WO2021134248A1 - 一种陶瓷型铸造材料及其铸造工艺 - Google Patents

一种陶瓷型铸造材料及其铸造工艺 Download PDF

Info

Publication number
WO2021134248A1
WO2021134248A1 PCT/CN2019/130018 CN2019130018W WO2021134248A1 WO 2021134248 A1 WO2021134248 A1 WO 2021134248A1 CN 2019130018 W CN2019130018 W CN 2019130018W WO 2021134248 A1 WO2021134248 A1 WO 2021134248A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
casting
temperature
seconds
time
Prior art date
Application number
PCT/CN2019/130018
Other languages
English (en)
French (fr)
Inventor
荆剑
王琪
沈国勇
Original Assignee
泰州鑫宇精工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰州鑫宇精工股份有限公司 filed Critical 泰州鑫宇精工股份有限公司
Priority to PCT/CN2019/130018 priority Critical patent/WO2021134248A1/zh
Priority to CN202210826973.5A priority patent/CN115138807A/zh
Priority to CN201980103341.2A priority patent/CN114867568A/zh
Publication of WO2021134248A1 publication Critical patent/WO2021134248A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • This application relates to the field of precision casting, in particular to a ceramic mold casting material and its casting process.
  • the purpose of this application is to provide a ceramic mold casting material, which includes raw sand, a composite binder and water.
  • the mass ratio of the raw sand is 80% to 95%; the mass ratio of the composite binder is 1% to 5%; and the mass ratio of water is 8% to 12%.
  • the mass ratio is based on the ratio of the total mass of solid materials in the material.
  • the raw sand includes a first type of sand having a first mesh and a second type of sand having a second mesh; the difference between the first mesh and the second mesh is at least For 20 mesh.
  • the viscosity of the material is 80 seconds to 300 seconds.
  • the compressive strength of the molded part is 2 MPa to 5 MPa.
  • the molded part formed of the material after the molded part formed of the material is heated for the first time at the first temperature, the molded part undergoes a hardening reaction.
  • the first temperature is 50°C to 200°C.
  • the first time is less than 3 hours.
  • the compressive strength of the profile is 5 MPa to 8 MPa.
  • the deformation rate of the profile is less than 0.6%.
  • the profile undergoes ceramicization.
  • the second temperature includes 800°C to 1200°C.
  • the second time is 1 hour to 3 hours.
  • the composite adhesive includes at least one or more of ethyl silicate, silica sol, water glass, and molten salt.
  • the mass ratio of the liquid material in the material is less than 20%.
  • the mass ratio of volatile materials in the material is less than 5%.
  • the process includes: providing a casting material and a mold; injecting the casting material into the mold to form a molded part; The part is heated to harden; in the second temperature range, the profile is heated to obtain the target profile.
  • the injecting the casting material into the mold to form the molded part includes: heating the mold; and injecting the casting material into the mold.
  • heating the molded part to harden it includes: heating the molded part in the mold.
  • heating the molded part to harden it includes: taking out the molded part from the mold; placing the molded part into the mold after cooling. Heating in the heating device.
  • the temperature range of the first temperature includes 50°C to 200°C.
  • the temperature range of the second temperature includes 800°C to 1200°C.
  • the providing the casting material and the mold includes: stirring the casting material uniformly so that the viscosity value at 18°C-28°C is 80 seconds to 300 seconds.
  • the viscosity value is in the range of 80 seconds to 140 seconds, and the casting material is injected into the mold by pouring; the viscosity value is in the range of 140 seconds to 300 seconds, and the casting material is injected into the mold by extrusion. In the mold.
  • the injecting the casting material into the mold includes: squeezing the casting material into the mold at a pressure of 80 MPa to 150 MPa through an extrusion device.
  • the time to complete the squeezing operation is 15 seconds to 3 minutes.
  • heating the molded part in the mold to harden it includes: the heating time is less than 5 minutes.
  • heating the molded part to harden the molded part in the first temperature range includes: performing a pressure holding operation on the molded part in the mold; and heating the pressure-maintained molded part.
  • the time of the pressure holding operation is less than 10 minutes.
  • the mold includes a mold shell and its corresponding core; the heating the mold in the second temperature range to obtain the target mold includes: combining the mold shell and the core Assemble; reheat the assembled shape.
  • the process further includes: pouring the molten metal onto the target molded part; and obtaining the casting after the molten metal is solidified.
  • the casting material includes materials as described in some embodiments in this application.
  • Fig. 1 is a block diagram of a precision casting system according to some embodiments of the present application.
  • Fig. 2 is a flowchart of a ceramic mold casting process according to some embodiments of the present application.
  • One or more embodiments of the present application can be applied to different casting fields, including but not limited to precision casting, sand casting, die casting, coated sand casting, and the like.
  • Types of castings include but are not limited to metal castings.
  • a metal casting is taken as an example for illustration, but this should not bring any limitation to this application. It should be understood that the application scenarios of the ceramic casting material and its casting process of the present application are only some examples or embodiments of the present application. For those of ordinary skill in the art, without creative work, The application can be applied to other theoretically feasible scenarios based on these drawings.
  • Fig. 1 is a block diagram of a precision casting system according to some embodiments of the present application.
  • the system 100 can complete, for example, precision casting of metal castings.
  • the precision casting system 100 may include a mold design module 110, a target mold manufacturing module 120, a pouring module 130, and a shelling module 140.
  • the mold design module 110 can complete the design of the mold required in the casting process of the casting.
  • the mold may include different types such as a mold for manufacturing a shell, a mold for manufacturing a core, and the like.
  • the mold design can be understood as designing corresponding mold parameters according to the outer dimensions of the metal casting, and the corresponding target mold can be obtained through the mold, and the metal casting can be obtained from the target mold.
  • a solid core and a hollow shell can be obtained through the mold of the core and the shell, and the solid core is put into the hollow shell for assembly. After assembly, the inner surface of the shell and the core can be assembled.
  • a cavity is formed between the outer surfaces, the shape and size of the cavity are consistent with the size of the metal casting, and the metal casting is obtained by pouring liquid metal into the cavity.
  • the metal liquid can also be poured directly into the inner cavity of the mold shell to obtain a metal casting with the same shape and size as the inner cavity.
  • solid cores are generally used in conjunction with hollow cores.
  • the mold parameters here can be understood as the type, shape and size of the mold.
  • the mold may include a plurality of different types and uses.
  • each type of mold may also include multiple different models.
  • the mold may also include one or more related parameters.
  • the relevant parameters may include, but are not limited to, the shape of the mold, the size of the mold, the model of the mold, and the like.
  • the number of molds designed in the mold design module 110 may be one or multiple. For example, for the casting of a single molded part, there may be one mold, and for the casting that requires mold-fitting during the production process, there may be multiple molds.
  • the mold design can be completed by a technician based on relevant experience.
  • the mold design may also be that the mold design device automatically obtains the corresponding mold parameters according to relevant information.
  • the relevant information may include the shape and size of the casting; it may also include a three-dimensional design drawing of the casting; it may also include the casting entity.
  • the mold design device can output the matched mold parameters of the casting according to the input shape and size information of the casting.
  • the mold design device can receive the imported three-dimensional design drawing of the casting, and can output the mold parameters corresponding to the casting after processing and analysis.
  • the mold design device may also scan the casting entity, and obtain mold parameters corresponding to the casting entity according to the analysis and processing of the scanning results.
  • the target profile manufacturing module 120 can complete the manufacturing process of the target profile.
  • the target profile may be a profile that is ultimately used for metal casting.
  • the target profile may include a core profile, a shell profile, and a combined profile of the shell and the core. The combined molding of the shell and the core can be obtained by combining the two.
  • the manufacturing process of the target profile can be as follows: first design a wax module tree, and then make the outer wall of the wax module tree through a multi-layer dipping and sand blasting process on the wax module tree Wrap it to a certain thickness and dry it, and then melt and remove the wax in the wax module tree through the wax melting process, and finally obtain the mold shell, that is, the target shape.
  • the manufacturing process of the target shaped part can be: first mix paraffin wax and refractory material, use paraffin wax as a carrier, use the fluidity and plasticity of paraffin wax by heating, and inject the fluid mixture into the mold immediately. The temperature drops and the mixture solidifies. After the mixture is solidified, it is quickly heated to about 1600°C in a short time, so that the paraffin wax is melted, the refractory material undergoes a ceramic reaction, and finally a ceramic shape is formed. In this process, there are problems such as high cost of materials (such as paraffin), low production efficiency, and deformation of the ceramic type under high temperature conditions.
  • the manufacturing process of the target shape can also be: using raw sand, binders, lubricants, water, volatile liquids (for example, alcohol, etc.), and coagulants Pour the mixed material into the mold and let it stand for a period of time until the mixture solidifies and hardens. After the mixed material is solidified, it is fired at a high temperature to cause the mixed material to undergo a ceramic reaction to form a ceramic shape.
  • the method does not contain paraffin materials, has low cost, simple production process, but requires a long time for standing, and low production efficiency.
  • the manufacturing process of the ceramic target part can also be: using a mixed material of raw sand, a composite binder, a lubricant, and water, and injecting it into the mold; then, the mixed material in the mold is subjected to low temperature successively. Baking and high-temperature firing finally form a ceramic type.
  • the low-temperature baking can quickly dry the material in the mold to form a molded part with a certain compressive strength.
  • the high-temperature firing can further enhance the hardness of the molded part, and obtain a target molded part that meets the requirements of subsequent processes.
  • the pouring module 130 can complete the process of pouring the casting liquid (for example, liquid metal) into the target mold to form the casting.
  • the casting liquid for example, liquid metal
  • the metal liquid may be a metal in a molten state.
  • the type of the metal may be different according to different application scenarios, for example, including but not limited to iron, copper, aluminum, tin, lead, nickel, etc.
  • the cold shell casting may mean that the cast mold shell is directly subjected to the casting process without high-temperature roasting.
  • Cold shell pouring can be suitable for pouring materials with good fluidity and for pouring larger products.
  • the hot shell casting may refer to the casting process after the mold shell is fired at a high temperature. Hot shell pouring can be applied to pouring any material.
  • the metal liquid is poured into the target shape, and the metal casting can be formed after it cools. In some embodiments, pouring the metal liquid onto the target shape can be achieved manually or in an automated manner.
  • the shelling module 140 can shell the castings formed in the pouring module 130 and obtain the castings.
  • the shelling may refer to the process of separating the shell or core from the casting.
  • the shelling may include shelling treatment, for example, using a mold release agent or mold release wax to treat the casting, so that the casting can be demolded more easily.
  • the process of obtaining castings can be implemented manually.
  • the casting worker can separate the casting from the target mold by tapping, cutting, etc., to obtain the casting; it can also be implemented in an automated manner. , For example, the use of automatic shelling equipment to shell castings.
  • the ceramic mold casting material may include raw sand, composite binder, and water.
  • the raw sand is the basic component of the material and can be composed of one or more refractory powders.
  • the composite binder can be composed of two or more binder raw materials for assisting raw sand molding.
  • the water can be used to dilute the mixture of the raw sand and the composite binder, so that the mixture is more uniformly mixed, and the ceramic mold casting material formed after the components are mixed has fluidity.
  • the ceramic mold casting material may also include a lubricant. The lubricant can be used to lubricate raw sand and composite binders.
  • the mass ratio of the raw sand is 80% to 95%; the mass ratio of the composite binder is 1% to 5%; and the mass ratio of the water is 8% to 12%.
  • ceramic mold casting materials are divided into solid materials and liquid materials.
  • the solid materials are mainly refractory materials, which can include powdered or granular raw sand and nano-powder.
  • the liquid material may include a composite binder that is liquid at normal temperature, a lubricant, and water. Therefore, the mass ratio in the embodiments of this specification refers to the ratio of the corresponding material to the total mass of the solid material in the casting material.
  • the mass ratio of the raw sand refers to the mass of the raw sand in the total mass of the solid material of the casting material
  • the mass ratio of the composite binder refers to the mass of the composite binder in the total mass of the solid material
  • the mass ratio of the water refers to the ratio of the mass of water to the total mass of the solid material.
  • the mass ratio of the raw sand in the ceramic mold casting material is 80%-95%; preferably, the mass ratio is 80%-85%; more preferably, the mass ratio is 80%.
  • the mass ratio of the composite binder in the ceramic mold casting material is 1% to 5%; preferably, the mass ratio is 2% to 4%; more preferably, the mass ratio is 3%.
  • the mass ratio of water is 8%-12%; preferably, the mass ratio of water is 8%-10%; preferably, the mass ratio of water is 9%.
  • the mass ratio of the lubricant in the ceramic mold casting material is less than 3%; in some embodiments, the mass ratio is less than 2%; in some embodiments, the mass ratio is less than 1%; in some embodiments In the example, the casting material does not include lubricant. In some embodiments, the mass ratio of the liquid material in the ceramic mold casting material is less than 20%; preferably, the mass ratio is less than 15%; more preferably, the mass ratio is less than 10%. Wherein, the liquid may include water and other liquids in the mixture.
  • the ceramic mold casting material disclosed in this application can have a certain fluidity in the room temperature range; in some embodiments, the ceramic mold casting material can undergo hardening reaction in the low temperature range; in some embodiments , Ceramic casting materials can also reflect ceramics in the high temperature range.
  • the hardening reaction may include a process in which the material becomes hard; for example, after the casting material in the present application is heated at a low temperature, the casting material becomes hard, for example, the hardness or strength of the casting material increases.
  • the hardening may also include a process for obtaining a higher hardness or strength of the material, and a process for increasing the hardness parameter value of the material.
  • the ceramic reaction can be understood as a process in which the various components of the material are mixed randomly to form chemical bonds and become partially crystalline.
  • the ceramization may also include a process to further obtain higher hardness or strength of the material, and also include a process to further increase the hardness parameter value of the material.
  • the ceramic casting material can be understood as a state where the material is fully stirred.
  • the room temperature range may include 18°C to 35°C; may also include 18°C to 28°C; and may also include 22°C to 25°C.
  • the fluidity refers to the ability of a material to move irregularly in various directions or without maintaining its inherent shape. In some embodiments, the degree of fluidity may be determined by the viscosity value of the material.
  • the viscosity value of the ceramic mold casting material at room temperature is 80 seconds to 300 seconds; in some embodiments, the viscosity value of the material is 80 seconds to 140 seconds; in some embodiments, The viscosity of the material is 80 seconds to 130 seconds; in some embodiments, the viscosity of the material is 80 seconds to 120 seconds; in some embodiments, the viscosity of the material is 90 seconds to 110 seconds In some embodiments, the viscosity value of the material is 100 seconds.
  • the viscosity of the material is 140 seconds to 300 seconds; in some embodiments, the viscosity of the material is 150 seconds to 300 seconds; in some embodiments, the viscosity of the material is Is 160 seconds to 300 seconds; in some embodiments, the viscosity of the material is 170 seconds to 300 seconds; in some embodiments, the viscosity of the material is 180 seconds to 300 seconds; in some embodiments , The viscosity of the material is 190 seconds to 300 seconds; in some embodiments, the viscosity of the material is 200 seconds to 300 seconds; in some embodiments, the viscosity of the material is 210 seconds to 290 In some embodiments, the material has a viscosity value of 220 seconds to 280 seconds; in some embodiments, the material has a viscosity value of 230 seconds to 270 seconds; in some embodiments, the material has a viscosity value of 230 seconds to 270 seconds; The viscosity value is 240 seconds to 260 seconds.
  • the measurement unit "second" of the material viscosity value refers to changing a certain volume of material (for example, 1 liter of material) filled in the measuring barrel under the condition that a certain constant force is applied evenly.
  • the time required for the flow out of the measuring barrel that is, how many seconds are required.
  • the material is placed in a quantitative measuring barrel with a certain volume, the outflow port of the measuring barrel is closed when filling, and the filling is filled until the scale line of the measuring barrel is level.
  • the diameter of the outflow port on the measuring barrel for the material to flow out can be set to 5mm.
  • the diameter of the piston corresponds to the inner diameter of the measuring barrel, and then apply pressure to the piston along the axis of the measuring barrel with a constant force of 25Kg ⁇ f through a small fixed-value pressure device , And open the flow outlet.
  • the piston drops a certain height, and the height reduction value corresponds to the volume of 1 liter of material flowing out of the barrel.
  • the time for the piston to drop a certain height is measured, that is, the amount of time 1 liter of material flows out. Time (seconds) is the viscosity value (seconds) of the material.
  • a hardening reaction can occur, or a higher strength can be obtained.
  • the material can be heated for the first time to form a shape with a certain hardness or strength. For example, in some embodiments, after the material is injected into the mold, heating the material in the mold can make the material obtain higher compressive strength.
  • the compressive strength of the profile is 2 MPa to 5 Mpa; in some embodiments, the compressive strength is 2.2 MPa to 4.8 MPa; In some embodiments, the compressive strength is 2.5 MPa to 4.5 MPa; in some embodiments, the compressive strength is 2.8 MPa to 4.2 MPa; in some embodiments, the compressive strength is 3.0 MPa to 4.0 MPa; in some embodiments, the compressive strength is 3.0 MPa to 4.0 MPa; In the embodiments, the compressive strength is 3.2 MPa to 3.8 MPa; in some embodiments, the compressive strength is 3.5 MPa.
  • the first time is less than 3 hours; preferably, the first time is less than 2 hours; preferably, the first time is less than 1 hour; preferably, the first time is less than 50 minutes ; Preferably, the first time is less than 40 minutes; preferably, the first time is less than 30 minutes; preferably, the first time is less than 20 minutes; the first time may be less than or equal to 10 minutes; Preferably, the first time may be 5 minutes to 10 minutes.
  • the temperature range of the first temperature may be 50°C to 200°C; preferably, it may be 90°C to 200°C; more preferably, it may be 120°C to 200°C; further preferably, it may be It is 150°C to 200°C; more preferably, it may be 150°C to 160°C.
  • the first temperature of heating may be related to a certain degree or not related to the first time of heating. In some embodiments, if the heating time is longer, the heating temperature can be appropriately lowered. In some embodiments, if the heating temperature is higher, the heating time can be appropriately shortened.
  • the compressive strength of the profile is 5 MPa to 8 MPa; in some embodiments, the compressive strength is 5.2 MPa to 7.8 MPa In some embodiments, the compressive strength is 5.5 MPa to 7.5 MPa; in some embodiments, the compressive strength is 6.0 MPa to 7.0 MPa; in some embodiments, the compressive strength is 6.5 MPa.
  • the deformation rate of the profile is less than 1%; preferably, less than 0.8%; more preferably, less than 0.6%; further preferably , Less than 0.5%; more preferably, less than 0.4%.
  • the second time may be 1 hour to 3 hours; preferably, it may be 1.5 hours to 3 hours; more preferably, it may be 2 hours to 3 hours.
  • the temperature range of the second temperature may be 600°C to 1500°C; preferably, it may be 800°C to 1500°C; more preferably, it may be 800°C to 1200°C.
  • the raw sand may be composed of one or more powders of refractory materials.
  • the refractory powder may include, but is not limited to, mullite, quartz sand, zircon sand, sintered magnesia, chromite sand, forsterite sand, kyanite sand, limestone sand, Graphite sand and artificial orb sand, etc.
  • the refractory material varies with the purpose of the profile.
  • the refractory material when the profile is used for casting cast iron, carbon steel, low alloy steel, etc., the refractory material can be quartz sand; when the profile is used for casting stainless steel, titanium alloy, etc., Zircon sand can be used as refractory material.
  • the raw sand in order to balance the strength of the molded part and the molding speed and bonding strength at the same time, the raw sand may include the first type sand and the second type sand with different meshes.
  • the first type of sand and the second type of sand may be sand materials of different materials, or may be sand materials of the same material.
  • the first type of sand may be mullite
  • the second type of sand may be mullite powder.
  • the raw sand may include a first type of sand having a first mesh and a second type of sand having a second mesh.
  • the first mesh number may be 60 mesh to 80 mesh; preferably, it may be 70 mesh to 80 mesh; more preferably, it may be 70 mesh to 75 mesh.
  • the second mesh number may be 180 mesh to 200 mesh; preferably, it may be 190 mesh to 200 mesh; more preferably, it may be 195 mesh to 200 mesh.
  • the difference between the first mesh and the second mesh is at least 20 meshes; in some embodiments, the difference between the first mesh and the second mesh is at least 20 meshes.
  • the difference between is at least 100 mesh; in some embodiments, the difference between the first mesh and the second mesh is at least 140 mesh.
  • the larger the mesh number of the powdery material the smaller the particle size of the material, which can enable the mixed material to obtain greater bonding strength when it is mixed with the binder in the later stage.
  • the smaller the mesh number of the powdery material the larger the particle size of the material, and the faster the drying speed during the molding and drying process of the later mixed material.
  • the difference in mesh size between the first type of sand and the second type of sand and the mass ratio of the first type of sand to the second type of sand can be based on the size, strength requirements, molding speed, etc. of the specific molded part. One or more of them.
  • the proportion of the first type of sand with a smaller mesh can be increased, and when the molded part needs to have higher strength, the proportion of sand with a higher mesh can be increased.
  • the proportion of the second type of sand may include 30% 75 mesh mullet sand (as the first type of sand) and 70% 200 mesh mullite powder (as the second type of sand).
  • the solid material may include 20% 75 mesh Morai sand and 80% 200 mesh Morai powder.
  • the solid material in the casting material may also include a material with a finer particle size, for example, nano-powder, which is used to increase the bonding strength of the molded part and increase the hardening speed of the molded part.
  • the nano fine powder may also include the third type sand and the fourth type sand with different particle sizes. Among them, the particle size of the third type sand and the fourth type sand is smaller than that of the first type sand and the second type sand. In other words, the mesh number of the third type sand and the fourth type sand are larger than that of the first type sand. The mesh number of the second-class sand and the second-class sand.
  • the ratio of materials with different meshes in the solid material also needs to be adjusted according to the strength requirements of the molded part, for example, the 30% 75 mesh molei sand and 70% molasse mentioned above In the example of 200 mesh mulberry powder, if you want to further increase the strength or hardening speed of the molded part, you can adjust the proportion of each solid material to 20% 75 mesh molli sand and 60% 200 mesh molli powder And 20% nano powder.
  • the composite adhesive may include, but is not limited to, an instant-drying adhesive, an ultraviolet light-curing adhesive, a pressure-sensitive adhesive, an anaerobic adhesive, and a thermosetting adhesive. , Hot melt adhesives, emulsion and latex adhesives and other types of adhesives.
  • the instant drying adhesive may include, but is not limited to, thixotropic (pseudoplastic) cyanoacrylate adhesive, fast-curing cyanoacrylate adhesive, cyanoacrylate-polyethylene Glycol binders, etc.
  • the ultraviolet light-curable adhesive may include a mixture composed of an acrylic prepolymer (also called an oligomer), a reactive monomer, and an ultraviolet photoinitiator.
  • the pressure-sensitive adhesive may include, but is not limited to, acrylic and silicone pressure-sensitive adhesives, cross-linkable acrylic pressure-sensitive adhesives, and the like.
  • the anaerobic binder may include, but is not limited to, anaerobic acrylic binder, anaerobic binder containing substituted saccharin, anaerobic binder containing potassium titanate fiber, and the like.
  • the thermosetting adhesive may include, but is not limited to, epoxy resin, polyurethane adhesive, amino resin adhesive, and the like.
  • the hot-melt adhesives may include, but are not limited to, nylon phenolic hot-melt adhesives, ethylene polymer-containing hot-melt adhesives and laminated crystals thereof, and unsaturated isocyanate grafted polyolefin hot-melt adhesives Wait.
  • the emulsion and latex-type binders may include, but are not limited to, heat-resistant and water-resistant acetate vinyl polymer latex binders, unsaturated carboxylic acid-modified olefin (latex) binders, and heat-resistant two-component Water-based adhesives, etc.
  • the other types of binders may include, but are not limited to, ethyl silicate, silica sol, water glass, phosphate, aluminum sol, polyacrylate clay powder, aluminum dihydrogen phosphate, and the like.
  • the composite binder may be a mixture composed of two or more binders.
  • the mass ratio of different binders in the composite binder can be mixed with a ratio of 1:1.
  • different adhesives in the composite adhesive can also be mixed in different proportions, for example, the mass ratios of thermosetting adhesives, instant-drying adhesives, and other adhesives are respectively It is 5:1:2, where other adhesives can be understood as any adhesives except thermosetting adhesives and instant-drying adhesives.
  • the lubricant can be used to lubricate the raw sand and the composite binder, so that the components of the ceramic mold casting material are mixed more uniformly.
  • the material of the lubricant may be nitroglycerin, silicon oil, boron nitride, and the like.
  • the water can be used to dilute the mixture of raw sand and composite binder, so that the mixture is more uniformly mixed, and the ceramic casting material formed by mixing the components has fluidity.
  • the mixture in addition to water, may also contain a certain proportion of other liquids.
  • the fluidity of the mixture is related to the liquid therein, for example, the higher the liquid content in the mixture, the higher the fluidity.
  • the liquid may include water and other liquids in the mixture.
  • the mixture may also contain a certain proportion of volatile liquid.
  • the casting material can obtain a certain fluidity to facilitate the injection of the casting material into the mold; on the other hand, when the casting material is injected into the mold Afterwards, the volatilization of the material can make the profile gain a certain strength.
  • the casting material may contain a relatively small proportion of volatile materials.
  • the mass ratio of the volatile material in the casting material is less than 10%; preferably, less than 8%; preferably, less than 5%; preferably, less than 3%.
  • the casting material may also not contain volatile materials.
  • the volatile material may include, but is not limited to, alcohol-based substances (such as methanol, ethanol, etc.), acetone, ethyl silicate, and the like.
  • the material can be shaped independently of a coagulant.
  • the material may also contain a small amount of coagulant.
  • the mass ratio of the coagulant is less than 20%, more preferably, less than 10%, further preferably, less than 5%, and further Preferably, the material does not include a coagulant.
  • the coagulant may include, but is not limited to, sodium hydroxide, potassium hydroxide, triethanolamine, aluminum hydroxide, talc, magnesium oxide, calcium aluminate cement, basic aluminum chloride, fluorosilicic acid Sodium, aluminum phosphate, sodium phosphate, dicalcium silicate, polyaluminum chloride, glyoxal, etc.
  • Fig. 2 is a flowchart of a ceramic mold casting process according to some embodiments of the present application. As shown in Figure 2, the flow of a ceramic mold casting process may include:
  • Step 210 Provide casting materials and molds.
  • the method of providing the casting material may include providing a mixture of the above-mentioned ceramic-type materials; it may also include providing materials of each component of the ceramic-type materials, and then fully stirring them.
  • the mixture may be pre-stirred and thoroughly mixed materials.
  • the mixture may be pre-mixed homogeneously and then stored in a sealed container.
  • the environmental temperature during storage of the mixture may be 2°C to 15°C; in some embodiments, the environmental temperature during storage of the mixture may be 3°C to 14°C.
  • the ambient temperature during storage may be 3°C to 12°C; in some embodiments, the environmental temperature during storage of the mixture may be 4°C to 10°C; in some embodiments, the environmental temperature during storage of the mixture It may be 5°C to 10°C; in some embodiments, the environmental temperature during storage of the mixture may be 5°C to 8°C; in some embodiments, the environmental temperature during storage of the mixture may be 6°C .
  • the environmental humidity in the sealed container may be a certain humidity to prevent the loss of moisture in the mixture. In some embodiments, the environmental humidity may be 40% to 90%; in some embodiments, the environmental humidity may also be 45% to 90%; in some embodiments, the environmental humidity may also be 50% to 90%.
  • the environmental humidity can also be 55% to 90%; in some embodiments, the environmental humidity can also be 60% to 90%; in some embodiments, the environmental humidity can also be 70% to 90%; in some embodiments, the environmental humidity can also be 80% to 90%; in some embodiments, the environmental humidity can also be 40% to 85%; in some embodiments, the environmental humidity can also be 50% ⁇ 85%; in some embodiments, the environmental humidity can also be 55%-85%; in some embodiments, the environmental humidity can also be 60%-85%; in some embodiments, the environmental humidity can also be 65 %-85%; In some embodiments, the environmental humidity can also be 70%. In some embodiments, the uniformly mixed material has a certain fluidity in a certain temperature range.
  • the material has certain fluidity within a temperature range of 18°C to 35°C.
  • the fluidity refers to the ability of a material to move irregularly in various directions or without maintaining its inherent shape.
  • the degree of fluidity may be determined by the viscosity value of the material.
  • the provided casting material may also be a material providing each component of the above-mentioned ceramic type material.
  • the materials of each component can be stirred in this process step and fully mixed uniformly.
  • the operator can manually determine whether the material is evenly mixed.
  • the method of judging the homogeneity may be: after the materials are stirred, weigh the same volume of materials at different positions. If the weight of the materials taken out from each position is the same or similar, it can be considered that the materials have been stirred evenly.
  • the casting materials used in the ceramic mold casting process and the materials of the respective components can refer to one or more implementations involved in the foregoing part of this specification.
  • the mold may include a mold for shell casting or a mold for core casting.
  • the mold may be a wood mold, a metal mold, or a resin mold.
  • the mold may be pre-made or manufactured in this step.
  • the mold may include one or more related parameters corresponding to its casting.
  • the relevant parameters may include, but are not limited to, the shape of the mold, the size of the mold, the model of the mold, and the like.
  • the mold may be provided according to relevant parameters of the mold.
  • the corresponding mold can be provided according to the size and shape parameters of the casting, or the corresponding model of the mold can be provided according to the model of the casting.
  • Step 220 Inject casting material into the mold to form a molded part.
  • the method of injecting the casting material into the mold may include an extrusion method and a pouring method.
  • the extrusion method may be a method of injecting the casting material into the mold by additionally providing pressure.
  • the pouring method may be a method in which the casting material uses its fluidity to freely inject into the mold under the action of gravity.
  • the method of injecting the casting material into the mold can be determined according to the viscosity value of the casting material, whether it is an extrusion method or a pouring method.
  • the material in the mold can be called a molded part, but the strength of the molded part is somewhat different at different stages of the process. different.
  • the casting material when the viscosity value of the casting material is greater than 140 seconds; preferably, when the viscosity value of the casting material is 140 seconds to 300 seconds; preferably, when the viscosity value of the casting material is 200 seconds At ⁇ 300 seconds, the casting material is injected into the mold by extrusion.
  • the extrusion method can be realized by an extrusion device.
  • the extrusion device may at least include a storage bin for storing materials, an extruder, an extrusion channel, a mold cavity connected to the extrusion channel, and a device for setting the extrusion pressure and/or extrusion time. Controller.
  • the squeezing pressure of the squeezer can be set by a controller.
  • the pressure value is 80 MPa to 150 MPa; preferably, the pressure value is 80 MPa to 130 MPa; more preferably, the pressure value is 80 MPa to 110 MPa.
  • the squeezing time of the squeezer can also be set in advance by the controller. In some embodiments, the squeezing time of the squeezer may not be set in advance, but is determined by itself according to the operating speed of the squeezing device.
  • the extrusion time is 15 seconds to 3 minutes; preferably, the extrusion time is 15 seconds to 1 minute; more preferably, the extrusion time is 15 seconds to 30 seconds.
  • the extrusion device is used to inject the casting material into the shape, and the molded parts produced have high hardness, high precision, good collapsibility and not easy to deform.
  • the casting material when the viscosity value of the casting material is less than 140 seconds; preferably, when the viscosity value of the casting material ranges from 80 seconds to 140 seconds, the casting material is poured into the mold by pouring.
  • the watering method can be realized by a watering device.
  • the watering device may include a bucket and a control mechanism.
  • the pouring device can control the barrel to pour the casting material into the mold through the control mechanism.
  • the mold before injecting the casting material into the mold, the mold may also be heated, and then the casting material is injected into the heated or heated mold. In some embodiments, after heating the mold to a preset temperature, the temperature may be maintained at the preset temperature to continue heating, and then the casting material is injected into the mold.
  • the preset temperature to which the mold is heated may be 50°C to 200°C; in some embodiments, the preset temperature may be 60°C to 190°C; in some embodiments, the The preset temperature may be 70°C to 180°C; in some embodiments, the preset temperature may be 70°C to 170°C; in some embodiments, the preset temperature may be 70°C to 160°C; In some embodiments, the preset temperature may be 70°C to 150°C; in some embodiments, the preset temperature may be 70°C to 140°C; in some embodiments, the preset temperature may be 70°C to 130°C; in some embodiments, the preset temperature may be 70°C to 120°C; in some embodiments, the preset temperature may be 80°C to 110°C; in some embodiments, The preset temperature may be 90°C to 100°C.
  • a pressure holding operation may be added after the casting material is injected into the mold.
  • better quality shaped parts may include stronger shaped parts; shaped parts with more accurate external dimensions; shaped parts with fewer burrs or higher appearance finishes, and shaped parts with higher dimensional stability.
  • dimensional stability can be understood as the size is not easily deformed under normal temperature and/or high temperature firing.
  • the pressure in the holding pressure operation refers to the force that keeps the mold in the closed state, where the closed state of the mold is opposite to the open state, and refers to the mold cavity that can be aligned with the shape of the mold. The state that corresponds exactly.
  • the extrusion method is used for material injection, when the casting material is injected into the mold, the injection pressure is correspondingly released. At this time, the quality of the molded part can be improved by the above-mentioned pressure holding operation.
  • the pressure holding operation can be performed simultaneously with the heating of the mold, that is, after the casting material is injected into the mold, the mold is continuously heated while being applied to keep the mold closed. The pressure or force of the state.
  • the pressure holding operation can also be performed separately from the heating of the mold, that is, after the casting material is injected into the mold, the pressure can be held on the mold first, and then the pressure in the mold The shaped parts continue to be heated for a certain period of time.
  • the pressure-holding operation time can be less than 10 minutes; preferably, it can be less than 8 minutes; preferably, it can be less than 5 minutes.
  • Step 230 heating the shaped part in the first temperature range to harden it.
  • the casting material is injected into a mold to form a molded part.
  • the type of the profile corresponds to the type of the mold.
  • the mold is a mold for a casting shell
  • the mold is a shell mold
  • the mold is a core mold.
  • heating the profile in the first temperature range can cause it to harden or obtain the first compressive strength.
  • the hardening can be understood as a process in which the material becomes hard, and can also be understood as a process in which the material obtains higher hardness or strength.
  • the temperature range of the first temperature may be 50°C to 200°C; preferably, it may be 90°C to 200°C; more preferably, it may be 120°C to 200°C; further preferably, it may be It is 150°C to 200°C; more preferably, it may be 150°C to 160°C.
  • the first compressive strength obtained by the profile is 2MPa-5Mpa; for other embodiments of the first compressive strength, please refer to other parts of this specification.
  • the heating time for heating the molding in the mold to harden it can be less than 3 hours; preferably, it can be less than 2 hours; preferably, it can be less than 1 hour ; Preferably, it can be less than 50 minutes; preferably, it can be less than 40 minutes; preferably, it can be less than 30 minutes; preferably, it can be less than 20 minutes; preferably, it can be less than or equal to 10 minutes; preferably , It can be 5 minutes to 10 minutes.
  • low-temperature baking of the casting material can make the casting material dry quickly, and low-temperature baking has low requirements for heating equipment, which can be operated by ordinary ovens.
  • the molded part in the processing step of heating the molded part to harden it, can be taken out of the mold, and after the molded part is completely cooled, it is placed in an oven for heating to harden it. .
  • Step 240 heating the shaped part in the second temperature range to obtain the target shaped part.
  • the second temperature range may be 600°C to 1500°C; preferably, it may be 800°C to 1500°C; more preferably, it may be 800°C to 1200°C.
  • the profile is heated in the second temperature range, and the heating time for obtaining the target profile can be 1 hour to 3 hours; preferably, it can be 1.5 hours to 3 hours; more preferably, it can be It is 2 hours to 3 hours.
  • heating the shaped part in the second temperature range can make it ceramize or obtain the second compressive strength, that is, to obtain the target shaped part.
  • the ceramic reaction can be understood as a process in which the components of the material are randomly mixed to form chemical bonds to become partially crystalline, and can also be understood as a process in which the material further obtains higher strength or hardness.
  • the second compressive strength obtained by the target profile is 5 MPa to 8 MPa; for other embodiments of the second compressive strength, please refer to other parts of this specification.
  • High firing of the casting material can make the molded parts manufactured with high hardness, good collapsibility and small deformation at high temperature.
  • the target profile may include a core profile, a shell profile, and a combined profile of the shell and the core.
  • the shaped part obtained in step 230 may be taken out of the mold, and then heated in the second temperature range to obtain the target shaped part. In some embodiments, the molded part obtained in step 230 may not be taken out of the mold, but the molded part may be directly heated in the mold in the second temperature range to obtain the target molded part.
  • the target profile obtained when the profile heated in the second temperature range is a core profile, the target profile obtained is a core profile; when the profile heated in the second temperature range is a shell profile In the case of parts, the target part obtained is a shell-shaped part.
  • the shell-shaped part and the core-shaped part can be combined and assembled, and the assembled part is heated in the second temperature range to obtain the target part, and the target part obtained at this time is Combination of shell and core.
  • the shell-shaped part and the core-shaped part obtained after heating in the second temperature range can also be combined and assembled to form a combined molded part of the shell and the core as the obtained in this step Target type pieces.
  • one or more modules in the precision casting system 100 may be realized by automation or intelligence.
  • one or more process steps in the target part manufacturing module 120 may be combined with automation or intelligence.
  • the above-mentioned solution of providing several different materials in the step of providing casting materials and then fully mixing them can be realized by an automated material supply device.
  • the automated material supply device may include an automated stirring device.
  • to provide casting materials several raw materials can be provided first, and then fully stirred.
  • the automatic mixing equipment in the automatic material supply equipment can be used to fully stir the mixture of several materials.
  • the automated mixing equipment may include a bucket and a mixing device.
  • multiple sensors (such as pressure sensors) may be arranged at different positions in the barrel to monitor whether the casting materials in the barrel are evenly mixed. For example, when the values measured by sensors installed at different positions are similar, it is considered that the casting material has been stirred until the mixing is uniform.
  • the above-mentioned operation of injecting the casting material into the mold can also be automated.
  • the pressure value of the squeezing device can be set by the operator based on experience or relevant regulations.
  • the extrusion device may also automatically set the pressure value according to the relevant parameters of the mold and/or the casting material.
  • the relevant parameters of the mold may include the shape and size of the mold; the relevant parameters of the casting material may include the viscosity value of the material and the like.
  • the pressure value of the squeezing device may be a constant value, that is, the pressure value remains unchanged during the squeezing operation.
  • the pressure value during the extrusion operation can also be automatically adjusted according to changes in the parameters of the material.
  • the relevant parameters of the material may include, but are not limited to, the viscosity value of the material, the temperature of the material, and the like.
  • the pressure value can be reduced after the material temperature becomes higher.
  • the extrusion device can automatically adjust the pressure according to the viscosity value of the material. When the viscosity value is large, the extrusion pressure is high, and when the viscosity value is small, the extrusion pressure is low.
  • the relevant parameters of the material may be manually input or automatically measured by a device.
  • the ceramic mold casting process 200 can also be implemented by an automated production line, that is, each process step is connected by machine operations.
  • a manipulator device is equipped between each process step, and the manipulator device is used to complete the transfer of casting materials, molds, moldings, etc. in each process step.
  • the molded part is heated at low temperature, it is automatically ejected from the mold and transferred to the next high-temperature heating station for high-temperature heating by the conveying device or robot.
  • the manipulator device can grasp and control the mold shell and/or the core to perform the molding operation.
  • the automated production line further includes a control center, which is used to control the interaction of the machine operating devices corresponding to each process step with each other.
  • the possible beneficial effects of the ceramic casting materials and processes disclosed in this application include but are not limited to: (1) simple manufacturing process and short production cycle; (2) high product precision and good surface finish; (3) adaptability Mass production of products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

本申请涉及一种陶瓷型铸造材料及其铸造工艺,所述材料包括:原砂,复合粘结剂,润滑剂及水。所述工艺包括:提供铸造材料以及模具;将铸造材料注入所述模具中;在第一温度范围内,对模具中的型件进行加热以使其硬化;在第二温度范围内,对型件进行加热,获得目标型件。

Description

一种陶瓷型铸造材料及其铸造工艺 技术领域
本申请涉及精密铸造领域,尤其涉及一种陶瓷型铸造材料及其铸造工艺。
背景技术
目前精密铸造中可通过制作陶瓷型来得到较小尺寸的铸件,通过该方法得到铸件尺寸精准,表面光洁度好。目前的陶瓷型铸造通常会使用石蜡材料,但石蜡材料价格高昂。并且使用石蜡材料后的铸造工艺通常会包括射蜡、修蜡、脱蜡等步骤,工艺复杂,生产效率较低。因此,有必要提出一种成本低廉,工艺简单,生成效率更高,并且成型过程更稳定的陶瓷型铸造材料及其铸造工艺。
发明内容
本申请的目的在于提供一种陶瓷型铸造材料,所述材料包括:原砂,复合粘结剂及水。
在一些实施例中,所述原砂的质量比为80%~95%;复合粘结剂的质量比为1%~5%;水的质量比为8%~12%。
在一些实施例中,所述质量比是基于所述材料中固体材料的总质量的比值。
在一些实施例中,所述原砂包括具有第一目数的第一类砂和具有第二目数的第二类砂;所述第一目数与第二目数之间的差值至少为20目。
在一些实施例中,在温度范围为18℃~28℃时,所述材料的粘度为80秒~300秒。
在一些实施例中,在第一温度下,由所述材料形成的型件经过第一 时间加热后,所述型件的抗压强度为2MPa~5MPa。
在一些实施例中,第一温度下,由所述材料形成的型件经过第一时间的加热后,所述型件发生硬化反应。
在一些实施例中,所述第一温度为50℃~200℃。
在一些实施例中,所述第一时间为小于3小时。
在一些实施例中,在第二温度下,加热后的型件经过第二时间加热后,所述型件的抗压强度为5MPa~8MPa。
在一些实施例中,在第二温度下,加热后的型件经过第二时间加热后,型件的变形率小于0.6%。
在一些实施例中,在第二温度下,加热后的型件经过第二时间加热后,所述型件发生陶化反映。
在一些实施例中,所述第二温度包括800℃~1200℃。
在一些实施例中,所述第二时间为1小时~3小时。
在一些实施例中,所述复合粘结剂至少包括硅酸乙酯,硅溶胶,水玻璃,融酸盐中的一种或多种。
在一些实施例中,所述材料中液体材料的质量比小于20%。
在一些实施例中,所述材料中挥发性材料的质量比小于5%。
本申请的另一方面提供了一种陶瓷型铸造工艺,所述工艺包括:提供铸造材料以及模具;将铸造材料注入所述模具中,形成型件;在第一温度范围内,对所述型件进行加热以使其硬化;在第二温度范围内,对型件进行加热,获得目标型件。
在一些实施例中,所述将铸造材料注入所述模具中,形成型件包括:将所述模具进行加热;将铸造材料注入所述模具中。
在一些实施例中,所述在第一温度范围内,对所述型件进行加热以使其硬化包括:对所述模具中的型件进行加热。
在一些实施例中,所述在第一温度范围内,对所述型件进行加热以使其硬化包括:将所述型件从所述模具中取出;带冷却后将所述型件放入加热装置中进行加热。
在一些实施例中,所述第一温度的温度范围包括50℃~200℃。
在一些实施例中,所述第二温度的温度范围包括800℃~1200℃。
在一些实施例中,所述提供铸造材料以及模具包括:将铸造材料搅拌均匀,使其在18℃~28℃下的粘度值为80秒~300秒。
在一些实施例中,粘度值在80秒~140秒范围内,采用浇灌方式将铸造材料注入所述模具中;粘度值在140秒~300秒范围内,采用挤压方式将铸造材料注入所述模具中。
在一些实施例中,所述将铸造材料注入所述模具中包括:通过挤压装置在80MPa~150MPa压力下将铸造材料挤压至所述模具内。
在一些实施例中,完成挤压操作的时间为15秒~3分钟。
在一些实施例中,所述在第一温度范围内,对模具内的型件加热以使其硬化包括:加热时间小于5分钟。
在一些实施例中,所述在第一温度范围内,对型件加热以使其硬化包括:对模具内的型件进行保压操作;对保压后的型件进行加热。
在一些实施例中,所述保压操作的时间为小于10分钟。
在一些实施例中,所述型件包括型壳及其对应的型芯;所述在第二温度范围内,对型件进行加热,获得目标型件包括:将型壳与型芯进行合型组装;对组装后的型件再进行加热。
在一些实施例中,所述工艺还包括:将金属液体浇注到目标型件;待金属液体凝固后,获取铸件。
在一些实施例中,所述铸造材料包括如本申请中一些实施例所述的材料。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请一些实施例所示的精密铸造系统的模块图;
图2是根据本申请一些实施例所示的一种陶瓷型铸造工艺的流程图。
具体实施方式
这里将详细地对示例性实施例或实施方式进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。
本申请的一个或多个实施例可以应用于不同的铸造领域,包括但不 限于精密铸造、砂型铸造、压铸、覆膜砂铸造等。铸件的类型包括但不限于金属铸件。本申请一个或多个实施例中以金属铸件为例进行举例说明,但并不应给本申请带来任何限定。应当理解的是,本申请的陶瓷型铸造材料及其铸造工艺的应用场景仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它理论上可实施的情景。
图1是根据本申请一些实施例所示的精密铸造系统的模块图。该系统100可以完成例如金属铸件的精密铸造。如图1所示,精密铸造系统100可以包括模具设计模块110,目标型件制造模块120,浇注模块130,脱壳模块140。
模具设计模块110可以完成铸件铸造工艺过程中所需的模具的设计。在一些实施例中,所述模具可以包括用于制造型壳的模具、用于制造型芯的模具等不同的类型。在一些实施例中,所述模具设计可以理解为根据金属铸件的外形尺寸去设计对应的模具参数,并且通过该模具能够得到对应的目标型件,通过目标型件可以获得金属铸件。例如,通过型芯和型壳的模具可以得到实心的型芯和空心的型壳,把实心的型芯放到空心的型壳中进行组装,组装后会在型壳的内表面与型芯的外表面之间形成一个空腔,所述空腔的形状尺寸与金属铸件的尺寸一致,通过向所述空腔中浇注金属液体以得到金属铸件。在一些实施例中,也可以直接向型壳的内腔中浇注金属液体,进而得到与所述内腔的形状尺寸一致的金属铸件。在获取金属铸件的工艺过程中,实心的型芯一般都与空心的型壳配合使用。这里的模具参数可以理解为模具的类型,形状以及尺寸。在一些实施例中,所述模具可以包括多个不同的种类和用途。在一些实施例中,每种模具也可以包括多个不同的型号。在一些实施例中,所述模具也可以是包括一个或多个相关参数。所述相关参数可以包括但不限于模具的形状、模具的尺寸、模 具的型号等。在一些实施例中,模具设计模块110中设计的模具可以是一个,也可以是多个。例如,对于单一型件的铸造,模具可以是一个,对于生产过程中需要合型的铸造,模具可以是多个。
在一些实施例中,所述模具设计可以由技术人员根据相关经验完成。在一些实施例中,所述模具设计也可以是由模具设计装置根据相关信息自动得到对应的模具参数。在一些实施例中,相关信息可以包括铸件的形状、尺寸信息;也可以包括铸件的三维立体设计图;还可以包括铸件实体。在一些实施例中,模具设计装置能够根据输入的铸件形状、尺寸信息输出所述铸件匹配的模具参数。在一些实施例中,模具设计装置可以接收导入的铸件的三维立体设计图,经过处理分析能够输出与所述铸件对应的模具参数。在一些实施例中,模具设计装置还可以对铸件实体进行扫描,并根据对扫描结果的分析处理得到与所述铸件实体对应的模具参数。
目标型件制造模块120可以完成目标型件的制造工艺。在一些实施例中,所述目标型件可以是最终用于金属铸造的型件。在一些实施例中,所述目标型件可以包括型芯型件、型壳型件以及型壳与型芯的组合型件。所述型壳与型芯的组合型件可以由两者合型获得。
在一些实施例中,所述目标型件制造过程可以是:先设计一个蜡模组树,然后通过对所述蜡模组树进行多层地沾浆和喷砂工艺使得蜡模组树的外壁上包裹一定的厚度,将其干燥之后,再通过融蜡工艺把蜡模组树中的蜡进行融化去除,最终得到模壳,即目标型件。
在一些实施例中,目标型件制造过程可以是:先将石蜡和耐火材料混合,利用石蜡做载体,通过加热利用石蜡的流动性和可塑性,将有流动性的混合物立刻注射到模具中,待温度降低,混合物凝固。在混合物凝固后,将其在短时间内迅速加热至1600℃左右,使其中石蜡熔化掉,耐火材料发生陶化反应,最终形成陶瓷型。这个过程中,存在材料(如石蜡)成本 高昂,生产效率低,并且在高温条件下陶瓷型可能出现变形等问题。
在一些实施例中,当目标型件是陶瓷型时,目标型件制造过程也可以是:使用原砂、粘结剂、润滑剂、水、挥发性液体(例如,酒精等)以及促凝剂的混合材料,浇灌到模具中,静置一段时间,待混合物凝固硬化。在混合材料凝固后,对其进行高温焙烧,使混合材料发生陶化反应,形成陶瓷型。该方法不含石蜡材料,成本较低,生产工艺简单,但静置所需时间较长,生产效率较低。
在一些实施例中,陶瓷型目标型件的制造过程还可以是:使用原砂、复合粘结剂、润滑剂和水的混合材料,注入到模具中;之后对模具中的混合材料先后进行低温烘焙和高温焙烧,最终形成陶瓷型。所述低温烘焙可以使模具中的材料快速干燥,形成具有一定抗压强度的型件。所述高温焙烧可以进一步增强型件的硬度,并可以获得满足后续工艺要求的目标型件。
浇注模块130可以完成将铸件液体(例如,金属液体)浇注到目标型件中,以形成铸件的工艺。
在一些实施例中,所述金属液体可以是熔融状态下的金属。所述金属的种类可以依据应用场景的不同而不同,例如,包括但不限于铁、铜、铝、锡、铅、镍等。在一些实施例中,所述将金属液体浇注到目标型件中时,可以采用冷壳浇注,也可以采用热壳浇注。在一些实施例中,所述冷壳浇注可以是指浇注的模壳没有经过高温焙烧就直接进行浇注工艺。冷壳浇注可以适用于浇注流动性好的材质并适合浇注较大的产品。所述热壳浇注可以是指模壳经过高温焙烧后再进行浇注工艺。热壳浇注可以适用于浇注任何材料。在一些实施例中,金属液体被浇注到目标型件中,待其冷却后即可形成金属铸件。在一些实施例中,将金属液体浇注到目标型件可以采用人工的方式实现,也可以采用自动化的方式实现。
脱壳模块140可以对浇注模块130中形成的铸件进行脱壳,并获取 铸件。所述脱壳可以是指将型壳或型芯与铸件分离的过程。在一些实施例中,所述脱壳可以包括脱壳处理,例如使用脱模剂或脱模蜡对铸件进行处理,使铸件能够更容易的脱模。在一些实施例中,所述获取铸件的过程可以采用人工的方式实现,例如,铸造工人可以通过敲击、切割等方式将铸件与目标型件进行分离,获得铸件;也可以采用自动化的方式实现,例如,使用自动脱壳设备对铸件进行脱壳。
本申请一些实施例披露了一种陶瓷型铸造材料。在一些实施例中,陶瓷型铸造材料可以包括:原砂、复合粘结剂和水。所述原砂为材料的基础组成部分,可以由一种或多种耐火材料的粉料组成。所述复合粘结剂可以由两种或两种以上粘结剂原料组成,用于辅助原砂成型。所述水可以用于稀释原砂与复合粘结剂的混合物,使混合物混合得更均匀,并使各组分混合后形成的陶瓷型铸造材料具备流动性。在一些实施例中,陶瓷型铸造材料还可以包括润滑剂。所述润滑剂可以用于润滑原砂与复合粘结剂。
在一些实施例中,所述原砂的质量比为80%~95%;所述复合粘结剂的质量比为1%~5%;所述水的质量比为8%~12%。在一些实施例中,陶瓷型铸造材料分为固体材料和液体材料。固体材料主要是一些耐火材料,可以包括成粉状或颗粒状的原砂以及纳米微粉。液体材料可以包括在常温下呈液态的复合粘结剂、润滑剂以及水。因此,本说明书实施例中的质量比指的是对应材料占铸造材料中固体材料的总质量的比值。例如,所述原砂的质量比指的是铸造材料的固体材料的总质量中,所述原砂的质量占;所述复合粘结剂的质量比指的是复合粘结剂质量占所述固体材料的总质量的比值;所述水的质量比指的是水的质量占所述固体材料的总质量的比值。
在一些实施例中,所述原砂在陶瓷型铸造材料中的质量比为80%~95%;优选的,质量比为80%~85%;进一步优选的,质量比为80%。在一些实施例中,所述复合粘结剂在陶瓷型铸造材料中的质量比为1%~5%; 优选的,质量比为2%~4%;进一步优选的,质量比为3%。在一些实施例中,水的质量比为8%~12%;优选的,水的质量比为8%~10%;优选的,水的质量比为9%。在一些实施例中,所述润滑剂在陶瓷型铸造材料中的质量比小于3%;在一些实施例中,质量比小于2%;在一些实施例中,质量比小于1%;在一些实施例中,所述铸造材料不包括润滑剂。在一些实施例中,陶瓷型铸造材料中液体材料的质量比小于20%;优选的,质量比小于15%;进一步优选的,质量比小于10%。其中,所述液体可以包括水与混合物中的其他液体。
在一些实施例中,本申请中揭示的陶瓷型铸造材料能够在室温范围内具有一定的流动性;在一些实施例中,陶瓷型铸造材料能够在低温范围内发生硬化反映;在一些实施例中,陶瓷型铸造材料还能够在高温范围内发生陶化反映。其中,所述硬化反应可以包括材料变硬的过程;例如,本申请中铸造材料经过低温加热后,铸造材料变硬,例如,铸造材料的硬度或强度增大。在一些实施例中,所述硬化也可以包括使材料获得更高的硬度或强度的过程,还包括材料的硬度参数值变高的过程。所述陶化反映可以理解为材料的各组分从无规混合到形成化学键成为部分结晶的过程。在一些实施例中,所述陶化也可以包括使材料进一步获得更高的硬度或强度的过程,还包括材料的硬度参数值进一步变高的过程。
在一些实施例中,所述陶瓷型铸造材料可以理解为材料充分搅拌后的状态下。在一些实施例中,所述室温范围可以包括18℃~35℃;也可以包括18℃~28℃;也可以包括22℃~25℃。所述流动性是指材料可以在各个方向不规则的变动或不保持固有形态的移动的性能。在一些实施例中,所述流动性的程度可以由材料的粘度值决定。在一些实施例中,所述陶瓷型铸造材料在室温时的粘度值为80秒~300秒;在一些实施例中,所述材料的粘度值为80秒~140秒;在一些实施例中,所述材料的粘度值为80秒~130 秒;在一些实施例中,所述材料的粘度值为80秒~120秒;在一些实施例中,所述材料的粘度值为90秒~110秒;在一些实施例中,所述材料的粘度值为100秒。在一些实施例中,所述材料的粘度值为140秒~300秒;在一些实施例中,所述材料的粘度值为150秒~300秒;在一些实施例中,所述材料的粘度值为160秒~300秒;在一些实施例中,所述材料的粘度值为170秒~300秒;在一些实施例中,所述材料的粘度值为180秒~300秒;在一些实施例中,所述材料的粘度值为190秒~300秒;在一些实施例中,所述材料的粘度值为200秒~300秒;在一些实施例中,所述材料的粘度值为210秒~290秒;在一些实施例中,所述材料的粘度值为220秒~280秒;在一些实施例中,所述材料的粘度值为230秒~270秒;在一些实施例中,所述材料的粘度值为240秒~260秒。
在一些实施例中,材料粘度值的计量单位“秒”指的是在均衡施加某一恒定力的情况下,将填充在测量桶的一定量体积的材料(例如,1升体积的材料)从所述测量桶内流出所需要的时间,即需要多少秒。
具体地,将材料置于一定容积的定量测量桶内,填料时关闭测量桶的流出口,装料填充到测量桶刻度线齐平。其中,所述测量桶上用于材料流出的流出口的口径可以设置为5mm。将活塞置于材料之上,所述活塞的直径与所述测量桶的内径相对应,然后通过小型定值压力设备,以25Kg·f的恒定力沿所述测量桶的轴线方向对活塞施加压力,并打开流出口。在所述压力的作用下,所述活塞下降了一定高度,该高度下降值对应于桶内材料流出的1升体积,测量出所述活塞下降了一定高度的时间,也就是1升材料流出的时间(秒),即为所述材料的粘度值(秒)。
在一些实施例中,所述材料在第一温度下加热第一时间后,能够发生硬化反应,或者获得更高的强度。在一些实施例中,所述材料经第一时间加热后可以形成具有一定硬度或强度的型件。例如,在一些实施例中, 将所述材料注入模具后,对该模具内的材料进行加热可以使材料获得更高的抗压强度。在一些实施例中,所述材料经第一温度下的第一时间加热后,所述型件的抗压强度为2MPa~5Mpa;在一些实施例中,抗压强度为2.2MPa~4.8MPa;在一些实施例中,抗压强度为2.5MPa~4.5MPa;在一些实施例中,抗压强度为2.8MPa~4.2MPa;在一些实施例中,抗压强度为3.0MPa~4.0MPa;在一些实施例中,抗压强度为3.2MPa~3.8MPa;在一些实施例中,抗压强度为3.5MPa。
在一些实施例中,所述第一时间小于3小时;优选的,所述第一时间小于2小时;优选的,所述第一时间小于1小时;优选的,所述第一时间小于50分钟;优选的,所述第一时间小于40分钟;优选的,所述第一时间小于30分钟;优选的,所述第一时间小于20分钟;所述第一时间可以是小于或等于10分钟;优选的,所述第一时间可以是5分钟~10分钟。在一些实施例中,所述第一温度的温度范围可以是50℃~200℃;优选的,可以是90℃~200℃;进一步优选的,可以是120℃~200℃;进一步优选的,可以是150℃~200℃;进一步优选的,可以是150℃~160℃。在一些实施例中,加热的第一温度可以与加热的第一时间具有一定的关联,也可以没有关联。在一些实施例中,如果加热时间较长,则可以适当降低加热温度。在一些实施例中,如果加热温度较高,则可以适当缩短加热时间。
在一些实施例中,所述材料在第二温度下加热第二时间后,能够发生陶化反应,或者获得更高的强度。在一些实施例中,所述材料经第二温度下的第二时间加热后,所述型件的抗压强度为5MPa~8MPa;在一些实施例中,,抗压强度为5.2MPa~7.8MPa;在一些实施例中,,抗压强度为5.5MPa~7.5MPa;在一些实施例中,,抗压强度为6.0MPa~7.0MPa;在一些实施例中,,抗压强度为6.5MPa。在一些实施例中,所述材料经第二温度下的第二时间加热后,所述型件的变形率小于1%;优选的,小于0.8%; 进一步优选的,小于0.6%;进一步优选的,小于0.5%;进一步优选的,小于0.4%。
在一些实施例中,所述第二时间可以是1小时~3小时;优选的,可以是1.5小时~3小时;进一步优选的,可以是2小时~3小时。在一些实施例中,所述第二温度的温度范围可以是600℃~1500℃;优选的,可以是800℃~1500℃;进一步优选的,可以是800℃~1200℃。
在一些实施例中,所述原砂可以由一种或多种耐火材料的粉料组成。在一些实施例中,所述耐火材料的粉料可以包括但不限于莫来砂、石英砂、锆砂、烧结镁砂、铬铁矿砂、镁橄榄石砂、蓝晶石砂、石灰石砂、石墨砂以及人造宝珠砂等。所述耐火材料随型件的用途不同而不同,例如,型件用于铸造铸铁、碳钢、低合金钢等时,耐火材料可以选用石英砂;型件用于铸造不锈钢、钛合金等时,耐火材料可以选用锆砂。在一些实施例中,为了同时兼顾成型件的强度以及成型的速度和粘结强度,所述原砂可以包括目数不同的第一类砂和第二类砂。所述第一类砂和第二类砂可以是材料不同的砂料,也可以是材料相同的砂料。
在一些实施例中,所述第一类砂可以是莫来砂,所述第二类砂可以是莫来粉。具体的,所述原砂可以包括具有第一目数的第一类砂和具有第二目数的第二类砂。在一些实施例中,所述第一目数可以是60目~80目;优选的,可以是70目~80目;进一步优选的,可以是70目~75目。在一些实施例中,所述第二目数可以是180目~200目;优选的,可以是190目~200目;进一步优选的,可以是195目~200目。在一些实施例中,所述第一目数和所述第二目数之间的差值至少为20目;在一些实施例中,所述第一目数和所述第二目数之间的差值至少为100目;在一些实施例中,所述第一目数和所述第二目数之间的差值至少为140目。
在一些实施例中,粉状材料的目数越大表示该材料的颗粒度越小, 在后期与粘结剂混合时能够使混合材料获得更大的粘结强度。粉状材料的目数越小表示该材料的颗粒度越大,在后期混合材料成型干燥过程中的干燥速度越快。在一些实施例中,第一类砂和第二类砂之间的目数差值以及第一类砂与第二类砂的质量配比可以根据具体成型件的大小、强度要求、成型速度等中的一个或多个来决定。具体地,在一些实施例中,当需要成型更快时,可以增大目数较小的第一类砂的占比,当需要成型件具有更高强度时,可以增大目数较高的第二类砂的占比。例如,成型件为小型型件时,固体材料可以包括30%的75目莫莱砂(作为第一类砂)和70%的200目莫莱粉(作为第二类砂)。又例如,成型件为大型陶壳时,固体材料可以包括20%的75目莫莱砂和80%的200目莫莱粉。
在一些实施例中,所述铸造材料中的固体材料还可以包括颗粒度更细的材料,例如,纳米微粉,用于增加型件的粘结强度以及提高型件的硬化速度。在一些实施例中,所述纳米微粉也可以包括颗粒度尺寸不同的第三类砂和第四类砂。其中,第三类砂和第四类砂的颗粒度小于第一类砂和第二类砂的颗粒度,换句话说,第三类砂的目数和第四类砂的目数大于第一类砂和第二类砂的目数。在一些实施例中,固体材料中不同目数的材料进行配比时也需要根据成型件的强度要求来进行调节,例如,在上文提到的30%的75目莫莱砂和70%的200目莫莱粉的实施例中,如果想要进一步增加成型件的强度或者硬化速度,可以把各固体材料的配比调整为20%的75目莫莱砂、60%的200目莫莱粉以及20%的纳米微粉。
在一些实施例中,所述复合粘结剂可以包括但不限于瞬干型粘结剂、紫外线光固化型粘结剂、压敏型粘结剂、厌氧型粘结剂、热固性粘结剂、热熔型粘结剂、乳液和乳胶型粘结剂以及其他类粘结剂。在一些实施例中,所述瞬干型粘结剂可以包括但不限于触变性(假塑性)氰基丙烯酸酯粘结剂、快固化氰基丙烯酸酯粘结剂、氰基丙烯酸酯-聚乙二醇粘结剂等。所述紫外 光固化型粘结剂可以包括由丙烯酸酯类预聚物(又称寡聚体)、活性单体和紫外线光引发剂构成的混合物。所述压敏型粘结剂可以包括但不限于丙烯酸树酯和硅氧烷压敏粘结剂、可交联接枝的丙烯酸压敏粘结剂等。所述厌氧型粘结剂可以包括但不限于厌气性丙烯酸粘结剂、含取代基糖精的厌气性粘结剂、含钛酸钾纤维的厌气性粘结剂等。所述热固型粘结剂可以包括但不限于环氧树脂、聚氨酯粘结剂、氨基树脂粘结剂等。所述热熔型粘结剂可以包括但不限于尼龙酚醛热熔粘结剂、含乙烯聚合物的热熔粘结剂及其层压晶、不饱和异氰酸酯接枝的聚烯烃热熔粘结剂等。所述乳液和乳胶型粘结剂可以包括但不限于耐热耐水的醋酸乙烯基聚合物乳胶粘结剂、不饱和羧酸改性的疑烯烃(乳胶)粘结剂、耐热性双组分水性粘结剂等。所述其他类粘结剂可以包括但不限于硅酸乙酯,硅溶胶,水玻璃,磷酸盐,铝溶胶、聚丙烯酸酯兑粘土粉、磷酸二氢铝等。在一些实施例中,所述复合粘结剂可以是由两种或两种以上粘结剂组成的混合物。在一些实施例中,所述复合粘结剂中不同粘结剂的质量比可以采用1:1的占比进行混合。在一些实施例中,所述复合粘结剂中的不同粘结剂也可以按照不同的比例进行混合,例如,热固性粘结剂、瞬干型粘结剂、其他粘结剂的质量占比分别为5:1:2,其中,其他粘结剂可以理解为除热固性粘结剂和瞬干型粘结剂以外的任意粘结剂。
在一些实施例中,所述润滑剂可以用于润滑原砂与复合粘结剂,使陶瓷型铸造材料的各组成部分混合得更均匀。在一些实施例中,所述润滑剂的材料可以是硝酸甘油、硅油、氮化硼等。
在一些实施例中,所述水可以用于稀释原砂与复合粘结剂的混合物,使混合物混合得更均匀,并使各组分混合后形成的陶瓷型铸造材料具备流动性。在一些实施例中,所述混合物中除了水之外,也可以包含一定比例的其他液体。在一些实施例中,所述混合物的流动性与其中的液体相关, 例如,混合物中液体含量越高,其流动性也越高。所述液体可以包括水与混合物中的其他液体。在一些实施例中,所述混合物也可以包含一定比例的挥发性液体,一方面能够使铸造材料获得一定的流动性,以方便将铸造材料注入到模具中;另一方面,当铸造材料注入模具之后,材料的挥发能够使型件获得一定的强度。在一些实施例中,所述铸造材料中可以包含较少比例成分的挥发性材料。在一些实施例中,所述铸造材料中,挥发性材料的质量比小于10%;优选地,小于8%;优选地,小于5%;优选地,小于3%。在一些实施例中,考虑到环保因素,所述铸造材料中也可以不含挥发性材料。在一些实施例中,所述挥发性材料可以包括但不限于酒精类物质(如甲醇、乙醇等)、丙酮、硅酸乙酯等。
在一些实施例中,所述材料可以不依赖促凝剂成型。在一些实施例中,可以材料中也可以包含少量的促凝剂,优选地,包含促凝剂的质量比小于20%,进一步优选地,小于10%,进一步优选地,小于5%,更进一步优选地,所述材料不包括促凝剂。在一些实施例中,所述促凝剂可以包括但不限于氢氧化钠、氢氧化钾、三乙醇胺、氢氧化铝、滑石、氧化镁、铝酸钙水泥、碱式氯化铝、氟硅酸钠、磷酸铝、磷酸钠、硅酸二钙、聚合氯化铝、乙二醛等。
图2是根据本申请一些实施例所示的一种陶瓷型铸造工艺的流程图。如图2所示,一种陶瓷型铸造工艺的流程可以包括:
步骤210,提供铸造材料以及模具。
在一些实施例中,所述提供铸造材料的方式可以包括提供上述陶瓷型材料的混合物;也可以包括提供陶瓷型材料的各组分的材料,然后将其充分搅拌。在一些实施例中,所述混合物可以是预先搅拌并充分混合均匀后的材料,在一些实施例中,所述混合物可以预先混合均匀后保存在密封容器中。在一些实施例中,所述混合物的保存时的环境温度可以是2℃~15℃; 在一些实施例中,所述混合物的保存时的环境温度可以是3℃~14℃所述混合物的保存时的环境温度可以是3℃~12℃;在一些实施例中,所述混合物的保存时的环境温度可以是4℃~10℃;在一些实施例中,所述混合物的保存时的环境温度可以是5℃~10℃;在一些实施例中,所述混合物的保存时的环境温度可以是5℃~8℃;在一些实施例中,所述混合物的保存时的环境温度可以是6℃。在一些实施例中,所述混合物保存时,密封容器中的环境湿度可以是一定的湿度,以防止混合物中的水分流失。在一些实施例中,所述环境湿度可以是40%~90%;在一些实施例中,环境湿度还可以是45%~90%;在一些实施例中,环境湿度还可以是50%~90%;在一些实施例中,环境湿度还可以是55%~90%;在一些实施例中,环境湿度还可以是60%~90%;在一些实施例中,环境湿度还可以是70%~90%;在一些实施例中,环境湿度还可以是80%~90%;在一些实施例中,环境湿度还可以是40%~85%;在一些实施例中,环境湿度还可以是50%~85%;在一些实施例中,环境湿度还可以是55%~85%;在一些实施例中,环境湿度还可以是60%~85%;在一些实施例中,环境湿度还可以是65%~85%;在一些实施例中,环境湿度还可以是70%。在一些实施例中,所述混合均匀后的材料在一定温度范围下具有一定的流动性。所述材料具有流动性的温度范围可以参考本申请前述部分实施例的相关描述。优选的,所述材料在18℃~35℃温度范围内具有一定的流动性。所述流动性是指材料可以在各个方向不规则的变动或不保持固有形态的移动的性能。在一些实施例中,所述流动性的程度可以由材料的粘度值决定。所述材料的流动性与其粘度值的相关关系可以参考本申请前述部分实施例的相关描述,此处不再赘述。在一些实施例中,所述提供铸造材料也可以是提供上述陶瓷型材料的各组分的材料。所述各组分的材料可以在该工艺步骤中进行搅拌并使其充分混合均匀。在一些实施例中,可以由操作工人人为判断所述材料是否搅拌均匀。在一些 实施例中,判断均匀性的方式可以是:材料搅拌后,在不同位置取相同体积的材料进行称重,若各位置取出的材料重量相同或相近,则可以认为材料已搅拌均匀。
在一些实施例中,所述陶瓷型铸造工艺使用的铸造材料及其所述各组分的材料可以参考本说明书前述部分涉及的一个或多个实施。
在一些实施例中,所述模具可以包括用于型壳铸造的模具,也可以包括用于型芯铸造的模具。在一些实施例中,所述模具可以是木模、金属模或树脂模。所述模具可以是预先制作好的,也可以是在该步骤中制作而成的。所述模具可以包括与其铸造件所对应的一个或多个相关参数。所述相关参数可以包括但不限于模具的形状、模具的尺寸、模具的型号等。在一些实施例中,可以根据模具的相关参数提供模具。例如,可以根据铸造件的尺寸及形状参数提供对应的模具,也可以根据铸造件的型号提供相应型号的模具。
步骤220,将铸造材料注入所述模具中,形成型件。
在一些实施例中,所述将铸造材料注入所述模具的方式可以包括挤压方式和浇灌方式。所述挤压方式可以是通过额外提供的压力将铸造材料注入模具的方式。所述浇灌方式可以是由铸造材料利用其流动性在重力作用下自由注入模具的方式。在一些实施例中,可以根据铸造材料的粘度值确定其注入模具的方式是挤压方式或是浇灌方式。在一些实施例中,将铸造材料注入所述模具后,由于模具具有一定的形状,所以处于所述模具内的材料可以称之为型件,但在不同的工艺阶段,型件的强度有所不同。
在一些实施例中,当铸造材料的粘度值范围为大于140秒时;优选地,当铸造材料的粘度值范围为140秒~300秒时;优选地,当铸造材料的粘度值范围为200秒~300秒时,铸造材料通过挤压的方式注入模具中。所述挤压方式可以由挤压装置实现。在一些实施例中,所述挤压装置至少可 以包括存储材料的储料仓,挤压器,挤压通道,与挤压通道连接的模具腔室,设置挤压压力和/或挤压时间的控制器。所述铸造材料放入储料仓后,经挤压器的挤压,由挤压通道进入模具腔室。在一些实施例中,所述挤压器的挤压压力可以通过控制器设定。在一些实施例中,所述压力值为80MPa~150MPa;优选的,压力值为80MPa~130MPa;进一步优选的,压力值为80MPa~110MPa。在一些实施例中,所述挤压器的挤压时间也可以通过控制器提前设定。在一些实施例中,所述挤压器的挤压时间也可以不用提前设定,而是根据挤压装置的运行速度自行决定。在一些实施例中,所述挤压时间为15秒~3分钟;优选的,挤压时间为15秒~1分钟;进一步优选的,挤压时间为15秒~30秒。使用挤压装置注入铸造材料成型,生产出的型件硬度高,精度高,溃散性好,不易变形。
在一些实施例中,当铸造材料的粘度值小于140秒时;优选地,当铸造材料的粘度值范围为80秒~140秒时,铸造材料通过浇灌的方式注入模具中。所述浇灌方式可以由浇灌装置实现。所述浇灌装置可以包括料桶、控制机构。所述浇灌装置可以通过控制机构控制料桶将其内的铸造材料灌入模具中。
在一些实施例中,将铸造材料注入所述模具之前,还可以对模具进行加热,然后将铸造材料注入加热中或加热后的模具中。在一些实施例中,对模具进行加热到预设温度后,可以将温度保持在该预设温度继续加热,然后将铸造材料注入所述模具中。在一些实施例中,对模具进行加热到的预设温度可以为50℃~200℃;在一些实施例中,所述预设温度可以为60℃~190℃;在一些实施例中,所述预设温度可以为70℃~180℃;在一些实施例中,所述预设温度可以为70℃~170℃;在一些实施例中,所述预设温度可以为70℃~160℃;在一些实施例中,所述预设温度可以为70℃~150℃;在一些实施例中,所述预设温度可以为70℃~140℃;在一些 实施例中,所述预设温度可以为70℃~130℃;在一些实施例中,所述预设温度可以为70℃~120℃;在一些实施例中,所述预设温度可以为80℃~110℃;在一些实施例中,所述预设温度可以为90℃~100℃。
在一些实施例中,当铸造材料注入模具后,为了获得质量更好的型件,可以增加一个保压操作。其中,质量更好的型件可以包括强度更大的型件;外形尺寸更准确的型件;外表毛刺较少或外表光洁度较高的型件以及尺寸稳定性较高的型件。其中,尺寸稳定性可以理解为在常温下和/或高温焙烧情形下,尺寸不易发生形变。在一些实施例中,保压操作中的压力指的是让模具保持在闭合状态的作用力,其中,模具的闭合状态与开模状态相反,指的是模具内腔能够与型件的外形尺寸完全对应的状态。在一些采用挤压方式进行材料注入的实施例中,当铸造材料注入模具后,注射压力会对应地释放掉,此时通过上述保压操作可以提高型件的质量。
在一些实施例中,当铸造材料注入模具后,保压操作可以与所述对模具加热同时进行,即铸造材料注入所述模具后,一边对模具继续加热,一边对模具施加使其保持在闭合状态的压力或作用力。在一些实施例中,当铸造材料注入模具后,保压操作也可以与所述对模具加热分开进行,即铸造材料注入所述模具后,可以先对所述模具进行保压,然后对模具内的型件继续加热一定时间。在一些实施例中,保压操作的时间可以是小于10分钟;优选的,可以是小于8分钟;优选的可以是小于5分钟。
步骤230,在第一温度范围内,对所述型件进行加热以使其硬化。
在一些实施例中,所述铸造材料被注入模具后形成型件。所述型件的类型与模具的类型相对应。当模具为铸造型壳的模具时,所述型件为型壳型件;当模具为铸造型芯的模具时,所述型件为型芯型件。在一些实施例中,在第一温度范围内对所述型件加热可以使其硬化或者使其获得第一抗压强度。在一些实施例中,所述硬化可以理解为材料变硬的过程,也可 以理解为材料获得更高硬度或强度的过程。在一些实施例中,所述第一温度的温度范围可以是50℃~200℃;优选的,可以是90℃~200℃;进一步优选的,可以是120℃~200℃;进一步优选的,可以是150℃~200℃;进一步优选的,可以是150℃~160℃。在一些实施例中,所述型件获得的第一抗压强度为2MPa~5Mpa;所述第一抗压强度的其他实施例可参见本说明书的其他部分。在一些实施例中,在第一温度范围内,对模具内的型件加热以使其硬化的加热时间可以是小于3小时;优选的,可以是小于2小时;优选的,可以是小于1小时;优选的,可以是小于50分钟;优选的,可以是小于40分钟;优选的,可以是小于30分钟;优选的,可以是小于20分钟;优选的,可以是小于或等于10分钟;优选的,可以是5分钟~10分钟。在一些实施例中,对铸造材料进行低温烘焙,可以使铸造材料快速干燥,并且低温烘焙对加热设备要求低,普通烘箱即可操作。
在一些实施例中,对所述型件进行加热以使其硬化的加工步骤中,可以将型件从模具中取出,并待所述型件完全冷却后放入烘箱内进行加热,使其硬化。在一些实施例中,可以等待型件在模具中冷却后再把其从模具中取出;在一些实施例中,也可以先将模具从模具中取出然后再对其进行冷却。在一些实施例中,也可以不将型件从模具中取出,直接对模具及其中的型件进行加热,以使得模具中的型件硬化。在一些实施例中,可以等模具中的型件完全冷却后,再对模具以及其中的型件进行加热,以使型件硬化。
步骤240,在第二温度范围内,对型件进行加热,获得目标型件。
在一些实施例中,所述第二温度范围可以是600℃~1500℃;优选的,可以是800℃~1500℃;进一步优选的,可以是800℃~1200℃。在一些实施例中,在第二温度范围内,对型件进行加热,获得目标型件的加热时间可以是1小时~3小时;优选的,可以是1.5小时~3小时;进一步优选的,可 以是2小时~3小时。在一些实施例中,所述在第二温度范围内,对型件进行加热可以使其陶化或者获得第二抗压强度,也就是获得目标型件。所述陶化反映可以理解为材料的各组分从无规则混合到形成化学键成为部分结晶的过程,也可以理解为材料进一步获得更高强度或硬度的过程。在一些实施例中,所述目标型件获得的第二抗压强度为5MPa~8MPa;所述第二抗压强度的其他实施例可参见本说明书其他部分。对铸造材料进行高焙烧,可以使制造出的型件硬度高,溃散性好,高温形变小。在一些实施例中,所述目标型件可以包括型芯型件、型壳型件以及型壳与型芯的组合型件。
在一些实施例中,可以将步骤230中获得的型件从模具中取出,再进行第二温度范围内的加热,获得目标型件。在一些实施例中,也可以不将步骤230中获得的型件从模具中取出,而是直接在模具中对型件进行第二温度范围内的加热,获得目标型件。
在一些实施例中,当在第二温度范围内加热的型件是型芯型件时,获得的目标型件为型芯型件;当在第二温度范围内加热的型件是型壳型件时,获得的目标型件为型壳型件。在一些实施例中,还可以将型壳型件与型芯型件进行合型组装,将组装后的型件在第二温度范围内加热,获得目标型件,此时获得的目标型件为型壳与型芯的组合型件。在一些实施例中,也可以将在第二温度范围内加热后获得的型壳型件和型芯型件进行合型组装,形成型壳与型芯的组合型件,作为本步骤中获得的目标型件。
在一些实施例中,精密铸造系统100中的一个或多个模块中可以采用自动化或智能化实现,例如,目标型件制造模块120中的一个或多个工艺步骤可以结合自动化或智能化。
在一些实施例中,上述提供铸造材料步骤中提供几个不同的材料,然后再充分搅拌的方案可以由自动化材料提供设备实现。在一些实施例中,所述自动化材料提供设备可以包括自动化搅拌设备。在一些实施例中,提 供铸造材料可以先提供几种原材料,然后再充分搅拌。此时可以使用自动化材料提供设备中的自动化搅拌设备对几种材料的混合物进行充分搅拌。所述自动化搅拌设备可以包括料桶和搅拌装置。在一些实施例中,所述料桶中可以在不同部位设置多个传感器(如压力传感器)监控料桶中铸造材料是否混合均匀。例如,当设置在不同部位的传感器测得的数值相近时,即认为铸造材料已搅拌至混合均匀。
在一些实施例中,上述将铸造材料注入模具的操作也可以实现自动化。在一些实施例中,所述挤压装置的压力值可以由操作人员根据经验或相关规定设定。在一些实施例中,为了实现自动化,所述挤压装置也可以根据模具和/或铸造材料的相关参数自动设定压力值。所述模具的相关参数可以包括模具的形状、尺寸等;所述铸造材料的相关参数可以包括材料的粘度值等。在一些实施例中,所述挤压装置的压力值可以是恒定值,即在挤压操作过程中压力值保持不变。在一些实施例中,挤压装置进行挤压操作的过程中也可以根据材料的参数变化自动调节挤压操作时的压力值。在一些实施例中,所述材料的相关参数可以包括但不限于材料的粘度值、材料的温度等。例如,材料温度变高后可以减小压力值。又例如,挤压装置可以根据材料的粘度值自动调节压力的大小,粘度值大时,挤压的压力大,粘度值小时,挤压的压力小。在一些实施例中,所述材料的相关参数可以由人工输入或者设备自动测得。
在一些实施例中,所述陶瓷型铸造工艺200也可以通过自动化产线来实现,即各工艺步骤之间均使用机器操作加以衔接。例如,在各工艺步骤之间配备机械手装置,使用机械手装置完成铸造材料、模具、型件等在各工艺步骤中的转移。又例如,型件在低温加热后,自动出模,由传输装置或机器手转移至下一高温加热工位进行高温加热。还例如,当型件需要合型时,可以由机械手装置抓取并控制型壳和/或型芯进行合型操作。在一些 实施例中,所述自动化产线还包括控制中心,用于控制各个工艺步骤对应的机器操作装置彼此之间的相互配合。
本申请所披露的陶瓷型铸造材料及其工艺可能带来的有益效果包括但不限于:(1)制造工艺简单,生产周期短;(2)产品精度高,表面光洁度好;(3)可适应大批量产品生产。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (30)

  1. 一种陶瓷型铸造材料,其特征在于,所述材料包括:原砂,复合粘结剂及水。
  2. 根据权利要求1所述的材料,其特征在于,所述原砂的质量比为80%~95%;复合粘结剂的质量比为1%~5%;水的质量比为8%~12%。
  3. 根据权利要求2所述的材料,其特征在于,所述质量比是基于所述材料中固体材料的总质量的比值。
  4. 根据权利要求1所述的材料,其特征在于,所述原砂包括具有第一目数的第一类砂和具有第二目数的第二类砂;所述第一目数与第二目数之间的差值在20目以内。
  5. 根据权利要求1所述的材料,其特征在于,在18℃~28℃时,所述材料的粘度为80秒~300秒。
  6. 根据权利要求1所述的材料,其特征在于,在第一温度下,由所述材料形成的型件经过第一时间加热后,所述型件的抗压强度为2MPa~5MPa。
  7. 根据权利要求1所述的材料,其特征在于,第一温度下,由所述材料形成的型件经过第一时间的加热后,所述型件发生硬化反应。
  8. 根据权利要求6或7所述的材料,其特征在于,所述第一温度为50℃~200℃。
  9. 根据权利要求6或7所述的材料,其特征在于,所述第一时间为小于3小时。
  10. 根据权利要求6或7所述的材料,其特征在于,在第二温度下,加热后的型件经过第二时间加热后,所述型件的抗压强度为5MPa~8MPa。
  11. 根据权利要求6或7所述的材料,其特征在于,在第二温度下,加热后的型件经过第二时间加热后,型件的变形率小于0.6%。
  12. 根据权利要求6或7所述的材料,其特征在于,在第二温度下,加热后的型件经过第二时间加热后,所述型件发生陶化反映。
  13. 根据权利要求10~12中任一项所述的材料,其特征在于,所述第二温度包括800℃~1200℃。
  14. 根据权利要求10~12中任一项所述的材料,其特征在于,所述第二时间为1小时~3小时。
  15. 根据权利要求1~14中任一项所述的材料,其特征在于,所述复合粘结剂至少包括硅酸乙酯,硅溶胶,水玻璃,融酸盐中的一种或多种。
  16. 根据权利要求1所述的材料,其特征在于,所述材料中液体材料的质量比小于20%。
  17. 根据权利要求1所述的材料,其特征在于,所述材料中挥发性材料的质量比小于5%。
  18. 一种陶瓷型铸造工艺,其特征在于,所述工艺包括:
    提供铸造材料以及模具;
    将铸造材料注入所述模具中,形成型件;
    在第一温度范围内,对所述型件进行加热以使其硬化;
    在第二温度范围内,对型件进行加热,获得目标型件。
  19. 根据权利要求18所述的工艺,其特征在于,所述第一温度的温度范围包括50℃~200℃。
  20. 根据权利要求18所述的工艺,其特征在于,所述第二温度的温度范围包括800℃~1200℃。
  21. 根据权利要求18所述的工艺,其特征在于,所述提供铸造材料以及模具包括:将铸造材料搅拌均匀,使其在18℃~28℃时的粘度值为80秒~300秒。
  22. 根据权利要求21所述的工艺,其特征在于,粘度值在80秒~140秒范围内,采用浇灌方式将铸造材料注入所述模具中;粘度值在140秒~300秒范围内,采用挤压方式将铸造材料注入所述模具中。
  23. 根据权利要求18所述的工艺,其特征在于,所述将铸造材料注入所述模具中包括:
    通过挤压装置在80MPa~150MPa压力下将铸造材料挤压至所述模具内。
  24. 根据权利要求23所述的工艺,其特征在于,完成挤压操作的时间为15秒~3分钟。
  25. 根据权利要求18所述的工艺,其特征在于,所述在第一温度范围内,对模具内的型件加热以使其硬化包括:
    加热时间小于5分钟。
  26. 根据权利要求18~25所述的工艺,其特征在于,所述在第一温度范围内,对型件加热以使其硬化包括:
    对模具内的型件进行保压操作;
    对保压后的型件进行加热。
  27. 根据权利要求26所述工艺,其特征在于,所述保压操作的时间为小于10分钟。
  28. 根据权利要求18所述的工艺,其特征在于,所述型件包括型壳及其对应的型芯;所述在第二温度范围内,对型件进行加热,获得目标型件包括:
    将型壳与型芯进行合型组装;
    对组装后的型件再进行加热。
  29. 根据权利要求18或28所述的工艺,其特征在于,所述工艺还包括:
    将金属液体浇注到目标型件;
    待金属液体凝固后,获取铸件。
  30. 根据权利要求18所述的工艺,其特征在于,所述铸造材料包括如权利要求1~17中任一项所述的材料。
PCT/CN2019/130018 2019-12-30 2019-12-30 一种陶瓷型铸造材料及其铸造工艺 WO2021134248A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/130018 WO2021134248A1 (zh) 2019-12-30 2019-12-30 一种陶瓷型铸造材料及其铸造工艺
CN202210826973.5A CN115138807A (zh) 2019-12-30 2019-12-30 一种陶瓷型铸造工艺
CN201980103341.2A CN114867568A (zh) 2019-12-30 2019-12-30 一种陶瓷型铸造材料及其铸造工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130018 WO2021134248A1 (zh) 2019-12-30 2019-12-30 一种陶瓷型铸造材料及其铸造工艺

Publications (1)

Publication Number Publication Date
WO2021134248A1 true WO2021134248A1 (zh) 2021-07-08

Family

ID=76687515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130018 WO2021134248A1 (zh) 2019-12-30 2019-12-30 一种陶瓷型铸造材料及其铸造工艺

Country Status (2)

Country Link
CN (2) CN114867568A (zh)
WO (1) WO2021134248A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86100313A (zh) * 1986-01-15 1986-10-08 武汉市机械工艺研究所 耐火粉料作分散媒分散硅酸乙酯无有机溶剂混合水解铸造工艺
JPH05212487A (ja) * 1992-02-03 1993-08-24 Mitsubishi Heavy Ind Ltd 鋳型の製造方法
JPH066221B2 (ja) * 1989-06-15 1994-01-26 本田技研工業株式会社 セラミック鋳型の製造方法
CN101181735A (zh) * 2007-12-13 2008-05-21 上海交通大学 镁合金陶瓷型精密铸造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079039C (zh) * 1999-06-23 2002-02-13 罗守信 硅酸乙酯自硬砂陶瓷型工艺
US20110132562A1 (en) * 2009-12-08 2011-06-09 Merrill Gary B Waxless precision casting process
US20110132564A1 (en) * 2009-12-08 2011-06-09 Merrill Gary B Investment casting utilizing flexible wax pattern tool
CN103170578A (zh) * 2013-03-14 2013-06-26 山东理工大学 陶瓷型精密铸造方法
CN105921679B (zh) * 2016-05-12 2018-03-09 杜忠维 改性陶瓷壳型及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86100313A (zh) * 1986-01-15 1986-10-08 武汉市机械工艺研究所 耐火粉料作分散媒分散硅酸乙酯无有机溶剂混合水解铸造工艺
JPH066221B2 (ja) * 1989-06-15 1994-01-26 本田技研工業株式会社 セラミック鋳型の製造方法
JPH05212487A (ja) * 1992-02-03 1993-08-24 Mitsubishi Heavy Ind Ltd 鋳型の製造方法
CN101181735A (zh) * 2007-12-13 2008-05-21 上海交通大学 镁合金陶瓷型精密铸造方法

Also Published As

Publication number Publication date
CN114867568A (zh) 2022-08-05
CN115138807A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN104668565B (zh) 粉末注射成型喂料制备方法及粉末注射成型生产方法
CN108083777B (zh) 一种光固化3d打印用铝基陶瓷料浆及陶瓷型芯的制备方法
CN105198449B (zh) 一种光固化成型的高致密陶瓷的制备方法
KR101740096B1 (ko) 믹서, 분말 야금용 원료의 혼합 방법 및 사출성형 조성물용 바인더
CN103360079B (zh) 一种空心涡轮叶片一体化陶瓷铸型的型芯型壳定制方法
CN102500748B (zh) 一种铝碳化硅复合材料的制备方法
CN105658352B (zh) 制造用于生产铸造件的失芯或模制件方法
CN103896601B (zh) 一种高致密度复杂形状陶瓷制品的热压烧结方法
CN108101519A (zh) 一种用于复杂结构零件定向凝固成形的陶瓷铸型制备方法
CN102173819B (zh) 一种电真空陶瓷管壳的制备方法
CN108326283A (zh) 一种Ti-6Al-4V合金零件的制备方法
CN113880559A (zh) 一种基于光固化成形的难固化陶瓷的制备方法及产品
US7128129B2 (en) Investment casting slurry composition and method of use
CN106670451A (zh) 粉末注射成形用铜合金喂料配方及喂料制备方法
CN108164257A (zh) 一种精密铸造用型芯及其制造方法
CN110066937B (zh) 一种高强度、高模量、高塑性陶瓷颗粒铝基复合材料的制备方法
WO2021134248A1 (zh) 一种陶瓷型铸造材料及其铸造工艺
US9539637B2 (en) Investment casting refractory material
CN104128556B (zh) 一种无机易脱芯溃散的陶瓷型芯
CN106083005B (zh) 高孔隙率易脱除硅基陶瓷型芯制备方法
CN105050751A (zh) 用于修复陶瓷型芯的方法
CN104070141A (zh) 一种稀土包覆氧化镁基陶瓷型芯
CN105884339A (zh) 一种凝胶注模成型技术制备氧化铝直孔型供气元件的方法
US6328918B1 (en) Low pressure injection molding of metal and ceramic threaded components
TWI249512B (en) Manufacturing method of mini ceramic crucible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958537

Country of ref document: EP

Kind code of ref document: A1