WO2021134309A1 - 一种光学镜组、摄像头模组及终端 - Google Patents

一种光学镜组、摄像头模组及终端 Download PDF

Info

Publication number
WO2021134309A1
WO2021134309A1 PCT/CN2019/130134 CN2019130134W WO2021134309A1 WO 2021134309 A1 WO2021134309 A1 WO 2021134309A1 CN 2019130134 W CN2019130134 W CN 2019130134W WO 2021134309 A1 WO2021134309 A1 WO 2021134309A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
curvature
radius
optical lens
Prior art date
Application number
PCT/CN2019/130134
Other languages
English (en)
French (fr)
Inventor
乐宇明
兰宾利
周芮
Original Assignee
天津欧菲光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津欧菲光电有限公司 filed Critical 天津欧菲光电有限公司
Priority to EP19958582.9A priority Critical patent/EP4033286A1/en
Priority to PCT/CN2019/130134 priority patent/WO2021134309A1/zh
Publication of WO2021134309A1 publication Critical patent/WO2021134309A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses

Definitions

  • This application relates to the field of optical imaging technology, and in particular to an optical lens group, a camera module and a terminal.
  • ADAS Advanced Driving Assistant System
  • DMS Driver Monitoring System
  • ADAS Advanced Driving Assistant System
  • DMS Driver Monitoring System
  • the early warning states include closed eyes, head down, yawning, looking left and right, smoking, making phone calls, etc.
  • a camera device with high pixels and high resolution.
  • the embodiments of the present application provide an optical lens group, a camera module, and a terminal, which also have high pixel resolution under challenging lighting environments such as night and backlight.
  • the technical solution is as follows;
  • an embodiment of the present application provides an optical lens assembly, including a first lens, a second lens, a third lens, a fourth lens, and a fifth lens that are sequentially arranged from the object surface to the image surface along the optical axis; wherein ,
  • the first lens has a positive refractive power, the radius of curvature of the object side of the first lens is positive, and the radius of curvature of the image side of the first lens is negative;
  • the second lens has negative refractive power
  • the fifth lens has negative refractive power, and the radius of curvature of the object side surface of the fifth lens is negative.
  • ImgH half of the diagonal length of the effective pixel area on the image plane is ImgH, and the total length of the optical system of the optical lens group is TTL, and ImgH and TTL satisfy the following conditional expressions:
  • the beneficial effect of the above-mentioned further solution is that half of the diagonal length of the effective pixel area on the image plane and the total length of the optical system are limited to satisfy: 0.1 ⁇ ImgH*2/TTL ⁇ 0.8, which can ensure the high-pixel imaging quality of the system, and The total length of the optical system can be controlled to minimize the volume of the camera composed of the optical lens group.
  • half of the diagonal length of the effective pixel area on the image plane and the total length of the optical system exceed the range of the above conditional expression, the resolution of the imaging system will decrease, which is not conducive to the miniaturization of the system.
  • the focal length of the optical lens group is f
  • the optical back focus of the optical lens group is BFL
  • f and BFL satisfy the following conditional expressions:
  • the beneficial effect of the above further solution is that by limiting the ratio of the focal length of the optical lens group to the optical back focus as: 0 ⁇ BFL/f ⁇ 3, the miniaturization of the system can be ensured.
  • the ratio of the focal length of the optical lens group to the optical back focus exceeds the range of the above conditional formula, the back focus of the system will be too long, which is not conducive to miniaturization.
  • the focal length of the first lens is f 1
  • the focal length of the optical lens group is f
  • f 1 and f satisfy the following conditional expressions:
  • the beneficial effect of the above further solution is: by limiting the ratio of the focal length of the first lens to the focal length of the optical lens group as: 1 ⁇ f 1 /f ⁇ 3, the first lens close to the object surface is a positive lens, providing the system with The positive refractive power can focus the incident beam, which is conducive to the effective transmission of the image information collected by the optical lens group to the image surface.
  • the radius of curvature of the image side surface of the third lens is negative, and the radius of curvature of the object side surface of the fourth lens is positive; the distance between the image side surface of the third lens and the object side surface of the fourth lens on the optical axis is d 34 ,
  • the distance from the maximum periphery of the optically effective area on the image side of the three lens to the projection point on the optical axis to the maximum periphery of the optically effective area on the object side of the fourth lens to the projection point on the optical axis is Ed 34 , d 34 and Ed 34 satisfies the following conditional formula:
  • the beneficial effect of the above further solution is: by setting the distance between the image side surface of the third lens and the object side surface of the fourth lens on the optical axis, and the maximum periphery of the optical effective area of the image side surface of the third lens on the projection point on the optical axis
  • the distance from the maximum periphery of the optically effective area to the projection point on the optical axis to the object side of the fourth lens is limited to satisfy: Ed 34 /d 34 ⁇ 20, which can compare the image side of the third lens and the object side of the fourth lens
  • the degree of curvature of the curved surface is controlled, that is, the curvature of the image side surface of the third lens and the object side surface of the fourth lens can be controlled, which is conducive to the miniaturization of the system.
  • the curvature radius of the image side surface of the third lens is negative
  • the curvature radius of the object side surface of the fourth lens is positive, that is, the image side surface of the third lens and the object side surface of the fourth lens are both convex.
  • the two convex surfaces can be prevented from bending too much, collisions during the assembly process can be avoided, and the assembly yield can be improved.
  • ImgH half of the diagonal length of the effective pixel area on the image plane is ImgH, and the diagonal field angle of the optical lens group is FOV, and ImgH and FOV satisfy the following conditional expressions:
  • the beneficial effect of the above-mentioned further solution is: by limiting half of the diagonal length of the effective pixel area on the image plane and the field angle in the diagonal direction of the optical lens group to satisfy: Tan(FOV/2)/ImgH>0.15, It can ensure that the system expands the shooting range of the camera device on the premise of having high pixels.
  • half of the diagonal length of the effective pixel area on the image plane and the angle of view in the diagonal direction of the optical lens group exceed the range of the above conditional expression, it is not conducive to the wide-angle and high-pixel characteristics of the system.
  • CT 2 the thickness of the second lens at the optical axis.
  • the beneficial effect of the above further solution is that by limiting the thickness of the second lens at the optical axis to be greater than 0.3, the workability of the lens can be ensured.
  • the refractive index of the second lens is n ⁇ 2 and the refractive index of the third lens is n ⁇ 3 , and n ⁇ 2 and n ⁇ 3 satisfy the following conditional expressions:
  • the beneficial effect of the above further solution is: by limiting the absolute value of the difference between the refractive index of the second lens and the refractive index of the third lens at a wavelength of 960 nm to satisfy: 0 ⁇
  • the Abbe number of the second lens relative to d light is vd 2
  • the Abbe number of the fifth lens relative to d light is vd 5
  • vd 2 and vd 5 satisfy the following conditional expressions:
  • the beneficial effect of the above further solution is that by limiting the absolute value of the difference between the Abbe number of the second lens relative to d light and the Abbe number of the fifth lens relative to d light to be less than 50, it is beneficial to correct the off-axis chromatic aberration and improve The imaging quality when the optical lens group is applied to the visible light waveband.
  • the focal length of the optical lens group is f
  • the entrance pupil diameter of the optical lens group is EPD
  • f and EPD satisfy the following conditional expressions:
  • the beneficial effect of the above further solution is: by limiting the ratio of the focal length of the optical lens group to the entrance pupil diameter of the optical lens group as: f/EPD ⁇ 2.4, it can provide a larger entrance pupil, expand the aperture, and improve the image quality. , While expanding the use time and space of the carrier.
  • the ratio of the focal length of the optical lens group to the entrance pupil diameter exceeds the upper limit of 2.4, it is not conducive to the imaging depth of the system, and the brightness of the field of view is insufficient, which will reduce the definition of the imaging system.
  • the distortion amount of the optical lens group is Dist, and Dist satisfies the following conditional formula:
  • the beneficial effect of the above-mentioned further solution is that by limiting the absolute value of the distortion amount of the optical lens group to less than 25%, the distortion amount of the entire optical system can be controlled, the system resolution ability is improved, and the risk of misjudgment when shooting images at a larger angle is reduced.
  • the reciprocal of the curvature radius of the object side of the third lens is cuy s5
  • the optical effective diameter of the object side of the third lens is map s5
  • the reciprocal of the curvature radius of the image side of the third lens is cuy s6
  • the reciprocal of the curvature radius of the image side of the third lens is cuy s6.
  • the optical effective diameter of the image side is map s6, cuy s5, map s5, cuy s6, and map s6 satisfy the following conditional expressions:
  • the beneficial effect of the above-mentioned further solution is: the reciprocal of the radius of curvature of the object side of the third lens, the optical effective diameter of the object side of the third lens, the reciprocal of the radius of curvature of the image side of the third lens, and the reciprocal of the radius of curvature of the third lens
  • the optical effective diameter of the image side is limited to satisfy the following conditional formula:
  • the reasonable limitation of the optical effective diameter, the curvature of the image side surface of the third lens, and the optical effective diameter can control the processing difficulty of the meniscus lens and ensure the process capability of the meniscus lens.
  • the radius of curvature of the image side surface of the fifth lens is R s10, and R s10 satisfies the following conditional formula:
  • the beneficial effects of the above-mentioned further solution are: by limiting the radius of curvature of the image side surface of the fifth lens to less than -20, it is beneficial to edge analysis and easy assembly, reducing eccentricity, and expanding back focus.
  • an embodiment of the present application provides a camera module, which includes any of the above-mentioned optical lens groups and an image sensor;
  • the optical lens group is used to receive the light signal of the object and project it to the image sensor;
  • the image sensor is used to convert light signals into image signals.
  • an embodiment of the present application provides a terminal including the aforementioned camera module.
  • the beneficial effect of the embodiments of the present application is that by setting the first lens of the optical lens group to have positive refractive power, the second lens and the fifth lens to have negative refractive power, and the radius of curvature of the object side surface of the first lens is set to Positive, the radius of curvature of the image side of the first lens is set to negative, and the radius of curvature of the object side of the fifth lens is set to negative, so that the camera formed by the optical lens group can have a wide viewing angle, miniaturization, and high imaging. Advantages such as quality and high resolution.
  • the optical lens set in the embodiments of the present application is suitable for high-pixel cameras used in vehicles, automatic driving and monitoring devices, etc., and can improve the imaging quality of the optical system, so that the imaging information captured by the camera system can be clearly presented at the imaging element position. The details are captured more clearly and transmitted to the system for automatic identification.
  • the optical lens assembly of the embodiment of the present application is used in the DMS, and can accurately and real-time capture the driver’s information for system image analysis, so that the DMS can issue an alarm in time when the driver is tired and distracted. Provide guarantee for driving safety. Used in monitoring and security, it can also record detailed information clearly, and provide corresponding technical support and application guarantee in practical applications.
  • FIG. 1 is a schematic structural diagram of an optical lens assembly provided in Embodiment 1 of the present application.
  • FIG. 2 is a graph of aberration curves of the optical lens group provided by Embodiment 1 of the present application.
  • FIG. 3 is a field curvature curve diagram of an optical lens group provided in Embodiment 1 of the present application.
  • FIG. 4 is a distortion curve diagram of the optical lens assembly provided in the first embodiment of the present application.
  • FIG. 5 is a schematic diagram of the structure of an optical lens assembly provided in Embodiment 2 of the present application.
  • FIG. 6 is a graph of aberration curves of the optical lens group provided in the second embodiment of the present application.
  • FIG. 7 is a field curvature curve diagram of the optical lens group provided in the second embodiment of the present application.
  • FIG. 8 is a distortion curve diagram of the optical lens assembly provided in the second embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an optical lens group provided in Embodiment 3 of the present application.
  • FIG. 10 is a graph of aberration curves of the optical lens group provided in the third embodiment of the present application.
  • FIG. 11 is a field curvature curve diagram of the optical lens group provided in the third embodiment of the present application.
  • FIG. 12 is a distortion curve diagram of the optical lens assembly provided in the third embodiment of the present application.
  • aberration refers to the optical system
  • the result obtained by non-paraxial ray tracing is inconsistent with the result obtained by paraxial ray tracing, which is inconsistent with Gaussian optics (First-order approximation theory or paraxial light) deviation from ideal conditions.
  • Gaussian optics First-order approximation theory or paraxial light
  • Aberrations are divided into two categories: chromatic aberration (chromatic aberration, or chromatic aberration) and monochromatic aberration (monochromatic aberration).
  • the chromatic aberration is because the refractive index of the lens material is a function of the wavelength, and the aberration caused by the different refractive index when the light of different wavelength passes through the lens.
  • the chromatic aberration can be divided into two kinds of positional chromatic aberration and magnification chromatic aberration.
  • Chromatic aberration is a kind of dispersion phenomenon.
  • the so-called dispersion phenomenon refers to the phenomenon that the speed of light in the medium or the refractive index changes with the wavelength of the light wave.
  • the dispersion in which the refractive index of light decreases with the increase of wavelength can be called normal dispersion, and the refractive index changes with the wavelength.
  • the increased chromatic dispersion as the wavelength increases can be called negative chromatic dispersion (or negative anomalous chromatic dispersion).
  • Monochromatic aberration refers to the aberration that can be produced even in highly monochromatic light.
  • the monochromatic aberration is divided into two categories: "blurring the image” and “distorting the image”; the former has a spherical surface Spherical aberration (spherical aberration, can be referred to as spherical aberration), astigmatism (astigmatism), etc.
  • the latter category includes field curvature (field curvature, can be referred to as field curvature), distortion (distortion), etc.
  • Aberration also includes coma.
  • Comatic aberration refers to a monochromatic conical beam emitted from an off-axis object point located outside the main axis to the optical system. After being refracted by the optical system, it cannot form a clear point on the ideal plane. , But formed into a comet-shaped spot with a bright tail.
  • an embodiment of the present application provides an imaging optical lens group including a first lens 110, a second lens 120, a third lens 130, a fourth lens 140, and a fifth lens 150.
  • the first lens 110, the second lens 120, the third lens 130, the fourth lens 140, and the fifth lens 150 are arranged in order from the object plane to the image plane along the optical axis.
  • the first lens 110 has a positive refractive power, the radius of curvature of the object side is positive, and the radius of curvature of the image side is negative.
  • the focal length of the first lens 110 is f 1
  • the focal length of the optical lens group is f
  • f 1 and f satisfy the following conditional formula: 1 ⁇ f 1 /f ⁇ 3.
  • the first lens 110 is close to the object surface, and the first lens 110 close to the object surface is set as a positive lens, and the focal length of the first lens 110 satisfies the above conditional formula, which can provide positive refractive power for the system and focus the incident beam, which is beneficial to optics
  • the image information collected by the lens group is effectively transmitted to the image surface.
  • the second lens 120 has a negative refractive power, the radius of curvature of the object side is negative, and the radius of curvature of the image side is positive.
  • the thickness of the second lens 120 at the optical axis is CT 2 , and CT 2 satisfies the following conditional formula: CT 2 >0.3.
  • the third lens 130 has a positive refractive power, the radius of curvature of the object side is negative, and the radius of curvature of the image side is negative.
  • the reciprocal of the curvature radius of the object side of the third lens 130 is cuy s5, the optical effective diameter of the object side of the third lens 130 is map s5, the reciprocal of the curvature radius of the image side of the third lens 130 is cuy s6, and the third lens
  • the optical effective diameter of the image side of 130 is map s, 6cuy s5, map s5, cuy s6 and map s6 satisfy the following conditional formula:
  • the reciprocal of the radius of curvature of the object side of the third lens 130, the optical effective diameter of the object side of the third lens 130, the reciprocal of the radius of curvature of the image side of the third lens 130, and the reciprocal of the image side of the third lens 130 The reasonable limit of the optical effective diameter can control the processing difficulty of the meniscus lens and ensure the process capability of the meniscus lens.
  • the fourth lens 140 has a positive refractive power, the radius of curvature of the object side is positive, and the radius of curvature of the image side is negative.
  • the distance between the image side surface of the third lens 130 and the object side surface of the fourth lens 140 on the optical axis is d 34 , and the maximum periphery of the optical effective area of the image side surface of the third lens 130 is projected on the optical axis to the fourth lens
  • the distance between the maximum periphery of the optical effective area on the object side surface of 140 and the projection point on the optical axis is Ed 34 , and d 34 and Ed 34 satisfy the following conditional expression: Ed 34 /d 34 ⁇ 20.
  • the distance from the image side surface of the third lens 130 to the object side surface of the fourth lens 140 on the optical axis, and the projection point of the maximum periphery of the optical effective area of the image side surface of the third lens 130 on the optical axis to the fourth lens The reasonable limitation of the distance between the maximum periphery of the optical effective area on the object side surface of 140 and the projection point on the optical axis can control the curvature of the curved surfaces of the image side surface of the third lens 130 and the object side surface of the fourth lens 140, namely Controlling the curvature of the image side surface of the third lens 130 and the object side surface of the fourth lens 140 is conducive to the miniaturization of the system.
  • the curvature radius of the image side surface of the third lens 130 is negative
  • the curvature radius of the object side surface of the fourth lens 140 is positive, that is, the image side surface of the third lens 130 and the object side surface of the fourth lens 140 are both convex.
  • the fifth lens 150 has a negative refractive power, the radius of curvature of the object side is negative, the radius of curvature of the image side is negative, or the image side is flat.
  • the radius of curvature of the image side surface of the fifth lens 150 is R s10, and R s10 satisfies the following conditional formula: R s10 ⁇ -20.
  • the refractive index of the second lens 120 is n ⁇ 2
  • the refractive index of the third lens 130 is n ⁇ 3
  • n ⁇ 2 and n ⁇ 3 satisfy the following conditional formula: 0 ⁇
  • the above reasonably defines the absolute value of the difference between the refractive index of the second lens 120 and the refractive index of the third lens 130 when the wavelength is 960nm, which is beneficial to reduce aberrations and improve the imaging quality of the imaging system in the shortwave infrared band. .
  • the Abbe number of the second lens 120 with respect to d light is vd 2
  • the Abbe number of the fifth lens 150 with respect to d light is vd 5
  • vd 2 and vd 5 satisfy the following conditional expression:
  • the absolute value of the difference between the Abbe number of the second lens 120 with respect to d light and the Abbe number of the fifth lens 150 with respect to d light is limited to less than 50, which is beneficial to correct the off-axis chromatic aberration and improve the application of the optical lens set. Image quality in the visible light band.
  • the refractive power of the above lens may be the refractive power of the lens at the optical axis.
  • the object side of the above lens is the surface of the lens facing the object surface.
  • the image side surface of the lens is the surface of the lens facing the image surface.
  • the positive radius of curvature of the above surface may be that the radius of curvature of the surface at the optical axis is positive, or the radius of curvature of the entire surface may be positive. If the radius of curvature of the above surface is negative, it may be that the radius of curvature of the surface at the optical axis is negative, or it may be that the radius of curvature of the entire surface is negative.
  • a positive radius of curvature above means that the surface is convex toward the object surface, and a negative radius of curvature means that the surface is convex toward the image surface.
  • At least one surface may be aspherical, or all of them may be spherical.
  • the above surface is aspherical, and the entire surface of the lens may be aspherical.
  • the surface may be aspherical or part of the surface may be aspherical; for example, the part close to the optical axis may be aspherical.
  • the first lens 110, the second lens 120, the third lens 130, the fourth lens 140, and the fifth lens 150 can all be made of plastic materials.
  • the first lens 110, the second lens 120, the third lens 130, the fourth lens 140, and the fifth lens 150 can also be made of glass materials, which are highly adaptable to the environment. And it can adapt to a wide temperature range and can guarantee the image quality.
  • the optical lens group can also include a diaphragm.
  • the diaphragm may be an aperture diaphragm and/or a field diaphragm.
  • the diaphragm can be located between the object plane and the image plane.
  • the diaphragm may be located between the object side surface and the object surface of the first lens 110, between the image side surface of the first lens 110 and the object side surface of the second lens 120, and between the image side surface of the second lens 120 and the third lens 130.
  • the object side of the first lens 110, the object side of the second lens 120, the object side of the third lens 130, the object side of the fourth lens 140, the object side of the fifth lens 150, the first lens A diaphragm is provided on any one of the image side surface of the lens 110, the image side surface of the second lens 120, the image side surface of the third lens 130, the image side surface of the fourth lens 140, and the image side surface of the fifth lens 150.
  • half of the diagonal length of the effective pixel area on the image plane ImgH and the total length of the optical system TTL of the optical lens group can satisfy the following conditional formula: 0.1 ⁇ ImgH*2/TTL ⁇ 0.8.
  • the above is a reasonable limitation of the half of the diagonal length of the effective pixel area on the image surface and the total length of the optical system, which can not only ensure the high-pixel imaging quality of the system, but also control the total length of the optical system to make the volume of the camera composed of the optical lens group minimize.
  • the total length of the optical system is the distance from the object side of the first lens 110 to the image plane on the optical axis.
  • the focal length f of the optical lens group and the optical back focus BFL of the optical lens group can satisfy the following conditional formula: 0 ⁇ BFL/f ⁇ 3.
  • the optical back focus is the minimum distance from the image side surface of the last lens to the image surface in the direction parallel to the optical axis. That is, the minimum distance from the image side surface of the fifth lens 150 to the image surface in the direction parallel to the optical axis.
  • the focal length f of the optical lens group and the entrance pupil diameter EPD of the optical lens group can satisfy the following conditional formula: f/EPD ⁇ 2.4.
  • the above reasonable limitation of the ratio of the focal length of the optical lens group to the entrance pupil diameter of the optical lens group can provide a larger entrance pupil and expand the aperture, which is beneficial to improve the imaging quality and at the same time expand the use time and space of the carrier.
  • the ratio of the focal length of the optical lens group to the entrance pupil diameter exceeds the upper limit of 2.4, it is not conducive to the imaging depth of the system, and the brightness of the field of view is insufficient, which will reduce the definition of the imaging system.
  • the distortion amount of the optical lens group Dist can satisfy the following conditional formula:
  • the optical lens group may further include a protective glass located between the image surface side of the fifth lens 150 and the image surface.
  • the optical lens group may also include a filter element.
  • the filter element may be a filter located between the object plane and the image plane.
  • the filter may be located between the object side surface and the object surface of the first lens 110, between the image side surface of the first lens 110 and the object side surface of the second lens 120, between the image side surface of the second lens 120 and the third lens 130.
  • the filter element can also be plated on the object side of the first lens 110, the object side of the second lens 120, the object side of the third lens 130, the object side of the fourth lens 140, and the fifth lens 150.
  • the camera formed by the optical lens group in the embodiment of the application has the advantages of wide viewing angle, low sensitivity, miniaturization, high imaging quality, etc.; used in the ADAS system, it can accurately and real-time capture road information (detection object, detection light source, Detecting road signs, etc.) provide system image analysis to ensure the safety of autonomous driving; used in driving records can provide a clear view of the driver’s driving and provide protection for the driver’s safe driving; used in monitoring security, it can also be used Record the details clearly.
  • road information detection object, detection light source, Detecting road signs, etc.
  • optical lens assembly for imaging will be described in detail below in conjunction with specific parameters.
  • the optical lens assembly includes a diaphragm (attached to the object side surface of the first lens 110, not shown in the figure) arranged in sequence from the object surface to the image surface along the optical axis. Out), the first lens 110, the second lens 120, the third lens 130, the diaphragm 180, the fourth lens 140, the fifth lens 150 and the protective glass.
  • the first lens 110 has a positive refractive power, the radius of curvature of the object side is positive, and the radius of curvature of the image side is negative.
  • the second lens 120 has a negative refractive power, the radius of curvature of the object side is negative, and the radius of curvature of the image side is positive.
  • the third lens 130 has a positive refractive power, the radius of curvature of the object side is negative, and the radius of curvature of the image side is negative.
  • the fourth lens 140 has a positive refractive power, the radius of curvature of the object side is positive, and the radius of curvature of the image side is negative.
  • the fifth lens 150 has a negative refractive power, the radius of curvature of the object side is negative, and the radius of curvature of the image side is negative.
  • the light with a wavelength of 960nm is used as a reference, and the relevant parameters of the optical lens group are shown in Table 1.
  • f is the focal length of the optical lens group
  • FNO represents the aperture value
  • 1/2FOV represents the optical lens group.
  • CT 2 0.50.
  • the reciprocal cuy s5 of the curvature radius of the object side of the third lens 130, the optical effective diameter map s5 of the object side of the third lens 130, the reciprocal cuy s6 of the curvature radius of the image side of the third lens 130, and the image of the third lens 130 The optical effective diameter on the side satisfies:
  • /2 0.16.
  • the relationship between the refractive index n ⁇ 2 of the second lens 120 and the refractive index n ⁇ 3 of the third lens 130 is:
  • *100 49.00.
  • the Abbe number of the second lens 120 light relative d 2 and the fifth lens 150 vd the Abbe number vd of relatively light d 5 is the relationship between:
  • 16.90.
  • the amount of distortion of the optical lens group is that Dist satisfies:
  • 12.0%.
  • Figure 2 is a graph of the spherical aberration curve of light at the wavelengths of 950.0000nm, 960.0000nm and 970.0000nm in the embodiment of the application. It can be seen from Figure 2 that the spherical aberrations corresponding to the wavelengths of 950.0000nm, 960.0000nm and 970.0000nm are all within 0.008 mm. , which shows that the imaging quality of the embodiment of this application is better.
  • Fig. 3 is a field curvature curve diagram of an embodiment of the application. It can be seen from Fig. 3 that the field curvature is within 0.050 mm, which is well compensated.
  • FIG. 4 is a distortion curve diagram of an embodiment of the application, and it can be seen from FIG. 4 that the distortion is also well corrected.
  • the optical lens assembly includes a diaphragm (attached to the object side of the first lens 110, not shown in the figure) arranged in sequence from the object surface to the image surface along the optical axis Out), the first lens 110, the second lens 120, the third lens 130, the diaphragm 180, the fourth lens 140, the fifth lens 150 and the protective glass.
  • the first lens 110 has a positive refractive power, the radius of curvature of the object side is positive, and the radius of curvature of the image side is negative.
  • the second lens 120 has a negative refractive power, the radius of curvature of the object side is negative, and the radius of curvature of the image side is positive.
  • the third lens 130 has a positive refractive power, the radius of curvature of the object side is negative, and the radius of curvature of the image side is negative.
  • the fourth lens 140 has a positive refractive power, the radius of curvature of the object side is positive, and the radius of curvature of the image side is negative.
  • the fifth lens 150 has a negative refractive power, the radius of curvature of the object side is negative, and the image side is a flat surface.
  • the light with a wavelength of 960nm is used as a reference.
  • the relevant parameters of the optical lens group are shown in Table 2.
  • f is the focal length of the optical lens group
  • FNO represents the aperture value
  • 1/2FOV represents the optical lens group.
  • CT 2 0.50.
  • the reciprocal cuy s5 of the curvature radius of the object side of the third lens 130, the optical effective diameter map s5 of the object side of the third lens 130, the reciprocal cuy s6 of the curvature radius of the image side of the third lens 130, and the image of the third lens 130 The optical effective diameter on the side satisfies:
  • /2 0.18.
  • the relationship between the refractive index n ⁇ 2 of the second lens 120 and the refractive index n ⁇ 3 of the third lens 130 is:
  • *100 46.00.
  • the Abbe number of the second lens 120 light relative d 2 and the fifth lens 150 vd the Abbe number vd of relatively light d 5 is the relationship between:
  • 40.40.
  • the amount of distortion of the optical lens group is that Dist satisfies:
  • 14.5%.
  • Figure 6 is a graph of the spherical aberration curve of light at the wavelengths of 950.0000nm, 960.0000nm and 970.0000nm in the embodiment of the application. It can be seen from Figure 6 that the spherical aberrations corresponding to the wavelengths of 950.0000nm, 960.0000nm and 970.0000nm are all within 0.02 mm. , which shows that the imaging quality of the embodiment of this application is better.
  • FIG. 7 is a field curvature curve diagram of an embodiment of the application. It can be seen from FIG. 7 that the field curvature is within 0.050 mm, which is well compensated.
  • FIG. 8 is a distortion curve diagram of an embodiment of the application, and it can be seen from FIG. 8 that the distortion is also well corrected.
  • the optical lens assembly includes a diaphragm (attached to the object side of the first lens 110, not shown in the figure) arranged in sequence from the object surface to the image surface along the optical axis Out), the first lens 110, the second lens 120, the third lens 130, the diaphragm 180, the fourth lens 140, the fifth lens 150 and the protective glass.
  • the first lens 110 has a positive refractive power, the radius of curvature of the object side is positive, and the radius of curvature of the image side is negative.
  • the second lens 120 has a negative refractive power, the radius of curvature of the object side is negative, and the radius of curvature of the image side is positive.
  • the third lens 130 has a positive refractive power, the radius of curvature of the object side is negative, and the radius of curvature of the image side is negative.
  • the fourth lens 140 has a positive refractive power, the radius of curvature of the object side is positive, and the radius of curvature of the image side is negative.
  • the fifth lens 150 has a negative refractive power, the radius of curvature of the object side is negative, and the radius of curvature of the image side is negative.
  • the light with a wavelength of 960nm is used as a reference.
  • the relevant parameters of the optical lens group are shown in Table 3.
  • f is the focal length of the optical lens group
  • FNO represents the aperture value
  • 1/2FOV represents the optical lens group.
  • CT 2 0.50.
  • the reciprocal cuy s5 of the curvature radius of the object side of the third lens 130, the optical effective diameter map s5 of the object side of the third lens 130, the reciprocal cuy s6 of the curvature radius of the image side of the third lens 130, and the image of the third lens 130 The optical effective diameter on the side satisfies:
  • /2 0.17.
  • the relationship between the refractive index n ⁇ 2 of the second lens 120 and the refractive index n ⁇ 3 of the third lens 130 is:
  • *100 46.00.
  • the Abbe number of the second lens 120 light relative d 2 and the fifth lens 150 vd the Abbe number vd of relatively light d 5 is the relationship between:
  • 39.50.
  • the amount of distortion of the optical lens group is that Dist satisfies:
  • 13.0%.
  • Figure 10 is a graph of the spherical aberration curve of light at the wavelengths of 950.0000nm, 960.0000nm and 970.0000nm in the embodiment of the application. It can be seen from Figure 10 that the spherical aberrations corresponding to the wavelengths of 950.0000nm, 960.0000nm and 970.0000nm are all within 0.008 mm. , which shows that the imaging quality of the embodiment of this application is better.
  • Fig. 11 is a field curvature curve diagram of an embodiment of the application. It can be seen from Fig. 11 that the field curvature is within 0.050 mm, which is well compensated.
  • FIG. 12 is a distortion curve diagram of an embodiment of the application, and it can be seen from FIG. 12 that the distortion is also well corrected.
  • an embodiment of the present application provides a camera module, which includes any of the above-mentioned optical lens groups and an image sensor.
  • the optical lens group is used to receive the light signal of the object and project it to the image sensor.
  • the image sensor is used to convert light signals into image signals.
  • an embodiment of the present application provides a terminal including the aforementioned camera module.
  • the terminal can be any device that has the function of acquiring images.
  • the terminal can be a smart phone, a wearable device, a computer device, a television, a vehicle, a camera, a monitoring device, etc., and the camera module cooperates with the terminal to realize the image collection and reproduction of the target object.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜组、摄像头模组及终端,属于光学成像技术领域;光学镜组包括沿光轴从物面到像面依次设置的第一透镜(110)、第二透镜(120)、第三透镜(130)、第四透镜(140)和第五透镜(150);其中,第一透镜(110)具有正屈折力,第一透镜(110)的物侧面的曲率半径为正,第一透镜(110)的像侧面的曲率半径为负;第二透镜(120)具有负屈折力;第五透镜(150)具有负屈折力,第五透镜(150)的物侧面的曲率半径为负。光学镜组用在DMS中,能够准确、实时的抓取驾驶员的信息,以供系统影像分析,以使在驾驶员出现疲劳和分神状态时,DMS能够及时发出警报,为驾驶安全提供保障。用在监控安防方面,也可以将细节信息清晰的记录下来,在实际应用方面提供了相应的技术支撑与应用保障。

Description

一种光学镜组、摄像头模组及终端 技术领域
本申请涉及光学成像技术领域,尤其涉及一种光学镜组、摄像头模组及终端。
背景技术
随着车载行业的发展,ADAS(Advanced Driving Assistant System,高级驾驶辅助系统)、DMS(Driver Monitoring System,驾驶员监控系统)等技术逐渐成熟。其中,DMS需要实时监测驾驶员头部、面部等表情及动作,并针对驾驶员疲劳和分神状态进行预警,预警状态包括闭眼、低头、打哈欠、左顾右盼、抽烟、打电话等。为使在夜间、逆光等高挑战性光照环境下,DMS同样能够准确的监测到驾驶员的头部、面部等表情及动作,亟需一种具有高像素高分辨率的摄像装置。
发明内容
本申请实施例提供了一种光学镜组、摄像头模组及终端,在夜间、逆光等高挑战性光照环境下,同样具有高像素高分辨率。所述技术方案如下;
第一方面,本申请实施例提供了一种光学镜组,包括沿光轴从物面到像面依次设置的第一透镜、第二透镜、第三透镜、第四透镜和第五透镜;其中,
第一透镜具有正屈折力,第一透镜的物侧面的曲率半径为正,第一透镜的像侧面的曲率半径为负;
第二透镜具有负屈折力;
第五透镜具有负屈折力,第五透镜的物侧面的曲率半径为负。
进一步,像面上有效像素区域对角线长度的一半为ImgH,光学镜组的光学系统总长为TTL,ImgH和TTL满足以下条件式:
0.1<ImgH*2/TTL<0.8。
上述进一步方案的有益效果是:通过对像面上有效像素区域对角线长度的一半与光学系统总长限定为满足:0.1<ImgH*2/TTL<0.8,既可保证系统高像素成像质量,又可控制光学系统总长,使由该光学镜组组成的摄像头的体积最小化。当像面上有效像素区域对 角线长度的一半与光学系统总长超出上述条件式的范围时,成像系统的解析度会降低,不利于系统小型化的特征。
进一步,光学镜组的焦距为f,光学镜组的光学后焦为BFL,f和BFL满足以下条件式:
0<BFL/f<3。
上述进一步方案的有益效果是:通过将光学镜组的焦距与光学后焦的比值限定为:0<BFL/f<3,能够保证系统的小型化。当光学镜组的焦距与光学后焦的比值超出上述条件式的范围时,系统后截距将过长,不利于小型化特征。
进一步,第一透镜的焦距为f 1,光学镜组的焦距为f,f 1和f满足以下条件式:
1<f 1/f<3。
上述进一步方案的有益效果是:通过将第一透镜的焦距与光学镜组的焦距的比值限定为:1<f 1/f<3,使靠近物面的第一透镜为正透镜,为系统提供正屈折力,可聚焦入射光束,有利于光学镜组采集的图像信息有效的传递至像面。
进一步,第三透镜的像侧面的曲率半径为负,第四透镜的物侧面的曲率半径为正;第三透镜的像侧面与第四透镜的物侧面于光轴上的距离为d 34,第三透镜的像侧面的光学有效区的最大周边于光轴上的投影点至第四透镜的物侧面的光学有效区的最大周边于光轴上的投影点的距离为Ed 34,d 34和Ed 34满足以下条件式:
Ed 34/d 34<20。
上述进一步方案的有益效果是:通过将第三透镜的像侧面与第四透镜的物侧面于光轴上的距离、第三透镜的像侧面的光学有效区的最大周边于光轴上的投影点至第四透镜的物侧面的光学有效区的最大周边于光轴上的投影点的距离限定为满足:Ed 34/d 34<20,能够对第三透镜的像侧面和第四透镜的物侧面的曲面的弯曲程度进行控制,即实现对第三透镜的像侧面和第四透镜的物侧面的曲率大小的控制,有利于系统的小型化。同时因第三透镜的像侧面的曲率半径为负,第四透镜的物侧面的曲率半径为正,即第三透镜的像侧面和第四透镜的物侧面均为凸面,通过上述限定后,还能够在保证高像素的前提下,避免两个凸面弯曲过大,避免组装过程中发生碰撞,能够提升组装良率。
进一步,像面上有效像素区域对角线长度的一半为ImgH,光学镜组的对角线方向的 视场角为FOV,ImgH和FOV满足以下条件式:
Tan(FOV/2)/ImgH>0.15。
上述进一步方案的有益效果是:通过将像面上有效像素区域对角线长度的一半与光学镜组的对角线方向的视场角限定为满足:Tan(FOV/2)/ImgH>0.15,能够保证系统在具有高像素的前提下,扩大摄像装置的拍摄范围。当像面上有效像素区域对角线长度的一半与光学镜组的对角线方向的视场角超出上述条件式的范围时,不利于系统的广角化和高像素的特征。
进一步,第二透镜于光轴处的厚度为CT 2,CT 2满足以下条件式:
CT 2>0.3。
上述进一步方案的有益效果是:通过将第二透镜于光轴处的厚度限定为大于0.3,能够保证透镜的可加工性。
进一步,当波长为960nm时,第二透镜的折射率为n λ2,第三透镜的折射率为n λ3,n λ2和n λ3满足以下条件式:
0<|n λ3-n λ2|*100<60。
上述进一步方案的有益效果是:通过将波长为960nm时,第二透镜的折射率和第三透镜的折射率的差值的绝对值限定为满足:0<|n λ3-n λ2|*100<60,有利于降低像差,提高成像系统在短波红外波段范围的成像质量。
进一步,第二透镜相对d光的阿贝数为vd 2,第五透镜相对d光的阿贝数为vd 5,vd 2和vd 5满足以下条件式:
|vd 2-vd 5|<50。
上述进一步方案的有益效果是:通过将第二透镜相对d光的阿贝数与第五透镜相对d光的阿贝数的差值的绝对值限定为小于50,有利于校正轴外色差,提高光学镜组应用于可见光波段时的成像质量。
进一步,光学镜组的焦距为f,光学镜组的入瞳直径为EPD,f和EPD满足以下条件式:
f/EPD≤2.4。
上述进一步方案的有益效果是:通过将光学镜组的焦距与光学镜组的入瞳直径的比值限定为:f/EPD≤2.4,能够提供较大的入瞳,扩大光圈,有利于提高成像质量,同时扩大载体的使用时间和空间。当光学镜组的焦距和入瞳直径的比值超出上限2.4时,不利于系统成像深度,且视场亮度不足,会降低成像系统的清晰度。
进一步,光学镜组的畸变量为Dist,Dist满足以下条件式:
|Dist|<25%。
上述进一步方案的有益效果是:通过将光学镜组畸变量的绝对值限定为小于25%,可以控制整个光学系统的畸变量,提高系统分辨能力,降低较大角度拍摄画面的误判风险。
进一步,第三透镜的物侧面的曲率半径的倒数为cuy s5,第三透镜的物侧面的光学有效径为map s5,第三透镜的像侧面的曲率半径的倒数为cuy s6,第三透镜的像侧面的光学有效径为map s6,cuy s5、map s5、cuy s6和map s6满足以下条件式:
|(cuy s5)*(map s5)-(cuy s6)*(map s6)|/2>0.05。
上述进一步方案的有益效果是:通过将第三透镜的物侧面的曲率半径的倒数、第三透镜的物侧面的光学有效径、第三透镜的像侧面的曲率半径的倒数、及第三透镜的像侧面的光学有效径限定为满足以下条件式:|(cuy s5)*(map s5)-(cuy s6)*(map s6)|/2>0.05,通过对第三透镜的物侧面的曲率和光学有效径、第三透镜的像侧面的曲率和光学有效径的合理限定,能够控制弯月型透镜的加工难易程度,保证弯月型透镜的工艺能力。
进一步,第五透镜的像侧面的曲率半径为R s10,R s10满足以下条件式:
R s10<-20。
上述进一步方案的有益效果是:通过将第五透镜的像侧面的曲率半径限定为小于-20,有利于边缘解析以及便于组装,减小偏心,扩大后焦。
第二方面,本申请实施例提供了一种摄像头模组,包括上述任一光学镜组和图像传感器;
光学镜组用于接收被摄物体的光信号并投射到图像传感器;
图像传感器用于将光信号变换为图像信号。
第三方面,本申请实施例提供了一种终端,包括上述摄像头模组。
本申请实施例的有益效果是:通过将光学镜组的第一透镜设置为具有正屈折力、第二 透镜和第五透镜设置为具有负屈折力、第一透镜的物侧面的曲率半径设置为正的、第一透镜的像侧面的曲率半径设置为负的、第五透镜的物侧面的曲率半径设置为负的,可以使由该光学镜组形成的摄像头具备广视角、小型化、高成像质量和高分辨率等优点。本申请实施例的光学镜组适用于车载使用的高像素摄像头、自动驾驶和监控装置等,能够提高光学系统的成像质量,使摄像系统所捕捉的成像信息清晰的呈现在成像元位置,并能将细节更清晰的捕捉,并传输到系统加以自动识别。本申请实施例的光学镜组用在DMS中,能够准确、实时的抓取驾驶员的信息,以供系统影像分析,以使在驾驶员出现疲劳和分神状态时,DMS能够及时发出警报,为驾驶安全提供保障。用在监控安防方面,也可以将细节信息清晰的记录下来,在实际应用方面提供了相应的技术支撑与应用保障。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的光学镜组的结构示意图;
图2是本申请实施例一提供的光学镜组的像差曲线图;
图3是本申请实施例一提供的光学镜组的场曲曲线图;
图4是本申请实施例一提供的光学镜组的畸变曲线图;
图5是本申请实施例二提供的光学镜组的结构示意图;
图6是本申请实施例二提供的光学镜组的像差曲线图;
图7是本申请实施例二提供的光学镜组的场曲曲线图;
图8是本申请实施例二提供的光学镜组的畸变曲线图;
图9是本申请实施例三提供的光学镜组的结构示意图;
图10是本申请实施例三提供的光学镜组的像差曲线图;
图11是本申请实施例三提供的光学镜组的场曲曲线图;
图12是本申请实施例三提供的光学镜组的畸变曲线图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例方式作进一步地详细描述。
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
以下首先解释本申请实施例中所涉及到的像差;像差(aberration)是指光学系统中,由非近轴光线追迹所得的结果和近轴光线追迹所得的结果不一致,与高斯光学(一级近似理论或近轴光线)的理想状况的偏差。像差又分为两大类:色差(chromatic aberration,或称色像差)与单色像差(monochromatic aberration)。色差是由于透镜材料的折射率是波长的函数,不同波长的光通过透镜时因折射率不同而产生的像差,色差又可分为位置色像差和倍率色像差两种。色差是一种色散现象,所谓色散现象是指介质中的光速或折射率随光波波长变化的现象,光的折射率随着波长的增加而减小的色散可称为正常色散,而折射率随波长的增加而增加的色散可称为负色散(或称负反常色散)。单色像差是指即使在高度单色光时也会产生的像差,按产生的效果,单色像差又分成“使成像模糊”和“使成像变形”两类;前一类有球面像差(spherical aberration,可简称球差)、像散(astigmatism)等,后一类有像场弯曲(field curvature,可简称场曲)、畸变(distortion)等。像差还包括彗差,彗差是指由位于主轴外的某一轴外物点,向光学系统发出的单色圆锥形光束,经该光学系统折射后,在理想平面处不能结成清晰点,而是结成拖着明亮尾巴的彗星形光斑。
第一方面,本申请实施例提供了一种成像光学镜组包括第一透镜110、第二透镜120、第三透镜130、第四透镜140和第五透镜150。第一透镜110、第二透镜120、第三透镜130、第四透镜140和第五透镜150沿光轴从物面到像面依次设置。
第一透镜110具有正屈折力,其物侧面的曲率半径为正,像侧面的曲率半径为负。第一透镜110的焦距为f 1,光学镜组的焦距为f,f 1和f满足以下条件式:1<f 1/f<3。第一透镜110靠近物面,将靠近物面的第一透镜110设置为正透镜,且第一透镜110的焦距满足上述条件式,能够为系统提供正屈折力,可聚焦入射光束,有利于光学镜组采集的图像信息有效的传递至像面。
第二透镜120具有负屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为正。第二透镜120于光轴处的厚度为CT 2,CT 2满足以下条件式:CT 2>0.3。以上通过对第二透镜120于光轴处的合理限定,能够保证透镜的可加工性。
第三透镜130具有正屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为负。第三透镜130的物侧面的曲率半径的倒数为cuy s5,第三透镜130的物侧面的光学有效径为map s5,第三透镜130的像侧面的曲率半径的倒数为cuy s6,第三透镜130的像侧面的光学有效径为map s,6cuy s5、map s5、cuy s6和map s6满足以下条件式:|(cuy s5)*(map s5)-(cuy s6)*(map s6)|/2>0.05。以上通过将第三透镜130的物侧面的曲率半径的倒数、第三透镜130的物侧面的光学有效径、第三透镜130的像侧面的曲率半径的倒数、及第三透镜130的像侧面的光学有效径的合理限定,能够控制弯月型透镜的加工难易程度,保证弯月型透镜的工艺能力。
第四透镜140具有正屈折力,其物侧面的曲率半径为正,像侧面的曲率半径为负。第三透镜130的像侧面与第四透镜140的物侧面于光轴上的距离为d 34,第三透镜130的像侧面的光学有效区的最大周边于光轴上的投影点至第四透镜140的物侧面的光学有效区的最大周边于光轴上的投影点的距离为Ed 34,d 34和Ed 34满足以下条件式:Ed 34/d 34<20。通过以上对第三透镜130的像侧面至第四透镜140的物侧面于光轴上的距离、第三透镜130的像侧面的光学有效区的最大周边于光轴上的投影点至第四透镜140的物侧面的光学有效区的最大周边于光轴上的投影点的距离的合理限定,能够对第三透镜130的像侧面和第四透镜140的物侧面的曲面的弯曲程度进行控制,即实现对第三透镜130的像侧面和第四透镜140的物侧面的曲率大小的控制,有利于系统的小型化。同时因第三透镜130的像侧面的曲率半径为负,第四透镜140的物侧面的曲率半径为正,即第三透镜130的像侧面和第四透镜140的物侧面均为凸面,通过上述限定后,还能够在保证高像素的前提下,避免两个凸面弯曲过大,避免组装过程中发生碰撞,能够提升组装良率。
第五透镜150具有负屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为负或像侧面为平面。第五透镜150的像侧面的曲率半径为R s10,R s10满足以下条件式:R s10<-20。以上通过将第五透镜150的像侧面的曲率半径限定为小于-20,有利于边缘解析以及便于组装,减小偏心,扩大后焦。当第五透镜150的像侧面为平面时效果更佳,更利于边缘解析及组装,减小偏心,扩大后焦。
当波长为960nm时,第二透镜120的折射率为n λ2,第三透镜130的折射率为n λ3,n λ2 和n λ3满足以下条件式:0<|n λ3-n λ2|*100<60。以上通过对波长为960nm时,第二透镜120的折射率和第三透镜130的折射率的差值的绝对值的合理限定,有利于降低像差,提高成像系统在短波红外波段范围的成像质量。
第二透镜120相对d光的阿贝数为vd 2,第五透镜150相对d光的阿贝数为vd 5,vd 2和vd 5满足以下条件式:|vd 2-vd 5|<50。以上通过将第二透镜120相对d光的阿贝数与第五透镜150相对d光的阿贝数的差值的绝对值限定为小于50,有利于校正轴外色差,提高光学镜组应用于可见光波段时的成像质量。
以上透镜的屈折力可以是透镜于光轴处的屈折力。以上透镜的物侧面为透镜朝向物面一侧的表面。透镜的像侧面为透镜朝向像面一侧的表面。以上表面的曲率半径为正可以是表面于光轴处的曲率半径为正,也可以是表面整体的曲率半径为正。以上表面的曲率半径为负可以是表面于光轴处的曲率半径为负,也可以是表面整体的曲率半径为负。以上曲率半径为正表示该表面朝物面凸设,曲率半径为负表示该表面朝像面凸设。
第一透镜110、第二透镜120、第三透镜130、第四透镜140和第五透镜150的多个物侧面以及第一透镜110、第二透镜120、第三透镜130、第四透镜140和第五透镜150的多个像侧面中,可以至少有一个面为非球面,也可以全部为球面。以上表面为非球面可以是透镜的整个表面为非球面。表面为非球面也可以是表面中的部分为非球面;如,靠近光轴的部分可以为非球面。
因塑料成本低、加工方便且便于制作非球面,第一透镜110、第二透镜120、第三透镜130、第四透镜140和第五透镜150均可以采用塑料材料制成。当然,为提高成像质量,第一透镜110、第二透镜120、第三透镜130、第四透镜140和第五透镜150也可以部分或全部采用玻璃材料制成,玻璃材料对环境的适应性强且适应温度范围广,能够保证成像质量。
为减少杂散光以提升成像效果,光学镜组还可以包括光阑。光阑可以是孔径光阑和/或视场光阑。光阑可以位于物面与像面之间。如,光阑可以位于:第一透镜110的物侧面与物面之间、第一透镜110的像侧面与第二透镜120的物侧面之间、第二透镜120的像侧面与第三透镜130的物侧面之间、第三透镜130的像侧面与第四透镜140的物侧面、第四透镜140的像侧面与第五透镜150的物侧面之间,或者是,第五透镜150的像侧面与像面之间。为降低加工成本,也可以在第一透镜110的物侧面、第二透镜120的物侧面、第三透镜130的物侧面、第四透镜140的物侧面、第五透镜150的物侧面、第一透镜110的像 侧面、第二透镜120的像侧面、第三透镜130的像侧面、第四透镜140的像侧面和第五透镜150的像侧面中的任意一个表面上设置光阑。
为控制光学系统总长,像面上有效像素区域对角线长度的一半ImgH与光学镜组的光学系统总长TTL可以满足以下条件式:0.1<ImgH*2/TTL<0.8。以上通过对像面上有效像素区域对角线长度的一半和光学系统总长的合理限定,既可保证系统高像素成像质量,又可控制光学系统总长,使由该光学镜组组成的摄像头的体积最小化。当像面上有效像素区域对角线长度的一半与光学系统总长超出上述条件式的范围时,成像系统的解析度会降低,不利于系统小型化的特征。光学系统总长为第一透镜110的物侧面至像面于光轴上的距离。
为保证系统的小型化,光学镜组的焦距f与光学镜组的光学后焦BFL可以满足以下条件式:0<BFL/f<3。当光学镜组的焦距与光学后焦的比值超出上述条件式的范围时,系统后截距将过长,不利于小型化特征。光学后焦为最后一片透镜的像侧面到像面在平行于光轴方向的最小距离。即第五透镜150的像侧面到像面在平行于光轴方向的最小距离。
像面上有效像素区域对角线长度的一半为ImgH,光学镜组的对角线方向的视场角为FOV,ImgH和FOV满足以下条件式:Tan(FOV/2)/ImgH>0.15。以上通过对像面上有效像素区域对角线长度的一半与光学镜组的对角线方向的视场角的合理限定,能够保证系统在具有高像素的前提下,扩大摄像装置的拍摄范围。当像面上有效像素区域对角线长度的一半与光学镜组的对角线方向的视场角超出上述条件式的范围时,不利于系统的广角化和高像素的特征。
为提供较大的入瞳,光学镜组的焦距f与光学镜组的入瞳直径EPD可以满足以下条件式:f/EPD≤2.4。以上通过将光学镜组的焦距与光学镜组的入瞳直径的比值的合理限定,能够提供较大的入瞳,扩大光圈,有利于提高成像质量,同时扩大载体的使用时间和空间。当光学镜组的焦距和入瞳直径的比值超出上限2.4时,不利于系统成像深度,且视场亮度不足,会降低成像系统的清晰度。
为提高系统分辨能力,光学镜组的畸变量为Dist可以满足以下条件式:|Dist|<25%,以通过控制整个光学系统的畸变量,提高系统分辨能力,降低较大角度拍摄画面的误判风险。
为实现对各个透镜的保护,光学镜组还可以包括位于第五透镜150的像面侧与像面之间的保护玻璃。
为实现对非工作波段的过滤,光学镜组还可以包括滤光元件。滤光元件可以是位于物面与像面之间的滤光片。滤光片可以位于:第一透镜110的物侧面与物面之间、第一透镜110的像侧面与第二透镜120的物侧面之间、第二透镜120的像侧面与第三透镜130的物侧面之间、第三透镜130的像侧面与第四透镜140的物侧面、第四透镜140的像侧面与第五透镜150的物侧面之间,或者是,第五透镜150的像侧面与像面之间。为降低生产成本,滤光元件也可以是镀设于第一透镜110的物侧面、第二透镜120的物侧面、第三透镜130的物侧面、第四透镜140的物侧面、第五透镜150的物侧面、第一透镜110的像侧面、第二透镜120的像侧面、第三透镜130的像侧面、第四透镜140的像侧面和第五透镜150的像侧面中的任意一个表面的滤光膜。
本申请实施例的光学镜组形成的摄像头具备广视角、低敏感度、小型化、高成像质量等优点;用在ADAS系统,可准确、实时地抓取路面的信息(探测物体、探测光源、探测道路标识等)供给系统影像分析,为自动驾驶安全提供保障;用在行车记录方面可为驾驶员的驾驶提供清晰的视野,为驾驶员的安全驾驶提供保障;用在监控安防方面,也可以将细节信息清晰的记录下来。
以下将结合具体参数对成像用光学镜组进行详细说明。
实施例一
本申请实施例的成像用光学镜组的结构示意图参见图1,光学镜组包括沿光轴从物面到像面依次设置的光阑(附着于第一透镜110的物侧面,图中未示出)、第一透镜110、第二透镜120、第三透镜130、光阑180、第四透镜140、第五透镜150和保护玻璃。其中,第一透镜110具有正屈折力,其物侧面的曲率半径为正,像侧面的曲率半径为负。第二透镜120具有负屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为正。第三透镜130具有正屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为负。第四透镜140具有正屈折力,其物侧面的曲率半径为正,像侧面的曲率半径为负。第五透镜150具有负屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为负。
本申请实施例中,以波长为960nm的光线为参考,光学镜组的相关参数如表1所示,表1中f为光学镜组的焦距,FNO表示光圈值,1/2FOV表示光学镜组的对角线方向的视场 角的一半;焦距、曲率半径及厚度的单位均为毫米。
表1
Figure PCTCN2019130134-appb-000001
由上表1可知,本申请实施例中第一透镜110的焦距f 1与光学镜组的焦距f之间的关系为:f 1/f=1.83。
第二透镜120于光轴处的厚度CT 2满足:CT 2=0.50。
第三透镜130的物侧面的曲率半径的倒数cuy s5、第三透镜130的物侧面的光学有效径map s5、第三透镜130的像侧面的曲率半径的倒数cuy s6、第三透镜130的像侧面的光学有效径满足:|(cuy s5)*(map s5)-(cuy s6)*(map s6)|/2=0.16。
第五透镜150的像侧面的曲率半径R s10满足:R s10=-85.40。
当波长为960nm时,第二透镜120的折射率n λ2与第三透镜130的折射率n λ3之间的关系为:|n λ3-n λ2|*100=49.00。
第二透镜120相对d光的阿贝数vd 2与第五透镜150相对d光的阿贝数vd 5之间的关系为:|vd 2-vd 5|=16.90。
第三透镜130与第四透镜140于光轴上的距离d 34、第三透镜130与第四透镜140最大有效径处的周边距离Ed 34之间的关系为:Ed 34/d 34=12.25。
像面上有效像素区域对角线长度的一半ImgH与光学镜组的光学系统总长TTL之间 的关系为:ImgH*2/TTL=0.52。
光学镜组的焦距f与光学镜组的光学后焦BFL之间的关系为:BFL/f=0.42。
像面上有效像素区域对角线长度的一半ImgH与光学镜组的对角线方向的视场角FOV之间的关系为:Tan(FOV/2)/ImgH=0.21。
光学镜组的焦距f与光学镜组的入瞳直径EPD之间的关系为:f/EPD=2.1。
光学镜组的畸变量为Dist满足:|Dist|=12.0%。
图2为本申请实施例在波长为950.0000nm、960.0000nm及970.0000nm的光线球差曲线图,由图2可以看出950.0000nm、960.0000nm及970.0000nm的波长对应的球差均在0.008毫米以内,说明本申请实施例的成像质量较好。
图3为本申请实施例的场曲曲线图,由图3可以看出场曲位于0.050毫米以内,得到了较好的补偿。图4为本申请实施例的畸变曲线图,由图4可以看出畸变也得到了很好的校正。
实施例二
本申请实施例的成像用光学镜组的结构示意图参见图5,光学镜组包括沿光轴从物面到像面依次设置的光阑(附着于第一透镜110的物侧面,图中未示出)、第一透镜110、第二透镜120、第三透镜130、光阑180、第四透镜140、第五透镜150和保护玻璃。其中,第一透镜110具有正屈折力,其物侧面的曲率半径为正,像侧面的曲率半径为负。第二透镜120具有负屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为正。第三透镜130具有正屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为负。第四透镜140具有正屈折力,其物侧面的曲率半径为正,像侧面的曲率半径为负。第五透镜150具有负屈折力,其物侧面的曲率半径为负,像侧面为平面。
本申请实施例中,以波长为960nm的光线为参考,光学镜组的相关参数如表2所示,表2中f为光学镜组的焦距,FNO表示光圈值,1/2FOV表示光学镜组的对角线方向的视场角的一半;焦距、曲率半径及厚度的单位均为毫米。
表2
Figure PCTCN2019130134-appb-000002
由上表2可知,本申请实施例中第一透镜110的焦距f 1与光学镜组的焦距f之间的关系为:f 1/f=1.81。
第二透镜120于光轴处的厚度CT 2满足:CT 2=0.50。
第三透镜130的物侧面的曲率半径的倒数cuy s5、第三透镜130的物侧面的光学有效径map s5、第三透镜130的像侧面的曲率半径的倒数cuy s6、第三透镜130的像侧面的光学有效径满足:|(cuy s5)*(map s5)-(cuy s6)*(map s6)|/2=0.18。
第五透镜150的像侧面的曲率半径R s10满足:R s10=无限。
当波长为960nm时,第二透镜120的折射率n λ2与第三透镜130的折射率n λ3之间的关系为:|n λ3-n λ2|*100=46.00。
第二透镜120相对d光的阿贝数vd 2与第五透镜150相对d光的阿贝数vd 5之间的关系为:|vd 2-vd 5|=40.40。
第三透镜130与第四透镜140于光轴上的距离d 34、第三透镜130与第四透镜140最大有效径处的周边距离Ed 34之间的关系为:Ed 34/d 34=13.33。
像面上有效像素区域对角线长度的一半ImgH与光学镜组的光学系统总长TTL之间的关系为:ImgH*2/TTL=0.53。
光学镜组的焦距f与光学镜组的光学后焦BFL之间的关系为:BFL/f=0.45。
像面上有效像素区域对角线长度的一半ImgH与光学镜组的对角线方向的视场角FOV之间的关系为:Tan(FOV/2)/ImgH=0.23。
光学镜组的焦距f与光学镜组的入瞳直径EPD之间的关系为:f/EPD=2.1。
光学镜组的畸变量为Dist满足:|Dist|=14.5%。
图6为本申请实施例在波长为950.0000nm、960.0000nm及970.0000nm的光线球差曲线图,由图6可以看出950.0000nm、960.0000nm及970.0000nm的波长对应的球差均在0.02毫米以内,说明本申请实施例的成像质量较好。
图7为本申请实施例的场曲曲线图,由图7可以看出场曲位于0.050毫米以内,得到了较好的补偿。图8为本申请实施例的畸变曲线图,由图8可以看出畸变也得到了很好的校正。
实施例三
本申请实施例的成像用光学镜组的结构示意图参见图9,光学镜组包括沿光轴从物面到像面依次设置的光阑(附着于第一透镜110的物侧面,图中未示出)、第一透镜110、第二透镜120、第三透镜130、光阑180、第四透镜140、第五透镜150和保护玻璃。其中,第一透镜110具有正屈折力,其物侧面的曲率半径为正,像侧面的曲率半径为负。第二透镜120具有负屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为正。第三透镜130具有正屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为负。第四透镜140具有正屈折力,其物侧面的曲率半径为正,像侧面的曲率半径为负。第五透镜150具有负屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为负。
本申请实施例中,以波长为960nm的光线为参考,光学镜组的相关参数如表3所示,表3中f为光学镜组的焦距,FNO表示光圈值,1/2FOV表示光学镜组的对角线方向的视场角的一半;焦距、曲率半径及厚度的单位均为毫米。
表3
Figure PCTCN2019130134-appb-000003
由上表3可知,本申请实施例中第一透镜110的焦距f 1与光学镜组的焦距f之间的关系为:f 1/f=1.54。
第二透镜120于光轴处的厚度CT 2满足:CT 2=0.50。
第三透镜130的物侧面的曲率半径的倒数cuy s5、第三透镜130的物侧面的光学有效径map s5、第三透镜130的像侧面的曲率半径的倒数cuy s6、第三透镜130的像侧面的光学有效径满足:|(cuy s5)*(map s5)-(cuy s6)*(map s6)|/2=0.17。
第五透镜150的像侧面的曲率半径R s10满足:R s10=-85.40。
当波长为960nm时,第二透镜120的折射率n λ2与第三透镜130的折射率n λ3之间的关系为:|n λ3-n λ2|*100=46.00。
第二透镜120相对d光的阿贝数vd 2与第五透镜150相对d光的阿贝数vd 5之间的关系为:|vd 2-vd 5|=39.50。
第三透镜130与第四透镜140于光轴上的距离d 34、第三透镜130与第四透镜140最大有效径处的周边距离Ed 34之间的关系为:Ed 34/d 34=11.67。
像面上有效像素区域对角线长度的一半ImgH与光学镜组的光学系统总长TTL之间的关系为:ImgH*2/TTL=0.54。
光学镜组的焦距f与光学镜组的光学后焦BFL之间的关系为:BFL/f=0.46。
像面上有效像素区域对角线长度的一半ImgH与光学镜组的对角线方向的视场角FOV之间的关系为:Tan(FOV/2)/ImgH=0.26。
光学镜组的焦距f与光学镜组的入瞳直径EPD之间的关系为:f/EPD=2.4。
光学镜组的畸变量为Dist满足:|Dist|=13.0%。
图10为本申请实施例在波长为950.0000nm、960.0000nm及970.0000nm的光线球差曲线图,由图10可以看出950.0000nm、960.0000nm及970.0000nm的波长对应的球差均在0.008毫米以内,说明本申请实施例的成像质量较好。
图11为本申请实施例的场曲曲线图,由图11可以看出场曲位于0.050毫米以内,得到了较好的补偿。图12为本申请实施例的畸变曲线图,由图12可以看出畸变也得到了很好的校正。
第二方面,本申请实施例提供了一种摄像头模组,包括上述任一光学镜组和图像传感器。光学镜组用于接收被摄物体的光信号并投射到图像传感器。图像传感器用于将光信号变换为图像信号。
第三方面,本申请实施例提供了一种终端,包括上述的摄像头模组。终端可以是具有获取图像功能的任意设备。如,终端可以是智能手机、可穿戴设备、电脑设备、电视机、交通工具、照相机、监控装置等,摄像头模组配合终端实现对目标对象的图像采集和再现。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。此外,在本申请的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (15)

  1. 一种光学镜组,其特征在于,包括沿光轴从物面到像面依次设置的第一透镜、第二透镜、第三透镜、第四透镜和第五透镜;其中,
    所述第一透镜具有正屈折力,所述第一透镜的物侧面的曲率半径为正,所述第一透镜的像侧面的曲率半径为负;
    所述第二透镜具有负屈折力;
    所述第五透镜具有负屈折力,所述第五透镜的物侧面的曲率半径为负。
  2. 根据权利要求1所述的光学镜组,其特征在于,所述像面上有效像素区域对角线长度的一半为ImgH,所述光学镜组的光学系统总长为TTL,ImgH和TTL满足以下条件式:
    0.1<ImgH*2/TTL<0.8。
  3. 根据权利要求1所述的光学镜组,其特征在于,所述光学镜组的焦距为f,所述光学镜组的光学后焦为BFL,f和BFL满足以下条件式:
    0<BFL/f<3。
  4. 根据权利要求1所述的光学镜组,其特征在于,所述第一透镜的焦距为f 1,所述光学镜组的焦距为f,f 1和f满足以下条件式:
    1<f 1/f<3。
  5. 根据权利要求1所述的光学镜组,其特征在于,所述第三透镜的像侧面的曲率半径为负,所述第四透镜的物侧面的曲率半径为正;所述第三透镜的像侧面与所述第四透镜的物侧面于光轴上的距离为d 34,所述第三透镜的像侧面的光学有效区的最大周边于所述光轴上的投影点至所述第四透镜的物侧面的光学有效区的最大周边于所述光轴上的投影点的距离为Ed 34,d 34和Ed 34满足以下条件式:
    Ed 34/d 34<20。
  6. 根据权利要求1所述的光学镜组,其特征在于,所述像面上有效像素区域对角线长度的一半为ImgH,所述光学镜组的对角线方向的视场角为FOV,ImgH和FOV满足以下条件式:
    Tan(FOV/2)/ImgH>0.15。
  7. 根据权利要求1所述的光学镜组,其特征在于,所述第二透镜于光轴处的厚度为CT 2,CT 2满足以下条件式:
    CT 2>0.3。
  8. 根据权利要求1所述的光学镜组,其特征在于,当波长为960nm时,所述第二透镜的折射率为n λ2,所述第三透镜的折射率为n λ3,n λ2和n λ3满足以下条件式:
    0<|n λ3-n λ2|*100<60。
  9. 根据权利要求1所述的光学镜组,其特征在于,所述第二透镜相对d光的阿贝数为vd 2,所述第五透镜相对d光的阿贝数为vd 5,vd 2和vd 5满足以下条件式:
    |vd 2-vd 5|<50。
  10. 根据权利要求1所述的光学镜组,其特征在于,所述光学镜组的焦距为f,所述光学镜组的入瞳直径为EPD,f和EPD满足以下条件式:
    f/EPD≤2.4。
  11. 根据权利要求1所述的光学镜组,其特征在于,所述光学镜组的畸变量为Dist,Dist满足以下条件式:
    |Dist|<25%。
  12. 根据权利要求1所述的光学镜组,其特征在于,所述第三透镜的物侧面的曲率半径的倒数为cuy s5,所述第三透镜的物侧面的光学有效径为map s5,所述第三透镜的像侧面的曲率半径的倒数为cuy s6,所述第三透镜的像侧面的光学有效径为map s6,cuy s5、map s5、cuy s6和map s6满足以下条件式:
    |(cuy s5)*(map s5)-(cuy s6)*(map s6)|/2>0.05。
  13. 根据权利要求1所述的光学镜组,其特征在于,所述第五透镜的像侧面的曲率半径为R s10,R s10满足以下条件式:
    R s10<-20。
  14. 一种摄像头模组,其特征在于,包括权利要求1至13中任一所述的光学镜组和图像传感器;
    所述光学镜组用于接收被摄物体的光信号并投射到所述图像传感器;
    所述图像传感器用于将所述光信号变换为图像信号。
  15. 一种终端,其特征在于,包括权利要求14所述的摄像头模组。
PCT/CN2019/130134 2019-12-30 2019-12-30 一种光学镜组、摄像头模组及终端 WO2021134309A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19958582.9A EP4033286A1 (en) 2019-12-30 2019-12-30 Optical lens group, camera module, and terminal
PCT/CN2019/130134 WO2021134309A1 (zh) 2019-12-30 2019-12-30 一种光学镜组、摄像头模组及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130134 WO2021134309A1 (zh) 2019-12-30 2019-12-30 一种光学镜组、摄像头模组及终端

Publications (1)

Publication Number Publication Date
WO2021134309A1 true WO2021134309A1 (zh) 2021-07-08

Family

ID=76686262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130134 WO2021134309A1 (zh) 2019-12-30 2019-12-30 一种光学镜组、摄像头模组及终端

Country Status (2)

Country Link
EP (1) EP4033286A1 (zh)
WO (1) WO2021134309A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988198A (zh) * 2015-02-17 2016-10-05 大立光电股份有限公司 取像镜头组、取像装置及电子装置
JP2018097289A (ja) * 2016-12-16 2018-06-21 コニカミノルタ株式会社 撮像光学系及び撮像装置
US20190146182A1 (en) * 2015-04-29 2019-05-16 Largan Precision Co., Ltd. Imaging lens system, image capturing device and electronic device
CN209471295U (zh) * 2019-01-22 2019-10-08 浙江舜宇光学有限公司 光学成像镜头
CN110398819A (zh) * 2019-06-30 2019-11-01 瑞声科技(新加坡)有限公司 摄像光学镜头
CN209640581U (zh) * 2019-03-05 2019-11-15 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988198A (zh) * 2015-02-17 2016-10-05 大立光电股份有限公司 取像镜头组、取像装置及电子装置
US20190146182A1 (en) * 2015-04-29 2019-05-16 Largan Precision Co., Ltd. Imaging lens system, image capturing device and electronic device
JP2018097289A (ja) * 2016-12-16 2018-06-21 コニカミノルタ株式会社 撮像光学系及び撮像装置
CN209471295U (zh) * 2019-01-22 2019-10-08 浙江舜宇光学有限公司 光学成像镜头
CN209640581U (zh) * 2019-03-05 2019-11-15 浙江舜宇光学有限公司 光学成像镜头
CN110398819A (zh) * 2019-06-30 2019-11-01 瑞声科技(新加坡)有限公司 摄像光学镜头

Also Published As

Publication number Publication date
EP4033286A1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
CN107783256B (zh) 摄像镜头、相机装置、车载相机装置、传感装置、车载传感装置
JPH04275514A (ja) 内視鏡用対物レンズ
TW201418765A (zh) 攝影光學鏡頭、取像裝置及車用攝影裝置
JP2010107606A (ja) 撮像レンズおよび撮像装置
CN110178068A (zh) 单焦点透镜系统及相机
CN211478738U (zh) 一种光学镜组、摄像头模组及终端
CN113433675B (zh) 光学系统、镜头模组和电子设备
WO2021027287A1 (zh) 一种大光圈镜头和终端设备
CN109960004A (zh) 光学镜头
CN109633870A (zh) 光学镜头及成像设备
US20140022648A1 (en) Image lens with high resolution and small distance
WO2020017258A1 (ja) レンズ系、撮像装置及び撮像システム
TWI670516B (zh) 攝影光學鏡頭、取像裝置及電子裝置
CN113835201B (zh) 光学系统、摄像模组和电子设备
CN112255766B (zh) 光学成像系统和电子装置
CN213814111U (zh) 光学系统、摄像头模组及终端
US11880022B2 (en) Lens system, imaging device, and imaging system including a lens element having a free-curve surface
JP2004354829A (ja) 可視光近赤外光用単焦点レンズ
CN115248496B (zh) 一种高清晰度光学镜头及高性能激光雷达
WO2021134309A1 (zh) 一种光学镜组、摄像头模组及终端
WO2021097670A1 (zh) 一种成像用光学镜组、摄像头模组及终端
CN113985581B (zh) 光学系统、摄像模组、电子设备及车载系统
WO2022011546A1 (zh) 光学镜头、取像模组及电子装置
CN112505893A (zh) 光学系统、摄像头模组及终端
CN112904527A (zh) 一种成像用光学镜组、摄像头模组及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019958582

Country of ref document: EP

Effective date: 20220420

NENP Non-entry into the national phase

Ref country code: DE