WO2021133018A1 - 용융물 처리 장치 및 방법 - Google Patents

용융물 처리 장치 및 방법 Download PDF

Info

Publication number
WO2021133018A1
WO2021133018A1 PCT/KR2020/018846 KR2020018846W WO2021133018A1 WO 2021133018 A1 WO2021133018 A1 WO 2021133018A1 KR 2020018846 W KR2020018846 W KR 2020018846W WO 2021133018 A1 WO2021133018 A1 WO 2021133018A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
gas
unit
container
melt
Prior art date
Application number
PCT/KR2020/018846
Other languages
English (en)
French (fr)
Inventor
김성줄
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP20905734.8A priority Critical patent/EP4082689A4/en
Priority to CN202080090092.0A priority patent/CN114901405B/zh
Priority to JP2022538800A priority patent/JP7383826B2/ja
Publication of WO2021133018A1 publication Critical patent/WO2021133018A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge

Definitions

  • the present invention relates to an apparatus and method for processing a melt, and more particularly, to an apparatus and method for processing a melt capable of effectively preventing the penetration of a melt into an injection unit for a long period of time.
  • ladle In the steelmaking process and continuous casting process, ladle is used for receiving, refining and transporting molten steel.
  • a purging plug is provided at the bottom of the ladle, and the purging plug is connected to an argon gas utility line.
  • argon gas may be supplied from the utility line to the purging plug, and the bubbling process of molten steel may be performed therefrom. In this bubbling process of molten steel, it is possible to stir the molten steel, adjust components, float inclusions, and control temperature.
  • Patent Document 1 KR10-2013-0101786 A
  • Patent Document 2 KR10-2013-0107713 A
  • the present invention provides an apparatus and method for treating a melt that can effectively prevent the melt from penetrating into a spraying part for a long time.
  • a melt processing apparatus includes: a container unit having a space therein so that the melt can be accommodated; an injection unit mounted on a lower portion of the vessel unit so as to inject a gas into the melt inside the vessel unit; a storage unit mounted on the container unit and filled with gas therein; and a supply part installed in the container part so as to connect the injection part and the storage part, and having a pressure regulator for regulating the supply pressure of the gas and a flow regulator for regulating the supply flow rate of the gas whose supply pressure is adjusted.
  • the supply unit may include: a pipe extending along an outer surface of the container unit and connecting the injection unit and the storage unit; a safety valve mounted on the pipe; the pressure regulator is mounted on the pipe to be positioned between the safety valve and the injection unit, and the flow rate regulator is positioned on the pipe to be positioned between the pressure regulator and the injection unit can be installed.
  • the supply unit may include: a first shutoff valve mounted on the pipe to be positioned between the safety valve and the pressure regulator; a discharge valve mounted on the pipe to be positioned between the first shut-off valve and the safety valve; and a second shutoff valve mounted on the pipe to be positioned between the pressure regulator and the flow regulator.
  • a plurality of storage units may be provided, and a part of the pipe may be branched into a plurality of branch pipes, and each branch pipe may be connected to each storage unit.
  • the storage unit is connected to the pipe, the gas is filled therein, a replaceable pressure vessel; a protective container in which the pressure container is accommodated, mounted on an outer surface of the container part, and partially openable; an anti-shattering plate formed to cover the upper surface of the protective container; and a fixing plate protruding from the inner surface of the protective container and capable of contacting the pressure container.
  • the pressure vessel may have a convex upper portion, and a plurality of fixing plates may be provided, and at least one fixing plate may contact the convex portion of the upper portion of the pressure vessel to restrict the vertical movement of the pressure vessel. .
  • the rest of the fixing plate may contact a side surface of the pressure vessel to constrain the horizontal movement of the pressure vessel.
  • At least one of a heat blocking member and a cooling passage may be provided on the inner surface of the protective container.
  • It may include; a weight adjustment unit mounted on the outer surface of the container portion at a position opposite to the storage portion in the horizontal direction with the container portion interposed therebetween.
  • At least a portion of the weight adjusting unit may be installed to be movable in the horizontal direction along the outer surface of the container unit to adjust the center of gravity.
  • a method for treating a melt includes the steps of providing a movable container unit together with a gas-filled storage unit; transferring the container part containing the melt from the first position to the second position; supplying gas to the injection unit mounted on the lower portion of the vessel unit so as to inject the gas into the melt inside the vessel unit; adjusting the supply pressure of the gas supplied to the injection unit; and adjusting the supply flow rate of the gas whose supply pressure is adjusted.
  • the process of adjusting the pressure may include reducing the supply pressure to a reference pressure lower than the internal pressure of the utility line at at least one of the first position and the second position and higher than the melt pressure. have.
  • the process of adjusting the pressure may include reducing the supply pressure to a reference pressure lower than the filling pressure of the storage unit and higher than the melt pressure.
  • the reference pressure may be determined according to the height of the melt inside the container unit.
  • the process of adjusting the flow rate may include increasing or decreasing the supply flow rate so that the gas follows a preset reference flow rate while maintaining the supply pressure.
  • the process of preventing the center of gravity of the container from being biased by applying a weight to the opposite side of the storage part with respect to the container part may include.
  • the process of moving the action point of the weight toward the storage unit according to the consumption amount of the gas may include.
  • the melt may include at least one of molten steel and slag.
  • the gas can be supplied to the injection unit at a predetermined pressure and flow rate for a long time.
  • the supply pressure and the supply flow rate of the gas may be maintained at desired reference values by using the pressure regulator and the flow regulator. In this case, by first adjusting the supply pressure of the gas and adjusting the supply flow rate of the gas whose pressure is adjusted, the supply pressure and the supply flow rate of the gas may be stably maintained for a long time.
  • the container unit repeats the entire process cycle of the steelmaking process and the continuous casting process several times, it is possible to effectively prevent the melt from penetrating into the spraying part directly exposed to the melt for a long time. Accordingly, it is possible to increase the service life of the gas injection unit, and from this, as the operation of the container unit becomes smooth, the productivity of the steelmaking process and the continuous casting process can be improved.
  • FIG. 1 is a schematic diagram of a melt processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a melt processing apparatus according to an embodiment of the present invention.
  • FIG 3 is a side view of a melt processing apparatus according to an embodiment of the present invention.
  • FIG. 4 is a rear view of a melt processing apparatus according to an embodiment of the present invention.
  • FIG. 5 is a conceptual diagram of a supply unit according to an embodiment of the present invention.
  • FIG. 6 and 7 are conceptual views of a supply unit according to a first modified example of the present invention.
  • FIG. 8 is a front view of a melt processing apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a weight adjustment unit according to a second modified example of the present invention.
  • the melt processing apparatus and method according to an embodiment of the present invention may be applied to various melt processing processes in various industrial fields.
  • an embodiment of the present invention will be described in detail on the basis of a ladle used for receiving, refining, and transporting molten steel in the steelmaking process and the continuous casting process of the iron powder.
  • Figure 1 is a schematic view showing a melt processing apparatus according to an embodiment of the present invention
  • Figures 2 (a) and (b) is a plan view showing the upper and lower portions of the container according to an embodiment of the present invention.
  • the container part 100 having a space therein to accommodate the melt (M), the gas can be injected into the melt (M) inside the container part 100
  • the injection unit 200 mounted on the lower part of the container unit 100 so that the storage unit 300, the injection unit 200 and the storage unit 300 are mounted on the container unit 100 and can be filled with gas therein.
  • the supply unit 400 having a pressure regulator 430 for controlling the supply pressure of the gas and a flow rate controller 440 for controlling the supply flow rate of the gas with which the supply pressure is adjusted, which is installed in the container unit 100 to connect the ) is included.
  • the melt (M) may include at least one of molten steel and molten slag.
  • the type of the melt (M) may be various.
  • the gas may include an inert gas.
  • the inert gas may include, for example, argon gas.
  • the type of gas may vary.
  • the container part 100 may accommodate the melt (M) therein.
  • the container unit 100 may be used for receiving, refining, and transporting molten steel in a steelmaking process and a continuous casting process, and may be used for receiving and transporting slag.
  • the container unit 100 may include a container body 110 , a protrusion member 120 , a locking member 130 , a support member 140 , and a discharge member 150 .
  • the container body 110 may have a cylindrical shape, for example.
  • the container body 110 may have a space therein, and an upper portion may be opened.
  • the melt (M) may be accommodated in the interior of the container body (110).
  • the container body 110 may include a bottom plate and a side wall.
  • the bottom plate is, for example, in the shape of a disk, and may extend in the horizontal direction.
  • the horizontal direction may include a left-right direction and a front-rear direction.
  • the side wall may have a hollow cylindrical body shape and may extend in an up-down direction.
  • the side wall may be mounted around the edge of the upper surface of the bottom plate.
  • the shape and structure of the above-described container body 110 may vary.
  • the protruding member 120 may protrude from the outer circumferential surface of the side wall of the container body 110 and may extend along the outer circumferential circumference thereof.
  • a plurality of protrusion members 120 may be provided and may be arranged in a vertical direction.
  • the engaging members 130 are provided as a pair, are spaced apart from each other in the left and right directions, and may be mounted on both upper sides of the side wall of the container body 110 .
  • the locking member 130 may be coupled with a main winding hook (not shown) of a crane (not shown). The container unit 100 may be supported and hoisted on the main winding hook by the engaging member 130 .
  • a tilt arm (not shown) may be provided on the lower surface of the bottom plate of the container body 110 so as to be coupled with the hoisting hook (not shown) of the crane.
  • the container unit 100 can be tilted by pulling the tilting arm upward with the bowon hook.
  • the supporting member 140 may be provided in plurality, and may be spaced apart from each other in the horizontal direction to be mounted on the edge of the bottom plate of the container body 110 .
  • a predetermined separation space can be secured under the bottom plate of the container body 110 by the support member 140 .
  • the discharge member 150 may be mounted on the upper end of the side wall of the container body 110 between the pair of locking members 130 .
  • the discharge member 150 and the tilting arm may be spaced apart from each other in the front-rear direction.
  • the discharge member 150 may be located in front of the locking member 130 .
  • the discharge member 150 may be provided with a discharge flow path in a concave shape on the upper surface.
  • the discharge passage may extend in the front-rear direction.
  • the melt (M) may be discharged to the front of the container body 110 through the discharge passage. That is, the front may mean a direction in which the melt (M) is discharged from the container unit (100).
  • FIG. 3 is a side view showing a melt processing apparatus according to an embodiment of the present invention
  • FIG. 4 is a rear view showing a melt processing apparatus according to an embodiment of the present invention
  • 5 is a conceptual diagram for explaining a supply unit according to an embodiment of the present invention.
  • the injection unit 200 may be mounted on a lower portion of the vessel body 110 to inject gas into the vessel body 110 .
  • the injection unit 200 may be mounted to penetrate the bottom plate of the container body 110 in the vertical direction.
  • the injection unit 200 may have an upper surface exposed inside the container body 110 .
  • the injection unit 200 may include a porous refractory material.
  • the injection unit 200 may be referred to as a purging plug or a bottom plug.
  • the injection unit 200 may be referred to as a nozzle or a low odor nozzle.
  • the injection unit 200 may be connected to the storage unit 300 through the supply unit 400 , and receive gas filled in the storage unit 300 .
  • Gas may be injected into the melt (M) inside the container unit 100 from the injection unit 200 .
  • a relatively large amount of gas may be supplied to the injection part 200 .
  • a relatively small amount of gas may be supplied to the injection part 200 .
  • a large amount of gas supplied to the injection unit 200 may bubble the molten steel in the melt (M).
  • a small amount of gas supplied to the injection unit 200 serves to prevent the melt (M) from penetrating into the injection unit (200), and clean bubbling does not occur on the upper surface of the melt (M).
  • the gas is supplied by the storage unit 300 and the supply unit 400 , and the operation of the supply unit 400 may be controlled by a controller (not shown).
  • the storage unit 300 may be supported by the container unit 100 .
  • the storage unit 300 may move together with the container unit 100 .
  • the storage unit 300 serves to continuously supply gas, for example, continuously to the injection unit 200 while the container unit 100 repeatedly undergoes the entire process cycle from the steelmaking process to the continuous casting process several times. That is, the storage unit 300 repeatedly passes through a series of processes from tapping the converter to bubbling, secondary refining, continuous casting, and slag exclusion, while the storage unit 300 is continuously supplied with gas to the injection unit 200 . It supplies and serves to prevent the melt (M) from penetrating into the injection unit (200). To this end, the storage unit 300 may store a sufficient amount of gas therein and may be formed to stably supply the stored gas to the injection unit 200 for a long time.
  • the storage unit 300 may be formed to safely protect the gas stored therein from the high temperature and scattering of the melt (M).
  • the storage unit 300 may include a protective container 310 , a pressure container 320 , a scattering prevention plate 330 , and a fixing plate 340 .
  • the protective container 310 may be spaced apart from the discharge member 150 in the front-rear direction. In this case, the protective container 310 may be spaced apart from the rear of the discharge member 150 . In addition, the locking member 130 may be positioned between the protective container 310 and the discharge member 150 .
  • the protective container 310 may be formed in the shape of a cylinder with an empty interior to accommodate the pressure container 320 . Of course, the shape of the protective vessel 310 may vary according to the shape of the pressure vessel 320 . In addition, the pressure vessel 320 may have various shapes within a range that does not interfere with surrounding equipment, such as cranes and hooks, for example.
  • the protective vessel 310 may be formed to be larger than the pressure vessel 320 so that at least a portion of the inner surface may be spaced apart from the pressure vessel 320 .
  • the protective container 310 may be mounted on the outer surface of the container part 100 .
  • the protective container 310 may be mounted on at least one of the side wall and the protruding member 120 of the container body 110 . Specifically, the protective container 310 may be mounted on the protruding member 120 and spaced rearwardly from the sidewall of the container body 110 . The protective container 310 may be mounted on the sidewall of the container body 110 between the protruding members 120 in the vertical direction.
  • the protective vessel 310 serves to protect the pressure vessel 320 from scattering and high temperature of the melt (M).
  • the protective container 310 may be opened and closed to facilitate storage of the pressure container 320 .
  • the protective container 310 may include a plurality of detachable protective bodies. That is, the protective container 310 may be formed to be separable into the first protective body 311 and the second protective body 312 .
  • Each of the protective bodies 311 and 312 may have a shape obtained by cutting half of a cylinder in the vertical direction. By combining these protective bodies (311, 312) can form a complete cylindrical shape. Due to the cylindrical shape of the protective bodies 311 and 312 , structural interference between the protective bodies 311 and 312 and other surrounding facilities can be minimized or prevented.
  • Protective body (311, 312) may be arranged in the front and rear direction, any one of them may be mounted on the container unit (100). Specifically, the second protection body 312 may be mounted on the protruding member 120 , and the first protection body 311 may be rotatably mounted on one side of the second protection body 312 in the left-right direction. In addition, the second protective body 312 is mounted on the side wall of the container body 110 between the protruding members 120 , and the first protective body 311 is one side in the left and right direction of the second protective body 312 . It may be rotatably mounted to the Of course, the first protection body 311 may be mounted on the protruding member 120 or the container body 110 , and the second protection body 312 may be rotatably mounted on the first protection body 311 .
  • the inside of the protection container 310 may be opened and closed by rotating the other side around one side of the first protection body 311 in the left and right direction.
  • a predetermined fastening member (not shown) may be provided on the other side of the first protection body 311 in the left and right direction to couple the first protection body 311 to the second protection body 312 .
  • the structure of the fastening member may vary. With this structure, opening and closing of the protective container 310 may be easy.
  • the pressure vessel 320 may be connected to the pipe 410 of the supply unit 400 , a gas may be filled therein at a high pressure, and may be replaced.
  • that the pressure vessel 320 is replaceable means that when a predetermined amount of the gas filled in the pressure vessel 320 is consumed, the pressure vessel 320 consuming the gas is replaced with a new pressure vessel ( 320) to replace it.
  • the pressure vessel 320 may extend long in the vertical direction, have a predetermined diameter in the horizontal direction, and may be formed in a cylindrical shape. Of course, the extension direction and shape of the pressure vessel 320 may vary.
  • the pressure vessel 320 may be accommodated in the protection vessel 310 to be protected.
  • the pressure vessel 320 may be filled with a high pressure gas therein.
  • the high pressure may mean a pressure higher than the pressure of the utility line, which will be described later.
  • the pressure vessel 320 may also be referred to as a gas storage vessel.
  • the pressure vessel 320 may be separated from a utility line provided in at least one of a steelmaking process facility and a continuous casting process facility, and may be used independently. That is, the pressure vessel 320 may be configured separately from the utility line.
  • the pressure vessel 320 may be filled with gas by using a separate filling facility (not shown), and may be filled with gas at a pressure higher than the internal pressure of the utility line.
  • the supply pressure of the gas supplied from the pressure vessel 320 to the injection unit 200 through the supply unit 400 may be lower than the pressure of the utility line.
  • the pressure of the utility line may mean a supply pressure of gas flowing through the inside of the utility line.
  • the capacity of the pressure vessel 320 may be about 52 liters. Of course, depending on the size of the container body 110 and the total time during which a series of processes from tapping the converter to bubbling, secondary refining, continuous casting and slag exclusion, etc., the capacity of the pressure vessel 320 may vary.
  • the pressure vessel 320 may have a filling pressure of gas in the range of 6 to 7 times the supply pressure of the gas in the utility line, preferably in the range of 6.1 to 6.6 times. That is, the pressure vessel 320 may have a gas filling pressure in the range of, for example, 110 bar to 120 bar.
  • the filling pressure means a gas pressure that can be supplied to the pressure vessel 320 when the gas is filled in the pressure vessel 320 .
  • the internal pressure of the pressure vessel 320 may be equal to the filling pressure. That is, the gas pressure of the pressure vessel 320 at the time when the filling of the pressure vessel 320 is completed is referred to as a filling pressure.
  • the gas pressure inside the pressure vessel 320 during use of the pressure vessel 320 is referred to as an internal pressure.
  • the range of the filling pressure of the pressure vessel 320 may be significantly higher than a pressure of about 18 bar, which is a gas supply pressure of a utility line provided in a steelmaking process facility and a continuous casting facility. As such, since the gas filling pressure of the pressure vessel 320 is relatively high, a large amount of gas may be filled in the pressure vessel 320 .
  • the internal pressure that the pressure vessel 320 can withstand may be higher than the above-described filling pressure of the pressure vessel 320 . Therefore, after filling the pressure vessel 320 with gas at a pressure of, for example, 120 bar, the pressure vessel 320 can be used stably, and the pressure vessel 320 is exposed to high-temperature radiant heat temporarily or for a long time to increase the temperature. Even so, the pressure vessel 320 can stably accommodate the volume expansion of the gas.
  • the internal pressure that the pressure vessel 320 can withstand may be referred to as, for example, a maximum internal pressure or an allowable pressure of the pressure vessel 323 .
  • the pressure vessel 320 may be accommodated in the protective container 310 in a state in which the gas is filled with a filling pressure of 110 bar to 120 bar, and the pipe of the supply unit 400 inside the protective container 310 ( 410) may be connected.
  • the pressure vessel 320 may supply gas to the injection unit 200 through the pipe 410 .
  • the supply pressure and supply flow rate of the gas from the pressure vessel 320 to the injection unit 200 may be sequentially controlled by the pressure regulator 430 and the flow rate regulator 440 of the supply unit 400 .
  • the gas therein is 110 bar to 120 bar It may be replaced with a new pressure vessel 320 filled with the filling pressure and accommodated in the protective vessel 310 .
  • the shatterproof plate 330 may be formed to cover the upper surface of the protective container 310 . Accordingly, the high-temperature radiant heat and scattering products resulting from the melt (M) inside the container body 310 can be blocked by the shatterproof plate 330 before contaminating the protective container 310 . From this, the pressure vessel 320 may be primarily protected from heat and scattering by the shatterproof plate 330 , and secondarily protected by the protection vessel 310 . As such, the storage unit 300 can protect the pressure vessel 320 with a double safety by providing the scattering prevention plate 330 and the protection vessel 310 .
  • the melt (M) may be discharged several times from the container part 100, and a strong splash in the process As it occurs and is attached to the container part 100, it can be formed now.
  • the shatterproof plate 330 can block the splash from reaching the protective container 310 from the upper side of the protective container 310 , and can prevent the metal from being attached to the protective container 310 .
  • This shatterproof plate 330 may be provided in a detachable type, and may be replaced before the protective container 310 . That is, without replacing the entire storage unit 300, while replacing only the scattering prevention plate 330 as necessary, it is possible to maintain the entire storage unit 300 in a clean state.
  • the fixing plate 340 serves to stably support the pressure vessel 320 inside the protective vessel 310 . That is, in order to suppress or prevent heat transfer from the protective container 310 to the pressure container 320, the inner side and the inner upper surface of the protective container 310 and the outer side and the outer upper surface of the pressure container 320 are spaced apart from each other. , At this time, the fixing plate 340 may be in contact with the pressure vessel 320 to fix the pressure vessel 320 in the protection vessel 310 .
  • the fixing plate 340 may be formed in a ring shape, an inner circumferential surface may be in contact with the pressure vessel 320 , and an outer circumferential surface may be supported on the inner side surface of the protective container 310 .
  • the fixing plate 340 may be formed of a plurality of, for example, two divided members, some of which may be supported by the first protective body 311 , and the rest may be supported by the second protective body 312 .
  • the above-described two split-type members may be coupled to form one fixing plate 340 .
  • the fixing plate 340 may protrude from, for example, an inner side surface of the protective container 310 , and may come into contact with an outer surface, for example, an outer side surface and an outer upper surface of the pressure vessel 320 .
  • the pressure vessel 320 may be formed to have an upper portion convex upward. Accordingly, the outer upper surface of the pressure vessel 320 may be formed to be convex upward.
  • the fixing plate 340 may be provided in plurality, of which at least one fixing plate, for example, the first fixing plate 341 is a convex portion of the upper portion of the pressure vessel 310, that is, the outer upper surface of the pressure vessel 320 It can be in contact. Thereby, it is possible to constrain the movement of the pressure vessel 320 in the vertical direction.
  • the first fixing plate 341 may be formed of two split-type members as described above, one supported by the first protective body 311 and the other supported by the second protective body 312 . .
  • the remainder of the plurality of fixing plates 340 except for the first fixing plate 341 is referred to as a second fixing plate 342 .
  • the number of the second fixing plate 342 may be at least one.
  • the second fixing plate 342 may be spaced apart from the lower side of the first fixing plate 341 , and may be in contact with the inner side surface of the pressure vessel 320 , and may restrict the horizontal movement of the pressure vessel 320 .
  • the second fixing plate 342 may also be formed of two split-type members, one of which may be supported by the first protective body 311 , and the other may be supported by the second protective body 312 .
  • a space spaced apart between the protective vessel 310 and the pressure vessel 320 may be formed and maintained by the above-described fixing plate 340 , and the pressure vessel 320 may be stably fixed within the protection vessel 310 .
  • the container unit 100 may be tilted from an upright state to 90° to 180° when slag is excluded.
  • the fixing plate 340 may prevent the pressure vessel 320 from moving in the left and right and up and down directions inside the protective container 310 . Accordingly, it is possible to prevent the pressure vessel 320 from being damaged by colliding with the protection vessel 310 .
  • the storage unit 300 may include a pipe installation hole 350 and an air outlet 360 .
  • the pipe fitting 350 may be formed to pass through the upper or lower portion of the first protective body 311 .
  • a pipe 410 of the supply unit 400 may be disposed to pass through the pipe installation hole 350 .
  • the air outlet 360 may be formed to penetrate the lower portion or upper portion of the first protective body 311 . Air may be introduced from the outside of the protective container 310 to the inside through the air outlet 360 .
  • the number of the tuyeres 360 may be one or more.
  • a blower (not shown) for forced inflow of air may be provided in the vicinity of the air outlet 360 .
  • the blower may be supported on the protective container 310 .
  • At least one of a heat blocking member (not shown) and a cooling channel (not shown) may be provided on the inner surface of the protective container 310 .
  • the separation space formed between the above-described protective container 310 and the pressure container 320 may be used as an installation space of at least one of the installation space of the heat blocking member and the installation space of the cooling passage.
  • the heat blocking member may include a fire resistant insulating material capable of smoothly performing a heat shielding function even at a temperature of about 1000° C. or higher.
  • the heat shield member may be manufactured by melting and fibrous refractory materials including silica and alumina, and then molding or weaving into a desired shape. For example, such a heat shield member may be referred to as Cerakwool.
  • the heat blocking member may be formed to surround at least one of the inner surface of the protective container 310 and the outer surface of the pressure container 320 . Accordingly, it is possible to delay the transfer of radiant heat transferred from the melt (M) inside the container part 100 to the protective container 310 to the pressure container 320 , or block such heat transfer. An increase in the temperature of the pressure vessel 320 may be suppressed or prevented by the heat blocking member, and thus, an increase in the internal pressure of the pressure vessel 320 may be suppressed or prevented.
  • the cooling passage may be installed between the protective vessel 310 and the pressure vessel 320 , and at least a portion may be in contact with or exposed to the pressure vessel 320 .
  • the cooling passage may be connected to the air outlet 360 or may be connected to a utility line (not shown) for supplying a refrigerant.
  • the space between the protective container 310 and the pressure container 320 may be used as a cooling passage as it is. It is possible to suppress or prevent an increase in the temperature of the pressure vessel 320 by the air or refrigerant supplied to the cooling passage. Accordingly, it is possible to suppress or prevent an increase in the internal pressure of the pressure vessel 320 .
  • a plurality of the above-described storage unit 300 may be provided at the rear of the container body 110 .
  • the storage unit 300 may be provided in two, spaced apart from each other in the left and right directions, supported by the protruding member 120 at the rear of the engaging member 130 , or the container body 110 between the protruding members 120 . can be supported on the side wall of Of course, the number of the storage units 300 may vary. Since the storage unit 300 is provided in plurality, the gas can be supplied to the injection unit 200 for a long time, and the soundness of the injection unit 200 can be maintained for a long time. At this time, the soundness may be determined according to the degree of penetration of the melt (M) into the injection unit (200).
  • the melt (M) did not penetrate into the injection unit 200, or a small amount of the melt (M) penetrated into the injection unit 200 enough to allow the injection unit 200 to smoothly perform its function.
  • the state it is considered that the injection unit 200 maintains soundness.
  • the soundness of the injection unit 200 may be maintained even while the container unit 100 waits for a long time after slag exclusion.
  • one storage unit 300 may be provided at the rear of the container body 100 .
  • the supply unit 400 extends along the outer surface of the container unit 100 , and one end of the pipe 410 is connected to the spray unit 200 and the other end is connected to the storage unit 300 . , a safety valve 420 mounted on the other end of the pipe 410 , a pressure regulator 430 mounted on the pipe 410 to be positioned between the safety valve 420 and the injection unit 200 , and a pressure regulator 430 . and a flow rate regulator 440 mounted on the pipe 410 to be positioned between the and the injection unit 200 .
  • a portion of the pipe 410 may be branched into a plurality of branch pipes 410a , and each branch pipe 410a may be connected to each storage unit 300 .
  • the other end of the pipe 410 may be branched into a plurality of branch pipes 410a.
  • the plurality of branch pipes 410a may be connected to the plurality of storage units 300 on a one-to-one basis, respectively.
  • the pipe 410 has one end extending along the lower surface of the bottom plate of the container body 110 so as to connect the spraying unit 200 and the storage unit 300 , and may be connected to the lower portion of the spraying unit 200 .
  • Each branch pipe 410a formed at the other end of the pipe 410 is installed to pass through the protective container 310 and may be connected to the pressure container 320 .
  • the other end of the pipe 310 may not be branched. That is, the other end of the pipe 310 may be installed to pass through the protective container 310 , and may be directly connected to the pressure container 320 .
  • connection pipe connecting one end and the other end of the pipe 410 may extend along the sidewall of the container body 110 .
  • a pressure regulator 430 and a flow regulator 440 may be mounted on this connection pipe.
  • the safety valve 420 may be mounted on the pipe 410 . Specifically, the safety valve 420 may be mounted on the branch pipe 410a from the outside of the protective container 310 .
  • the safety valve 420 may be automatically opened when the internal pressure of the pressure vessel 320 rises to a predetermined pressure that is smaller than an internal pressure that the pressure vessel 320 can withstand, for example, an allowable pressure. can do it After a predetermined time elapses and a predetermined amount of gas is discharged, the safety valve 420 may be blocked.
  • the safety valve 320 may be mounted on the other end of the pipe 410 from the outside of the protective container 310 .
  • the pressure regulator 430 may be located upstream from the flow regulator 440 based on the gas flow from the pressure vessel 320 to the injection unit 200 .
  • the flow regulator 440 may be located downstream of the pressure regulator 430 based on the above-described gas flow.
  • the upstream means a portion through which the gas relatively first passes
  • the downstream means a portion through which the gas relatively later passes.
  • the pressure regulator 430 may include, for example, a pressure reducing valve.
  • the pressure regulator 430 may constantly maintain the output pressure at a predetermined pressure smaller than the input pressure.
  • the input pressure means a pressure supplied to the pipe 410 from the pressure vessel 320 and input to the pressure regulator 430 .
  • the output pressure means the pressure of the gas that passes through the input regulator 430 and is output to the inside of the pipe 410 .
  • the output pressure may be a supply pressure of gas from the pressure vessel 320 to the injection unit 200 .
  • the pressure regulator 430 may maintain the output pressure constant even when the pressure decreases due to a decrease in the gas filling capacity of the pressure vessel 310 .
  • the input pressure may be greater than 3 bar and less than or equal to 120 bar, and the output pressure may be 3 bar.
  • the output pressure may be determined by the height of the melt, for example, molten steel.
  • a predetermined amount of gas may be stably supplied to the injection unit 200 by the pressure regulator 430 .
  • the flow rate regulator 440 is mounted downstream of the pressure regulator 430 , and the flow rate of the gas whose pressure is adjusted can be adjusted to a desired supply flow rate. That is, the flow rate controller 440 can adjust the supply flow rate of the gas supplied to the injection unit 200 , and even when the internal pressure of the gas stored in the storage unit 300 decreases, the gas supplied to the injection unit 200 . can keep the flow rate stable.
  • the flow rate regulator 440 may receive the gas whose pressure is adjusted through the pressure regulator 430 , adjust it to a desired supply flow rate, and output it to the inside of the pipe 410 . Accordingly, the injection unit 200 may be supplied with gas at a constant supply pressure and supply flow rate.
  • the flow rate controller 440 may include various types of flow meters capable of automatically adjusting the flow rate while maintaining the constant pressure of the gas as an isostatic pressure.
  • the above-described pressure regulator 430 and flow regulator 440 may be controlled by a control unit (not shown), operate mechanically under the control of the control unit, and may sequentially adjust a supply pressure and a supply flow rate of gas.
  • the pressure regulator 430 and the flow rate regulator 440 may adjust the size of the set supply pressure and the set supply flow rate under the control of the controller. That is, if it is desired to reduce the size of the supply pressure as necessary, the pressure regulator 430 may be controlled by the controller to reduce the outlet pressure of the pressure regulator 430 . In addition, if it is desired to reduce the size of the supply flow rate, the flow rate controller 440 may be controlled by the controller to reduce the outlet flow rate of the flow rate controller 440 .
  • the pressure of the melt (M), such as iron static pressure is lowered, so the pressure applied by the melt (M) to the injection unit 200 is reduced, and at this time, the size of the supply pressure can be reduced have.
  • the temperature of the melt (M) is changed, the fluidity and viscosity of the melt (M) is changed, and accordingly, the size of the supply flow rate may be different.
  • the above-described supply unit 400 may not be connected to the utility line of the steelmaking process and the continuous casting process. That is, in the entire process in which the container unit 100 is used, gas may be supplied to the injection unit 200 to prevent clogging of the injection unit 200 only with the gas filled in the storage unit 300 .
  • FIG. 8 is a front view of a melt processing apparatus according to an embodiment of the present invention.
  • the melt processing apparatus may further include a weight adjusting unit 500 .
  • the weight adjustment unit 500 may be mounted on the outer surface of the container unit 100 at a position opposite to the storage unit 300 in the front-rear direction with the container unit 100 interposed therebetween.
  • the weight adjustment unit 500 may prevent eccentricity of the center of gravity of the container unit 100 by the storage unit 300 .
  • the weight adjustment unit 500 may extend in the vertical direction, and the fixing bar 510 supported by the protruding member 120 is curved along the shape of the outer circumferential surface of the container body 110 , and the protruding member 120 . It may be seated on the upper surface of the , and may include a weight 520 that can be fitted to the fixed bar (510).
  • the weight adjustment unit 500 may be located in front of the container body 110 .
  • the weight adjustment unit 500 may adjust the number of weights 520 to position the center of gravity of the container body 110 between the pair of locking members 130 . Accordingly, even if the size of the storage unit 300 is large and the storage unit 300 is filled with a large amount of gas, the center of gravity of the storage unit 100 may not be eccentric toward the storage unit 300 .
  • a plurality of fixing bars 510 may be provided.
  • the plurality of fixing bars 510 are spaced apart from each other in at least one direction of the left-right direction and the up-down direction, and the upper and lower ends of each of the protrusion members 120 arranged in the up-down direction may be fitted on opposite surfaces of each other. have.
  • the weight 520 may be a member of a bow-shaped shape, has an area that can be seated on the upper surface of the protruding member 120 , and is provided in plurality and may be stacked vertically.
  • the upper and lower surfaces of the weight 520 may be provided with concavo-convex and adhesive members. Accordingly, when the plurality of weights 520 are stacked vertically, they are coupled to each other to prevent movement.
  • the weight 520 may have a fitting groove (h) formed on its side.
  • the fixing bar 510 may be fitted into the fitting groove (h). At this time, the fitting groove (h) may be formed on the front side of the weight (520). Accordingly, the weight 520 may be stably protected between the container body 110 and the fixing bar 510 .
  • the front side means the side facing the front of the container body (110).
  • the rear side may be a side facing the container body 110 .
  • the gas of a constant supply pressure and a constant supply flow rate to the injection unit 200 stably for a long time can supply
  • exposure of the pressure vessel 320 to radiant heat from the melt M can be minimized. Accordingly, it is possible to suppress or prevent the penetration of the melt (M) into the injection unit 200 for a long time.
  • FIG. 6 and 7 are conceptual views of a supply unit according to a first modified example of the present invention.
  • FIG. 6 is a conceptual diagram illustrating a connection structure of a supply unit according to a first modified example of the present invention when there are a plurality of storage units, for example, two.
  • 7 is a conceptual diagram illustrating a connection structure of a supply unit according to a first modified example of the present invention when there is only one storage unit.
  • the supply unit 400 is a first shutoff valve 450 mounted on the pipe 410 to be positioned between the safety valve 420 and the pressure regulator 430 .
  • a discharge valve 460 mounted on the pipe 410 to be positioned between the first shutoff valve 450 and the safety valve 420
  • the first shutoff valve 450 may include a manual needle valve.
  • the first shutoff valve 450 may manually block the supply of gas from the storage unit 300 to the supply unit 400 at a time when the container unit 100 is not operated.
  • the discharge valve 460 may include a manual ball valve.
  • the discharge valve 460 discharges the high-pressure gas accumulated in the pipe 410 between the first shut-off valve 450 and the storage unit 300 at the time when the operation of the container unit 100 is resumed, and the first The pressure between the shutoff valve 450 and the storage unit 300 may be reduced. Accordingly, it is possible to prevent the pressure regulator 430 from being damaged when the operation of the container unit 100 is resumed.
  • the discharge valve 460 may discharge a high-pressure gas to a ventilation line (L).
  • the second shutoff valve 470 may include a manual needle valve, and may be used to shut off the gas flow between the pressure regulator 430 and the flow regulator 440 as needed.
  • the supply unit 400 is a pressure gauge 490 mounted on the pipe 410 on the downstream side of the flow regulator 440 and a switching valve mounted on the pipe 410 between the pressure gauge 490 and the injection unit 200 . (480) may be further included.
  • the pressure gauge 490 may actually measure the pressure of the gas output from the flow controller 440 .
  • the measurement result of the pressure gauge 490 is transmitted to the controller, and when the actual pressure measured by the pressure gauge 490 and the output pressure set in the pressure regulator 430 are different, the controller may promptly notify the user.
  • the switching valve 480 may be, for example, a three way valve.
  • the switching valve 480 may be selectively detached from the utility line (U).
  • the selector valve 480 blocks the gas flow from the flow rate controller 440 to the injector 200, and from the utility line U to the injector 200 ) can be opened to the gas flow.
  • the selector valve 480 may open the gas flow from the flow rate controller 440 to the injection unit 200 .
  • FIG. 9 is a schematic diagram of a weight adjustment unit according to a second modified example of the present invention.
  • the weight adjusting unit 500 adjusts the center of gravity of the container unit 100 according to a change in weight according to the gas consumption of the storage unit 300 . At least a portion may be installed to be movable in the horizontal direction along the outer surface of the container part 100 so as to be able to do so.
  • the weight adjustment unit 500 for this purpose may include a fixing bar 510 , a weight 520 , an actuator 530 , and a guide rail 540 .
  • the fixing bars 510 extend in the vertical direction from the front of the container body 110 , are provided in plurality, are spaced apart from each other in the left and right directions, and may be disposed between the protruding members 120 .
  • a plurality of weights 520 may be provided, may be arranged in a left and right direction, and may be stacked in a vertical direction. The weight 520 group on the left side and the weight weight 520 group on the right side may be fitted to different fixing bars 510 .
  • the actuator 530 may be adjusted in length in the left and right directions, may be supported on the outer surface of the container body 110 , and may be connected one-to-one to the fixing bar 510 .
  • the guide rails 540 may be respectively formed on opposite surfaces of the protruding members 120 arranged in the vertical direction, and may extend in the circumferential direction of the container body 110 along the protruding members 120 , and the fixing bar The upper and lower ends of the 510 may be mounted.
  • the actuator 530 may be controlled by the control unit, and when the gas filling amount of the storage unit 300 is relatively large, the fixed bar 510 may be collected by sailing and moving the front of the container body 110 . In addition, when the gas filling amount of the storage unit 300 is relatively small, the actuator 530 may pull the fixing bar 510 toward the locking member 130 and spread the fixing bars 510 in the left and right directions. The position of the weight 520 in the front-rear direction is adjusted according to the movement of the fixing bar 510 , and thus the center of gravity may be adjusted.
  • the process of preparing the movable container part 100 together with the gas-filled storage part 300, the container part 100 in which the melt (M) is accommodated in the first position The process of transporting to the second position, the process of supplying gas to the injection unit 200 mounted on the lower part of the container part 100 so as to inject gas into the melt M inside the container part 100, the injection part
  • the process of adjusting the supply pressure of the gas supplied to 200 includes the process of adjusting the supply flow rate of the gas whose supply pressure is adjusted.
  • a storage unit 300 filled with gas and a container unit 100 movable therewith are provided.
  • the storage unit 300 may be in a state in which the gas is charged at a charging pressure of about 110 bar to 120 bar.
  • the filling pressure may be any pressure range higher or lower than the above-mentioned pressure.
  • the container part 100 may be in a state in which the melt (M) is accommodated.
  • the melt (M) may be at least one of molten steel and slag.
  • the above-described container portion 100 in which the melt (M) is accommodated is transferred from the first position to the second position.
  • the first position may be a place where the container unit 100 is currently located
  • the second position may be a predetermined place where the container unit 100 is to be moved. That is, when the container unit 100 transports the molten steel for which the converter taping is completed to the subsequent process, the position of the converter process facility may be the first position, and the subsequent process, such as a bubbling process, a secondary refining process, or a continuous casting process, is performed.
  • the location of the facility to be performed may be the second location.
  • the gas is supplied to the injection unit 200 so that the gas can be injected into the melt (M) inside the container unit 100 .
  • the gas filled in the storage unit 300 may be supplied to the injection unit 200 using the supply unit 400 .
  • the supply pressure of the gas supplied to the injection unit 200 is adjusted, and the supply flow rate of the gas whose pressure is adjusted is adjusted.
  • the reason for adjusting the supply pressure of the gas first is that the flow rate of the gas is usually fluctuated after the pressure of the gas is adjusted, so in order to supply the gas with a stable flow rate to the injection unit 200 , the pressure adjusting unit 430 . After adjusting the pressure of the gas in , the flow rate of the gas is adjusted in the flow rate control unit 430 and supplied to the injection unit 200 .
  • the process of adjusting the pressure may include a process of reducing the supply pressure to a reference pressure that is lower than the filling pressure of the storage unit 300 and higher than the pressure of the melt (M).
  • the process of adjusting the pressure may include reducing the supply pressure to a reference pressure lower than the internal pressure of the utility line at at least one of the first position and the second position and higher than the pressure of the melt.
  • the pressure of the melt may be the pressure at the bottom of the melt. That is, the melt may be a pressure applied to the upper surface of the bottom plate of the container unit 100 .
  • the pressure of the melt (M) may be a pressure applied to the injection unit 200 by the melt (M), for example, may be an iron static pressure.
  • the reference pressure may be a predetermined pressure at which the gas may be injected into the melt M through the injection unit 200 while preventing the melt M from flowing into the injection unit 200 .
  • the reference pressure may be a predetermined pressure that prevents the molten steel from being formed on the molten steel when the molten material M contains molten steel and slag.
  • This reference pressure may be a pressure of about 3 bar.
  • this reference pressure may be six times lower than the supply pressure of the utility line described above.
  • the pressure of the melt (M) for example, the iron static pressure increases, so the size of the supply pressure must be increased by the ratio.
  • the density of the melt is 7020 kg/m 3
  • the feed pressure must be increased by about 0.68 bar. Accordingly, even if the height of the melt (m) changes, it is possible to supply a gas of an appropriate pressure to the injection unit (200).
  • the reference pressure may be determined according to the height of the melt (M) inside the container unit 100 .
  • the supply pressure of the regulated gas is adjusted. Specifically, the supply flow rate may be increased or decreased so that the gas follows a preset reference flow rate while maintaining the supply pressure level. Accordingly, even if the flow rate of gas is irregularly changed in the pressure control unit 430 , the gas may be supplied to the injection unit 200 at a constant supply flow rate by controlling the flow rate of the gas by the flow rate control unit 440 .
  • the reference flow rate may be a flow rate of a gas that may not cause scalding on the hot water surface of the melt M or a flow rate of a gas that may prevent rapid stirring of the melt M.
  • the reference flow rate can be defined in various ways.
  • the high temperature temperature is transferred from the container unit 100 to the pressure vessel 320 of the storage unit 300 using the protective container 310 and the scattering prevention plate 330 .
  • the high temperature temperature is transferred from the container unit 100 to the pressure vessel 320 of the storage unit 300 using the protective container 310 and the scattering prevention plate 330 .
  • the pressure from the pressure vessel 320 to the pressure regulator 430 is The gas supply pressure is rapidly increased.
  • the safety valve 420 of the supply unit 400 to open a part of the pipe 410 through which the gas flows, for example, the branch pipe 410a, the pressure of the gas supplied to the pressure regulator 430 can be lowered. have. Accordingly, it is possible to prevent damage to the pressure regulator 430 and to prevent fluctuations in the supply pressure.
  • the above-mentioned specific pressure is, for example, higher than the filling pressure of the storage unit 300 and within a predetermined pressure range lower than the allowable pressure, which is an internal pressure that the pressure vessel 320 of the storage unit 300 can withstand without being damaged. It may be a predetermined pressure selected from.
  • the process of preventing the temperature transfer to the pressure vessel 320 and the process of preventing contamination of the pressure vessel 320 and the fluctuation of the supply pressure may be optionally performed. That is, while supplying the gas to the injection unit 200 by adjusting the supply pressure and the supply flow rate, at least one of these processes may be performed.
  • the weight adjustment unit 500 is used to apply a weight to the container unit 100, the container unit ( It is possible to prevent the center of gravity of 100) from being biased, and at this time, according to the amount of gas consumed in the storage unit 300, the weight adjustment unit 500 moves the weight to the storage unit 300 side, and the weight The center of gravity can be kept stable.
  • the melt (M) is transferred to the injection unit 200 . Penetration can be prevented, and damage to the injection unit 200 can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Furnace Details (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

본 발명은, 용융물을 수용될 수 있도록 내부에 공간을 구비하는 용기부, 용기부 내부의 용융물 내에 가스를 분사할 수 있도록 용기부의 하부에 장착되는 분사부, 용기부에 장착되고, 내부에 가스가 충전될 수 있는 저장부, 분사부와 저장부를 연결시키도록 용기부에 설치되고, 가스의 공급 압력을 조절하는 압력 조절기와 공급 압력이 조절된 가스의 공급 유량을 조절하는 유량 조절기를 구비하는 공급부를 포함하는 용융물 처리 장치, 및 이에 적용되는 용융물 처리 방법으로서, 분사부로 용융물이 침투하는 것을 장시간 효과적으로 방지할 수 있는 용융물 처리 장치 및 이송 방법이 제시된다.

Description

용융물 처리 장치 및 방법
본 발명은 용융물 처리 장치 및 방법에 관한 것으로서, 더욱 상세하게는 분사부로 용융물이 침투하는 것을 장시간 효과적으로 방지할 수 있는 용융물 처리 장치 및 방법에 관한 것이다.
제강 공정 및 연속 주조 공정에서 래들은 용강의 수용, 정련 및 운반에 사용된다. 래들의 하부에는 퍼징 플러그(Purging Plug)가 구비되고, 퍼징 플러그는 아르곤 가스 유틸리티 라인과 연결된다. 제강 공정 중에 유틸리티 라인으로부터 퍼징 플러그로 아르곤 가스를 공급하고, 이로부터 용강의 버블링 공정을 수행할 수 있다. 이러한 용강의 버블링 공정에서 용강 교반, 성분 조정, 개재물 부상 및 온도 조절 등이 가능하다.
한편, 용강의 버블링 공정이 완료되면, 퍼징 플러그와 아르곤 가스 유틸리티 라인을 분리시키고, 다음 공정으로 래들을 운반한다. 이때, 래들 내의 용강이 퍼징 플러그로 침투하여 응고된다. 따라서, 종래에는 래들 운반용 수강 대차에 탈부착 구조의 가스 배관을 설치하고, 래들을 운반하는 중에도 가스 배관을 통하여 퍼징 플러그에 가스를 공급하였다.
하지만, 이러한 종래의 구조에서는 수강 대차의 이동 중에도 아르곤 가스 유틸리티 라인으로부터 버블링 공정 시의 압력과 동일한 압력의 아르곤 가스를 공급받기 때문에, 퍼징 플러그에 과도하게 아르곤 가스가 공급되는 문제점이 있다. 그리고 수강 대차로부터 래들을 들어올린 이후에는 퍼징 플러그에 아르곤 가스를 공급하기 어려운 문제점이 있다.
본 발명의 배경이 되는 기술은 하기의 특허문헌에 게재되어 있다.
(특허문헌 1) KR10-2013-0101786 A
(특허문헌 2) KR10-2013-0107713 A
본 발명은 분사부로 용융물이 침투하는 것을 장시간 효과적으로 방지할 수 있는 용융물 처리 장치 및 방법을 제공한다.
본 발명의 실시 형태에 따른 용융물 처리 장치는, 용융물이 수용될 수 있도록 내부에 공간을 구비하는 용기부; 상기 용기부 내부의 용융물 내에 가스를 분사할 수 있도록 상기 용기부의 하부에 장착되는 분사부; 상기 용기부에 장착되고, 내부에 가스가 충전될 수 있는 저장부; 및 상기 분사부와 상기 저장부를 연결시키도록 상기 용기부에 설치되고, 가스의 공급 압력을 조절하는 압력 조절기 및 공급 압력이 조절된 가스의 공급 유량을 조절하는 유량 조절기를 구비하는 공급부;를 포함한다.
상기 공급부는, 상기 용기부의 외면을 따라 연장되고, 상기 분사부와 상기 저장부를 연결시키는 배관; 상기 배관에 장착되는 안전 밸브;를 포함하고, 상기 안전 밸브와 상기 분사부 사이에 위치하도록 상기 배관에 상기 압력 조절기가 장착되고, 상기 압력 조절기와 상기 분사부 사이에 위치하도록 상기 배관에 상기 유량 조절기가 장착될 수 있다.
상기 공급부는, 상기 안전 밸브와 상기 압력 조절기 사이에 위치하도록 상기 배관에 장착되는 제1차단 밸브; 상기 제1차단 밸브와 상기 안전 밸브 사이에 위치하도록 상기 배관에 장착되는 배출 밸브; 상기 압력 조절기와 상기 유량 조절기 사이에 위치하도록 상기 배관에 장착되는 제2차단 밸브;를 포함할 수 있다.
상기 저장부는 복수개 구비되고, 상기 배관은 일부가 복수개의 분관으로 분기되고, 각각의 분관이 각각의 저장부에 연결될 수 있다.
상기 저장부는, 상기 배관과 연결되고, 내부에 가스가 충전되며, 교체 가능한 압력 용기; 상기 압력 용기가 수용되고, 상기 용기부의 외면에 장착되며, 일부가 개폐될 수 있는 보호 용기; 상기 보호 용기의 상면을 커버하도록 형성되는 비산방지 판; 상기 보호 용기의 내면으로부터 돌출되고, 상기 압력 용기와 접촉할 수 있는 고정 판;을 포함할 수 있다.
상기 압력 용기는 상부가 상측으로 볼록하게 형성되고, 상기 고정 판은 복수개 구비되고, 적어도 하나의 고정판이 상기 압력 용기의 상부의 볼록한 부분에 접촉하여 상기 압력 용기의 상하 방향의 움직임을 구속할 수 있다.
상기 고정 판의 나머지는 상기 압력 용기의 측면에 접촉하여 상기 압력 용기의 수평 방향의 움직임을 구속할 수 있다.
상기 보호 용기의 내면에는 열 차단 부재 및 냉각 유로 중 적어도 어느 하나가 구비될 수 있다.
상기 용기부를 사이에 두고 상기 저장부와 수평 방향으로 대향하는 위치에서 상기 용기부의 외면에 장착되는 무게 조정부;를 포함할 수 있다.
상기 무게 조정부는 무게 중심을 조절할 수 있도록 적어도 일부가 상기 용기부의 외면을 따라 수평 방향으로 이동 가능하게 설치될 수 있다.
본 발명의 실시 형태에 따른 용융물 처리 방법은, 가스가 충전된 저장부와 함께 이동 가능한 용기부를 마련하는 과정; 용융물이 수용된 상기 용기부를 제1 위치에서 제2 위치로 이송하는 과정; 상기 용기부 내부의 용융물 내에 가스를 분사할 수 있도록 상기 용기부의 하부에 장착된 분사부로 가스를 공급하는 과정; 상기 분사부로 공급되는 가스의 공급 압력을 조절하는 과정; 및 상기 공급 압력이 조절된 가스의 공급 유량을 조절하는 과정;을 포함한다.
상기 압력을 조절하는 과정은, 상기 제1 위치 및 제2 위치 중 적어도 어느 한 위치의 유틸리티 라인의 내부 압력보다 낮고, 용융물 압력보다 높은 기준 압력으로, 상기 공급 압력을 감압하는 과정;을 포함할 수 있다.
상기 압력을 조절하는 과정은, 상기 저장부의 충전 압력보다 낮고, 용융물 압력보다 높은 기준 압력으로, 상기 공급 압력을 감압하는 과정;을 포함할 수 있다.
상기 기준 압력은 상기 용기부 내부의 용융물 높이에 따라 정해질 수 있다.
상기 유량을 조절하는 과정은, 상기 가스가 상기 공급 압력을 유지하면서, 미리 설정된 기준 유량을 추종하도록 상기 공급 유량을 증감시키는 과정;을 포함할 수 있다.
상기 용기부로부터 상기 저장부로 온도가 전달되는 것을 방지하는 과정; 상기 용융물로부터 기인하는 비산물이 상기 저장부를 오염시키는 것을 방지하는 과정; 및 상기 저장부의 내부 압력이 급격하게 높아지면 가스가 흐르는 배관의 일부를 개방하여 상기 공급 압력의 변동을 방지하는 과정; 중 적어도 어느 한 과정을 포함할 수 있다.
상기 용기부를 중심으로 상기 저장부의 반대측에 무게를 가하여 상기 용기부의 무게 중심이 편중되는 것을 방지하는 과정;을 포함할 수 있다.
상기 가스의 소모량에 따라 상기 무게의 작용점을 상기 저장부측으로 이동시키는 과정;을 포함할 수 있다.
상기 용융물은 용강 및 슬래그 중 적어도 어느 하나를 포함할 수 있다.
본 발명의 실시 형태에 따르면, 유틸리티 라인과 분리된 저장부를 사용하여, 정해진 압력과 유량으로 분사부에 가스를 장시간 공급할 수 있다. 또한, 저장부에 미리 충전된 가스가 소모되며 저장부의 압력이 낮아지는 동안 압력 조절기와 유량 조절기를 이용하여, 가스의 공급 압력 및 공급 유량을 원하는 기준 값으로 유지할 수 있다. 이때, 가스의 공급 압력을 먼저 조절하고, 압력이 조절된 가스의 공급 유량을 조절함에 따라, 가스의 공급 압력 및 공급 유량을 장시간 안정적으로 유지할 수 있다. 이에, 용기부가 제강 공정과 연속 주조 공정의 전체 공정 사이클을 여러번 반복하는 동안, 용융물에 직접 노출된 분사부로 용융물이 침투하는 것을 장시간 효과적으로 방지할 수 있다. 이에, 가스 주입부의 사용 수명을 늘릴 수 있고, 이로부터 용기부의 운용이 원활해짐에 따라 제강 공정과 연속 주조 공정의 생산성을 향상시킬 수 있다.
도 1은 본 발명의 실시 예에 따른 용융물 처리 장치의 개략도이다.
도 2는 본 발명의 실시 예에 따른 용융물 처리 장치의 평면도이다.
도 3은 본 발명의 실시 예에 따른 용융물 처리 장치의 측면도이다.
도 4는 본 발명의 실시 예에 따른 용융물 처리 장치의 배면도이다.
도 5은 본 발명의 실시 예에 따른 공급부의 개념도이다.
도 6 및 도 7은 본 발명의 제1 변형 예에 따른 공급부의 개념도이다.
도 8은 본 발명의 실시 예에 따른 용융물 처리 장치의 정면도이다.
도 9는 본 발명의 제2 변형 예에 따른 무게 조정부의 개략도이다.
이하, 첨부된 도면을 참조하여, 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니고, 서로 다른 다양한 형태로 구현될 것이다. 단지 본 발명의 실시 예는 본 발명의 개시가 완전하도록 하고, 해당 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 발명의 실시 예를 설명하기 위하여 도면은 과장될 수 있고, 도면상의 동일한 부호는 동일한 요소를 지칭한다.
본 발명의 실시 예에 따른 용융물 처리 장치 및 방법은 다양한 산업 분야의 각종 용융물 처리 공정에 적용될 수 있다. 이하에서는 제철 분아의 제강 공정 및 연속 주조 공정에서 용강의 수용, 정련 및 운반에 사용되는 래들을 기준으로 하여, 본 발명의 실시 예를 상세하게 설명한다.
도 1은 본 발명의 실시 예에 따른 용융물 처리 장치를 보여주는 개략도이고, 도 2의 (a) 및 (b)는 본 발명의 실시 예에 따른 용기부의 상부 및 하부를 보여주는 평면도이다.
도 1 및 도 2를 참조하여, 본 발명의 실시 예에 따른 용융물 처리 장치를 상세하게 설명한다.
본 발명의 실시 예에 따른 용융물 처리 장치는, 용융물(M)을 수용될 수 있도록 내부에 공간을 구비하는 용기부(100), 용기부(100) 내부의 용융물(M) 내에 가스를 분사할 수 있도록 용기부(100)의 하부에 장착되는 분사부(200), 용기부(100)에 장착되고, 내부에 가스가 충전될 수 있는 저장부(300), 분사부(200)와 저장부(300)를 연결시키도록 용기부(100)에 설치되고, 가스의 공급 압력을 조절하는 압력 조절기(430) 및 공급 압력이 조절된 가스의 공급 유량을 조절하는 유량 조절기(440)를 구비하는 공급부(400)를 포함한다.
용융물(M)은 용강 및 용융된 슬래그 중 적어도 어느 하나를 포함할 수 있다. 물론, 용융물(M)의 종류는 다양할 수 있다. 또한, 가스는 불활성 가스를 포함할 수 있다. 불활성 가스는 예컨대 아르곤 가스를 포함할 수 있다. 물론, 가스의 종류는 다양할 수 있다.
용기부(100)는 내부에 용융물(M)을 수용할 수 있다. 용기부(100)는 제강 공정 및 연속 주조 공정에서 용강의 수용, 정련 및 운반에 사용될 수 있고, 슬래그의 수용과 운반 등에 사용될 수 있다. 이러한 용기부(100)는 용기 본체(110), 돌출 부재(120), 걸림 부재(130), 받침 부재(140) 및 배출 부재(150)를 포함할 수 있다.
용기 본체(110)는 예컨대 원통 형상일 수 있다. 용기 본체(110)는 내부에 공간을 가질 수 있고, 상부가 개방될 수 있다. 용기 본체(110)의 내부에 용융물(M)이 수용될 수 있다. 용기 본체(110)는 바닥판 및 측벽을 구비할 수 있다. 바닥판은 예컨대 원판 형상이고, 수평 방향으로 연장될 수 있다. 이때, 수평 방향은 좌우 방향 및 전후 방향을 포함할 수 있다. 측벽은 중공의 원통체 형상일 수 있고, 상하 방향으로 연장될 수 있다. 또한 측벽은 바닥판의 상면의 가장자리를 둘러 장착될 수 있다. 물론, 상술한 용기 본체(110)의 형상 및 구조는 다양할 수 있다.
돌출 부재(120)는 용기 본체(110)의 측벽의 외주면으로부터 돌출될 수 있고, 그 외주면 둘레를 따라 연장될 수 있다. 돌출 부재(120)는 복수개 구비될 수 있고, 상하 방향으로 나열될 수 있다. 걸림 부재(130)는 한 쌍으로 구비되며, 좌우 방향으로 상호 이격되고, 용기 본체(110)의 측벽의 상부 양측에 장착될 수 있다. 또한, 걸림 부재(130)는 크레인(미도시)의 주권 후크(미도시)와 결합될 수 있다. 걸림 부재(130)에 의해 용기부(100)가 주권 후크에 지지 및 권상될 수 있다. 한편, 크레인의 보권 후크(미도시)와 결합될 수 있도록 용기 본체(110)의 바닥판의 하면에 경동 암(미도시)이 구비될 수 있다. 보권 후크로 경동 암을 위로 당겨서 용기부(100)를 경동시킬 수 있다.
받침 부재(140)는 복수개로 구비되고, 수평 방향으로 상호 이격되어 용기 본체(110)의 바닥판의 하면에 가장자리에 장착될 수 있다. 용기 본체(110)가 수강 대차(미도시) 및 래들 터렛(미도시)에 안착되었을 때, 받침 부재(140)에 의하여 용기 본체(110)의 바닥판 하측에 소정의 이격 공간이 확보될 수 있다. 배출 부재(150)는 한 쌍의 걸림 부재(130) 사이에서 용기 본체(110)의 측벽의 상단부에 장착될 수 있다. 배출 부재(150)와 경동 암은 전후 방향으로 이격될 수 있다. 배출 부재(150)는 걸림 부재(130)의 전방에 위치할 수 있다. 배출 부재(150)는 상면에 오목한 형상으로 배출 유로가 구비될 수 있다. 배출 유로는 전후 방향으로 연장될 수 있다. 용기부(100)가 경동되면, 배출 유로를 통해 용융물(M)이 용기 본체(110)의 전방으로 배출될 수 있다. 즉, 전방은 용융물(M)을 용기부(100)로부터 배출시키는 방향을 의미할 수 있다.
도 3은 본 발명의 실시 예에 따른 용융물 처리 장치를 보여주는 측면도이고, 도 4는 본 발명의 실시 예에 따른 용융물 처리 장치를 보여주는 배면도이다. 또한, 도 5은 본 발명의 실시 예에 따른 공급부를 설명하기 위한 개념도이다.
도 3 내지 도 5를 참조하여, 본 발명의 실시 예에 따른 용융물 처리 장치의 분사부, 저장부 및 공급부를 순서대로 설명한다.
도 3을 참조하면, 분사부(200)는 용기 본체(110)의 내부에 가스를 분사할 수 있도록 용기 본체(110)의 하부에 장착될 수 있다. 예컨대 분사부(200)는 상하 방향으로 용기 본체(110)의 바닥판을 관통하도록 장착될 수 있다. 또한, 분사부(200)는 그 상면이 용기 본체(110)의 내부에 노출될 수 있다. 분사부(200)는 다공질 내화물 재질을 포함할 수 있다. 예컨대 분사부(200)를 퍼징 플러그 혹은 바텀 플러그(Bottom Plug)라고 지칭할 수 있다. 또한, 분사부(200)를 노즐 혹은 저취 노즐이라고 지칭할 수도 있다. 분사부(200)는 공급부(400)를 통해 저장부(300)와 연결되고, 저장부(300)에 충전된 가스를 공급받을 수 있다. 분사부(200)로부터 용기부(100) 내부의 용융물(M) 내로 가스를 분사할 수 있다. 용기부(100)가 용융물(M)의 정련에 사용될 때에는 분사부(200)에 상대적으로 다량의 가스가 공급될 수 있다. 또한, 용기부(100)가 용융물(M)의 수용 및 운반에 사용될 때에는 분사부(200)로 상대적으로 소량의 가스가 공급될 수 있다. 이때, 분사부(200)로 공급되는 다량의 가스는 용융물(M) 중의 용강을 버블링시킬 수 있다. 또한, 분사부(200)로 공급되는 소량의 가스는 분사부(200)로 용융물(M)이 침투하는 것을 방지하는 역할을 하고, 용융물(M)의 상부 표면에 나탕이 발생하지 않는 청정 버블링에 사용될 수 있다. 가스의 공급은 저장부(300) 및 공급부(400)에 의해 수행되고, 공급부(400)의 작동은 제어부(미도시)에 의해 제어될 수 있다.
저장부(300)는 용기부(100)에 지지될 수 있다. 저장부(300)는 용기부(100)와 함께 움직일 수 있다. 저장부(300)는 용기부(100)가 제강 공정에서 연속 주조 공정으로 이어지는 전체 공정 사이클을 여러 번 반복하여 거치는 동안, 분사부(200)에 지속적으로 예컨대 끊임 없이 가스를 공급하는 역할을 한다. 즉, 저장부(300)는 용기부(100)가 전로 출강부터 버블링, 2차 정련, 연속 주조 및 슬래그 배제에 이르기까지 일련의 공정을 반복하여 거치는 동안, 분사부(200)에 지속적으로 가스를 공급하며, 분사부(200)로 용융물(M)이 침투하는 것을 방지하는 역할을 한다. 이를 위하여, 저장부(300)는 그 내부에 충분한 양의 가스를 저장할 수 있으면서 저장된 가스를 분사부(200)에 장시간 안정적으로 공급할 수 있도록 형성될 수 있다. 그리고 저장부(300)는 그 내부에 저장된 가스를 용융물(M)의 고온 및 비산물로부터 안전하게 보호할 수 있도록 형성될 수 있다. 이러한 저장부(300)는 보호 용기(310), 압력 용기(320), 비산방지 판(330) 및 고정 판(340)을 포함할 수 있다.
도 3 및 도 4를 참조하면, 보호 용기(310)는 배출 부재(150)와 전후 방향으로 이격될 수 있다. 이때, 보호 용기(310)가 배출 부재(150)의 후방으로 이격될 수 있다. 또한, 보호 용기(310)와 배출 부재(150) 사이에 걸림 부재(130)가 위치할 수 있다. 보호 용기(310)는 압력 용기(320)를 수용할 수 있도록 예컨대 내부가 비어있는 원통의 형상으로 형성될 수 있다. 물론, 압력 용기(320)의 형상에 따라 보호 용기(310)의 형상은 다양할 수 있다. 또한, 압력 용기(320)는 예컨대 크레인 및 후크와 같은 주변 설비와의 간섭이 발생하지 않는 범위 내에서, 다양한 형상을 가질 수 있다. 보호 용기(310)는 내면의 적어도 일부가 압력 용기(320)로부터 이격될 수 있도록 압력 용기(320)보다 크게 형성될 수 있다. 보호 용기(310)는 용기부(100)의 외면에 장착될 수 있다.
즉, 보호 용기(310)는 용기 본체(110)의 측벽 및 돌출 부재(120) 중 적어도 어느 하나에 장착될 수 있다. 구체적으로 보호 용기(310)는 돌출 부재(120)에 장착되고, 용기 본체(110)의 측벽으로부터 후방으로 이격될 수 있다. 보호 용기(310)는 상하 방향으로의 돌출 부재(120)들의 사이에서 용기 본체(110)의 측벽에 장착될 수도 있다. 보호 용기(310)는 용융물(M)의 비산 및 고온으로부터 압력 용기(320)를 보호하는 역할을 한다.
보호 용기(310)는 압력 용기(320)의 수납이 용이하도록 일부가 개폐될 수 있다. 이를 위하여, 보호 용기(310)는 착탈 가능한 복수의 보호 몸체를 구비할 수 있다. 즉, 보호 용기(310)는 제1보호 몸체(311) 및 제2보호 몸체(312)로 분리 가능하도록 형성될 수 있다. 각 보호 몸체(311, 312)는 원통의 절반을 상하 방향으로 절단한 형상일 수 있다. 이들 보호 몸체(311, 312)가 결합함으로써 하나의 완전한 원통 형상을 이룰 수 있다. 보호 몸체(311, 312)들의 원통 형상에 의해, 주변의 다른 설비와 보호 몸체(311, 312)들과의 구조적인 간섭이 최소화 혹은 방지될 수 있다.
보호 몸체(311, 312)들은 전후 방향으로 나열될 수 있고, 그중 어느 하나가 용기부(100)에 장착될 수 있다. 구체적으로 제2보호 몸체(312)는 돌출 부재(120)에 장착되고, 제1보호 몸체(311)는 제2보호 몸체(312)의 좌우 방향으로의 일측에 회전 가능하도록 장착될 수 있다. 또한, 제2보호 몸체(312)가 돌출 부재(120)들의 사이에서 용기 본체(110)의 측벽에 장착되고, 제1보호 몸체(311)가 제2보호 몸체(312)의 좌우 방향으로의 일측에 회전 가능하도록 장착될 수 있다. 물론, 제1보호 몸체(311)가 돌출 부재(120) 혹은 용기 본체(110)에 장착되고, 제2보호 몸체(312)가 제1보호 몸체(311)에 회전 가능하게 장착될 수도 있다.
제1보호 몸체(311)의 좌우 방향으로의 일측을 중심으로 그 타측을 회전시켜서, 보호 용기(310)의 내부를 개폐할 수 있다. 제1보호 몸체(311)의 좌우 방향으로의 타측에는 제1보호 몸체(311)를 제2보호 몸체(312)에 결합시킬 수 있도록 소정의 체결 부재(미도시)가 구비될 수 있다. 체결 부재의 구조는 다양할 수 있다. 이러한 구조에 의하여, 보호 용기(310)의 개폐가 용이할 수 있다.
압력 용기(320)는 공급부(400)의 배관(410)과 연결될 수 있고, 내부에 가스가 고압으로 충전될 수 있고, 교체가 가능할 수 있다. 여기서, 압력 용기(320)가 교체 가능하다는 것은 압력 용기(320) 내부에 충전된 가스를 소정량 소모하게 되면 가스를 소모한 압력 용기(320)를 내부에 가스가 고압으로 충전된 새로운 압력 용기(320)로 교체하는 것을 의미한다.
압력 용기(320)는 상하 방향으로 길게 연장되고, 수평 방향으로 소정 직경을 가지며, 원통 형상으로 형성될수 있다. 물론, 압력 용기(320)의 연장 방향 및 형상은 다양할 수 있다. 압력 용기(320)는 보호 용기(310)에 수납되어 보호될 수 있다. 압력 용기(320)는 내부에 가스가 고압으로 충전될 수 있다. 여기서, 고압은 후술하는 유틸리티 라인의 압력보다 높은 압력을 의미할 수 있다. 압력 용기(320)를 가스 저장 용기라고 지칭할 수도 있다.
압력 용기(320)는 제강 공정 설비 및 연속 주조 공정 설비 중 적어도 어느 한 설비에 구비되는 유틸리티 라인으로부터 분리되고, 독립적으로 사용될 수 있다. 즉, 압력 용기(320)는 유틸리티 라인과 별도의 구성일 수 있다. 압력 용기(320)는 별도의 충전 설비(미도시)를 이용하여 내부에 가스를 충전할 수 있고, 유틸리티 라인의 내압보다 높은 압력으로 내부에 가스를 충전할 수 있다. 압력 용기(320)로부터 공급부(400)를 거쳐 분사부(200)로 공급되는 가스의 공급 압력은 유틸리티 라인의 압력보다 낮은 압력일 수 있다. 이때, 유틸리티 라인의 압력은 유틸리티 라인의 내부를 흐르는 가스의 공급 압력을 의미할 수 있다.
압력 용기(320)의 용량은 약 52리터일 수 있다. 물론, 용기 본체(110)의 크기와, 전로 출강부터 버블링, 2차 정련, 연속 주조 및 슬래그 배제에 이르기까지의 일련의 공정이 수행되는 전체 시간 등에 따라, 압력 용기(320)의 용량은 달라질 수 있다. 압력 용기(320)는 가스의 충전 압력이 유틸리티 라인의 가스의 공급 압력의 6배 내지 7배의 범위일 수 있고, 바람직하게는 6.1배 내지 6.6배의 범위를 가질 수 있다. 즉, 압력 용기(320)는 가스의 충전 압력이 예컨대 110 bar 내지 120bar의 범위를 가질 수 있다. 충전 압력은 압력 용기(320)에 가스를 충전할 때 압력 용기(320)로 공급할 수 있는 가스 압력을 의미한다. 압력 용기(320)에 가스를 최대로 충전하면, 압력 용기(320)의 내부 압력이 충전 압력과 같아질 수 있다. 즉, 압력 용기(320)의 충전을 완료한 시점의 압력 용기(320)의 가스 압력을 충전 압력이라 한다. 또한, 압력 용기(320)의 사용 중에 압력 용기(320)의 내부의 가스 압력을 내부 압력이라 한다. 이러한 압력 용기(320)의 충전 압력의 범위는 제강 공정 설비 및 연속 주조 설비에 구비되는 유틸리티 라인의 가스 공급 압력인 약 18 bar의 압력보다 상당히 높은 압력일 수 있다. 이처럼 압력 용기(320)의 가스 충전 압력이 상대적으로 높기 때문에 압력 용기(320)의 내부에 많은 양의 가스를 충전할 수 있다.
한편, 압력 용기(320)의 상술한 충전 압력보다 압력 용기(320)가 견딜 수 있는 내부 압력이 높을 수 있다. 따라서, 압력 용기(320)에 예컨대 120bar의 압력으로 가스를 충전한 후, 압력 용기(320)를 안정적으로 사용할 수 있고, 압력 용기(320)가 일시적으로 혹은 장시간 고온의 복사열에 노출되어 온도가 상승하여도, 그에 따른 가스의 부피 팽창을 압력 용기(320)가 안정적으로 수용할 수 있다. 이때, 압력 용기(320)가 견딜 수 있는 내부 압력을 예컨대 압력 용기(323)의 최대 내부 압력 또는 허용 압력이라고 지칭할 수 있다.
압력 용기(320)는 내부에 가스가 110 bar 내지 120bar의 충전 압력으로 충전된 상태에서 보호 용기(310)의 내부에 수납될 수 있고, 보호 용기(310)의 내부에서 공급부(400)의 배관(410)과 연결될 수 있다. 압력 용기(320)는 배관(410)을 통하여 분사부(200)로 가스를 공급할 수 있다. 이때, 압력 용기(320)로부터 분사부(200)로의 가스의 공급 압력 및 공급 유량은 공급부(400)의 압력 조절기(430)와 유량 조절기(440)에 의해 순차적으로 제어될 수 있다. 압력 용기(320) 내부에 충전된 가스의 압력 즉, 압력 용기(320)의 내부 압력이 분사부(200)로 공급하고자 하는 가스의 공급 압력에 근접하면, 그 내부에 가스가 110 bar 내지 120bar의 충전 압력으로 충전된 새로운 압력 용기(320)로 교체되어 보호 용기(310)에 수납될 수 있다.
비산방지 판(330)은 보호 용기(310)의 상면을 커버하도록 형성될 수 있다. 이에, 용기 본체(310) 내부의 용융물(M)로부터 기인하는 고온의 복사열과 비산물이 보호 용기(310)를 오염시키기 전에 비산방지 판(330)에 의해 차단될 수 있다. 이로부터 압력 용기(320)는 비산방지 판(330)에 의해 열기 및 비산물로부터 1차로 보호되고, 보호 용기(310)에 의해 2차로 보호될 수 있다. 이처럼 저장부(300)는 비산방지 판(330) 및 보호 용기(310)를 구비함으로써 압력 용기(320)를 2중으로 안전하게 보호할 수 있다.
예컨대 용기부(100)가 전로 출강부터 연주 주조와 슬래그 배제에 이르기까지의 일련의 공정을 거치는 동안, 용기부(100)로부터 용융물(M)이 여러 차례 배출될 수 있고, 그 과정에서 강한 스플래쉬가 발생하여 용기부(100)에 부착되면서 지금이 형성될 수 있다. 이때, 비산방지 판(330)이 보호 용기(310)의 상측에서 스플래쉬가 보호 용기(310)에 도달하는 것을 차단할 수 있고, 보호 용기(310)에 지금이 부착되는 것을 방지할 수 있다.
이러한 비산방지 판(330)은 탈착형으로 마련될 수 있고, 보호 용기(310)보다 먼저 교체될 수도 있다. 즉, 저장부(300) 전체를 교체하지 않고, 필요에 따라 비산방지 판(330)만 교체하면서, 저장부(300) 전체를 청정한 상태로 유지할 수 있다.
고정 판(340)은 보호 용기(310) 내부의 압력 용기(320)를 안정적으로 지지하는 역할을 한다. 즉, 보호 용기(310)에서 압력 용기(320)로의 열 전달을 억제 혹은 방지하기 위해, 보호 용기(310)의 내측 측면 및 내측 상면과 압력 용기(320)의 외측 측면 및 외측 상면은 상호 이격되는데, 이때, 고정 판(340)이 압력 용기(320)와 접촉하여 압력 용기(320)를 보호 용기(310) 내에서 고정시킬 수 있다. 예컨대 고정 판(340)은 링 형상으로 형성되고, 내주면이 압력 용기(320)와 접촉할 수 있고, 외주면이 보호 용기(310)의 내측 측면에 지지될 수 있다. 이때, 고정 판(340)은 복수개 예컨대 두 개의 분할형 부재로 형성될 수 있고, 그 일부는 제1보호 몸체(311)에 지지되고, 나머지는 제2보호 몸체(312)에 지지될 수 있다. 제1보호 몸체(311)와 제2보호 몸체(312)가 상호 결합되면, 상술한 두 개의 분할형 부재가 결합되어 하나의 고정 판(340)을 형성할 수 있다.
이러한 고정 판(340)은 보호 용기(310)의 내면 예컨대 내측 측면으로부터 돌출될 수 있고, 압력 용기(320)의 외면 예컨대 외측 측면 및 외측 상면과 접촉할 수 있다. 압력 용기(320)는 상부가 상측으로 볼록하게 형성될 수 있다. 이에, 압력 용기(320)의 외측 상면은 상방으로 볼록하게 형성될 수 있다. 고정 판(340)은 복수개로 구비될 수 있고, 그중 적어도 하나의 고정판 예컨대 제1 고정판(341)은 압력 용기(310)의 상부의 볼록한 부분 즉, 압력 용기(320)의 외측 상면에 접촉할 수 있고, 이에, 압력 용기(320)의 상하 방향의 움직임을 구속할 수 있다. 여기서, 제1 고정판(341)은 상술한 바와 같이 두 개의 분할형 부재로 형성되어, 하나가 제1보호 몸체(311)에 지지되고, 다른 하나가 제2보호 몸체(312)에 지지될 수 있다.
한편, 복수개의 고정 판(340) 중 제1 고정판(341)을 제외한 나머지를 제2 고정판(342)이라고 한다. 제2 고정판(342)의 개수는 적어도 하나 이상일 수 있다. 제2 고정판(342)은 제1 고정판(341)의 하측으로 이격되고, 압력 용기(320)의 내측 측면과 접촉하고, 압력 용기(320)의 수평 방향의 움직임을 구속할 수 있다. 이때, 제2 고정판(342)도 두 개의 분할형 부재로 형성되고, 그중 하나가 제1보호 몸체(311)에 지지되고, 나머지가 제2보호 몸체(312)에 지지될 수 있다.
상술한 고정 판(340)에 의하여 보호 용기(310)와 압력 용기(320) 사이에 이격된 공간이 형성 및 유지될 수 있고, 보호 용기(310) 내에서 압력 용기(320)가 안정적으로 고정될 수 있다.
예컨대 용기부(100)는 슬래그 배재 시에 직립된 상태로부터 90° 내지 180°까지 경동될 수 있다. 이때, 고정 판(340)이 보호 용기(310)의 내부에서 압력 용기(320)가 좌우 방향 및 상하 방향으로 이동하는 것을 방지시킬 수 있다. 이에, 압력 용기(320)가 보호 용기(310)와 충돌하여 손상되는 것을 원천 방지할 수 있다.
저장부(300)는 배관 설치구(350) 및 송풍구(360)를 포함할 수 있다. 배관 설치구(350)는 제1보호 몸체(311)의 상부 혹은 하부를 관통하도록 형성될 수 있다. 이러한 배관 설치구(350)를 관통하도록 공급부(400)의 배관(410)이 배치될 수 있다.
송풍구(360)는 제1보호 몸체(311)의 하부 혹은 상부를 관통하도록 형성될 수 있다. 이러한 송풍구(360)을 통하여 보호 용기(310)의 외부로부터 내부로 에어(air)가 유입될 수 있다. 송풍구(360)의 개수는 하나 이상일 수 있다. 한편, 송풍구(360) 부근에는 에어의 강제 유입을 위한 송풍기(미도시)가 구비될 수도 있다. 송풍기는 보호 용기(310)에 지지될 수 있다.
보호 용기(310)는 내면에 열 차단 부재(미도시) 및 냉각 유로(미도시) 중 적어도 어느 하나가 구비될 수 있다. 이때, 상술한 보호 용기(310)와 압력 용기(320) 사이에 형성되는 이격 공간이 열 차단 부재의 설치 공간 및 냉각 유로의 설치 공간 중 적어도 하나의 설치 공간으로 활용될 수 있다.
열 차단 부재는 약 1000℃ 이상의 온도에서도 열 차폐 기능을 원활하게 수행할 수 있는 내화 단열재 재질을 포함할 수 있다. 열 차단 부재는 실리카 및 알루미나 등을 포함하는 내화재를 용융 및 섬유화시킨 후, 원하는 형상으로 성형 혹은 직조하여 제조할 수 있다. 예컨대 이러한 열 차단 부재를 세라크울(Cerakwool)이라고 지칭할 수 있다. 열 차단 부재는 보호 용기(310)의 내면 및 압력 용기(320)의 외면 중 적어도 어느 하나를 감싸 형성될 수 있다. 이에, 용기부(100) 내부의 용융물(M)로부터 보호 용기(310)로 전달된 복사열이 압력 용기(320)로 전달되는 것을 지연시키거나, 이러한 열 전달을 차단할 수 있다. 열 차단 부재에 의하여 압력 용기(320)의 온도 증가가 억제 혹은 방지될 수 있고, 이에, 압력 용기(320)의 내압이 증가하는 것을 억제 혹은 방지할 수 있다.
냉각 유로는 보호 용기(310)와 압력 용기(320) 사이에 설치될 수 있고, 적어도 일부가 압력 용기(320)에 접촉 혹은 노출될 수 있다. 냉각 유로는 송풍구(360)와 연결되거나, 냉매 공급용 유틸리티 라인(미도시)와 연결될 수 있다. 한편, 보호 용기(310)와 압력 용기(320) 사이의 이격 공간이 그대로 냉각 유로로 활용될 수도 있다. 냉각 유로로 공급되는 에어 혹은 냉매에 의해 압력 용기(320)의 온도가 상승하는 것을 억제 혹은 방지할 수 있다. 이에, 압력 용기(320)의 내압이 증가하는 것을 억제 혹은 방지할 수 있다.
상술한 저장부(300)는 용기 본체(110)의 후방에 복수개 구비될 수 있다. 예컨대 저장부(300)는 두 개로 구비될 수 있고, 좌우 방향으로 상호 이격되며, 걸림 부재(130)의 후방에서 돌출 부재(120)에 지지되거나, 돌출 부재(120) 사이에서 용기 본체(110)의 측벽에 지지될 수 있다. 물론, 저장부(300)의 개수는 다양할 수 있다. 저장부(300)가 복수개로 구비됨에 의해, 분사부(200)에 가스를 장시간 공급할 수 있고, 분사부(200)의 건전성을 장시간 유지할 수 있다. 이때, 건전성은 분사부(200)로의 용융물(M) 침투 정도에 따라 정해질 수 있다. 즉, 분사부(200)로 용융물(M)이 침투하지 않았거나, 분사부(200)가 자신의 기능을 원활하게 수행할 수 있을 정도로 분사부(200)로 미량의 용융물(M)이 침투한 상태일 때, 분사부(200)가 건전성을 유지하는 것으로 본다.
이처럼 저장부(300)가 복수개 구비됨에 따라, 예컨대 용기부(100)가 슬래그 배제 이후 장시간 대기하는 중에도 분사부(200)의 건전성이 유지될 수 있다. 한편, 저장부(300)는 용기 본체(100)의 후방에 하나 구비될 수도 있다.
도 3 및 도 5를 참조하면, 공급부(400)는 용기부(100)의 외면을 따라 연장되고, 일단이 분사부(200)와 연결되고 타단이 저장부(300)와 연결되는 배관(410), 배관(410)의 타단에 장착되는 안전 밸브(420), 안전 밸브(420)와 분사부(200) 사이에 위치하도록 배관(410)에 장착되는 압력 조절기(430), 및 압력 조절기(430)와 분사부(200)의 사이에 위치하도록 배관(410)에 장착되는 유량 조절기(440)를 포함할 수 있다. 이때, 배관(410)은 일부가 복수개의 분관(410a)으로 분기될 수 있고, 각각의 분관(410a)이 각각의 저장부(300)에 연결될 수 있다. 구체적으로 배관(410)의 타단은 복수의 분관(410a)으로 분기될 수 있다. 또한, 복수의 분관(410a)이 복수의 저장부(300)와 각각 일대일로 연결될 수 있다.
배관(410)은 분사부(200)와 저장부(300)를 연결시킬 수 있도록, 일단이 용기 본체(110)의 바닥판의 하면을 따라 연장되고, 분사부(200)의 하부에 연결될 수 있다. 배관(410)의 타단에 형성된 각 분관(410a)은 보호 용기(310)를 관통하도록 설치되고, 압력 용기(320)와 연결될 수 있다.
한편, 저장부(300)가 하나 구비되는 경우 배관(310)의 타단은 분기되지 않을 수 있다. 즉, 배관(310)의 타단이 보호 용기(310)를 관통하도록 설치되고, 압력 용기(320)와 직접 연결될 수 있다.
배관(410)의 일단과 타단을 연결하는 연결관은 용기 본체(110)의 측벽을 따라서 연장될 수 있다. 이 연결관에 압력 조절기(430)와 유량 조절기(440)가 장착될 수 있다.
안전 밸브(420)는 배관(410)에 장착될 수 있다. 구체적으로 안전 밸브(420)는 보호 용기(310)의 외부에서 분관(410a)에 장착될 수 있다. 안전 밸브(420)는 압력 용기(320)가 견딜 수 있는 내부 압력 예컨대 허용 압력보다 작은 소정의 압력까지 압력 용기(320)의 내부 압력이 상승하면, 자동으로 개방될 수 있고, 외부로 가스를 배출시킬 수 있다. 소정의 시간이 지나고, 소정량의 가스가 배출된 이후 안전 밸브(420)가 차단될 수 있다. 저장부(300)가 하나인 경우에는 안전 밸브(320)는 보호 용기(310)의 외부에서 배관(410)의 타단에 장착될 수 있다.
압력 조절기(430)는 압력 용기(320)로부터 분사부(200)로의 가스 흐름을 기준으로 유량 조절기(440)보다 상류에 위치할 수 있다. 유량 조절기(440)는 상술한 가스 흐름을 기준으로 압력 조절기(430)보다 하류에 위치할 수 있다. 여기서, 상류는 가스가 상대적으로 먼저 통과하는 부분을 의미하고, 하류는 가스가 상대적으로 나중에 통과하는 부분을 의미한다.
압력 조절기(430)는 예컨대 감압 밸브를 포함할 수 있다. 압력 조절기(430)는 입력 압력보다 작은 소정의 압력으로 출력 압력을 일정하게 유지할 수 있다. 입력 압력은 압력 용기(320)로부터 배관(410)으로 공급되어 압력 조절기(430)에 입력되는 압력을 의미한다. 또한, 출력 압력은 입력 조절기(430)를 통과하여 배관(410)의 내부로 출력되는 가스의 압력을 의미한다. 이때, 출력 압력이 압력 용기(320)로부터 분사부(200)로의 가스의 공급 압력일 수 있다.
압력 조절기(430)는 압력 용기(310)의 가스 충전 용량이 감소하여 압력이 감소하는 경우에도, 출력 압력을 일정하게 유지할 수 있다. 예컨대 입력 압력은 3bar 초과 120bar 이하의 압력일 수 있고, 출력 압력은 3bar일 수 있다. 여기서, 출력 압력은 용융물 예컨대 용강의 높이에 의해 결정될 수 있다. 이러한 압력 조절기(430)에 의해 분사부(200)에 일정한 양의 가스를 안정적으로 공급할 수 있다.
한편, 압력 조절기(430)에서 압력을 조절할 때, 가스의 유량이 급격하게 변하고, 압력이 조절된 가스의 공급 압력을 유지하며 그대로 분사부(200)에 공급하면서 가스의 공급 유량을 제어하는 것이 어렵다. 이에, 압력 조절기(430)의 하류에 유량 조절기(440)를 장착하고, 압력이 조절된 가스의 유량을 원하는 공급 유량으로 조절할 수 있다. 즉, 유량 조절기(440)가 분사부(200)로 공급되는 가스의 공급 유량을 조절할 수 있고, 저장부(300)에 저장된 가스의 내부 압력이 줄어드는 경우에도, 분사부(200)에 공급되는 가스의 유량을 안정적으로 유지할 수 있다.
유량 조절기(440)는 압력 조절기(430)를 통과하며 압력이 조절된 가스를 입력받아서 원하는 공급 유량으로 조절하여 배관(410)의 내부로 출력할 수 있다. 이에, 분사부(200)가 일정한 공급 압력 및 공급 유량으로 가스를 공급받을 수 있다.
압력 용기(320)의 내부 압력이 낮아지는 동안, 유량 조절기(440)를 통과하며 압력의 조절된 가스가 불규칙한 유량으로 유량 조절기(440)에 공급되어도, 유량 조절기(440)를 통과하며 소정의 공급 유량 예컨대 약 20ℓ/min의 공급 유량으로 유량이 조절될 수 있다. 따라서, 유량 조절기(440)로부터 분사부(200)로 3bar의 압력의 가스가 20ℓ/min의 유량으로 공급될 수 있다. 한편, 유량 조절기(440)는 가스의 압력을 등압으로 일정하게 유지하면서 유량을 자동으로 조절할 수 있는 다양한 방식의 유량계를 포함할 수 있다.
상술한 압력 조절기(430)와 유량 조절기(440)는 제어부(미도시)에 의하여 제어될 수 있고, 제어부의 제어에 의해 기계적으로 작동하며 가스의 공급 압력과 공급 유량을 순차적으로 조절할 수 있다. 또한, 압력 조절기(430)와 유량 조절기(440)는 제어부의 제어에 의하여 설정된 공급 압력의 크기와 설정된 공급 유량의 크기를 조절할 수도 있다. 즉, 필요에 따라 공급 압력의 크기를 줄이고 싶으면, 제어부로 압력 조절기(430)를 제어하여 압력 조절기(430)의 출구 압력을 줄여줄 수 있다. 또한, 필요에 따라 공급 유량의 크기를 줄이고 싶으면, 제어부로 유량 조절기(440)를 제어하여 유량 조절기(440)의 출구 유량을 줄여줄 수 있다.
예컨대 용융물(M)의 높이가 낮아지면, 용융물(M)의 압력 예컨대 철정압이 낮아지므로, 용융물(M)이 분사부(200)로 가하는 압력이 작아지고, 이때에 공급 압력의 크기를 줄일 수 있다. 또한, 용융물(M)의 온도가 달라지는 경우, 용융물(M)의 유동성 및 점성 등이 변하게 되고, 이에 맞춰서 공급 유량의 크기를 다르게 할 수도 있다.
상술한 공급부(400)는 제강 공정 및 연속 주조 공정의 유틸리티 라인과 연결되지 않을 수 있다. 즉, 용기부(100)가 사용되는 전체 공정에서, 저장부(300)에 충전된 가스만으로 분사부(200)의 막힘을 방지하도록 분사부(200)에 가스를 공급해줄 수 있다.
도 8은 본 발명의 실시 예에 따른 용융물 처리 장치의 정면도이다.
도 2 및 도 8을 참조하면, 본 발명의 실시 예에 따른 용융물 처리 장치는 무게 조정부(500)를 더 포함할 수 있다. 무게 조정부(500)는 용기부(100)를 사이에 두고 저장부(300)와 전후 방향으로 대향하는 위치에서 용기부(100)의 외면에 장착될 수 있다. 무게 조정부(500)는 저장부(300)에 의한 용기부(100)의 무게 중심의 편심을 방지할 수 있다. 무게 조정부(500)는, 상하 방향으로 연장될 수 있고, 돌출 부재(120)에 지지되는 고정 바(510), 용기 몸체(110)의 외주면의 형상을 따라 만곡하게 형성되고, 돌출 부재(120)의 상면에 안착될 수 있고, 고정 바(510)에 끼움 결합될 수 있는 무게 추(520)를 포함할 수 있다. 무게 조정부(500)는 용기 몸체(110)의 전방에 위치할 수 있다. 무게 조정부(500)는 무게 추(520)의 개수를 조절하여, 용기 몸체(110)의 무게 중심의 위치를 한 쌍의 걸림 부재(130) 사이에 위치시킬 수 있다. 이에, 저장부(300)의 크기가 크고, 저장부(300)에 다량의 가스를 충전하더라도, 용기부(100)가 저장부(300)측으로 무게 중심이 편심되지 않을 수 있다.
고정 바(510)는 복수개 구비될 수 있다. 복수개의 고정 바(510)는 좌우 방향 및 상하 방향 중 적어도 어느 하나의 방향으로 상호 이격되고, 각각의 상단과 하단이 상하 방향으로 나열된 돌출 부재(120)의 서로 마주보는 면에 각각 끼움 결합될 수 있다.
무게 추(520)는 활꼴 형상의 부재일 수 있고, 돌출 부재(120)의 상면에 안착될 수 있는 면적을 가지며, 복수개 구비되어 상하로 상호 적층될 수 있다. 이때, 무게 추(520)의 상면과 하면에는 요철 및 점착 부재가 구비될 수 있다. 이에, 복수의 무게 추(520)가 상하로 상호 적층되었을 때, 서로 결합되어 움직임이 방지될 수 있다. 무게 추(520)는 그 측면에 끼움 홈(h)이 형성될 수 있다. 끼움 홈(h)에 고정 바(510)가 끼움 결합될 수 있다. 이때, 끼움 홈(h)은 무게 추(520)의 전방 측면에 형성될 수 있다. 이에, 무게 추(520)는 용기 몸체(110)와 고정 바(510)의 사이에서 안정적으로 보호될 수 있다. 여기서, 전방 측면은 용기 몸체(110)의 전방을 향하는 측면을 의미한다. 후방 측면은 용기 몸체(110)를 마주보는 측면일 수 있다.
본 발명의 실시 예에 따르면, 압력 용기(320)에 충전된 가스의 압력 예컨대 압력 용기(320)의 내부 압력이 변동되어도, 분사부(200)에 장시간 안정적으로 일정한 공급 압력과 일정한 공급 유량의 가스를 공급할 수 있다. 또한, 용융물(M)로부터의 복사열에 압력 용기(320)가 노출되는 것을 최소화시킬 수 있다. 이에, 분사부(200)에 용융물(M)이 침투하는 것을 장시간 억제 혹은 방지할 수 있다.
도 6 및 도 7은 본 발명의 제1 변형 예에 따른 공급부의 개념도이다. 구체적으로 도 6은 저장부가 복수개 예컨대 두 개일 때 본 발명의 제1 변형 예에 따른 공급부의 연결 구조를 도시한 개념도이다. 또한, 도 7은 저장부가 하나일 때 본 발명의 제1 변형 예에 따른 공급부의 연결 구조를 도시한 개념도이다.
도 6을 참조하면, 본 발명의 제1 변형 예에 따르면, 공급부(400)는, 안전 밸브(420)와 압력 조절기(430) 사이에 위치하도록 배관(410)에 장착되는 제1차단 밸브(450), 제1차단 밸브(450)와 안전 밸브(420) 사이에 위치하도록 배관(410)에 장착되는 배출 밸브(460), 압력 조절기(430)와 유량 조절기(440) 사이에 위치하도록 배관(410)에 장착되는 제2차단 밸브(470)를 포함할 수 있다.
제1차단 밸브(450)는 수동 니들 밸브를 포함할 수 있다. 제1차단 밸브(450)는 용기부(100)가 운용되지 않는 시점에, 저장부(300)로부터 공급부(400)로의 가스 공급을 수동으로 차단할 수 있다. 배출 밸브(460)는 수동 볼 밸브를 포함할 수 있다. 배출 밸브(460)는 용기부(100)의 운용이 재개되는 시점에, 제1차단 밸브(450)와 저장부(300) 사이에서 배관(410)에 고여 있는 고압의 가스를 배출시켜, 제1차단 밸브(450)와 저장부(300) 사이의 압력을 감소시킬 수 있다. 따라서, 용기부(100)의 운용이 재개되는 시점에, 압력 조절기(430)가 손상되는 것을 방지할 수 있다. 배출 밸브(460)는 벤틸레이션 라인(ventilation line, L)으로 고압의 가스를 배출할 수 있다. 제2차단 밸브(470)는 수동 니들 밸브를 포함할 수 있고, 필요에 따라서 압력 조절기(430)와 유량 조절기(440) 사이의 가스 흐름을 차단할 때 사용될 수 있다.
또한, 공급부(400)는 유량 조절기(440)의 하류 측에서 배관(410)에 장착되는 압력계(490) 및 압력계(490)와 분사부(200)의 사이에서 배관(410)에 장착되는 전환 밸브(480)를 더 포함할 수 있다.
압력계(490)는 유량 제어기(440)로부터 출력되는 가스의 압력을 실제로 측정할 수 있다. 압력계(490)의 측정 결과는 제어부로 전달되고, 압력계(490)에서 측정되는 실제 압력과 압력 조절기(430)에 설정된 출력 압력이 다를 경우, 제어부가 이를 신속하게 사용자에게 알려줄 수 있다.
전환 밸브(480)는 예컨대 3 방향 밸브(three way valve)일 수 있다. 전환 밸브(480)는 유틸리티 라인(U)에 선택적으로 탈착될 수 있다. 전환 밸브(480)가 유틸리티 라인(U)에 장착되면, 전환 밸브(480)는 유량 조절부(440)로부터 분사부(200)로의 가스 흐름을 차단하고, 유틸리티 라인(U)으로부터 분사부(200)로의 가스 흐름을 개방할 수 있다. 그리고 전환 밸브(480)가 유틸리티 라인(U)으로부터 분리되면, 전환 밸브(480)는 유량 조절부(440)로부터 분사부(200)로의 가스 흐름을 개방할 수 있다.
도 9는 본 발명의 제2 변형 예에 따른 무게 조정부의 개략도이다.
도 8 및 도 9를 참조하면, 본 발명의 제2 변형 예에 따른 무게 조정부(500)는, 저장부(300)의 가스 소모량에 따른 무게 변화에 따라, 용기부(100)의 무게 중심을 조절할 수 있도록 적어도 일부가 용기부(100)의 외면을 따라서 수평 방향으로 이동 가능하게 설치될 수 있다. 이를 위한 무게 조정부(500)는 고정 바(510), 무게 추(520), 엑추에이터(530) 및 가이드 레일(540)을 포함할 수 있다.
고정 바(510)는 용기 몸체(110)의 전방에서 상하 방향으로 연장되고, 복수개 구비되고, 좌우 방향으로 이격되며, 돌출 부재(120) 사이에 배치될 수 있다. 무게 추(520)는 복수개 구비되고, 좌우 방향으로 나열될 수 있고, 상하 방향으로 적층될 수 있다. 좌측의 무게 추(520) 그룹과 우측의 무게 추(520) 그룹은 서로 다른 고정 바(510)에 끼움 결합될 수 있다.
엑추에이터(530)는 좌우 방향으로 길이가 조절될 수 있고, 용기 몸체(110)의 외면에 지지될 수 있고, 고정 바(510)에 일대일 연결될 수 있다. 가이드 레일(540)은 상하 방향으로 나열된 돌출 부재(120)의 서로 마주보는 면에 각기 형성될 수 있고, 돌출 부재(120)를 따라 용기 몸체(110)의 둘레 방향으로 연장될 수 있고, 고정 바(510)의 상단과 하단이 장착될 수 있다.
엑추에이터(530)는 제어부에 의해 제어될 수 있고, 저장부(300)의 가스 충전량이 상대적으로 많을 때에는 고정 바(510)를 용기 몸체(110)의 전방을 항해 이동시키며 모아줄 수 있다. 또한, 엑추에이터(530)는 저장부(300)의 가스 충전량이 상대적으로 적을 때에는 고정 바(510)를 걸림 부재(130)쪽으로 당기며, 고정 바(510)들을 좌우 방향으로 벌려줄 수 있다. 이러한 고정 바(510)의 움직임을 따라서 무게 추(520)의 전후 방향의 위치가 조절되며, 이에, 무게 중심이 조절될 수 있다.
이하, 도 1 내지 도 9를 참조하여, 본 발명의 실시 예에 따른 용융물 처리 방법을 상세하게 설명한다.
본 발명의 실시 예에 따른 용융물 처리 방법은 가스가 충전된 저장부(300)와 함께 이동 가능한 용기부(100)를 마련하는 과정, 용융물(M)이 수용된 용기부(100)를 제1 위치에서 제2 위치로 이송하는 과정, 용기부(100) 내부의 용융물(M) 내에 가스를 분사할 수 있도록 용기부(100)의 하부에 장착된 분사부(200)로 가스를 공급하는 과정, 분사부(200)로 공급되는 가스의 공급 압력을 조절하는 과정, 공급 압력이 조절된 가스의 공급 유량을 조절하는 과정을 포함한다.
우선, 가스가 충전된 저장부(300) 및 이와 함께 이동 가능한 용기부(100)를 마련한다. 저장부(300)는 가스가 약 110bar 내지 120bar의 충전 압력으로 충전된 상태일 수 있다. 물론, 충전 압력은 상술한 압력보다 더 높거나 더 낮은 소정의 압력 범위일 수도 있다. 이때, 용기부(100)에는 용융물(M)이 수용된 상태일 수 있다. 용융물(M)은 용강 및 슬래그 중 적어도 어느 하나일 수 있다.
이후, 용융물(M)이 수용된 상술한 용기부(100)를 제1 위치에서 제2 위치로 이송한다. 여기서, 제1 위치는 현재 용기부(100)가 위치하는 장소이고, 제2 위치는 용기부(100)를 이동시키고자 하는 소정의 장소일 수 있다. 즉, 용기부(100)가 전로 출강이 완료된 용강을 후속 공정으로 운반하는 경우, 전로 공정 설비의 위치가 제1 위치일 수 있고, 후속 공정 예컨대 버블링 공정, 2차 정련 공정 또는 연속 주조 공정이 수행되는 설비의 위치가 제2 위치일 수 있다.
상술한 과정 동안, 용기부(100) 내부의 용융물(M) 내에 가스를 분사할 수 있도록 분사부(200)로 가스를 공급한다. 구체적으로 저장부(300)에 충전된 가스를 공급부(400)를 이용하여 분사부(200)에 공급할 수 있다. 여기서, 저장부(300)에 충전된 가스의 충전량이 줄어들면, 분사부(200)에 공급되는 가스의 유량과 유압이 불규칙하게 변할 수 있고, 용융물(M)의 탕면이 불안정해짐으로써, 품질이 저하될 수 있다. 이를 방지하기 위하여, 상술한 과정 동안, 분사부(200)로 공급되는 가스의 공급 압력을 조절하고, 압력이 조절된 가스의 공급 유량을 조절한다.
여기서, 가스의 공급 압력을 먼저 조절하는 이유는, 가스의 압력 조절 이후에는 통상적으로 가스의 유량 변동이 심하기 때문에, 안정적인 유량의 가스를 분사부(200)로 공급하기 위하여, 압력 조절부(430)에서 가스의 압력을 조절한 이후, 유량 조절부(430)에서 가스의 유량을 조절하고, 분사부(200)로 공급한다.
여기서, 압력을 조절하는 과정은, 저장부(300)의 충전 압력보다 낮고, 용융물(M)의 압력보다 높은 기준 압력으로, 공급 압력을 감압하는 과정을 포함할 수 있다. 또한, 압력을 조절하는 과정은, 제1 위치 및 제2 위치 중 적어도 어느 한 위치의 유틸리티 라인의 내부 압력보다 낮고, 용융물의 압력보다 높은 기준 압력으로, 공급 압력을 감압하는 과정을 포함할 수 있다. 용융물의 압력은 용융물 최하단부의 압력일 수 있다. 즉, 용융물이 용기부(100)의 바닥판 상면에 가하는 압력일 수 있다.
이때, 용융물(M)의 압력은 용융물(M)이 분사부(200)에 가하는 압력일 수 있고, 예컨대 철정압일 수 있다. 또한, 기준 압력은 용융물(M)이 분사부(200)로 유입되는 것을 방지하면서, 가스가 분사부(200)를 통해 용융물(M)에 분사될 수 있는 소정의 압력일 수 있다. 또한, 기준 압력은 용융물(M)이 용강 및 슬래그를 포함할 때, 용강의 탕면에 나탕면이 형성되지 않도록 하는 소정의 압력일 수 있다.
이처럼 상술한 기준 압력으로 공급 압력을 감압하여 분사부(200)로 공급하기 때문에, 적은 양의 가스를 사용하면서, 용융물(M)이 분사부(200)로 유입되는 것을 방지하고, 용융물(M)의 탕면에 나탕이 발생하는 것도 방지할 수 있다. 이러한 기준 압력은 약 3bar의 압력일 수 있다. 예컨대 이러한 기준 압력은 상술한 유틸리티 라인의 공급 압력보다 6배 낮은 압력일 수 있다.
한편, 용융물(m)의 높이가 높아지면 용융물(M)의 압력 예컨대 철정압이 커지기 때문에, 그 비율만큼 공급 압력의 크기를 증가시켜야 한다. 예컨대 용융물의 밀도가 7020 kg/m3이면, 용융물(m)의 높이가 약 1m 높아질 때, 공급 압력을 약 0.68 bar 증가시켜야 한다. 이에, 용융물(m)의 높이가 변하더라도 적절한 압력의 가스를 분사부(200)로 공급할 수 있다. 이처럼 기준 압력은 용기부(100) 내부의 용융물(M) 높이에 따라 정해질 수 있다.
이후, 공급 압력이 조절된 가스의 공급 유량을 조절한다. 구체적으로 가스가 공급 압력의 크기를 유지하면서, 미리 설정된 기준 유량을 추종하도록 공급 유량을 증감시킬 수 있다. 따라서, 압력 조절부(430)에서 가스의 유량이 불규칙하게 변하더라도, 유량 조절부(440)로 가스의 유량을 조절하여, 일정한 공급 유량으로 분사부(200)에 가스를 공급할 수 있다. 이때, 기준 유량은 용융물(M)의 탕면에 나탕이 발생하지 않을 수 있는 가스의 유량 혹은 용융물(M)의 급격한 교반을 방지할 수 있는 가스의 유량일 수 있다. 물론, 기준 유량은 다양한 방식으로 정의될 수 있다.
한편, 상술한 과정들을 수행하는 동안, 보호 용기(310)와 비산방지 판(330)을 이용하여 용기부(100)로부터 저장부(300)의 압력 용기(320)로 고온의 온도가 전달되는 것을 방지할 수 있다. 또한, 용융물(M)로부터 기인하는 비산물이 압력 용기(320)를 오염시키는 것을 방지할 수 있다.
또한, 상술한 과정들을 수행하는 동안, 저장부(300)의 온도 상승으로 인하여 저장부(300)의 내부 압력이 급격하게 높아져서 특정 압력보다 높아지면, 압력 용기(320)로부터 압력 조절기(430)로의 가스의 공급 압력이 급격하게 높아지게 된다. 이때, 공급부(400)의 안전 밸브(420)를 이용하여, 가스가 흐르는 배관(410)의 일부 예컨대 분기관(410a)를 개방시킴으로써, 압력 조절기(430)로 공급되는 가스의 압력을 낮춰줄 수 있다. 이에, 압력 조절기(430)의 손상을 방지할 수 있고, 공급 압력의 변동을 방지할 수 있다. 한편, 상술한 특정 압력은 예컨대 저장부(300)의 충전 압력보다 높고, 저장부(300)의 압력 용기(320)가 파손되지 않고 견딜 수 있는 내부의 압력인 허용 압력보다 낮은 소정의 압력 범위 내에서 선택되는 소정 압력일 수 있다.
가스의 공급 압력과 공급 유량을 조절하여 분사부(200)로 공급하는 동안, 압력 용기(320)로의 온도 전달을 방지하는 과정과 압력 용기(320)의 오염을 방지하는 과정과 공급 압력의 변동을 방지하는 과정은 선택적으로 수행될 수 있다. 즉, 가스의 공급 압력과 공급 유량을 조절하여 분사부(200)로 공급하는 동안, 이들 과정 중 적어도 어느 한 과정이 수행될 수 있다.
또한, 상술한 과정들을 수행하는 동안, 용기부(100)를 중심으로 저장부(300)의 반대측에서, 무게 조정부(500)를 이용하여 용기부(100)에 무게를 가하는 방식으로, 용기부(100)의 무게 중심이 편중되는 것을 방지할 수 있고, 이때, 저장부(300)에서 가스가 소모되는 소모량에 따라 무게 조정부(500)가 무게를 가하는 작용점을 저장부(300)측으로 이동시키며, 무게 중심을 안정적으로 유지시킬 수 있다.
상술한 바에 따르면, 저장부(300)의 압력 용기(320)의 내부 압력이 변동되더라도 장시간 일정한 유량과 유압의 가스를 분사부(200)로 공급함으로써, 분사부(200)로 용융물(M)이 침투하는 것을 방지할 수 있고, 분사부(200)의 손상을 방지할 수 있다.
본 발명의 상기 실시 예는 본 발명의 설명을 위한 것이고, 본 발명의 제한을 위한 것이 아니다. 본 발명의 상기 실시 예 및 그 변형 예들에 개시된 구성과 방식은 서로 결합하거나 교차하여 다양한 형태로 조합 및 변형될 것이고, 이에 의한 변형 예들도 본 발명의 범주로 볼 수 있음을 주지해야 한다. 즉, 본 발명은 청구범위 및 이와 균등한 기술적 사상의 범위 내에서 서로 다른 다양한 형태로 구현될 것이며, 본 발명이 해당하는 기술 분야에서의 업자는 본 발명의 기술적 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.
(부호의 설명)
100: 용기부
200: 분사부
300: 저장부
320: 압력 용기
400: 공급부
430: 압력 조절기
440: 유량 조절기

Claims (19)

  1. 용융물이 수용될 수 있도록 내부에 공간을 구비하는 용기부;
    상기 용기부 내부의 용융물 내에 가스를 분사할 수 있도록 상기 용기부의 하부에 장착되는 분사부;
    상기 용기부에 장착되고, 내부에 가스가 충전될 수 있는 저장부; 및
    상기 분사부와 상기 저장부를 연결시키도록 상기 용기부에 설치되고, 가스의 공급 압력을 조절하는 압력 조절기 및 공급 압력이 조절된 가스의 공급 유량을 조절하는 유량 조절기를 구비하는 공급부;를 포함하는 용융물 처리 장치.
  2. 청구항 1에 있어서,
    상기 공급부는,
    상기 용기부의 외면을 따라 연장되고, 상기 분사부와 상기 저장부를 연결시키는 배관;
    상기 배관에 장착되는 안전 밸브;를 포함하고,
    상기 안전 밸브와 상기 분사부 사이에 위치하도록 상기 배관에 상기 압력 조절기가 장착되고, 상기 압력 조절기와 상기 분사부 사이에 위치하도록 상기 배관에 상기 유량 조절기가 장착되는 용융물 처리 장치.
  3. 청구항 2에 있어서,
    상기 공급부는,
    상기 안전 밸브와 상기 압력 조절기 사이에 위치하도록 상기 배관에 장착되는 제1차단 밸브;
    상기 제1차단 밸브와 상기 안전 밸브 사이에 위치하도록 상기 배관에 장착되는 배출 밸브;
    상기 압력 조절기와 상기 유량 조절기 사이에 위치하도록 상기 배관에 장착되는 제2차단 밸브;를 포함하는 용융물 처리 장치.
  4. 청구항 2에 있어서,
    상기 저장부는 복수개 구비되고,
    상기 배관은 일부가 복수개의 분관으로 분기되고,
    각각의 분관이 각각의 저장부에 연결되는 용융물 처리 장치.
  5. 청구항 2에 있어서,
    상기 저장부는,
    상기 배관과 연결되고, 내부에 가스가 충전되며, 교체 가능한 압력 용기;
    상기 압력 용기가 수용되고, 상기 용기부의 외면에 장착되며, 일부가 개폐될 수 있는 보호 용기;
    상기 보호 용기의 상면을 커버하도록 형성되는 비산방지 판;
    상기 보호 용기의 내면으로부터 돌출되고, 상기 압력 용기와 접촉할 수 있는 고정 판;을 포함하는 용융물 처리 장치.
  6. 청구항 5에 있어서,
    상기 압력 용기는 상부가 상측으로 볼록하게 형성되고,
    상기 고정 판은 복수개 구비되고, 적어도 하나의 고정판이 상기 압력 용기의 상부의 볼록한 부분에 접촉하여 상기 압력 용기의 상하 방향의 움직임을 구속할 수 있는 용융물 처리 장치.
  7. 청구항 6에 있어서,
    상기 고정 판의 나머지는 상기 압력 용기의 측면에 접촉하여 상기 압력 용기의 수평 방향의 움직임을 구속할 수 있는 용융물 처리 장치.
  8. 청구항 5에 있어서,
    상기 보호 용기의 내면에는 열 차단 부재 및 냉각 유로 중 적어도 어느 하나가 구비되는 용융물 처리 장치.
  9. 청구항 1에 있어서,
    상기 용기부를 사이에 두고 상기 저장부와 수평 방향으로 대향하는 위치에서 상기 용기부의 외면에 장착되는 무게 조정부;를 포함하는 용융물 처리 장치.
  10. 청구항 9에 있어서,
    상기 무게 조정부는 무게 중심을 조절할 수 있도록 적어도 일부가 상기 용기부의 외면을 따라 수평 방향으로 이동 가능하게 설치되는 용융물 처리 장치.
  11. 가스가 충전된 저장부와 함께 이동 가능한 용기부를 마련하는 과정;
    용융물이 수용된 상기 용기부를 제1 위치에서 제2 위치로 이송하는 과정;
    상기 용기부 내부의 용융물 내에 가스를 분사할 수 있도록 상기 용기부의 하부에 장착된 분사부로 가스를 공급하는 과정;
    상기 분사부로 공급되는 가스의 공급 압력을 조절하는 과정; 및
    상기 공급 압력이 조절된 가스의 공급 유량을 조절하는 과정;을 포함하는 용융물 처리 방법.
  12. 청구항 11에 있어서,
    상기 압력을 조절하는 과정은,
    상기 제1 위치 및 제2 위치 중 적어도 어느 한 위치의 유틸리티 라인의 내부 압력보다 낮고, 용융물 압력보다 높은 기준 압력으로, 상기 공급 압력을 감압하는 과정;을 포함하는 용융물 처리 방법.
  13. 청구항 11에 있어서,
    상기 압력을 조절하는 과정은,
    상기 저장부의 충전 압력보다 낮고, 용융물 압력보다 높은 기준 압력으로, 상기 공급 압력을 감압하는 과정;을 포함하는 용융물 처리 방법.
  14. 청구항 12 또는 청구항 13에 있어서,
    상기 기준 압력은 상기 용기부 내부의 용융물 높이에 따라 정해지는 용융물 처리 방법.
  15. 청구항 12 또는 청구항 13에 있어서,
    상기 유량을 조절하는 과정은,
    상기 가스가 상기 공급 압력을 유지하면서, 미리 설정된 기준 유량을 추종하도록 상기 공급 유량을 증감시키는 과정;을 포함하는 용융물 처리 방법.
  16. 청구항 11에 있어서,
    상기 용기부로부터 상기 저장부로 온도가 전달되는 것을 방지하는 과정;
    상기 용융물로부터 기인하는 비산물이 상기 저장부를 오염시키는 것을 방지하는 과정; 및
    상기 저장부의 내부 압력이 급격하게 높아지면 가스가 흐르는 배관의 일부를 개방하여 상기 공급 압력의 변동을 방지하는 과정; 중 적어도 어느 한 과정을 포함하는 용융물 처리 방법.
  17. 청구항 11에 있어서,
    상기 용기부를 중심으로 상기 저장부의 반대측에 무게를 가하여 상기 용기부의 무게 중심이 편중되는 것을 방지하는 과정;을 포함하는 용융물 처리 방법.
  18. 청구항 17에 있어서,
    상기 가스의 소모량에 따라 상기 무게의 작용점을 상기 저장부측으로 이동시키는 과정;을 포함하는 용융물 처리 방법.
  19. 청구항 11에 있어서,
    상기 용융물은 용강 및 슬래그 중 적어도 어느 하나를 포함하는 용융물 처리 방법.
PCT/KR2020/018846 2019-12-26 2020-12-22 용융물 처리 장치 및 방법 WO2021133018A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20905734.8A EP4082689A4 (en) 2019-12-26 2020-12-22 MELT PROCESSING METHOD AND APPARATUS
CN202080090092.0A CN114901405B (zh) 2019-12-26 2020-12-22 熔融材料处理设备和方法
JP2022538800A JP7383826B2 (ja) 2019-12-26 2020-12-22 溶融物の処理装置及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190175095A KR102283199B1 (ko) 2019-12-26 2019-12-26 용융물 처리 장치 및 방법
KR10-2019-0175095 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021133018A1 true WO2021133018A1 (ko) 2021-07-01

Family

ID=76575342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018846 WO2021133018A1 (ko) 2019-12-26 2020-12-22 용융물 처리 장치 및 방법

Country Status (4)

Country Link
EP (1) EP4082689A4 (ko)
JP (1) JP7383826B2 (ko)
KR (1) KR102283199B1 (ko)
WO (1) WO2021133018A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540573A (zh) * 2022-02-28 2022-05-27 北方重工集团有限公司 一种转炉预应力挡座结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198667A (ja) * 2000-01-17 2001-07-24 Tokyo Yogyo Co Ltd ボンベ搭載型取鍋を用いた溶湯ガス吹込方法及びボンベ搭載型取鍋
KR20030069033A (ko) * 2002-02-19 2003-08-25 도쿄요교 가부시키가이샤 축압 실린더를 갖는 가스 주입 장치를 구비한 레이들
KR20130101786A (ko) 2012-03-06 2013-09-16 주식회사 포스코 제강방법 및 이를 위한 버블링장치
KR20130107713A (ko) 2012-03-23 2013-10-02 주식회사 포스코 용강 버블링 장치
JP2014237158A (ja) * 2013-06-07 2014-12-18 東京窯業株式会社 蓄圧ボンベを持つ取鍋
JP2014237161A (ja) * 2013-06-07 2014-12-18 東京窯業株式会社 蓄圧ボンベを持つ取鍋
KR20180070952A (ko) * 2016-12-19 2018-06-27 주식회사 포스코 용강 레이들의 버블링 교반 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB760561A (en) * 1953-11-17 1956-10-31 Air Liquide Ladle and method for the treatment of molten metals
JPS53149017U (ko) * 1977-04-28 1978-11-24
JP5073392B2 (ja) * 2007-07-11 2012-11-14 東京窯業株式会社 取鍋
JP2015175007A (ja) * 2014-03-13 2015-10-05 東京窯業株式会社 真空精錬炉用ガス供給装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198667A (ja) * 2000-01-17 2001-07-24 Tokyo Yogyo Co Ltd ボンベ搭載型取鍋を用いた溶湯ガス吹込方法及びボンベ搭載型取鍋
KR20030069033A (ko) * 2002-02-19 2003-08-25 도쿄요교 가부시키가이샤 축압 실린더를 갖는 가스 주입 장치를 구비한 레이들
KR20130101786A (ko) 2012-03-06 2013-09-16 주식회사 포스코 제강방법 및 이를 위한 버블링장치
KR20130107713A (ko) 2012-03-23 2013-10-02 주식회사 포스코 용강 버블링 장치
JP2014237158A (ja) * 2013-06-07 2014-12-18 東京窯業株式会社 蓄圧ボンベを持つ取鍋
JP2014237161A (ja) * 2013-06-07 2014-12-18 東京窯業株式会社 蓄圧ボンベを持つ取鍋
KR20180070952A (ko) * 2016-12-19 2018-06-27 주식회사 포스코 용강 레이들의 버블링 교반 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4082689A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540573A (zh) * 2022-02-28 2022-05-27 北方重工集团有限公司 一种转炉预应力挡座结构

Also Published As

Publication number Publication date
KR20210082797A (ko) 2021-07-06
EP4082689A1 (en) 2022-11-02
JP2023508050A (ja) 2023-02-28
EP4082689A4 (en) 2023-05-31
JP7383826B2 (ja) 2023-11-20
CN114901405A (zh) 2022-08-12
KR102283199B1 (ko) 2021-07-29

Similar Documents

Publication Publication Date Title
EP1171639B1 (en) Continuous charge preheating, melting, refining and casting
CA2851963C (en) Slag-supplying container for use in electric furnace for reduction processing of steel-making slag
US4290589A (en) Teeming pipe for use at the outlet of a melt container
WO2021133018A1 (ko) 용융물 처리 장치 및 방법
CZ297606B6 (cs) Metalurgická nádoba s odpichovým zarízením
US4713826A (en) Method and apparatus for holding or increasing the temperature in a metal melt
CN214270950U (zh) 一种lf炉精炼喷吹渣面脱氧装置
WO2017078336A1 (ko) 용강 처리 장치 및 방법
CN114901405B (zh) 熔融材料处理设备和方法
WO2012141360A1 (ko) 전로 고온공기 분사장치
US4202401A (en) Apparatus for electroslag casting of heavy ingots
JP2005103552A (ja) 連続鋳造方法
US5067552A (en) Shrouding for top pouring of ingots
WO2020091288A1 (ko) 용융금속 공급장치 및 용융금속 공급방법
JPH0139859B2 (ko)
KR20180003754A (ko) 턴디쉬용 수냉 스토퍼
US11994344B2 (en) Installation for recycling contaminated metal scrap
KR101445090B1 (ko) 노저 출선 전기로를 이용한 용융물을 드레인하는 방법
KR20230161730A (ko) 측정장치 및 주조방법
WO2018088753A1 (ko) 주조설비 및 이를 이용한 주조방법
KR100977777B1 (ko) 용강대차의 슬래그 유도장치
EP0104392B1 (en) Method of producing nodular iron and a machine for the implementation thereof
WO2019124858A1 (ko) 유동 제어장치 및 유동 제어방법
JPH07145423A (ja) 真空脱ガス槽内に挿入する水冷ランスおよびその閉塞防止方法
JP2515541Y2 (ja) 炉底出鋼装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538800

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020905734

Country of ref document: EP

Effective date: 20220726