WO2021134410A1 - 激光测距机的量程的测量方法及系统和存储介质 - Google Patents

激光测距机的量程的测量方法及系统和存储介质 Download PDF

Info

Publication number
WO2021134410A1
WO2021134410A1 PCT/CN2019/130349 CN2019130349W WO2021134410A1 WO 2021134410 A1 WO2021134410 A1 WO 2021134410A1 CN 2019130349 W CN2019130349 W CN 2019130349W WO 2021134410 A1 WO2021134410 A1 WO 2021134410A1
Authority
WO
WIPO (PCT)
Prior art keywords
attenuator
attenuation rate
light
attenuation
laser
Prior art date
Application number
PCT/CN2019/130349
Other languages
English (en)
French (fr)
Inventor
李涛
王闯
陈涵
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/130349 priority Critical patent/WO2021134410A1/zh
Priority to CN201980047522.8A priority patent/CN113330295A/zh
Publication of WO2021134410A1 publication Critical patent/WO2021134410A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light

Definitions

  • This application relates to the field of laser detection, and in particular to a method for measuring the range of a laser rangefinder, a measurement system for the range of a laser rangefinder, and a non-volatile computer-readable storage medium.
  • the extinction method is generally used, that is, an attenuator is added in front of the laser rangefinder, and the laser passes through the attenuator and is directed to the test target.
  • the attenuation rate of the attenuator can be determined according to the attenuation rate at this time The maximum range. Different attenuators have different attenuation rates.
  • the distance between the laser rangefinder and the test target may still be too far, so that the laser rangefinder cannot reach the critical state.
  • the embodiments of the present application provide a method for measuring the range of a laser rangefinder, a system for measuring the range of a laser rangefinder, and a non-volatile computer-readable storage medium.
  • the embodiment of the present application provides a method for measuring the range of a laser rangefinder.
  • the measurement method includes: the laser rangefinder emits laser light to a calibration target at a predetermined distance; and the laser rangefinder receives an attenuator Return light to obtain the light radiation energy of the return light; adjust the attenuation rate of the attenuator until the light radiation energy of the return light reaches a predetermined energy threshold, and determine that the adjusted attenuation rate is the maximum attenuation rate;
  • the predetermined distance and the maximum attenuation rate are used to calculate the maximum range of the laser rangefinder.
  • the embodiment of the present application also provides a measurement system for the range of a laser rangefinder.
  • the measurement system includes a laser rangefinder, a data processing device, and a mobile device.
  • the laser rangefinder is used to emit laser light to a calibration target at a predetermined distance and receive the return light passing through the attenuator.
  • the data processing device is used to obtain the optical radiation energy of the return light.
  • the mobile device is used to adjust the attenuation rate of the attenuator.
  • the data processing device is further configured to determine that the adjusted attenuation rate is the maximum attenuation rate when the optical radiation energy of the return light reaches a predetermined energy threshold, and calculate the calculated attenuation rate based on the predetermined distance and the maximum attenuation rate. State the maximum range of the laser rangefinder.
  • the embodiment of the present application also provides a non-volatile computer-readable storage medium containing computer-executable instructions.
  • the processor is caused to execute the measurement method of the foregoing embodiment.
  • the laser rangefinder receives the return light passing through the attenuator to obtain the return The light radiation energy, and adjust the attenuation rate of the attenuator through the mobile device (such as increasing the attenuation rate) until the light radiation energy of the return light reaches the predetermined threshold (at this time, the predetermined distance is the attenuation of the laser rangefinder with the attenuator The maximum distance that can be detected later, the attenuation rate is the maximum attenuation rate corresponding to the predetermined distance), and then the data processing equipment can calculate the maximum range of the laser rangefinder according to the predetermined distance and the corresponding maximum attenuation rate, because it can be directly used by the mobile device To change the attenuation rate of the attenuator, there is no need to replace attenuators with different attenuation rates or change the distance between the laser
  • FIG. 1 is a schematic structural diagram of a measurement system and a calibration target of a range measurement system of a laser rangefinder according to some embodiments of the present application.
  • FIG. 2 is a schematic flowchart of a method for measuring the range of a laser rangefinder in some embodiments of the present application
  • 3 and 4 are schematic diagrams of the measurement method of the range of the laser rangefinder in some embodiments of the present application.
  • 5 and 6 are schematic flowcharts of a method for measuring the range of a laser rangefinder according to some embodiments of the present application.
  • FIG 7 and 8 are schematic plan views of the gradual attenuator in the laser rangefinder of some embodiments of the present application under different rotation angles.
  • FIG. 9 is a schematic flowchart of a method for measuring the range of a laser rangefinder according to some embodiments of the present application.
  • FIG. 10 and FIG. 11 are schematic plan views of the progressive attenuator in the laser rangefinder of some embodiments of the present application under different moving distances.
  • FIG. 12 is a schematic flowchart of a method for measuring the range of a laser rangefinder according to some embodiments of the present application.
  • FIG. 13 is a schematic diagram of the connection between a processor and a computer-readable storage medium in some embodiments of the present application.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components relationship.
  • connection should be understood according to specific circumstances.
  • an embodiment of the present application provides a method for measuring the range of a laser rangefinder 10, and the measurement method includes:
  • the laser rangefinder 10 emits laser light to the calibration target 200 at a predetermined distance
  • the laser rangefinder 10 receives the return light passing through the attenuator 40 to obtain the optical radiation energy of the return light;
  • 014 Calculate the maximum range of the laser rangefinder 10 according to the predetermined distance and the maximum attenuation rate.
  • the embodiment of the present application also provides a measurement system 100 for measuring the range of the laser rangefinder 10.
  • the measurement system 100 includes the laser rangefinder 10, a data processing device 20 and a mobile device 30.
  • the laser rangefinder 10 is used to emit laser light to the calibration target 200 at a predetermined distance and to receive the return light passing through the attenuator 40.
  • the data processing device 20 is used to obtain the light radiation energy of the return light.
  • the mobile device 30 is used to adjust the attenuation rate of the attenuator 40.
  • the data processing device 20 is also used for determining the adjusted attenuation rate of the maximum attenuation rate when the light radiation energy of the return light reaches a predetermined energy threshold, and calculating the maximum range of the laser rangefinder 10 according to the predetermined distance and the maximum attenuation rate.
  • step 011 can be implemented by the laser rangefinder 10.
  • step 012 can be implemented by the laser rangefinder 10 in cooperation with the data processing device 20,
  • step 013 can be implemented by the mobile device 30, and step 014 can be implemented by the data processing device 20.
  • the data processing device 20 may be one or more general-purpose or special-purpose processors capable of realizing data processing.
  • the laser distance meter 10 when measuring the maximum range of the laser distance meter 10, the laser distance meter 10 emits laser light to the calibration target 200 at a predetermined distance. Generally, the laser light needs to be incident on the calibration target 200 perpendicularly to ensure that the laser light can be reflected. Enter the laser rangefinder 10.
  • the measurement system 100 is also provided with an attenuator 40.
  • the attenuator 40 is used to attenuate the laser light emitted by the laser rangefinder 10 and incident on the attenuator 40.
  • the laser light attenuated by the attenuator 40 enters the calibration target 200 vertically. Generally, The greater the attenuation rate of the attenuator 40, the lower the intensity of the attenuated laser light.
  • the maximum detection distance Compared with the maximum distance (hereinafter referred to as the maximum detection distance) that can be detected when the unattenuated laser is used for distance measurement, the laser measurement The maximum detection distance of the distance machine 10 when the attenuated laser is used for distance measurement will be reduced.
  • the attenuator 40 may be at least one of an absorption attenuator or a reflection attenuator.
  • the attenuator 40 may be an absorption attenuator, and when the laser enters the attenuator 40, it will absorb part of the laser; for another example, the attenuator 40 can also be a reflective attenuator, and when laser light enters the attenuator 40, part of the laser light will be reflected; for another example, there can be multiple (such as two) attenuators 40, which are respectively an absorption attenuator and a reflection attenuator; In the embodiment of the present application, the attenuator 40 is a reflective attenuator.
  • the attenuation rate of the attenuator 40 is the proportion of the total laser light reflected or absorbed by the attenuator 40. If the attenuation rate is 30%, it means that when the laser passes through the attenuator 40, 30% of the laser light is reflected by the attenuator 40 and cannot pass. The remaining 70% of the laser light can pass through the attenuator 40. As the attenuation rate of the attenuator 40 is continuously adjusted (for example, the attenuation rate of the attenuator 40 is continuously increased), the maximum detection distance that the laser rangefinder 10 can detect when the attenuated laser is used for distance measurement gradually decreases.
  • the mobile device 30 can continuously adjust the attenuation rate of the attenuator 40 (eg, adjust the attenuation rate of the attenuator 40 to increase the attenuation rate by a predetermined step) until the maximum detection distance is exactly equal to the predetermined distance, thereby determining the maximum attenuation rate.
  • the laser rangefinder 10 obtains the light radiation energy of the corresponding return light every time the attenuation rate is adjusted, which can be: the laser rangefinder 10 continuously emits laser light, and the mobile device 30 adjusts the attenuation rate every time, the laser rangefinder 10 Obtain the light radiation energy of a return light; it can also be: the laser rangefinder 10 emits laser in the form of laser pulses, and after each attenuation rate of the mobile device 30 is adjusted, the laser rangefinder 10 emits a laser pulse and receives the laser For the return light corresponding to the pulse, the laser rangefinder 10 obtains the light radiation energy of one return light. In this way, the laser rangefinder 10 does not need to be turned on all the time, and the energy consumption is low.
  • the laser rangefinder 10 is also provided with a light detector 50, and the light detector 50 is used to obtain the light radiation energy of the return light.
  • the light detector 50 may convert the received return light (ie, the laser light reflected back by the calibration target 200) into a corresponding electrical signal, and each electrical signal corresponds to the optical radiation energy of each received return light.
  • the electrical signal can be voltage or current.
  • the data processing device 20 can convert the light radiation energy of the return light into a voltage signal or a current signal according to the return light received by the photodetector 50 and a preset photoelectric conversion coefficient. Similarly, it can also be calculated based on the electrical signal and the photoelectric conversion coefficient. Obtain the light radiation energy corresponding to the electrical signal.
  • the laser rangefinder 10 When the laser rangefinder 10 is shipped from the factory, it is generally necessary to measure the photoelectric conversion coefficient W of the laser rangefinder 10. Generally, the laser rangefinder 10 transmits a test laser to the calibration target 200, and then receives the test response. The light is converted into a test electrical signal. By adjusting the intensity of the test laser, N groups of test data about the optical radiation energy E of the test return light and the signal value M of the test electrical signal can be obtained, for example, (E1, M1), (E2 , M2), (E3, M3), (E4, M4)... (En, Mn), etc., where N and n are both positive integers.
  • the data processing device 20 can fit the N sets of test data, taking the signal value M as the horizontal axis and the optical radiation energy E as the vertical axis, so as to obtain the signal value of the optical radiation energy E of the test return light and the test electrical signal.
  • M fitting curve Q.
  • the data processing device 20 can determine the functional relationship between the optical radiation energy E of the test return light and the signal value M of the test electrical signal according to the fitting curve Q.
  • the fitting curve Q is a straight line, and the slope of the straight line is the photoelectric conversion coefficient W of the laser rangefinder 10, thereby obtaining the test response
  • the linear function relationship between the light radiation energy E of the light and the signal value M of the test electrical signal: E W*M.
  • the fitting curve Q is a curve. At this time, the light radiation energy E and the signal value M are no longer simple linear functions. , The photoelectric conversion coefficient W can be obtained through complicated calculations. The specific calculation method is currently relatively mature in the industry and will not be repeated here.
  • the electrical signal value corresponding to the light radiation energy of the return light can be obtained according to the functional relationship.
  • the maximum detection distance of the laser rangefinder 10 when the attenuated laser is used for distance measurement gradually decreases.
  • the laser rangefinder 10 emits the attenuated laser to the calibration target 200 at a predetermined distance, so The light radiation energy of the return light that can be received will gradually decrease. Among them, the light radiation energy of the return light can only be received by the photodetector 50 and will not be filtered out as noise when the light radiation energy of the return light is a predetermined energy threshold, so the maximum detection is The distance is the detectable distance when the optical radiation energy of the return light received by the laser rangefinder 10 reaches a predetermined energy threshold.
  • the laser rangefinder 10 emits attenuated laser light to the calibration target 200 at a predetermined distance for distance measurement
  • the attenuation rate continues to increase until the maximum attenuation rate is reached
  • the optical radiation energy of the return light at this time reaches the predetermined energy threshold (That is, when the electrical signal value corresponding to the light radiation energy of the returning light reaches the predetermined electrical signal threshold)
  • the predetermined distance at this time is the maximum detection distance corresponding to the laser rangefinder 10 at the maximum attenuation rate.
  • the data processing device 20 can determine that the attenuation rate at this time has reached the maximum attenuation rate when the optical radiation energy of the return light reaches the predetermined energy threshold, and the predetermined distance at this time is the maximum detection distance corresponding to the maximum attenuation rate.
  • the data processing device 20 can calculate the maximum range of the laser rangefinder 10 according to the predetermined distance and the maximum attenuation rate.
  • the laser rangefinder 10 receives the return light passing through the attenuator 40 to obtain the light radiation energy of the return light, and adjusts the attenuation rate of the attenuator 40 through the moving device 30 (such as continuously increasing the attenuation rate) until The optical radiation energy of the return light reaches a predetermined threshold (at this time, the predetermined distance is the maximum distance that the laser rangefinder 10 can detect after the attenuator 40 is attenuated, and the attenuation rate is the maximum attenuation rate corresponding to the predetermined distance), and then the data is processed
  • the device 20 can calculate the maximum range of the laser rangefinder 10 according to the predetermined distance and the corresponding maximum attenuation rate.
  • the attenuation rate of the attenuator 40 can be directly changed by the mobile device 30, there is no need to replace the attenuator 40 with a different attenuation rate or change the laser
  • the distance between the range finder 10 and the test target has a high test efficiency.
  • the attenuator 40 is arranged on the light exiting light path and/or the light entering light path of the laser rangefinder 10.
  • the laser light is only attenuated by the attenuator once, that is, the light exiting It attenuates once at the time or when the light returns; or one or more attenuators 40 are arranged on the light output path of the laser rangefinder 10 and the light input path of the laser rangefinder 10, at this time, the laser It is attenuated twice by the attenuator, that is, it is attenuated once when the light is emitted, and it is also attenuated once when the light is returned.
  • the attenuator 40 includes multiple (such as two), and the multiple attenuators 40 are respectively set at the light-emitting In the light path and the light path, the laser is attenuated twice by the attenuator at this time, that is, it is attenuated once when the light is emitted, and it is also attenuated once when the light is returned.
  • the setting of the attenuator 40 only needs to satisfy the laser It is sufficient to pass the attenuator 40 before being received by the photodetector 50 to achieve the attenuation of the laser light. In this way, the location of the attenuator 40 is reasonable, so that the laser light is attenuated before it is incident on the photodetector 50, and the attenuation effect of the attenuator 40 is ensured.
  • the attenuator 40 includes a tapered attenuator 42, the attenuation rate of the tapered attenuator 42 can be changed within a predetermined attenuation rate range, step 013 includes:
  • the mobile device 30 is used to adjust the attenuation rate of the gradually changing attenuator 42 in predetermined steps.
  • step 0131 can be implemented by the mobile device 30.
  • the attenuator 40 in order to adjust the attenuation rate of the attenuator 40 without replacing the attenuator 40, it is only necessary to set the attenuator 40 as a tapered attenuator 42.
  • the attenuation rate of different areas of the tapered attenuator 42 is different.
  • the coverage area is small.
  • the area where the laser light passes in the graded attenuator 42 is the attenuation area 43.
  • the attenuation area 43 can be rectangular, circular, etc., which can be determined according to the coverage area of the laser emitted by the laser rangefinder 10. This application is implemented In this way, the attenuation zone 43 is circular. Only the attenuation zone 43 can attenuate the laser.
  • the attenuation zone 43 When the attenuation zone 43 is located in different areas of the tapered attenuator 42, the corresponding attenuation rate is also different. Under the action of the mobile device 30, the attenuation rate of the tapered attenuator 42 ( Specifically, the attenuation rate of the attenuation zone 43 can be changed within a predetermined attenuation rate range, so that the attenuation rate of the attenuation zone 43 can be adjusted by the mobile device 30. Specifically, the mobile device 30 can adjust the attenuation rate of the gradually changing attenuator 42 according to a predetermined step length.
  • the mobile device 30 moves the gradually changing attenuator 42 according to a predetermined step length, so that the attenuation area 43 correspondingly changes at the position of the gradually changing attenuator 42.
  • the attenuation rate of the tapered attenuator 42 can be linearly changed, so that as the mobile device 30 moves the tapered attenuator 42 in a predetermined step, the attenuation rate of the attenuation zone 43 can be linearly changed in a predetermined attenuation rate step, such as the mobile device 30
  • a predetermined attenuation rate step for example, 5%
  • the predetermined step size can be set to be smaller, so that the corresponding predetermined attenuation rate step size is reduced (for example, 1%) to adjust the attenuation rate of the attenuation
  • the attenuator 40 includes a fixed attenuator 41 and a tapered attenuator 42.
  • the attenuation rate of the fixed attenuator 41 is a fixed value, and the attenuation rate of the tapered attenuator 42 can be changed within a predetermined attenuation rate range.
  • the fixed attenuator 41 and the gradual attenuator 42 are arranged in sequence along the light path direction of the laser rangefinder 10; or, the fixed attenuator 41 and the gradual attenuator 42 are arranged in sequence along the light path direction of the laser rangefinder 10.
  • the tapered attenuator 42 of the embodiment of the present application can realize the linear change of the attenuation rate only when the intensity of the laser is within a predetermined intensity range. Therefore, when the laser is too strong, the laser passes through the tapered attenuator 42, even if it moves.
  • the device 30 moves the tapered attenuator 42 according to a predetermined step length, and the attenuation rate of the attenuation zone 43 may not change linearly according to the predetermined attenuation rate step length. Therefore, the ranging system 100 needs to correct the laser beam before the laser is incident on the tapered attenuator 42
  • the laser is attenuated once so that the intensity of the laser is just within the predetermined intensity range.
  • the fixed attenuator 41 and the gradual attenuator 42 can be arranged in order along the light path direction of the laser rangefinder 10; or, the fixed attenuator 41 and the gradual attenuator 42 can also be arranged in order along the light path direction of the laser rangefinder 10; Alternatively, the fixed attenuator 41 is arranged on the light exiting path, the gradual attenuator 42 is arranged on the entrance light path, etc., and the fixed attenuator only needs to attenuate the laser light once before the laser enters the gradual attenuator 42. In the embodiment of this application, the fixed attenuator 41 and the graded attenuator 42 are arranged in order along the light path direction of the laser rangefinder 10.
  • the laser When the laser is incident on the graded attenuator 42, it will pass through the fixed attenuator 41 first, and the intensity of the laser will be reduced. It is attenuated by the fixed attenuator 41, and the attenuation rate of the fixed attenuator 41 can be determined according to the intensity of laser emission and a predetermined intensity range.
  • the gradually changing attenuator 42 includes a circular ring-shaped gradient area 421.
  • the attenuation rate of the circular ring-shaped gradient area 421 varies linearly along the circumferential direction of the circular ring-shaped gradient area 421.
  • the area where the laser light passes in the ring-shaped transition area 421 is the attenuation area 43.
  • the moving device 30 includes an angle adjusting device 31.
  • Step 013 also includes:
  • the angle adjusting device 31 rotates the gradual attenuator 42 according to a predetermined angle step to adjust the attenuation rate of the attenuation zone 43.
  • the angle adjusting device 31 is used to rotate the gradual attenuator 42 in a predetermined angle step to adjust the attenuation rate of the attenuation zone 43.
  • step 0132 can be implemented by the angle adjusting device 31.
  • the gradually changing attenuator 42 includes a circular ring-shaped gradient area 421.
  • the gradually changing attenuator 42 can be rectangular, circular, or the like.
  • the gradually changing attenuator 42 is a circle with a circular gradient.
  • Area 421 is the area between two concentric circles with the center of the gradient attenuator 42 as the center.
  • the circular gradient area 421 can partially cover this area, and the circular gradient area 421 can also completely cover this area.
  • the attenuation rate range corresponding to the annular gradient zone 421 determines the coverage area of the annular gradient zone 421.
  • the annular gradient zone 421 can completely cover the area (that is, the attenuation rate is between two concentric).
  • the circular gradient zone 421 can partially cover this area (that is, the attenuation rate is a part of the ring area enclosed by two concentric circles). Changes within).
  • the annular gradient zone 421 is a part of a complete annular area enclosed by two concentric circles.
  • the complete annular area enclosed by two concentric circles is the gradual attenuation of the line segment a in FIG.
  • the circle center of the filter 42 is rotated by 360°, and the circular gradient zone 421 is a region formed by the line segment a rotated by 270° around the center of the gradient attenuator 42 (as shown in FIG. 7 where there is a filled line).
  • the angle adjusting device 31 can rotate the gradual attenuator 42 in a predetermined angle step. For example, if the predetermined angle step is 10 degrees (°), the angle adjusting device 31 can rotate the gradually changing attenuator 42 clockwise with the center of the gradually changing attenuator 42 as the center, and rotate 10° each time.
  • the area where the laser passes through the circular gradient zone 421 is the attenuation zone 43.
  • the attenuation zone 43 is located in the circular gradient zone 421.
  • the coverage area of the attenuation zone 43 is smaller than the circular gradient zone 421.
  • the position of the attenuation zone 43 in the circular gradient zone 421 changes accordingly (from Fig. 7
  • the position P1 in Figure 8 is changed to the position P2 shown in Figure 8.
  • Both positions P1 and P2 represent the relative position of the attenuation zone 43 to the attenuator 42), so that the attenuation rate of the attenuation zone 43 is changed, and the attenuation zone 43 is changed. Adjustment of attenuation rate.
  • the attenuation rate of the attenuation zone 43 can be determined according to the rotation angle of the gradually changing attenuator 42.
  • the different positions of the circular gradient zone 421 correspond to 0° to 270°, and the attenuation rate of the corresponding areas from 0° to 270° increase sequentially.
  • the gradient attenuator 42 rotates clockwise by a predetermined angle step Long
  • the attenuation zone 43 gradually changes from the area corresponding to 0° to the area corresponding to 10°, the area corresponding to 20°, the area corresponding to 30°, and the area corresponding to 270°.
  • the attenuation rate of the attenuation zone 43 gradually increases.
  • the attenuation zone 43 is initially located in the area corresponding to 0°, and the attenuation rate of the attenuation zone 43 is the attenuation rate of the region corresponding to 0°.
  • the attenuation rate of the attenuation zone 43 is the attenuation rate of the area corresponding to 10°.
  • the data processing device 20 can determine the corresponding rotation angle according to the rotation angle of the gradual attenuator 42 The attenuation rate of the area, thereby determining the attenuation rate of the attenuation zone 43.
  • the attenuation rate of the attenuation zone 43 may be determined according to the rotation speed of the gradually changing attenuator 42. It can be understood that the mobile device 30 can rotate at a fixed rotation speed, and the data processing device 20 can determine the rotation angle according to the rotation speed and the rotation time, so as to determine the attenuation rate of the attenuation zone 43.
  • the gradient attenuator 42 includes a rectangular gradient area 422, the attenuation rate of the rectangular gradient area 422 linearly changes along the long side direction of the rectangular gradient area 422, the rectangular gradient area 422 has The area where the laser passes is the attenuation zone 43.
  • the measurement system 100 includes a position adjustment device 32.
  • Step 013 also includes:
  • the position adjusting device 32 moves the gradual attenuator 42 according to a predetermined moving step to adjust the attenuation rate of the gradual attenuator 42.
  • the position adjusting device 32 moves the gradual attenuator 42 in a predetermined moving step to adjust the attenuation rate of the gradual attenuator 42.
  • step 0133 can be implemented by the position adjusting device 32.
  • the gradient attenuator 42 includes a rectangular gradient area 422.
  • the gradient attenuator 42 can be rectangular, circular, etc.
  • the gradient attenuator 42 is rectangular, and the rectangular gradient area 422 is located in the gradient attenuation area.
  • the long side of the rectangular gradient area 422 is parallel to the long side of the gradient attenuator 42, and the short side of the rectangular gradient area 422 is parallel to the short side of the gradient attenuator 42.
  • the position adjusting device 32 can move the gradual attenuator 42 in a predetermined moving step.
  • the predetermined moving step length is 1 millimeter (mm), and the attenuation rates of different positions of the rectangular gradation area 422 are different.
  • the attenuation rate of the rectangular gradation area 422 increases sequentially, and the position adjusting device 32 moves along the x direction each time Move the tapered attenuator 42 in the opposite direction to the predetermined moving step (1 mm), so that the attenuation rate of the attenuation zone 43 is different when the attenuation zone 43 is located at different positions of the rectangular gradient zone 422.
  • the area where the laser light passes in the rectangular gradient area 422 is the attenuation area 43.
  • the attenuation area 43 is located in the rectangular gradient area 422, and the coverage area of the attenuation area 43 is smaller than the rectangular gradient area 422.
  • the position of the attenuation area 43 in the rectangular gradient area 422 changes accordingly (for example, moving from the position P3 shown in FIG. 10 to the position P4, P3 shown in FIG. 11 And P4 both indicate the relative position of the attenuation zone 43 relative to the attenuator 42), so that the attenuation rate of the attenuation zone 43 is changed, and the attenuation rate of the attenuation zone 43 is adjusted.
  • the attenuation rate of the attenuation zone 43 can be determined according to the moving distance of the gradually changing attenuator 42.
  • the long side of the rectangular gradient area 422 is 20mm long, along the x direction, the moving distance is from 0mm to 20mm.
  • the attenuation rate of the area corresponding to the moving distance also increases, and each moving distance has a corresponding
  • the attenuation rate of the attenuation zone 43 is the attenuation rate of the area corresponding to 1mm.
  • the moving distance of the device 42 can determine the attenuation rate of the area corresponding to the moving distance, thereby determining the attenuation rate of the attenuation zone 43.
  • the attenuation rate of the attenuation zone 43 may be determined according to the moving speed of the gradually changing attenuator 42. It can be understood that the mobile device 30 can move at a fixed moving speed, and the data processing device 20 can determine the moving distance according to the moving speed and the moving time, so as to determine the attenuation rate of the attenuation zone 43.
  • the maximum attenuation rate is calculated based on the attenuation rate of the fixed attenuator 41 and the attenuation rate of the gradually changing attenuator 42.
  • the fixed attenuator 41 and the graded attenuator 42 are arranged in sequence along the light path direction of the laser rangefinder 10, when the laser is incident on the graded attenuator 42, it will pass through the fixed attenuator 41 for the first attenuation, and then The second attenuation is performed through the tapered attenuator 42. Both the fixed attenuator 41 and the tapered attenuator 42 attenuate the laser.
  • the data processing device 20 can calculate the attenuation rate ⁇ of the attenuator 40 according to the attenuation rate of the fixed attenuator 41 and the rotation angle of the gradually changing attenuator 42.
  • the measurement system 100 further includes an optical trap 60, and the optical trap 60 is used to absorb the laser light reflected by the attenuator 40.
  • the attenuator 40 includes a light-incident surface 44 and a light-emitting surface 45.
  • the light-incident surface 44 and the light-emitting surface 45 are opposite to each other.
  • the reflected laser light is reflected by the inner wall of the housing 70 of the measuring system 100, and then enters the light detector 50, so that the light detector 50 not only receives the return light, but also receives the laser light reflected by the inner wall of the housing 70, thereby
  • the measurement system 100 is also provided with a light trap 60 that affects the detection accuracy of the light radiation energy of the return light.
  • the light trap 60 is used to absorb the laser light reflected by the attenuator 40, so as to ensure that the return light received by the light detector 50 does not contain other light.
  • the laser ensures the detection accuracy of the light radiation energy of the return light.
  • the attenuator 40 is an absorptive attenuator. Since the light incident surface 44 of the attenuator 40 is a smooth surface, there will be some specular reflection. Therefore, it is also necessary to provide an optical trap 60 to absorb the attenuator 40.
  • the light incident surface 44 reflects the laser light.
  • two light traps 60 (the first light trap 61 and the second light trap 62 respectively) can be provided, and the first light
  • the trap 61 is arranged on the reflection light path where the laser light reflected by the first light incident surface 441 of the fixed attenuator 41 is located, so that the first light trap 61 absorbs the laser light reflected by the first light incident surface 441;
  • the second light trap 62 It is arranged on the reflection light path where the laser light reflected by the second light incident surface 442 of the graded attenuator 42 is located, so that the second light trap 62 absorbs the laser light reflected by the second light incident surface 442.
  • step 014 includes:
  • the data processing device 20 is also used to determine the first signal magnification of the laser rangefinder 10 at a predetermined distance according to the predetermined distance, the maximum attenuation rate, and the range within the preset range of the laser rangefinder 10.
  • the second signal magnification at the maximum distance, the reflectivity of the calibration target 200, and the reflectivity of the measured object calculate the actual maximum range.
  • step 0141 can be implemented by the data processing device 20.
  • the predetermined distance L 0 is equal to the maximum detection distance L max ;
  • G max is the second signal amplification rate at the maximum distance within the preset range of the laser rangefinder 10, the second signal amplification rate and
  • the maximum distance within the preset range is positively correlated, that is, the farther the maximum detection distance that the laser rangefinder 10 can detect, the greater the second signal magnification.
  • the value within the preset range The maximum distance is small (such as less than 2 kilometers), and there is no need to amplify the signal.
  • K is the effective area coefficient, that is, the ratio of the laser light located in the target surface of the calibration target 200 to the laser light directed to the target surface of the calibration target 200.
  • all the laser light emitted by the laser rangefinder 10 falls on the calibration target.
  • is the atmospheric attenuation coefficient, which can be obtained by looking up a table or empirical values. Therefore, in this embodiment, the above formula becomes Through this formula, the predetermined distance L 0 and the maximum attenuation rate ⁇ , the maximum range L max can be calculated.
  • the measurement system 100 further includes an orientation adjustment device 80, which is used to adjust the position of the laser rangefinder 10 so that the laser emitted by the laser rangefinder 10 is vertically incident calibration The target surface of the target 200.
  • the orientation adjustment device 80 of the measurement system 100 can adjust the height, inclination, orientation, etc. of the laser rangefinder 10 to enable the laser rangefinder The laser light emitted by the machine 10 enters the calibration target 200 perpendicularly.
  • the azimuth adjustment device 80 can adjust the position data such as the height, inclination angle, and orientation of the laser rangefinder 10 according to the position data such as the height, inclination angle, and orientation of the calibration target 200, so that the positions of the two are basically the same, and the emission The laser light is perpendicularly incident on the target surface of the calibration target 200.
  • the position adjusting device 80 can accurately adjust the position of the laser rangefinder 10 to ensure that the emitted laser light is perpendicularly incident on the target surface of the calibration target 200, which is beneficial to the subsequent accurate measurement of the maximum range.
  • a non-volatile computer-readable storage medium 300 containing computer-executable instructions 302 according to an embodiment of the present application.
  • the processor 400 executes the measurement method of any of the foregoing embodiments.
  • the processor 400 when the computer-readable instruction 302 is executed by the processor 400, the processor 400 is caused to perform the following steps:
  • the laser rangefinder 10 emits laser light to the calibration target 200 at a predetermined distance
  • the laser rangefinder 10 receives the return light passing through the attenuator 40 to obtain the optical radiation energy of the return light;
  • 014 Calculate the maximum range of the laser rangefinder 10 according to the predetermined distance and the maximum attenuation rate.
  • the processor 400 when the computer-readable instruction 302 is executed by the processor 400, the processor 400 is caused to perform the following steps:
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because it can be performed, for example, by optically scanning the paper or other medium, and then editing, interpreting, or other suitable methods when necessary. Process to obtain the program electronically and then store it in the computer memory.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种测量方法和测量系统(100),测量方法包括激光测距机(10)向预定距离处的标定靶标(200)发射激光(011)、接收经过衰减器(40)的回光以获取回光的光辐射能量(012);调节衰减器(40)的衰减率直至回光的光辐射能量达到预定能量阈值,并确定调节后的衰减率为最大衰减率(013);根据预定距离和最大衰减率计算激光测距机(10)的最大量程(014)。

Description

激光测距机的量程的测量方法及系统和存储介质 技术领域
本申请涉及激光探测领域,特别涉及一种激光测距机的量程的测量方法、激光测距机的量程的测量系统和非易失性计算机可读存储介质。
背景技术
目前,在对激光测距机的最大探测距离(也即最大量程)进行测试时,一般采用消光法,即,在激光测距机前加一个衰减器,激光经过衰减器后射向测试靶,通过改变衰减器的衰减率,直至激光测距机达到测距的临界状态(测试靶处于衰减后的激光测距机的最大探测距离处),根据此时的衰减率即可确定激光测距机的最大量程。不同的衰减器具有不同的衰减率,在通过更换衰减器而更改一次衰减率后,可能仍由于激光测距机和测试靶的距离过远从而使得激光测距机无法达到临界状态,此时,则需要花费时间改变激光测距机和测试靶之间的距离才能使得激光测距机达到临界状态,在整个测量过程中,既要执行更换衰减器的操作,又要执行改变激光测距机与测试靶之间距离的操作,导致测试效率较低。
发明内容
本申请的实施方式提供一种激光测距机的量程的测量方法、激光测距机的量程的测量系统和非易失性计算机可读存储介质。
本申请实施方式提供一种激光测距机的量程的测量方法,所述测量方法包括:所述激光测距机向预定距离处的标定靶标发射激光;所述激光测距机接收经过衰减器的回光以获取所述回光的光辐射能量;调节所述衰减器的衰减率直至所述回光的光辐射能量达到预定能量阈值,并确定调节后的所述衰减率为最大衰减率;根据所述预定距离和所述最大衰减率计算所述激光测距机的最大量程。
本申请实施方式还提供一种激光测距机的量程的测量系统,所述测量系统包括激光测距机、数据处理设备和移动装置。所述激光测距机用于向预定距离处的标定靶标发射激光、及接收经过衰减器的回光。所述数据处理设备用于获取所述回光的光辐射能量。所述移动装置用于调节所述衰减器的衰减率。所述数据处理设备还用于在所述回光的光辐射能量达到预定能量阈值时,确定调节后的所述衰减率为最大衰减率、及根据所述预定距离和所述最大衰减率计算所述激光测距机的最大量程。
本申请实施方式还提供一种包含计算机可执行指令的非易失性计算机可读存储介质。当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行上述实施方式 的测量方法。
本申请实施方式的激光测距机的量程的测量方法、激光测距机的量程的测量系统和非易失性计算机可读存储介质中,激光测距机接收经过衰减器的回光以获取回光的光辐射能量,并通过移动装置调节衰减器的衰减率(如不断增加衰减率),直至回光的光辐射能量达到预定阈值(此时,预定距离即为激光测距机以衰减器衰减后所能探测的最大距离,衰减率为预定距离对应的最大衰减率),然后数据处理设备根据预定距离以及对应的最大衰减率即可计算激光测距机的最大量程,由于可通过移动装置直接改变衰减器的衰减率,无需更换不同衰减率的衰减器或改变激光测距机与测试靶之间距离,测试效率较高。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的激光测距机的量程的测量系统和标定靶标的结构示意图。
图2是本申请某些实施方式的激光测距机的量程的测量方法的流程示意图;
图3和图4是本申请某些实施方式的激光测距机的量程的测量方法的原理示意图。
图5和图6是本申请某些实施方式的激光测距机的量程的测量方法的流程示意图。
图7和图8是本申请某些实施方式的激光测距机中的渐变衰减器在不同旋转角度下的平面示意图。
图9是本申请某些实施方式的激光测距机的量程的测量方法的流程示意图。
图10和图11是本申请某些实施方式的激光测距机中的渐变衰减器在不同移动距离下的平面示意图。
图12是本申请某些实施方式的激光测距机的量程的测量方法的流程示意图。
图13是本申请某些实施方式的处理器和计算机可读存储介质的连接示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、 “第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
请参阅图1和图2,本申请实施方式提供一种激光测距机10的量程的测量方法,该测量方法包括:
011:激光测距机10向预定距离处的标定靶标200发射激光;
012:激光测距机10接收经过衰减器40的回光以获取回光的光辐射能量;
013:调节衰减器40的衰减率直至回光的光辐射能量达到预定能量阈值,并确定调节后的衰减率为最大衰减率;及
014:根据预定距离和最大衰减率计算激光测距机10的最大量程。
本申请实施方式还提供一种激光测距机10的量程的测量系统100,该测量系统100包括激光测距机10、数据处理设备20和移动装置30。激光测距机10用于向预定距离处的标定靶标200发射激光、及接收经过衰减器40的回光。数据处理设备20用于获取回光的光辐射能量。移动装置30用于调节衰减器40的衰减率。数据处理设备20还用于在回光的光辐射能量达到预定能量阈值时,确定调节后的衰减率为最大衰减率、及根据预定距离和最大衰减率计算激光测距机10的最大量程。也即是说,步骤011可以由激光测距机10实现。步骤012可以由激光测距机10配合数据处理设备20实现,步骤013可以由移动装置30实现,步骤014可以由数据处理设备20实现。数据处理设备20可以是一个或多个能实现数据处理的通用或者专用处理器。
具体地,在对激光测距机10的最大量程进行测量时,激光测距机10向预定距离处的标定靶标200发射激光,一般的,激光需要垂直入射标定靶标200,保证激光被反射后能够进入激光测距机10。测量系统100还设置有衰减器40,衰减器40用于对激光测距机10发出并入射到衰减器40的激光进行衰减,经衰减器40衰减后的激光垂直入射标定靶标200,一般地,衰减器40的衰减率越大,衰减后的激光的强度越低,相较于以未衰减前的激光进行测距时所能探测到的最大距离(下称最大探测距离)而言,激光测距机10以衰减后的激 光进行测距时的最大探测距离会变小。
其中,衰减器40可以是吸收式衰减器或反射式衰减器中至少一种,例如衰减器40可以是吸收式衰减器,在激光入射衰减器40时,会吸收部分激光;再例如,衰减器40还可以是反射式衰减器,在激光入射衰减器40时,会反射部分激光;再例如,衰减器40可以是多个(如两个),分别为吸收式衰减器和反射式衰减器;本申请实施方式中,衰减器40为反射式衰减器。
衰减器40的衰减率为衰减器40反射或吸收的激光占所有激光的比例,如衰减率为30%则表示激光穿过衰减器40时,有30%的激光被衰减器40反射无法通过,而剩余的70%的激光则可以通过衰减器40。随着不断调节衰减器40的衰减率(如不断增加衰减器40的衰减率),激光测距机10以衰减后的激光进行测距时所能探测的最大探测距离逐渐减小,当激光测距机10以衰减后的激光进行测距且最大探测距离刚好等于预定距离时,意味着在预定距离不变的情况下,此时衰减率达到当前预定距离对应的最大衰减率。如此,移动装置30可不断调节衰减器40的衰减率(如调节衰减器40的衰减率以使得衰减率按预定步长增加)直至最大探测距离刚好等于预定距离,从而确定最大衰减率。
激光测距机10在每一次调节衰减率后均获取对应的回光的光辐射能量,可以是:激光测距机10持续发射激光,移动装置30在每调节一次衰减率,激光测距机10获取一次回光的光辐射能量;也可以是:激光测距机10以激光脉冲形式发射激光,在移动装置30每调节一次衰减率后,激光测距机10发射一次激光脉冲并接收该次激光脉冲对应的回光,激光测距机10获取一次回光的光辐射能量,如此,激光测距机10无需一直开启,能耗较低。
激光测距机10内还设置有光检测器50,光检测器50用于获取回光的光辐射能量。例如,光检测器50可将接收到的回光(即,标定靶标200反射回的激光)转换为相应的电信号,每个电信号对应接收到的每个回光的光辐射能量。其中,电信号可以是电压或电流。数据处理设备20可根据光检测器50接收到的回光及预设的光电转换系数将回光的光辐射能量转化为电压信号或电流信号,同样的,根据电信号和光电转换系数也可计算得到与电信号对应的光辐射能量。
请结合图3和图4,在激光测距机10出厂时,一般需要测定激光测距机10的光电转换系数W,一般通过激光测距机10向标定靶标200发射测试激光,然后接收测试回光并转换为测试电信号,通过调节测试激光的强度,可得到N组关于测试回光的光辐射能量E和测试电信号的信号值M的测试数据,例如,(E1,M1)、(E2,M2)、(E3,M3)、(E4,M4)…..(En,Mn)等,其中,N和n均为正整数。然后数据处理设备20可以对N组测试数据进行拟合,以信号值M为横轴,以光辐射能量E为纵轴,从而得到关于测试回光的光辐射能量E和测试电信号的信号值M的拟合曲线Q。
在得到拟合曲线Q,数据处理设备20即可根据拟合曲线Q确定测试回光的光辐射能量E和测试电信号的信号值M的函数关系式。例如,请参阅图3,当激光测距机10为线性激光测距机10时,拟合曲线Q为一条直线,直线的斜率即为激光测距机10的光电转换系数W,从而得到测试回光的光辐射能量E和测试电信号的信号值M的一次函数关系式:E=W*M。再例如,请参阅图4,当激光测距机10为非线性激光测距机10时,拟合曲线Q为一条曲线,此时的光辐射能量E和信号值M不再是简单的一次函数,需要经过复杂的计算才能得到光电转换系数W,具体计算方式目前业界已经较为成熟,在此不再赘述。
在得到光辐射能量E和信号值M的函数关系式后,根据函数关系式即可获取与回光的光辐射能量对应的电信号值。
随着衰减率不断增大,激光测距机10以衰减后的激光进行测距时的最大探测距离逐渐减小,激光测距机10向预定距离处的标定靶标200发射衰减后的激光,所能接收到的回光的光辐射能量会逐渐减小,其中,因为回光的光辐射能量为预定能量阈值时才可以被光检测器50接收而不会被当作噪声过滤掉,故最大探测距离为激光测距机10接收到回光的光辐射能量达到预定能量阈值时所能探测的距离。激光测距机10向预定距离处的标定靶标200发射衰减后的激光进行测距时,当衰减率不断增大直至达到最大衰减率时,此时的回光的光辐射能量达到预定能量阈值(即,回光的光辐射能量对应的电信号值达到预定电信号阈值时),此时的预定距离即为激光测距机10在最大衰减率下对应的最大探测距离。如此,数据处理设备20在回光的光辐射能量达到预定能量阈值时,即可确定此时的衰减率达到了最大衰减率,此时的预定距离即为最大衰减率对应的最大探测距离。
在确定了最大衰减率和对应的最大探测距离(即,预定距离)后,数据处理设备20可根据预定距离和最大衰减率计算激光测距机10的最大量程。
本申请的测量方法中,激光测距机10接收经过衰减器40的回光以获取回光的光辐射能量,并通过移动装置30调节衰减器40的衰减率(如不断增加衰减率),直至回光的光辐射能量达到预定阈值(此时,预定距离即为激光测距机10以衰减器40衰减后所能探测的最大距离,衰减率为预定距离对应的最大衰减率),然后数据处理设备20根据预定距离以及对应的最大衰减率即可计算激光测距机10的最大量程,由于可通过移动装置30直接改变衰减器40的衰减率,无需更换不同衰减率的衰减器40或改变激光测距机10与测试靶之间距离,测试效率较高。
在某些实施方式中,衰减器40设置在激光测距机10的出光光路和/或入光光路上。
具体地,衰减器40可以是一个或多个,一个或多个衰减器40均可以设置在激光测距机10的出光光路或入光光路,此时激光仅被衰减器衰减一次,即出光的时候衰减一次或回光的时候也衰减一次;或者一个或多个衰减器40既设置在激光测距机10的出光光路,又 设置在激光测距机10的入光光路上,此时,激光被衰减器衰减两次,即出光的时候衰减一次,回光的时候也衰减一次,衰减的激光较多;或者衰减器40包括多个(如两个),多个衰减器40分别设置在出光光路和入光光路上,此时,激光被衰减器衰减两次,即出光的时候衰减一次,回光的时候也衰减一次,衰减的激光较多;当然,衰减器40的设置只需满足激光在被光检测器50接收之前经过衰减器40以实现激光的衰减即可。如此,衰减器40设置位置合理,使得激光在入射到光检测器50之前均已被衰减,保证衰减器40的衰减效果。
请参阅图1和5,在某些实施方式中,衰减器40包括渐变衰减器42,渐变衰减器42的衰减率可在预定衰减率范围内变化,步骤013包括:
0131:按预定步长调节渐变衰减器42的衰减率。
在某些实施方式中,移动装置30用于按预定步长调节渐变衰减器42的衰减率。也即是说,步骤0131可以由移动装置30实现。
具体地,为了实现不更换衰减器40也能够调节衰减器40的衰减率,只需将衰减器40设置为渐变衰减器42即可,渐变衰减器42的不同区域的衰减率不同,由于激光一般覆盖范围较小,渐变衰减器42中有激光经过的区域为衰减区43,衰减区43可以是矩形、圆形等形状,可根据激光测距机10发出的激光的覆盖区域确定,本申请实施方式中,衰减区43为圆形。仅有衰减区43能够对激光起到衰减作用,当衰减区43位于渐变衰减器42中不同区域时,对应的衰减率也不同,在移动装置30的作用下,渐变衰减器42的衰减率(具体为衰减区43的衰减率)可在预定衰减率范围内进行变化,从而通过移动装置30调节衰减区43的衰减率。具体地,移动装置30能够按照预定步长调节渐变衰减器42的衰减率,例如,移动装置30按预定步长移动渐变衰减器42,以使得衰减区43在渐变衰减器42的位置对应变化,渐变衰减器42的衰减率可呈线性变化,从而实现随着移动装置30按预定步长移动渐变衰减器42,衰减区43的衰减率的能够按预定衰减率步长线性变化,如移动装置30每一次移动渐变衰减器42预定步长时,衰减区43的衰减率均增加预定衰减率步长(如5%),从而实现对衰减区43的衰减率的调节。当然,预定步长可设置的更小,以使得对应的预定衰减率步长减小(如1%)从而更准确地调节衰减区43的衰减率。
在某些实施方式中,衰减器40包括固定衰减器41和渐变衰减器42,固定衰减器41的衰减率为固定值,渐变衰减器42的衰减率可在预定衰减率范围内变化,固定衰减器41和渐变衰减器42沿激光测距机10的出光光路方向依次排列;或,固定衰减器41和渐变衰减器42沿激光测距机10的入光光路方向依次排列。
具体地,本申请实施方式的渐变衰减器42只有在激光的强度位于预定强度范围内才能够实现衰减率的线性变化,因此,当激光过强时,激光在经过渐变衰减器42时,即使移动装置30按预定步长移动渐变衰减器42,衰减区43的衰减率可能也不会按照预定衰减率步 长线性变化,因此,测距系统100需要在激光入射到渐变衰减器42之前,先对激光进行一次衰减,以使得激光的强度刚好位于预定强度范围内。固定衰减器41和渐变衰减器42可沿激光测距机10的出光光路方向依次排列;或者,固定衰减器41和渐变衰减器42还可沿激光测距机10的入光光路方向依次排列;或者,固定衰减器41设置在出光光路上,渐变衰减器42设置在入光光路上等,只需在激光入射到渐变衰减器42之前,固定衰减器能先对激光进行一次衰减即可。本申请实施方式中,固定衰减器41和渐变衰减器42沿激光测距机10的出光光路方向依次排列,在激光入射到渐变衰减器42时,会先经过固定衰减器41,激光的强度会被固定衰减器41衰减,固定衰减器41的衰减率可根据激光发射时的强度以及预定强度范围确定。
请参阅图1和图6,在某些实施方式中,渐变衰减器42包括圆环形渐变区421,圆环形渐变区421的衰减率沿圆环形渐变区421的圆周方向线性变化,圆环形渐变区421中有激光经过的区域为衰减区43,移动装置30包括角度调节装置31,步骤013还包括:
0132:角度调节装置31按预定角度步长旋转渐变衰减器42,以调节衰减区43的衰减率。
在某些实施方式中,角度调节装置31用于按预定角度步长旋转渐变衰减器42,以调节衰减区43的衰减率。也即是说,步骤0132可以由角度调节装置31实现。
具体地,如图7所示,渐变衰减器42包括圆环形渐变区421,渐变衰减器42可以是矩形、圆形等形状,本实施方式中渐变衰减器42为圆形,圆环形渐变区421为以渐变衰减器42的中心为圆心的两个同心圆之间的区域,圆环形渐变区421可部分覆盖该区域,圆环形渐变区421还可完全覆盖该区域,可根据圆环形渐变区421对应的衰减率范围确定圆环形渐变区421的覆盖区域,如当衰减率范围较大时,圆环形渐变区421可完全覆盖该区域(即,衰减率在两个同心圆围成的完整的环形区域内变化);而当衰减率范围较小时,圆环形渐变区421可部分覆盖该区域(即,衰减率在两个同心圆围成的环形区域中的一部分区域内变化)。本申请实施方式中,圆环形渐变区421为两个同心圆围成的完整的环形区域的一部分,例如,两个同心圆围成的完整的环形区域为图7中的线段a绕渐变衰减器42的圆心旋转360°形成的区域,圆环形渐变区421则为线段a绕渐变衰减器42的圆心旋转270°形成的区域(如图7中存在填充线的区域)。
角度调节装置31能够按预定角度步长旋转渐变衰减器42。例如,预定角度步长为10度(°),角度调节装置31能够以渐变衰减器42的圆心为中心,顺时针旋转渐变衰减器42,并每次旋转10°。圆环形渐变区421中有激光经过的区域即为衰减区43,衰减区43位于圆环形渐变区421内,衰减区43的覆盖面积小于圆环形渐变区421,请结合图8,随着渐变衰减器42按预定角度步长顺时针旋转(即,每次对渐变衰减器42顺时针旋转10°),衰减 区43在圆环形渐变区421内的位置随之变化(从图7中的P1位置变化为图8所示的P2位置,P1位置和P2位置均表示衰减区43相对衰减器42的相对位置),从而使得衰减区43的衰减率发生变化,实现对衰减区43的衰减率的调节。
其中,衰减区43的衰减率可根据渐变衰减器42的旋转角度确定。例如,圆环形渐变区421的不同位置和0°至270°分别对应,从0°到270°分别对应的区域的衰减率依次增大,随着渐变衰减器42按顺时针旋转预定角度步长,衰减区43从位于0°对应的区域逐渐变化为位于10°对应的区域、20°对应的区域、30°对应的区域、直至到270°对应的区域。衰减区43的衰减率逐渐增大。例如,如图7所示,衰减区43在初始时位于0°对应的区域,衰减区43的衰减率为0°对应的区域的衰减率,如图8所示,当渐变衰减器42按顺时针旋转预定角度步长(10°)后,衰减区43的衰减率为10°对应的区域的衰减率,如此,数据处理设备20根据渐变衰减器42的旋转角度即可确定该旋转角度对应的区域的衰减率,从而确定衰减区43的衰减率。在其他实施方式中,衰减区43的衰减率可根据渐变衰减器42的旋转速度确定。可以理解,移动装置30可以固定的旋转速度旋转,数据处理设备20根据旋转速度和旋转的时间即可确定旋转角度,从而确定衰减区43的衰减率。
请参阅图1和图9,在某些实施方式中,渐变衰减器42包括矩形渐变区422,矩形渐变区422的衰减率沿矩形渐变区422的长边方向线性变化,矩形渐变区422中有激光经过的区域为衰减区43,测量系统100包括位置调节装置32,步骤013还包括:
0133:位置调节装置32按预定移动步长移动渐变衰减器42,以调节渐变衰减器42的衰减率。
在某些实施方式中,位置调节装置32按预定移动步长移动渐变衰减器42,以调节渐变衰减器42的衰减率。也即是说,步骤0133可以由位置调节装置32实现。
具体地,如图10所示,渐变衰减器42包括矩形渐变区422,渐变衰减器42可以是矩形、圆形等形状,本实施方式中渐变衰减器42为矩形,矩形渐变区422位于渐变衰减器42内,矩形渐变区422的长边与渐变衰减器42的长边平行,矩形渐变区422的短边与渐变衰减器42的短边平行。
位置调节装置32能够按预定移动步长移动渐变衰减器42。例如,预定移动步长为1毫米(mm),矩形渐变区422的不同位置的衰减率不同,例如,沿x方向,矩形渐变区422的衰减率依次增加,位置调节装置32每次沿x方向的反方向移动渐变衰减器42预定移动步长(1mm),从而使得衰减区43位于矩形渐变区422的不同位置时的衰减率不同。矩形渐变区422中有激光经过的区域即为衰减区43,衰减区43位于矩形渐变区422内,衰减区43的覆盖面积小于矩形渐变区422。随着渐变衰减器42沿x方向的反方向移动,衰减区43在矩形渐变区422内的位置随之变化(如从图10所示的位置P3移动到图11所示的 位置P4,P3位置和P4位置均表示衰减区43相对衰减器42的相对位置),从而使得衰减区43的衰减率发生变化,实现对衰减区43的衰减率的调节。
其中,衰减区43的衰减率可根据渐变衰减器42的移动距离确定。例如,矩形渐变区422的长边长20mm,沿x方向,移动距离从0mm直至20mm,随着移动距离的增大,移动距离对应的区域的衰减率也增大,每个移动距离均存在对应的衰减率,当渐变衰减器42沿x方向的反方向移动预定移动步长(1mm)后,衰减区43的衰减率即为1mm对应的区域的衰减率,如此,数据处理设备20根据渐变衰减器42的移动距离即可确定该移动距离对应的区域的衰减率,从而确定衰减区43的衰减率。在其他实施方式中,衰减区43的衰减率可根据渐变衰减器42的移动速度确定。可以理解,移动装置30可以固定的移动速度移动,数据处理设备20根据移动速度和移动的时间即可确定移动距离,从而确定衰减区43的衰减率。
请参阅图1,在某些实施方式中,根据固定衰减器41的衰减率和渐变衰减器42的衰减率计算最大衰减率。
具体地,由于固定衰减器41和渐变衰减器42沿激光测距机10的出光光路方向依次排列,在激光入射到渐变衰减器42时,会先经过固定衰减器41进行第一次衰减,然后再经过渐变衰减器42进行第二次衰减,固定衰减器41和渐变衰减器42均对激光进行了衰减,衰减器40的衰减率ρ=ρ1*ρ2,其中,ρ1为固定衰减器41的衰减率,为一个固定值,ρ2为渐变衰减器42的衰减率,ρ2是渐变衰减器42的旋转角度或移动距离的一次函数,以渐变衰减器42包括圆环形渐变区421为例,ρ2是衰减器40的旋转角度θ的一次函数,即ρ2=f(θ),因此上述衰减率ρ=ρ1*f(θ)。如此,数据处理设备20可根据固定衰减器41的衰减率和渐变衰减器42的旋转角度计算得到衰减器40的衰减率ρ。
请参阅图1,在某些实施方式中,测量系统100还包括光陷阱器60,光陷阱器60用于吸收衰减器40反射的激光。
具体地,由于本申请采用反射式衰减器,衰减器40包括入光面44和出光面45,入光面44和出光面45相背,为了防止入光面44将入射的激光反射后,被反射的激光经测量系统100的壳体70的内壁反射后,入射到光检测器50内,从而使得光检测器50不仅接收到回光,还会接收到壳体70的内壁反射的激光,从而影响回光的光辐射能量的检测准确度,测量系统100还设置有光陷阱器60,光陷阱器60用于吸收衰减器40反射的激光,从而保证光检测器50接收的回光不包含其他的激光,保证了回光的光辐射能量的检测准确度。在其他实施方式中,衰减器40为吸收式衰减器,由于衰减器40的入光面44为平滑的表面,也会存在一定的镜面反射,因此,同样需要设置光陷阱器60吸收衰减器40的入光面44反射的激光。
本申请实施方式中,由于同时设置了固定衰减器41和渐变衰减器42,因此可设置两个光陷阱器60(分别为第一光陷阱器61和第二光陷阱器62),第一光陷阱器61设置在固定衰减器41的第一入光面441反射的激光所在的反射光路上,以使得第一光陷阱器61吸收第一入光面441反射的激光;第二光陷阱器62设置在渐变衰减器42的第二入光面442反射的激光所在的反射光路上,以使得第二光陷阱器62吸收第二入光面442反射的激光。
请参阅图1和图12,在某些实施方式中,步骤014包括:
0141:根据预定距离、最大衰减率、激光测距机10在预定距离处的第一信号放大倍率、激光测距机10的预设量程范围内的最大距离处的第二信号放大倍率、标定靶标200的反射率、及被测物体的反射率计算实际的最大量程。
在某些实施方式中,数据处理设备20还用于根据预定距离、最大衰减率、激光测距机10在预定距离处的第一信号放大倍率、激光测距机10的预设量程范围内的最大距离处的第二信号放大倍率、标定靶标200的反射率、及被测物体的反射率计算实际的最大量程。也即是说,步骤0141可以由数据处理设备20实现。
具体地,激光测距机10的最大量程可根据如下公式计算得到
Figure PCTCN2019130349-appb-000001
其中,ρ为衰减器40的衰减率;r max为最大探测距离处的被测物体的反射率,颜色、形状等物理参数不同的被测物体对应的反射率是不同的,例如白色的车辆和黑色的车辆的反射率不同,根据激光测距机10要检测的被测物体的颜色、形状等物理参数即可确定r max;r 0为标定靶标200的反射率,当最大探测距离为预定距离时,r max=r 0;L 0为预定距离,L max为最大探测距离,本实施方式中,在衰减率达到最大衰减率时,预定距离L 0等于最大探测距离L max
Figure PCTCN2019130349-appb-000002
为激光测距机10在预定距离L 0处的第一信号放大倍率,G max为激光测距机10的预设量程范围内的最大距离处的第二信号放大倍率,第二信号放大倍率和预设量程范围内的最大距离呈正相关,也即是说,激光测距机10能够检测的最大探测距离越远,第二信号放大倍率越大,本申请实施方式中,预设量程范围内的最大距离较小(如小于2公里),无需对信号进行放大,此时,
Figure PCTCN2019130349-appb-000003
K为有效面积系数,即位于标定靶标200的靶面内的激光占射向标定靶标200的靶面的激光的比例,本实施方式中,激光测距机10发出的所有激光均落在标定靶标200的靶面内,标定靶标200的靶面能够反射所有射向它的激光,有效面积系数K=1;α为大气衰减系数,可通过查表或经验值获得。因此,本实施方式中,上述公式变为
Figure PCTCN2019130349-appb-000004
通过该公式、预定距离L 0以及最大衰减率ρ,即可计算得到最大量程L max
请参阅图1,在某些实施方式中,测量系统100还包括方位调节装置80,方位调节装置80用于调节激光测距机10的位置,以使得激光测距机10发出的激光垂直入射标定靶标 200的靶面。
具体地,在测量最大量程过程中,激光测距机10在发射激光时,当激光未垂直入射标定靶标200,即发射激光和标定靶标200存在倾角时,反射的回光可能由于该倾角,导致只有部分被激光测距机10接收、甚至完全无法被激光测试机接收,因此,测量系统100的方位调节装置80可通过调节激光测距机10的高度、倾角、朝向等,以使得激光测距机10发出的激光垂直入射标定靶标200。例如,方位调节装置80可根据标定靶标200的高度、倾角和朝向等位置数据,对应调节激光测距机10的高度、倾角、朝向等位置数据,以使得两者的位置基本一致,并使得发射的激光垂直入射标定靶标200的靶面。如此,方位调节装置80可准确调节激光测距机10的位置,保证发射的激光垂直入射标定靶标200的靶面,有利于后续准确测量最大量程。
请参阅图1和13,本申请实施方式的一种包含计算机可执行指令302的非易失性计算机可读存储介质300,当计算机可执行指令302被一个或多个处理器400执行时,使得处理器400执行上述任一实施方式的测量方法。
例如,请结合图1和图2,计算机可读指令302被处理器400执行时,使得处理器400执行以下步骤:
011:激光测距机10向预定距离处的标定靶标200发射激光;
012:激光测距机10接收经过衰减器40的回光以获取回光的光辐射能量;
013:调节衰减器40的衰减率直至回光的光辐射能量达到预定能量阈值,并确定调节后的衰减率为最大衰减率;及
014:根据预定距离和最大衰减率计算激光测距机10的最大量程。
再例如,请结合图1和图5,计算机可读指令302被处理器400执行时,使得处理器400执行以下步骤:
0131:按预定步长调节渐变衰减器42的衰减率。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于执行特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的执行,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的 实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于执行逻辑功能的可执行指令的定序列表,可以具体执行在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器22的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得程序,然后将其存储在计算机存储器中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (33)

  1. 一种激光测距机的量程的测量方法,其特征在于,所述测量方法包括:
    所述激光测距机向预定距离处的标定靶标发射激光;
    所述激光测距机接收经过衰减器的回光以获取所述回光的光辐射能量;
    调节所述衰减器的衰减率直至所述回光的光辐射能量达到预定能量阈值,并确定调节后的所述衰减率为最大衰减率;
    根据所述预定距离和所述最大衰减率计算所述激光测距机的最大量程。
  2. 根据权利要求1所述的测量方法,其特征在于,所述衰减器设置在所述激光测距机的出光光路和/或入光光路上。
  3. 根据权利要求1或2所述的测量方法,其特征在于,所述衰减器包括渐变衰减器,所述渐变衰减器的衰减率可在预定衰减率范围内变化,所述调节所述衰减器的衰减率,包括:
    按预定步长调节所述渐变衰减器的衰减率。
  4. 根据权利要求1或2所述的测量方法,其特征在于,所述衰减器包括固定衰减器和渐变衰减器,所述固定衰减器的衰减率为固定值,所述渐变衰减器的衰减率可在预定衰减率范围内变化,所述固定衰减器和所述渐变衰减器沿所述激光测距机的所述出光光路方向依次排列;或,所述固定衰减器和所述渐变衰减器沿所述激光测距机的所述入光光路方向依次排列。
  5. 根据权利要求3或4所述的测量方法,其特征在于,所述测量方法应用于测量系统,所述渐变衰减器包括圆环形渐变区,所述圆环形渐变区的衰减率沿所述圆环形渐变区的圆周方向线性变化,所述圆环形渐变区中有所述激光经过的区域为衰减区,所述测量系统包括角度调节装置,所述调节所述衰减器的衰减率,包括:
    所述角度调节装置按预定角度步长旋转所述渐变衰减器,以调节所述衰减区的衰减率。
  6. 根据权利要求5所述的测量方法,其特征在于,所述衰减区的衰减率根据所述渐变衰减器的旋转角度确定。
  7. 根据权利要求5所述的测量方法,其特征在于,所述衰减区的衰减率根据所述渐变 衰减器的转动速度确定。
  8. 根据权利要求3或4所述的测量方法,其特征在于,所述测量方法应用于测量系统,所述渐变衰减器包括矩形渐变区,所述矩形渐变区的衰减率沿所述矩形渐变区的长边方向线性变化,所述矩形渐变区中有所述激光经过的区域为衰减区,所述测量系统包括位置调节装置,所述调节所述衰减器的衰减率,包括:
    所述位置调节装置按预定移动步长移动所述渐变衰减器,以调节所述渐变衰减器的衰减率。
  9. 根据权利要求8所述的测量方法,其特征在于,所述衰减区的衰减率根据所述渐变衰减器的移动距离确定。
  10. 根据权利要求8所述的测量方法,其特征在于,所述衰减区的衰减率根据所述渐变衰减器的移动速度确定。
  11. 根据权利要求4所述的测量方法,其特征在于,所述测量方法还包括:
    根据所述固定衰减器的衰减率和所述渐变衰减器的衰减率计算所述最大衰减率。
  12. 根据权利要求1-11任一项所述的测量方法,其特征在于,所述衰减器包括吸收式衰减器或反射式衰减器中至少一种。
  13. 根据权利要求1所述的测量方法,其特征在于,所述测量方法应用于测量系统,所述测量系统还包括光陷阱器,所述光陷阱器用于吸收所述衰减器反射的激光。
  14. 根据权利要求13所述的测量方法,其特征在于,所述衰减器包括入光面和出光面,所述光陷阱器设置所述入光面反射的所述激光所在的反射光路上。
  15. 根据权利要求1所述的测量方法,其特征在于,所述根据所述预定距离和所述最大衰减率计算所述激光测距机的最大量程,包括:
    根据所述预定距离、所述最大衰减率、所述激光测距机在所述预定距离处的第一信号放大倍率、所述激光测距机的预设量程范围内的最大距离处的第二信号放大倍率、所述标定靶标的反射率、及被测物体的反射率计算实际的所述最大量程。
  16. 根据权利要求15所述的测量方法,其特征在于,所述激光测距机的信号放大倍率与所述预设量程范围内的最大距离呈正相关。
  17. 一种激光测距机的量程的测量系统,其特征在于,所述测量系统包括:
    激光测距机,所述激光测距机用于向预定距离处的标定靶标发射激光、及接收经过衰减器的回光;
    数据处理设备,所述数据处理设备用于获取所述回光的光辐射能量;及
    移动装置,所述移动装置用于调节所述衰减器的衰减率;
    所述数据处理设备还用于在所述回光的光辐射能量达到预定能量阈值时,确定调节后的所述衰减率为最大衰减率、及根据所述预定距离和所述最大衰减率计算所述激光测距机的最大量程。
  18. 根据权利要求17所述的测量系统,其特征在于,所述衰减器设置在所述激光测距机的出光光路和/或入光光路上。
  19. 根据权利要求17或18所述的测量系统,其特征在于,所述衰减器包括渐变衰减器,所述渐变衰减器的衰减率可在预定衰减率范围内变化,所述移动装置用于按预定步长调节所述渐变衰减器的衰减率。
  20. 根据权利要求17或18所述的测量系统,其特征在于,所述衰减器包括固定衰减器和渐变衰减器,所述固定衰减器的衰减率为固定值,所述渐变衰减器的衰减率可在预定衰减率范围内变化,所述固定衰减器和所述渐变衰减器沿所述激光测距机的所述出光光路方向依次排列;或,所述固定衰减器和所述渐变衰减器沿所述激光测距机的所述入光光路方向依次排列。
  21. 根据权利要求19或20所述的测量系统,其特征在于,所述渐变衰减器包括圆环形渐变区,所述圆环形渐变区的衰减率沿所述圆环形渐变区的圆周方向线性变化,所述圆环形渐变区中有所述激光经过的区域为衰减区,所述移动装置还包括角度调节装置,所述角度调节装置用于按预定角度步长旋转所述渐变衰减器,以调节所述衰减区的衰减率。
  22. 根据权利要求21所述的测量系统,其特征在于,所述衰减区的衰减率根据所述渐 变衰减器的旋转角度确定。
  23. 根据权利要求21所述的测量系统,其特征在于,所述衰减区的衰减率根据所述渐变衰减器的旋转速度确定。
  24. 根据权利要求19或20所述的测量系统,其特征在于,所述渐变衰减器包括矩形渐变区,所述矩形渐变区的衰减率沿所述矩形渐变区的长边方向线性变化,所述矩形渐变区中有所述激光经过的区域为衰减区,所述移动装置包括位置调节装置,所述位置调节装置用于按预定移动步长移动所述渐变衰减器,以调节所述衰减区的衰减率。
  25. 根据权利要求24所述的测量系统,其特征在于,所述衰减区的衰减率根据所述渐变衰减器的移动距离确定。
  26. 根据权利要求24所述的测量系统,其特征在于,所述衰减区的衰减率根据所述渐变衰减器的移动速度确定。
  27. 根据权利要求20所述的测量系统,其特征在于,所述数据处理设备还用于根据所述固定衰减器的衰减率和所述渐变衰减器的衰减率计算所述最大衰减率。
  28. 根据权利要求17-27任一项所述的测量系统,其特征在于,所述衰减器包括吸收式衰减器或反射式衰减器中至少一种。
  29. 根据权利要求17所述的测量系统,其特征在于,所述测量系统还包括光陷阱器,所述光陷阱器用于吸收所述衰减器反射的激光。
  30. 根据权利要求29所述的测量系统,其特征在于,所述衰减器包括入光面和出光面,所述光陷阱器设置所述入光面反射的所述激光所在的反射光路上。
  31. 根据权利要求17所述的测量系统,其特征在于,所述数据处理设备还用于根据所述预定距离、所述最大衰减率、所述激光测距机在所述预定距离处的第一信号放大倍率、所述激光测距机的预设量程范围内的最大距离处的第二信号放大倍率、所述标定靶标的反射率、及被测物体的反射率计算实际的所述最大量程。
  32. 根据权利要求31所述的测量系统,其特征在于,所述激光测距机的信号放大倍率与所述预设量程范围内的最大距离呈正相关。
  33. 一种包含计算机可执行指令的非易失性计算机可读存储介质,当所述计算机可执行指令被一个或多个处理器执行时,使得所述处理器执行如权利要求1至16中任一项所述的测量方法。
PCT/CN2019/130349 2019-12-31 2019-12-31 激光测距机的量程的测量方法及系统和存储介质 WO2021134410A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/130349 WO2021134410A1 (zh) 2019-12-31 2019-12-31 激光测距机的量程的测量方法及系统和存储介质
CN201980047522.8A CN113330295A (zh) 2019-12-31 2019-12-31 激光测距机的量程的测量方法及系统和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130349 WO2021134410A1 (zh) 2019-12-31 2019-12-31 激光测距机的量程的测量方法及系统和存储介质

Publications (1)

Publication Number Publication Date
WO2021134410A1 true WO2021134410A1 (zh) 2021-07-08

Family

ID=76686495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130349 WO2021134410A1 (zh) 2019-12-31 2019-12-31 激光测距机的量程的测量方法及系统和存储介质

Country Status (2)

Country Link
CN (1) CN113330295A (zh)
WO (1) WO2021134410A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544915A (zh) * 2003-11-20 2004-11-10 中国科学院上海技术物理研究所 测量激光测高仪/测距仪测距能力的设备和方法
US20050061957A1 (en) * 2003-09-19 2005-03-24 Nec Corporation Laser range finder
CN103309031A (zh) * 2013-07-02 2013-09-18 长春理工大学 用于激光光束质量分析仪的机电复合式调光系统
CN204556103U (zh) * 2015-04-21 2015-08-12 中国电子科技集团公司第四十一研究所 连续窄脉宽激光器峰值光功率的测试装置
CN109031328A (zh) * 2018-06-12 2018-12-18 中国人民解放军陆军工程大学 含时序增益功能激光测距机的探测概率曲线簇测量方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3149514B1 (en) * 2014-05-28 2023-11-01 Trimble AB Compensated distance measurement methods and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050061957A1 (en) * 2003-09-19 2005-03-24 Nec Corporation Laser range finder
CN1544915A (zh) * 2003-11-20 2004-11-10 中国科学院上海技术物理研究所 测量激光测高仪/测距仪测距能力的设备和方法
CN103309031A (zh) * 2013-07-02 2013-09-18 长春理工大学 用于激光光束质量分析仪的机电复合式调光系统
CN204556103U (zh) * 2015-04-21 2015-08-12 中国电子科技集团公司第四十一研究所 连续窄脉宽激光器峰值光功率的测试装置
CN109031328A (zh) * 2018-06-12 2018-12-18 中国人民解放军陆军工程大学 含时序增益功能激光测距机的探测概率曲线簇测量方法

Also Published As

Publication number Publication date
CN113330295A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2022095247A1 (zh) 激光雷达的测距误差标定系统和标定方法
US10060727B2 (en) Internal diameter measuring method for transparent tube
CN111208496B (zh) 一种激光雷达的校准装置及校准方法
JP2007327840A (ja) レーダ装置
US20140231633A1 (en) Proximity sensor
CN111983630B (zh) 一种单光子测距系统、方法、终端设备及存储介质
JP2015059850A (ja) レーザレーダ装置
WO2021243612A1 (zh) 测距方法、测距装置和可移动平台
KR20130054428A (ko) 거리 결정을 위한 광학식 측정 시스템
CN101672726B (zh) 空间光通信终端通信探测器定位测试装置及方法
CN115113219A (zh) 测量距离的方法及激光雷达
WO2023108775A1 (zh) 一种激光雷达的串扰测量系统及串扰测量方法
KR20220039615A (ko) 레이더 고도각 검증
KR20190116102A (ko) 펄스 광 탐지 및 거리 측정 장치, 펄스 광 탐지 및 거리 측정 시스템에서 오브젝트의 탐지 및 거리 측정 시스템 및 방법
WO2021134410A1 (zh) 激光测距机的量程的测量方法及系统和存储介质
CN107991286A (zh) 基于反射光功率的拉曼光谱检测设备及方法
CN111257233A (zh) 一种消光装置
JP7115329B2 (ja) 光学的測距装置および光学的測距装置における異常の発生を検出する方法
WO2020113564A1 (zh) 一种激光接收电路及测距装置、移动平台
JP2020112501A5 (zh)
CN104101481B (zh) 一种具有双光路的镜片散射光检测仪
JP2001349943A (ja) レーザ測距装置、レーザ測距方法及び計測装置
JP7263723B2 (ja) 距離測定装置
CN116559896B (zh) 调整激光雷达测距精度的方法、装置及激光雷达
CN211627824U (zh) 一种盲区较小的激光测距仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958349

Country of ref document: EP

Kind code of ref document: A1