WO2023108775A1 - 一种激光雷达的串扰测量系统及串扰测量方法 - Google Patents

一种激光雷达的串扰测量系统及串扰测量方法 Download PDF

Info

Publication number
WO2023108775A1
WO2023108775A1 PCT/CN2021/140617 CN2021140617W WO2023108775A1 WO 2023108775 A1 WO2023108775 A1 WO 2023108775A1 CN 2021140617 W CN2021140617 W CN 2021140617W WO 2023108775 A1 WO2023108775 A1 WO 2023108775A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection unit
laser
lens
crosstalk
calibration object
Prior art date
Application number
PCT/CN2021/140617
Other languages
English (en)
French (fr)
Inventor
时菲菲
王世玮
郑睿童
沈罗丰
Original Assignee
探维科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 探维科技(北京)有限公司 filed Critical 探维科技(北京)有限公司
Publication of WO2023108775A1 publication Critical patent/WO2023108775A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the present disclosure relates to the technical field of laser radar, and in particular, to a laser radar crosstalk measurement system and a crosstalk measurement method.
  • Three-dimensional environment measurement and perception has important civilian and military application value.
  • ADAS Advanced Driving Assistance System
  • advanced driving assistance system advanced driving assistance system
  • Millimeter-wave radar and camera 3D visual reconstruction are relatively common distance measurement technologies, but in the application scenario of autonomous driving, the lateral resolution of millimeter-wave radar is difficult to meet the requirements, and it is easily interfered by metal objects; the distance measurement accuracy of camera 3D visual reconstruction It is also difficult to achieve accurate distance measurement for long-distance targets.
  • the laser radar actively emits a pulsed infrared laser beam, and after irradiating the object to be measured, a diffuse reflection echo is formed, which is collected by the receiving system; by measuring the time difference between the transmitted pulse and the received echo, the distance information of the measured object can be obtained .
  • Lidar has the advantages of high ranging accuracy and high lateral resolution, and has broad application prospects in the fields of assisted driving and automatic driving.
  • each unit of the detector used in the lidar field is at the micron level. To measure the crosstalk parameters, it is necessary to obtain a micron-level light spot, which is very difficult.
  • the technical problem to be solved in this disclosure is to solve the very difficult problem that the size of each unit of the detector used in the existing lidar field is at the micron level, and it is very difficult to obtain a micron-level light spot in order to measure crosstalk parameters.
  • embodiments of the present disclosure provide a laser radar crosstalk measurement system and a crosstalk measurement method.
  • the present disclosure provides a lidar crosstalk measurement system, including:
  • the calibration object and the background structure are used to reflect the laser light emitted by the laser emitter to the lens, and irradiate the laser light to the laser detector through the lens;
  • the laser detector includes a plurality of detection units arranged parallel to the direction of the plane where the lens is located, and the laser light reflected by the calibration object is only irradiated to the set detection unit; wherein, the set detection unit is a distance from the center light Axis closest probe unit.
  • the distance between the lens and the background structure is greater than or equal to 10 meters.
  • the distance between the calibration object and the background structure is greater than or equal to 1 meter.
  • the field angle of the detection unit satisfies the following calculation formula:
  • is the field angle of the detection unit
  • N is the number of the detection units in the laser detector
  • is the total field angle of all the detection units; wherein, the total field angle and The periodic size of the detection unit is related to the focal length of the lens
  • the width of the calibration object satisfies the following calculation formula:
  • L represents the width of the calibration object
  • S represents the distance between the calibration object and the lens
  • the height of the center position of the calibration object from the reference plane satisfies the following formula:
  • H represents the height of the center position of the calibration object from the reference plane
  • h_chn represents the height of the center position of the set detection unit from the reference plane
  • the laser radar crosstalk measurement system further includes: an attenuation structure, the attenuation structure is located between the laser transmitter and the calibration object, and the attenuation structure is used to attenuate the The laser intensity emitted by the laser transmitter to the calibration object and the background structure.
  • the laser detector is arranged at the rear working distance of the lens.
  • the present disclosure also provides a laser radar crosstalk measurement method, which is implemented based on the laser radar crosstalk measurement system as described in the first aspect, and the laser radar crosstalk measurement method includes:
  • measuring the electrical crosstalk parameter of the non-set detection unit according to the signal waveform amplitude corresponding to the set detection unit and the signal waveform amplitude corresponding to the non-set detection unit includes:
  • the electrical crosstalk parameter of the non-set detection unit is equal to the difference between the first ratio and the simulated optical crosstalk parameter
  • the first ratio is the signal waveform amplitude corresponding to the non-set detection unit and The setting ratio of the signal waveform amplitude corresponding to the detection unit.
  • an embodiment of the present disclosure further provides an electronic device, including: a processor; a memory for storing instructions executable by the processor; the processor is used for reading the executable instructions from the memory, and The instructions are executed to implement the crosstalk measurement method provided by the embodiments of the present disclosure.
  • the computer storage medium can store a program, and when the program is executed, it can implement the various implementations of a laser radar crosstalk measurement method provided in the second aspect of the present disclosure. some or all of the steps.
  • the laser radar crosstalk measurement system and crosstalk measurement method use the reflection of the calibration object and the lens to enlarge the light spot passing through the lens, for example, to a centimeter level, so that the laser reflected by the calibration object passes through the
  • the lens only irradiates to the set detection unit, which solves the problem that it is difficult to obtain micron-level light spots during the crosstalk test, and makes the crosstalk test of the lidar more convenient and fast.
  • the crosstalk of adjacent detection units can be used as the basis for laser radar optical alignment to verify whether the optical transceiver system is aligned in place.
  • FIG. 1 is a schematic structural diagram of a laser radar crosstalk measurement system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a crosstalk measurement system of laser radar in the prior art
  • FIG. 3 is a schematic design diagram of a laser radar crosstalk measurement system provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a signal waveform of a laser radar crosstalk measurement system provided by an embodiment of the present disclosure
  • FIG. 5 is a flow chart of a laser radar crosstalk measurement method provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a laser radar crosstalk measurement system provided by an embodiment of the present disclosure.
  • the laser radar crosstalk measurement system includes a laser transmitter 1, a calibration object 2, a lens 3, a background structure 4 and a laser detector 5, and the calibration object 2 is located between the lens 3 and the background structure 4 and is located in the lens 3
  • the lens 3 is located between the laser detector 5 and the calibration object 2 on the central optical axis 6 .
  • the calibration object 2 and the background structure 4 are used to reflect the laser light emitted by the laser transmitter 1 to the lens 3, and irradiate it to the laser detector 5 through the lens 3; Unit 8 , the laser light reflected by the calibration object 2 is only irradiated to the set detection unit 81 ; wherein, the set detection unit 81 is the detection unit 8 closest to the central optical axis 6 .
  • the calibration object 2 is located between the lens 3 and the background structure 4, and the center of the calibration object 2 is located on the central optical axis 6 of the lens 3, and the lens 3 is located between the laser detector 5 and the calibration object 2 During this period, the laser emitter 1 is located at any place directly above or directly below the lens 3, and the laser emitter 1 emits a line beam after beam shaping.
  • Fig. 1 exemplarily shows that when the laser emitter 1 is located directly above the lens 3
  • the direction of the laser beam emitted to the calibration object 2 and the background structure 4 The surface of the calibration object 2 diffusely reflects the light, and the background structure 4 can choose a white background wall.
  • the laser emitted by the laser transmitter 1 is reflected by the calibration object 2 and the background structure 4, and is irradiated to the laser detector 5 through the lens 3 .
  • the laser detector 5 includes a plurality of detection units 8, and the detection units 8 are arranged in a linear array parallel to the plane direction of the lens 3 and arranged symmetrically with respect to the central optical axis 6, and the distance between the laser detector 5 and the central optical axis 6 is the closest
  • the detection unit 8 is used as a set detection unit 81
  • the other detection units 8 are used as a non-set detection unit 82 .
  • the third detection unit 8 when the number of detection units 8 is an odd number, for example, when the number is 5, the third detection unit 8 located in the middle of the laser detector 5 is located on the central optical axis 6, then the third detection unit 8 is selected as Set the detection unit 81; when the number of detection units 8 is an even number, for example, when the number is 6, there is no detection unit 8 on the central optical axis 6, then select the detection unit 8 closest to the central optical axis 6, that is, the third or The fourth detection unit 8 serves as the setting detection unit 81 .
  • the laser light reflected by the calibration object 2 is only irradiated to the set detection unit 81 , so that the size of the crosstalk parameter caused by the laser light in the non-set detection unit 82 adjacent to or spaced from the set detection unit 81 can be measured.
  • Crosstalk is divided into electrical crosstalk and optical crosstalk.
  • electrical crosstalk is that the coupling between two signal lines, the mutual inductance and mutual capacitance between the signal lines cause noise on the line, and the electrical crosstalk that is concerned in the field of lidar is due to the fact that when multiple photoelectric detection units work at the same time, in the Under the current circuit design, because a detection unit receives light, other detection units that do not receive light generate current signals. It is more meaningful to study this type of electrical crosstalk in the field of lidar.
  • Optical crosstalk is caused by the poor imaging quality of the lens or poor focus, which causes the converged light spot to spread to other photosensitive surfaces.
  • FIG. 2 is a schematic structural diagram of a laser radar crosstalk measurement system in the prior art.
  • the most intuitive measurement method of electrical crosstalk caused by light is shown in Figure 2.
  • the size of the detection unit used in the field of lidar is at the micron level. To measure the electrical crosstalk caused by light, it is necessary to obtain a micron-level spot, which is very difficult.
  • the calibration object 2 is located between the lens 3 and the background structure 4 and on the central optical axis 6 of the lens 3, and the lens 3 is located between the laser detector 5 and the calibration object 2 between.
  • the calibration object 2 and the background structure 4 are used to reflect the laser light emitted by the laser transmitter 1 to the lens 3, and irradiate it to the laser detector 5 through the lens 3;
  • Unit 8 the laser light reflected by the calibration object 2 is only irradiated to the set detection unit 81 ; wherein, the set detection unit 81 is the detection unit 8 closest to the central optical axis 6 .
  • the embodiment of the present disclosure utilizes the reflection of the calibration object and the lens, so that the light spot in front of the lens can be enlarged, for example, to a centimeter level, so that the laser reflected by the calibration object can only be irradiated to the setting detection unit 81 through the lens, solving the problem of It solves the problem that it is difficult to obtain micron-level light spots in the crosstalk test, and makes the crosstalk test of the lidar more convenient and fast.
  • the amount of crosstalk between adjacent detection units 8 can be used as a basis for laser radar optical alignment to verify whether the optical transceiver system is aligned in place.
  • FIG. 3 is a schematic design diagram of a laser radar crosstalk measurement system provided by an embodiment of the present disclosure.
  • the distance between the lens 3 and the background structure 4 is greater than or equal to 10 meters.
  • the lens 3 used in the embodiment of the present disclosure is a convex lens, and the lens 3 has a converging effect on the light, and the light converges to a point after entering the lens 3. If the incident light is parallel light, the light converges to the focal position of the lens 3;
  • the distance between the lens 3 and the background structure 4 is set to be greater than or equal to 10 meters, and the laser light emitted by the laser emitter 1 can be equivalent to parallel light entering the lens 3 after being reflected by the background structure 4, so that the background structure 4 is reflected to the lens 3 The light converges to a position close to the focal point of the lens 3, which is convenient for determining the position of the laser detector 5.
  • the distance S' between the calibration object 2 and the background structure 4 is greater than or equal to 1 meter.
  • a current or voltage signal will be generated. Due to the existence of electrical crosstalk, the detection unit 8 adjacent to or at a distance from the setting detection unit 81 will be affected by the setting detection unit 81. 81, a current or voltage signal is generated at the time domain position of the calibration object 2.
  • an oscilloscope can be selected to display the electrical signal waveform diagram generated by the detection unit 8 of the laser detector 5 , and the oscilloscope communicates with the laser detector 5 and the laser transmitter 1 through wired or wireless means.
  • FIG. 4 is a schematic diagram of signal waveforms of a laser radar crosstalk measurement system provided by an embodiment of the present disclosure.
  • the abscissa in FIG. 4 represents time t in ns (nanosecond, nanosecond), and the ordinate represents the signal waveform voltage amplitude V
  • the size, the unit is V
  • Figure 4 is the waveform in the time domain of the crosstalk measurement system corresponding to the lidar.
  • the waveform of the CH1 channel of the oscilloscope is the emission signal waveform of the synchronously triggered laser transmitter 1
  • the waveform of the CH2 channel of the oscilloscope is the signal waveform of the corresponding calibration object 2 and the background structure 4 detected by the detection unit 8.
  • the difference in return time to the detection unit is divided into the signal waveforms of the position A of the laser transmitter 1, the position B of the calibration object 2, and the position C of the background structure 4.
  • the time difference between the reflection of the laser from the calibration object 2 and the background structure 4 to the lens 3, and irradiating the laser detector 5 through the lens 3, it is possible to distinguish whether the signal waveform detected by the detection unit 8 corresponds to the calibration object 2 or the background structure 4, so as to avoid the mutual interference of the signal waveforms corresponding to the calibration object 2 and the background structure 4, and then separate the signal waveforms of the set detection unit 81 and the non-set detection unit 82, and use the non-set detection unit 82
  • the ratio of the signal waveform amplitude to the signal waveform amplitude of the set detection unit 81 obtains the crosstalk parameter of the non-set detection unit 82 .
  • the field angle of the detection unit 8 satisfies the following calculation formula:
  • is the field angle of detection unit 8
  • N is the quantity of detection unit 8 in laser detector 5
  • is the total field angle of all detection units 8
  • total field angle ⁇ and the period of detection unit 8 The size is related to the focal length of the lens 3 .
  • the period size of the detection unit 8 and the focal length of the lens 3 are used to obtain the total field of view of all detection units 8 according to optical simulation.
  • detection unit 8 such as can be APD (Avalanche Photo Diode, avalanche photodiode)
  • the specification of laser detector 5 is that the period length of each detection unit 8 is 500 microns, 16 units are 8 millimeters altogether, select simultaneously
  • the 16 detection units 8 occupy a total field of view angle of 11.7° through optical simulation calculations, and then the relevant parameters are substituted into the calculation formula of the field angle of the detection unit 8 to obtain:
  • the field angle occupied by each detection unit 8 is 0.73°, thus, the field angle of the detection unit 8 can be obtained after determining the size and quantity of the detection units 8 in the laser detector 5 and the focal length of the lens 3 .
  • the models of the laser detector 5 and the lens 3 are selected according to the requirements of the laser radar crosstalk measurement system, which is not limited in this embodiment of the present disclosure.
  • the width of the calibration object 2 satisfies the calculation formula:
  • L represents the width of the calibration object 2
  • S represents the distance between the calibration object 2 and the lens 3 .
  • the distance S between the calibration object 2 and the lens 3 is determined, and according to the calculation formula of the width L of the calibration object 2,
  • the width L of the calibration object 2 is obtained through calculation.
  • relevant parameters are substituted into the calculation formula of the width L of the calibration object 2 to obtain:
  • the distance S between the lens 3 and the calibration object 2 is 7.8 meters
  • the distance between the background structure 4 and the lens 3 should be greater than or equal to 10 meters
  • the distance S' between the calibration object 2 and the background structure 4 should be greater than or equal to 2.2 meters .
  • the distance S between the lens 3 and the calibration object 2 may also be determined first, and then the width L of the calibration object 2 is determined, which is not limited in this embodiment of the present disclosure.
  • the calibration object 2 may be selected from common cardboard, for example.
  • the height of the center position of the calibration object 2 from the reference plane 7 satisfies the following formula:
  • H represents the height of the center position of the calibration object 2 from the reference plane 7
  • h_chn represents the height of the center position of the set detection unit 81 located above the optical axis from the reference plane 7
  • FIG. The height h _chn of the central position of the detection unit 81 above the axis from the reference plane 7 is set.
  • the height of the center position of the calibration object 2 from the reference plane 7 H is equal to the difference between the height h_chn from the center position of the detection unit 81 to the reference plane 7 and half the width L of the calibration object 2 .
  • the height of the center position of the calibration object 2 from the reference plane 7 H is equal to the difference between the height h_chn from the center position of the detection unit 81 to the reference plane 7 and half the width L of the calibration object 2 .
  • the height H from the center position of the calibration object 2 to the reference plane 7 is equal to the set Determine the difference between the center position of the detection unit 81 and the height h_chn of the reference plane 7 from the height h_chn of the half of the width L of the calibration object 2, that is, 5 centimeters;
  • the height H of the center position of the calibration object 2 from the reference plane 7 is equal to the sum of the height h_chn of the center position of the detection unit 81 from the reference plane 7 and half of the width L of the calibration object 2, that is, 5 centimeters.
  • a calibration object 2 of an appropriate size can be selected and the calibration object 2 can be determined. placement location.
  • the laser radar crosstalk measurement system also includes an attenuation structure (not shown in Figures 1 and 3), the attenuation structure is located between the laser transmitter 1 and the calibration object 2, and the attenuation structure is used to set the attenuation multiple Attenuates the laser intensity emitted by the laser transmitter 1 to the calibration object 2 and the background structure 4 .
  • an attenuation structure (not shown in Figures 1 and 3)
  • the attenuation structure is located between the laser transmitter 1 and the calibration object 2
  • the attenuation structure is used to set the attenuation multiple Attenuates the laser intensity emitted by the laser transmitter 1 to the calibration object 2 and the background structure 4 .
  • the embodiment of the present disclosure adopts the equivalent amplitude method, and an attenuation structure is set between the laser transmitter 1 and the calibration object 2, for example, an optical attenuation sheet can be used, and the intensity of the laser light can be attenuated by using the attenuation sheet to absorb light.
  • the attenuation structure attenuates the laser intensity emitted by the laser transmitter 1 to the calibration object 2 and the background structure 4.
  • the attenuation multiple of the attenuation structure to the laser intensity is different.
  • the voltage amplitude at the signal waveform at the position B of the object 2 is calibrated to be 0.5V, and the attenuation multiple of the attenuation structure is 2, then the actual signal waveform voltage amplitude at the position B of the object 2 is calibrated before the attenuation is 1V. Therefore, setting the attenuation structure avoids the problem that the signal waveform measured by the oscilloscope is saturated and cannot read out the specific amplitude, thereby improving the accuracy of the crosstalk measurement.
  • the laser detector 5 is arranged at the rear working distance f of the lens 3 .
  • the laser light emitted by the laser transmitter 1 is reflected at the calibration object 2 and the background structure 4, and is irradiated to the laser detector 5 through the lens 3.
  • the parallel light converges at the focal point of the lens 3 after entering the lens 3 , in order to ensure that the laser light reflected by the calibration object 2 can converge to the laser detector 5, the laser detector 5 needs to be set at the focal point of the lens 3, and the distance from the focal point to the center of the lens 3 is the effective focal length (EFL, Effective Focal Length) of the lens 3 Length), because the lens 3 has a certain thickness, so the distance f between the laser detector 5 and the lens 3 is the back working distance (BFL, Back Focal Length) of the lens 3, that is, the distance from the last side of the lens 3 to the focal point, and the calibration object
  • EFL Effective Focal Length
  • the laser emitter is configured to emit a line spot after being shaped, and irradiate the calibration object and the background structure, so that all detection units in the laser detector can receive the light.
  • the laser detector is placed on the best imaging surface of the lens.
  • the distance between the lens and the background structure is greater than or equal to 10 meters.
  • a calibration object of a specific size is placed in front of the background structure.
  • the distance between the calibration object and the background structure is greater than or equal to 1 meter.
  • the width of the calibration object is obtained through optical simulation, so that the reflected light only occupies the detection unit closest to the central optical axis.
  • FIG. 5 is a schematic flowchart of a laser radar crosstalk measurement method provided by an embodiment of the present disclosure.
  • the laser radar crosstalk measurement method can be applied in the scene where the laser radar needs to be tested for crosstalk, and can be implemented based on the laser radar crosstalk measurement system provided by the embodiment of the present disclosure.
  • the laser radar crosstalk measurement system can use software and/or hardware way to achieve.
  • lidar crosstalk measurement methods include:
  • the set detection unit 81 when the set detection unit 81 receives the laser light reflected by the calibration object 2, it will generate a current or voltage signal. Due to the existence of electrical crosstalk caused by the laser, the non-set detection unit 82 will also Affected by the set detection unit 81 , an electrical signal is generated at the time domain position of the calibration object 2 .
  • the oscilloscope communicates with the laser detector 5 , and the oscilloscope displays the signal waveform amplitude corresponding to the calibration object 2 detected by the set detection unit 81 and the non-set detection unit 82 .
  • Crosstalk is divided into electrical crosstalk and optical crosstalk.
  • the electrical crosstalk that is concerned in the field of laser radar is due to the fact that when multiple photoelectric sensors work at the same time, under the current circuit design, due to the fact that a certain detection unit 81 receives light, other detection units do not receive light.
  • the non-set detection unit 82 of light generates an electrical signal, and it is more meaningful to study this type of electrical crosstalk in the field of lidar.
  • measuring the electrical crosstalk parameters of the non-set detection unit 82 according to the signal waveform amplitude corresponding to the set detection unit 81 and the signal waveform amplitude corresponding to the non-set detection unit 82 includes:
  • the electrical crosstalk parameter of the non-set detection unit 82 is equal to the difference between the first ratio and the simulated optical crosstalk parameter, and the first ratio is the signal waveform amplitude corresponding to the non-set detection unit 82 and the signal corresponding to the set detection unit 81 The ratio of the waveform amplitudes.
  • crosstalk represents the crosstalk parameter
  • V chm represents the signal waveform amplitude of the non-set detection unit 82
  • V chn represents the signal waveform amplitude of the set detection unit 81
  • the signal waveform amplitude corresponding to the non-set detection unit 82 is the same as the set
  • the ratio of the signal waveform amplitudes corresponding to the detection unit 81 is determined as the first ratio.
  • the non-set detection unit 82 may be adjacent to the set detection unit 81 or spaced from the set detection unit 81, and the crosstalk parameters of the non-set detection unit 82 adjacent to the set detection unit 81 include optical crosstalk parameters and electrical crosstalk parameters , the crosstalk parameters of the non-set detection unit 82 spaced apart from the set detection unit 81 only include electrical crosstalk parameters.
  • the electrical crosstalk parameter of the non-set detection unit 82 adjacent to the set detection unit 81 when measuring the electrical crosstalk parameter of the non-set detection unit 82 adjacent to the set detection unit 81, first according to the size of the detection unit 8 of the laser detector 5 selected in the laser radar crosstalk measurement system, The rear working distance of the lens 3, the width of the calibration object 2, and the distance from the lens 3 and other parameters are optically simulated to obtain optical crosstalk parameters, and then the signal waveform amplitude corresponding to the non-set detection unit 82 adjacent to the set detection unit 81 is obtained. The ratio of the value to the signal waveform amplitude corresponding to the set detection unit 81 is used as the first ratio, and the difference between the first ratio and the optical crosstalk parameter is the electrical crosstalk of the non-set detection unit 82 adjacent to the set detection unit 81 parameter.
  • the non-set detection spaced apart from the set detection unit 81 is obtained.
  • the ratio of the signal waveform amplitude corresponding to the unit 82 to the signal waveform amplitude corresponding to the set detection unit 81 is the electrical crosstalk parameter of the non-set detection unit 82 .
  • Embodiments of the present disclosure provide a laser radar crosstalk measurement system and a crosstalk measurement method.
  • the embodiments of the present disclosure utilize the reflection of the calibration object and the lens, so that the light spot passing through the lens can be enlarged, for example, to a centimeter level, and then the calibration
  • the laser light reflected by the object is only irradiated to the set detection unit through the lens, which solves the problem that it is difficult to obtain micron-scale light spots during crosstalk testing.
  • the signal waveform amplitudes of the corresponding calibration objects detected by different detection units according to the simulated optical crosstalk parameters corresponding to the non-set detection units, the signal waveform amplitudes corresponding to the set detection units, and the signal waveform amplitudes corresponding to the non-set detection units
  • the value measures the electrical crosstalk parameters of the non-set detection unit, making the crosstalk test of the lidar more convenient and quick.
  • the crosstalk of adjacent detection units can be used as the basis for laser radar optical alignment to verify whether the optical transceiver system is aligned in place.
  • FIG. 6 is a schematic structural diagram of the electronic device provided by an embodiment of the present disclosure.
  • the electronic device includes a processor and a memory, and the processor executes the steps of the laser radar crosstalk measurement method as in the above-mentioned embodiment by calling the program or instruction stored in the memory, so it has the beneficial effects of the above-mentioned embodiment, here No longer.
  • an electronic device may be set to include at least one processor 601 , at least one memory 602 and at least one communication interface 603 .
  • Various components in the electronic device are coupled together through the bus system 604 .
  • the communication interface 603 is used for information transmission with external devices. It can be understood that the bus system 604 is used to realize connection and communication between these components.
  • the bus system 604 also includes a power bus, a control bus and a status signal bus. However, for clarity of illustration, the various buses are labeled as bus system 604 in FIG. 6 .
  • the memory 602 in this embodiment may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • memory 602 stores elements such as executable units or data structures, or subsets thereof, or extensions thereof, operating systems and application programs.
  • the processor 601 executes the steps of the embodiments of the laser radar crosstalk measurement method provided in the embodiment of the present disclosure by calling the program or instruction stored in the memory 602 .
  • the laser radar crosstalk measurement method provided in the embodiment of the present disclosure may be applied to the processor 601 or implemented by the processor 601 .
  • the processor 601 may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 601 or instructions in the form of software.
  • the above-mentioned processor 601 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the lidar crosstalk measurement method provided by the embodiments of the present disclosure may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software units in the decoding processor.
  • the software unit may be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory 602, and the processor 601 reads the information in the memory 601, and completes the steps of the method in combination with its hardware.
  • the electronic device may also include one physical component, or multiple physical components, according to the instructions generated by the processor 601 when executing the laser radar crosstalk measurement method provided by the embodiment of the present application.
  • Different physical components can be set inside the electronic device, or outside the electronic device, such as a cloud server. Each physical component cooperates with the processor 601 and the memory 602 to implement the functions of the electronic device in this embodiment.
  • the embodiments of the present disclosure may also be computer program products, which include computer program instructions.
  • the processor executes the laser beam provided by the embodiments of the present disclosure. Radar crosstalk measurement method.
  • the computer program product can be written in any combination of one or more programming languages to execute the program codes for performing the operations of the embodiments of the present disclosure, and the programming languages include object-oriented programming languages, such as Java, C++, etc. , also includes conventional procedural programming languages, such as the "C" language or similar programming languages.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server to execute.
  • embodiments of the present disclosure may also be a computer-readable storage medium, on which computer program instructions are stored, and when the computer program instructions are executed by a processor, the processor executes the laser radar provided by the embodiments of the present disclosure. crosstalk measurement method.
  • the computer readable storage medium may employ any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • a readable storage medium may include, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof, for example. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • the laser radar crosstalk measurement system and crosstalk measurement method provided by the present disclosure utilize the reflection of the calibration object and the lens, so that the light spot passing through the lens can be enlarged, for example, it can be enlarged to the centimeter level, so that the laser reflected by the calibration object can only irradiate through the lens
  • the detection unit solves the problem that it is difficult to obtain micron-level light spots during the crosstalk test, making the crosstalk test of the lidar more convenient and fast.
  • the crosstalk between adjacent detection units can be used as the basis for laser radar optical alignment to verify whether the optical transceiver system is aligned in place. It has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达的串扰测量系统及串扰测量方法,激光雷达的串扰测量系统包括激光发射器(1)、标定物体(2)、透镜(3)、背景结构(4)和激光探测器(5),标定物体(2)位于透镜(3)和背景结构(4)之间且位于透镜(3)的中心光轴(6)上,透镜(3)位于激光探测器(5)和标定物体(2)之间;标定物体(2)和背景结构(4)用于将激光发射器(1)发射的激光反射至透镜(3),并经由透镜(3)照射至激光探测器(5);激光探测器(5)包括平行于透镜(3)所在平面方向排列的多个探测单元(8),标定物体(2)反射的激光仅照射至设定探测单元(81);其中,设定探测单元(81)为与距离中心光轴(6)最近的探测单元(8)。该系统可以避免微米级光斑难以获取的问题,简化了激光雷达的串扰测量方法。

Description

一种激光雷达的串扰测量系统及串扰测量方法
本公开要求于2021年12月17日提交中国专利局、申请号为2021115523581、发明名称为“一种激光雷达的串扰测量系统及串扰测量方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及激光雷达技术领域,尤其涉及一种激光雷达的串扰测量系统及串扰测量方法。
背景技术
三维环境测量和感知具有重要的民用和军事应用价值。在ADAS(Advanced Driving Assistance System,高级驾驶辅助系统)辅助驾驶和自动驾驶系统中,对车辆周边环境进行空间距离测量和三维环境重建,是实现高精度自动驾驶控制的前提条件。毫米波雷达和摄像头三维视觉重建是比较常见的距离测量技术,但在自动驾驶应用场景下,毫米波雷达的横向分辨率难以达到要求,且易受金属物体干扰;摄像头三维视觉重建的测距精度较低,对于远距离的目标,也较难实现精准的距离测量。激光雷达通过主动发射脉冲式红外激光束,照射到被测物体后,形成漫反射回波,由接收系统收集;通过测量发射脉冲和接收回波之间的时间差,可以获得被测物体的距离信息。激光雷达具有测距精度高、横向分辨率高的优点,在辅助驾驶和自动驾驶领域有广阔的应用前景。
在激光雷达领域,不同线数的激光雷达产品所使用的感光器件数量不同,各感光器件之间的间隔也非常小,在使用过程中多个感光器件同时工作时就会存在相互的串扰,而串扰的存在会严重影响激光雷达的性能。激光雷达领域所使用的探测器的每个单元的大小均在微米级,要测量串扰参数则需要获取微米级的光斑,这是非常困难的。
发明内容
(一)要解决的技术问题
本公开要解决的技术问题是解决现有的激光雷达领域所使用的探测器的每个单元的大小均在微米级,要测量串扰参数则需要获取微米级的光斑,非常困难的问题。
(二)技术方案
为了解决上述技术问题,本公开实施例提供了一种激光雷达的串扰测量系统及串扰测量方法。
第一方面,本公开提供了一种激光雷达的串扰测量系统,包括:
激光发射器、标定物体、透镜、背景结构和激光探测器,所述标定物体位于所述透镜和背景结构之间且位于所述透镜的中心光轴上,所述透镜位于所述激光探测器和所述标定物体之间;
所述标定物体和所述背景结构用于将所述激光发射器发射的激光反射至所述透镜,并经由所述透镜照射至所述激光探测器;
所述激光探测器包括平行于所述透镜所在平面方向排列的多个探测单元,所述标定物体反射的激光仅照射至设定探测单元;其中,所述设定探测单元为距离所述中心光轴最近的探测单元。
可选地,所述透镜和所述背景结构之间的距离大于等于10米。
可选地,所述标定物体与所述背景结构之间的距离大于等于1米。
可选地,所述探测单元的视场角满足如下计算公式:
Figure PCTCN2021140617-appb-000001
其中,θ为所述探测单元的视场角,N为所述激光探测器中所述探测单元的数量,α为所有所述探测单元的总视场角;其中,所述总视场角与所述探测单元的周期尺寸和所述透镜的焦距相关
可选地,所述标定物体的宽度满足如下计算公式:
Figure PCTCN2021140617-appb-000002
其中,L表示所述标定物体的宽度,S表示所述标定物体与所述透镜之间的距离。
可选地,所述标定物体的中心位置距离参考平面的高度满足如下公式:
Figure PCTCN2021140617-appb-000003
其中,H表示所述标定物体的中心位置距离参考平面的高度,h_chn表示所述设定探测单元的中心位置距离所述参考平面的高度。
可选地,所述激光雷达的串扰测量系统,还包括:衰减结构,所述衰减结构位于所述激光发射器与所述标定物体之间,所述衰减结构用于按照设定衰减倍数衰减所述激光发射器发射至所述标定物体和所述背景结构的激光强度。
可选地,所述激光探测器设置于所述透镜的后工作距位置。
第二方面,本公开还提供了一种激光雷达的串扰测量方法,基于如第一方面所述的激光雷达的串扰测量系统实现,所述激光雷达的串扰测量方法包括:
获取不同所述探测单元探测到的对应所述标定物体的信号波形幅值;
根据所述设定探测单元对应的所述信号波形幅值和非设定探测单元对应的所述信号波形幅值测量所述非设定探测单元的电串扰参数。
可选地,根据所述设定探测单元对应的所述信号波形幅值和非设定探测单元对应的所述信号波形幅值测量所述非设定探测单元的电串扰参数,包括:
根据所述非设定探测单元对应的仿真光串扰参数、所述设定探测单元对应的所述信号波形幅值和非设定探测单元对应的所述信号波形幅值测量所述非设定探测单元的电串扰参数;
其中,所述非设定探测单元的电串扰参数等于第一比值与所述仿真光串扰参数的差值,所述第一比值为所述非设定探测单元对应的所述信号波形幅值与所述设定探测单元对应的所述信号波形幅值的比值。
第三方面,本公开实施例还提供一种电子设备,包括:处理器;用于存储处理器可执行指令的存储器;所述处理器用于从所述存储器 中读取所述可执行指令,并执行所述指令以实现如本公开实施例提供的串扰测量方法。
第四方面,还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时可实现本公开第二方面提供的一种激光雷达的串扰测量方法的各实现方式中的部分或全部步骤。
(三)有益效果
本公开实施例提供的上述技术方案与现有技术相比具有如下优点:
本公开实施例提供的该激光雷达的串扰测量系统及串扰测量方法,利用标定物体的反射以及透镜,使得经由透镜前的光斑可以放大,例如可以放大至厘米级,进而使得标定物体反射的激光经由透镜仅照射至设定探测单元,解决了串扰测试时微米级光斑难以获取的问题,使激光雷达的串扰测试更加方便快捷。同时,相邻探测单元的串扰大小可以作为激光雷达光学对准的依据,用于验证光学收发系统是否对准到位。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种激光雷达的串扰测量系统的结构示意图;
图2为现有技术中激光雷达的串扰测量系统的结构示意图;
图3为本公开实施例提供的一种激光雷达的串扰测量系统的设计示意 图;
图4为本公开实施例提供的一种激光雷达的串扰测量系统的信号波形示意图;
图5为本公开实施例提供的一种激光雷达的串扰测量方法的流程图;
图6为本公开实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1为本公开实施例提供的一种激光雷达的串扰测量系统的结构示意图。如图1所示,激光雷达的串扰测量系统包括激光发射器1、标定物体2、透镜3、背景结构4和激光探测器5,标定物体2位于透镜3和背景结构4之间且位于透镜3的中心光轴6上,透镜3位于激光探测器5和标定物体2之间。标定物体2和背景结构4用于将激光发射器1发射的激光反射至透镜3,并经由透镜3照射至激光探测器5;激光探测器5包括平行于透镜3所在平面方向排列的多个探测单元8,标定物体2反射的激光仅照射至设定探测单元81;其中,设定探测单元81为与距离中心光轴6最近的探测单元8。
具体地,如图1所示,标定物体2位于透镜3和背景结构4之间,且标定物体2的中心位于透镜3的中心光轴6上,透镜3位于激光探测器5和标定物体2之间,激光发射器1位于透镜3的正上方或者正下方任意一处,激光发射器1经过光束整形后发出线光束,图1中示例性地示出了激光发射器1位于透镜3正上方时发射至标定物体2和背景结构4的激光光束方向。标定物体2表面对光线进行漫反射,背景结构4可以选择白色背景墙,激光发射器1发射的激光经过标定物体2和背景结构4的反射,并经由透镜3照射至激光探测器5。
激光探测器5中包含多个探测单元8,探测单元8平行于透镜3所在平面方向呈线阵排列并相对于中心光轴6对称排布,选择激光探测器5中与中心光轴6距离最近的探测单元8作为设定探测单元81,其它探测单元8作为非设定探测单元82。示例性地,当探测单元8的数量为奇数时,例如数量为5时,居于激光探测器5中间位置的第三个探测单元8位于中心光轴6上,则选择第三个探测单元8作为设定探测单元81;当探测单元8的数量为偶数时,例如数量为6时,中心光轴6上并没有探测单元8,则选择距离中心光轴6最近的探测单元8即第三个或者第四个探测单元8作为设定探测单元81。标定物体2反射的激光仅照射至设定探测单元81,由此可以测量与设定探测单元81相邻或者间隔的非设定探测单元82由激光引起的串扰参数的大小。
串扰分为电串扰和光串扰。电串扰的定义是两条信号线之间的耦合、信号线之间的互感和互容引起线上的噪声,而激光雷达领域所关注的电串扰是由于多个光电探测单元同时工作时,在当前的电路设计下,由于某个探测单元接收到光,引起其他没有接收到光的探测单元产生了电流信号,研究这种类型的电串扰在激光雷达领域更有意义。光串扰是由于镜头成像质量差或者对焦不好导致会聚光斑扩散到其他感光面所导致。
图2为现有技术中激光雷达的串扰测量系统的结构示意图。由光引起的电串扰最直观的测量方法如图2所示,一束激光光线(图2中的实线箭头)只照射到探测单元CH-C上,测量探测单元CH-C的电流信号大小,同时测量探测单元CH-B的电流信号大小,则探测单元CH-B串扰参数crosstalk=I CH-B/I CH-C,以此类推,可以测量其余探测单元的电串扰。激光雷达领域所使用的探测单元的大小均在微米级,要测量光引起的电串扰则需要获取微米级的光斑,这是非常困难的。
本公开实施例提供的一种激光雷达的串扰测量系统,标定物体2位于透镜3和背景结构4之间且位于透镜3的中心光轴6上,透镜3位于激光探测器5和标定物体2之间。标定物体2和背景结构4用于将激光发射器1发射的激光反射至透镜3,并经由透镜3照射至激光探测器5;激光探测器5包括平行于透镜3所在平面方向排列的多个探测 单元8,标定物体2反射的激光仅照射至设定探测单元81;其中,设定探测单元81为与距离中心光轴6最近的探测单元8。由此,本公开实施例利用标定物体的反射以及透镜,使得经由透镜前的光斑可以放大,例如可以放大至厘米级,进而使得标定物体反射的激光经由透镜仅照射至设定探测单元81,解决了串扰测试时微米级光斑难以获取的问题,使激光雷达的串扰测试更加方便快捷。同时,相邻探测单元8的串扰大小可以作为激光雷达光学对准的依据,用于验证光学收发系统是否对准到位。
图3为本公开实施例提供的一种激光雷达的串扰测量系统的设计示意图。可选地,如图3所示,透镜3和背景结构4之间的距离大于等于10米。
具体地,本公开实施例所选用的透镜3为凸透镜,透镜3对光线具有汇聚作用,光线入射透镜3后汇聚至一点,如果入射光线为平行光时,光线汇聚至透镜3的焦点位置;本公开实施例设置透镜3和背景结构4之间的距离大于等于10米,激光发射器1发出的激光经过背景结构4反射后可以等效于平行光入射透镜3,使背景结构4反射至透镜3的光汇聚至接近透镜3焦点的位置,便于确定激光探测器5所摆放的位置。
可选地,如图3所示,标定物体2与背景结构4之间的距离S’大于等于1米。
具体地,在设定探测单元81接收到标定物体2反射的激光时会产生电流或电压信号,由于电串扰的存在,与设定探测单元81相邻或者间隔的探测单元8受到设定探测单元81的影响,在标定物体2的时域位置产生电流或电压信号。示例性地,可以选用示波器显示激光探测器5的探测单元8产生的电信号波形图,示波器和激光探测器5以及激光发射器1通过有线或无线的方式通信连接。
图4为本公开实施例提供一种激光雷达的串扰测量系统的信号波形示意图,图4中横坐标表示时间t,单位为ns(nanosecond,纳秒),纵坐标表示信号波形电压幅值V的大小,单位为V,图4即对应激光雷达的串扰测量系统时域上的波形。如图4所示,示波器CH1通道的 波形为同步触发的激光发射器1的发射信号波形,示波器CH2通道的波形为探测单元8探测到的对应标定物体2和背景结构4的信号波形,按照信号返回探测单元时间的不同分为激光发射器1位置A、标定物体2位置B和背景结构4位置C的信号波形。
由于激光探测器5中的探测单元8探测到的对应标定物体2和对应背景结构4的信号波形占据了示波器的同一个通道中,因此需要在标定物体2与对应背景结构4之间设置足够长的距离,利用激光从标定物体2和背景结构4反射至透镜3,并经由透镜3照射至激光探测器5的时间差,区分探测单元8探测到的是对应标定物体2的信号波形,还是对应背景结构4的信号波形,从而避免对应标定物体2和背景结构4的信号波形的相互干扰,进而分离出设定探测单元81与非设定探测单元82的信号波形,利用非设定探测单元82的信号波形幅值与设定探测单元81的信号波形幅值的比值获取非设定探测单元82的串扰参数。
可选地,探测单元8的视场角满足如下计算公式:
Figure PCTCN2021140617-appb-000004
其中,θ为探测单元8的视场角,N为激光探测器5中探测单元8的数量,α为所有探测单元8的总视场角;其中,总视场角α与探测单元8的周期尺寸和透镜3的焦距相关。
具体地,利用探测单元8的周期尺寸和透镜3的焦距根据光学仿真获取所有探测单元8的总视场角,示例性地,如图3所示,选择德国FirstSensor公司包括16个探测单元8的激光探测器5,探测单元8例如可以为APD(Avalanche Photo Diode,雪崩光电二极管),激光探测器5的规格为每个探测单元8的周期长度为500微米,16个单元共8毫米,同时选用焦距为40毫米的透镜3,经过光学仿真计算得到16个探测单元8共占据11.7°视场角,再将相关参数代入探测单元8的视场角计算公式得到:
Figure PCTCN2021140617-appb-000005
即每个探测单元8占据的视场角度为0.73°,由此,在确定激光探测器5中探测单元8的尺寸和数量以及透镜3的焦距后即可得到探测单元8的视场角。需要说明的是,激光探测器5和透镜3的型号选择根据激光雷达的串扰测量系统需求进行选择,本公开实施例对此不作限定。
可选地,如图3所示,标定物体2的宽度满足计算公式:
Figure PCTCN2021140617-appb-000006
其中,L表示标定物体2的宽度,S表示标定物体2与透镜3之间的距离。
具体地,根据所选用的探测单元8的尺寸和透镜3的焦距确定探测单元8的视场角后,确定标定物体2与透镜3之间的距离S,根据标定物体2的宽度L计算公式,计算得到标定物体2的宽度L。示例性地,当选择宽度L为10厘米的标定物体2,且选择探测单元8的视场角为0.73°时,将相关参数代入标定物体2的宽度L计算公式得到:
Figure PCTCN2021140617-appb-000007
求解得出,透镜3与标定物体2的距离S为7.8米,背景结构4和透镜3之间的距离应大于等于10米,则标定物体2与背景结构4的距离S’应大于等于2.2米。另外,也可以先确定透镜3与标定物体2的距离S后,再确定标定物体2的宽度L,本公开实施例对此不作限定。示例性地,标定物体2例如可以选用普通硬纸板。
可选地,如图3所示,标定物体2的中心位置距离参考平面7的高度满足如下公式:
Figure PCTCN2021140617-appb-000008
其中,H表示标定物体2的中心位置距离参考平面7的高度,h_chn表示位于光轴上方的设定探测单元81的中心位置距离参考平面7的高度,图3中示例性地示出了位于光轴上方的设定探测单元81的中心位置距离参考平面7的高度h _chn
具体地,在搭建激光雷达的串扰测量系统时,先确定设定探测单元81的中心位置距离参考平面7的高度h _chn,再根据几何关系可知,标定物体2的中心位置距离参考平面7的高度H等于设定探测单元81的中心位置距离参考平面7的高度h _chn与标定物体2宽度L的一半的差值。示例性地,如图1所示,当选择位于光轴上方的设定探测单元81且选择宽度L为10厘米的标定物体2时,标定物体2的中心位置距离参考平面7的高度H等于设定探测单元81的中心位置距离参考平面7的高度h _chn与标定物体2宽度L的一半即5厘米的差值;或者选择位于光轴下方的设定探测单元81且选择宽度L为10厘米的标定物体2时,标定物体2的中心位置距离参考平面7的高度H等于设定探测单元81的中心位置距离参考平面7的高度h _chn与标定物体2宽度L的一半即5厘米的总和值。由此,根据标定物体2相对于透镜3的距离S、标定物体2的中心位置距离参考平面7的高度h _chn以及标定物体2的宽度L即可选择合适尺寸的标定物体2并确定标定物体2的摆放位置。
可选地,激光雷达的串扰测量系统,还包括衰减结构(图1和图3中未示出),衰减结构位于激光发射器1与标定物体2之间,衰减结构用于按照设定衰减倍数衰减激光发射器1发射至标定物体2和背景结构4的激光强度。
具体地,在实际测试中,使用示波器测量标定物体2位置B处的信号波形幅值会出现饱和状态,此时由于波形幅值的大小不会继续增加,无法准确地读出标定物体2位置B处的具体幅值,从而无法计算激光雷达的串扰参数。本公开实施例采用等效幅值法,在激光发射器1与标定物体2之间设置衰减结构,例如可以使用光学衰减片,利用衰减片对光具有吸收的特性,对激光的强度进行衰减。衰减结构对激光发射器1发射至标定物体2和背景结构4的激光强度进行衰减,根据所使用的衰减结构的材料种类和厚度不同,衰减结构对激光强度的衰 减倍数不同。示例性地,在设置衰减结构后标定物体2位置B处的信号波形处电压幅值为0.5V,衰减结构的衰减倍数为2,则衰减前标定物体2位置B处的实际信号波形电压幅值为1V。由此,通过设置衰减结构避免了示波器测量的信号波形出现饱和,无法读出具体幅值的问题,从而提高了串扰测量的准确性。
可选地,如图3所示,激光探测器5设置于透镜3的后工作距f位置。
具体地,激光发射器1发射的激光在标定物体2和背景结构4处反射,经由透镜3照射至激光探测器5,根据透镜3成像原理,平行光入射透镜3后会聚于透镜3的焦点处,为了保证标定物体2位置反射的激光能够会聚至激光探测器5,需将激光探测器5设置于透镜3的焦点处,焦点至透镜3中心的距离为透镜3的有效焦距(EFL,Effective Focal Length),由于透镜3有一定的厚度,因此激光探测器5与透镜3的距离f为透镜3的后工作距(BFL,Back Focal Length),即透镜3的最后一面到焦点的距离,标定物体2位置反射的激光可以汇聚至激光探测器5,将激光探测器5设置于透镜3的后工作距位置可以保证标定物体2所反射的光只占据设定探测单元81。示例性地,透镜3可以选用Edmund的#66024产品,其有效焦距EFL=40mm,后工作距BFL=37.09mm。
由此,本公开实施例设置激光发射器经整形后发出线光斑,照射在标定物体和背景结构上,使得激光探测器中的所有探测单元均可接收到光。激光探测器置于透镜的最佳成像面上,透镜距离背景结构大于等于10米,在背景结构前方放置特定大小的标定物体,标定物体与背景结构的距离大于等于1米,标定物体中心与在透镜的中心光轴上,标定物体的宽度通过光学仿真获取,使其反射的光只占据距离中心光轴最近的探测单元。
本公开实施例还提供了一种激光雷达的串扰测量方法,图5为本公开实施例提供的一种激光雷达的串扰测量方法的流程示意图。激光雷达的串扰测量方法可以应用在需要对激光雷达进行串扰测试的场景下,可以基于本公开实施例提供的激光雷达串扰测量系统实现,该激 光雷达的串扰测量系统可以采用软件和/或硬件的方式来实现。如图5所示,激光雷达的串扰测量方法包括:
S501、获取不同探测单元探测到的对应标定物体的信号波形幅值。
具体地,如图4所示,在设定探测单元81接收到标定物体2处反射的激光时会产生电流或电压信号,由于激光引起的电串扰的存在,非设定探测单元82同样也会受到设定探测单元81的影响,从而在标定物体2的时域位置产生电信号。示波器与激光探测器5通信连接,示波器上显示设定探测单元81和非设定探测单元82探测到的对应标定物体2的信号波形幅值。
S502、根据设定探测单元对应的信号波形幅值和非设定探测单元对应的信号波形幅值测量非设定探测单元的电串扰参数。
串扰分为电串扰和光串扰,激光雷达领域所关注的电串扰是由于多个光电传感器同时工作时,在当前的电路设计下,由于某个设定探测单元81接收到光,引起其它没有接收到光的非设定探测单元82产生了电信号,研究这种类型的电串扰在激光雷达领域更有意义。
可选地,根据设定探测单元81对应的信号波形幅值和非设定探测单元82对应的信号波形幅值测量非设定探测单元82的电串扰参数,包括:
根据非设定探测单元82对应的仿真光串扰参数、设定探测单元81对应的信号波形幅值和非设定探测单元82对应的信号波形幅值测量非设定探测单元82的电串扰参数;
其中,非设定探测单元82的电串扰参数等于第一比值与仿真光串扰参数的差值,第一比值为非设定探测单元82对应的信号波形幅值与设定探测单元81对应的信号波形幅值的比值。
具体地,根据串扰参数计算公式可知:
Figure PCTCN2021140617-appb-000009
其中,crosstalk表示串扰参数,V chm表示非设定探测单元82的信号波形幅值,V chn表示设定探测单元81的信号波形幅值,非设定探测 单元82对应的信号波形幅值与设定探测单元81对应的信号波形幅值的比值作为第一比值。非设定探测单元82可以与设定探测单元81相邻或者与设定探测单元81间隔,与设定探测单元81相邻的非设定探测单元82的串扰参数包括光串扰参数和电串扰参数,与设定探测单元81间隔的非设定探测单元82的串扰参数只包括电串扰参数。
示例性地,当测量与设定探测单元81相邻的非设定探测单元82的电串扰参数时,先根据激光雷达的串扰测量系统中所选择的激光探测器5的探测单元8的尺寸、透镜3的后工作距、标定物体2的宽度及距离透镜3的距离等参数进行光学仿真获取光串扰参数,再获取与设定探测单元81相邻的非设定探测单元82对应的信号波形幅值与设定探测单元81对应的信号波形幅值的比值作为第一比值,第一比值与光串扰参数的差值即为与设定探测单元81相邻的非设定探测单元82的电串扰参数。
当测量与设定探测单元81间隔的非设定探测单元82的电串扰参数时,由于间隔的非设定探测单元82中只存在电串扰,获取与设定探测单元81间隔的非设定探测单元82对应的信号波形幅值与设定探测单元81对应的信号波形幅值的比值即为非设定探测单元82的电串扰参数。
本公开实施例提供了一种激光雷达的串扰测量系统和串扰测量方法,本公开实施例利用标定物体的反射以及透镜,使得经由透镜前的光斑可以放大,例如可以放大至厘米级,进而使得标定物体反射的激光经由透镜仅照射至设定探测单元,解决了串扰测试时微米级光斑难以获取的问题。获取不同探测单元探测到的对应标定物体的信号波形幅值,根据非设定探测单元对应的仿真光串扰参数、设定探测单元对应的信号波形幅值和非设定探测单元对应的信号波形幅值测量非设定探测单元的电串扰参数,使激光雷达的串扰测试更加方便快捷。同时,相邻探测单元的串扰大小可以作为激光雷达光学对准的依据,用于验证光学收发系统是否对准到位。
本公开实施例还提供了一种电子设备,图6为本公开实施例提供的一种电子设备的结构示意图。如图6所示,电子设备包括处理器和 存储器,处理器通过调用存储器存储的程序或指令,执行如上述实施例的激光雷达的串扰测量方法的步骤,因此具备上述实施例的有益效果,这里不再赘述。
如图6所示,可以设置电子设备包括至少一个处理器601、至少一个存储器602和至少一个通信接口603。电子设备中的各个组件通过总线系统604耦合在一起。通信接口603用于与外部设备之间的信息传输。可理解,总线系统604用于实现这些组件之间的连接通信。总线系统604除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但为了清楚说明起见,在图6中将各种总线都标为总线系统604。
可以理解,本实施例中的存储器602可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。在一些实施方式中,存储器602存储了如下的元素:可执行单元或者数据结构,或者他们的子集,或者他们的扩展集操作系统和应用程序。在本公开实施例中,处理器601通过调用存储器602存储的程序或指令,执行本公开实施例提供的激光雷达的串扰测量方法各实施例的步骤。
本公开实施例提供的激光雷达的串扰测量方法可以应用于处理器601中,或者由处理器601实现。处理器601可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器601中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器601可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本公开实施例提供的激光雷达的串扰测量方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟 的存储介质中。该存储介质位于存储器602,处理器601读取存储器601中的信息,结合其硬件完成方法的步骤。
该电子设备还可以包括一个实体部件,或者多个实体部件,以根据处理器601在执行本申请实施例提供的激光雷达的串扰测量方法时生成的指令。不同的实体部件可以设置到电子设备内,或者电子设备外,例如云端服务器等。各个实体部件与处理器601和存储器602共同配合实现本实施例中电子设备的功能。
除了上述方法和设备以外,本公开的实施例还可以是计算机程序产品,其包括计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本公开实施例所提供的激光雷达的串扰测量方法。
所述计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本公开实施例操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
此外,本公开的实施例还可以是计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本公开实施例所提供的激光雷达的串扰测量方法。
所述计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语 仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
工业实用性
本公开提供的激光雷达的串扰测量系统及串扰测量方法,利用标定物体的反射以及透镜,使得经由透镜前的光斑可以放大,例如可以放大至厘米级,进而使得标定物体反射的激光经由透镜仅照射至设定探测单元,解决了串扰测试时微米级光斑难以获取的问题,使激光雷达的串扰测试更加方便快捷。同时,相邻探测单元的串扰大小可以作为激光雷达光学对准的依据,用于验证光学收发系统是否对准到位。具有很强的工业实用性。

Claims (10)

  1. 一种激光雷达的串扰测量系统,其特征在于,包括:
    激光发射器、标定物体、透镜、背景结构和激光探测器,所述标定物体位于所述透镜和背景结构之间且位于所述透镜的中心光轴上,所述透镜位于所述激光探测器和所述标定物体之间;
    所述标定物体和所述背景结构用于将所述激光发射器发射的激光反射至所述透镜,并经由所述透镜照射至所述激光探测器;
    所述激光探测器包括平行于所述透镜所在平面方向排列的多个探测单元,所述标定物体反射的激光仅照射至设定探测单元;其中,所述设定探测单元为距离所述中心光轴最近的探测单元。
  2. 根据权利要求1所述的激光雷达的串扰测量系统,其特征在于,所述透镜和所述背景结构之间的距离大于等于10米。
  3. 根据权利要求1所述的激光雷达的串扰测量系统,其特征在于,所述标定物体与所述背景结构之间的距离大于等于1米。
  4. 根据权利要求1所述的激光雷达的串扰测量系统,其特征在于,所述探测单元的视场角满足如下计算公式:
    Figure PCTCN2021140617-appb-100001
    其中,θ为所述探测单元的视场角,N为所述激光探测器中所述探测单元的数量,α为所有所述探测单元的总视场角;其中,所述总视场角与所述探测单元的周期尺寸和所述透镜的焦距相关。
  5. 根据权利要求1所述的激光雷达的串扰测量系统,其特征在于,所 述标定物体的宽度满足如下计算公式:
    Figure PCTCN2021140617-appb-100002
    其中,L表示所述标定物体的宽度,S表示所述标定物体与所述透镜之间的距离。
  6. 根据权利要求5所述的激光雷达的串扰测量系统,其特征在于,所述标定物体的中心位置距离参考平面的高度满足如下公式:
    Figure PCTCN2021140617-appb-100003
    其中,H表示所述标定物体的中心位置距离参考平面的高度,h _chn表示所述设定探测单元的中心位置距离所述参考平面的高度。
  7. 根据权利要求1所述的激光雷达的串扰测量系统,其特征在于,还包括:
    衰减结构,所述衰减结构位于所述激光发射器与所述标定物体之间,所述衰减结构用于按照设定衰减倍数衰减所述激光发射器发射至所述标定物体和所述背景结构的激光强度。
  8. 根据权利要求1所述的激光雷达的串扰测量系统,其特征在于,所述激光探测器设置于所述透镜的后工作距位置。
  9. 一种激光雷达的串扰测量方法,其特征在于,基于如权利要求1-8任一项所述的激光雷达的串扰测量系统实现,所述激光雷达的串扰测量方法包括:
    获取不同所述探测单元探测到的对应所述标定物体的信号波形幅值;根据所述设定探测单元对应的所述信号波形幅值和非设定探测单元对 应的所述信号波形幅值测量所述非设定探测单元的电串扰参数。
  10. 根据权利要求9所述的激光雷达的串扰测量方法,其特征在于,根据所述设定探测单元对应的所述信号波形幅值和非设定探测单元对应的所述信号波形幅值测量所述非设定探测单元的电串扰参数,包括:
    根据所述非设定探测单元对应的仿真光串扰参数、所述设定探测单元对应的所述信号波形幅值和非设定探测单元对应的所述信号波形幅值测量所述非设定探测单元的电串扰参数;
    其中,所述非设定探测单元的电串扰参数等于第一比值与所述仿真光串扰参数的差值,所述第一比值为所述非设定探测单元对应的所述信号波形幅值与所述设定探测单元对应的所述信号波形幅值的比值。
PCT/CN2021/140617 2021-12-17 2021-12-22 一种激光雷达的串扰测量系统及串扰测量方法 WO2023108775A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111552358.1 2021-12-17
CN202111552358.1A CN113933821B (zh) 2021-12-17 2021-12-17 一种激光雷达的串扰测量方法

Publications (1)

Publication Number Publication Date
WO2023108775A1 true WO2023108775A1 (zh) 2023-06-22

Family

ID=79289292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140617 WO2023108775A1 (zh) 2021-12-17 2021-12-22 一种激光雷达的串扰测量系统及串扰测量方法

Country Status (2)

Country Link
CN (1) CN113933821B (zh)
WO (1) WO2023108775A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115015874B (zh) * 2022-08-08 2022-11-08 探维科技(北京)有限公司 激光雷达串扰点云处理方法、装置、电子设备和介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110031418A1 (en) * 2007-10-31 2011-02-10 Ben Gurion Univesity of the Negev Research and Development Authority Optical sensor measurement and crosstalk evaluation
CN106154248A (zh) * 2016-09-13 2016-11-23 深圳市佶达德科技有限公司 一种激光雷达光学接收装置及激光雷达测距方法
CN107132519A (zh) * 2017-06-30 2017-09-05 深圳市镭神智能系统有限公司 一种激光雷达光路系统
CN110780278A (zh) * 2019-10-25 2020-02-11 深圳煜炜光学科技有限公司 一种高速扫描的远距离激光雷达及其控制方法
WO2021078557A1 (de) * 2019-10-25 2021-04-29 Valeo Schalter Und Sensoren Gmbh Filterung von messdaten eines aktiven optischen sensorsystems
CN113064138A (zh) * 2021-03-15 2021-07-02 深圳煜炜光学科技有限公司 一种基于多波长配置的多线激光雷达

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563409A (en) * 1994-12-21 1996-10-08 The United States Of America As Represented By The Secretary Of The Army Crosstalk measurement system and technique
US9755738B2 (en) * 2013-03-20 2017-09-05 Nistica, Inc. Crosstalk suppression in a multi-photodetector optical channel monitor
US9772398B2 (en) * 2014-06-26 2017-09-26 Intersil Americas LLC Optical proximity sensors with reconfigurable photodiode array
WO2020201452A1 (en) * 2019-04-02 2020-10-08 Ams International Ag Method of measuring optical crosstalk in a time of flight sensor and corresponding time of flight sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110031418A1 (en) * 2007-10-31 2011-02-10 Ben Gurion Univesity of the Negev Research and Development Authority Optical sensor measurement and crosstalk evaluation
CN106154248A (zh) * 2016-09-13 2016-11-23 深圳市佶达德科技有限公司 一种激光雷达光学接收装置及激光雷达测距方法
CN107132519A (zh) * 2017-06-30 2017-09-05 深圳市镭神智能系统有限公司 一种激光雷达光路系统
CN110780278A (zh) * 2019-10-25 2020-02-11 深圳煜炜光学科技有限公司 一种高速扫描的远距离激光雷达及其控制方法
WO2021078557A1 (de) * 2019-10-25 2021-04-29 Valeo Schalter Und Sensoren Gmbh Filterung von messdaten eines aktiven optischen sensorsystems
CN113064138A (zh) * 2021-03-15 2021-07-02 深圳煜炜光学科技有限公司 一种基于多波长配置的多线激光雷达

Also Published As

Publication number Publication date
CN113933821B (zh) 2022-04-12
CN113933821A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
US11982771B2 (en) Method for identification of a noise point used for LiDAR, and LiDAR system
CN106463565B (zh) 激光雷达扫描仪校准
EP2972471B1 (en) Lidar scanner
US10739445B2 (en) Parallel photon counting
CN105044704B (zh) 高精度星载激光发射机性能综合测试系统
WO2023108775A1 (zh) 一种激光雷达的串扰测量系统及串扰测量方法
CN107209116A (zh) 包括考虑样本内的光学路径长度的变化的光学检查系统和方法
WO2021189794A1 (zh) 飞行时间测距系统及其测距方法
JPS5910688Y2 (ja) 電子検出器
JP6414830B2 (ja) 波形弁別装置、波形弁別方法及び波形弁別プログラム
TWI835760B (zh) 距離飛行時間模組
CN107491227A (zh) 一种通过光学测距实现的触摸识别装置及方法
CN102998096B (zh) 凸透镜焦距的测量方法
CN103464694A (zh) 一种用于镁合金铸造的液位检测装置及其检测方法
CN114355370A (zh) 一种距离探测器、一种距离探测方法及装置
CN108507956A (zh) 水体光学衰减系数测量装置及方法
US11860317B1 (en) Optical adjustment for image fusion LiDAR systems
CN116381708A (zh) 一种高精度激光三角测距系统
CN103105283A (zh) 单光谱大口径长焦距透镜的焦距测量装置
CN112782676A (zh) 一种光纤标定系统及方法
CN204903762U (zh) 光纤扫描式激光雷达系统
JP6278457B2 (ja) 非破壊検査方法およびその装置
CN114527469A (zh) 物体检测装置、物体检测方法以及存储介质
CN203930751U (zh) 激光扫描触摸屏
Qi et al. Pulse Lidar imaging algorithm based on adaptive triangle window-width centroid discrimination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967906

Country of ref document: EP

Kind code of ref document: A1