。
具体实施方式
以下结合附图,对本发明的具体实施方式进行说明。
本发明通过设置漏电放电电路将发生接地故障时的漏电流提前泄放。图3是本发明提供的混合断路器的结构示意图,其根据不同的应用 场景具有不同的结构。
图4是电力系统的电路连接图,其特别地为一个直流电力系统。其中,交流电源S 1为并联的两个电源支路B 1和B 2供电,所述电源支路B 1和B 2分别具有一个交流直流转换器(AC/DC converter)。具体电源支路B 1和B 2还分别串联有一个保护装置PD 1和PD 2,其中,在保护装置PD 1和PD 2之下还具有第一并联支路、第二并联支路、第三并联支路和第四并联支路。其中第一并联支路具有一个保护装置PD 11,第二并联之路具有一个保护装置PD 12,第三并联支路具有一个保护装置PD 21,第四并联之路具有一个保护装置PD 22。在直流电力系统还包括一个电池源B 3和一个光伏电源B 4,其中电池源B 3和光伏电源B 4还分别串联有保护装置PD 3和PD 4。在保护装置PD 3和PD 4之下还具有第五并联支路第六并联支路和第七并联支路。其中,第五并联支路串联有一个保护装置PD 31,第六并联支路串联有一个保护装置PD 32,第七并联支路串联有一个保护装置PD 41。示例性地,本发明提供的混合断路器可以应用于保护装置PD 1、PD 2、PD 3、PD 4、PD 11、PD 12、PD 21、PD 22、PD 31、PD 32、PD 41中的任一个。需要说明的是,本发明提供的混合断路器可以应用于直流电力系统以及交流电力系统。
如图3中的(a)所示,本发明提供的混合断路器200包括一个电源(未示出)、一个半导体断路器MSS 2、一个能量吸收器AC 2、一个第一机械接触MC 21和一个第一漏电放电电路FLCC 21。具体地,电源具有两个输出端,分别为第一输出端In 1和第二输出端In 2,第一输出端In 1充当混合断路器200的第一输入端,第二输出端In 2充当混合断路器200的第二输入端。其中,半导体断路器MSS 2的一端连接于所述电源的第一输出端In 1,能量吸收器AC 2并联于所述半导体断路器MSS 2,第一机械接触MC 21连接于所述半导体断路器的另一端MSS 2和负载(未示出)之间,第一漏电放电电路FLCC 21的一端连接于所述半导体断路器MSS 2和所述第一机械接触MC 21之间,并且,所述第一漏电放电电路串联于所述电源和所述负载之间的保护线PE上。其中,所述负载连接于混合断路器200的第一输出端Out 1和第二输出端Out 2。因此,当接地故障产生时,电路中会存在漏电流会通过本发明提供的第一漏电放电电路FLCC 21泄放掉,因此如果人在混合断路器200的第一机械接触MC 21后端,由于漏电流通 过第一漏电放电电路FLCC 21提前泄放掉而不会有触电危险。
如图3中的(b)所示,所述混合断路器300还包括一个第二漏电放电电路FLCC 22,其一端连接于电源和所述半导体断路器MSS 2之间,并且,所述第二漏电放电电路FLCC 22串联于所述电源和负载之间的保护线PE上。在本实施例中,混合断路器300包括两个漏电放电电路,电路中会存在漏电流会通过本发明提供的第一漏电放电电路FLCC 21和第二漏电放电电路FLCC 22泄放掉,因此人体在混合断路器200的第二机械接触MC 22的前端和第一机械接触MC 21后端都不会触电。
如图3中的(c)所示,所述混合断路器400还包括一个第二机械接触MC 22,其中,所述第二机械接触MC 22串联于所述电源和所述半导体断路器MSS 2之间,所述第二漏电放电电路FLCC 22的一端连接于所述半导体断路器MSS 2和所述第二机械接触MC 22之间。这种情况是一个机械接触不够关断,因此额外添加了第二机械接触辅助。
因此,根据不同的混合断路器应用场景选择不同的结构。当电源在两端都有时,例如包括电机负载,电f机负载用于相反地注入能量给母线发生故障的故障点,此时电机也充当一个源,因此在一个机械接触的关断能力足够的情况下则选择如图3(b)所示的混合断路器,在一个机械接触的关断能力不足的情况下则选择如图3(c)所示的混合断路器。当电源在一端时,选择如图3(a)所示的混合断路器。
进一步地,所述第一漏电放电电路FLCC 21和所述保护线PE之间还连接有一个第一机械开关S 21,所述第二漏电放电电路FLCC 22和所述保护线PE之间还连接有一个第二机械开关S 22。其中,所述第一机械开关S 21和第二机械开关S 22用于隔离保护线PE。在正常工作状态,混合断路器400中的第一机械接触MC 21、第二机械接触MC 22和半导体断路器MSS 2是闭合的,第一漏电放电电路FLCC 21及其第一机械开关S 21与第二漏电放电电路FLCC 22及其第二机械开关S 22是断开的。
如图3(c)所示,假设在本实施例中,接地故障F发生在第一输出端Out 1和地端G之间。因此混合断路器400中元件的关断顺序应该是首先断开半导体断路器MSS 2和闭合第一机械开关S 21,然后闭合第一漏电放电电路FLCC 21,接着断开第一机械接触MC 21,然后断开第一漏电放电电路FLCC 21,最后断开第二机械接触MC 22。在这个过程中,当第一 漏电放电电路FLCC 21断开以后,其承担了多数的电压下跌即使在第一机械开关S 21闭合时。因此,第一机械开关S 21和第一机械开关S 22的额定电压缓解。当第一漏电放电电路FLCC 21闭合以后,其通过支路的电流通过第一漏电放电电路FLCC 21泄放,因此第一机械开关S 21和第一机械开关S 22的额定电流不需要太大。因此当接地故障发生时,漏电流会在可能流过人体以前通过第一漏电放电电路FLCC 21提前泄放掉。在电力系统正常工作时,本发明提供的漏电放电电路只有非常少的电流通过其自身流到地端。
如图3(b)所示,当短路故障发生时,首先半导体断路器MSS 2断开,然后第一机械接触MC 21和第二机械接触MC 22断开,因此在这种情况下所有漏电放电电路在这种情况下都断开。当接地故障F1在输出端(也就是负载端)发生时,首先半导体断路器MSS 2断开,第二漏电放电电路第二漏电放电电路FLCC 22闭合,然后第二机械接触MC 22断开,接着第二漏电放电电路FLCC 22断开。当接地故障F2在输入端(也就是电源端)发生时,首先半导体断路器MSS 2断开,第一漏电放电FLCC 21闭合,然后第一机械接触MC 21断开,接着第一漏电放电电路FLCC 22断开。
图5是根据本发明一个具体实施例的混合断路器的漏电放电电路的电路示意图。如图5所示,所述第一漏电放电电路FLCC 21包括两个如图5所示的电路结构20,因此分别需要从DC+和DC-两路分别连接至保护线PE。其中,所述电路结构20是一个并联电路,所述并联电路包括两个并联支路,其中每个并联支路上包括两个串联的IGBT门级电路。其中,所述IGBT门级电路包括一个三极管。其中,在一个并联支路串联的两个IGBT门级电路之间的连接点和另一个并联电路的两个IGBT门级电路之间的连接点之间还连接有一个电阻R,并且每个所述IGBT门级电路的三极管还并联有一个缓冲电路。
具体地,第一并联支路上包括串联的第一IGBT门级电路S 1和第二IGBT门级电路S 2,第二并联支路上包括串联的第三IGBT门级电路S 3和第四IGBT门级电路S 4。第一IGBT门级电路S 1包括一个第一npn三极管T 1和第一二极管D 1,第二IGBT门级电路S 2包括一个第二npn三极管T 1和第二二极管D 2,其中所述第一二极管D 1的正极连接于所述第 一npn三极管T 1的发射极,所述第一二极管D 1的负极连接于所述第二npn三极管T 1的发射极,所述第二二极管D 2的负极连接于所述连接于所述第二npn三极管T 1的集电极。第三IGBT门级电路S 3包括一个第三npn三极管T 3和第三二极管D 3,第四IGBT门级电路S 4包括一个第四npn三极管T 4和第四二极管D 4,其中所述第三二极管D 3的负极连接于所述第三npn三极管T 3的集电极,所述第三二极管D 3的正极连接于所述第四npn三极管T 4的集电极,所述第四二极管D 4的正极连接于所述第四npn三极管T 4的发射极。上述二极管起反向阻隔作用。并且,串联的第一电阻RS 1和第一电容CS 1并联于所述第一npn三极管T 1充当第一IGBT门级电路S 1的缓冲电路,串联的第二电阻RS 2和第二电容CS 2并联于所述第二npn三极管T 2充当第二IGBT门级电路S 2的缓冲电路,串联的第三电阻RS 3和第三电容CS 3并联于所述第三npn三极管T 3充当第三IGBT门级电路S 3的缓冲电路,串联的第四电阻RS 4和第四电容CS 4并联于所述第四npn三极管T 4充当第四IGBT门级电路S 4的缓冲电路。并且,所述第一IGBT门级电路S 1和第二IGBT门级电路S 2的连接点和所述第三IGBT门级电路S 3和第四IGBT门级电路S 4的连接点之间还连接有一个电阻R。
同理,所述第二漏电放电电路也包括两个电路结构,其中,所述电路结构是一个并联电路,所述并联电路包括两个并联支路,其中每个并联支路上包括两个串联的IGBT门级电路,其中,所述IGBT门级电路包括一个npn三极管和一个二极管。为简明起见,不再赘述。
可选地,所述第二漏电放电电路包括两个电路结构,其中,所述电路结构是一个并联电路,所述并联电路包括两个并联支路,其中每个并联支路上包括两个串联的MOSFET开关电路,其中,在一个并联支路串联的两个MOSFET开关电路之间的连接点和另一个并联电路的两个MOSFET开关电路之间的连接点之间还连接有一个电阻,并且每个所述MOSFET开关电路还并联有一个缓冲电路。
可选地,所述第一漏电放电电路包括两个电路结构,其中,所述电路结构是一个并联电路,所述并联电路包括两个并联支路,其中每个并联支路上包括两个串联的MOSFET开关电路,其中,在一个并联支路串联的两个MOSFET开关电路之间的连接点和另一个并联电路的两个 MOSFET开关电路之间的连接点之间还连接有一个电阻,并且每个所述MOSFET开关电路还并联有一个缓冲电路。
其中,漏电放电电路的目的在于形成低阻抗电流通路,其能够分流通过人体的漏电流。当漏电放电电路不工作时,本发明提供的混合断路器中的所有开关元件都会断开,电流几乎不会流经漏电放电电路。当漏电放电电路工作时,本发明提供的混合断路器中的所有开关元件都会断开,因此漏电流会流经漏电放电电路。
如图5所示,当IGBT门级电路S 1~S 4断开,其中从图5中A点到B点的电流路径会在一个高阻抗状态。由于每个IGBT门级电路都串联有一个二极管,因此漏电放电电路的电容会被该二极管限制。这样的电路结构限制了漏电流在这样的状态中,其用小寄生电容解除了开关需求。电阻R也用于限制电流。因此,硅的MOSFET也可以替代碳化硅的门级电路。
当IGBT门级电路S 1~S 4闭合时,其中从图5中A点到B点的电流路径会在一个低阻抗状态,其阻抗大部分是由电阻R组成的。由于电阻R低于人体的电阻,当接地故障发生时漏电流会从人体提前分流。其中,当第一门级电路S1和第四门级电路S4闭合时,漏电流通过如图5所示的路径P1泄放,当第二门级电路S2和第三门级电路S3闭合时,漏电流通过如图5所示的路径P2泄放。
为了验证本发明提供的混合断路器,下面通过模拟接地故障来执行仿真。首先假设接地故障电阻是750欧,其与人体电阻相等,并且假设接地故障发生在如图3(c)所示的混合断路器的母线。然后检测故障电流i fault和流经漏电放电电路的电流,仿真结果是相较于现有技术,本发明提供的混合断路器中的故障电流i fault在0.107s以后就减少到0.05A,而如图1所示的现有技术的固体断路器的故障电流i fault达到0.4A。同时,如图3(c)所示的混合断路器的第一漏电放电电路FLCC 21只需要承担几个毫秒的电流,并且电流值能够通过第一漏电放电电路FLCC 21的电阻而改变。并且,当漏电放电电路不工作时,也就是在0.105秒以前,流经漏电放电电流的电流值几乎为0。
本发明第二方面提供了一种混合断路方法,其中,所述混合断路方法是在本发明第一方面提供的的混合断路器中执行,其中,所述混合断 路方法包括如下步骤:当接地故障发生在负载端时,打开所述第一漏电放电电路;当接地故障发生在电源端时,打开所述第二漏电放电电路。
本发明第三方面提供了混合断路系统,其中,所述断路系统包括本发明第一方面所述的混合断路器,所述混合断路系统包括:处理器;以及与所述处理器耦合的存储器,所述存储器具有存储于其中的指令,所述指令在被处理器执行时使所述电子设备执行动作,所述动作包括:当接地故障发生在负载端时,打开所述第一漏电放电电路;当接地故障发生在电源端时,打开所述第二漏电放电电路。
在接地故障发生时,本发明提供的混合断路器能够将本来可能流经人体的漏电流提前泄放掉,从而避免人体触电危险。并且,本发明提供的混合断路器中的漏电放电电路是灵活配置的,其可以整合到混合断路器中,也能够设计为一个独立的附属元件。漏电放电电路的控制逻辑非常简单,控制信号足以控制漏电放电电路,现有的探测电流对控制器来说足以确定漏电放电电路的控制逻辑,并不需要额外信号。由于漏电放电电路利用硅的IGBT门级电路或者MOSFET,因此造价不高。
此外,在漏电放电电路打开时,主导漏电流的电流回路会建立。在平常状况下,漏电放电电路关闭时,电流的阻抗很高,因此几乎没有电流流过漏电放电电路。当漏电放电电路关闭时,本发明提供的混合断路器中的开关和二极管使得漏电放电电路每联的电容都通过二极管控制,因此能够利用硅的MOSFET/IGBT。漏电放电电路的电阻限制了流经该漏电放电电路的电流,其能够解除每个元件额电流的需求。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。此外,不应将权利要求中的任何附图标记视为限制所涉及的权利要求;“包括”一词不排除其它权利要求或说明书中未列出的装置或步骤;“第一”、“第二”等词语仅用来表示名称,而并不表示任何特定的顺序。

Claims (11)

  1. 混合断路器,其中,包括:
    一个电源,其具有两个输出端;
    一个半导体断路器,其一端连接于所述电源的一个输出端;
    一个能量吸收器,其并联于所述半导体断路器;
    一个第一机械接触,其连接于所述半导体断路器的另一端;
    一个第一漏电放电电路,其一端连接于所述半导体断路器和所述第一机械接触之间,并且,所述第一漏电放电电路串联于保护线上。
  2. 根据权利要求1所述的混合断路器,其特征在于,所述第一漏电放电电路和所述保护线之间还连接有一个第一机械开关。
  3. 根据权利要求2所述的混合断路器,其特征在于,所述第二漏电放电电路和所述保护线之间还连接有一个第二机械开关。
  4. 根据权利要求1所述的混合断路器,其特征在于,所述混合断路器还包括:
    一个第二漏电放电电路,其一端连接于电源和所述半导体断路器之间,并且,所述第二漏电放电电路串联于所述保护线上。
  5. 根据权利要求4所述的混合断路器,其特征在于,所述第二漏电放电电路包括两个电路结构,其中,所述电路结构是一个并联电路,所述并联电路包括两个并联支路,其中每个并联支路上包括两个串联的IGBT门级电路,其中,所述IGBT门级电路包括一个npn三极管,其中,在一个并联支路串联的两个IGBT门级电路之间的连接点和另一个并联电路的两个IGBT门级电路之间的连接点之间还连接有一个电阻,并且每个所述IGBT门级电路的三极管还并联有一个缓冲电路。
  6. 根据权利要求4所述的混合断路器,其特征在于,所述第二漏电放电电路包括两个电路结构,其中,所述电路结构是一个并联电路,所述并联电路包括两个并联支路,其中每个并联支路上包括两个串联的MOSFET开关电路,其中,在一个并联支路串联的两个MOSFET开关电路之间的连接点和另一个并联电路的两个MOSFET开关电路之间的连接点之间还连接有一个电阻,并且每个所述MOSFET开关电路还并联有一个缓冲电路。
  7. 根据权利要求1所述的混合断路器,其特征在于,所述混合断路器还包括:
    一个第二机械接触,所述第二机械接触串联于所述电源和所述半导体断路器之间,
    其中,所述第二漏电放电电路的一端连接于所述半导体断路器和所述第二机械接触之间。
  8. 根据权利要求1所述的混合断路器,其特征在于,所述第一漏电放电电路包括两个电路结构,其中,所述电路结构是一个并联电路,所述并联电路包括两个并联支路,其中每个并联支路上包括两个串联的IGBT门级电路,其中,所述IGBT门级电路包括一个三极管,其中,在一个并联支路串联的两个IGBT门级电路之间的连接点和另一个并联电路的两个IGBT门级电路之间的连接点之间还连接有一个电阻,并且每个所述IGBT门级电路的三极管还并联有一个缓冲电路。
  9. 根据权利要求1所述的混合断路器,其特征在于,所述第一漏电放电电路包括两个电路结构,其中,所述电路结构是一个并联电路,所述并联电路包括两个并联支路,其中每个并联支路上包括两个串联的MOSFET开关电路,其中,在一个并联支路串联的两个MOSFET开关电路之间的连接点和另一个并联电路的两个MOSFET开关电路之间的连接点之间还连接有一个电阻,并且每个所述MOSFET开关电路还并联有一个缓冲电路。
  10. 混合断路方法,其中,所述混合断路方法是在所述权利要求1至9任一项所述的混合断路器中执行,其中,所述混合断路方法包括如下步骤:
    当接地故障发生在负载端时,打开所述第一漏电放电电路;
    当接地故障发生在电源端时,打开所述第二漏电放电电路。
  11. 混合断路系统,其中,所述断路系统包括所述权利要求1至9任一项所述的混合断路器,所述混合断路系统包括:
    处理器;以及
    与所述处理器耦合的存储器,所述存储器具有存储于其中的指令,所述指令在被处理器执行时使所述电子设备执行动作,所述动作包括:
    当接地故障发生在负载端时,打开所述第一漏电放电电路;
    当接地故障发生在电源端时,打开所述第二漏电放电电路。
PCT/CN2019/130683 2019-12-31 2019-12-31 混合断路器、混合断路系统及断路方法 WO2021134540A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/130683 WO2021134540A1 (zh) 2019-12-31 2019-12-31 混合断路器、混合断路系统及断路方法
CN201980102004.1A CN114667656B (zh) 2019-12-31 2019-12-31 混合断路器、混合断路系统及断路方法
DE112019007926.3T DE112019007926T5 (de) 2019-12-31 2019-12-31 Hybrider leistungsschalter, hybrides leistungsschaltersystem und stromkreisunterbrechungsverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130683 WO2021134540A1 (zh) 2019-12-31 2019-12-31 混合断路器、混合断路系统及断路方法

Publications (1)

Publication Number Publication Date
WO2021134540A1 true WO2021134540A1 (zh) 2021-07-08

Family

ID=76686055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130683 WO2021134540A1 (zh) 2019-12-31 2019-12-31 混合断路器、混合断路系统及断路方法

Country Status (3)

Country Link
CN (1) CN114667656B (zh)
DE (1) DE112019007926T5 (zh)
WO (1) WO2021134540A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113794188A (zh) * 2021-08-17 2021-12-14 国网河北省电力有限公司雄安新区供电公司 一种适用于配电网的新型固态交流断路器
CN114284986A (zh) * 2021-12-14 2022-04-05 中国船舶重工集团公司第七0四研究所 梯桥型双极性固态断路器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529677A (zh) * 2015-12-01 2016-04-27 中国矿业大学(北京) 一种主动抑制过电压的限流式固态断路器拓扑及其控制方法
CN105552828A (zh) * 2016-01-05 2016-05-04 南京航空航天大学 一种自供电双向直流固态断路器
CN106468752A (zh) * 2016-09-27 2017-03-01 武汉大学 一种集成了故障定位功能的固态断路器rcd缓冲电路与故障点检测方法
CN106558865A (zh) * 2015-09-25 2017-04-05 全球能源互联网研究院 一种改进型级联全桥高压直流断路器及其快速重合方法
US20170312783A1 (en) * 2014-10-29 2017-11-02 Fascoeng., Ltd Electronic vibrator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170312783A1 (en) * 2014-10-29 2017-11-02 Fascoeng., Ltd Electronic vibrator
CN106558865A (zh) * 2015-09-25 2017-04-05 全球能源互联网研究院 一种改进型级联全桥高压直流断路器及其快速重合方法
CN105529677A (zh) * 2015-12-01 2016-04-27 中国矿业大学(北京) 一种主动抑制过电压的限流式固态断路器拓扑及其控制方法
CN105552828A (zh) * 2016-01-05 2016-05-04 南京航空航天大学 一种自供电双向直流固态断路器
CN106468752A (zh) * 2016-09-27 2017-03-01 武汉大学 一种集成了故障定位功能的固态断路器rcd缓冲电路与故障点检测方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113794188A (zh) * 2021-08-17 2021-12-14 国网河北省电力有限公司雄安新区供电公司 一种适用于配电网的新型固态交流断路器
CN113794188B (zh) * 2021-08-17 2023-09-19 国网河北省电力有限公司雄安新区供电公司 一种适用于配电网的新型固态交流断路器
CN114284986A (zh) * 2021-12-14 2022-04-05 中国船舶重工集团公司第七0四研究所 梯桥型双极性固态断路器
CN114284986B (zh) * 2021-12-14 2024-03-01 中国船舶重工集团公司第七0四研究所 梯桥型双极性固态断路器

Also Published As

Publication number Publication date
CN114667656A (zh) 2022-06-24
CN114667656B (zh) 2024-03-08
DE112019007926T5 (de) 2022-09-29

Similar Documents

Publication Publication Date Title
US9461533B2 (en) Electronic circuit
US9059709B2 (en) Gate drive circuit for transistor
US7570086B2 (en) Switching element drive circuit
US10084446B2 (en) Driver circuit, corresponding integrated circuit and device
CN107181420B (zh) 逆变器驱动装置以及半导体模块
JPWO2015133365A1 (ja) 電力変換装置
US7696650B2 (en) Driving circuit for switching elements
CN101421896A (zh) 通过电源状态检测的esd箝位控制
CN111756232B (zh) 功率单元
WO2021134540A1 (zh) 混合断路器、混合断路系统及断路方法
WO2022142843A1 (zh) 串联功率模块的自动合闸旁路保护装置及控制方法
CN106602532A (zh) 限流电路及其驱动方法、pmic保护系统和显示装置保护系统
JP2004129378A (ja) 電力用半導体素子のゲート駆動回路
CN105846665A (zh) 一种具有自保护功能的常通型SiC JFET驱动电路
WO2020135356A1 (zh) 一种保护电路及电池管理系统
Anurag et al. Effect of optocoupler gate drivers on SiC MOSFET
Hou et al. An ultrafast discrete protection circuit utilizing multi-functional dual-gate pads of gan hemts
US20220345125A1 (en) Circuit arrangement for controlling a plurality of semiconductor switches connected in parallel
CN109950940B (zh) 阀组充电装置和阀组充电控制方法
CN217406179U (zh) 一种直流并联系统、功率变换器的保护电路
Rodrigues et al. Optimized method for protection of SiC JFET based converters against failure of auxiliary power supply
CN220525956U (zh) 固态断路器故障检测装置和包含其的固态断路器
JP2019047698A (ja) 半導体装置
CN217607483U (zh) Esd保护电路、mcu芯片及bms芯片
CN207926171U (zh) 一种并联功率开关的过流保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958682

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19958682

Country of ref document: EP

Kind code of ref document: A1